Science.gov

Sample records for alks mrna coding

  1. Alk1 and Alk2 are two new cell cycle-regulated haspin-like proteins in budding yeast.

    PubMed

    Nespoli, Alessandro; Vercillo, Raffaella; di Nola, Lisa; Diani, Laura; Giannattasio, Michele; Plevani, Paolo; Muzi-Falconi, Marco

    2006-07-01

    Haspin is a protein kinase identified in mouse and human cells, and genes coding for haspin-like proteins are present in virtually all eukaryotic genomes sequenced so far. Two haspin homologues, called Alk1 and Alk2, are present in the yeast Saccharomyces cerevisiae. Both Alk1 and Alk2 exhibit a weak auto-kinase activity in vitro, are phosphoproteins in vivo and are hyperphosphorylated in response to DNA damage. The amount and modification of the two proteins is greatly regulated during the cell cycle. In fact, Alk1 and Alk2 levels peak in mitosis and late-S/G2, respectively, and phosphorylation of both proteins is maximal in mitosis. Control of protein stability plays a major role in Alk2 regulation. The half-life of Alk2 is particularly short in G1; mutagenesis and genetic analysis indicate that its degradation is controlled by the APC pathway. Overexpression of ALK2, but not of ALK1, causes a mitotic arrest, which is correlated to the kinase activity of the protein. This finding, together with its cell cycle regulation, suggests a role for Alk2 in the control of mitosis.

  2. A causal link from ALK to hexokinase II overexpression and hyperactive glycolysis in EML4-ALK-positive lung cancer

    PubMed Central

    Ma, Yibao; Yu, Chunrong; Mohamed, Esraa M.; Shao, Huanjie; Wang, Li; Sundaresan, Gobalakrishnan; Zweit, Jamal; Idowu, Michael; Fang, Xianjun

    2016-01-01

    A high rate of aerobic glycolysis is a hallmark of malignant transformation. Accumulating evidence suggests that diverse regulatory mechanisms mediate this cancer-associated metabolic change seen in a wide spectrum of cancer. The echinoderm microtubule associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion protein is found in approximately 3-7% of non-small cell lung carcinomas (NSCLC). Molecular evidence and therapeutic effectiveness of FDA-approved ALK inhibitors indicated that EML4-ALK is a driving factor of lung tumorigenesis. A recent clinical study showed that NSCLC harboring EML4-ALK rearrangements displayed higher glucose metabolism compared to EML4-ALK-negative NSCLC. In the current work, we presented evidence that EML4-ALK is coupled to overexpression of hexokinase II (HK2), one of the rate-limiting enzymes of the glycolytic pathway. The link from EML4-ALK to HK2 upregulation is essential for a high rate of glycolysis and proliferation of EML4-ALK-rearranged NSCLC cells. We identified hypoxia-inducible factor 1α (HIF1α) as a key transcription factor to drive HK2 gene expression in normoxia in these cells. EML4-ALK induced hypoxia-independent but glucose-dependent accumulation of HIF1α protein via both transcriptional activation of HIF1α mRNA and the PI3K-AKT pathway to enhance HIF1α protein synthesis. The EML4-ALK-mediated upregulation of HIF1α, HK2 and glycolytic metabolism was also highly active in vivo as demonstrated by FDG-PET imaging of xenografts grown from EML4-ALK-positive NSCLC cells. Our data reveal a novel EML4-ALK-HIF1α-HK2 cascade to enhance glucose metabolism in EML4-ALK-positive NSCLC. PMID:27132509

  3. Discovery of Proteomic Code with mRNA Assisted Protein Folding

    PubMed Central

    Biro, Jan C

    2008-01-01

    The 3x redundancy of the Genetic Code is usually explained as a necessity to increase the mutation-resistance of the genetic information. However recent bioinformatical observations indicate that the redundant Genetic Code contains more biological information than previously known and which is additional to the 64/20 definition of amino acids. It might define the physico-chemical and structural properties of amino acids, the codon boundaries, the amino acid co-locations (interactions) in the coded proteins and the free folding energy of mRNAs. This additional information, which seems to be necessary to determine the 3D structure of coding nucleic acids as well as the coded proteins, is known as the Proteomic Code and mRNA Assisted Protein Folding. PMID:19330085

  4. Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFβ-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    de Kroon, Laurie M. G.; Narcisi, Roberto; Blaney Davidson, Esmeralda N.; Cleary, Mairéad A.; van Beuningen, Henk M.; Koevoet, Wendy J. L. M.; van Osch, Gerjo J. V. M.; van der Kraan, Peter M.

    2015-01-01

    Introduction Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor β (TGFβ) is crucial for inducing chondrogenic differentiation of BMSCs and is known to signal via Activin receptor-Like Kinase (ALK) receptors ALK5 and ALK1. Since the specific role of these two TGFβ receptors in chondrogenesis is unknown, we investigated whether ALK5 and ALK1 are expressed in BMSCs and whether both receptors are required for chondrogenic differentiation of BMSCs. Materials & Methods ALK5 and ALK1 gene expression in human BMSCs was determined with RT-qPCR. To induce chondrogenesis, human BMSCs were pellet-cultured in serum-free chondrogenic medium containing TGFβ1. Chondrogenesis was evaluated by aggrecan and collagen type IIα1 RT-qPCR analysis, and histological stainings of proteoglycans and collagen type II. To overexpress constitutively active (ca) receptors, BMSCs were transduced either with caALK5 or caALK1. Expression of ALK5 and ALK1 was downregulated by transducing BMSCs with shRNA against ALK5 or ALK1. Results ALK5 and ALK1 were expressed in in vitro-expanded as well as in pellet-cultured BMSCs from five donors, but mRNA levels of both TGFβ receptors did not clearly associate with chondrogenic induction. TGFβ increased ALK5 and decreased ALK1 gene expression in chondrogenically differentiating BMSC pellets. Neither caALK5 nor caALK1 overexpression induced cartilage matrix formation as efficient as that induced by TGFβ. Moreover, short hairpin-mediated downregulation of either ALK5 or ALK1 resulted in a strong inhibition of TGFβ-induced chondrogenesis. Conclusion ALK5 as well as ALK1 are required for TGFβ-induced chondrogenic differentiation of BMSCs, and TGFβ not only directly induces chondrogenesis, but also modulates ALK5 and ALK1 receptor signaling in BMSCs. These results imply that optimizing cartilage formation by

  5. Evidence that the matrix protein of influenza C virus is coded for by a spliced mRNA.

    PubMed Central

    Yamashita, M; Krystal, M; Palese, P

    1988-01-01

    In contrast to influenza A and B viruses, which encode their matrix (M) proteins via an unspliced mRNA, the influenza C virus M protein appears to be coded for by a spliced mRNA from RNA segment 6. Although an open reading frame in RNA segment 6 of influenza C/JJ/50 virus could potentially code for a protein of 374 amino acids, a splicing event results in an mRNA coding for a 242-amino-acid M protein. The message for this protein represents the major M gene-specific mRNA species in C virus-infected cells. Despite the difference in coding strategies, there are sequence homologies among the M proteins of influenza A, B, and C viruses which confirm the evolutionary relationship of the three influenza virus types. Images PMID:3404579

  6. Improving mRNA 5' coding sequence determination in the mouse genome.

    PubMed

    Piovesan, Allison; Caracausi, Maria; Pelleri, Maria Chiara; Vitale, Lorenza; Martini, Silvia; Bassani, Chiara; Gurioli, Annalisa; Casadei, Raffaella; Soldà, Giulia; Strippoli, Pierluigi

    2014-04-01

    The incomplete determination of the mRNA 5' end sequence may lead to the incorrect assignment of the first AUG codon and to errors in the prediction of the encoded protein product. Due to the significance of the mouse as a model organism in biomedical research, we performed a systematic identification of coding regions at the 5' end of all known mouse mRNAs, using an automated expressed sequence tag (EST)-based approach which we have previously described. By parsing almost 4 million BLAT alignments we found 351 mouse loci, out of 20,221 analyzed, in which an extension of the mRNA 5' coding region was identified. Proof-of-concept confirmation was obtained by in vitro cloning and sequencing for Apc2 and Mknk2 cDNAs. We also generated a list of 16,330 mouse mRNAs where the presence of an in-frame stop codon upstream of the known start codon indicates completeness of the coding sequence at 5' end in the current form. Systematic searches in the main mouse genome databases and genome browsers showed that 82% of our results are original and have not been identified by their annotation pipelines. Moreover, the same information is not easily derivable from RNA-Seq data, due to short sequence length and laboriousness in building full-length transcript structures. In conclusion, our results improve the determination of full-length 5' coding sequences and might be useful in order to reduce errors when studying mouse gene structure and function in biomedical research.

  7. The signal sequence coding region promotes nuclear export of mRNA.

    PubMed

    Palazzo, Alexander F; Springer, Michael; Shibata, Yoko; Lee, Chung-Sheng; Dias, Anusha P; Rapoport, Tom A

    2007-12-01

    In eukaryotic cells, most mRNAs are exported from the nucleus by the transcription export (TREX) complex, which is loaded onto mRNAs after their splicing and capping. We have studied in mammalian cells the nuclear export of mRNAs that code for secretory proteins, which are targeted to the endoplasmic reticulum membrane by hydrophobic signal sequences. The mRNAs were injected into the nucleus or synthesized from injected or transfected DNA, and their export was followed by fluorescent in situ hybridization. We made the surprising observation that the signal sequence coding region (SSCR) can serve as a nuclear export signal of an mRNA that lacks an intron or functional cap. Even the export of an intron-containing natural mRNA was enhanced by its SSCR. Like conventional export, the SSCR-dependent pathway required the factor TAP, but depletion of the TREX components had only moderate effects. The SSCR export signal appears to be characterized in vertebrates by a low content of adenines, as demonstrated by genome-wide sequence analysis and by the inhibitory effect of silent adenine mutations in SSCRs. The discovery of an SSCR-mediated pathway explains the previously noted amino acid bias in signal sequences and suggests a link between nuclear export and membrane targeting of mRNAs.

  8. Identification of ALK germline mutation (3605delG) in pediatric anaplastic medulloblastoma.

    PubMed

    Coco, Simona; De Mariano, Marilena; Valdora, Francesca; Servidei, Tiziana; Ridola, Vita; Andolfo, Immacolata; Oberthuer, André; Tonini, Gian Paolo; Longo, Luca

    2012-10-01

    The anaplastic lymphoma kinase (ALK) gene has been found either rearranged or mutated in several neoplasms such as anaplastic large-cell lymphoma, non-small-cell lung cancer, neuroblastoma and anaplastic thyroid cancer. Medulloblastoma (MB) is an embryonic pediatric cancer arising from nervous system, a tissue in which ALK is expressed during embryonic development. We performed an ALK mutation screening in 52 MBs and we found a novel heterozygous germline deletion of a single base in exon 23 (3605delG) in a case with marked anaplasia. This G deletion results in a frameshift mutation producing a premature stop codon in exon 25 of ALK tyrosine kinase domain. We also screened three human MB cell lines without finding any mutation of ALK gene. Quantitative expression analysis of 16 out of 52 samples showed overexpression of ALK mRNA in three MBs. In the present study, we report the first mutation of ALK found in MB. Moreover, a deletion of ALK gene producing a stop codon has not been detected in human tumors up to now. Further investigations are now required to elucidate whether the truncated form of ALK may have a role in signal transduction.

  9. Detection of ALK rearrangements in lung cancer patients using a homebrew PCR assay.

    PubMed

    Yu, Hui; Chang, JianHua; Liu, Fang; Wang, Qifeng; Lu, YongMing; Zhang, ZhuanXu; Shen, Jiabing; Zhai, Qing; Meng, Xia; Wang, Jialei; Ye, Xun

    2017-01-31

    Lung cancer patients with anaplastic lymphoma kinase (ALK) rearrangements are candidates for targeted therapeutics. However, patients must be tested with a companion diagnostic assay to realize their ALK rearrangement status. We analyzed the publicly available E-GEOD-31210 microarray dataset and identified a non-coding RNA, sweyjawbu, which is strongly associated with ALK rearrangements. We validated these results using quantitative real-time PCR in an independent cohort consisting of 4 cell lines and 83 clinical samples. We could differentiate between ALK rearrangement-positive and -negative lung cancer samples by comparing sweyjawbu expression. Additionally, ALK rearrangement status was determined by comparing the expression of the 5' and 3' regions of the ALK transcript or by detecting known ALK hybrid subtypes. Thus, using our homebrew PCR assay, we were able to accurately detect ALK rearrangements, which could be used for diagnostic screening of lung cancer patients. The prototype could potentially be transferred to an automatic multiplex PCR platform (FilmArray) to differentiate between ALK rearrangement-positive and -negative patients in point-of-care settings.

  10. Shear induced collateral artery growth modulated by endoglin but not by ALK1

    PubMed Central

    Seghers, Leonard; de Vries, Margreet R; Pardali, Evangelia; Hoefer, Imo E; Hierck, Beerend P; ten Dijke, Peter ten; Goumans, Marie Jose; Quax, Paul HA

    2012-01-01

    Transforming growth factor-beta (TGF-β) stimulates both ischaemia induced angiogenesis and shear stress induced arteriogenesis by signalling through different receptors. How these receptors are involved in both these processes of blood flow recovery is not entirely clear. In this study the role of TGF-β receptors 1 and endoglin is assessed in neovascularization in mice. Unilateral femoral artery ligation was performed in mice heterozygous for either endoglin or ALK1 and in littermate controls. Compared with littermate controls, blood flow recovery, monitored by laser Doppler perfusion imaging, was significantly hampered by maximal 40% in endoglin heterozygous mice and by maximal 49% in ALK1 heterozygous mice. Collateral artery size was significantly reduced in endoglin heterozygous mice compared with controls but not in ALK1 heterozygous mice. Capillary density in ischaemic calf muscles was unaffected, but capillaries from endoglin and ALK1 heterozygous mice were significantly larger when compared with controls. To provide mechanistic evidence for the differential role of endoglin and ALK1 in shear induced or ischaemia induced neovascularization, murine endothelial cells were exposed to shear stress in vitro. This induced increased levels of endoglin mRNA but not ALK1. In this study it is demonstrated that both endoglin and ALK1 facilitate blood flow recovery. Importantly, endoglin contributes to both shear induced collateral artery growth and to ischaemia induced angiogenesis, whereas ALK1 is only involved in ischaemia induced angiogenesis. PMID:22436015

  11. Precision medicine in NSCLC and pathology: how does ALK fit in the pathway?

    PubMed

    Kerr, K M; López-Ríos, F

    2016-09-01

    The evolution of personalised medicine in lung cancer has dramatically impacted diagnostic pathology. Current challenges centre on the growing demands placed on small tissue samples by molecular diagnostic techniques. In this review, expert recommendations are provided regarding successful identification of anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC). Steps to correctly process and conserve tumour tissue during diagnostic testing are essential to ensure tissue availability. For example, storing extra tissue sections ready for molecular diagnostic steps allows faster testing and preserves tissue. Fluorescence in situ hybridisation (FISH) is commonly used to detect ALK rearrangements, with most laboratories favouring screening by immunohistochemistry followed by a confirmatory FISH assay. Reverse transcription-polymerase chain reaction can also identify ALK fusion gene mRNA transcripts but can be limited by the quality of RNA and the risk that rare fusion variants may not be captured. Next-generation sequencing (NGS) technology has recently provided an alternative method for detecting ALK rearrangements. While current experience is limited, NGS is set to become the most efficient approach as an increasing number of genetic abnormalities is required to be tested. Upfront, reflex testing for ALK gene rearrangement should become routine as ALK tyrosine kinase inhibitor therapy moves into the first-line setting. Guidelines recommend that EGFR and ALK tests are carried out in parallel on all confirmed and potential adenocarcinomas, and this is more efficient in terms of tissue usage and testing turnaround time for both of these actionable gene alterations. The practice of sequential testing is not recommended. Identification of ALK rearrangements is now essential for the diagnosis of NSCLC, underpinned by the benefits of ALK inhibitors. As scientific understanding and diagnostic technology develops, ALK testing will continue to be an

  12. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1)

    PubMed Central

    Marzec, Michal; Zhang, Qian; Goradia, Ami; Raghunath, Puthiyaveettil N.; Liu, Xiaobin; Paessler, Michele; Wang, Hong Yi; Wysocka, Maria; Cheng, Mangeng; Ruggeri, Bruce A.; Wasik, Mariusz A.

    2008-01-01

    The mechanisms of malignant cell transformation caused by the oncogenic, chimeric nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) remain only partially understood, with most of the previous studies focusing mainly on the impact of NPM/ALK on cell survival and proliferation. Here we report that the NPM/ALK-carrying T cell lymphoma (ALK+TCL) cells strongly express the immunosuppressive cell-surface protein CD274 (PD-L1, B7-H1), as determined on the mRNA and protein level. The CD274 expression is strictly dependent on the expression and enzymatic activity of NPM/ALK, as demonstrated by inhibition of the NPM/ALK function in ALK+TCL cells by the small molecule ALK inhibitor CEP-14083 and by documenting CD274 expression in IL-3-depleted BaF3 cells transfected with the wild-type NPM/ALK, but not the kinase-inactive NPM/ALK K210R mutant or empty vector alone. NPM/ALK induces CD274 expression by activating its key signal transmitter, transcription factor STAT3. STAT3 binds to the CD274 gene promoter in vitro and in vivo, as shown in the gel electromobility shift and chromatin immunoprecipitation assays, and is required for the PD-L1 gene expression, as demonstrated by siRNA-mediated STAT3 depletion. These findings identify an additional cell-transforming property of NPM/ALK and describe a direct link between an oncoprotein and an immunosuppressive cell-surface protein. These results also provide an additional rationale to therapeutically target NPM/ALK and STAT3 in ALK+TCL. Finally, they suggest that future immunotherapeutic protocols for this type of lymphoma may need to include the inhibition of NPM/ALK and STAT3 to achieve optimal clinical efficacy. PMID:19088198

  13. Relation between mRNA expression and sequence information in Desulfovibrio vulgaris: Combinatorial contributions of upstream regulatory motifs and coding sequence features to variations in mRNA abundance

    SciTech Connect

    Wu, Gang; Nie, Lei; Zhang, Weiwen

    2006-05-26

    ABSTRACT-The context-dependent expression of genes is the core for biological activities, and significant attention has been given to identification of various factors contributing to gene expression at genomic scale. However, so far this type of analysis has been focused whether on relation between mRNA expression and non-coding sequence features such as upstream regulatory motifs or on correlation between mRN abundance and non-random features in coding sequences (e.g. codon usage and amino acid usage). In this study multiple regression analyses of the mRNA abundance and all sequence information in Desulfovibrio vulgaris were performed, with the goal to investigate how much coding and non-coding sequence features contribute to the variations in mRNA expression, and in what manner they act together...

  14. Novel ALK fusion partners in lung cancer.

    PubMed

    Iyevleva, Aglaya G; Raskin, Grigory A; Tiurin, Vladislav I; Sokolenko, Anna P; Mitiushkina, Natalia V; Aleksakhina, Svetlana N; Garifullina, Aigul R; Strelkova, Tatiana N; Merkulov, Valery O; Ivantsov, Alexandr O; Kuligina, Ekatherina Sh; Pozharisski, Kazimir M; Togo, Alexandr V; Imyanitov, Evgeny N

    2015-06-28

    Detection of ALK rearrangements in patients with non-small cell lung cancer (NSCLC) presents a significant technical challenge due to the existence of multiple translocation partners and break-points. To improve the performance of PCR-based tests, we utilized the combination of 2 assays, i.e. the variant-specific PCR for the 5 most common ALK rearrangements and the test for unbalanced 5'/3'-end ALK expression. Overall, convincing evidence for the presence of ALK translocation was obtained for 34/400 (8.5%) cases, including 14 EML4ex13/ALKex20, 12 EML4ex6/ALKex20, 3 EML4ex18/ALKex20, 2 EML4ex20/ALKex20 variants and 3 tumors with novel translocation partners. 386 (96.5%) out of 400 EGFR mutation-negative NSCLCs were concordant for both tests, being either positive (n = 26) or negative (n = 360) for ALK translocation; 49 of these samples (6 ALK+, 43 ALK-) were further evaluated by FISH, and there were no instances of disagreement. Among the 14 (3.5%) "discordant" tumors, 5 demonstrated ALK translocation by the first but not by the second PCR assay, and 9 had unbalanced ALK expression in the absence of known ALK fusion variants. 5 samples from the latter group were subjected to FISH, and the presence of translocation was confirmed in 2 cases. Next generation sequencing analysis of these 2 samples identified novel translocation partners, DCTN1 and SQSTM1; furthermore, the DCTN1/ALK fusion was also found in another NSCLC sample with unbalanced 5'/3'-end ALK expression, indicating a recurrent nature of this translocation. We conclude that the combination of 2 different PCR tests is a viable approach for the diagnostics of ALK rearrangements. Systematic typing of ALK fusions is likely to reveal new NSCLC-specific ALK partners.

  15. Hfq assists small RNAs in binding to the coding sequence of ompD mRNA and in rearranging its structure

    PubMed Central

    Wroblewska, Zuzanna; Olejniczak, Mikolaj

    2016-01-01

    The bacterial protein Hfq participates in the regulation of translation by small noncoding RNAs (sRNAs). Several mechanisms have been proposed to explain the role of Hfq in the regulation by sRNAs binding to the 5′-untranslated mRNA regions. However, it remains unknown how Hfq affects those sRNAs that target the coding sequence. Here, the contribution of Hfq to the annealing of three sRNAs, RybB, SdsR, and MicC, to the coding sequence of Salmonella ompD mRNA was investigated. Hfq bound to ompD mRNA with tight, subnanomolar affinity. Moreover, Hfq strongly accelerated the rates of annealing of RybB and MicC sRNAs to this mRNA, and it also had a small effect on the annealing of SdsR. The experiments using truncated RNAs revealed that the contributions of Hfq to the annealing of each sRNA were individually adjusted depending on the structures of interacting RNAs. In agreement with that, the mRNA structure probing revealed different structural contexts of each sRNA binding site. Additionally, the annealing of RybB and MicC sRNAs induced specific conformational changes in ompD mRNA consistent with local unfolding of mRNA secondary structure. Finally, the mutation analysis showed that the long AU-rich sequence in the 5′-untranslated mRNA region served as an Hfq binding site essential for the annealing of sRNAs to the coding sequence. Overall, the data showed that the functional specificity of Hfq in the annealing of each sRNA to the ompD mRNA coding sequence was determined by the sequence and structure of the interacting RNAs. PMID:27154968

  16. Structure of the coding region and mRNA variants of the apyrase gene from pea (Pisum sativum)

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Abe, S.; Davies, E.

    2001-01-01

    Partial amino acid sequences of a 49 kDa apyrase (ATP diphosphohydrolase, EC 3.6.1.5) from the cytoskeletal fraction of etiolated pea stems were used to derive oligonucleotide DNA primers to generate a cDNA fragment of pea apyrase mRNA by RT-PCR and these primers were used to screen a pea stem cDNA library. Two almost identical cDNAs differing in just 6 nucleotides within the coding regions were found, and these cDNA sequences were used to clone genomic fragments by PCR. Two nearly identical gene fragments containing 8 exons and 7 introns were obtained. One of them (H-type) encoded the mRNA sequence described by Hsieh et al. (1996) (DDBJ/EMBL/GenBank Z32743), while the other (S-type) differed by the same 6 nucleotides as the mRNAs, suggesting that these genes may be alleles. The six nucleotide differences between these two alleles were found solely in the first exon, and these mutation sites had two types of consensus sequences. These mRNAs were found with varying lengths of 3' untranslated regions (3'-UTR). There are some similarities between the 3'-UTR of these mRNAs and those of actin and actin binding proteins in plants. The putative roles of the 3'-UTR and alternative polyadenylation sites are discussed in relation to their possible role in targeting the mRNAs to different subcellular compartments.

  17. Melting temperature highlights functionally important RNA structure and sequence elements in yeast mRNA coding regions.

    PubMed

    Qi, Fei; Frishman, Dmitrij

    2017-03-07

    Secondary structure elements in the coding regions of mRNAs play an important role in gene expression and regulation, but distinguishing functional from non-functional structures remains challenging. Here we investigate the dependence of sequence-structure relationships in the coding regions on temperature based on the recent PARTE data by Wan et al. Our main finding is that the regions with high and low thermostability (high Tm and low Tm regions) are under evolutionary pressure to preserve RNA secondary structure and primary sequence, respectively. Sequences of low Tm regions display a higher degree of evolutionary conservation compared to high Tm regions. Low Tm regions are under strong synonymous constraint, while high Tm regions are not. These findings imply that high Tm regions contain thermo-stable functionally important RNA structures, which impose relaxed evolutionary constraint on sequence as long as the base-pairing patterns remain intact. By contrast, low thermostability regions contain single-stranded functionally important conserved RNA sequence elements accessible for binding by other molecules. We also find that theoretically predicted structures of paralogous mRNA pairs become more similar with growing temperature, while experimentally measured structures tend to diverge, which implies that the melting pathways of RNA structures cannot be fully captured by current computational approaches.

  18. ALK oncoproteins in atypical inflammatory myofibroblastic tumours: novel RRBP1-ALK fusions in epithelioid inflammatory myofibroblastic sarcoma.

    PubMed

    Lee, Jen-Chieh; Li, Chien-Feng; Huang, Hsuan-Ying; Zhu, Mei-Jun; Mariño-Enríquez, Adrián; Lee, Chung-Ta; Ou, Wen-Bin; Hornick, Jason L; Fletcher, Jonathan A

    2017-02-01

    ALK oncogenic activation mechanisms were characterized in four conventional spindle-cell inflammatory myofibroblastic tumours (IMT) and five atypical IMT, each of which had ALK genomic perturbations. Constitutively activated ALK oncoproteins were purified by ALK immunoprecipitation and electrophoresis, and were characterized by mass spectrometry. The four conventional IMT had TPM3/4-ALK fusions (two cases) or DCTN1-ALK fusions (two cases), whereas two atypical spindle-cell IMT had TFG-ALK and TPM3-ALK fusion in one case each, and three epithelioid inflammatory myofibroblastic sarcomas had RANBP2-ALK fusions in two cases, and a novel RRBP1-ALK fusion in one case. The epithelioid inflammatory myofibroblastic sarcoma with RRBP1-ALK fusion had cytoplasmic ALK expression with perinuclear accentuation, different from the nuclear membranous ALK localization in epithelioid inflammatory myofibroblastic sarcomas with RANBP2-ALK fusions. Evaluation of three additional uncharacterized epithelioid inflammatory myofibroblastic sarcomas with ALK cytoplasmic/perinuclear- accentuation expression demonstrated RRBP1-ALK fusion in two cases. These studies show that atypical spindle-cell IMT can utilize the same ALK fusion mechanisms described previously in conventional IMT, whereas in clinically aggressive epithelioid inflammatory myofibroblastic sarcoma we identify a novel recurrent ALK oncogenic mechanism, resulting from fusion with the RRBP1 gene. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. ALK: a tyrosine kinase target for cancer therapy

    PubMed Central

    Holla, Vijaykumar R.; Elamin, Yasir Y.; Bailey, Ann Marie; Johnson, Amber M.; Litzenburger, Beate C.; Khotskaya, Yekaterina B.; Sanchez, Nora S.; Zeng, Jia; Shufean, Md Abu; Shaw, Kenna R.; Mendelsohn, John; Mills, Gordon B.; Meric-Bernstam, Funda; Simon, George R.

    2017-01-01

    The anaplastic lymphoma kinase (ALK) gene plays an important physiologic role in the development of the brain and can be oncogenically altered in several malignancies, including non-small-cell lung cancer (NSCLC) and anaplastic large cell lymphomas (ALCL). Most prevalent ALK alterations are chromosomal rearrangements resulting in fusion genes, as seen in ALCL and NSCLC. In other tumors, ALK copy-number gains and activating ALK mutations have been described. Dramatic and often prolonged responses are seen in patients with ALK alterations when treated with ALK inhibitors. Three of these—crizotinib, ceritinib, and alectinib—are now FDA approved for the treatment of metastatic NSCLC positive for ALK fusions. However, the emergence of resistance is universal. Newer ALK inhibitors and other targeting strategies are being developed to counteract the newly emergent mechanism(s) of ALK inhibitor resistance. This review outlines the recent developments in our understanding and treatment of tumors with ALK alterations. PMID:28050598

  20. Characterizing the Coding Region Determinant-Binding Protein (CRD-BP)-Microphthalmia-associated Transcription Factor (MITF) mRNA interaction.

    PubMed

    Rensburg, Gerrit van; Mackedenski, Sebastian; Lee, Chow H

    2017-01-01

    Coding region determinant-binding protein (CRD-BP) binds to the 3'-UTR of microphthalmia-associated transcription factor (MITF) mRNA to prevent its targeted degradation by miR-340. Here, we aim to further understand the molecular interaction between CRD-BP and MITF RNA. Using point mutation in the GXXG motif of each KH domains, we showed that all four KH domains of CRD-BP are important for their physical association with MITF RNA. We mapped the CRD-BP-binding site in the 3'-UTR of MITF RNA from nts 1330-1740 and showed that the 49-nt fragment 1621-1669 is the minimal size MITF RNA for binding. Upon deletion of nts 1621-1669 within the nts1550-1740 of MITF RNA, there was a 3-fold increase in dissociation constant Kd, which further confirms the critical role sequences within nts 1621-1669 in binding to CRD-BP. Amongst the eight antisense oligonucleotides designed against MITF RNA 1550-1740, we found MHO-1 and MHO-7 as potent inhibitors of the CRD-BP-MITF RNA interaction. Using RNase protection and fluorescence polarization assays, we showed that both MHO-1 and MHO-7 have affinity for the MITF RNA, suggesting that both antisense oligonucleotides inhibited CRD-BP-MITF RNA interaction by directly binding to MITF RNA. The new molecular insights provided in this study have important implications for understanding the oncogenic function of CRD-BP and development of specific inhibitors against CRD-BP-MITF RNA interaction.

  1. Characterizing the Coding Region Determinant-Binding Protein (CRD-BP)-Microphthalmia-associated Transcription Factor (MITF) mRNA interaction

    PubMed Central

    2017-01-01

    Coding region determinant-binding protein (CRD-BP) binds to the 3’-UTR of microphthalmia-associated transcription factor (MITF) mRNA to prevent its targeted degradation by miR-340. Here, we aim to further understand the molecular interaction between CRD-BP and MITF RNA. Using point mutation in the GXXG motif of each KH domains, we showed that all four KH domains of CRD-BP are important for their physical association with MITF RNA. We mapped the CRD-BP-binding site in the 3’-UTR of MITF RNA from nts 1330–1740 and showed that the 49-nt fragment 1621–1669 is the minimal size MITF RNA for binding. Upon deletion of nts 1621–1669 within the nts1550-1740 of MITF RNA, there was a 3-fold increase in dissociation constant Kd, which further confirms the critical role sequences within nts 1621–1669 in binding to CRD-BP. Amongst the eight antisense oligonucleotides designed against MITF RNA 1550–1740, we found MHO-1 and MHO-7 as potent inhibitors of the CRD-BP-MITF RNA interaction. Using RNase protection and fluorescence polarization assays, we showed that both MHO-1 and MHO-7 have affinity for the MITF RNA, suggesting that both antisense oligonucleotides inhibited CRD-BP-MITF RNA interaction by directly binding to MITF RNA. The new molecular insights provided in this study have important implications for understanding the oncogenic function of CRD-BP and development of specific inhibitors against CRD-BP-MITF RNA interaction. PMID:28182633

  2. Identification of an androgen-repressed mRNA in rat ventral prostate as coding for sulphated glycoprotein 2 by cDNA cloning and sequence analysis.

    PubMed Central

    Bettuzzi, S; Hiipakka, R A; Gilna, P; Liao, S T

    1989-01-01

    The concentrations of a small number of mRNAs in the rat ventral prostate increase after castration and then decrease upon androgen treatment. Since the repression of specific gene expression may be important in the regulation of organ growth, we have cloned a cDNA for an androgen-repressed mRNA, the concentration of which increased 17-fold 4 days after castration, and this increase was reversed rapidly by androgen treatment. By sequence analysis the androgen-repressed mRNA was identified as that coding for sulphated glycoprotein 2. Images Fig. 1. PMID:2920020

  3. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer

    PubMed Central

    Koivunen, Jussi P.; Mermel, Craig; Zejnullahu, Kreshnik; Murphy, Carly; Lifshits, Eugene; Holmes, Alison J.; Choi, Hwan Geun; Kim, Jhingook; Chiang, Derek; Thomas, Roman; Lee, Jinseon; Richards, William G.; Sugarbaker, David J.; Ducko, Christopher; Lindeman, Neal; Marcoux, J. Paul; Engelman, Jeffrey A.; Gray, Nathanael S.; Lee, Charles; Meyerson, Matthew; Jänne, Pasi A.

    2011-01-01

    Purpose The EML4-ALK fusion gene has been detected in ~7% of Japanese non-small cell lung cancers (NSCLC). We determined the frequency of EML4-ALK in Caucasian NSCLCs and in NSCLC cell lines. We also determined whether TAE684, a specific ALK kinase inhibitor, would inhibit the growth of EML4-ALK containing cell lines in vitro and in vivo. Experimental Design We screened 305 primary NSCLCs (both US (n=138) and Korean (n=167) patients) and 83 NSCLC cell lines using RT-PCR and by exon array analyses. We evaluated the efficacy of TAE684 against NSCLC cell lines in vitro and in vivo. Results We detected 4 different variants, including two novel variants, of EML4-ALK using RT-PCR in 8/305 tumors (3%) and in 3/83 (3.6%) NSCLC cell lines. All EML4-ALK containing tumors and cell lines were adenocarcinomas. EML4-ALK was detected more frequently in NSCLC patients who were never or light (< 10 pack years) cigarette smokers compared to current/former smokers (6% vs. 1%; p=0.049). TAE684 inhibited the growth of 1 of 3 (H3122) EML4-ALK containing cell lines in vitro and in vivo, inhibited Akt phosphorylation and caused apoptosis. In another EML4-ALK cell line, DFCI032, TAE684 was ineffective due to co-activation of EGFR and ERBB2. The combination of TAE684 and CL-387,785 (EGFR/ERBB2 kinase inhibitor), inhibited growth and Akt phosphorylation and led to apoptosis in the DFCI032 cell line. Conclusions EML4-ALK is found in the minority of NSCLCs. ALK kinase inhibitors alone or in combination may nevertheless be clinically effective treatments for NSCLC patients whose tumors contain EML4-ALK. PMID:18594010

  4. DNA sequence-based "bar codes" for tracking the origins of expressed sequence tags from a maize cDNA library constructed using multiple mRNA sources.

    PubMed

    Qiu, Fang; Guo, Ling; Wen, Tsui-Jung; Liu, Feng; Ashlock, Daniel A; Schnable, Patrick S

    2003-10-01

    To enhance gene discovery, expressed sequence tag (EST) projects often make use of cDNA libraries produced using diverse mixtures of mRNAs. As such, expression data are lost because the origins of the resulting ESTs cannot be determined. Alternatively, multiple libraries can be prepared, each from a more restricted source of mRNAs. Although this approach allows the origins of ESTs to be determined, it requires the production of multiple libraries. A hybrid approach is reported here. A cDNA library was prepared using 21 different pools of maize (Zea mays) mRNAs. DNA sequence "bar codes" were added during first-strand cDNA synthesis to uniquely identify the mRNA source pool from which individual cDNAs were derived. Using a decoding algorithm that included error correction, it was possible to identify the source mRNA pool of more than 97% of the ESTs. The frequency at which a bar code is represented in an EST contig should be proportional to the abundance of the corresponding mRNA in the source pool. Consistent with this, all ESTs derived from several genes (zein and adh1) that are known to be exclusively expressed in kernels or preferentially expressed under anaerobic conditions, respectively, were exclusively tagged with bar codes associated with mRNA pools prepared from kernel and anaerobically treated seedlings, respectively. Hence, by allowing for the retention of expression data, the bar coding of cDNA libraries can enhance the value of EST projects.

  5. CRKL mediates EML4-ALK signaling and is a potential therapeutic target for ALK-rearranged lung adenocarcinoma

    PubMed Central

    Voeller, Donna; Gower, Arjan; Kim, In-Kyu; Zhang, Yu-Wen; Giaccone, Giuseppe

    2016-01-01

    Anaplastic lymphoma kinase (ALK) gene rearrangements are oncogenic drivers in a small subset of patients with non-small-cell lung cancer (NSCLC). The ALK inhibitors are highly effective in NSCLC patients harboring ALK rearrangements; however, most patients acquire resistance to the therapy following an initial response. Mechanisms of acquired resistance are complex. We used LC-MS/MS-based phosphotyrosine-peptide profiling in the EML4-ALK rearranged H3122 and H2228 cells treated with ALK inhibitors, to identify downstream effectors of ALK. We then used Western blot, siRNA experiments, cell proliferation, viability and migration assays to validate our findings. We identified CRKL as a novel downstream effector of ALK signaling. We demonstrated that CRKL tyrosine phosphorylation was repressed by pharmacological inhibition or small interfering RNA (siRNA) knockdown of ALK in the ALK-rearranged cells. More importantly, CRKL knockdown attenuated their cell proliferation, viability, and migration, but it had no effect on ALK phosphorylation and expression in these cells. Furthermore, CRKL tyrosine phosphorylation was inhibited by dasatinib (an inhibitor of ABL and SRC kinases), which in combination with the ALK inhibitor crizotinib displayed a synergistic inhibitory effect in vitro. In conclusion, our study suggests that CRKL is a key downstream effector of ALK, and combined inhibition of ALK and CRKL may represent an effective strategy for treating ALK-rearranged NSCLC patients. PMID:27078848

  6. IFNL3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance.

    PubMed

    Lu, Yi-Fan; Mauger, David M; Goldstein, David B; Urban, Thomas J; Weeks, Kevin M; Bradrick, Shelton S

    2015-11-04

    Polymorphisms near the interferon lambda 3 (IFNL3) gene strongly predict clearance of hepatitis C virus (HCV) infection. We analyzed a variant (rs4803217 G/T) located within the IFNL3 mRNA 3' untranslated region (UTR); the G allele (protective allele) is associated with elevated therapeutic HCV clearance. We show that the IFNL3 3' UTR represses mRNA translation and the rs4803217 allele modulates the extent of translational regulation. We analyzed the structures of IFNL3 variant mRNAs at nucleotide resolution by SHAPE-MaP. The rs4803217 G allele mRNA forms well-defined 3' UTR structure while the T allele mRNA is more dynamic. The observed differences between alleles are among the largest possible RNA structural alterations that can be induced by a single nucleotide change and transform the UTR from a single well-defined conformation to one with multiple dynamic interconverting structures. These data illustrate that non-coding genetic variants can have significant functional effects by impacting RNA structure.

  7. Anaplastic lymphoma kinase (ALK) inhibitors in the treatment of ALK-driven lung cancers.

    PubMed

    Roskoski, Robert

    2017-03-01

    Anaplastic lymphoma kinase is expressed in two-thirds of the anaplastic large-cell lymphomas as an NPM-ALK fusion protein. Physiological ALK is a receptor protein-tyrosine kinase within the insulin receptor superfamily of proteins that participates in nervous system development. The EML4-ALK fusion protein and four other ALK-fusion proteins play a fundamental role in the development in about 5% of non-small cell lung cancers. The amino-terminal portions of the ALK fusion proteins result in dimerization and subsequent activation of the ALK protein kinase domain that plays a key role in the pathogenesis of various tumors. Downstream signaling from the ALK fusion protein leads to the activation of the Ras/Raf/MEK/ERK1/2 cell proliferation module and the JAK/STAT cell survival pathways. Moreover, nearly two dozen ALK activating mutations are involved in the pathogenesis of childhood neuroblastomas. The occurrence of oncogenic ALK-fusion proteins, particularly in non-small cell lung cancer, has fostered considerable interest in the development of ALK inhibitors. Crizotinib was the first such inhibitor approved by the US Food and Drug Administration for the treatment of ALK-positive non-small cell lung cancer in 2011. The median time for the emergence of crizotinib drug resistance is 10.5 months after the initiation of therapy. Such resistance prompted the development of second-generation drugs including ceritinib and alectinib, which are approved for the treatment of non-small cell lung cancer. Unlike the single gatekeeper mutation that occurs in drug-resistant epidermal growth factor receptor in lung cancer, nearly a dozen different mutations in the catalytic domain of ALK fusion proteins have been discovered that result in crizotinib resistance. Crizotinib, ceritinib, and alectinib form a complex within the front cleft between the small and large lobes of an inactive ALK protein-kinase domain with a compact activation segment. These drugs are classified as type I½ B

  8. A dual-amplified electrochemical detection of mRNA based on duplex-specific nuclease and bio-bar-code conjugates.

    PubMed

    Li, Xue-Mei; Wang, Lin-Lin; Luo, Jie; Wei, Qing-Li

    2015-03-15

    On the basis of strong preference for cleaving double-stranded DNA or DNA in DNA:RNA heteroduplexes of duplex-specific nuclease (DSN), a dual-amplified electrochemical detection of mRNA was developed in this article, by coupling the enhancement of DSN and bio-bar-code conjugates. Capture probe was linked with magnetic nanoparticles (MNPs) at its 5' end and bio-bar-code at its 3' end. In the presence of target surviving mRNA, all hybridized S1 strands were cleaved off the biosensor by the DSN, and the bio-bar-code probe with CdS nanoparticles (CdS NPs) was released into the solution. The metal sulfide nanoparticles were measured by anodic stripping voltammetry (ASV) subsequently. This assay exhibited high sensitivity and selectivity with a detection limit of 0.48fM. In addition, we proved that this simple and cost-effective strategy is capable of detecting the target in complicated biological samples and holds great potential application in biomedical research and clinical diagnostics.

  9. Atypical Carcinoid Tumor with Anaplastic Lymphoma Kinase (ALK) Rearrangement Successfully Treated by an ALK Inhibitor.

    PubMed

    Nakajima, Masayuki; Uchiyama, Naoki; Shigemasa, Rie; Matsumura, Takeshi; Matsuoka, Ryota; Nomura, Akihiro

    This is the first report in which crizotinib, an anaplastic lymphoma kinase (ALK) inhibitor, reduced an atypical carcinoid tumor with ALK rearrangement. A 70-year-old man developed a tumor in the left lung and multiple metastases to the lung and brain. The pathology of transbronchial biopsied specimens demonstrated an atypical carcinoid pattern. Combined with immunohistochemical findings, we diagnosed the tumor as atypical carcinoid. ALK gene rearrangement was observed by both immunohistochemical (IHC) and fluorescence in situ hybridization. He was treated with chemotherapy as first-line therapy, however, the tumor did not respond to chemotherapy. Thereafter, he was treated with crizotinib, which successfully reduced the tumors.

  10. Preserved Expression of mRNA Coding von Willebrand Factor–Cleaving Protease ADAMTS13 by Selenite and Activated Protein C

    PubMed Central

    Ekaney, Michael L; Bockmeyer, Clemens L; Sossdorf, Maik; Reuken, Philipp A; Conradi, Florian; Schuerholz, Tobias; Blaess, Markus F; Friedman, Scott L; Lösche, Wolfgang; Bauer, Michael; Claus, Ralf A

    2015-01-01

    In sepsis, the severity-dependent decrease of von Willebrand factor (VWF)–inactivating protease, a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13), results in platelet aggregation and consumption, leading to sepsis-associated thrombotic microangiopathy (TMA) and organ failure. Previous reports assessing its functional deficiency have pinpointed involvement of autoantibodies or mutations to propagate thrombotic thrombocytopenic purpura (TTP). However, mechanisms of acquired ADAMTS13 deficiency during host response remain unclear. To enhance understanding of ADAMTS13 deficiency in sepsis, we evaluated changes in expression of mRNA coding ADAMTS13 during septic conditions using primary cellular sources of the protease. We hypothesized that proinflammatory cytokines and constituents of serum from septic patients affect the transcriptional level of ADAMTS13 in vitro, and previously recommended therapeutic agents as adjunctive therapy for sepsis interact therewith. Cultured hepatic stellate cells (HSCs), endothelial cells (HMEC) and human precision-cut liver slices as an ex vivo model were stimulated with sepsis prototypic cytokines, bacterial endotoxin and pooled serum obtained from septic patients. Stimulation resulted in a significant decrease in ADAMTS13 mRNA between 10% and 80% of basal transcriptional rates. Costimulation of selenite or recombinant activated protein C (APC) with serum prevented ADAMTS13 decrease in HSCs and increased ADAMTS13 transcripts in HMEC. In archived clinical samples, the activity of ADAMTS13 in septic patients treated with APC (n = 5) increased with an accompanying decrease in VWF propeptide as surrogate for improved endothelial function. In conclusion, proinflammatory conditions of sepsis repress mRNA coding ADAMTS13 and the ameliorating effect by selenite and APC may support the concept for identification of beneficial mechanisms triggered by these drugs at a molecular level. PMID:25860876

  11. Preserved Expression of mRNA Coding von Willebrand Factor-Cleaving Protease ADAMTS13 by Selenite and Activated Protein C.

    PubMed

    Ekaney, Michael L; Bockmeyer, Clemens L; Sossdorf, Maik; Reuken, Philipp A; Conradi, Florian; Schuerholz, Tobias; Blaess, Markus F; Friedman, Scott L; Lösche, Wolfgang; Bauer, Michael; Claus, Ralf A

    2015-04-03

    In sepsis, the severity-dependent decrease of von Willebrand factor (VWF)-inactivating protease, a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13), results in platelet aggregation and consumption, leading to sepsis-associated thrombotic microangiopathy (TMA) and organ failure. Previous reports assessing its functional deficiency have pinpointed involvement of autoantibodies or mutations to propagate thrombotic thrombocytopenic purpura (TTP). However, mechanisms of acquired ADAMTS13 deficiency during host response remain unclear. To enhance understanding of ADAMTS13 deficiency in sepsis, we evaluated changes in expression of mRNA coding ADAMTS13 during septic conditions using primary cellular sources of the protease. We hypothesized that proinflammatory cytokines and constituents of serum from septic patients affect the transcriptional level of ADAMTS13 in vitro, and previously recommended therapeutic agents as adjunctive therapy for sepsis interact therewith. Cultured hepatic stellate cells (HSCs), endothelial cells (HMEC) and human precision-cut liver slices as an ex vivo model were stimulated with sepsis prototypic cytokines, bacterial endotoxin and pooled serum obtained from septic patients. Stimulation resulted in a significant decrease in ADAMTS13 mRNA between 10% and 80% of basal transcriptional rates. Costimulation of selenite or recombinant activated protein C (APC) with serum prevented ADAMTS13 decrease in HSCs and increased ADAMTS13 transcripts in HMEC. In archived clinical samples, the activity of ADAMTS13 in septic patients treated with APC (n = 5) increased with an accompanying decrease in VWF propeptide as surrogate for improved endothelial function. In conclusion, proinflammatory conditions of sepsis repress mRNA coding ADAMTS13 and the ameliorating effect by selenite and APC may support the concept for identification of beneficial mechanisms triggered by these drugs at a molecular level.

  12. Activity of second-generation ALK inhibitors against crizotinib-resistant mutants in an NPM-ALK model compared to EML4-ALK

    PubMed Central

    Fontana, Diletta; Ceccon, Monica; Gambacorti-Passerini, Carlo; Mologni, Luca

    2015-01-01

    Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor involved in both solid and hematological tumors. About 80% of ALK-positive anaplastic large-cell lymphoma (ALCL) cases are characterized by the t(2;5)(p23;q35) translocation, encoding for the aberrant fusion protein nucleophosmin (NPM)-ALK, whereas 5% of non-small-cell lung cancer (NSCLC) patients carry the inv(2)(p21;p23) rearrangement, encoding for the echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion. The ALK/c-MET/ROS inhibitor crizotinib successfully improved the treatment of ALK-driven diseases. However, several cases of resistance appeared in NSCLC patients, and ALK amino acid substitutions were identified as a leading cause of resistance to crizotinib. Second-generation ALK inhibitors have been developed in order to overcome crizotinib resistance. In this work, we profiled in vitro the activity of crizotinib, AP26113, ASP3026, alectinib, and ceritinib against six mutated forms of ALK associated with clinical resistance to crizotinib (C1156Y, L1196M, L1152R, G1202R, G1269A, and S1206Y) and provide a classification of mutants according to their level of sensitivity/resistance to the drugs. Since the biological activity of ALK mutations extends beyond the specific type of fusion, both NPM-ALK- and EML4-ALK-positive cellular models were used. Our data revealed that most mutants may be targeted by using different inhibitors. One relevant exception is represented by the G1202R substitution, which was highly resistant to all drugs (>10-fold increased IC50 compared to wild type) and may represent the most challenging mutation to overcome. These results provide a prediction of cross-resistance of known crizotinib-resistant mutations against all second-generation tyrosine kinase inhibitors (TKIs) clinically available, and therefore could be a useful tool to help clinicians in the management of crizotinib-resistance cases. PMID:25727400

  13. Efficacy of ALK5 inhibition in myelofibrosis

    PubMed Central

    Zhao, Wanke; Ho, Wanting Tina; Han, Ying; Murdun, Cem; Mailloux, Adam W.; Zhang, Ling; Wang, Xuefeng; Budhathoki, Anjali; Pradhan, Kith; Rapaport, Franck; Wang, Huaquan; Shao, Zonghong; Ren, Xiubao; Steidl, Ulrich; Levine, Ross L.; Zhao, Zhizhuang Joe; Verma, Amit; Epling-Burnette, Pearlie K.

    2017-01-01

    Myelofibrosis (MF) is a bone marrow disorder characterized by clonal myeloproliferation, aberrant cytokine production, extramedullary hematopoiesis, and bone marrow fibrosis. Although somatic mutations in JAK2, MPL, and CALR have been identified in the pathogenesis of these diseases, inhibitors of the Jak2 pathway have not demonstrated efficacy in ameliorating MF in patients. TGF-β family members are profibrotic cytokines and we observed significant TGF-β1 isoform overexpression in a large cohort of primary MF patient samples. Significant overexpression of TGF-β1 was also observed in murine clonal MPLW515L megakaryocytic cells. TGF-β1 stimulated the deposition of excessive collagen by mesenchymal stromal cells (MSCs) by activating the TGF-β receptor I kinase (ALK5)/Smad3 pathway. MSCs derived from MPLW515L mice demonstrated sustained overproduction of both collagen I and collagen III, effects that were abrogated by ALK5 inhibition in vitro and in vivo. Importantly, use of galunisertib, a clinically active ALK5 inhibitor, significantly improved MF in both MPLW515L and JAK2V617F mouse models. These data demonstrate the role of malignant hematopoietic stem cell (HSC)/TGF-β/MSC axis in the pathogenesis of MF, and provide a preclinical rationale for ALK5 blockade as a therapeutic strategy in MF.

  14. Detection of anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer and related issues in ALK inhibitor therapy: a literature review.

    PubMed

    Yi, Eunhee S; Chung, Jin-Haeng; Kulig, Kimary; Kerr, Keith M

    2012-06-01

    Anaplastic lymphoma kinase (ALK) encodes a receptor tyrosine kinase, and ALK gene rearrangement (ALK+) is implicated in the oncogenesis of non-small cell lung carcinomas (NSCLCs), especially adenocarcinomas. The ALK inhibitor crizotinib was approved in August 2011 by the US Food and Drug Administration (FDA) for treating late-stage NSCLCs that are ALK+, with a companion fluorescent in situ hybridization (FISH) test using the Vysis ALK Break Apart FISH Probe Kit. This review covers pertinent issues in ALK testing, including approaches to select target patients for the test, pros and cons of different detection methods, and mechanisms as well as monitoring of acquired crizotinib resistance in ALK+ NSCLCs.

  15. The rate-limiting step in yeast PGK1 mRNA degradation is an endonucleolytic cleavage in the 3'-terminal part of the coding region.

    PubMed Central

    Vreken, P; Raué, H A

    1992-01-01

    Insertion of an 18-nucleotide-long poly(G) tract into the 3'-terminal untranslated region of yeast phosphoglycerate kinase (PGK1) mRNA increases its chemical half-life by about a factor of 2 (P. Vreken, R. Van der Veen, V. C. H. F. de Regt, A. L. de Maat, R. J. Planta, and H. A. Raué, Biochimie 73:729-737, 1991). In this report, we show that this insertion also causes the accumulation of a degradation intermediate extending from the poly(G) sequence down to the transcription termination site. Reverse transcription and S1 nuclease mapping experiments demonstrated that this intermediate is the product of shorter-lived primary fragments resulting from endonucleolytic cleavage immediately downstream from the U residue of either of two 5'-GGUG-3' sequences present between positions 1100 and 1200 close to the 3' terminus (position 1251) of the coding sequence. Similar endonucleolytic cleavages appear to initiate degradation of wild-type PGK1 mRNA. Insertion of a poly(G) tract just upstream from the AUG start codon resulted in the accumulation of a 5'-terminal degradation intermediate extending from the insertion to the 1100-1200 region. RNase H degradation in the presence of oligo(dT) demonstrated that the wild-type and mutant PGK1 mRNAs are deadenylated prior to endonucleolytic cleavage and that the half-life of the poly(A) tail is three- to sixfold lower than that of the remainder of the mRNA. Thus, the endonucleolytic cleavage constitutes the rate-limiting step in degradation of both wild-type and mutant PGK1 transcripts, and the resulting fragments are degraded by a 5'----3' exonuclease, which appears to be severely retarded by a poly(G) sequence. Images PMID:1320194

  16. The Human CCHC-type Zinc Finger Nucleic Acid-Binding Protein Binds G-Rich Elements in Target mRNA Coding Sequences and Promotes Translation.

    PubMed

    Benhalevy, Daniel; Gupta, Sanjay K; Danan, Charles H; Ghosal, Suman; Sun, Hong-Wei; Kazemier, Hinke G; Paeschke, Katrin; Hafner, Markus; Juranek, Stefan A

    2017-03-21

    The CCHC-type zinc finger nucleic acid-binding protein (CNBP/ZNF9) is conserved in eukaryotes and is essential for embryonic development in mammals. It has been implicated in transcriptional, as well as post-transcriptional, gene regulation; however, its nucleic acid ligands and molecular function remain elusive. Here, we use multiple systems-wide approaches to identify CNBP targets and function. We used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to identify 8,420 CNBP binding sites on 4,178 mRNAs. CNBP preferentially bound G-rich elements in the target mRNA coding sequences, most of which were previously found to form G-quadruplex and other stable structures in vitro. Functional analyses, including RNA sequencing, ribosome profiling, and quantitative mass spectrometry, revealed that CNBP binding did not influence target mRNA abundance but rather increased their translational efficiency. Considering that CNBP binding prevented G-quadruplex structure formation in vitro, we hypothesize that CNBP is supporting translation by resolving stable structures on mRNAs.

  17. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN

    PubMed Central

    Guan, J.; Tucker, E. R.; Wan, H.; Chand, D.; Danielson, L. S.; Ruuth, K.; El Wakil, A.; Witek, B.; Jamin, Y.; Umapathy, G.; Robinson, S. P.; Johnson, T. W.; Smeal, T.; Martinsson, T.; Chesler, L.; Palmer, R. H.

    2016-01-01

    ABSTRACT The first-in-class inhibitor of ALK, c-MET and ROS1, crizotinib (Xalkori), has shown remarkable clinical efficacy in treatment of ALK-positive non-small cell lung cancer. However, in neuroblastoma, activating mutations in the ALK kinase domain are typically refractory to crizotinib treatment, highlighting the need for more potent inhibitors. The next-generation ALK inhibitor PF-06463922 is predicted to exhibit increased affinity for ALK mutants prevalent in neuroblastoma. We examined PF-06463922 activity in ALK-driven neuroblastoma models in vitro and in vivo. In vitro kinase assays and cell-based experiments examining ALK mutations of increasing potency show that PF-06463922 is an effective inhibitor of ALK with greater activity towards ALK neuroblastoma mutants. In contrast to crizotinib, single agent administration of PF-06463922 caused dramatic tumor inhibition in both subcutaneous and orthotopic xenografts as well as a mouse model of high-risk neuroblastoma driven by Th-ALKF1174L/MYCN. Taken together, our results suggest PF-06463922 is a potent inhibitor of crizotinib-resistant ALK mutations, and highlights an important new treatment option for neuroblastoma patients. PMID:27483357

  18. How an mRNA capping enzyme reads distinct RNA polymerase II and Spt5 CTD phosphorylation codes.

    PubMed

    Doamekpor, Selom K; Sanchez, Ana M; Schwer, Beate; Shuman, Stewart; Lima, Christopher D

    2014-06-15

    Interactions between RNA guanylyltransferase (GTase) and the C-terminal domain (CTD) repeats of RNA polymerase II (Pol2) and elongation factor Spt5 are thought to orchestrate cotranscriptional capping of nascent mRNAs. The crystal structure of a fission yeast GTase•Pol2 CTD complex reveals a unique docking site on the nucleotidyl transferase domain for an 8-amino-acid Pol2 CTD segment, S5PPSYSPTS5P, bracketed by two Ser5-PO4 marks. Analysis of GTase mutations that disrupt the Pol2 CTD interface shows that at least one of the two Ser5-PO4-binding sites is required for cell viability and that each site is important for cell growth at 37°C. Fission yeast GTase binds the Spt5 CTD at a separate docking site in the OB-fold domain that captures the Trp4 residue of the Spt5 nonapeptide repeat T(1)PAW(4)NSGSK. A disruptive mutation in the Spt5 CTD-binding site of GTase is synthetically lethal with mutations in the Pol2 CTD-binding site, signifying that the Spt5 and Pol2 CTDs cooperate to recruit capping enzyme in vivo. CTD phosphorylation has opposite effects on the interaction of GTase with Pol2 (Ser5-PO4 is required for binding) versus Spt5 (Thr1-PO4 inhibits binding). We propose that the state of Thr1 phosphorylation comprises a binary "Spt5 CTD code" that is read by capping enzyme independent of and parallel to its response to the state of the Pol2 CTD.

  19. Development of potent ALK inhibitor and its molecular inhibitory mechanism against NSCLC harboring EML4-ALK proteins

    SciTech Connect

    Kang, Chung Hyo; Yun, Jeong In; Lee, Kwangho; Lee, Chong Ock; Lee, Heung Kyoung; Yun, Chang-Soo; Hwang, Jong Yeon; Cho, Sung Yun; Jung, Heejung; Kim, Pilho; Ha, Jae Du; Jeon, Jeong Hee; Choi, Sang Un; Jeong, Hye Gwang; Kim, Hyoung Rae; Park, Chi Hoon

    2015-08-28

    Here, we show the newly synthesized and potent ALK inhibitor having similar scaffold to KRCA-0008, which was reported previously, and its molecular mechanism against cancer cells harboring EML4-ALK fusion protein. Through ALK wild type enzyme assay, we selected two compounds, KRCA-0080 and KRCA-0087, which have trifluoromethyl instead of chloride in R2 position. We characterized these newly synthesized compounds by in vitro and in vivo assays. Enzyme assay shows that KRCA-0080 is more potent against various ALK mutants, including L1196M, G1202R, T1151-L1152insT, and C1156Y, which are seen in crizotinib-resistant patients, than KRCA-0008 is. Cell based assays demonstrate our compounds downregulate the cellular signaling, such as Akt and Erk, by suppressing ALK activity to inhibit the proliferation of the cells harboring EML4-ALK. Interestingly, our compounds induced strong G1/S arrest in H3122 cells leading to the apoptosis, which is proved by PARP-1 cleavage. In vivo H3122 xenograft assay, we found that KRCA-0080 shows significant reduction in tumor size compared to crizotinib and KRCA-0008 by 15–20%. Conclusively, we report a potent ALK inhibitor which shows significant in vivo efficacy as well as excellent inhibitory activity against various ALK mutants. - Highlights: • We synthesized KRCA-0008 derivatives having trifluoromethyl instead of chloride. • KRCA-0080 shows superior activity against several ALK mutants to KRCA-0008. • Cellular assays show our ALK inhibitors suppress only EML4-ALK positive cells. • Our ALK inhibitors induce G1/S arrest to lead apoptosis in H3122 cells. • KRCA-0080 has superior in vivo efficacy to crizotinib and KRCA-0008 by 15–20%.

  20. Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma

    PubMed Central

    Cazes, Alex; Lopez-Delisle, Lucille; Tsarovina, Konstantina; Pierre-Eugène, Cécile; De Preter, Katleen; Peuchmaur, Michel; Nicolas, André; Provost, Claire; Louis-Brennetot, Caroline; Daveau, Romain; Kumps, Candy; Cascone, Ilaria; Schleiermacher, Gudrun; Prignon, Aurélie; Speleman, Frank; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2014-01-01

    Activating mutations of the ALK (Anaplastic lymphoma Kinase) gene have been identified in sporadic and familial cases of neuroblastoma, a cancer of early childhood arising from the sympathetic nervous system (SNS). To decipher ALK function in neuroblastoma predisposition and oncogenesis, we have characterized knock-in (KI) mice bearing the two most frequent mutations observed in neuroblastoma patients. A dramatic enlargement of sympathetic ganglia is observed in AlkF1178L mice from embryonic to adult stages associated with an increased proliferation of sympathetic neuroblasts from E14.5 to birth. In a MYCN transgenic context, the F1178L mutation displays a higher oncogenic potential than the R1279Q mutation as evident from a shorter latency of tumor onset. We show that tumors expressing the R1279Q mutation are sensitive to ALK inhibition upon crizotinib treatment. Furthermore, our data provide evidence that activated ALK triggers RET upregulation in mouse sympathetic ganglia at birth as well as in murine and human neuroblastoma. Using vandetanib, we show that RET inhibition strongly impairs tumor growth in vivo in both MYCN/KI AlkR1279Q and MYCN/KI AlkF1178L mice. Altogether, our findings demonstrate the critical role of activated ALK in SNS development and pathogenesis and identify RET as a therapeutic target in ALK mutated neuroblastoma. PMID:24811913

  1. ALK F1174V mutation confers sensitivity while ALK I1171 mutation confers resistance to alectinib. The importance of serial biopsy post progression.

    PubMed

    Ou, Sai-Hong; Milliken, Jeffrey C; Azada, Michele C; Miller, Vincent A; Ali, Siraj M; Klempner, Samuel J

    2016-01-01

    Many acquired resistant mutations to the anaplastic lymphoma kinase (ALK) gene have been identified during treatment of ALK-rearranged non-small cell lung cancer (NSCLC) patients with crizotinib, ceritinib, and alectinib. These various acquired resistant ALK mutations confer differential sensitivities to various ALK inhibitors and may provide guidance on how to sequence the use of many of the second generation ALK inhibitors. We described a patient who developed an acquired ALK F1174V resistant mutation on progression from crizotinib that responded to alectinib for 18 months but then developed an acquired ALK I1171S mutation to alectinib. Both tumor samples had essentially the same genomic profile by comprehensive genomic profiling otherwise. This is the first patient report that demonstrates ALK F1174V mutation is sensitive to alectinib and further confirms missense acquired ALK I1171 mutation is resistant to alectinib. Sequential tumor re-biopsy for comprehensive genomic profiling (CGP) is important to appreciate the selective pressure during treatment with various ALK inhibitors underpinning the evolution of the disease course of ALK+NSCLC patients while on treatment with the various ALK inhibitors. This approach will likely help inform the optimal sequencing strategy as more ALK inhibitors become available. This case report also validates the importance of developing structurally distinct ALK inhibitors for clinical use to overcome non-cross resistant ALK mutations.

  2. Insertion element analysis and mapping of the Pseudomonas plasmid alk regulon.

    PubMed Central

    Fennewald, M; Benson, S; Oppici, M; Shapiro, J

    1979-01-01

    We characterized and mapped new mutations of the alk (alkane utilization) genes found on Pseudomonas plasmids of the Inc P-2 group. These mutations were isolated after (i) nitrosoguanidine mutagenesis, (ii) transposition of the Tn7 trimethoprim and streptomycin resistance determinant, and (iii) reversion of polarity effects of alk::Tn7 insertion mutations. Our results indicate the existence of two alk loci not previously described--alkD, whose product is required for synthesis of membrane alkane-oxidizing activities, and alkE, whose product is required for synthesis of inducible membrane alcohol dehydrogenase activity. Polarity of alk::Tn7 insertion mutations indicates the existence of an alkBAE operon. Mapping of alk loci by transduction in P. aeruginosa shows that there are at least three alk clusters in the CAM-OCT plasmid--alkRD, containing regulatory genes; alkBAE, containing genes for specific biochemical activities; and alkC, containing one or more genes needed for normal synthesis of membrane alcohol dehydrogenase. The alkRD and alkBAE clusters are linked but separated by about 42 kilobases. The alkC cluster is not linked to either of the other two alk regions. Altogether, these results indicate a complex genetic control of the alkane utilization phenotype in P. putida and P. aeruginosa involving at least six separate genes. Images PMID:479111

  3. Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch

    PubMed Central

    Aspalter, Irene Maria; Gordon, Emma; Dubrac, Alexandre; Ragab, Anan; Narloch, Jarek; Vizán, Pedro; Geudens, Ilse; Collins, Russell Thomas; Franco, Claudio Areias; Abrahams, Cristina Luna; Thurston, Gavin; Fruttiger, Marcus; Rosewell, Ian; Eichmann, Anne; Gerhardt, Holger

    2015-01-01

    Sprouting angiogenesis drives blood vessel growth in healthy and diseased tissues. Vegf and Dll4/Notch signalling cooperate in a negative feedback loop that specifies endothelial tip and stalk cells to ensure adequate vessel branching and function. Current concepts posit that endothelial cells default to the tip-cell phenotype when Notch is inactive. Here we identify instead that the stalk-cell phenotype needs to be actively repressed to allow tip-cell formation. We show this is a key endothelial function of neuropilin-1 (Nrp1), which suppresses the stalk-cell phenotype by limiting Smad2/3 activation through Alk1 and Alk5. Notch downregulates Nrp1, thus relieving the inhibition of Alk1 and Alk5, thereby driving stalk-cell behaviour. Conceptually, our work shows that the heterogeneity between neighbouring endothelial cells established by the lateral feedback loop of Dll4/Notch utilizes Nrp1 levels as the pivot, which in turn establishes differential responsiveness to TGF-β/BMP signalling. PMID:26081042

  4. Achievements and future developments of ALK-TKIs in the management of CNS metastases from ALK-positive NSCLC

    PubMed Central

    Cappuzzo, Federico

    2016-01-01

    Non-small cell lung cancer (NSCLC) represents the paradigm of personalized treatment of human cancer. Several oncogenic druggable alterations have been so far identified, with anaplastic lymphoma kinase (ALK) gene rearrangements being one of the newest and most appealing. Presence of ALK fusions is associated with some particular clinical and pathological features, including a preferential seeding into the central nervous system (CNS). In addition, ALK rearrangements are recognized as the strongest predictor for benefit of anti-ALK therapy. Crizotinib, the first ALK inhibitor (ALK-I) licensed in clinical practice, is the standard of care for newly diagnosed patients. Unfortunately, within the first year of treatment the majority of patients become insensitive to crizotinib, with approximately one third of them developing brain metastases (BMs). Optimal management of BMs is one of the major challenges in treating ALK positive NSCLC. Several novel and highly CNS penetrant ALK-Is are currently under investigation and available data clearly indicated their ability in controlling intracranial disease. PMID:28149753

  5. Synergistic activity of ALK and mTOR inhibitors for the treatment of NPM-ALK positive lymphoma

    PubMed Central

    Redaelli, Sara; Ceccon, Monica; Antolini, Laura; Rigolio, Roberta; Pirola, Alessandra; Peronaci, Marco; Gambacorti-Passerini, Carlo; Mologni, Luca

    2016-01-01

    ALK-positive Anaplastic Large Cell Lymphoma (ALCL) represents a subset of Non-Hodgkin Lymphoma whose treatment benefited from crizotinib development, a dual ALK/MET inhibitor. Crizotinib blocks ALK-triggered pathways such as PI3K/AKT/mTOR, indispensable for survival of ALK-driven tumors. Despite the positive impact of targeted treatment in ALCL, resistant clones are often selected during therapy. Strategies to overcome resistance include the design of second generation drugs and the use of combined therapies that simultaneously target multiple nodes essential for cells survival. We investigated the effects of combined ALK/mTOR inhibition. We observed a specific synergistic effect of combining ALK inhibitors with an mTOR inhibitor (temsirolimus), in ALK+ lymphoma cells. The positive cooperation resulted in an increased inhibition of mTOR effectors, compared to single treatments, a block in G0/G1 phase and induction of apoptosis. The combination was able to prevent the selection of resistant clones, while long-term exposure to single agents led to the establishment of resistant cell lines, with either ALK inhibitor or temsirolimus. In vivo, mice injected with Karpas 299 cells and treated with low dose combination showed complete regression of tumors, while only partial inhibition was obtained in single agents-treated mice. Upon treatment stop the combination was able to significantly delay tumor relapses. Re-challenge of relapsed tumors at a higher dose led to full regression of xenografts in the combination group, but not in mice treated with lorlatinib alone. In conclusion, our data suggest that the combination of ALK and mTOR inhibitors could be a valuable therapeutic option for ALK+ ALCL patients. PMID:27662658

  6. Activation of the orphan receptor tyrosine kinase ALK by zinc.

    PubMed

    Bennasroune, Aline; Mazot, Pierre; Boutterin, Marie-Claude; Vigny, Marc

    2010-08-06

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development of the central and peripheral nervous system. The nature of the cognate ligand of this receptor in Vertebrates is still a matter of debate. During synaptic transmission the release of ionic zinc found in vesicles of certain glutamatergic and gabaergic terminals may act as a neuromodulator by binding to pre- or post-synaptic receptors. Recently, zinc has been shown to activate the receptor tyrosine kinase, TrkB, independently of neurotrophins. This activation occurs via increasing the Src family kinase activity. In the present study, we investigated whether the ALK activity could be modulated by extracellular zinc. We first showed that zinc alone rapidly activates ALK. This activation is dependent of ALK tyrosine kinase activity and dimerization of the receptor but is independent of Src family kinase activity. In contrast, addition of sodium pyrithione, a zinc ionophore, led to a further activation of ALK. This stronger activation is dependent of Src family kinase but independent of ALK activity and dimerization. In conclusion, zinc could constitute an endogenous ligand of ALK in vertebrates.

  7. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  8. Therapeutic strategies and mechanisms of drug resistance in Anaplastic Lymphoma Kinase (ALK)-rearranged lung cancer.

    PubMed

    Katayama, Ryohei

    2017-02-06

    Anaplastic lymphoma kinase (ALK) gene encoding the receptor tyrosine kinase ALK is expressed as a fusion gene in a variety of carcinomas. The expression of ALK is nearly undetectable in adults, and its activation is normally regulated by its ligands, FAM150A/B. However, ALK gene rearrangements result in different ALK fusion proteins that are constitutively expressed via the active promoter of fusion partner genes. ALK fusion proteins dimerize in a ligand-independent manner and lead to the dysregulation of cell proliferation via abnormal constitutive activation of ALK tyrosine kinase. Many ALK tyrosine kinase inhibitors (TKIs) have been developed to date, are three of which are currently in clinical use for the treatment of ALK-rearranged non-small cell lung cancer (NSCLC). ALK TKIs often achieve marked tumor regression in NSCLC patients with ALK rearrangements; however, ALK TKI-resistant tumors inevitably emerge within a few years in most cases. In this review, we summarize diverse ALK TKI resistance mechanisms identified in NSCLC with ALK rearrangements, and review potential therapeutic strategies to overcome ALK TKI resistance in these patients.

  9. Conformational features and binding affinities to Cripto, ALK7 and ALK4 of Nodal synthetic fragments.

    PubMed

    Calvanese, Luisa; Sandomenico, Annamaria; Caporale, Andrea; Focà, Annalia; Focà, Giuseppina; D'Auria, Gabriella; Falcigno, Lucia; Ruvo, Menotti

    2015-04-01

    Nodal, a member of the TGF-β superfamily, is a potent embryonic morphogen also implicated in tumor progression. As for other TGF-βs, it triggers the signaling functions through the interaction with the extracellular domains of type I and type II serine/threonine kinase receptors and with the co-receptor Cripto. Recently, we reported the molecular models of Nodal in complex with its type I receptors (ALK4 and ALK7) as well as with Cripto, as obtained by homology modeling and docking simulations. From such models, potential binding epitopes have been identified. To validate such hypotheses, a series of mutated Nodal fragments have been synthesized. These peptide analogs encompass residues 44-67 of the Nodal protein, corresponding to the pre-helix loop and the H3 helix, and reproduce the wild-type sequence or bear some modifications to evaluate the hot-spot role of modified residues in the receptor binding. Here, we show the structural characterization in solution by CD and NMR of the Nodal peptides and the measurement of binding affinity toward Cripto by surface plasmon resonance. Data collected by both conformational analyses and binding measurements suggest a role for Y58 of Nodal in the recognition with Cripto and confirm that previously reported for E49 and E50. Surface plasmon resonance binding assays with recombinant proteins show that Nodal interacts in vitro also with ALK7 and ALK4 and preliminary data, generated using the Nodal synthetic fragments, suggest that Y58 of Nodal may also be involved in the recognition with these protein partners.

  10. Alk1 controls arterial endothelial cell migration in lumenized vessels.

    PubMed

    Rochon, Elizabeth R; Menon, Prahlad G; Roman, Beth L

    2016-07-15

    Heterozygous loss of the arterial-specific TGFβ type I receptor, activin receptor-like kinase 1 (ALK1; ACVRL1), causes hereditary hemorrhagic telangiectasia (HHT). HHT is characterized by development of fragile, direct connections between arteries and veins, or arteriovenous malformations (AVMs). However, how decreased ALK1 signaling leads to AVMs is unknown. To understand the cellular mis-steps that cause AVMs, we assessed endothelial cell behavior in alk1-deficient zebrafish embryos, which develop cranial AVMs. Our data demonstrate that alk1 loss has no effect on arterial endothelial cell proliferation but alters arterial endothelial cell migration within lumenized vessels. In wild-type embryos, alk1-positive cranial arterial endothelial cells generally migrate towards the heart, against the direction of blood flow, with some cells incorporating into endocardium. In alk1-deficient embryos, migration against flow is dampened and migration in the direction of flow is enhanced. Altered migration results in decreased endothelial cell number in arterial segments proximal to the heart and increased endothelial cell number in arterial segments distal to the heart. We speculate that the consequent increase in distal arterial caliber and hemodynamic load precipitates the flow-dependent development of downstream AVMs.

  11. ALK Gene Copy Number Gain and Immunohistochemical Expression Status Using Three Antibodies in Neuroblastoma.

    PubMed

    Kim, Eun Kyung; Kim, Sewha

    2017-01-01

    Anaplastic lymphoma kinase ( ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC-positive rate in ALK1 and 5A4 antibodies ( P < 0.001 and P = 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  12. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to 1st and 2nd generation ALK inhibitors in pre-clinical models

    PubMed Central

    Zou, Helen Y.; Friboulet, Luc; Kodack, David P.; Engstrom, Lars D.; Li, Qiuhua; West, Melissa; Tang, Ruth W.; Wang, Hui; Tsaparikos, Konstantinos; Wang, Jinwei; Timofeevski, Sergei; Katayama, Ryohei; Dinh, Dac M.; Lam, Hieu; Lam, Justine L.; Yamazaki, Shinji; Hu, Wenyue; Patel, Bhushankumar; Bezwada, Divya; Frias, Rosa L.; Lifshits, Eugene; Mahmood, Sidra; Gainor, Justin F.; Affolter, Timothy; Lappin, Patrick B.; Gukasyan, Hovhannes; Lee, Nathan; Deng, Shibing; Jain, Rakesh K; Johnson, Ted W.; Shaw, Alice T.; Fantin, Valeria R.; Smeal, Tod

    2015-01-01

    SUMMARY We report the preclinical evaluation of PF-06463922, a potent and brain penetrant ALK/ROS1 inhibitor. Compared to other clinically available ALK inhibitors, PF-06463922 displayed superior potency against all known clinically acquired ALK mutations, including the highly resistant G1202R mutant. Furthermore, PF-06463922 treatment led to regression of EML4-ALK driven brain metastases, leading to prolonged mouse survival, in a superior manner. Finally, PF-06463922 demonstrated high selectivity and safety margins in a variety of preclinical studies. These results suggest that PF-06463922 will be highly effective for the treatment of patients with ALK-driven lung cancers, including those who relapsed on clinically available ALK inhibitors due to secondary ALK kinase domain mutations and/or due to the failed control of brain metastases. PMID:26144315

  13. Uterine ALK3 is essential during the window of implantation

    PubMed Central

    Monsivais, Diana; Clementi, Caterina; Peng, Jia; Titus, Mary M.; Barrish, James P.; Creighton, Chad J.; Lydon, John P.; DeMayo, Francesco J.; Matzuk, Martin M.

    2016-01-01

    The window of implantation is defined by the inhibition of uterine epithelial proliferation, structural epithelial cell remodeling, and attenuated estrogen (E2) response. These changes occur via paracrine signaling between the uterine epithelium and stroma. Because implantation defects are a major cause of infertility in women, identifying these signaling pathways will improve infertility interventions. Bone morphogenetic proteins (BMPs) are TGF-β family members that regulate the postimplantation and midgestation stages of pregnancy. In this study, we discovered that signaling via activin-like kinase 3 (ALK3/BMPR1A), a BMP type 1 receptor, is necessary for blastocyst attachment. Conditional knockout (cKO) of ALK3 in the uterus was obtained by producing Alk3flox/flox-Pgr-cre–positive females. Alk3 cKO mice are sterile and have defects in the luminal uterine epithelium, including increased microvilli density and maintenance of apical cell polarity. Moreover, Alk3 cKO mice exhibit an elevated uterine E2 response and unopposed epithelial cell proliferation during the window of implantation. We determined that dual transcriptional regulation of Kruppel-like factor 15 (Klf15), by both the transforming growth factor β (TGF-β) transcription factor SMAD family member 4 (SMAD4) and progesterone receptor (PR), is necessary to inhibit uterine epithelial cell proliferation, a key step for embryo implantation. Our findings present a convergence of BMP and steroid hormone signaling pathways in the regulation of uterine receptivity. PMID:26721398

  14. Lumican Peptides: Rational Design Targeting ALK5/TGFBRI

    NASA Astrophysics Data System (ADS)

    Gesteira, Tarsis Ferreira; Coulson-Thomas, Vivien J.; Yuan, Yong; Zhang, Jianhua; Nader, Helena B.; Kao, Winston W.-Y.

    2017-02-01

    Lumican, a small leucine rich proteoglycan (SLRP), is a component of extracellular matrix which also functions as a matrikine regulating multiple cell activities. In the cornea, lumican maintains corneal transparency by regulating collagen fibrillogenesis, promoting corneal epithelial wound healing, regulating gene expression and maintaining corneal homeostasis. We have recently shown that a peptide designed from the 13 C-terminal amino acids of lumican (LumC13) binds to ALK5/TGFBR1 (type1 receptor of TGFβ) to promote wound healing. Herein we evaluate the mechanism by which this synthetic C-terminal amphiphilic peptide (LumC13), binds to ALK5. These studies clearly reveal that LumC13-ALK5 form a stable complex. In order to determine the minimal amino acids required for the formation of a stable lumican/ALK5 complex derivatives of LumC13 were designed and their binding to ALK5 investigated in silico. These LumC13 derivatives were tested both in vitro and in vivo to evaluate their ability to promote corneal epithelial cell migration and corneal wound healing, respectively. These validations add to the therapeutic value of LumC13 (Lumikine) and aid its clinical relevance of promoting the healing of corneal epithelium debridement. Moreover, our data validates the efficacy of our computational approach to design active peptides based on interactions of receptor and chemokine/ligand.

  15. Lumican Peptides: Rational Design Targeting ALK5/TGFBRI

    PubMed Central

    Gesteira, Tarsis Ferreira; Coulson-Thomas, Vivien J.; Yuan, Yong; Zhang, Jianhua; Nader, Helena B.; Kao, Winston W.-Y.

    2017-01-01

    Lumican, a small leucine rich proteoglycan (SLRP), is a component of extracellular matrix which also functions as a matrikine regulating multiple cell activities. In the cornea, lumican maintains corneal transparency by regulating collagen fibrillogenesis, promoting corneal epithelial wound healing, regulating gene expression and maintaining corneal homeostasis. We have recently shown that a peptide designed from the 13 C-terminal amino acids of lumican (LumC13) binds to ALK5/TGFBR1 (type1 receptor of TGFβ) to promote wound healing. Herein we evaluate the mechanism by which this synthetic C-terminal amphiphilic peptide (LumC13), binds to ALK5. These studies clearly reveal that LumC13-ALK5 form a stable complex. In order to determine the minimal amino acids required for the formation of a stable lumican/ALK5 complex derivatives of LumC13 were designed and their binding to ALK5 investigated in silico. These LumC13 derivatives were tested both in vitro and in vivo to evaluate their ability to promote corneal epithelial cell migration and corneal wound healing, respectively. These validations add to the therapeutic value of LumC13 (Lumikine) and aid its clinical relevance of promoting the healing of corneal epithelium debridement. Moreover, our data validates the efficacy of our computational approach to design active peptides based on interactions of receptor and chemokine/ligand. PMID:28181591

  16. MPN- and Real-Time-Based PCR Methods for the Quantification of Alkane Monooxygenase Homologous Genes (alkB) in Environmental Samples

    NASA Astrophysics Data System (ADS)

    Pérez-de-Mora, Alfredo; Schulz, Stephan; Schloter, Michael

    Hydrocarbons are major contaminants of soil ecosystems as a result of uncontrolled oil spills and wastes disposal into the environment. Ecological risk assessment and remediation of affected sites is often constrained due to lack of suitable prognostic and diagnostic tools that provide information of abiotic-biotic interactions occurring between contaminants and biological targets. Therefore, the identification and quantification of genes involved in the degradation of hydrocarbons may play a crucial role for evaluating the natural attenuation potential of contaminated sites and the development of successful bioremediation strategies. Besides other gene clusters, the alk operon has been identified as a major player for alkane degradation in different soils. An oxygenase gene (alkB) codes for the initial step of the degradation of aliphatic alkanes under aerobic conditions. In this work, we present an MPN- and a real-time PCR method for the quantification of the bacterial gene alkB (coding for rubredoxin-dependent alkane monooxygenase) in environmental samples. Both approaches enable a rapid culture-independent screening of the alkB gene in the environment, which can be used to assess the intrinsic natural attenuation potential of a site or to follow up the on-going progress of bioremediation assays.

  17. Inhibition of Axl improves the targeted therapy against ALK-mutated neuroblastoma

    SciTech Connect

    Xu, Fei; Li, Hongling; Sun, Yong

    2014-11-28

    Highlights: • First reported Axl is co-expressed with ALK in neuroblastoma tissues and cell lines. • Axl activation promotes cell growth and impairs the efficiency of ALK inhibitor. • Further found silence of Axl leads to increased sensitivity to ALK inhibitors. • Axl inhibitor promotes the efficiency of targeted therapy in vitro and in vivo. • Axl activation should be considered in the clinical application of ALK inhibitors. - Abstract: Neuroblastoma (NB) patients harboring mutated ALK can be expected to potentially benefit from targeted therapy based on ALK tyrosine kinase inhibitor (TKI), such as crizotinib and ceritinib. However, the effect of the treatment varies with different individuals, although with the same genic changes. Axl receptor tyrosine kinase is expressed in a variety of human cancers, but little data are reported in NB, particularly in which carrying mutated ALK. In this study, we focus on the roles of Axl in ALK-mutated NB for investigating rational therapeutic strategy. We found that Axl is expressed in ALK-positive NB tissues and cell lines, and could be effectively activated by its ligand GAS6. Ligand-dependent Axl activation obviously rescued crizotinib-mediated suppression of cell proliferation in ALK-mutated NB cells. Genetic inhibition of Axl with specific small interfering RNA markedly increased the sensitivity of cells to ALK-TKIs. Furthermore, a small-molecule inhibitor of Axl significantly enhanced ALK-targeted therapy, as an increased frequency of apoptosis was observed in NB cells co-expressing ALK and Axl. Taken together, our results demonstrated that activation of Axl could lead to insensitivity to ALK inhibitors, and dual inhibition of ALK and Axl might be a potential therapeutic strategy against ALK-mutated NB.

  18. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth

    PubMed Central

    Hoareau-Aveilla, Coralie; Valentin, Thibaud; Daugrois, Camille; Quelen, Cathy; Mitou, Géraldine; Quentin, Samuel; Jia, Jinsong; Spicuglia, Salvatore; Ferrier, Pierre; Ceccon, Monica; Giuriato, Sylvie; Gambacorti-Passerini, Carlo; Brousset, Pierre; Lamant, Laurence; Meggetto, Fabienne

    2015-01-01

    The regulatory microRNA miR-150 is involved in the development of hemopathies and is downregulated in T-lymphomas, such as anaplastic large-cell lymphoma (ALCL) tumors. ALCL is defined by the presence or absence of translocations that activate the anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Here, we compared samples of primary NPM-ALK(+) and NPM-ALK(–) ALCL to investigate the role of miR-150 downstream of NPM-ALK. Methylation of the MIR150 gene was substantially elevated in NPM-ALK(+) biopsies and correlated with reduced miR-150 expression. In NPM-ALK(+) cell lines, DNA hypermethylation–mediated miR-150 repression required ALK-dependent pathways, as ALK inhibition restored miR-150 expression. Moreover, epigenetic silencing of miR-150 was due to the activation of STAT3, a major downstream substrate of NPM-ALK, in cooperation with DNA methyltransferase 1 (DNMT1). Accordingly, miR-150 repression was turned off following treatment with the DNMT inhibitor, decitabine. In murine NPM-ALK(+) xenograft models, miR-150 upregulation induced antineoplastic activity. Treatment of crizotinib-resistant NPM-ALK(+) KARPAS-299-CR06 cells with decitabine or ectopic miR-150 expression reduced viability and growth. Altogether, our results suggest that hypomethylating drugs, alone or in combination with other agents, may benefit ALK(+) patients harboring tumors resistant to crizotinib and other anti-ALK tyrosine kinase inhibitors (TKIs). Moreover, these results support further work on miR-150 in these and other ALK(+) malignancies. PMID:26258416

  19. Analysis of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-reactive CD8(+) T cell responses in children with NPM-ALK(+) anaplastic large cell lymphoma.

    PubMed

    K Singh, V; Werner, S; Hackstein, H; Lennerz, V; Reiter, A; Wölfel, T; Damm-Welk, C; Woessmann, W

    2016-10-01

    Cellular immune responses against the oncoantigen anaplastic lymphoma kinase (ALK) in patients with ALK-positive anaplastic large cell lymphoma (ALCL) have been detected using peptide-based approaches in individuals preselected for human leucocyte antigen (HLA)-A*02:01. In this study, we aimed to evaluate nucleophosmin (NPM)-ALK-specific CD8(+) T cell responses in ALCL patients ensuring endogenous peptide processing of ALK antigens and avoiding HLA preselection. We also examined the HLA class I restriction of ALK-specific CD8(+) T cells. Autologous dendritic cells (DCs) transfected with in-vitro-transcribed RNA (IVT-RNA) encoding NPM-ALK were used as antigen-presenting cells for T cell stimulation. Responder T lymphocytes were tested in interferon-gamma enzyme-linked immunospot (ELISPOT) assays with NPM-ALK-transfected autologous DCs as well as CV-1 in Origin with SV40 genes (COS-7) cells co-transfected with genes encoding the patients' HLA class I alleles and with NPM-ALK encoding cDNA to verify responses and define the HLA restrictions of specific T cell responses. NPM-ALK-specific CD8(+) T cell responses were detected in three of five ALK-positive ALCL patients tested between 1 and 13 years after diagnosis. The three patients had also maintained anti-ALK antibody responses. No reactivity was detected in samples from five healthy donors. The NPM-ALK-specific CD8(+) T cell responses were restricted by HLA-C-alleles (C*06:02 and C*12:02) in all three cases. This approach allowed for the detection of NPM-ALK-reactive T cells, irrespective of the individual HLA status, up to 9 years after ALCL diagnosis.

  20. Phosphoproteomics reveals ALK promote cell progress via RAS/JNK pathway in neuroblastoma

    PubMed Central

    Xu, Guofeng; Zhang, Min; Wu, Yeming; Wu, Zhixiang

    2016-01-01

    Emerging evidence suggests receptor tyrosine kinase ALK as a promising therapeutic target in neuroblastoma. However, clinical trials reveal that a limited proportion of ALK-positive neuroblastoma patients experience clinical benefits from Crizotinib, a clinically approved specific inhibitor of ALK. The precise molecular mechanisms of aberrant ALK activity in neuroblastoma remain elusive, limiting the clinical application of ALK as a therapeutic target in neuroblastoma. Here, we describe a deep quantitative phosphoproteomic approach in which Crizotinib-treated neuroblastoma cell lines bearing aberrant ALK are used to investigate downstream regulated phosphoproteins. We identified more than 19,500—and quantitatively analyzed approximately 10,000—phosphorylation sites from each cell line, ultimately detecting 450–790 significantly-regulated phosphorylation sites. Multiple layers of bioinformatic analysis of the significantly-regulated phosphoproteins identified RAS/JNK as a downstream signaling pathway of ALK, independent of the ALK variant present. Further experiments demonstrated that ALK/JNK signaling could be inactivated by either ALK- or JNK-specific inhibitors, resulting in cell growth inhibition by induction of cell cycle arrest and cell apoptosis. Our study broadly defines the phosphoproteome in response to ALK inhibition and provides a resource for further clinical investigation of ALK as therapeutic target for the treatment of neuroblastoma. PMID:27732954

  1. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency

    PubMed Central

    Mologni, Luca; Poggio, Teresa; Varesio, Lydia M.; Menotti, Matteo; Bombelli, Silvia; Rigolio, Roberta; Manazza, Andrea D.; Di Giacomo, Filomena; Ambrogio, Chiara; Giudici, Giovanni; Casati, Cesare; Mastini, Cristina; Compagno, Mara; Turner, Suzanne D.; Gambacorti-Passerini, Carlo; Chiarle, Roberto; Voena, Claudia

    2016-01-01

    Most of Anaplastic Large Cell Lymphoma (ALCL) cases carry the t(2;5; p23;q35) that produces the fusion protein NPM-ALK. NPM-ALK deregulated kinase activity drives several pathways that support malignant transformation of lymphoma cells. We found that in ALK-rearranged ALCL cell lines NPM-ALK was distributed in equal amounts between the cytoplasm and the nucleus. Only the cytoplasmic portion was catalytically active in both cell lines and primary ALCL, whereas the nuclear portion was inactive due to heterodimerization with NPM1. Thus, about 50% of the NPM-ALK is not active and sequestered as NPM-ALK/NPM1 heterodimers in the nucleus. Overexpression or re-localization of NPM-ALK to the cytoplasm by NPM genetic knock-out or knock-down caused ERK1/2 increased phosphorylation and cell death through the engagement of an ATM/Chk2 and γH2AX mediated DNA damage response. Remarkably, human NPM-ALK amplified cell lines resistant to ALK tyrosine kinase inhibitors (TKIs) underwent apoptosis upon drug withdrawal as a consequence of ERK1/2 hyperactivation. Altogether, these findings indicate that an excess of NPM-ALK activation and signaling induces apoptosis via oncogenic stress responses. A “drug holiday” where the ALK TKI treatment is suspended could represent a therapeutic option in cells that become resistant by NPM-ALK amplification. PMID:26657151

  2. A Novel Tumor-Promoting Function Residing in the 5′ Non-coding Region of vascular endothelial growth factor mRNA

    PubMed Central

    Masuda, Kiyoshi; Teshima-Kondo, Shigetada; Mukaijo, Mina; Yamagishi, Naoko; Nishikawa, Yoshiko; Nishida, Kensei; Kawai, Tomoko; Rokutan, Kazuhito

    2008-01-01

    Background Vascular endothelial growth factor-A (VEGF) is one of the key regulators of tumor development, hence it is considered to be an important therapeutic target for cancer treatment. However, clinical trials have suggested that anti-VEGF monotherapy was less effective than standard chemotherapy. On the basis of the evidence, we hypothesized that vegf mRNA may have unrecognized function(s) in cancer cells. Methods and Findings Knockdown of VEGF with vegf-targeting small-interfering (si) RNAs increased susceptibility of human colon cancer cell line (HCT116) to apoptosis caused with 5-fluorouracil, etoposide, or doxorubicin. Recombinant human VEGF165 did not completely inhibit this apoptosis. Conversely, overexpression of VEGF165 increased resistance to anti-cancer drug-induced apoptosis, while an anti-VEGF165-neutralizing antibody did not completely block the resistance. We prepared plasmids encoding full-length vegf mRNA with mutation of signal sequence, vegf mRNAs lacking untranslated regions (UTRs), or mutated 5′UTRs. Using these plasmids, we revealed that the 5′UTR of vegf mRNA possessed anti-apoptotic activity. The 5′UTR-mediated activity was not affected by a protein synthesis inhibitor, cycloheximide. We established HCT116 clones stably expressing either the vegf 5′UTR or the mutated 5′UTR. The clones expressing the 5′UTR, but not the mutated one, showed increased anchorage-independent growth in vitro and formed progressive tumors when implanted in athymic nude mice. Microarray and quantitative real-time PCR analyses indicated that the vegf 5′UTR-expressing tumors had up-regulated anti-apoptotic genes, multidrug-resistant genes, and growth-promoting genes, while pro-apoptotic genes were down-regulated. Notably, expression of signal transducers and activators of transcription 1 (STAT1) was markedly repressed in the 5′UTR-expressing tumors, resulting in down-regulation of a STAT1-responsive cluster of genes (43 genes). As a result, the

  3. A patient previously treated with ALK inhibitors for central nervous system lesions from ALK rearranged lung cancer: a case report

    PubMed Central

    Kashima, Jumpei; Okuma, Yusuke; Hishima, Tsunekazu

    2016-01-01

    Background Patients with anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC) are now preferentially treated with tyrosine kinase inhibitors (TKIs). However, patients treated with ALK inhibitors end up with acquired resistance. Case presentation We present a patient with recurrent ALK-rearranged NSCLC that developed multiple brain metastases and meningitis carcinomatosa after sequential treatment with several lines of cytotoxic chemotherapy, crizotinib, and alectinib. After the patient underwent retreatment with crizotinib as salvage therapy because of poor performance status, the intracranial metastatic foci and meningeal thickening were shrank within 1 week. Conclusion Our experience with this case suggests that alectinib may restore sensitivity to crizotinib or amplified pathway such as MET which bestowed alectinib resistance was inhibited with crizotinib. PMID:27785052

  4. Screening for ALK abnormalities in central nervous system metastases of non-small-cell lung cancer: ALK abnormalities in CNS metastases of NSCLC.

    PubMed

    Nicoś, Marcin; Jarosz, Bożena; Krawczyk, Paweł; Wojas-Krawczyk, Kamila; Kucharczyk, Tomasz; Sawicki, Marek; Pankowski, Juliusz; Trojanowski, Tomasz; Milanowski, Janusz

    2016-11-23

    Anaplastic lymphoma kinase (ALK) gene rearrangement was reported in 3-7% of primary non-small-cell lung cancer (NSCLC) and its presence is commonly associated with adenocarcinoma (AD) type and non-smoking history. ALK tyrosine kinase inhibitors (TKIs) such as crizotinib, alectinib and ceritinib showed efficiency in patients with primary NSCLC harboring ALK gene rearrangement. Moreover, response to ALK TKIs was observed in central nervous system (CNS) metastatic lesions of NSCLC. However, there are no reports concerning the frequency of ALK rearrangement in CNS metastases. We assessed the frequency of ALK abnormalities in 145 formalin fixed paraffin embedded (FFPE) tissue samples from CNS metastases of NSCLC using immunohistochemical (IHC) automated staining (BenchMark GX, Ventana, USA) and fluorescence in situ hybridization (FISH) technique (Abbot Molecular, USA). The studied group was heterogeneous in terms of histopathology and smoking status. ALK abnormalities were detected in 4.8% (7/145) of CNS metastases. ALK abnormalities were observed in six AD (7.5%; 6/80) and in single patients with adenosuqamous lung carcinoma. Analysis of clinical and demographic factors indicated that expression of abnormal ALK was significantly more frequently observed (p=0.0002; χ(2) =16.783) in former-smokers. Comparison of IHC and FISH results showed some discrepancies, which were caused by unspecific staining of macrophages and glial/nerve cells, which constitute the background of CNS tissues. Our results indicate high frequency of ALK gene rearrangement in CNS metastatic sites of NSCLC that are in line with prior studies concerning evaluation of the presence of ALK abnormalities in such patients. However, we showed that assessment of ALK by IHC and FISH methods in CNS tissues require additional standardizations. This article is protected by copyright. All rights reserved.

  5. The positive regulatory function of the 5'-proximal open reading frames in GCN4 mRNA can be mimicked by heterologous, short coding sequences.

    PubMed Central

    Williams, N P; Mueller, P P; Hinnebusch, A G

    1988-01-01

    Translational control of GCN4 expression in the yeast Saccharomyces cerevisiae is mediated by multiple AUG codons present in the leader of GCN4 mRNA, each of which initiates a short open reading frame of only two or three codons. Upstream AUG codons 3 and 4 are required to repress GCN4 expression in normal growth conditions; AUG codons 1 and 2 are needed to overcome this repression in amino acid starvation conditions. We show that the regulatory function of AUG codons 1 and 2 can be qualitatively mimicked by the AUG codons of two heterologous upstream open reading frames (URFs) containing the initiation regions of the yeast genes PGK and TRP1. These AUG codons inhibit GCN4 expression when present singly in the mRNA leader; however, they stimulate GCN4 expression in derepressing conditions when inserted upstream from AUG codons 3 and 4. This finding supports the idea that AUG codons 1 and 2 function in the control mechanism as translation initiation sites and further suggests that suppression of the inhibitory effects of AUG codons 3 and 4 is a general consequence of the translation of URF 1 and 2 sequences upstream. Several observations suggest that AUG codons 3 and 4 are efficient initiation sites; however, these sequences do not act as positive regulatory elements when placed upstream from URF 1. This result suggests that efficient translation is only one of the important properties of the 5' proximal URFs in GCN4 mRNA. We propose that a second property is the ability to permit reinitiation following termination of translation and that URF 1 is optimized for this regulatory function. Images PMID:3065626

  6. Canadian consensus: inhibition of ALK-positive tumours in advanced non-small-cell lung cancer

    PubMed Central

    Melosky, B.; Agulnik, J.; Albadine, R.; Banerji, S.; Bebb, D.G.; Bethune, D.; Blais, N.; Butts, C.; Cheema, P.; Cheung, P.; Cohen, V.; Deschenes, J.; Ionescu, D.N.; Juergens, R.; Kamel-Reid, S.; Laurie, S.A.; Liu, G.; Morzycki, W.; Tsao, M.S.; Xu, Z.; Hirsh, V.

    2016-01-01

    Anaplastic lymphoma kinase (alk) is an oncogenic driver in non-small-cell lung cancer (nsclc). Chromosomal rearrangements involving the ALK gene occur in up to 4% of nonsquamous nsclc patients and lead to constitutive activation of the alk signalling pathway. ALK-positive nsclc is found in relatively young patients, with a median age of 50 years. Patients frequently have brain metastasis. Targeted inhibition of the alk pathway prolongs progression-free survival in patients with ALK-positive advanced nsclc. The results of several recent clinical trials confirm the efficacy and safety benefit of crizotinib and ceritinib in this population. Canadian oncologists support the following consensus statement: All patients with advanced nonsquamous nsclc (excluding pure neuroendocrine carcinoma) should be tested for the presence of an ALK rearrangement. If an ALK rearrangement is present, treatment with a targeted alk inhibitor in the first-line setting is recommended. As patients become resistant to first-generation alk inhibitors, other treatments, including second-generation alk inhibitors can be considered. PMID:27330348

  7. An interaction map of small-molecule kinase inhibitors with anaplastic lymphoma kinase (ALK) mutants in ALK-positive non-small cell lung cancer.

    PubMed

    Ai, Xinghao; Shen, Shengping; Shen, Lan; Lu, Shun

    2015-05-01

    Human anaplastic lymphoma kinase (ALK) has become a well-established target for the treatment of ALK-positive non-small cell lung cancer (NSCLC). Here, we have profiled seven small-molecule inhibitors, including 2 that are approved drugs, against a panel of clinically relevant mutations in ALK tyrosine kinase (TK) domain, aiming at a comprehensive understanding of molecular mechanism and biological implication underlying inhibitor response to ALK TK mutation. We find that (i) the gatekeeper mutation L1196M causes crizotinib resistance by simultaneously increasing and decreasing the binding affinities of, respectively, ATP and inhibitor to ALK, whereas the secondary mutation C1156Y, which is located far away from the ATP-binding site of ALK TK domain, causes the resistance by inducing marked allosteric effect on the site, (ii) the 2nd and 3rd generation kinase inhibitors exhibit relatively high sensitivity towards ALK mutants as compared to 1st generation inhibitors, (iii) the pan-kinase inhibitor staurosporine is insensitive for most mutations due to its high structural compatibility, and (iv) ATP affinity to ALK is generally reduced upon most clinically relevant mutations. Furthermore, we also identify six novel mutation-inhibitor pairs that are potentially associated with drug resistance. In addition, the G1202R and C1156Y mutations are expected to generally cause resistance for many existing inhibitors, since they can address significant effect on the geometric shape and physicochemical property of ALK active pocket.

  8. Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis.

    PubMed

    de Gouville, Anne-Charlotte; Boullay, Valerie; Krysa, Gael; Pilot, Julia; Brusq, Jean-Marie; Loriolle, Florence; Gauthier, Jean-Michel; Papworth, Stephen A; Laroze, Alain; Gellibert, Françoise; Huet, Stephane

    2005-05-01

    1 Chronic liver disease is characterized by an exacerbated accumulation of matrix, causing progressive fibrosis, which may lead to cirrhosis. Transforming growth factor beta (TGF-beta), a well-known profibrotic cytokine, transduces its signal through the ALK5 ser/thr kinase receptor, and increases transcription of different genes including PAI-1 and collagens. The identification of GW6604 (2-phenyl-4-(3-pyridin-2-yl-1H-pyrazol-4-yl)pyridine), an ALK5 inhibitor, allowed us to evaluate the therapeutic potential of inhibiting TGF-beta pathway in different models of liver disease. 2 A cellular assay was used to identify GW6604 as a TGF-beta signaling pathway inhibitor. This ALK5 inhibitor was then tested in a model of liver hepatectomy in TGF-beta-overexpressing transgenic mice, in an acute model of liver disease and in a chronic model of dimethylnitrosamine (DMN)-induced liver fibrosis. 3 In vitro, GW6604 inhibited autophosphorylation of ALK5 with an IC(50) of 140 nM and in a cellular assay inhibited TGF-beta-induced transcription of PAI-1 (IC(50): 500 nM). In vivo, GW6604 (40 mg kg(-1) p.o.) increased liver regeneration in TGF-beta-overexpressing mice, which had undergone partial hepatectomy. In an acute model of liver disease, GW6604 reduced by 80% the expression of collagen IA1. In a chronic model of DMN-induced fibrosis where DMN was administered for 6 weeks and GW6604 dosed for the last 3 weeks (80 mg kg(-1) p.o., b.i.d.), mortality was prevented and DMN-induced elevations of mRNA encoding for collagen IA1, IA2, III, TIMP-1 and TGF-beta were reduced by 50-75%. Inhibition of matrix genes overexpression was accompanied by reduced matrix deposition and reduction in liver function deterioration, as assessed by bilirubin and liver enzyme levels. 4 Our results suggest that inhibition of ALK5 could be an attractive new approach to treatment of liver fibrotic diseases by both preventing matrix deposition and promoting hepatocyte regeneration.

  9. The use of cellular thermal shift assay (CETSA) to study Crizotinib resistance in ALK-expressing human cancers

    PubMed Central

    Alshareef, Abdulraheem; Zhang, Hai-Feng; Huang, Yung-Hsing; Wu, Chengsheng; Zhang, Jing Dong; Wang, Peng; El-Sehemy, Ahmed; Fares, Mohamed; Lai, Raymond

    2016-01-01

    Various forms of oncogenic ALK proteins have been identified in various types of human cancers. While Crizotinib, an ALK inhibitor, has been found to be therapeutically useful against a subset of ALK+ tumours, clinical resistance to this drug has been well recognized and the mechanism of this phenomenon is incompletely understood. Using the cellular thermal shift assay (CETSA), we measured the Crizotinib—ALK binding in a panel of ALK+ cell lines, and correlated the findings with the ALK structure and its interactions with specific binding proteins. The Crizotinib IC50 significantly correlated with Crizotinib—ALK binding. The suboptimal Crizotinib—ALK binding in Crizotinib-resistant cells is not due to the cell-specific environment, since transfection of NPM-ALK into these cells revealed substantial Crizotinib—NPM-ALK binding. Interestingly, we found that the resistant cells expressed higher protein level of β-catenin and siRNA knockdown restored Crizotinib—ALK binding (correlated with a significant lowering of IC50). Computational analysis of the crystal structures suggests that β-catenin exerts steric hindrance to the Crizotinib—ALK binding. In conclusion, the Crizotinib—ALK binding measurable by CETSA is useful in predicting Crizotinib sensitivity, and Crizotinib—ALK binding is in turn dictated by the structure of ALK and some of its binding partners. PMID:27641368

  10. Prospective and clinical validation of ALK immunohistochemistry: results from the phase I/II study of alectinib for ALK-positive lung cancer (AF-001JP study)

    PubMed Central

    Takeuchi, K.; Togashi, Y.; Kamihara, Y.; Fukuyama, T.; Yoshioka, H.; Inoue, A.; Katsuki, H.; Kiura, K.; Nakagawa, K.; Seto, T.; Maemondo, M.; Hida, T.; Harada, M.; Ohe, Y.; Nogami, N.; Yamamoto, N.; Nishio, M.; Tamura, T.

    2016-01-01

    Background Anaplastic lymphoma kinase (ALK) fusions need to be accurately and efficiently detected for ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) remains the reference test. Although increasing data are supporting that ALK immunohistochemistry (IHC) is highly concordant with FISH, IHC screening needed to be clinically and prospectively validated. Patients and methods In the AF-001JP trial for alectinib, 436 patients were screened for ALK fusions through IHC (n = 384) confirmed with FISH (n = 181), multiplex RT-PCR (n = 68), or both (n = 16). IHC results were scored with iScore. Result ALK fusion was positive in 137 patients and negative in 250 patients. Since the presence of cancer cells in the samples for RT-PCR was not confirmed, ALK fusion negativity could not be ascertained in 49 patients. IHC interpreted with iScore showed a 99.4% (173/174) concordance with FISH. All 41 patients who had iScore 3 and were enrolled in phase II showed at least 30% tumor reduction with 92.7% overall response rate. Two IHC-positive patients with an atypical FISH pattern responded to ALK inhibitor therapy. The reduction rate was not correlated with IHC staining intensity. Conclusions Our study showed (i) that when sufficiently sensitive and appropriately interpreted, IHC can be a stand-alone diagnostic for ALK inhibitor therapies; (ii) that when atypical FISH patterns are accompanied by IHC positivity, the patients should be considered as candidates for ALK inhibitor therapies, and (iii) that the expression level of ALK fusion is not related to the level of response to ALK inhibitors and is thus not required for patient selection. Registration number JapicCTI-101264 (This study is registered with the Japan Pharmaceutical Information Center). PMID:26487585

  11. BMP-9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an ALK1 mediated pathway

    PubMed Central

    Zhu, Dongxing; Mackenzie, Neil Charles Wallace; Shanahan, Catherine M; Shroff, Rukshana C; Farquharson, Colin; MacRae, Vicky Elizabeth

    2015-01-01

    The process of vascular calcification shares many similarities with that of physiological skeletal mineralization, and involves the deposition of hydroxyapatite crystals in arteries. However, the cellular mechanisms responsible have yet to be fully explained. Bone morphogenetic protein (BMP-9) has been shown to exert direct effects on both bone development and vascular function. In the present study, we have investigated the role of BMP-9 in vascular smooth muscle cell (VSMC) calcification. Vessel calcification in chronic kidney disease (CKD) begins pre-dialysis, with factors specific to the dialysis milieu triggering accelerated calcification. Intriguingly, BMP-9 was markedly elevated in serum from CKD children on dialysis. Furthermore, in vitro studies revealed that BMP-9 treatment causes a significant increase in VSMC calcium content, alkaline phosphatase (ALP) activity and mRNA expression of osteogenic markers. BMP-9-induced calcium deposition was significantly reduced following treatment with the ALP inhibitor 2,5-Dimethoxy-N-(quinolin-3-yl) benzenesulfonamide confirming the mediatory role of ALP in this process. The inhibition of ALK1 signalling using a soluble chimeric protein significantly reduced calcium deposition and ALP activity, confirming that BMP-9 is a physiological ALK1 ligand. Signal transduction studies revealed that BMP-9 induced Smad2, Smad3 and Smad1/5/8 phosphorylation. As these Smad proteins directly bind to Smad4 to activate target genes, siRNA studies were subsequently undertaken to examine the functional role of Smad4 in VSMC calcification. Smad4-siRNA transfection induced a significant reduction in ALP activity and calcium deposition. These novel data demonstrate that BMP-9 induces VSMC osteogenic differentiation and calcification via ALK1, Smad and ALP dependent mechanisms. This may identify new potential therapeutic strategies for clinical intervention. PMID:25297851

  12. Treatment modalities for advanced ALK-rearranged non-small-cell lung cancer.

    PubMed

    Sullivan, Ivana; Planchard, David

    2016-04-01

    The ALK gene plays a key role in the pathogenesis of non-small-cell lung cancer (NSCLC). Patients with NSCLC harboring an ALK-rearrangement represent the second oncogene addiction to be identified in this disease. Crizotinib was the first ALK inhibitor showing pronounced clinical activity, and is now a reference treatment for ALK-positive NSCLC disease. However, despite initial impressive responses to crizotinib, acquired resistance almost invariably develops within 12 months. The pressing need for effective second-line agents has prompted the rapid development of next-generation ALK inhibitors. These agents, notably ceritinib and alectinib as the most developed, have a higher potency against ALK than crizotinib, along with activity against tumors harboring crizotinib-resistant mutations and potentially improved CNS penetration.

  13. Targeting brain metastases in ALK-rearranged non-small-cell lung cancer.

    PubMed

    Zhang, Isabella; Zaorsky, Nicholas G; Palmer, Joshua D; Mehra, Ranee; Lu, Bo

    2015-10-01

    The incidence of brain metastases has increased as a result of improved systemic control and advances in imaging. However, development of novel therapeutics with CNS activity has not advanced at the same rate. Research on molecular markers has revealed many potential targets for antineoplastic agents, and a particularly important aberration is translocation in the ALK gene, identified in non-small-cell lung cancer (NSCLC). ALK inhibitors have shown systemic efficacy against ALK-rearranged NSCLC in many clinical trials, but the effectiveness of crizotinib in CNS disease is limited by poor blood-brain barrier penetration and acquired drug resistance. In this Review, we discuss potential pathways to target ALK-rearranged brain metastases, including next generation ALK inhibitors with greater CNS penetration and mechanisms to overcome resistance. Other important mechanisms to control CNS disease include targeting pathways downstream of ALK phosphorylation, increasing the permeability of the blood-brain barrier, modifying the tumour microenvironment, and adding concurrent radiotherapy.

  14. Alk7 Depleted Mice Exhibit Prolonged Cardiac Repolarization and Are Predisposed to Ventricular Arrhythmia

    PubMed Central

    Ying, Shaozhen; Cao, Hong; Hu, He; Wang, Xin; Tang, Yanhong; Huang, Congxin

    2016-01-01

    We aimed to investigate the role of activin receptor-like kinase (ALK7) in regulating cardiac electrophysiology. Here, we showed that Alk7-/- mice exhibited prolonged QT intervals in telemetry ECG recordings. Furthermore, Langendorff-perfused Alk7-/- hearts had significantly longer action potential duration (APD) and greater incidence of ventricular arrhythmia (AV) induced by burst pacing. Using whole-cell patch clamp, we found that the densities of repolarizing K+ currents Ito and IK1 were profoundly reduced in Alk7-/- ventricular cardiomyocytes. Mechanistically, the expression of Kv4.2 (a major subunit of Ito carrying channel) and KCHIP2 (a key accessory subunit of Ito carrying channel), was markedly decreased in Alk7-/- hearts. These findings suggest that endogenous expression of ALK7 is necessary to maintain repolarizing K+ currents in ventricular cardiomyocytes, and finally prevent action potential prolongation and ventricular arrhythmia. PMID:26882027

  15. RecA stimulates AlkB-mediated direct repair of DNA adducts

    PubMed Central

    Shivange, Gururaj; Monisha, Mohan; Nigam, Richa; Kodipelli, Naveena; Anindya, Roy

    2016-01-01

    The Escherichia coli AlkB protein is a 2-oxoglutarate/Fe(II)-dependent demethylase that repairs alkylated single stranded and double stranded DNA. Immunoaffinity chromatography coupled with mass spectrometry identified RecA, a key factor in homologous recombination, as an AlkB-associated protein. The interaction between AlkB and RecA was validated by yeast two-hybrid assay; size-exclusion chromatography and standard pull down experiment and was shown to be direct and mediated by the N-terminal domain of RecA. RecA binding results AlkB–RecA heterodimer formation and RecA–AlkB repairs alkylated DNA with higher efficiency than AlkB alone. PMID:27378775

  16. ALK Signaling and Target Therapy in Anaplastic Large Cell Lymphoma

    PubMed Central

    Tabbó, Fabrizio; Barreca, Antonella; Piva, Roberto; Inghirami, Giorgio

    2012-01-01

    The discovery by Morris et al. (1994) of the genes contributing to the t(2;5)(p23;q35) translocation has laid the foundation for a molecular based recognition of anaplastic large cell lymphoma and highlighted the need for a further stratification of T-cell neoplasia. Likewise the detection of anaplastic lymphoma kinase (ALK) genetic lesions among many human cancers has defined unique subsets of cancer patients, providing new opportunities for innovative therapeutic interventions. The objective of this review is to appraise the molecular mechanisms driving ALK-mediated transformation, and to maintain the neoplastic phenotype. The understanding of these events will allow the design and implementation of novel tailored strategies for a well-defined subset of cancer patients. PMID:22649787

  17. A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN

    DTIC Science & Technology

    2014-09-01

    AWARD NUMBER: W81XWH-13-1-0220 TITLE: A Genetically Engineered Mouse Model of Neuroblastoma ...CONTRACT NUMBER A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN 5b. GRANT NUMBER W81XWH-13-1-0220 5c...common ALK mutations in neuroblastoma , F1174L and R1275Q. We have determined that in tumors cells expressing mutated ALK, different downstream

  18. Insights into brain metastasis in patients with ALK+ lung cancer: is the brain truly a sanctuary?

    PubMed

    Toyokawa, Gouji; Seto, Takashi; Takenoyama, Mitsuhiro; Ichinose, Yukito

    2015-12-01

    Anaplastic lymphoma kinase (ALK) has been identified to exert a potent transforming activity through its rearrangement in non-small cell lung cancer (NSCLC), and patients (pts) with ALK rearrangement can be treated more successfully with ALK inhibitors, such as crizotinib, alectinib, and ceritinib, than with chemotherapy. Despite the excellent efficacy of ALK inhibitors, resistance to these drugs is inevitably encountered in most ALK-rearranged pts. Cases of resistance are subtyped into three groups, i.e., systemic, oligo, and central nervous system (CNS) types, with the CNS being used to be considered a sanctuary. With regard to the management of CNS lesions in pts with ALK+ NSCLC, a growing body of evidence has gradually demonstrated the intracranial (IC) efficacy of ALK inhibitor (ALKi) in ALK+ NSCLC pts with brain metastases (BMs). Although the efficacy of crizotinib for the CNS lesions remains controversial, a recent retrospective investigation of ALK+ pts with BM enrolled in PROFILE 1005 and PROFILE 1007 demonstrated that crizotinib is associated with a high disease control rate for BM. However, BM comprises the most common site of progressive disease in pts with or without baseline BMs, which is a serious problem for crizotinib. Furthermore, alectinib can be used to achieve strong and long-lasting inhibitory effects on BM. In addition to alectinib, the IC efficacy of other next-generation ALK inhibitors, such as ceritinib, AP26113 and PF-06463922, has been demonstrated. In this article, we review the latest evidence regarding the BM and IC efficacy of ALK inhibitors in pts with ALK+ NSCLC.

  19. A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN

    DTIC Science & Technology

    2015-09-01

    AWARD NUMBER: W81XWH-13-1-0220 TITLE: A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN PRINCIPAL...4. TITLE AND SUBTITLE A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN 5a. CONTRACT NUMBER 5b. GRANT NUMBER... genetic and epigenetic changes that occur during tumorigenesis. 15. SUBJECT TERMS Anaplastic lymphoma kinase, neuroblastoma, ALK, ALKF1174L, MYCN, CDK7

  20. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutation, ALK rearrangement and EGFR/ALK co-alterations

    PubMed Central

    Chen, Hua-Jun; Zhou, Qing; Yan, Li-Xu; Xie, Zhi; Su, Jian; Chen, Zhi-Hong; Tu, Hai-Yan; Yan, Hong-Hong; Wang, Zhen; Xu, Chong-Rui; Jiang, Ben-Yuan; Wang, Bin-Chao; Bai, Xiao-Yan; Zhong, Wen-Zhao; Wu, Yi-Long; Yang, Jin-Ji

    2016-01-01

    The co-occurrence of epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements constitutes a rare molecular subtype of non-small-cell lung cancer (NSCLC). Herein, we assessed the clinical outcomes and incidence of acquired resistance to tyrosine kinase inhibitors (TKIs) in this subtype. So we enrolled 118 advanced NSCLC treated with TKIs. EGFR mutations and ALK rearrangements were detected by DNA sequencing or Scorpion amplification refractory mutation system and fluorescence in situ hybridization respectively. Immunohistochemistry was used to evaluate the activation of associated proteins. We found that nine in ten patients with EGFR/ALK co-alterations had good response with first-line EGFR TKI, and the objective response rate (ORR) of EGFR TKIs was 80% (8/10) for EGFR/ALK co-altered and 65.5% (55/84) for EGFR-mutant (P = 0.57), with a median progression-free survival (PFS) of 11.2 and 13.2 months, (hazard ratio [HR]=0.95, 95% [CI], 0.49-1.84, P= 0.87). ORR of crizotinib was 40% (2/5) for EGFR/ALK co-altered and 73.9% (17/23) for ALK-rearranged (P= 0.29), with a median PFS of 1.9 and 6.9 months (hazard ratio [HR], 0.40; 95% [CI] 0.15-1.10, P = 0.08). The median overall survival (OS) was 21.3, 23.7, and 18.5 months in EGFR-mutant, ALK-rearranged, and EGFR/ALK co-altered (P= 0.06), and there existed a statistically significant difference in OS between ALK-rearranged and EGFR/ALK co-altered (P=0.03). Taken together, the first-line EGFR-TKI might be the reasonable care for advanced NSCLC harbouring EGFR/ALK co-alterations, whether or nor to use sequential crizotinib should be guided by the status of ALK rearrangement and the relative level of phospho-EGFR and phospho-ALK. PMID:27533086

  1. MiR-193a-5p Targets the Coding Region of AP-2α mRNA and Induces Cisplatin Resistance in Bladder Cancers.

    PubMed

    Zhou, Ji; Duan, Huaxin; Xie, Yu; Ning, Yichong; Zhang, Xing; Hui, Na; Wang, Chunqing; Zhang, Jian; Zhou, Jianlin

    2016-01-01

    Transcription factor AP-2 alpha (AP-2α or TFAP2A) is a newly identified prognostic marker of chemotherapy; its expression is positively correlated with chemosensitivity and survival of cancer patients. Using computational programs, we predicted that the coding region of AP-2α gene contains a potential miRNA response element (MRE) of miR-193a-5p, and the single nucleotide polymorphism (SNP) site (c.497A>G, rs111681798) resides within the predicted MRE. The results of luciferase assays and Western blot analysis demonstrated that miR-193a-5p negatively regulated the expression of AP-2α proteins, but have no influence on the mutant AP-2α (c.497A>G). Infection with lentiviral AP-2α gene or miR-193a-5p inhibitor in the bladder cancer cells decreased migration and cisplatin resistance, while knockdown of AP-2α gene or overexpression of miR-193a-5p in the urothelial cell line SV-HUC-1 increased migration and cisplatin resistances. We concluded that miR-193a-5p induced cisplatin resistance by repressing AP-2α expression in bladder cancer cells.

  2. The Escherichia coli AlkB protein protects human cells against alkylation-induced toxicity.

    PubMed Central

    Chen, B J; Carroll, P; Samson, L

    1994-01-01

    Escherichia coli can ameliorate the toxic effects of alkylating agents either by preventing DNA alkylation or by repairing DNA alkylation damage. The alkylation-sensitive phenotype of E. coli alkB mutants marks the alkB pathway as an extremely effective defense mechanism against the cytotoxic effects of the SN2, but not the SN1, alkylating agents. Although it is clear that AlkB helps cells to better handle alkylated DNA, no DNA alkylation repair function could be assigned to the purified AlkB protein, suggesting that AlkB either acts as part of a complex or acts to regulate the expression of other genes whose products are directly responsible for alkylation resistance. However, here we present evidence that the provision of alkylation resistance is an intrinsic function of the AlkB protein per se. We expressed the E. coli AlkB protein in two human cell lines and found that it confers the same characteristic alkylation-resistant phenotype in this foreign environment as it does in E. coli. AlkB expression rendered human cells extremely resistant to cell killing by the SN2 but not the SN1 alkylating agents but did not affect the ability of dimethyl sulfate (an SN2 agent) to alkylate the genome. We infer that SN2 agents produce a class of DNA damage that is not efficiently produced by SN1 agents and that AlkB somehow prevents this damage from killing the cell. Images PMID:7928996

  3. Novel CAD-ALK gene rearrangement is drugable by entrectinib in colorectal cancer

    PubMed Central

    Amatu, Alessio; Somaschini, Alessio; Cerea, Giulio; Bosotti, Roberta; Valtorta, Emanuele; Buonandi, Pasquale; Marrapese, Giovanna; Veronese, Silvio; Luo, David; Hornby, Zachary; Multani, Pratik; Murphy, Danielle; Shoemaker, Robert; Lauricella, Calogero; Giannetta, Laura; Maiolani, Martina; Vanzulli, Angelo; Ardini, Elena; Galvani, Arturo; Isacchi, Antonella; Sartore-Bianchi, Andrea; Siena, Salvatore

    2015-01-01

    Background: Activated anaplastic lymphoma kinase (ALK) gene fusions are recurrent events in a small fraction of colorectal cancers (CRCs), although these events have not yet been exploited as in other malignancies. Methods: We detected ALK protein expression by immunohistochemistry and gene rearrangements by fluorescence in situ hybridisation in the ALKA-372-001 phase I study of the pan-Trk, ROS1, and ALK inhibitor entrectinib. One out of 487 CRCs showed ALK positivity with a peculiar pattern that prompted further characterisation by targeted sequencing using anchored multiplex PCR. Results: A novel ALK fusion with the carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) gene (CAD-ALK fusion gene) was identified. It resulted from inversion within chromosome 2 and the fusion of exons 1–35 of CAD with exons 20–29 of ALK. After failure of previous standard therapies, treatment of this patient with the ALK inhibitor entrectinib resulted in a durable objective tumour response. Conclusions: We describe the novel CAD-ALK rearrangement as an oncogene and provide the first evidence of its drugability as a new molecular target in CRC. PMID:26633560

  4. ALK and ROS1 as a joint target for the treatment of lung cancer: a review.

    PubMed

    Puig de la Bellacasa, Raimon; Karachaliou, Niki; Estrada-Tejedor, Roger; Teixidó, Jordi; Costa, Carlota; Borrell, José I

    2013-04-01

    Rearrangements of the anaplastic lymphoma kinase (ALK) have been described in multiple malignancies, including non-small cell lung cancer (NSCLC). ALK fusions have gain of function properties while activating mutations in wild-type ALK can also occur within the tyrosine kinase domain. ALK rearrangements define a new molecular subtype of NSCLC that is exquisitely sensitive to ALK inhibition. Crizotinib, an orally available small molecule ATP-mimetic compound which was originally designed as a MET inhibitor, was recognized to have "off-target" anti-ALK activity and has been approved in the USA for the treatment of patients with ALK-positive NSCLC. Chromosomal rearrangements involving the ROS1 receptor tyrosine kinase have also been recently described in NSCLC, while crizotinib is currently under clinical trial in this molecular subset of NSCLC patients. The basic approaches of any computer aided drug design work in terms of structure and ligand based drug design. Details of each of these approaches should be covered with an emphasis on utilizing both in order to develop multi-targeted small-molecule kinase inhibitors. Such multi-targeted tyrosine kinase inhibitors can have antiproliferative activity against both ROS1and ALK rearranged NSCLC. Herein, we highlight the importance of targeting these proteins and the advances in optimizing more potent and selective ALK and ROS1 kinase inhibitors.

  5. ALK and ROS1 as a joint target for the treatment of lung cancer: a review

    PubMed Central

    Puig de la Bellacasa, Raimon; Karachaliou, Niki; Estrada-Tejedor, Roger; Teixidó, Jordi; Costa, Carlota

    2013-01-01

    Rearrangements of the anaplastic lymphoma kinase (ALK) have been described in multiple malignancies, including non-small cell lung cancer (NSCLC). ALK fusions have gain of function properties while activating mutations in wild-type ALK can also occur within the tyrosine kinase domain. ALK rearrangements define a new molecular subtype of NSCLC that is exquisitely sensitive to ALK inhibition. Crizotinib, an orally available small molecule ATP-mimetic compound which was originally designed as a MET inhibitor, was recognized to have “off-target” anti-ALK activity and has been approved in the USA for the treatment of patients with ALK-positive NSCLC. Chromosomal rearrangements involving the ROS1 receptor tyrosine kinase have also been recently described in NSCLC, while crizotinib is currently under clinical trial in this molecular subset of NSCLC patients. The basic approaches of any computer aided drug design work in terms of structure and ligand based drug design. Details of each of these approaches should be covered with an emphasis on utilizing both in order to develop multi-targeted small-molecule kinase inhibitors. Such multi-targeted tyrosine kinase inhibitors can have antiproliferative activity against both ROS1and ALK rearranged NSCLC. Herein, we highlight the importance of targeting these proteins and the advances in optimizing more potent and selective ALK and ROS1 kinase inhibitors. PMID:25806218

  6. Targeted Disruption of ALK Reveals a Potential Role in Hypogonadotropic Hypogonadism

    PubMed Central

    Nord, Christoffer; Ahlgren, Ulf; Eriksson, Maria; Vernersson-Lindahl, Emma; Helland, Åslaug; Alexeyev, Oleg A.; Hallberg, Bengt; Palmer, Ruth H.

    2015-01-01

    Mice lacking ALK activity have previously been reported to exhibit subtle behavioral phenotypes. In this study of ALK of loss of function mice we present data supporting a role for ALK in hypogonadotropic hypogonadism in male mice. We observed lower level of serum testosterone at P40 in ALK knock-out males, accompanied by mild disorganization of seminiferous tubules exhibiting decreased numbers of GATA4 expressing cells. These observations highlight a role for ALK in testis function and are further supported by experiments in which chemical inhibition of ALK activity with the ALK TKI crizotinib was employed. Oral administration of crizotinib resulted in a decrease of serum testosterone levels in adult wild type male mice, which reverted to normal levels after cessation of treatment. Analysis of GnRH expression in neurons of the hypothalamus revealed a significant decrease in the number of GnRH positive neurons in ALK knock-out mice at P40 when compared with control littermates. Thus, ALK appears to be involved in hypogonadotropic hypogonadism by regulating the timing of pubertal onset and testis function at the upper levels of the hypothalamic-pituitary gonadal axis. PMID:25955180

  7. The Use of a Combination of alkB Primers to Better Characterize the Distribution of Alkane-Degrading Bacteria.

    PubMed

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Peixoto, Raquel; Rosado, Alexandre S; Seldin, Lucy

    2013-01-01

    The alkane monooxygenase AlkB, which is encoded by the alkB gene, is a key enzyme involved in bacterial alkane degradation. To study the alkB gene within bacterial communities, researchers need to be aware of the variations in alkB nucleotide sequences; a failure to consider the sequence variations results in the low representation of the diversity and richness of alkane-degrading bacteria. To minimize this shortcoming, the use of a combination of three alkB-targeting primers to enhance the detection of the alkB gene in previously isolated alkane-degrading bacteria was proposed. Using this approach, alkB-related PCR products were detected in 79% of the strains tested. Furthermore, the chosen set of primers was used to study alkB richness and diversity in different soils sampled in Carmópolis, Brazil and King George Island, Antarctica. The DNA extracted from the different soils was PCR amplified with each set of alkB-targeting primers, and clone libraries were constructed, sequenced and analyzed. A total of 255 alkB phylotypes were detected. Venn diagram analyses revealed that only low numbers of alkB phylotypes were shared among the different libraries derived from each primer pair. Therefore, the combination of three alkB-targeting primers enhanced the richness of alkB phylotypes detected in the different soils by 45% to 139%, when compared to the use of a single alkB-targeting primer. In addition, a dendrogram analysis and beta diversity comparison of the alkB composition showed that each of the sampling sites studied had a particular set of alkane-degrading bacteria. The use of a combination of alkB primers was an efficient strategy for enhancing the detection of the alkB gene in cultivable bacteria and for better characterizing the distribution of alkane-degrading bacteria in different soil environments.

  8. The Use of a Combination of alkB Primers to Better Characterize the Distribution of Alkane-Degrading Bacteria

    PubMed Central

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Peixoto, Raquel; Rosado, Alexandre S.; Seldin, Lucy

    2013-01-01

    The alkane monooxygenase AlkB, which is encoded by the alkB gene, is a key enzyme involved in bacterial alkane degradation. To study the alkB gene within bacterial communities, researchers need to be aware of the variations in alkB nucleotide sequences; a failure to consider the sequence variations results in the low representation of the diversity and richness of alkane-degrading bacteria. To minimize this shortcoming, the use of a combination of three alkB-targeting primers to enhance the detection of the alkB gene in previously isolated alkane-degrading bacteria was proposed. Using this approach, alkB-related PCR products were detected in 79% of the strains tested. Furthermore, the chosen set of primers was used to study alkB richness and diversity in different soils sampled in Carmópolis, Brazil and King George Island, Antarctica. The DNA extracted from the different soils was PCR amplified with each set of alkB-targeting primers, and clone libraries were constructed, sequenced and analyzed. A total of 255 alkB phylotypes were detected. Venn diagram analyses revealed that only low numbers of alkB phylotypes were shared among the different libraries derived from each primer pair. Therefore, the combination of three alkB-targeting primers enhanced the richness of alkB phylotypes detected in the different soils by 45% to 139%, when compared to the use of a single alkB-targeting primer. In addition, a dendrogram analysis and beta diversity comparison of the alkB composition showed that each of the sampling sites studied had a particular set of alkane-degrading bacteria. The use of a combination of alkB primers was an efficient strategy for enhancing the detection of the alkB gene in cultivable bacteria and for better characterizing the distribution of alkane-degrading bacteria in different soil environments. PMID:23825163

  9. Tackling ALK in non-small cell lung cancer: the role of novel inhibitors

    PubMed Central

    Facchinetti, Francesco; Di Maio, Massimo; Graziano, Paolo; Bria, Emilio; Rossi, Giulio; Novello, Silvia

    2016-01-01

    Crizotinib is an oral inhibitor of anaplastic lymphoma kinase (ALK) with remarkable clinical activity in patients suffering from ALK-rearranged non-small cell lung cancer (NSCLC), accounting to its superiority compared to chemotherapy. Unfortunately, virtually all ALK-rearranged tumors acquire resistance to crizotinib, frequently within one year since the treatment initiation. To date, therapeutic strategies to overcome crizotinib resistance have focused on the use of more potent and structurally different compounds. Second-generation ALK inhibitors such as ceritinib (LDK378), alectinib (CH5424802/RO5424802) and brigatinib (AP26113) have shown relevant clinical activity, consequently fostering their rapid clinical development and their approval by health agencies. The third-generation inhibitor lorlatinib (PF-06463922), selectively active against ALK and ROS1, harbors impressive biological potency; its efficacy in reversing resistance to crizotinib and to other ALK inhibitors is being proven by early clinical trials. The NTRK1-3 and ROS1 inhibitor entrectinib (RXDX-101) has been reported to act against NSCLC harboring ALK fusion proteins too. Despite the quick development of these novel agents, several issues remain to be discussed in the treatment of patients suffering from ALK-rearranged NSCLC. This position paper will discuss the development, the current evidence and approvals, as long as the future perspectives of new ALK inhibitors beyond crizotinib. Clinical behaviors of ALK-rearranged NSCLC vary significantly among patients and differential molecular events responsible of crizotinib resistance account for the most important quote of this heterogeneity. The precious availability of a wide range of active anti-ALK compounds should be approached in a critical and careful perspective, in order to develop treatment strategies tailored on the disease evolution of every single patient. PMID:27413712

  10. Efficiency of Crizotinib on an ALK-Positive Inflammatory Myofibroblastic Tumor of the Central Nervous System: A Case Report

    PubMed Central

    Chennouf, Anas; Arslanian, Elizabeth; Roberge, David; Berthelet, France; Bojanowski, Michel; Bahary, Jean-Paul; Masucci, Laura; Belanger, Karl; Florescu, Marie

    2017-01-01

    Inflammatory myofibroblastic tumors (IMT) of the central nervous system (CNS) are rare entities that have a predilection for local recurrences. Approximately half of the inflammatory myofibroblastic tumors contain translocations that result in the over-expression of the anaplastic lymphoma kinase (ALK) gene. We hereby present the case of a patient diagnosed with a left parieto-occipital IMT that recurred after multiple surgeries and radiotherapy. Immuno-histochemical examination of the tumor demonstrated ALK overexpression and the presence of an ALK rearrangement observed in lung cancers. The patient was subsequently started on an ALK inhibitor. A response evaluation criteria in solid tumors (RECIST) partial response was observed by the seventh month of ALK inhibition and the tumor remained in control for 14 months. The current case reiterates the activity of ALK inhibitors within the CNS and suggests that radiotherapy may potentiate the permeability of ALK inhibitors in CNS tumors addicted to ALK signalling.

  11. Crizotinib-Resistant Mutants of EML4-ALK Identified Through an Accelerated Mutagenesis Screen

    PubMed Central

    Zhang, Sen; Wang, Frank; Keats, Jeffrey; Zhu, Xiaotian; Ning, Yaoyu; Wardwell, Scott D; Moran, Lauren; Mohemmad, Qurish K; Anjum, Rana; Wang, Yihan; Narasimhan, Narayana I; Dalgarno, David; Shakespeare, William C; Miret, Juan J; Clackson, Tim; Rivera, Victor M

    2011-01-01

    Activating gene rearrangements of anaplastic lymphoma kinase (ALK) have been identified as driver mutations in non-small-cell lung cancer, inflammatory myofibroblastic tumors, and other cancers. Crizotinib, a dual MET/ALK inhibitor, has demonstrated promising clinical activity in patients with non-small-cell lung cancer and inflammatory myofibroblastic tumors harboring ALK translocations. Inhibitors of driver kinases often elicit kinase domain mutations that confer resistance, and such mutations have been successfully predicted using in vitro mutagenesis screens. Here, this approach was used to discover an extensive set of ALK mutations that can confer resistance to crizotinib. Mutations at 16 residues were identified, structurally clustered into five regions around the kinase active site, which conferred varying degrees of resistance. The screen successfully predicted the L1196M, C1156Y, and F1174L mutations, recently identified in crizotinib-resistant patients. In separate studies, we demonstrated that crizotinib has relatively modest potency in ALK-positive non-small-cell lung cancer cell lines. A more potent ALK inhibitor, TAE684, maintained substantial activity against mutations that conferred resistance to crizotinib. Our study identifies multiple novel mutations in ALK that may confer clinical resistance to crizotinib, suggests that crizotinib's narrow selectivity window may underlie its susceptibility to such resistance and demonstrates that a more potent ALK inhibitor may be effective at overcoming resistance. PMID:22034911

  12. RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia.

    PubMed

    Lim, Ji-Hun; Jang, Seongsoo; Park, Chan-Jeoung; Cho, Young-Uk; Lee, Je-Hwan; Lee, Kyoo-Hyung; Lee, Jin-Ok; Shin, Jong-Yeon; Kim, Jong-Il; Huh, Jooryung; Seo, Eul-Ju

    2014-01-01

    Anaplastic lymphoma receptor tyrosine kinase (ALK) is located on chromosome 2p23; the chromosomal rearrangements of this gene are common genetic alterations, resulting in the creation of multiple fusion genes involved in tumorigenesis. However, the presence of an ALK fusion in myeloid malignancies is extremely rare. We report a case of acute myelomonocytic leukemia in a 31-year-old woman with an unusual rearrangement between RAN-binding protein 2 (RANBP2) and ALK and a karyotype of 45,XX,inv(2)(p23q21),-7[20]. We detected an ALK rearrangement using fluorescence in situ hybridization, identified the ALK fusion partner by using RNA transcriptome sequencing, and demonstrated the RANBP2-ALK fusion transcript by reverse transcriptase--PCR and Sanger sequencing. Immunohistochemistry for ALK showed strong staining of the nuclear membrane in leukemic cells. The patient had an unfavorable clinical course. Our results, together with a literature review, suggest the RANBP2-ALK fusion combined with monosomy 7 may be related to a unique clonal hematologic disorder of childhood and adolescence, characterized by myelomonocytic leukemia and a poor prognosis.

  13. ALK gene expression status in pleural effusion predicts tumor responsiveness to crizotinib in Chinese patients with lung adenocarcinoma

    PubMed Central

    Wang, Zheng; Wu, Xiaonan; Han, Xiaohong; Cheng, Gang; Mu, Xinlin; Zhang, Yuhui; Cui, Di; Liu, Chang; Liu, Dongge; Shi, Yuankai

    2016-01-01

    Objective The relationship between anaplastic lymphoma kinase (ALK) expression in malignant pleural effusion (MPE) samples detected only by Ventana immunohistochemistry (IHC) ALK (D5F3) and the efficacy of ALK-tyrosine kinase inhibitor therapy is uncertain. Methods Ventana anti-ALK (D5F3) rabbit monoclonal primary antibody testing was performed on 313 cell blocks of MPE samples from Chinese patients with advanced lung adenocarcinoma, and fluorescence in situ hybridization (FISH) was used to verify the ALK gene status in Ventana IHC ALK (D5F3)-positive samples. The follow-up clinical data on patients who received crizotinib treatment were recorded. Results Of the 313 MPE samples, 27 (8.6%) were confirmed as ALK expression-positive, and the Ventana IHC ALK (D5F3)-positive rate was 17.3% (27/156) in wild-type epidermal growth factor receptor (EGFR) MPE samples. Twenty-three of the 27 IHC ALK (D5F3)-positive samples were positive by FISH. Of the 11 Ventana IHC ALK (D5F3)-positive patients who received crizotinib therapy, 2 patients had complete response (CR), 5 had partial response (PR) and 3 had stable disease (SD). Conclusions The ALK gene expression status detected by the Ventana IHC ALK (D5F3) platform in MPE samples may predict tumor responsiveness to crizotinib in Chinese patients with advanced lung adenocarcinoma. PMID:28174489

  14. New therapeutic strategies in neuroblastoma: combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs against ALK

    PubMed Central

    Di Paolo, Daniela; Yang, D.; Pastorino, Fabio; Emionite, Laura; Cilli, Michele; Daga, Antonio; Destefanis, Elisa; Di Fiore, Annarita; Piaggio, Francesca; Brignole, Chiara; Xu, Xiaobao; Liang, Chris; Gibbons, James

    2015-01-01

    Many different aberrations in the Anaplastic Lymphoma Kinase (ALK) were found to be oncogenic drivers in several cancers including neuroblastoma (NB), therefore ALK is now considered a critical player in NB oncogenesis and a promising therapeutic target. The ALK-inhibitor crizotinib has a limited activity against the various ALK mutations identified in NB patients. We tested: the activity of the novel ALK-inhibitor X-396 administered alone or in combination with Targeted Liposomes carrying ALK-siRNAs (TL[ALK-siRNA]) that are active irrespective of ALK gene mutational status; the pharmacokinetic profiles and the biodistribution of X-396; the efficacy of X-396 versus crizotinib treatment in NB xenografts; whether the combination of X-396 with the TL[ALK-siRNA] could promote long-term survival in NB mouse models. X-396 revealed good bioavailability, moderate half-life, high mean plasma and tumor concentrations. X-396 was more effective than crizotinib in inhibiting in vitro cell proliferation of NB cells and in reducing tumor volume in subcutaneous NB models in a dose-dependent manner. In orthotopic NB xenografts, X-396 significantly increased life span independently of the ALK mutation status. In combination studies, all effects were significantly improved in the mice treated with TL[ALK-siRNA] and X-396 compared to mice receiving the single agents. Our findings provide a rational basis to design innovative molecular-based treatment combinations for clinical application in ALK-driven NB tumors. PMID:26299615

  15. New therapeutic strategies in neuroblastoma: combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs against ALK.

    PubMed

    Di Paolo, Daniela; Yang, D; Pastorino, Fabio; Emionite, Laura; Cilli, Michele; Daga, Antonio; Destafanis, Elisa; Di Fiore, Annarita; Piaggio, Francesca; Brignole, Chiara; Xu, Xiaobao; Liang, Chris; Gibbons, James; Ponzoni, Mirco; Perri, Patrizia

    2015-10-06

    Many different aberrations in the Anaplastic Lymphoma Kinase (ALK) were found to be oncogenic drivers in several cancers including neuroblastoma (NB), therefore ALK is now considered a critical player in NB oncogenesis and a promising therapeutic target. The ALK-inhibitor crizotinib has a limited activity against the various ALK mutations identified in NB patients. We tested: the activity of the novel ALK-inhibitor X-396 administered alone or in combination with Targeted Liposomes carrying ALK-siRNAs (TL[ALK-siRNA]) that are active irrespective of ALK gene mutational status; the pharmacokinetic profiles and the biodistribution of X-396; the efficacy of X-396 versus crizotinib treatment in NB xenografts; whether the combination of X-396 with the TL[ALK-siRNA] could promote long-term survival in NB mouse models. X-396 revealed good bioavailability, moderate half-life, high mean plasma and tumor concentrations. X-396 was more effective than crizotinib in inhibiting in vitro cell proliferation of NB cells and in reducing tumor volume in subcutaneous NB models in a dose-dependent manner. In orthotopic NB xenografts, X-396 significantly increased life span independently of the ALK mutation status. In combination studies, all effects were significantly improved in the mice treated with TL[ALK-siRNA] and X-396 compared to mice receiving the single agents. Our findings provide a rational basis to design innovative molecular-based treatment combinations for clinical application in ALK-driven NB tumors.

  16. ALK and ROS1 as targeted therapy paradigms and clinical implications to overcome crizotinib resistance.

    PubMed

    Ye, Mingxiang; Zhang, Xinxin; Li, Nan; Zhang, Yong; Jing, Pengyu; Chang, Ning; Wu, Jianxiong; Ren, Xinling; Zhang, Jian

    2016-03-15

    During the past decade, more than 10 targetable oncogenic driver genes have been validated in non-small cell lung cancer (NSCLC). Anaplastic lymphoma kinase (ALK) and ROS1 kinase are two new driver genes implicated in ALK- and ROS1-rearranged NSCLC. Inhibition of ALK and ROS1 by crizotinib has been reported to be highly effective and well tolerated in these patients. However, resistance to crizotinib emerges years after treatment, and increasing efforts have been made to overcome this issue. Here, we review the biology of ALK and ROS1 and their roles in cancer progression. We also summarize the ongoing and completed clinical trials validating ALK and ROS1 as targets for cancer treatment. In the last section of the review, we will discuss the molecular mechanisms of crizotinib resistance and focus approaches to overcome it. This review describes an exciting new area of research and may provide new insights for targeted cancer therapies.

  17. Regulation of the spatial code for BDNF mRNA isoforms in the rat hippocampus following pilocarpine-treatment: a systematic analysis using laser microdissection and quantitative real-time PCR.

    PubMed

    Baj, Gabriele; Del Turco, Domenico; Schlaudraff, Jessica; Torelli, Lucio; Deller, Thomas; Tongiorgi, Enrico

    2013-05-01

    Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival, differentiation, and plasticity and is one of those genes that generate multiple mRNAs with different alternatively spliced 5'UTRs. The functional significance of many BDNF transcripts, each producing the same protein, is emerging. On the basis of the analysis of the four most abundant brain BDNF transcripts, we recently proposed the "spatial code hypothesis of BDNF splice variants" according to which the BDNF transcripts, through their differential subcellular localization in soma or dendrites, represent a mechanism to synthesize the protein at distinct locations and produce local effects. In this study, using laser microdissection of hippocampal laminae and reverse transcription-quantitative real-time PCR (RT-qPCR), we analyzed all known BDNF mRNA variants at resting conditions or following 3 h pilocarpine-induced status epilepticus. In untreated rats, we found dendritic enrichment of BDNF transcripts encoding exons 6 and 7 in CA1; exons 1, 6, and 9a in CA3; and exons 5, 6, 7, and 8 in DG. Considering the low abundance of the other transcripts, exon 6 was the main transcript in dendrites under resting conditions. Pilocarpine treatment induced an increase of BDNF transcripts encoding exons 4 and 6 in all dendritic laminae and, additionally, of exon 2 in CA1 stratum radiatum and exons 2, 3, 9a in DG molecular layer while the other transcripts were decreased in dendrites, suggesting restriction to the soma. These results support the hypothesis of a spatial code to differentially regulate BDNF in the somatic or dendritic compartment under conditions of pilocarpine-induced status epilepticus and, furthermore, highlight the existence of subfield-specific differences.

  18. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    SciTech Connect

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio; Ichinose, Junji; Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori; Nakajima, Jun; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2015-02-13

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization.

  19. The enzymatic activity of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase is enhanced by NPM-ALK: new insights in ALK-mediated pathogenesis and the treatment of ALCL.

    PubMed

    Boccalatte, Francesco E; Voena, Claudia; Riganti, Chiara; Bosia, Amalia; D'Amico, Lucia; Riera, Ludovica; Cheng, Mangeng; Ruggeri, Bruce; Jensen, Ole N; Goss, Valerie L; Lee, Kimberly; Nardone, Julie; Rush, John; Polakiewicz, Roberto D; Comb, Michael J; Chiarle, Roberto; Inghirami, Giorgio

    2009-03-19

    Anaplastic large cell lymphoma represents a subset of neoplasms caused by translocations that juxtapose the anaplastic lymphoma kinase (ALK) to dimerization partners. The constitutive activation of ALK fusion proteins leads to cellular transformation through a complex signaling network. To elucidate the ALK pathways sustaining lymphomagenesis and tumor maintenance, we analyzed the tyrosine-kinase protein profiles of ALK-positive cell lines using 2 complementary proteomic-based approaches, taking advantage of a specific ALK RNA interference (RNAi) or cell-permeable inhibitors. A well-defined set of ALK-associated tyrosine phosphopeptides, including metabolic enzymes, kinases, ribosomal and cytoskeletal proteins, was identified. Validation studies confirmed that vasodilator-stimulated phosphoprotein and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) associated with nucleophosmin (NPM)-ALK, and their phosphorylation required ALK activity. ATIC phosphorylation was documented in cell lines and primary tumors carrying ALK proteins and other tyrosine kinases, including TPR-Met and wild type c-Met. Functional analyses revealed that ALK-mediated ATIC phosphorylation enhanced its enzymatic activity, dampening the methotrexate-mediated transformylase activity inhibition. These findings demonstrate that proteomic approaches in well-controlled experimental settings allow the definition of informative proteomic profiles and the discovery of novel ALK downstream players that contribute to the maintenance of the neoplastic phenotype. Prediction of tumor responses to methotrexate may justify specific molecular-based chemotherapy.

  20. Profile of Ventana ALK (D5F3) companion diagnostic assay for non-small-cell lung carcinomas.

    PubMed

    Conde, Esther; Hernandez, Susana; Prieto, Mario; Martinez, Rebeca; Lopez-Rios, Fernando

    2016-06-01

    The development of several ALK inhibitors means that the importance of accurately identifying ALK-positive lung cancer has never been greater. Therefore, it is crucial that ALK testing assays become more standardized. The aim of this review is to comment on the recently FDA-approved VENTANA ALK (D5F3) Companion Diagnostic (CDx) Assay. This kit provides high sensitivity and specificity for the detection of ALK rearrangements and seamless integration into the laboratory workflow, with a fully automated analytical phase and fast interpretation. The use of controls increases the sensitivity and specificity and a dichotomous scoring approach enhances reproducibility.

  1. Application of AlkBGT and AlkL from Pseudomonas putida GPo1 for Selective Alkyl Ester ω-Oxyfunctionalization in Escherichia coli

    PubMed Central

    Eggink, Gerrit; Weusthuis, Ruud A.

    2016-01-01

    ABSTRACT The enzyme system AlkBGT from Pseudomonas putida GPo1 can efficiently ω-functionalize fatty acid methyl esters. Outer membrane protein AlkL boosts this ω-functionalization. In this report, it is shown that whole cells of Escherichia coli expressing the AlkBGT system can also ω-oxidize ethyl nonanoate (NAEE). Coexpression of AlkBGT and AlkL resulted in 1.7-fold-higher ω-oxidation activity on NAEE. With this strain, initial activity on NAEE was 70 U/g (dry weight) of cells (gcdw), 67% of the initial activity on methyl nonanoate. In time-lapse conversions with 5 mM NAEE the main product was 9-hydroxy NAEE (3.6 mM), but also 9-oxo NAEE (0.1 mM) and 9-carboxy NAEE (0.6 mM) were formed. AlkBGT also ω-oxidized ethyl, propyl, and butyl esters of fatty acids ranging from C6 to C10. Increasing the length of the alkyl chain improved the ω-oxidation activity of AlkBGT on esters of C6 and C7 fatty acids. From these esters, application of butyl hexanoate resulted in the highest ω-oxidation activity, 82 U/gcdw. Coexpression of AlkL only had a positive effect on ω-functionalization of substrates with a total length of C11 or longer. These findings indicate that AlkBGT(L) can be applied as a biocatalyst for ω-functionalization of ethyl, propyl, and butyl esters of medium-chain fatty acids. IMPORTANCE Fatty acid esters are promising renewable starting materials for the production of ω-hydroxy fatty acid esters (ω-HFAEs). ω-HFAEs can be used to produce sustainable polymers. Chemical conversion of the fatty acid esters to ω-HFAEs is challenging, as it generates by-products and needs harsh reaction conditions. Biocatalytic production is a promising alternative. In this study, biocatalytic conversion of fatty acid esters toward ω-HFAEs was investigated using whole cells. This was achieved with recombinant Escherichia coli cells that produce the AlkBGT enzymes. These enzymes can produce ω-HFAEs from a wide variety of fatty acid esters. Medium-chain-length acids (C

  2. Proteinase-activated receptor 2 promotes TGF-β-dependent cell motility in pancreatic cancer cells by sustaining expression of the TGF-β type I receptor ALK5.

    PubMed

    Zeeh, Franziska; Witte, David; Gädeken, Thomas; Rauch, Bernhard H; Grage-Griebenow, Evelin; Leinung, Nadja; Fromm, Sofie Joline; Stölting, Stephanie; Mihara, Koichiro; Kaufmann, Roland; Settmacher, Utz; Lehnert, Hendrik; Hollenberg, Morley D; Ungefroren, Hendrik

    2016-07-05

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by high expression of transforming growth factor (TGF)-β and the G protein-coupled receptor proteinase-activated receptor 2 (PAR2), the latter of which functions as a cell-surface sensor for serine proteinases asscociated with the tumour microenvironment. Since TGF-β and PAR2 affect tumourigenesis by regulating migration, invasion and metastasis, we hypothesized that there is signalling crosstalk between them. Depleting PDAC and non-PDAC cells of PAR2 by RNA interference strongly decreased TGF-β1-induced activation of Smad2/3 and p38 mitogen-activated protein kinase, Smad dependent transcriptional activity, expression of invasion associated genes, and cell migration/invasion in vitro. Likewise, the plasminogen activator-inhibitor 1 gene in primary cultures of aortic smooth muscle cells from PAR2-/- mice displayed a greatly attenuated sensitivity to TGF-β1 stimulation. PAR2 depletion in PDAC cells resulted in reduced protein and mRNA levels of the TGF-β type I receptor activin receptor-like kinase 5 (ALK5). Forced expression of wild-type ALK5 or a kinase-active ALK5 mutant, but not a kinase-active but Smad-binding defective ALK5 mutant, was able to rescue TGF-β1-induced Smad3 activation, Smad dependent transcription, and cell migration in PAR2-depleted cells. Together, our data show that PAR2 is crucial for TGF-β1-induced cell motility by its ability to sustain expression of ALK5. Therapeutically targeting PAR2 may thus be a promising approach in preventing TGF-β-dependent driven metastatic dissemination in PDAC and possibly other stroma-rich tumour types.

  3. Proteinase-activated receptor 2 promotes TGF-β-dependent cell motility in pancreatic cancer cells by sustaining expression of the TGF-β type I receptor ALK5

    PubMed Central

    Gädeken, Thomas; Rauch, Bernhard H.; Grage-Griebenow, Evelin; Leinung, Nadja; Fromm, Sofie Joline; Stölting, Stephanie; Mihara, Koichiro; Kaufmann, Roland; Settmacher, Utz; Lehnert, Hendrik; Hollenberg, Morley D.; Ungefroren, Hendrik

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by high expression of transforming growth factor (TGF)-β and the G protein-coupled receptor proteinase-activated receptor 2 (PAR2), the latter of which functions as a cell-surface sensor for serine proteinases asscociated with the tumour microenvironment. Since TGF-β and PAR2 affect tumourigenesis by regulating migration, invasion and metastasis, we hypothesized that there is signalling crosstalk between them. Depleting PDAC and non-PDAC cells of PAR2 by RNA interference strongly decreased TGF-β1-induced activation of Smad2/3 and p38 mitogen-activated protein kinase, Smad dependent transcriptional activity, expression of invasion associated genes, and cell migration/invasion in vitro. Likewise, the plasminogen activator-inhibitor 1 gene in primary cultures of aortic smooth muscle cells from PAR2−/− mice displayed a greatly attenuated sensitivity to TGF-β1 stimulation. PAR2 depletion in PDAC cells resulted in reduced protein and mRNA levels of the TGF-β type I receptor activin receptor-like kinase 5 (ALK5). Forced expression of wild-type ALK5 or a kinase-active ALK5 mutant, but not a kinase-active but Smad-binding defective ALK5 mutant, was able to rescue TGF-β1-induced Smad3 activation, Smad dependent transcription, and cell migration in PAR2-depleted cells. Together, our data show that PAR2 is crucial for TGF-β1-induced cell motility by its ability to sustain expression of ALK5. Therapeutically targeting PAR2 may thus be a promising approach in preventing TGF-β-dependent driven metastatic dissemination in PDAC and possibly other stroma-rich tumour types. PMID:27248167

  4. Personalized treatment in advanced ALK-positive non-small cell lung cancer: from bench to clinical practice

    PubMed Central

    Passaro, Antonio; Lazzari, Chiara; Karachaliou, Niki; Spitaleri, Gianluca; Pochesci, Alessia; Catania, Chiara; Rosell, Rafael; de Marinis, Filippo

    2016-01-01

    The discovery of anaplastic lymphoma kinase (ALK) gene rearrangements and the development of tyrosine kinase inhibitors (TKI) that target them have achieved unprecedented success in the management of patients with ALK-positive non-small cell lung cancer (NSCLC). Despite the high efficacy of crizotinib, the first oral ALK TKI approved for the treatment of ALK-positive NSCLC, almost all patients inevitably develop acquired resistance, showing disease progression in the brain or in other parenchymal sites. Second- or third-generation ALK TKIs have shown to be active in crizotinib-pretreated or crizotinib-naïve ALK-positive patients, even in those with brain metastases. In this review, the current knowledge regarding ALK-positive NSCLC, focusing on the biology of the disease and the available therapeutic options are discussed. PMID:27799783

  5. Automation of ALK gene rearrangement testing with fluorescence in situ hybridization (FISH): a feasibility study.

    PubMed

    Zwaenepoel, Karen; Merkle, Dennis; Cabillic, Florian; Berg, Erica; Belaud-Rotureau, Marc-Antoine; Grazioli, Vittorio; Herelle, Olga; Hummel, Michael; Le Calve, Michele; Lenze, Dido; Mende, Stefanie; Pauwels, Patrick; Quilichini, Benoit; Repetti, Elena

    2015-02-01

    In the past several years we have observed a significant increase in our understanding of molecular mechanisms that drive lung cancer. Specifically in the non-small cell lung cancer sub-types, ALK gene rearrangements represent a sub-group of tumors that are targetable by the tyrosine kinase inhibitor Crizotinib, resulting in significant reductions in tumor burden. Phase II and III clinical trials were performed using an ALK break-apart FISH probe kit, making FISH the gold standard for identifying ALK rearrangements in patients. FISH is often considered a labor and cost intensive molecular technique, and in this study we aimed to demonstrate feasibility for automation of ALK FISH testing, to improve laboratory workflow and ease of testing. This involved automation of the pre-treatment steps of the ALK assay using various protocols on the VP 2000 instrument, and facilitating automated scanning of the fluorescent FISH specimens for simplified enumeration on various backend scanning and analysis systems. The results indicated that ALK FISH can be automated. Significantly, both the Ikoniscope and BioView system of automated FISH scanning and analysis systems provided a robust analysis algorithm to define ALK rearrangements. In addition, the BioView system facilitated consultation of difficult cases via the internet.

  6. A novel Patient Derived Tumorgraft model with TRAF1-ALK Anaplastic Large Cell Lymphoma translocation

    PubMed Central

    Abate, Francesco; Todaro, Maria; van der Krogt, Jo-Anne; Boi, Michela; Landra, Indira; Machiorlatti, Rodolfo; Tabbo’, Fabrizio; Messana, Katia; Barreca, Antonella; Novero, Domenico; Gaudiano, Marcello; Aliberti, Sabrina; Di Giacomo, Filomena; Tousseyn, Thomas; Lasorsa, Elena; Crescenzo, Ramona; Bessone, Luca; Ficarra, Elisa; Acquaviva, Andrea; Rinaldi, Andrea; Ponzoni, Maurilio; Longo, Dario Livio; Aime, Silvio; Cheng, Mangeng; Ruggeri, Bruce; Piccaluga, Pier Paolo; Pileri, Stefano; Tiacci, Enrico; Falini, Brunangelo; Pera-Gresely, Benet; Cerchietti, Leandro; Iqbal, Javeed; Chan, Wing C; Shultz, Leonard D.; Kwee, Ivo; Piva, Roberto; Wlodarska, Iwona; Rabadan, Raul; Bertoni, Francesco; Inghirami, Giorgio

    2016-01-01

    Although Anaplastic Large Cell Lymphomas (ALCL) carrying Anaplastic Lymphoma Kinase (ALK) have a relatively good prognosis, aggressive forms exist. We have identified a novel translocation, causing the fusion of the TRAF1 and ALK genes, in one patient who presented with a leukemic ALK+ ALCL (ALCL-11). To uncover the mechanisms leading to high-grade ALCL, we developed a human Patient Derived Tumorgraft (hPDT) line. Molecular characterization of primary and PDT cells demonstrated the activation of ALK and of NFkB pathways. Genomic studies of ALCL-11 showed the TP53 loss and the in vivo subclonal expansion of lymphoma cells lacking PRDM1/Blimp-1 and with c-MYC gene amplification. The treatment with proteasome inhibitors of TRAF1-ALK cells led to down-regulation of p50/p52 and lymphoma growth inhibition. Moreover a NFkB gene set classifier stratified ALCL in distinct subsets with different clinical outcome. Moreover, a selective ALK inhibitor (CEP28122) resulted in a significant clinical response of hPDT mice, but the disease could not be eradicated. These data indicate that the activation of NFkB signaling contributes to the neoplastic phenotype of TRAF1-ALK ALCL. ALCL hPDTs are invaluable to validate the role of druggable molecules, predict therapeutic responses and are helpful tools for the implementation of patient specific therapies. PMID:25533804

  7. Alectinib: a novel second generation anaplastic lymphoma kinase (ALK) inhibitor for overcoming clinically-acquired resistance

    PubMed Central

    Song, Zilan; Wang, Meining; Zhang, Ao

    2015-01-01

    The development of inhibitors for the tyrosine anaplastic lymphoma kinase (ALK) has advanced rapidly, driven by biology and medicinal chemistry. The first generation ALK inhibitor crizotinib was granted US FDA approval with only four years of preclinical and clinical testing. Although this drug offers significant clinical benefit to the ALK-positive patients, resistance has been developed through a variety of mechanisms. In addition to ceritinib, alectinib is another second-generation ALK inhibitor launched in 2014 in Japan. This drug has a unique chemical structure bearing a 5H-benzo[b]carbazol-11(6H)-one structural scaffold with an IC50 value of 1.9 nmol/L, and is highly potent against ALK bearing the gatekeeper mutation L1196M with an IC50 of 1.56 nmol/L. In the clinic, alectinib is highly efficacious in treatment of ALK-positive non-small cell lung cancer (NSCLC), and retains potency to combat crizotinib-resistant ALK mutations L1196M, F1174L, R1275Q and C1156Y. PMID:26579422

  8. French multicentric validation of ALK rearrangement diagnostic in 547 lung adenocarcinomas.

    PubMed

    Lantuejoul, Sylvie; Rouquette, Isabelle; Blons, Hélène; Le Stang, Nolwenn; Ilie, Marius; Begueret, Hugues; Grégoire, Valerie; Hofman, Paul; Gros, Audrey; Garcia, Stephane; Monhoven, Nathalie; Devouassoux-Shisheboran, Mojgan; Mansuet-Lupo, Audrey; Thivolet, Françoise; Antoine, Martine; Vignaud, Jean-Michel; Penault-Llorca, Frederique; Galateau-Sallé, Françoise; McLeer-Florin, Anne

    2015-07-01

    Anaplastic lymphoma kinase (ALK) gene rearrangements in lung adenocarcinoma result in kinase activity targetable by crizotinib. Although fluorescence in situ hybridisation (FISH) is the reference diagnostic technique, immunohistochemistry (IHC) could be useful for pre-screening. Diagnostic yields of ALK IHC, FISH and quantitative reverse transcriptase PCR performed in 14 French pathology/molecular genetics platforms were compared. 547 lung adenocarcinoma specimens were analysed using 5A4 and D5F3 antibodies, two break-apart FISH probes and TaqMan kits. Clinicopathological data were recorded. 140 tumours were ALK rearranged (FISH with ≥15% of rearranged cells) and 400 were ALK FISH negative (<15%). FISH was not interpretable for seven cases. ALK patients were young (p=0.003), mostly females (p=0.007) and light/nonsmokers (p<0.0001). 13 cases were IHC negative but FISH ≥15%, including six cases with FISH between 15% and 20%; eight were IHC positive with FISH between 10% and 14%. Sensitivity and specificity for 5A4 and D5F3 were 87% and 92%, and 89% and 76%, respectively. False-negative IHC, observed in 2.4% of cases, dropped to 1.3% for FISH >20%. Variants were undetected in 36% of ALK tumours. Discordances predominated with FISH ranging from 10% to 20% of rearranged cells and were centre dependent. IHC remains a reliable pre-screening method for ALK rearrangement detection.

  9. Rhein Inhibits AlkB Repair Enzymes and Sensitizes Cells to Methylated DNA Damage.

    PubMed

    Li, Qi; Huang, Yue; Liu, Xichun; Gan, Jianhua; Chen, Hao; Yang, Cai-Guang

    2016-05-20

    The AlkB repair enzymes, including Escherichia coli AlkB and two human homologues, ALKBH2 and ALKBH3, are iron(II)- and 2-oxoglutarate-dependent dioxygenases that efficiently repair N(1)-methyladenine and N(3)-methylcytosine methylated DNA damages. The development of small molecule inhibitors of these enzymes has seen less success. Here we have characterized a previously discovered natural product rhein and tested its ability to inhibit AlkB repair enzymes in vitro and to sensitize cells to methyl methane sulfonate that mainly produces N(1)-methyladenine and N(3)-methylcytosine lesions. Our investigation of the mechanism of rhein inhibition reveals that rhein binds to AlkB repair enzymes in vitro and promotes thermal stability in vivo In addition, we have determined a new structural complex of rhein bound to AlkB, which shows that rhein binds to a different part of the active site in AlkB than it binds to in fat mass and obesity-associated protein (FTO). With the support of these observations, we put forth the hypothesis that AlkB repair enzymes would be effective pharmacological targets for cancer treatment.

  10. NeuroD1 promotes neuroblastoma cell growth by inducing the expression of ALK.

    PubMed

    Lu, Fangjin; Kishida, Satoshi; Mu, Ping; Huang, Peng; Cao, Dongliang; Tsubota, Shoma; Kadomatsu, Kenji

    2015-04-01

    Neuroblastoma is derived from the sympathetic neuronal lineage of neural crest cells, and is the most frequently observed of the extracranial pediatric solid tumors. The neuronal differentiation factor, NeuroD1, has previously been shown to promote cell motility in neuroblastoma by suppressing the expression of Slit2. Here we report that NeuroD1 is also involved in the proliferation of neuroblastoma cells, including human cell lines and primary tumorspheres cultured from the tumor tissues of model mice. Interestingly, the growth inhibition of neuroblastoma cells induced by knockdown of NeuroD1 was accompanied by a reduction of ALK expression. ALK is known to be one of the important predisposition genes for neuroblastoma. The phenotype resulting from knockdown of NeuroD1 was suppressed by forced expression of ALK and, therefore, NeuroD1 appears to act mainly through ALK to promote the proliferation of neuroblastoma cells. Furthermore, we showed that NeuroD1 directly bound to the promoter region of ALK gene. In addition, the particular E-box in the promoter was responsible for NeuroD1-mediated ALK expression. These results indicate that ALK should be a direct target gene of NeuroD1. Finally, the expressions of NeuroD1 and ALK in the early tumor lesions of neuroblastoma model mice coincided in vivo. We conclude that the novel mechanism would regulate the expression of ALK in neuroblastoma and that NeuroD1 should be significantly involved in neuroblastoma tumorigenesis.

  11. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  12. Integrated Analysis of Long Non-coding RNAs (LncRNAs) and mRNA Expression Profiles Reveals the Potential Role of LncRNAs in Skeletal Muscle Development of the Chicken

    PubMed Central

    Li, Zhenhui; Ouyang, Hongjia; Zheng, Ming; Cai, Bolin; Han, Peigong; Abdalla, Bahareldin A.; Nie, Qinghua; Zhang, Xiquan

    2017-01-01

    Long non-coding RNAs (lncRNAs) play important roles in transcriptional and post-transcriptional regulation. However, little is currently known about the mechanisms by which they regulate skeletal muscle development in the chicken. In this study, we used RNA sequencing to profile the leg muscle transcriptome (lncRNA and mRNA) at three stages of skeletal muscle development in the chicken: embryonic day 11 (E11), embryonic day 16 (E16), and 1 day after hatching (D1). In total, 129, 132, and 45 differentially expressed lncRNAs, and 1798, 3072, and 1211 differentially expressed mRNAs were identified in comparisons of E11 vs. E16, E11 vs. D1, and E16 vs. D1, respectively. Moreover, we identified the cis- and trans-regulatory target genes of differentially expressed lncRNAs, and constructed lncRNA-gene interaction networks. In total, 126 and 200 cis-targets, and two and three trans-targets were involved in lncRNA-gene interaction networks that were constructed based on the E11 vs. E16, and E11 vs. D1 comparisons, respectively. The comparison of the E16 vs. D1 lncRNA-gene network comprised 25 cis-targets. We determined that lncRNA target genes are potentially involved in cellular development, and cellular growth and proliferation using Ingenuity Pathway Analysis. The gene networks identified for the E11 vs. D1 comparison were involved in embryonic development, organismal development and tissue development. The present study provides an RNA sequencing based evaluation of lncRNA function during skeletal muscle development in the chicken. Comprehensive analysis facilitated the identification of lncRNAs and target genes that might contribute to the regulation of different stages of skeletal muscle development. PMID:28119630

  13. For staining of ALK protein, the novel D5F3 antibody demonstrates superior overall performance in terms of intensity and extent of staining in comparison to the currently used ALK1 antibody.

    PubMed

    Taheri, Diana; Zahavi, David J; Del Carmen Rodriguez, Maria; Meliti, Abdelrazak; Rezaee, Neda; Yonescu, Raluca; Ricardo, Bernardo F P; Dolatkhah, Shahaboddin; Ning, Yi; Bishop, Justin A; Netto, George J; Sharma, Rajni

    2016-09-01

    Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm. Approximately 50 % of IMTs show an anaplastic lymphoma kinase (ALK) gene fusion resulting in ALK overexpression on immunohistochemistry (IHC). A novel anti-ALK monoclonal antibody (D5F3) has been suggested to be of superior sensitivity to the ALK1 antibody which is currently used. We compared the performance of D5F3 in detecting ALK protein expression in IMTs from various anatomic sites compared to the currently utilized ALK1. We selected 25 IMTs from our surgical pathology files (2005-2015). The novel rabbit monoclonal anti-human CD246 (clone D5F3) and the currently used mouse monoclonal anti-human CD246 (clone ALK1) were used for immunohistochemical staining (IHC) in an automated slide stainer. The percentage of immunoreactive tumor cells (0, <5 %, 5-50 %, >50 %) and cytoplasmic staining intensity (graded 0-3) were assessed and compared between the two antibodies. Fluorescence in situ hybridization (FISH) studies for ALK gene rearrangement were performed on 11 tumors. D5F3 antibody stained 76 % and ALK1 antibody stained 72 % of IMTs (p = 0.747). Compared to staining with ALK1, D5F3 stained a higher proportion of cases extensively (>50 % cells) (76 vs. 28 %, p < 0.001) and with high intensity (grade 3 76 % vs 0; p < 0.001). FISH and IHC findings (for both antibodies) were concordant in 9/10 (90 %) IMTs, in which results were informative. The novel anti-ALK rabbit monoclonal antibody (D5F3 clone) demonstrates superior overall performance in term of intensity and extent of staining of ALK protein in IMT. We found IHC staining with both antibody clones to correlate equally well with FISH results for detection of ALK rearrangement.

  14. Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells.

    PubMed

    Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo

    2015-11-24

    The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC.

  15. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer

    PubMed Central

    Kelly, Lindsey M.; Barila, Guillermo; Liu, Pengyuan; Evdokimova, Viktoria N.; Trivedi, Sumita; Panebianco, Federica; Gandhi, Manoj; Carty, Sally E.; Hodak, Steven P.; Luo, Jianhua; Dacic, Sanja; Yu, Yan P.; Nikiforova, Marina N.; Ferris, Robert L.; Altschuler, Daniel L.; Nikiforov, Yuri E.

    2014-01-01

    Thyroid cancer is a common endocrine malignancy that encompasses well-differentiated as well as dedifferentiated cancer types. The latter tumors have high mortality and lack effective therapies. Using a paired-end RNA-sequencing approach, we report the discovery of rearrangements involving the anaplastic lymphoma kinase (ALK) gene in thyroid cancer. The most common of these involves a fusion between ALK and the striatin (STRN) gene, which is the result of a complex rearrangement involving the short arm of chromosome 2. STRN-ALK leads to constitutive activation of ALK kinase via dimerization mediated by the coiled-coil domain of STRN and to a kinase-dependent, thyroid-stimulating hormone–independent proliferation of thyroid cells. Moreover, expression of STRN-ALK transforms cells in vitro and induces tumor formation in nude mice. The kinase activity of STRN-ALK and the ALK-induced cell growth can be blocked by the ALK inhibitors crizotinib and TAE684. In addition to well-differentiated papillary cancer, STRN-ALK was found with a higher prevalence in poorly differentiated and anaplastic thyroid cancers, and it did not overlap with other known driver mutations in these tumors. Our data demonstrate that STRN-ALK fusion occurs in a subset of patients with highly aggressive types of thyroid cancer and provide initial evidence suggesting that it may represent a therapeutic target for these patients. PMID:24613930

  16. The analysis of ALK gene rearrangement by fluorescence in situ hybridization in non-small cell lung cancer patients

    PubMed Central

    Krawczyk, Paweł Adam; Ramlau, Rodryg Adam; Szumiło, Justyna; Kozielski, Jerzy; Kalinka-Warzocha, Ewa; Bryl, Maciej; Knopik-Dąbrowicz, Alina; Spychalski, Łukasz; Szczęsna, Aleksandra; Rydzik, Ewelina; Milanowski, Janusz

    2013-01-01

    Introduction ALK gene rearrangement is observed in a small subset (3–7%) of non-small cell lung cancer (NSCLC) patients. The efficacy of crizotinib was shown in lung cancer patients harbouring ALK rearrangement. Nowadays, the analysis of ALK gene rearrangement is added to molecular examination of predictive factors. Aim of the study The frequency of ALK gene rearrangement as well as the type of its irregularity was analysed by fluorescence in situ hybridisation (FISH) in tissue samples from NSCLC patients. Material and methods The ALK gene rearrangement was analysed in 71 samples including 53 histological and 18 cytological samples. The analysis could be performed in 56 cases (78.87%), significantly more frequently in histological than in cytological materials. The encountered problem with ALK rearrangement diagnosis resulted from the scarcity of tumour cells in cytological samples, high background fluorescence noises and fragmentation of cell nuclei. Results The normal ALK copy number without gene rearrangement was observed in 26 (36.62%) patients ALK gene polysomy without gene rearrangement was observed in 25 (35.21%) samples while in 3 (4.23%) samples ALK gene amplification was found. ALK gene rearrangement was observed in 2 (2.82%) samples from males, while in the first case the rearrangement coexisted with ALK amplification. In the second case, signet-ring tumour cells were found during histopathological examination and this patient was successfully treated with crizotinib with partial remission lasting 16 months. Conclusions FISH is a useful technique for ALK gene rearrangement analysis which allows us to specify the type of gene irregularities. ALK gene examination could be performed in histological as well as cytological (cellblocks) samples, but obtaining a reliable result in cytological samples depends on the cellularity of examined materials. PMID:24592134

  17. Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation L1198F.

    PubMed

    Shaw, Alice T; Friboulet, Luc; Leshchiner, Ignaty; Gainor, Justin F; Bergqvist, Simon; Brooun, Alexei; Burke, Benjamin J; Deng, Ya-Li; Liu, Wei; Dardaei, Leila; Frias, Rosa L; Schultz, Kate R; Logan, Jennifer; James, Leonard P; Smeal, Tod; Timofeevski, Sergei; Katayama, Ryohei; Iafrate, A John; Le, Long; McTigue, Michele; Getz, Gad; Johnson, Ted W; Engelman, Jeffrey A

    2016-01-07

    In a patient who had metastatic anaplastic lymphoma kinase (ALK)-rearranged lung cancer, resistance to crizotinib developed because of a mutation in the ALK kinase domain. This mutation is predicted to result in a substitution of cysteine by tyrosine at amino acid residue 1156 (C1156Y). Her tumor did not respond to a second-generation ALK inhibitor, but it did respond to lorlatinib (PF-06463922), a third-generation inhibitor. When her tumor relapsed, sequencing of the resistant tumor revealed an ALK L1198F mutation in addition to the C1156Y mutation. The L1198F substitution confers resistance to lorlatinib through steric interference with drug binding. However, L1198F paradoxically enhances binding to crizotinib, negating the effect of C1156Y and resensitizing resistant cancers to crizotinib. The patient received crizotinib again, and her cancer-related symptoms and liver failure resolved. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT01970865.).

  18. The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut

    SciTech Connect

    Varshney, Gaurav K.; Palmer, Ruth H. . E-mail: Ruth.Palmer@ucmp.umu.se

    2006-12-29

    During embryonic development the midgut visceral muscle is formed by fusion of cells within the visceral mesoderm, a process initiated by the specification of a specialised cell type, the founder cell, within this tissue. Activation of the receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) in the developing visceral muscle of Drosophila melanogaster initiates a signal transduction pathway required for muscle fusion. In this paper, we have investigated downstream components which are regulated by this novel signalling pathway. Here we show that Alk-mediated signal transduction drives the expression of the bHLH transcription factor Hand in vivo. Loss of Alk function results in a complete lack of Hand expression in this tissue, whereas Alk gain of function results in an expansion of Hand expression. Finally, we have investigated the process of muscle fusion in the gut of Hand mutant animals and can find no obvious defects in this process, suggesting that Hand is not critical for visceral muscle fusion per se.

  19. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes.

    PubMed

    Pérez-de-Mora, Alfredo; Engel, Marion; Schloter, Michael

    2011-11-01

    Unraveling functional genes related to biodegradation of organic compounds has profoundly improved our understanding of biological remediation processes, yet the ecology of such genes is only poorly understood. We used a culture-independent approach to assess the abundance and diversity of bacteria catalyzing the degradation of n-alkanes with a chain length between C(5) and C(16) at a forest site co-contaminated with mineral oil hydrocarbons and metals for nearly 60 years. The alkB gene coding for a rubredoxin-dependent alkane monooxygenase enzyme involved in the initial activation step of aerobic aliphatic hydrocarbon metabolism was used as biomarker. Within the area of study, four different zones were evaluated: one highly contaminated, two intermediately contaminated, and a noncontaminated zone. Contaminant concentrations, hydrocarbon profiles, and soil microbial respiration and biomass were studied. Abundance of n-alkane-degrading bacteria was quantified via real-time PCR of alkB, whereas genetic diversity was examined using molecular fingerprints (T-RFLP) and clone libraries. Along the contamination plume, hydrocarbon profiles and increased respiration rates suggested on-going natural attenuation at the site. Gene copy numbers of alkB were similar in contaminated and control areas. However, T-RFLP-based fingerprints suggested lower diversity and evenness of the n-alkane-degrading bacterial community in the highly contaminated zone compared to the other areas; both diversity and evenness were negatively correlated with metal and hydrocarbon concentrations. Phylogenetic analysis of alkB denoted a shift of the hydrocarbon-degrading bacterial community from Gram-positive bacteria in the control zone (most similar to Mycobacterium and Nocardia types) to Gram-negative genotypes in the contaminated zones (Acinetobacter and alkB sequences with little similarity to those of known bacteria). Our results underscore a qualitative rather than a quantitative response of

  20. Effects of Pharmacologic and Genetic Inhibition of Alk on Cognitive Impairments in NF1 Mutant Mice

    DTIC Science & Technology

    2014-06-01

    neuroblastoma 12-15. Orally active small molecule inhibitors have shown notable effectiveness in the treatment of lung cancer and are actively being...tested for the treatment of neuroblastoma 16-18. The normal function of Alk in humans is less clear though its expression in both the developing and...Y. P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930-935 (2008). 13 Janoueix-Lerosey, I. et

  1. ALK1 heterozygosity increases extracellular matrix protein expression, proliferation and migration in fibroblasts.

    PubMed

    Muñoz-Félix, José M; Perretta-Tejedor, Nuria; Eleno, Nélida; López-Novoa, José M; Martínez-Salgado, Carlos

    2014-06-01

    Fibrosis is a pathological situation in which excessive amounts of extracellular matrix (ECM) are deposited in the tissue. Myofibroblasts play a crucial role in the development and progress of fibrosis as they actively synthesize ECM components such as collagen I, fibronectin and connective tissue growth factor (CTGF) and cause organ fibrosis. Transforming growth factor beta 1 (TGF-β1) plays a major role in tissue fibrosis. Activin receptor-like kinase 1 (ALK1) is a type I receptor of TGF-β1 with an important role in angiogenesis whose function in cellular biology and TGF-β signaling is well known in endothelial cells, but its role in fibroblast biology and its contribution to fibrosis is poorly studied. We have recently demonstrated that ALK1 regulates ECM protein expression in a mouse model of obstructive nephropathy. Our aim was to evaluate the role of ALK1 in several processes involved in fibrosis such as ECM protein expression, proliferation and migration in ALK1(+/+) and ALK1(+/-) mouse embryonic fibroblasts (MEFs) after TGF-β1 stimulations and inhibitors. ALK1 heterozygous MEFs show increased expression of ECM proteins (collagen I, fibronectin and CTGF/CCN2), cell proliferation and migration due to an alteration of TGF-β/Smad signaling. ALK1 heterozygous disruption shows an increase of Smad2 and Smad3 phosphorylation that explains the increases in CTGF/CCN2, fibronectin and collagen I, proliferation and cell motility observed in these cells. Therefore, we suggest that ALK1 plays an important role in the regulation of ECM protein expression, proliferation and migration.

  2. Use of minimal disseminated disease and immunity to NPM-ALK antigen to stratify ALK-positive ALCL patients with different prognosis.

    PubMed

    Mussolin, L; Damm-Welk, C; Pillon, M; Zimmermann, M; Franceschetto, G; Pulford, K; Reiter, A; Rosolen, A; Woessmann, W

    2013-02-01

    We studied the prognostic value of minimal disseminated disease (MDD) and anti-ALK immune response in children with NPM-ALK-positive anaplastic-large cell lymphoma (ALCL) and evaluated their potential for risk stratification. NPM-ALK transcripts were analyzed by RT-PCR in bone marrow/peripheral blood of 128 ALCL patients at diagnosis, whereas ALK antibody titers in plasma were assessed using an immunocytochemical approach. MDD was positive in 59% of patients and 96% showed an anti-ALK response. Using MDD and antibody titer results, patients could be divided into three biological risk groups (bRG) with different prognosis: high risk (bHR): MDD-positive and antibody titer ≤ 1/750, 26/128 (20%); low risk (bLR): MDD negative and antibody titer >1/750, 40/128 (31%); intermediate risk (bIR): all remaining patients, 62/128 (48%). Progression-free survival was 28% (s.e., 9%), 68% (s.e., 6%) and 93% (s.e., 4%) for bHR, bIR and bLR, respectively (P<0.0001). Survival was 71% (s.e., 9%), 83% (s.e., 5%) and 98% (s.e., 2%) for bHR, bIR and bLR (P=0.02). Only bHR and histology other than common type were predictive of higher risk of failure (hazard ratio 4.9 and 2.7, respectively) in multivariate analysis. Stratification of ALCL patients based on MDD and anti-ALK titer should be considered in future ALCL trials to optimize treatment.

  3. Arteriovenous malformations in hereditary haemorrhagic telangiectasia: looking beyond ALK1-NOTCH interactions.

    PubMed

    Peacock, Hanna M; Caolo, Vincenza; Jones, Elizabeth A V

    2016-02-01

    Hereditary haemorrhagic telangiectasia (HHT) is characterized by the development of arteriovenous malformations--enlarged shunts allowing arterial flow to bypass capillaries and enter directly into veins. HHT is caused by mutations in ALK1 or Endoglin; however, the majority of arteriovenous malformations are idiopathic and arise spontaneously. Idiopathic arteriovenous malformations differ from those due to loss of ALK1 in terms of both location and disease progression. Furthermore, while arteriovenous malformations in HHT and Alk1 knockout models have decreased NOTCH signalling, some idiopathic arteriovenous malformations have increased NOTCH signalling. The pathogenesis of these lesions also differs, with loss of ALK1 causing expansion of the shunt through proliferation, and NOTCH gain of function inducing initial shunt enlargement by cellular hypertrophy. Hence, we propose that idiopathic arteriovenous malformations are distinct from those of HHT. In this review, we explore the role of ALK1-NOTCH interactions in the development of arteriovenous malformations and examine a possible role of two signalling pathways downstream of ALK1, TMEM100 and IDs, in the development of arteriovenous malformations in HHT. A nuanced understanding of the precise molecular mechanisms underlying idiopathic and HHT-associated arteriovenous malformations will allow for development of targeted treatments for these lesions.

  4. ALK gene rearranged lung adenocarcinomas: molecular genetics and morphology in cohort of patients from North India.

    PubMed

    Bal, Amanjit; Singh, Navneet; Agarwal, Parimal; Das, Ashim; Behera, Digambar

    2016-10-01

    ALK gene rearrangement in the lung adenocarcinomas is the second most common (1.6-11.7% of NSCLC) targetable genomic change after EGFR mutations. However, the prevalence and clinicopathological features of ALK-rearranged lung adenocarcinomas from North India are lacking. A total of 240 cases of lung adenocarcinoma were screened for EGFR mutations and for ALK expression. Smoking status, TNM stage, and treatment response were recorded in all cases. Out of 240 cases screened, 37 cases were positive for EGFR mutations and 17 cases (7.08%) showed ALK positivity with immunohistochemistry and break-apart FISH. On excluding 37 EGFR mutation-positive cases, the incidence of ALK-positive adenocarcinoma appears to be higher (17/203 cases, 8.03%). Eight were men and nine were women with mean age of 51.7 years. Majority (62.5%) were non-smokers and had unresectable disease (70.6% stage IV, 17.6% IIIB). The morphological patterns noted were solid (12 cases), papillary (four cases), and micropapillary (one case). Signet ring (two cases) and clear cell change (one cases) were noted. Out of five patients who received crizotinib, three had partial response and two had stable disease. ALK-rearranged lung adenocarcinomas account for a minor proportion of NSCLC with prevalence similar to that reported in literature. However, as contrast to published data in our series, patients were in older age group and had solid and papillary pattern on morphology with an aggressive course.

  5. Distribution of alkB genes within n-alkane-degrading bacteria.

    PubMed

    Vomberg, A; Klinner, U

    2000-08-01

    Fifty-four bacterial strains belonging to 37 species were tested for their ability to assimilate short chain and/or medium chain liquid n-alkanes. A gene probe derived from the alkB gene of Pseudomonas oleovorans ATCC 29347 was utilized in hybridization experiments. Results of Southern hybridization of PCR-amplificates were compared with those of colony hybridization and dot blot hybridization. Strongest signals were received only from Gram-negative bacteria growing solely with short n-alkanes (C10). Hybridization results with soil isolates growing with n-alkanes of different chain lengths suggested as well that alkB genes seem to be widespread only in solely short-chain n-alkane-degrading pseudomonads. PCR products of Rhodococcus sp., Nocardioides sp., Gordona sp. and Sphingomonas sp. growing additionally or solely with medium-chain n-alkane as hexadecane had only few sequence identity with alkB though hybridizing with the gene probe. The derived amino acid sequence of the alkB-amplificate of Pseudomonas aureofaciens showed high homology (95%) with AlkB from Ps. oleovorans. alkB gene disruptants were not able to grow with decane.

  6. Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1

    PubMed Central

    Menotti, Matteo; Poggio, Teresa; Panizza, Elena; Wang, Qi; Minero, Valerio G.; Fagoonee, Sharmila; Compagno, Mara; Altruda, Fiorella; Monti, Stefano; Chiarle, Roberto

    2016-01-01

    A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy. PMID:27119231

  7. Design, synthesis and pharmacological evaluation of 2-(thiazol-2-amino)-4-arylaminopyrimidines as potent anaplastic lymphoma kinase (ALK) inhibitors.

    PubMed

    Liu, Zhiqing; Yue, Xihua; Song, Zilan; Peng, Xia; Guo, Junfeng; Ji, Yinchun; Cheng, Zhen; Ding, Jian; Ai, Jing; Geng, Meiyu; Zhang, Ao

    2014-10-30

    A series of new 2,4-diarylaminopyrimidine analogues (DAAPalogues) was developed by incorporation of a substituted 2-aminothiazole component as the C-2 substituent of the center pyrimidine core. Compound 5i showed highest potency of 12.4 nM against ALK and 24.1 nM against ALK gatekeeper mutation L1196M. Although only having moderate cellular potency in the SUP-M2 cells harboring NPM-ALK, compound 5i showed good kinase selectivity and dose-dependently inhibited phosphorylation of ALK and its down-stream signaling pathways.

  8. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3

    PubMed Central

    Kasprzycka, Monika; Marzec, Michal; Liu, Xiaobin; Zhang, Qian; Wasik, Mariusz A.

    2006-01-01

    The mechanisms of malignant cell transformation mediated by the oncogenic, chimeric nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) tyrosine kinase remain only partially understood. Here we report that the NPM/ALK-carrying T cell lymphoma (ALK+TCL) cells secrete IL-10 and TGF-β and express FoxP3, indicating their T regulatory (Treg) cell phenotype. The secreted IL-10 suppresses proliferation of normal immune, CD3/CD28-stimulated peripheral blood mononuclear cells and enhances viability of the ALK+TCL cells. The Treg phenotype of the affected cells is strictly dependent on NPM/ALK expression and function as demonstrated by transfection of the kinase into BaF3 cells and inhibition of its enzymatic activity and expression in ALK+TCL cells. NPM/ALK, in turn, induces the phenotype through activation of its key signal transmitter, signal transducer and activator of transcription 3 (STAT3). These findings identify a mechanism of NPM/ALK-mediated oncogenesis based on induction of the Treg phenotype of the transformed CD4+ T cells. These results also provide an additional rationale to therapeutically target the chimeric kinase and/or STAT3 in ALK+TCL. PMID:16766651

  9. The type I BMP receptor Alk3 is required for the induction of hepatic hepcidin gene expression by interleukin-6.

    PubMed

    Mayeur, Claire; Lohmeyer, Lisa K; Leyton, Patricio; Kao, Sonya M; Pappas, Alexandra E; Kolodziej, Starsha A; Spagnolli, Ester; Yu, Binglan; Galdos, Rita L; Yu, Paul B; Peterson, Randall T; Bloch, Donald B; Bloch, Kenneth D; Steinbicker, Andrea U

    2014-04-03

    Increased IL-6 production induces, via STAT3 phosphorylation, hepatic transcription of the gene encoding the iron-regulatory hormone, hepcidin, leading to development of anemia of chronic disease (ACD). Inhibition of bone morphogenetic protein (BMP) signaling prevents the induction of hepcidin gene expression by IL-6 and ameliorates ACD. Using mice with hepatocyte-specific deficiency of Alk2 or Alk3, we sought to identify the BMP type I receptor that participates in IL-6-mediated induction of hepcidin gene expression. Mice were injected with adenovirus specifying IL-6 (Ad.IL-6) or control adenovirus. Seventy-two hours later, serum iron concentrations and hepatic levels of STAT3 phosphorylation and hepcidin messenger RNA were measured. Additional mice were injected with recombinant murine IL-6 (mIL-6) or vehicle, and hepatic hepcidin gene expression was measured 4 hours later. Deficiency of Alk2 or Alk3 did not alter the ability of Ad.IL-6 injection to induce hepatic STAT3 phosphorylation. Ad.IL-6 increased hepatic hepcidin messenger RNA levels and decreased serum iron concentrations in Alk2- but not Alk3-deficient mice. Similarly, administration of mIL-6 induced hepatic hepcidin gene expression in Alk2- but not Alk3-deficient mice. These results demonstrate that the ability of IL-6 to induce hepatic hepcidin gene expression and reduce serum iron concentrations is dependent on the BMP type I receptor Alk3.

  10. Evaluation of EML4-ALK Fusion Proteins in Non-Small Cell Lung Cancer Using Small Molecule Inhibitors12

    PubMed Central

    Li, Yongjun; Ye, Xiaofen; Liu, Jinfeng; Zha, Jiping; Pei, Lin

    2011-01-01

    The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene resulting from an inversion within chromosome 2p occurs in approximately 5% of non-small cell lung cancer and is mutually exclusive with Ras and EGFR mutations. In this study, we have used a potent and selective ALK small molecule inhibitor, NPV-TAE684, to assess the oncogenic role of EML4-ALK in non-small cell lung cancer (NSCLC). We show here that TAE684 inhibits proliferation and induces cell cycle arrest, apoptosis, and tumor regression in two NSCLC models that harbor EML4-ALK fusions. TAE684 inhibits EML4-ALK activation and its downstream signaling including ERK, AKT, and STAT3. We used microarray analysis to carry out targeted pathway studies of gene expression changes in H2228 NSCLC xenograft model after TAE684 treatment and identified a gene signature of EML4-ALK inhibition. The gene signature represents 1210 known human genes, and the top biologic processes represented by these genes are cell cycle, DNA synthesis, cell proliferation, and cell death. We also compared the effect of TAE684 with PF2341066, a c-Met and ALK small molecule inhibitor currently in clinical trial in cancers harboring ALK fusions, and demonstrated that TAE684 is a much more potent inhibitor of EML4-ALK. Our data demonstrate that EML4-ALK plays an important role in the pathogenesis of a subset of NSCLC and provides insight into the mechanism of EML4-ALK inhibition by a small molecule inhibitor. PMID:21245935

  11. Internalization and Down-Regulation of the ALK Receptor in Neuroblastoma Cell Lines upon Monoclonal Antibodies Treatment

    PubMed Central

    Mazot, Pierre; Cazes, Alex; Dingli, Florent; Degoutin, Joffrey; Irinopoulou, Théano; Boutterin, Marie-Claude; Lombard, Bérangère; Loew, Damarys; Hallberg, Bengt; Palmer, Ruth Helen; Delattre, Olivier

    2012-01-01

    Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALKWT), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALKWT and ALKF1174L receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor. As a consequence, in SH-SY5Y cells, plasma membrane appears strongly enriched for ALKWT whereas both ALKWT and ALKF1174L were present in intracellular compartments. We further explored ALK receptor trafficking by investigating the effect of agonist and antagonist mAb (monoclonal antibodies) on ALK internalization and down-regulation, either in SH-SY5Y cells or in cells expressing only ALKWT. We observe that treatment with agonist mAbs resulted in ALK internalization and lysosomal targeting for receptor degradation. In contrast, antagonist mAb induced ALK internalization and recycling to the plasma membrane. Importantly, we correlate this differential trafficking of ALK in response to mAb with the recruitment of the ubiquitin ligase Cbl and ALK ubiquitylation only after agonist stimulation. This study provides novel insights into the mechanisms regulating ALK trafficking and degradation, showing that various ALK receptor pools are regulated by proteasome or lysosome pathways according to their intracellular localization. PMID:22479414

  12. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK

    PubMed Central

    Katayama, Ryohei; Khan, Tahsin M.; Benes, Cyril; Lifshits, Eugene; Ebi, Hiromichi; Rivera, Victor M.; Shakespeare, William C.; Iafrate, A. John; Engelman, Jeffrey A.; Shaw, Alice T.

    2011-01-01

    The echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion oncogene represents a molecular target in a small subset of non-small cell lung cancers (NSCLCs). This fusion leads to constitutive ALK activation with potent transforming activity. In a pivotal phase 1 clinical trial, the ALK tyrosine kinase inhibitor (TKI) crizotinib (PF-02341066) demonstrated impressive antitumor activity in the majority of patients with NSCLC harboring ALK fusions. However, despite these remarkable initial responses, cancers eventually develop resistance to crizotinib, usually within 1 y, thereby limiting the potential clinical benefit. To determine how cancers acquire resistance to ALK inhibitors, we established a model of acquired resistance to crizotinib by exposing a highly sensitive EML4-ALK–positive NSCLC cell line to increasing doses of crizotinib until resistance emerged. We found that cells resistant to intermediate doses of crizotinib developed amplification of the EML4-ALK gene. Cells resistant to higher doses (1 μM) also developed a gatekeeper mutation, L1196M, within the kinase domain, rendering EML4-ALK insensitive to crizotinib. This gatekeeper mutation was readily detected using a unique and highly sensitive allele-specific PCR assay. Although crizotinib was ineffectual against EML4-ALK harboring the gatekeeper mutation, we observed that two structurally different ALK inhibitors, NVP-TAE684 and AP26113, were highly active against the resistant cancer cells in vitro and in vivo. Furthermore, these resistant cells remained highly sensitive to the Hsp90 inhibitor 17-AAG. Thus, we have developed a model of acquired resistance to ALK inhibitors and have shown that second-generation ALK TKIs or Hsp90 inhibitors are effective in treating crizotinib-resistant tumors harboring secondary gatekeeper mutations. PMID:21502504

  13. Specificity and Structure of a High Affinity Activin Receptor-like Kinase 1 (ALK1) Signaling Complex

    PubMed Central

    Townson, Sharon A.; Martinez-Hackert, Erik; Greppi, Chloe; Lowden, Patricia; Sako, Dianne; Liu, June; Ucran, Jeffrey A.; Liharska, Katia; Underwood, Kathryn W.; Seehra, Jasbir; Kumar, Ravindra; Grinberg, Asya V.

    2012-01-01

    Activin receptor-like kinase 1 (ALK1), an endothelial cell-specific type I receptor of the TGF-β superfamily, is an important regulator of normal blood vessel development as well as pathological tumor angiogenesis. As such, ALK1 is an important therapeutic target. Thus, several ALK1-directed agents are currently in clinical trials as anti-angiogenic cancer therapeutics. Given the biological and clinical importance of the ALK1 signaling pathway, we sought to elucidate the biophysical and structural basis underlying ALK1 signaling. The TGF-β family ligands BMP9 and BMP10 as well as the three type II TGF-β family receptors ActRIIA, ActRIIB, and BMPRII have been implicated in ALK1 signaling. Here, we provide a kinetic and thermodynamic analysis of BMP9 and BMP10 interactions with ALK1 and type II receptors. Our data show that BMP9 displays a significant discrimination in type II receptor binding, whereas BMP10 does not. We also report the crystal structure of a fully assembled ternary complex of BMP9 with the extracellular domains of ALK1 and ActRIIB. The structure reveals that the high specificity of ALK1 for BMP9/10 is determined by a novel orientation of ALK1 with respect to BMP9, which leads to a unique set of receptor-ligand interactions. In addition, the structure explains how BMP9 discriminates between low and high affinity type II receptors. Taken together, our findings provide structural and mechanistic insights into ALK1 signaling that could serve as a basis for novel anti-angiogenic therapies. PMID:22718755

  14. BMP9/ALK1 inhibits neovascularization in mouse models of age-related macular degeneration

    PubMed Central

    Ntumba, Kalonji; Akla, Naoufal; Oh, S. Paul; Eichmann, Anne; Larrivée, Bruno

    2016-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in aging populations of industrialized countries. The drawbacks of inhibitors of vascular endothelial growth factor (VEGFs) currently used for the treatment of AMD, which include resistance and potential serious side-effects, require the identification of new therapeutic targets to modulate angiogenesis. BMP9 signaling through the endothelial Alk1 serine-threonine kinase receptor modulates the response of endothelial cells to VEGF and promotes vessel quiescence and maturation during development. Here, we show that BMP9/Alk1 signaling inhibits neovessel formation in mouse models of pathological ocular angiogenesis relevant to AMD. Activating Alk1 signaling in laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR) inhibited neovascularization and reduced the volume of vascular lesions. Alk1 signaling was also found to interfere with VEGF signaling in endothelial cells whereas BMP9 potentiated the inhibitory effects of VEGFR2 signaling blockade, both in OIR and laser-induced CNV. Together, our data show that targeting BMP9/Alk1 efficiently prevents the growth of neovessels in AMD models and introduce a new approach to improve conventional anti-VEGF therapies. PMID:27517154

  15. Concurrent EGFR Mutation and ALK Translocation in Non-Small Cell Lung Cancer

    PubMed Central

    Thomas, Sachdev; Bank, Bruce; Fishkin, Paul; Mooney, Colin; Salgia, Ravi

    2016-01-01

    Epidermal growth factor receptor (EGFR) mutations and anaplastic large-cell lymphoma kinase (ALK) rearrangements are now routine biomarkers that have been incorporated into the practice of managing non-small cell lung cancer (NSCLC). Historically, the two molecular alterations have been viewed as mutually exclusive, but recent identified cases suggest otherwise. In this report, we describe cases of lung cancer with concurrent EGFR mutation and ALK rearrangement and identify their clinical characteristics. Non-small cell lung cancer patients with multiple molecular alterations were retrospectively analyzed from an academic referral center from 2011–2013. An additional review was conducted of reported cases with dual alterations. Four cases of NSCLC with alterations in both EGFR and ALK were identified and evaluated with 16 published cases for a total of 20 cases. The age of patients ranged from 37 to 77 years. Nine patients were never smokers. The disease control rates in patients treated with EGFR inhibitors and ALK inhibitors were 46% (6/13) and 71% (5/7), respectively. This series highlights the importance of comprehensive molecular profiling of newly diagnosed lung cancer, as NSCLC may be driven by concurrent molecular alterations. EGFR- and ALK-targeted therapies appear to have modest activity in patients with tumors possessing both alterations. Dual-altered NSCLC patients may have distinct clinical characteristics warranting further study. Combination targeted therapy or novel multi-targeted tyrosine kinase inhibitors may prove important in these patients, though necessary studies remain ongoing. PMID:27026837

  16. Spectrum of EGFR gene mutations and ALK rearrangements in lung cancer patients in Turkey.

    PubMed

    Sag, Sebnem Ozemri; Gorukmez, Ozlem; Ture, Mehmet; Gorukmez, Orhan; Deligonul, Adem; Sahinturk, Serdar; Topak, Ali; Gulten, Tuna; Kurt, Ender; Yakut, Tahsin

    2016-01-01

    The EGFR gene and ALK rearrangements are two genetic drivers of non-small cell lung cancer (NSCLC). The frequency of EGFR mutations and ALK rearrangement varies according to not only ethnicity but also gender, smoking status and the histological type of NSCLC. In the present study, we demonstrated the distribution of EGFR mutations in 132 NSCLC patients by using a pyrosequencing technique and the distribution of ALK rearrangements in 51 NSCLC patients by using fluorescent in situ hybridization technique in Turkey. Additionally, we compared the clinicopathological data of NSCLC patients with the mutation status of EGFR in their cancerous tissues. Both EGFR mutations and ALK rearrangements were identified in 19 (14.39 %) and 1 (1.96 %) patients, respectively. We found EGFR mutations in codon 861, 719 and 858 with the ratios of 10.52 % (2/19), 10.52 % (2/19) and 31.58 % (6/19), respectively, and deletion of exon 19 in 47.37 % (9/19) of the patients. We found the frequency of EGFR mutations to be significantly higher in female patients and nonsmokers (p = 0.043, p = 0.027, respectively). Consequently, we found EGFR mutations to be more frequent in female patients and nonsmokers. Future studies on larger patient groups would provide more accurate data to exhibit the relationship between EGFR mutations and ALK rearrangements and the clinicopathological status.

  17. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    SciTech Connect

    Sun, Hui-Yong; Ji, Feng-Qin

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. Black-Right-Pointing-Pointer C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. Black-Right-Pointing-Pointer The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism of steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.

  18. Variant translocation partners of the anaplastic lymphoma kinase (ALK) gene in two cases of anaplastic large cell lymphoma, identified by inverse cDNA polymerase chain reaction.

    PubMed

    Takeoka, Kayo; Okumura, Atsuko; Honjo, Gen; Ohno, Hitoshi

    2014-01-01

    In anaplastic large cell lymphoma (ALCL), the anaplastic lymphoma kinase (ALK) gene is rearranged with diverse partners due to variant translocations/inversions. Case 1 was a 39-year-old man who developed multiple tumors in the mediastinum, psoas muscle, lung, and lymph nodes. A biopsy specimen of the inguinal node was effaced by large tumor cells expressing CD30, epithelial membrane antigen, and cytoplasmic ALK, which led to a diagnosis of ALK(+) ALCL. Case 2 was a 51-year-old man who was initially diagnosed with undifferentiated carcinoma. He developed multiple skin tumors eight years after his initial presentation, and was finally diagnosed with ALK(+) ALCL. He died of therapy-related acute myeloid leukemia. G-banding and fluorescence in situ hybridization using an ALK break-apart probe revealed the rearrangement of ALK and suggested variant translocation in both cases. We applied an inverse cDNA polymerase chain reaction (PCR) strategy to identify the partner of ALK. Nucleotide sequencing of the PCR products and a database search revealed that the sequences of ATIC in case 1 and TRAF1 in case 2 appeared to follow those of ALK. We subsequently confirmed ATIC-ALK and TRAF1-ALK fusions by reverse transcriptase PCR and nucleotide sequencing. We successfully determined the partner gene of ALK in two cases of ALK(+) ALCL. ATIC is the second most common partner of variant ALK rearrangements, while the TRAF1-ALK fusion gene was first reported in 2013, and this is the second reported case of ALK(+) ALCL carrying TRAF1-ALK.

  19. Upregulation of PD-L1 by EML4-ALK fusion protein mediates the immune escape in ALK positive NSCLC: Implication for optional anti-PD-1/PD-L1 immune therapy for ALK-TKIs sensitive and resistant NSCLC patients.

    PubMed

    Hong, Shaodong; Chen, Nan; Fang, Wenfeng; Zhan, Jianhua; Liu, Qing; Kang, Shiyang; He, Xiaobo; Liu, Lin; Zhou, Ting; Huang, Jiaxing; Chen, Ying; Qin, Tao; Zhang, Yaxiong; Ma, Yuxiang; Yang, Yunpeng; Zhao, Yuanyuan; Huang, Yan; Zhang, Li

    2016-03-01

    Driver mutations were reported to upregulate programmed death-ligand 1 (PD-L1) expression. However, how PD-L1 expression and immune function was affected by ALK-TKIs and anti-PD-1/PD-L1 treatment in ALK positive non-small-cell lung cancer (NSCLC) remains poorly understood. In the present study, western-blot, real-time PCR, flow cytometry and immunofluorescence were employed to explore how PD-L1 was regulated by ALK fusion protein. ALK-TKIs and relevant inhibitors were used to identify the downstream signaling pathways involved in PD-L1 regulation. Cell apoptosis, viability and Elisa test were used to study the immune suppression by ALK activation and immune reactivation by ALK-TKIs and/or PD-1 blocking in tumor cells and DC-CIK cells co-culture system. We found that PD-L1 expression was associated with EGFR mutations and ALK fusion genes in NSCLC cell lines. Over-expression of ALK fusion protein increased PD-L1 expression. PD-L1 mediated by ALK fusion protein increased the apoptosis of T cells in tumor cells and DC-CIK cells co-culture system. Inhibiting ALK by sensitive TKIs could enhance the production of IFNγ. Anti-PD-1 antibody was effective in both crizotinib sensitive and resistant NSCLC cells. Synergistic tumor killing effects were not observed with ALK-TKIs and anti-PD-1 antibody combination in co-culture system. ALK-TKIs not only directly inhibited tumor viability but also indirectly enhanced the antitumor immunity via the downregulation of PD-L1. Anti-PD-1/PD-L1 antibodies could be an optional therapy for crizotinib sensitive, especially crizotinib resistant NSCLC patients with ALK fusion gene. Combination of ALK-TKIs and anti-PD-1/PD-L1 antibodies treatment for ALK positive NSCLC warrants more data before moving into clinical practice.

  20. Identification of different ALK mutations in a pair of neuroblastoma cell lines established at diagnosis and relapse

    PubMed Central

    Chen, Lindi; Humphreys, Angharad; Turnbull, Lisa; Bellini, Angela; Schleiermacher, Gudrun; Salwen, Helen; Cohn, Susan L.; Bown, Nick; Tweddle, Deborah A.

    2016-01-01

    Anaplastic Lymphoma Kinase (ALK) is a transmembrane receptor kinase that belongs to the insulin receptor superfamily and has previously been shown to play a role in cell proliferation, migration and invasion in neuroblastoma. Activating ALK mutations are reported in both hereditary and sporadic neuroblastoma tumours, and several ALK inhibitors are currently under clinical evaluation as novel treatments for neuroblastoma. Overall, mutations at codons F1174, R1275 and F1245 together account for ∼85% of reported ALK mutations in neuroblastoma. NBLW and NBLW-R are paired cell lines originally derived from an infant with metastatic MYCN amplified Stage IVS (Evans Criteria) neuroblastoma, at diagnosis and relapse, respectively. Using both Sanger and targeted deep sequencing, this study describes the identification of distinct ALK mutations in these paired cell lines, including the rare R1275L mutation, which has not previously been reported in a neuroblastoma cell line. Analysis of the sensitivity of NBLW and NBLW-R cells to a panel of ALK inhibitors (TAE-684, Crizotinib, Alectinib and Lorlatinib) revealed differences between the paired cell lines, and overall NBLW-R cells with the F1174L mutation were more resistant to ALK inhibitor induced apoptosis compared with NBLW cells. This pair of cell lines represents a valuable pre-clinical model of clonal evolution of ALK mutations associated with neuroblastoma progression. PMID:27888620

  1. Targeting autophagy enhances the anti-tumoral action of crizotinib in ALK-positive anaplastic large cell lymphoma

    PubMed Central

    Desquesnes, Aurore; Le Gonidec, Sophie; AlSaati, Talal; Beau, Isabelle; Lamant, Laurence; Meggetto, Fabienne; Espinos, Estelle; Codogno, Patrice; Brousset, Pierre; Giuriato, Sylvie

    2015-01-01

    Anaplastic Lymphoma Kinase-positive Anaplastic Large Cell Lymphomas (ALK+ ALCL) occur predominantly in children and young adults. Their treatment, based on aggressive chemotherapy, is not optimal since ALCL patients can still expect a 30% 2-year relapse rate. Tumor relapses are very aggressive and their underlying mechanisms are unknown. Crizotinib is the most advanced ALK tyrosine kinase inhibitor and is already used in clinics to treat ALK-associated cancers. However, crizotinib escape mechanisms have emerged, thus preventing its use in frontline ALCL therapy. The process of autophagy has been proposed as the next target for elimination of the resistance to tyrosine kinase inhibitors. In this study, we investigated whether autophagy is activated in ALCL cells submitted to ALK inactivation (using crizotinib or ALK-targeting siRNA). Classical autophagy read-outs such as autophagosome visualization/quantification by electron microscopy and LC3-B marker turn-over assays were used to demonstrate autophagy induction and flux activation upon ALK inactivation. This was demonstrated to have a cytoprotective role on cell viability and clonogenic assays following combined ALK and autophagy inhibition. Altogether, our results suggest that co-treatment with crizotinib and chloroquine (two drugs already used in clinics) could be beneficial for ALK-positive ALCL patients. PMID:26338968

  2. Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors

    PubMed Central

    Daldrup-Link, Heike E.; Mohanty, Suchismita; Ansari, Celina; Ito, Ken; Hong, Su Hyun; Hoffmann, Matthias; Pisani, Laura; Boudreau, Nancy; Gambhir, Sanjiv Sam; Coussens, Lisa M.

    2016-01-01

    Limited transendothelial permeability across tumor microvessels represents a significant bottleneck in the development of tumor-specific diagnostic agents and theranostic drugs. Here, we show an approach to increase transendothelial permeability of macromolecular and nanoparticle-based contrast agents via inhibition of the type I TGF-β receptor, activin-like kinase 5 (Alk5), in tumors. Alk5 inhibition significantly increased tumor contrast agent delivery and enhancement on imaging studies, while healthy organs remained relatively unaffected. Imaging data correlated with significantly decreased tumor interstitial fluid pressure, while tumor vascular density remained unchanged. This immediately clinically translatable concept involving Alk5 inhibitor pretreatment prior to an imaging study could be leveraged for improved tumor delivery of macromolecular and nanoparticle-based imaging probes and, thereby, facilitate development of more sensitive imaging tests for cancer diagnosis, enhanced tumor characterization, and personalized, image-guided therapies. PMID:27182558

  3. Activin A Stimulates Aromatase via the ALK4-Smad Pathway in Endometriosis

    PubMed Central

    Zheng, Juan; Qu, Juan; Lu, Pinhong; Mao, Yundong; Qi, Xiaochen; Ji, Hui; Liu, Jiayin

    2016-01-01

    Endometriosis is an estrogen-dependent disease. We previously found that the expression of Activin A was upregulated in the peritoneal fluid of patients with endometriosis. The results of the present study indicated that Activin A induced estradiol secretion and P450arom expression in endometrial stromal cells (ESCs) derived from endometriosis patients. The mechanism of estrogenic synthesis was regulated by the Activin-Smad pathway in endometrial lesions. The data showed that the effect of Activin A on ESCs was partially abrogated by pretreatment with an inhibitor of ALK4 (the type I receptor, ActRIB) and Smad4-siRNA. Cumulatively, these data suggest that Activin A promotes the secretion of estradiol from ESCs by increasing the expression of P450arom via the ALK4-Smad pathway. These findings indicate the ALK4-Smad pathway may promote ectopic lesion survival and development. PMID:27833918

  4. Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water.

    PubMed

    Viggor, Signe; Jõesaar, Merike; Vedler, Eve; Kiiker, Riinu; Pärnpuu, Liis; Heinaru, Ain

    2015-12-30

    Formation of specific oil degrading bacterial communities in diesel fuel, crude oil, heptane and hexadecane supplemented microcosms of the Baltic Sea surface water samples was revealed. The 475 sequences from constructed alkane hydroxylase alkB gene clone libraries were grouped into 30 OPFs. The two largest groups were most similar to Pedobacter sp. (245 from 475) and Limnobacter sp. (112 from 475) alkB gene sequences. From 56 alkane-degrading bacterial strains 41 belonged to the Pseudomonas spp. and 8 to the Rhodococcus spp. having redundant alkB genes. Together 68 alkB gene sequences were identified. These genes grouped into 20 OPFs, half of them being specific only to the isolated strains. Altogether 543 diverse alkB genes were characterized in the brackish Baltic Sea water; some of them representing novel lineages having very low sequence identities with corresponding genes of the reference strains.

  5. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond.

    PubMed

    Fedeles, Bogdan I; Singh, Vipender; Delaney, James C; Li, Deyu; Essigmann, John M

    2015-08-21

    The AlkB family of Fe(II)- and α-ketoglutarate-dependent dioxygenases is a class of ubiquitous direct reversal DNA repair enzymes that remove alkyl adducts from nucleobases by oxidative dealkylation. The prototypical and homonymous family member is an Escherichia coli "adaptive response" protein that protects the bacterial genome against alkylation damage. AlkB has a wide variety of substrates, including monoalkyl and exocyclic bridged adducts. Nine mammalian AlkB homologs exist (ALKBH1-8, FTO), but only a subset functions as DNA/RNA repair enzymes. This minireview presents an overview of the AlkB proteins including recent data on homologs, structural features, substrate specificities, and experimental strategies for studying DNA repair by AlkB family proteins.

  6. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond*

    PubMed Central

    Fedeles, Bogdan I.; Singh, Vipender; Delaney, James C.; Li, Deyu; Essigmann, John M.

    2015-01-01

    The AlkB family of Fe(II)- and α-ketoglutarate-dependent dioxygenases is a class of ubiquitous direct reversal DNA repair enzymes that remove alkyl adducts from nucleobases by oxidative dealkylation. The prototypical and homonymous family member is an Escherichia coli “adaptive response” protein that protects the bacterial genome against alkylation damage. AlkB has a wide variety of substrates, including monoalkyl and exocyclic bridged adducts. Nine mammalian AlkB homologs exist (ALKBH1–8, FTO), but only a subset functions as DNA/RNA repair enzymes. This minireview presents an overview of the AlkB proteins including recent data on homologs, structural features, substrate specificities, and experimental strategies for studying DNA repair by AlkB family proteins. PMID:26152727

  7. In silico studies on the interaction between bioactive ligands and ALK5, a biological target related to the cancer treatment.

    PubMed

    Almeida, Michell O; Trossini, Gustavo H G; Maltarollo, Vinícius G; Silva, Danielle da C; Honorio, Kathia M

    2016-09-01

    Studies have showed that there are many biological targets related to the cancer treatment, for example, TGF type I receptor (TGF-βRI or ALK5). The ALK5 inhibition is a strategy to treat some types of cancer, such as breast, lung, and pancreas. Here, we performed CoMFA and CoMSIA studies for 70 ligands with ALK5 inhibition. The internal validation for both models (q(2)LOO = 0.887 and 0.822, respectively) showed their robustness, while the external validations showed their predictive power (CoMFA: r(2)test = 0.998; CoMSIA: r(2)test = 0.975). After all validations, CoMFA and CoMSIA maps indicated physicochemical evidences on the main factors involved in the interaction between bioactive ligands and ALK5. Therefore, these results suggest molecular modifications to design new ALK5 inhibitors.

  8. ALKBH3, a human AlkB homologue, contributes to cell survival in human non-small-cell lung cancer

    PubMed Central

    Tasaki, M; Shimada, K; Kimura, H; Tsujikawa, K; Konishi, N

    2011-01-01

    Background: We have demonstrated for the first time that a novel human AlkB homologue, ALKBH3, contributes to prostate cancer development, but its clinical and biological roles in lung cancer remain unclear. Methods: Expression of both mRNA and protein of PCA-1 was examined by RT–PCR and western blotting. We also assessed association with senescence and in vivo ALKBH3 treatment on orthotopic tumour cell inoculation, and analysed it clinicopathologically. Results: We have since found novel biological roles for ALKBH3 in human lung cancers, particularly in adenocarcinoma. Our immunohistochemical analysis of human adenocarcinomas and squamous cell carcinomas of the lung not only showed overexpression of ALKBH3 in these tumours but the percentage of cells positive for ALKBH3 also correlated statistically to recurrence-free survival in adenocarcinoma. Knockdown of ALKBH3 by siRNA transfection induced expression of p21WAF1/Cip1 and p27Kip1 in the human lung adenocarcinoma cell line A549, resulting in cell cycle arrest, senescence and strong suppression of cell growth in vitro. In vivo, peritoneal tumour growth and dissemination was inhibited in nude mice, previously inoculated with the A549 cell line, by intraperitoneal injection of ALKBH3 siRNA + atelocollagen, as demonstrated by the reduction in both number and diameter of tumours developing in the peritoneum. Conclusion: We suggest that ALKBH3 contributes significantly to cancer cell survival and may be a therapeutic target for human adenocarcinoma of the lung. PMID:21285982

  9. The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells.

    PubMed

    Koyama-Nasu, R; Haruta, R; Nasu-Nishimura, Y; Taniue, K; Katou, Y; Shirahige, K; Todo, T; Ino, Y; Mukasa, A; Saito, N; Matsui, M; Takahashi, R; Hoshino-Okubo, A; Sugano, H; Manabe, E; Funato, K; Akiyama, T

    2014-04-24

    Increasing evidence suggests that brain tumors arise from the transformation of neural stem/precursor/progenitor cells. Much current research on human brain tumors is focused on the stem-like properties of glioblastoma. Here we show that anaplastic lymphoma kinase (ALK) and its ligand pleiotrophin are required for the self-renewal and tumorigenicity of glioblastoma stem cells (GSCs). Furthermore, we demonstrate that pleiotrophin is transactivated directly by SOX2, a transcription factor essential for the maintenance of both neural stem cells and GSCs. We speculate that the pleiotrophin-ALK axis may be a promising target for the therapy of glioblastoma.

  10. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins

    PubMed Central

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø.; Rizzo, Carmelo J.; Guengerich, F. Peter; Tudek, Barbara

    2015-01-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno (ε)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ε-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ε-adducts, 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC) and 1,N2-ethenoguanine (1,N2-εG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ε-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed εA and εC from ds and ssDNA but were inactive toward 1,N2-εG. SC-1A repaired only εA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ε-adducts in dsDNA, while only εA and εC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only εC in ssDNA Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N2-εG and that ALKBH3 removes only εC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. PMID:25797601

  11. ALK Positive Anaplastic Large Cell Lymphoma Presenting as Extensive Bone Involvement

    PubMed Central

    Gajendra, Smeeta; Lipi, Lipika; Goel, Shalini; Misra, Ruchira

    2015-01-01

    Anaplastic lymphoma kinase (ALK) positive Anaplastic large cell lymphoma (ALCL) represents approximately 2% of all Non-Hodgkin’s lymphomas that commonly involves nodal as well as a wide variety of extra nodal sites, as skin, soft tissue, bones and lungs, although primary or secondary involvement of bone is rare. Herein, we report a case of 14-year-old female child presented as extensive bony involvement with a clinical diagnosis of bone tumour/ small round cell tumour, which was proved to be ALK positive ALCL on histopathological examination. PMID:25738071

  12. Augmentor α and β (FAM150) are ligands of the receptor tyrosine kinases ALK and LTK: Hierarchy and specificity of ligand–receptor interactions

    PubMed Central

    Reshetnyak, Andrey V.; Murray, Phillip B.; Shi, Xiarong; Mo, Elizabeth S.; Mohanty, Jyotidarsini; Tome, Francisco; Bai, Hanwen; Gunel, Murat; Lax, Irit; Schlessinger, Joseph

    2015-01-01

    Receptor tyrosine kinases (RTKs) are a class of cell surface receptors that, upon ligand binding, stimulate a variety of critical cellular functions. The orphan receptor anaplastic lymphoma kinase (ALK) is one of very few RTKs that remain without a firmly established protein ligand. Here we present a novel cytokine, FAM150B, which we propose naming augmentor-α (AUG-α), as a ligand for ALK. AUG-α binds ALK with high affinity and activates ALK in cells with subnanomolar potency. Detailed binding experiments using cells expressing ALK or the related receptor leukocyte tyrosine kinase (LTK) demonstrate that AUG-α binds and robustly activates both ALK and LTK. We show that the previously established LTK ligand FAM150A (AUG-β) is specific for LTK and only weakly binds to ALK. Furthermore, expression of AUG-α stimulates transformation of NIH/3T3 cells expressing ALK, induces IL-3 independent growth of Ba/F3 cells expressing ALK, and is expressed in neuroblastoma, a cancer partly driven by ALK. These experiments reveal the hierarchy and specificity of two cytokines as ligands for ALK and LTK and set the stage for elucidating their roles in development and disease states. PMID:26630010

  13. EML4-ALK induces epithelial–mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells

    SciTech Connect

    Guo, Fuchun; Liu, Xiaoke Qing, Qin Sang, Yaxiong Feng, Chengjun Li, Xiaoyu Jiang, Li Su, Pei Wang, Yongsheng

    2015-04-10

    The echinoderm microtubule-associated protein-like 4(EML4) – anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells. Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation. - Highlights: • EML4-ALK induced epithelial–mesenchymal transition in H1299 cells. • Expression of EML4-ALK promotes invasion and migration in vitro. • EML4-ALK enhanced sphere formation and stem cell-like properties in H1299 cells. • Blockage of ERK1/2 reverse Epithelial–Mesenchymal transition induced by EML4-ALK.

  14. ClogP(alk): a method for predicting alkane/water partition coefficient.

    PubMed

    Kenny, Peter W; Montanari, Carlos A; Prokopczyk, Igor M

    2013-05-01

    Alkane/water partition coefficients (P(alk)) are less familiar to the molecular design community than their 1-octanol/water equivalents and access to both data and prediction tools is much more limited. A method for predicting alkane/water partition coefficient from molecular structure is introduced. The basis for the ClogP(alk) model is the strong (R² = 0.987) relationship between alkane/water partition coefficient and molecular surface area (MSA) that was observed for saturated hydrocarbons. The model treats a molecule as a perturbation of a saturated hydrocarbon molecule with the same MSA and uses increments defined for functional groups to quantify the extent to which logP(alk) is perturbed by the introduction each functional group. Interactions between functional groups, such as intramolecular hydrogen bonds are also parameterized within a perturbation framework. The functional groups and interactions between them are specified substructurally in a transparent and reproducible manner using SMARTS notation. The ClogP(alk) model was parameterized using data measured for structurally prototypical compounds that dominate the literature on alkane/water partition coefficients and then validated using an external test set of 100 alkane/water logP measurements, the majority of which were for drugs.

  15. Stimulation of the midkine/ALK axis renders glioma cells resistant to cannabinoid antitumoral action

    PubMed Central

    Lorente, M; Torres, S; Salazar, M; Carracedo, A; Hernández-Tiedra, S; Rodríguez-Fornés, F; García-Taboada, E; Meléndez, B; Mollejo, M; Campos-Martín, Y; Lakatosh, S A; Barcia, J; Guzmán, M; Velasco, G

    2011-01-01

    Identifying the molecular mechanisms responsible for the resistance of gliomas to anticancer treatments is an issue of great therapeutic interest. Δ9-Tetrahydrocannabinol (THC), the major active ingredient of marijuana, and other cannabinoids inhibit tumor growth in animal models of cancer, including glioma, an effect that relies, at least in part, on the stimulation of autophagy-mediated apoptosis in tumor cells. Here, by analyzing the gene expression profile of a large series of human glioma cells with different sensitivity to cannabinoid action, we have identified a subset of genes specifically associated to THC resistance. One of these genes, namely that encoding the growth factor midkine (Mdk), is directly involved in the resistance of glioma cells to cannabinoid treatment. We also show that Mdk mediates its protective effect via the anaplastic lymphoma kinase (ALK) receptor and that Mdk signaling through ALK interferes with cannabinoid-induced autophagic cell death. Furthermore, in vivo Mdk silencing or ALK pharmacological inhibition sensitizes cannabinod-resistant tumors to THC antitumoral action. Altogether, our findings identify Mdk as a pivotal factor involved in the resistance of glioma cells to THC pro-autophagic and antitumoral action, and suggest that selective targeting of the Mdk/ALK axis could help to improve the efficacy of antitumoral therapies for gliomas. PMID:21233844

  16. Economic Analysis of Alternative Strategies for Detection of ALK Rearrangements in Non Small Cell Lung Cancer

    PubMed Central

    Doshi, Shivang; Ray, David; Stein, Karen; Zhang, Jie; Koduru, Prasad; Fogt, Franz; Wellman, Axel; Wat, Ricky; Mathews, Charles

    2016-01-01

    Identification of alterations in ALK gene and development of ALK-directed therapies have increased the need for accurate and efficient detection methodologies. To date, research has focused on the concordance between the two most commonly used technologies, fluorescent in situ hybridization (FISH) and immunohistochemistry (IHC). However, inter-test concordance reflects only one, albeit important, aspect of the diagnostic process; laboratories, hospitals, and payors must understand the cost and workflow of ALK rearrangement detection strategies. Through literature review combined with interviews of pathologists and laboratory directors in the U.S. and Europe, a cost-impact model was developed that compared four alternative testing strategies—IHC only, FISH only, IHC pre-screen followed by FISH confirmation, and parallel testing by both IHC and FISH. Interviews were focused on costs of reagents, consumables, equipment, and personnel. The resulting model showed that testing by IHC alone cost less ($90.07 in the U.S., $68.69 in Europe) than either independent or parallel testing by both FISH and IHC ($441.85 in the U.S. and $279.46 in Europe). The strategies differed in cost of execution, turnaround time, reimbursement, and number of positive results detected, suggesting that laboratories must weigh the costs and the clinical benefit of available ALK testing strategies. PMID:26838801

  17. An Unusual Case of Systemic Inflammatory Myofibroblastic Tumor with Successful Treatment with ALK-Inhibitor

    PubMed Central

    Jacob, Sanjivini V.; Reith, John D.; Kojima, Angerika Y.; Williams, William D.; Liu, Chen; Vila Duckworth, Lizette

    2014-01-01

    Systemic inflammatory myofibroblastic tumor is an exceedingly rare entity. A 45-year-old Hispanic female presented with a 6-month history of left-sided thigh pain, low back pain, and generalized weakness. PET/CT scan revealed abnormal activity in the liver, adrenal gland, and pancreas. MRI of the abdomen demonstrated two 6-7 cm masses in the liver. MRI of the lumbar spine demonstrated lesions in the L2 to L4 spinous processes, paraspinal muscles, and subcutaneous tissues, as well as an 8 mm enhancing intradural lesion at T11, all thought to be metastatic disease. A biopsy of the liver showed portal tract expansion by a spindle cell proliferation rich in inflammation. Tumor cells showed immunoreactivity for smooth muscle actin and anaplastic lymphoma kinase 1 (ALK1). Tissue from the L5 vertebra showed a process histologically identical to that seen in the liver. FISH analysis of these lesions demonstrated an ALK (2p23) gene rearrangement. The patient was successfully treated with an ALK-inhibitor, Crizotinib, and is now in complete remission. We present the first reported case, to our knowledge, of inflammatory myofibroblastic tumor with systemic manifestations and ALK translocation. This case is a prime example of how personalized medicine has vastly improved patient care through the use of molecular-targeted therapy. PMID:25045570

  18. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells

    PubMed Central

    Kraehling, Jan R.; Chidlow, John H.; Rajagopal, Chitra; Sugiyama, Michael G.; Fowler, Joseph W.; Lee, Monica Y.; Zhang, Xinbo; Ramírez, Cristina M.; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W.; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L.; Fernández-Hernando, Carlos; Sessa, William C.

    2016-01-01

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. PMID:27869117

  19. ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-β and constitutively active receptor induced gene expression

    PubMed Central

    Lux, Andreas; Salway, Fiona; Dressman, Holly K; Kröner-Lux, Gabriele; Hafner, Mathias; Day, Philip JR; Marchuk, Douglas A; Garland, John

    2006-01-01

    Background TGF-β1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-β signalling is mediated by the TβRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-β utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway. Consequently, a perturbance of ALK1, ALK5 or TβRII activity leads to vascular defects. Mutations in ALK1 cause the vascular disorder hereditary hemorrhagic telangiectasia (HHT). Methods The identification of ALK1 and not ALK5 regulated genes in endothelial cells, might help to better understand the development of HHT. Therefore, the human microvascular endothelial cell line HMEC-1 was infected with a recombinant constitutively active ALK1 adenovirus, and gene expression was studied by using gene arrays and quantitative real-time PCR analysis. Results After 24 hours, 34 genes were identified to be up-regulated by ALK1 signalling. Analysing ALK1 regulated gene expression after 4 hours revealed 13 genes to be up- and 2 to be down-regulated. Several of these genes, including IL-8, ET-1, ID1, HPTPη and TEAD4 are reported to be involved in angiogenesis. Evaluation of ALK1 regulated gene expression in different human endothelial cell types was not in complete agreement. Further on, disparity between constitutively active ALK1 and TGF-β1 induced gene expression in HMEC-1 cells and primary HUVECs was observed. Conclusion Gene array analysis identified 49 genes to be regulated by ALK1 signalling and at least 14 genes are reported to be involved in angiogenesis. There was substantial agreement between the gene array and quantitative real-time PCR data. The angiogenesis related genes might be potential HHT modifier genes. In addition, the results suggest endothelial cell type specific ALK1 and TGF-β signalling. PMID:16594992

  20. Alkane hydroxylase gene (alkB) phylotype composition and diversity in northern Gulf of Mexico bacterioplankton

    PubMed Central

    Smith, Conor B.; Tolar, Bradley B.; Hollibaugh, James T.; King, Gary M.

    2013-01-01

    Natural and anthropogenic activities introduce alkanes into marine systems where they are degraded by alkane hydroxylases expressed by phylogenetically diverse bacteria. Partial sequences for alkB, one of the structural genes of alkane hydroxylase, have been used to assess the composition of alkane-degrading communities, and to determine their responses to hydrocarbon inputs. We present here the first spatially extensive analysis of alkB in bacterioplankton of the northern Gulf of Mexico (nGoM), a region that experiences numerous hydrocarbon inputs. We have analyzed 401 partial alkB gene sequences amplified from genomic extracts collected during March 2010 from 17 water column samples that included surface waters and bathypelagic depths. Previous analyses of 16S rRNA gene sequences for these and related samples have shown that nGoM bacterial community composition and structure stratify strongly with depth, with distinctly different communities above and below 100 m. Although we hypothesized that alkB gene sequences would exhibit a similar pattern, PCA analyses of operational protein units (OPU) indicated that community composition did not vary consistently with depth or other major physical-chemical variables. We observed 22 distinct OPUs, one of which was ubiquitous and accounted for 57% of all sequences. This OPU clustered with AlkB sequences from known hydrocarbon oxidizers (e.g., Alcanivorax and Marinobacter). Some OPUs could not be associated with known alkane degraders, however, and perhaps represent novel hydrocarbon-oxidizing populations or genes. These results indicate that the capacity for alkane hydrolysis occurs widely in the nGoM, but that alkane degrader diversity varies substantially among sites and responds differently than bulk communities to physical-chemical variables. PMID:24376439

  1. Molecular cloning and characterization of cDNAs coding for apo-polysialoglycoprotein of rainbow trout eggs. Multiple mRNA species transcribed from multiple genes contain diverged numbers of exact 39-base (13-amino acid) repeats.

    PubMed

    Sorimachi, H; Emori, Y; Kawasaki, H; Kitajima, K; Inoue, S; Suzuki, K; Inoue, Y

    1988-11-25

    Polysialoglycoprotein (PSGP) of unfertilized eggs of rainbow trout (Salmo gairdneri) consists of tandem repeats (about 25) of a glycotridecapeptide, Asp-Asp-Ala-Thr*-Ser*-Glu-Ala-Ala-Thr*-Gly-Pro-Ser-Gly (* denotes the attachment site of a polysialoglycan chain) (Kitajima, K., Inoue, Y., and Inoue, S. (1986) J. Biol. Chem. 261, 5262-5269). By using oligodeoxynucleotide probes based on the above sequence, we isolated a genomic clone for apoPSGP which contains 39-base pair repeats (5'-GACGACGCCACCTCTGAAGCT-GCGACCGGCCCGTCTGGC-3') encoding the tridecapeptide. Using a fragment of this genomic DNA as a probe, we next screened a cDNA library constructed with mRNA from immature ovaries of rainbow trout. Nucleotide sequencing analyses of cDNA clones thus obtained revealed that apoPSGP is encoded by multiple mRNA species consisting of diverged numbers (6-32) of the 39-base repeat encoding the tridecapeptide unit and homologous 5'- and 3'-bordering regions. The encoded protein consists of three distinct regions: the N-region consisting of a putative signal peptide and a pro-peptide, the R-region containing diverged numbers of the tandem repeat of 13-amino acid residues, and the C-region with six amino acid residues. Southern blot analysis showed that multiple mRNAs are transcribed from multiple genes for apoPSGP containing diverged numbers of the 39-base pair repeat. Thus, the genes for apoPSGP constitute a multigene family. Expression of the mRNAs is stage and organ specific, i.e. they are expressed only in immature ovaries and not in mature ovaries or in any other organ.

  2. In vivo imaging models of bone and brain metastases and pleural carcinomatosis with a novel human EML4-ALK lung cancer cell line.

    PubMed

    Nanjo, Shigeki; Nakagawa, Takayuki; Takeuchi, Shinji; Kita, Kenji; Fukuda, Koji; Nakada, Mitsutoshi; Uehara, Hisanori; Nishihara, Hiroshi; Hara, Eiji; Uramoto, Hidetaka; Tanaka, Fumihiro; Yano, Seiji

    2015-03-01

    EML4-ALK lung cancer accounts for approximately 3-7% of non-small-cell lung cancer cases. To investigate the molecular mechanism underlying tumor progression and targeted drug sensitivity/resistance in EML4-ALK lung cancer, clinically relevant animal models are indispensable. In this study, we found that the lung adenocarcinoma cell line A925L expresses an EML4-ALK gene fusion (variant 5a, E2:A20) and is sensitive to the ALK inhibitors crizotinib and alectinib. We further established highly tumorigenic A925LPE3 cells, which also have the EML4-ALK gene fusion (variant 5a) and are sensitive to ALK inhibitors. By using A925LPE3 cells with luciferase gene transfection, we established in vivo imaging models for pleural carcinomatosis, bone metastasis, and brain metastasis, all of which are significant clinical concerns of advanced EML4-ALK lung cancer. Interestingly, crizotinib caused tumors to shrink in the pleural carcinomatosis model, but not in bone and brain metastasis models, whereas alectinib showed remarkable efficacy in all three models, indicative of the clinical efficacy of these ALK inhibitors. Our in vivo imaging models of multiple organ sites may provide useful resources to analyze further the pathogenesis of EML4-ALK lung cancer and its response and resistance to ALK inhibitors in various organ microenvironments.

  3. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project.

    PubMed

    Savage, Kerry J; Harris, Nancy Lee; Vose, Julie M; Ullrich, Fred; Jaffe, Elaine S; Connors, Joseph M; Rimsza, Lisa; Pileri, Stefano A; Chhanabhai, Mukesh; Gascoyne, Randy D; Armitage, James O; Weisenburger, Dennis D

    2008-06-15

    The International Peripheral T-Cell Lymphoma Project is a collaborative effort designed to gain better understanding of peripheral T-cell and natural killer (NK)/T-cell lymphomas (PTCLs). A total of 22 institutions in North America, Europe, and Asia submitted clinical and pathologic information on PTCLs diagnosed and treated at their respective centers. Of the 1314 eligible patients, 181 had anaplastic large-cell lymphoma (ALCL; 13.8%) on consensus review: One hundred fifty-nine had systemic ALCL (12.1%) and 22 had primary cutaneous ALCL (1.7%). Patients with anaplastic lymphoma kinase-positive (ALK(+)) ALCL had a superior outcome compared with those with ALK(-) ALCL (5-year failure-free survival [FFS], 60% vs 36%; P = .015; 5-year overall survival [OS], 70% vs 49%; P = .016). However, contrary to prior reports, the 5-year FFS (36% vs 20%; P = .012) and OS (49% vs 32%; P = .032) were superior for ALK(-) ALCL compared with PTCL, not otherwise specified (PTCL-NOS). Patients with primary cutaneous ALCL had a very favorable 5-year OS (90%), but with a propensity to relapse (5-year FFS, 55%). In summary, ALK(-) ALCL should continue to be separated from both ALK(+) ALCL and PTCL-NOS. Although the prognosis of ALK(-) ALCL appears to be better than that for PTCL-NOS, it is still unsatisfactory and better therapies are needed. Primary cutaneous ALCL is associated with an indolent course.

  4. Kinetic mechanism for the excision of hypoxanthine by Escherichia coli AlkA and evidence for binding to DNA ends.

    PubMed

    Zhao, Boyang; O'Brien, Patrick J

    2011-05-24

    The Escherichia coli 3-methyladenine DNA glycosylase II protein (AlkA) recognizes a broad range of oxidized and alkylated base lesions and catalyzes the hydrolysis of the N-glycosidic bond to initiate the base excision repair pathway. Although the enzyme was one of the first DNA repair glycosylases to be discovered more than 25 years ago and there are multiple crystal structures, the mechanism is poorly understood. Therefore, we have characterized the kinetic mechanism for the AlkA-catalyzed excision of the deaminated purine, hypoxanthine. The multiple-turnover glycosylase assays are consistent with Michaelis-Menten kinetics. However, under single-turnover conditions that are commonly employed for studying other DNA glycosylases, we observe an unusual biphasic protein saturation curve. Initially, the observed rate constant for excision increases with an increasing level of AlkA protein, but at higher protein concentrations, the rate constant decreases. This behavior can be most easily explained by tight binding to DNA ends and by crowding of multiple AlkA protamers on the DNA. Consistent with this model, crystal structures have shown the preferential binding of AlkA to DNA ends. By varying the position of the lesion, we identified an asymmetric substrate that does not show inhibition at higher concentrations of AlkA, and we performed pre-steady state and steady state kinetic analysis. Unlike the situation in other glycosylases, release of the abasic product is faster than N-glycosidic bond cleavage. Nevertheless, AlkA exhibits significant product inhibition under multiple-turnover conditions, and it binds approximately 10-fold more tightly to an abasic site than to a hypoxanthine lesion site. This tight binding could help protect abasic sites when the adaptive response to DNA alkylation is activated and very high levels of AlkA protein are present.

  5. Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea, Australia.

    PubMed

    Wasmund, Kenneth; Burns, Kathryn A; Kurtböke, D Ipek; Bourne, David G

    2009-12-01

    Hydrocarbon seeps provide inputs of petroleum hydrocarbons to widespread areas of the Timor Sea. Alkanes constitute the largest proportion of chemical components found in crude oils, and therefore genes involved in the biodegradation of these compounds may act as bioindicators for this ecosystem's response to seepage. To assess alkane biodegradation potential, the diversity and distribution of alkane hydroxylase (alkB) genes in sediments of the Timor Sea were studied. Deduced AlkB protein sequences derived from clone libraries identified sequences only distantly related to previously identified AlkB sequences, suggesting that the Timor Sea maybe a rich reservoir for novel alkane hydroxylase enzymes. Most sequences clustered with AlkB sequences previously identified from marine Gammaproteobacteria though protein sequence identities averaged only 73% (with a range of 60% to 94% sequence identities). AlkB sequence diversity was lower in deep water (>400 m) samples off the continental slope than in shallow water (<100 m) samples on the continental shelf but not significantly different in response to levels of alkanes. Real-time PCR assays targeting Timor Sea alkB genes were designed and used to quantify alkB gene targets. No correlation was found between gene copy numbers and levels of hydrocarbons measured in sediments using sensitive gas chromatography-mass spectrometry techniques, probably due to the very low levels of hydrocarbons found in most sediment samples. Interestingly, however, copy numbers of alkB genes increased substantially in sediments exposed directly to active seepage even though only low or undetectable concentrations of hydrocarbons were measured in these sediments in complementary geochemical analyses due to efficient biodegradation.

  6. L1198F Mutation Resensitizes Crizotinib to ALK by Altering the Conformation of Inhibitor and ATP Binding Sites

    PubMed Central

    Li, Jian; Sun, Rong; Wu, Yuehong; Song, Mingzhu; Li, Jia; Yang, Qianye; Chen, Xiaoyi; Bao, Jinku; Zhao, Qi

    2017-01-01

    The efficacy of anaplastic lymphoma kinase (ALK) positive non-small-cell lung cancer (NSCLC) treatment with small molecule inhibitors is greatly challenged by acquired resistance. A recent study reported the newest generation inhibitor resistant mutation L1198F led to the resensitization to crizotinib, which is the first Food and Drug Administration (FDA) approved drug for the treatment of ALK-positive NSCLC. It is of great importance to understand how this extremely rare event occurred for the purpose of overcoming the acquired resistance of such inhibitors. In this study, we exploited molecular dynamics (MD) simulation to dissect the molecular mechanisms. Our MD results revealed that L1198F mutation of ALK resulted in the conformational change at the inhibitor site and altered the binding affinity of ALK to crizotinib and lorlatinib. L1198F mutation also affected the autoactivation of ALK as supported by the identification of His1124 and Tyr1278 as critical amino acids involved in ATP binding and phosphorylation. Our findings are valuable for designing more specific and potent inhibitors for the treatment of ALK-positive NSCLC and other types of cancer. PMID:28245558

  7. Transforming Growth Factor β1 (TGF-β1) Activates Hepcidin mRNA Expression in Hepatocytes.

    PubMed

    Chen, Simeng; Feng, Teng; Vujić Spasić, Maja; Altamura, Sandro; Breitkopf-Heinlein, Katja; Altenöder, Jutta; Weiss, Thomas S; Dooley, Steven; Muckenthaler, Martina U

    2016-06-17

    The hepatic hormone hepcidin is the master regulator of systemic iron homeostasis. Its expression level is adjusted to alterations in iron levels, inflammatory cues, and iron requirements for erythropoiesis. Bone morphogenetic protein 6 (BMP6) contributes to the iron-dependent control of hepcidin. In addition, TGF-β1 may stimulate hepcidin mRNA expression in murine hepatocytes and human leukocytes. However, receptors and downstream signaling proteins involved in TGF-β1-induced hepcidin expression are still unclear. Here we show that TGF-β1 treatment of mouse and human hepatocytes, as well as ectopic expression of TGF-β1 in mice, increases hepcidin mRNA levels. The hepcidin response to TGF-β1 depends on functional TGF-β1 type I receptor (ALK5) and TGF-β1 type II receptor (TβRII) and is mediated by a noncanonical mechanism that involves Smad1/5/8 phosphorylation. Interestingly, increasing availability of canonical Smad2/3 decreases TGF-β1-induced hepcidin regulation, whereas the BMP6-hepcidin signal was enhanced, indicating a signaling component stoichiometry-dependent cross-talk between the two pathways. Although ALK2/3-dependent hepcidin activation by BMP6 can be modulated by each of the three hemochromatosis-associated proteins: HJV (hemojuvelin), HFE (hemochromatosis protein), and TfR2 (transferrin receptor 2), these proteins do not control the ALK5-mediated hepcidin response to TGF-β1. TGF-β1 mRNA levels are increased in mouse models of iron overload, indicating that TGF-β1 may contribute to hepcidin synthesis under these conditions. In conclusion, these data demonstrate that a complex regulatory network involving TGF-β1 and BMP6 may control the sensing of systemic and/or hepatic iron levels.

  8. ALK5 inhibition blocks TGFβ-induced CCN1 expression in human foreskin fibroblasts.

    PubMed

    Thompson, Katherine; Murphy-Marshman, Hannah; Leask, Andrew

    2014-03-01

    The potent profibrotic cytokine TGFβ induces connective tissue growth factor (CCN2/CTGF) is induced in fibroblasts in a fashion sensitive to SB-431542, a specific pharmacological inhibitor of TGFβ type I receptor (ALK5). In several cell types, TGFβ induces CCN1 but suppresses CCN3, which opposes CCN1/CCN2 activities. However, whether SB-431542 alters TGFβ-induced CCN1 or CCN3 in human foreskin fibroblasts in unclear. Here we show that TGFβ induces CCN1 but suppresses CCN3 expression in human foreskin fibroblasts in a SB-431542-sensitive fashion. These results emphasize that CCN1/CCN2 and CCN3 are reciprocally regulated and support the notion that blocking ALK5 or addition of CCN3 may be useful anti-fibrotic approaches.

  9. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer.

    PubMed

    Papadakis, Andreas I; Sun, Chong; Knijnenburg, Theo A; Xue, Yibo; Grernrum, Wipawadee; Hölzel, Michael; Nijkamp, Wouter; Wessels, Lodewyk F A; Beijersbergen, Roderick L; Bernards, Rene; Huang, Sidong

    2015-04-01

    Recurrent inactivating mutations in components of SWI/SNF chromatin-remodeling complexes have been identified across cancer types, supporting their roles as tumor suppressors in modulating oncogenic signaling pathways. We report here that SMARCE1 loss induces EGFR expression and confers resistance to MET and ALK inhibitors in non-small cell lung cancers (NSCLCs). We found that SMARCE1 binds to regulatory regions of the EGFR locus and suppresses EGFR transcription in part through regulating expression of Polycomb Repressive Complex component CBX2. Addition of the EGFR inhibitor gefitinib restores the sensitivity of SMARCE1-knockdown cells to MET and ALK inhibitors in NSCLCs. Our findings link SMARCE1 to EGFR oncogenic signaling and suggest targeted treatment options for SMARCE1-deficient tumors.

  10. Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases.

    PubMed

    Throne-Holst, Mimmi; Markussen, Sidsel; Winnberg, Asgeir; Ellingsen, Trond E; Kotlar, Hans-Kristian; Zotchev, Sergey B

    2006-09-01

    A bacterial strain capable of utilizing n-alkanes with chain lengths ranging from decane (C10H22) to tetracontane (C40H82) as a sole carbon source was isolated using a system for screening microorganisms able to grow on paraffin (mixed long-chain n-alkanes). The isolate, identified according to its 16S rRNA sequence as Acinetobacter venetianus, was designated A. venetianus 6A2. Two DNA fragments encoding parts of AlkB-type alkane hydroxylase homologues, designated alkMa and alkMb, were polymerase chain reaction-amplified from the genome of A. venetianus 6A2. To study the roles of these two alkM paralogues in n-alkane utilization in A. venetianus 6A2, we constructed alkMa, alkMb, and alkMa/alkMb disruption mutants. Studies on the growth patterns of the disruption mutants using n-alkanes with different chain lengths as sole carbon source demonstrated central roles for the alkMa and alkMb genes in utilization of C10 to C18 n-alkanes. Comparative analysis of these patterns also suggested different substrate preferences for AlkMa and AlkMb in n-alkane utilization. Because both single and double mutants were able to grow on n-alkanes with chain lengths of C20 and longer, we concluded that yet another enzyme(s) for the utilization of these n-alkanes must exist in A. venetianus 6A2.

  11. Deficient BIM Expression as a Mechanism of Intrinsic and Acquired Resistance to Targeted Therapies in EGFR-Mutant and ALK-Positive Lung Cancers

    DTIC Science & Technology

    2015-08-01

    EGFR- Mutant and ALK-Positive Lung Cancers PRINCIPAL INVESTIGATOR: Lecia Sequist MD. CONTRACTING ORGANIZATION: Massachusetts General Hospital Boston...and Acquired Resistance to Targeted Therapies in EGFR- Mutant and ALK-Positive Lung Cancers 5b. GRANT NUMBER W81XWH-13-1-0227 5c. PROGRAM ELEMENT...to a specific kinase, inhibition of that kinase often leads to cell growth arrest and apoptosis. For example, EGFR mutant and EML4-ALK lung cancers

  12. Deficient BIM Expression as a Mechanism of Intrinsic and Acquired Resistance to Targeted Therapies in EGFR-Mutant and ALK-Positive Lung Cancers

    DTIC Science & Technology

    2015-08-01

    EGFR- Mutant and ALK-Positive Lung Cancers PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD. CONTRACTING ORGANIZATION: Massachusetts General Hospital...Intrinsic and Acquired Resistance to Targeted Therapies in EGFR- Mutant and ALK-Positive Lung Cancers 5b. GRANT NUMBER W81XWH-13-1-0226 5c. PROGRAM...to a specific kinase, inhibition of that kinase often leads to cell growth arrest and apoptosis. For example, EGFR mutant and EML4-ALK lung cancers

  13. Molecular Testing Guideline for Selection of Lung Cancer Patients for EGFR and ALK Tyrosine Kinase Inhibitors

    PubMed Central

    Lindeman, Neal I.; Cagle, Philip T.; Beasley, Mary Beth; Chitale, Dhananjay Arun; Dacic, Sanja; Giaccone, Giuseppe; Jenkins, Robert Brian; Kwiatkowski, David J.; Saldivar, Juan-Sebastian; Squire, Jeremy; Thunnissen, Erik; Ladanyi, Marc

    2014-01-01

    Objective To establish evidence-based recommendations for the molecular analysis of lung cancers that are that are required to guide EGFR- and ALK-directed therapies, addressing which patients and samples should be tested, and when and how testing should be performed. Participants Three cochairs without conflicts of interest were selected, one from each of the 3 sponsoring professional societies: College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Writing and advisory panels were constituted from additional experts from these societies. Evidence Three unbiased literature searches of electronic databases were performed to capture articles published published from January 2004 through February 2012, yielding 1533 articles whose abstracts were screened to identify 521 pertinent articles that were then reviewed in detail for their relevance to the recommendations. Evidence was formally graded for each recommendation. Consensus Process Initial recommendations were formulated by the cochairs and panel members at a public meeting. Each guideline section was assigned to at least 2 panelists. Drafts were circulated to the writing panel (version 1), advisory panel (version 2), and the public (version 3) before submission (version 4). Conclusions The 37 guideline items address 14 subjects, including 15 recommendations (evidence grade A/B). The major recommendations are to use testing for EGFR mutations and ALK fusions to guide patient selection for therapy with an epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) inhibitor, respectively, in all patients with advanced-stage adenocarcinoma, regardless of sex, race, smoking history, or other clinical risk factors, and to prioritize EGFR and ALK testing over other molecular predictive tests. As scientific discoveries and clinical practice outpace the completion of randomized clinical trials, evidence-based guidelines developed

  14. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy.

    PubMed

    Shahid, Mohd; Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A; Leyton, Patricio A; Cheng, Juan; Tainsh, Robert E T; Mayeur, Claire; Rhee, David K; Wu, Mei X; Scherrer-Crosbie, Marielle; Buys, Emmanuel S; Zapol, Warren M; Bloch, Kenneth D; Bloch, Donald B

    2016-04-15

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis.

  15. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells

    PubMed Central

    Ueda, Yuko; Ooshio, Ikumi; Fusamae, Yasuyuki; Kitae, Kaori; Kawaguchi, Megumi; Jingushi, Kentaro; Hase, Hiroaki; Harada, Kazuo; Hirata, Kazumasa; Tsujikawa, Kazutake

    2017-01-01

    The mammalian AlkB homolog (ALKBH) family of proteins possess a 2-oxoglutarate- and Fe(II)-dependent oxygenase domain. A similar domain in the Escherichia coli AlkB protein catalyzes the oxidative demethylation of 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) in both DNA and RNA. AlkB homolog 3 (ALKBH3) was also shown to demethylate 1-meA and 3-meC (induced in single-stranded DNA and RNA by a methylating agent) to reverse the methylation damage and retain the integrity of the DNA/RNA. We previously reported the high expression of ALKBH3 in clinical tumor specimens and its involvement in tumor progression. In this study, we found that ALKBH3 effectively demethylated 1-meA and 3-meC within endogenously methylated RNA. Moreover, using highly purified recombinant ALKBH3, we identified N6-methyladenine (N6-meA) in mammalian transfer RNA (tRNA) as a novel ALKBH3 substrate. An in vitro translation assay showed that ALKBH3-demethylated tRNA significantly enhanced protein translation efficiency. In addition, ALKBH3 knockdown in human cancer cells impaired cellular proliferation and suppressed the nascent protein synthesis that is usually accompanied by accumulation of the methylated RNAs. Thus, our data highlight a novel role for ALKBH3 in tumor progression via RNA demethylation and subsequent protein synthesis promotion. PMID:28205560

  16. Fatal Haemoptysis Associated with Dramatic Response to Crizotinib in an ALK-Rearranged Lung Adenocarcinoma

    PubMed Central

    Mussat, Elodie; Giraud, Violaine; Julie, Catherine; Chinet, Thierry

    2016-01-01

    The presence of an ALK (Anaplastic Lymphoma Kinase) rearrangement is a rare molecular feature in Non-Small Cell Lung Carcinoma (NSCLC), and concerns mainly non- or light smokers, young patients, with adenocarcinoma histological type. These tumours are particularly sensitive to Alk-targeted therapies, as crizotinib. Crizotinib is usually well-tolerated. We report a case of fatal haemoptysis associated with dramatic response to crizotinib in a patient with an ALK-rearranged lung adenocarcinoma. The patient presented a mediastinal invasion with tracheal involvement and compression of the right pulmonary artery. The initial evolution under crizotinib was good with tumour response. At 6 weeks of crizotinib the patient presented a massive haemoptysis with a tracheobronchial fistula and pneumomediastinum. She died of acute respiratory failure. Our case is the first to report a fatal effect of crizotinib associated with tumour necrosis and good tumour response on a massive mediastinal infiltration. Precautions are recommended with the use of crizotinib in proximal lung tumours with vascular invasion. PMID:27134984

  17. Structural and mechanistic insight into alkane hydroxylation by Pseudomonas putida AlkB.

    PubMed

    Alonso, Hernan; Kleifeld, Oded; Yeheskel, Adva; Ong, Poh C; Liu, Yu C; Stok, Jeanette E; De Voss, James J; Roujeinikova, Anna

    2014-06-01

    Pseudomonas putida GPo1 alkane hydroxylase (AlkB) is an integral membrane protein that catalyses the hydroxylation of medium-chain alkanes (C3-C12). 1-Octyne irreversibly inhibits this non-haem di-iron mono-oxygenase under turnover conditions, suggesting that it acts as a mechanism-based inactivator. Upon binding to the active site, 1-octyne is postulated to be oxidized to an oxirene that rapidly rearranges to a reactive ketene which covalently acylates nearby residues, resulting in enzyme inactivation. In analysis of inactivated AlkB by LC-MS/MS, several residues exhibited a mass increase of 126.1 Da, corresponding to the octanoyl moiety derived from oxidative activation of 1-octyne. Mutagenesis studies of conserved acylated residues showed that Lys18 plays a critical role in enzyme function, as a single-point mutation of Lys18 to alanine (K18A) completely abolished enzymatic activity. Finally, we present a computational 3D model structure of the transmembrane domain of AlkB, which revealed the overall packing arrangement of the transmembrane helices within the lipid bilayer and the location of the active site mapped by the 1-octyne modifications.

  18. Silicone implant and primary breast ALK1-negative anaplastic large cell lymphoma, fact or fiction?

    PubMed Central

    Li, Shiyong; Lee, Andrew K

    2010-01-01

    The safety of silicone-based implant for mammoplasty has been debated for decades. A series of anecdotal case reports and a recent epidemiological case-control study have suggested a possible association between silicone implant and the development of primary breast ALK1-negative anaplastic large cell lymphoma (ALCL), a rare type of peripheral T-cell lymphoma. In this report, we describe an additional case of primary breast ALK1-negative ALCL in the fibrous capsule and cystic fluid of silicone breast implant in a 58 year old woman who underwent breast reconstructive surgery after lumpectomy for her infiltrating breast adenocarcinoma. Morphologically and immunohistochemically, the lymphoma cells may be confused with recurrent infiltrating breast adenocarcinoma or other non-hematolymphoid malignancies. Molecular studies were needed to determine T-lineage differentiation of the malignant lymphoma cells. We will also review the case reports and case series published in the English literature and discuss our current understanding of silicone implant in primary breast ALK1-negative ALCL. PMID:19918336

  19. Uncommon features of surgically resected ALK-positive cavitary lung adenocarcinoma: a case report.

    PubMed

    Takamori, Shinkichi; Yamaguchi, Masafumi; Taguchi, Kenichi; Edagawa, Makoto; Shimamatsu, Shinichiro; Toyozawa, Ryo; Nosaki, Kaname; Hirai, Fumihiko; Seto, Takashi; Takenoyama, Mitsuhiro; Ichinose, Yukito

    2017-12-01

    Some features found on chest computed tomography (CT), such as central tumor location, large pleural effusion, and the absence of a pleural tail, and a patient age of less than 60 years, have been suggested to be useful in predicting anaplastic lymphoma kinase (ALK) rearrangement in patients with non-small cell lung cancer (NSCLC).A 68-year-old female patient with a history of gynecological treatment was found to have a cavitary mass in the right lower lobe on an annual chest roentgenogram. The tumor was located in the peripheral area with a pleural tail showing no pleural effusion. In addition, two pure ground-glass-opacity nodules (p-GGNs) in the right upper lobe of the lung were detected on consecutive chest CT scans. The patient underwent right lower lobectomy, partial resection of the right upper lobe, and hilar mediastinal lymph node dissection for complete resection of each tumor. The pathological diagnosis was invasive mucinous adenocarcinoma with signet-ring cells for the cavitary mass in the right lower lobe and invasive adenocarcinoma for the rest of the p-GGNs; subcarinal lymph node metastasis was also detected. The ALK rearrangement was detected by fluorescence in situ hybridization from the cavitary mass. The patient underwent four cycles of cisplatin and vinorelbine chemotherapy as standard adjuvant chemotherapy for pStage III NSCLC. The ALK fusion gene status of NSCLC with atypical CT features should also be investigated.

  20. Structure of Escherichia coli AlkA in Complex with Undamaged DNA*

    PubMed Central

    Bowman, Brian R.; Lee, Seongmin; Wang, Shuyu; Verdine, Gregory L.

    2010-01-01

    Because DNA damage is so rare, DNA glycosylases interact for the most part with undamaged DNA. Whereas the structural basis for recognition of DNA lesions by glycosylases has been studied extensively, less is known about the nature of the interaction between these proteins and undamaged DNA. Here we report the crystal structures of the DNA glycosylase AlkA in complex with undamaged DNA. The structures revealed a recognition mode in which the DNA is nearly straight, with no amino acid side chains inserted into the duplex, and the target base pair is fully intrahelical. A comparison of the present structures with that of AlkA recognizing an extrahelical lesion revealed conformational changes in both the DNA and protein as the glycosylase transitions from the interrogation of undamaged DNA to catalysis of nucleobase excision. Modeling studies with the cytotoxic lesion 3-methyladenine and accompanying biochemical experiments suggested that AlkA actively interrogates the minor groove of the DNA while probing for the presence of lesions. PMID:20843803

  1. A novel immunohistochemical classifier to distinguish Hodgkin lymphoma from ALK anaplastic large cell lymphoma.

    PubMed

    Döring, Claudia; Hansmann, Martin-Leo; Agostinelli, Claudio; Piccaluga, Pier P; Facchetti, Fabio; Pileri, Stefano; Küppers, Ralf; Newrzela, Sebastian; Hartmann, Sylvia

    2014-10-01

    Classical Hodgkin lymphoma and ALK(-) anaplastic large cell lymphoma share many features like strong CD30 expression and usually loss of B- and T-cell markers. However, their clinical course is dramatically different with curability rates of >90% for classical Hodgkin lymphoma and an unfavorable prognosis for anaplastic large cell lymphoma. Classical Hodgkin lymphoma and ALK(-) anaplastic large cell lymphoma can usually be distinguished by PAX5 expression in the Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma and expression of cytotoxic molecules in tumor cells of anaplastic large cell lymphoma. However, in some cases the differential diagnosis is difficult owing to absence of established markers. To be able to better classify these cases, we reevaluated gene expression data of microdissected tumor cells of both lymphomas for differentially expressed genes. A classifier was established, comprising four genes strongly expressed in Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma (MDC/CCL22, CD83, STAT3, and TUBB2B). Applying this classifier to a test cohort, Hodgkin lymphoma was successfully distinguished from ALK(-) anaplastic large cell lymphoma with an accuracy of 97% (43/44). MDC/CCL22, CD83, and STAT3 have also been found to be expressed in antigen-presenting cells. Therefore, based on our established classifier, Hodgkin and Reed-Sternberg cells differ from tumor cells of anaplastic large cell lymphoma, which can successfully be applied for practical purposes in histopathologic diagnostics.

  2. Structure of Escherichia coli AlkA in Complex with Undamaged DNA

    DOE PAGES

    Bowman, Brian R.; Lee, Seongmin; Wang, Shuyu; ...

    2010-11-22

    Because DNA damage is so rare, DNA glycosylases interact for the most part with undamaged DNA. Whereas the structural basis for recognition of DNA lesions by glycosylases has been studied extensively, less is known about the nature of the interaction between these proteins and undamaged DNA. Here we report the crystal structures of the DNA glycosylase AlkA in complex with undamaged DNA. The structures revealed a recognition mode in which the DNA is nearly straight, with no amino acid side chains inserted into the duplex, and the target base pair is fully intrahelical. A comparison of the present structures withmore » that of AlkA recognizing an extrahelical lesion revealed conformational changes in both the DNA and protein as the glycosylase transitions from the interrogation of undamaged DNA to catalysis of nucleobase excision. Modeling studies with the cytotoxic lesion 3-methyladenine and accompanying biochemical experiments suggested that AlkA actively interrogates the minor groove of the DNA while probing for the presence of lesions.« less

  3. Three Years Sustained Complete Remission Achieved in a Primary Refractory ALK-Positive Anaplastic T Large Cell Lymphoma Treated with Crizotinib

    PubMed Central

    Mahuad, Carolina Valeria; Repáraz, María de los Ángeles Vicente; Zerga, Marta E.; Aizpurua, María Florencia; Casali, Claudia; Garate, Gonzalo

    2016-01-01

    The prognosis of the primary refractory anaplastic lymphoma kinase (ALK+) anaplastic T large cell lymphoma is ominous. The identification of molecular targets with potential to drive oncogenesis remains a cornerstone for the designing of new selective cancer therapies. Crizotinib is a selective ATP-competitive inhibitor for ALK, approved for its use in lung cancer with rearrangements on ALK gene. The reported cases describe the use of crizotinib as a bridging strategy prior to allotransplantation; there are no reported prolonged survivals under monotherapy with Crizotinib. We report a case of a primary refractory ALK+ anaplastic large-cell lymphoma that sustains complete response after 3 years of crizotinib monotherapy. PMID:27441079

  4. Concurrent progress of reprogramming and gene correction to overcome therapeutic limitation of mutant ALK2-iPSC

    PubMed Central

    Kim, Bu-Yeo; Jeong, SangKyun; Lee, Seo-Young; Lee, So Min; Gweon, Eun Jeong; Ahn, Hyunjun; Kim, Janghwan; Chung, Sun-Ku

    2016-01-01

    Fibrodysplasia ossificans progressiva (FOP) syndrome is caused by mutation of the gene ACVR1, encoding a constitutive active bone morphogenetic protein type I receptor (also called ALK2) to induce heterotopic ossification in the patient. To genetically correct it, we attempted to generate the mutant ALK2-iPSCs (mALK2-iPSCs) from FOP-human dermal fibroblasts. However, the mALK2 leads to inhibitory pluripotency maintenance, or impaired clonogenic potential after single-cell dissociation as an inevitable step, which applies gene-correction tools to induced pluripotent stem cells (iPSCs). Thus, current iPSC-based gene therapy approach reveals a limitation that is not readily applicable to iPSCs with ALK2 mutation. Here we developed a simplified one-step procedure by simultaneously introducing reprogramming and gene-editing components into human fibroblasts derived from patient with FOP syndrome, and genetically treated it. The mixtures of reprogramming and gene-editing components are composed of reprogramming episomal vectors, CRISPR/Cas9-expressing vectors and single-stranded oligodeoxynucleotide harboring normal base to correct ALK2 c.617G>A. The one-step-mediated ALK2 gene-corrected iPSCs restored global gene expression pattern, as well as mineralization to the extent of normal iPSCs. This procedure not only helps save time, labor and costs but also opens up a new paradigm that is beyond the current application of gene-editing methodologies, which is hampered by inhibitory pluripotency-maintenance requirements, or vulnerability of single-cell-dissociated iPSCs. PMID:27256111

  5. Reduced mural cell coverage and impaired vessel integrity after angiogenic stimulation in the Alk1-deficient brain

    PubMed Central

    Chen, Wanqiu; Guo, Yi; Walker, Espen J.; Shen, Fanxia; Jun, Kristine; Oh, S. Paul; Degos, Vincent; Lawton, Michael T.; Tihan, Tarik; Davalos, Dimitrios; Akassoglou, Katerina; Nelson, Jeffrey; Pile-Spellman, John; Su, Hua; Young, William L.

    2013-01-01

    Objective Vessels in brain arteriovenous malformations (bAVM) are prone to rupture. The underlying pathogenesis is not clear. Hereditary hemorrhagic telangiectasia type 2 (HHT2) patients with activin receptor-like kinase 1 (Alk1) mutation have a higher incidence of bAVM than the general population. We tested the hypothesis that vascular endothelial growth factor (VEGF) impairs vascular integrity in the Alk1-deficient brain through reduction of mural cell-coverage. Methods and Results Adult Alk11f/2f mice (loxP sites flanking exons 4-6) and wild-type (WT) mice were injected with 2×107 PFU Ad-Cre and 2×109 genome copies of AAV-VEGF to induce focal homozygous Alk1 deletion (in Alk11f/2f mice) and angiogenesis. Brain vessels were analyzed eight weeks later. Compared to WT mice, the Alk1-deficient brain had more fibrin (99±30×103 pixels/mm2 vs. 40±13×103, P=0.001), iron deposition (508±506 pixels/mm2 vs. 6 ±49, P=0.04), and Iba1+ microglia/macrophage infiltration (888±420 Iba1+ cells/mm2 vs. 240±104 Iba1+, P=0.001) after VEGF stimulation. In the angiogenic foci, the Alk1-deficient brain had more α-SMA- vessels (52±9% vs. 12±7%, P<0.001), fewer vascular associated pericytes (503±179/mm2 vs. 931±115, P<0.001), and reduced PDGFR-β expression (26±9%, P<0.001). Conclusion Reduction of mural cell coverage in response to VEGF stimulation is a potential mechanism for the impairment of vessel wall integrity in HHT2-associated bAVM. PMID:23241407

  6. microRNA classifiers are powerful diagnostic/prognostic tools in ALK-, EGFR-, and KRAS-driven lung cancers.

    PubMed

    Gasparini, Pierluigi; Cascione, Luciano; Landi, Lorenza; Carasi, Stefania; Lovat, Francesca; Tibaldi, Carmelo; Alì, Greta; D'Incecco, Armida; Minuti, Gabriele; Chella, Antonio; Fontanini, Gabriella; Fassan, Matteo; Cappuzzo, Federico; Croce, Carlo M

    2015-12-01

    microRNAs (miRNAs) can act as oncosuppressors or oncogenes, induce chemoresistance or chemosensitivity, and are major posttranscriptional gene regulators. Anaplastic lymphoma kinase (ALK), EGF receptor (EGFR), and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) are major drivers of non-small cell lung cancer (NSCLC). The aim of this study was to assess the miRNA profiles of NSCLCs driven by translocated ALK, mutant EGFR, or mutant KRAS to find driver-specific diagnostic and prognostic miRNA signatures. A total of 85 formalin-fixed, paraffin-embedded samples were considered: 67 primary NSCLCs and 18 matched normal lung tissues. Of the 67 primary NSCLCs, 17 were echinoderm microtubule-associated protein-like 4-ALK translocated (ALK(+)) lung cancers; the remaining 50 were not (ALK(-)). Of the 50 ALK(-) primary NSCLCs, 24 were EGFR and KRAS mutation-negative (i.e., WT; triple negative); 11 were mutant EGFR (EGFR(+)), and 15 were mutant KRAS (KRAS(+)). We developed a diagnostic classifier that shows how miR-1253, miR-504, and miR-26a-5p expression levels can classify NSCLCs as ALK-translocated, mutant EGFR, or mutant KRAS versus mutation-free. We also generated a prognostic classifier based on miR-769-5p and Let-7d-5p expression levels that can predict overall survival. This classifier showed better performance than the commonly used classifiers based on mutational status. Although it has several limitations, this study shows that miRNA signatures and classifiers have great potential as powerful, cost-effective next-generation tools to improve and complement current genetic tests. Further studies of these miRNAs can help define their roles in NSCLC biology and in identifying best-performing chemotherapy regimens.

  7. Diversity of crude oil-degrading bacteria and alkane hydroxylase (alkB) genes from the Qinghai-Tibet Plateau.

    PubMed

    Long, Haozhi; Wang, Yilin; Chang, Sijing; Liu, Guangxiu; Chen, Tuo; Huo, Guanghua; Zhang, Wei; Wu, Xiukun; Tai, Xisheng; Sun, Likun; Zhang, Baogui

    2017-03-01

    The aim of this study was to survey the response of the microbial community to crude oil and the diversity of alkane hydroxylase (alkB) genes in soil samples from the Qinghai-Tibet Plateau (QTP). The enrichment cultures and clone libraries were used. Finally, 53 isolates and 94 alkB sequences were obtained from 10 pristine soil samples after enrichment at 10 °C with crude oil as sole carbon source. The isolates fell into the phyla Proteobacteria, Actinobacteria, and Bacteroidetes, with the dominance of Pseudomonas and Acinetobacter. The composition of degraders was different from polar habitats where Acinetobacter sp. is not a predominant responder of alkane degradative microbial communities. Phylogenetic analysis showed that the alkB genes from isolates and enrichment communities formed eight clusters and mainly related with alkB genes of Pseudomonas, Rhodococcus, and Acinetobacter. The alkB gene diversity in the QTP was lower than marine environments and polar soil samples. In particular, a total of 10 isolates exhibiting vigorous growth with crude oil could detect no crude oil degradation-related gene sequences, such as alkB, P450, almA, ndoB, and xylE genes. The Shannon-Wiener index of the alkB clone libraries from the QTP ranged from 1.00 to 2.24 which is similar with polar pristine soil samples but lower than that of contaminated soils. These results indicated that the Pseudomonas, Acinetobacter, and Rhodococcus genera are the candidate for in situ bioremediation, and the environment of QTP may be still relatively uncontaminated by crude oil.

  8. Polar Codes

    DTIC Science & Technology

    2014-12-01

    density parity check (LDPC) code, a Reed–Solomon code, and three convolutional codes. iii CONTENTS EXECUTIVE SUMMARY...the most common. Many civilian systems use low density parity check (LDPC) FEC codes, and the Navy is planning to use LDPC for some future systems...other forward error correction methods: a turbo code, a low density parity check (LDPC) code, a Reed–Solomon code, and three convolutional codes

  9. Rearranged Anaplastic Lymphoma Kinase (ALK) Gene in Adult-Onset Papillary Thyroid Cancer Amongst Atomic Bomb Survivors

    PubMed Central

    Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro

    2012-01-01

    Background We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAFV600E) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. Methods The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription–polymerase chain reaction and 5′ rapid amplification of cDNA ends (5′ RACE). Results We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK

  10. Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family

    PubMed Central

    Augustine, Rehna; Bisht, Naveen C.

    2015-01-01

    Glucosinolates are amino acids derived secondary metabolites, invariably present in Brassicales, which have huge health and agricultural benefits. Sulphoraphane, the breakdown product of glucosinolate glucoraphanin is known to posses anti-cancer properties. AOP (2-oxoglutarate-dependent dioxygenases) or GSL-ALK enzyme catalyzes the conversion of desirable glucoraphanin to deleterious gluconapin and progoitrin, which are present in very high amounts in most of the cultivable Brassica species including Brassica juncea. In this study we showed that B. juncea encodes four functional homologs of GSL-ALK gene and constitutive silencing of GSL-ALK homologs resulted in accumulation of glucoraphanin up to 43.11 μmoles g−1 DW in the seeds with a concomitant reduction in the anti-nutritional glucosinolates. Glucoraphanin content was found remarkably high in leaves as well as sprouts of the transgenic lines. Transcript quantification of high glucoraphanin lines confirmed significant down-regulation of GSL-ALK homologs. Growth and other seed quality parameters of the transgenic lines did not show drastic difference, compared to the untransformed control. High glucoraphanin lines also showed higher resistance towards stem rot pathogen Sclerotinia sclerotiorum. Our results suggest that metabolic engineering of GSL-ALK has huge potential for enriching glucoraphanin content, and improve the oil quality and vegetable value of Brassica crops. PMID:26657321

  11. Alectinib induced CNS radiation necrosis in an ALK+NSCLC patient with a remote (7 years) history of brain radiation.

    PubMed

    Ou, Sai-Hong Ignatius; Weitz, Michael; Jalas, John R; Kelly, Daniel F; Wong, Vanessa; Azada, Michele C; Quines, Oliver; Klempner, Samuel J

    2016-06-01

    Alectinib is a second generation ALK inhibitor that has significant clinical activity in central nervous system (CNS) metastases in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Pseudoprogression (PsP) due to radiation necrosis during alecitnib treatment of central nervous system (CNS) metastases from ALK-rearranged NSCLC as been reported. Hence, distinguishing radiation-related PsP from alectinib-induced radiographic changes is important to avoid erroneous early trial discontinuation and abandonment of an effective treatment. However, it remains difficult to assess casuality of radiation necrosis is related to recent direct radiation or induced by alectinib treatment or both. It is also unknown how long from previous radiation can alectinib still induce radiation necrosis. Here we reported a crizotinib-refractory ALK-positive NSCLC patient who develop radiation necrosis in one of his metastatic CNS lesions after approximately 12 months of alectinib treatment who otherwise had on-going CNS response on alectinib. His most recent radiation to his CNS metastases was 7 years prior to the start of alectinib. This case illustrates that in the setting of pror CNS radiation, given the significant clinical activity of alectinib in CNS metastases in ALK-positive NSCLC patients the risk of CNS radiation necrosis remains long after previous radiation to the CNS metastases has been completed and can occur after durable response of treatment.

  12. Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family.

    PubMed

    Augustine, Rehna; Bisht, Naveen C

    2015-12-10

    Glucosinolates are amino acids derived secondary metabolites, invariably present in Brassicales, which have huge health and agricultural benefits. Sulphoraphane, the breakdown product of glucosinolate glucoraphanin is known to posses anti-cancer properties. AOP (2-oxoglutarate-dependent dioxygenases) or GSL-ALK enzyme catalyzes the conversion of desirable glucoraphanin to deleterious gluconapin and progoitrin, which are present in very high amounts in most of the cultivable Brassica species including Brassica juncea. In this study we showed that B. juncea encodes four functional homologs of GSL-ALK gene and constitutive silencing of GSL-ALK homologs resulted in accumulation of glucoraphanin up to 43.11 μmoles g(-1) DW in the seeds with a concomitant reduction in the anti-nutritional glucosinolates. Glucoraphanin content was found remarkably high in leaves as well as sprouts of the transgenic lines. Transcript quantification of high glucoraphanin lines confirmed significant down-regulation of GSL-ALK homologs. Growth and other seed quality parameters of the transgenic lines did not show drastic difference, compared to the untransformed control. High glucoraphanin lines also showed higher resistance towards stem rot pathogen Sclerotinia sclerotiorum. Our results suggest that metabolic engineering of GSL-ALK has huge potential for enriching glucoraphanin content, and improve the oil quality and vegetable value of Brassica crops.

  13. A New Protein Architecture for Processing Alkylation Damaged DNA: The Crystal Structure of DNA Glycosylase AlkD

    SciTech Connect

    Rubinson, Emily H.; Metz, Audrey H.; O'Quin, Jami; Eichman, Brandt F.

    2008-12-15

    DNA glycosylases safeguard the genome by locating and excising chemically modified bases from DNA. AlkD is a recently discovered bacterial DNA glycosylase that removes positively charged methylpurines from DNA, and was predicted to adopt a protein fold distinct from from those of other DNA repair proteins. The crystal structure of Bacillus cereus AlkD presented here shows that the protein is composed exclusively of helical HEAT-like repeats, which form a solenoid perfectly shaped to accommodate a DNA duplex on the concave surface. Structural analysis of the variant HEAT repeats in AlkD provides a rationale for how this protein scaffolding motif has been modified to bind DNA. We report 7mG excision and DNA binding activities of AlkD mutants, along with a comparison of alkylpurine DNA glycosylase structures. Together, these data provide important insight into the requirements for alkylation repair within DNA and suggest that AlkD utilizes a novel strategy to manipulate DNA in its search for alkylpurine bases.

  14. Sensitivity Analysis of the NPM-ALK Signalling Network Reveals Important Pathways for Anaplastic Large Cell Lymphoma Combination Therapy

    PubMed Central

    Buetti-Dinh, Antoine; O’Hare, Thomas

    2016-01-01

    A large subset of anaplastic large cell lymphoma (ALCL) patients harbour a somatic aberration in which anaplastic lymphoma kinase (ALK) is fused to nucleophosmin (NPM) resulting in a constitutively active signalling fusion protein, NPM-ALK. We computationally simulated the signalling network which mediates pathological cell survival and proliferation through NPM-ALK to identify therapeutically targetable nodes through which it may be possible to regain control of the tumourigenic process. The simulations reveal the predominant role of the VAV1-CDC42 (cell division control protein 42) pathway in NPM-ALK-driven cellular proliferation and of the Ras / mitogen-activated ERK kinase (MEK) / extracellular signal-regulated kinase (ERK) cascade in controlling cell survival. Our results also highlight the importance of a group of interleukins together with the Janus kinase 3 (JAK3) / signal transducer and activator of transcription 3 (STAT3) signalling in the development of NPM-ALK derived ALCL. Depending on the activity of JAK3 and STAT3, the system may also be sensitive to activation of protein tyrosine phosphatase-1 (SHP1), which has an inhibitory effect on cell survival and proliferation. The identification of signalling pathways active in tumourigenic processes is of fundamental importance for effective therapies. The prediction of alternative pathways that circumvent classical therapeutic targets opens the way to preventive approaches for countering the emergence of cancer resistance. PMID:27669408

  15. GPo1 alkB gene expression for improvement of the degradation of diesel oil by a bacterial consortium

    PubMed Central

    Luo, Qun; He, Ying; Hou, Deng-Yong; Zhang, Jian-Guo; Shen, Xian-Rong

    2015-01-01

    To facilitate the biodegradation of diesel oil, an oil biodegradation bacterial consortium was constructed. The alkane hydroxylase (alkB) gene of Pseudomonas putida GPo1 was constructed in a pCom8 expression vector, and the pCom8-GPo1 alkB plasmid was transformed into Escherichia coli DH5α. The AlkB protein was expressed by diesel oil induction and detected through SDS-polyacrylamide gel electrophoresis. The culture of the recombinant (pCom8-GPo1 alkB/E. coli DH5α) with the oil biodegradation bacterial consortium increased the degradation ratio of diesel oil at 24 h from 31% to 50%, and the facilitation rates were increased as the proportion of pCom8-GPo1 alkB/E. coli DH5α to the consortium increased. The results suggested that the expression of the GPo1 gene in E. coli DH5α could enhance the function of diesel oil degradation by the bacterial consortium. PMID:26413044

  16. Clinical coding. Code breakers.

    PubMed

    Mathieson, Steve

    2005-02-24

    --The advent of payment by results has seen the role of the clinical coder pushed to the fore in England. --Examinations for a clinical coding qualification began in 1999. In 2004, approximately 200 people took the qualification. --Trusts are attracting people to the role by offering training from scratch or through modern apprenticeships.

  17. Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis.

    PubMed

    Bravo, Ana Luisa; Sigala, Juan Carlos; Le Borgne, Sylvie; Morales, Marcia

    2015-04-01

    Pseudomonas citronellolis UAM-Ps1 co-metabolically transforms methyl tert-butyl ether (MTBE) to tert-butyl alcohol with n-pentane (2.6 mM), n-octane (1.5 mM) or dicyclopropylketone (DCPK) (4.4 mM), a gratuitous inducer of alkane hydroxylase (AlkB) activity. The reverse transcription quantitative real-time PCR was used to quantify the alkane monooxygenase (alkB) gene expression. The alkB gene was expressed in the presence of n-alkanes and DCPK and MTBE oxidation occurred only in cultures when alkB was transcribed. A correlation between the number of alkB transcripts and MTBE consumption was found (ΜΤΒΕ consumption in μmol = 1.44e(-13) x DNA copies, R(2) = 0.99) when MTBE (0.84 mM) was added. Furthermore, alkB was cloned and expressed into Escherichia coli and the recombinant AlkB had a molecular weight of 42 kDa. This is the first report where the expression of alkB is related to the co-metabolic oxidation of MTBE.

  18. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    EPA Science Inventory

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  19. Effects of Pharmacologic and Genetic Inhibition of Alk on Cognitive Impairments in NF1 Mutant Mice

    DTIC Science & Technology

    2015-06-01

    Mutant Mice PRINCIPAL INVESTIGATOR: Jacob Raber, PhD CONTRACTING ORGANIZATION: Oregon Health & Science University Portland, OR 97201-3011 REPORT...NF1 Mutant Mice 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0117 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jacob Raber, PhD, PI 5d. PROJECT...in mice. Concordant with studies in flies, we found enhanced retention of spatial memory in Alk mutant mice. Retention of spatial memory is a

  20. A large, single-center, real-world study of clinicopathological characteristics and treatment in advanced ALK-positive non-small-cell lung cancer.

    PubMed

    Chen, Gang; Chen, Xi; Zhang, Yaxiong; Yan, Fang; Fang, Wenfeng; Yang, Yunpeng; Hong, Shaodong; Miao, Siyu; Wu, Manli; Huang, Xiaodan; Luo, Youli; Zhou, Cong; Gong, Run; Huang, Yan; Zhou, Ningning; Zhao, Hongyun; Zhang, Li

    2017-04-04

    Crizotinib has achieved astonishing success in advanced non-small-cell lung cancer (NSCLC) patients harboring anaplastic lymphoma kinase (ALK) rearrangement. However, no real-world studies described the clinicopathological characteristics and treatment of such patients in China. Patients were consecutively collected from Sun Yat-sen University Cancer Center. Chi-square test was applied to explore the relationship between ALK fusion status and metastasis sites. Kaplan-Meier methods and multivariable analyses were used to estimate progression-free survival (PFS). A total of 291 advanced NSCLC patients (ALK (+), N = 97; both ALK & epidermal growth factor receptor (EGFR) (-), N = 194) were enrolled. The occurrence of brain metastasis in ALK-positive patients was significantly higher than double-negative ones both at baseline (26.5% vs. 16.5%, P = 0.038) and during treatment (25.8% vs. 11.9%, P = 0.003), but opposite for pleural effusion (6.2% vs. 26.9%, P < 0.001 at baseline; 3.1% vs. 10.3%, P = 0.031 during treatment). ALK-positive patients of 53.6% used crizotinib, whereas others only received chemotherapy (37.1%) or supportive care (9.3%). Usage of crizotinib prolonged PFS compared with chemotherapy in ALK-positive patients (median PFS 17.6 m vs. 4.8 m, P < 0.001). ALK-positive NSCLC had more brain metastasis and less pleural effusion than double-negative ones. Crizotinib showed better PFS than chemotherapy in advanced ALK-positive NSCLC at any line. However, half advanced ALK-positive patients never received crizotinib, which was grim and need improving.

  1. Effects of TGF-β1 on plasminogen activation in human dental pulp cells: Role of ALK5/Smad2, TAK1 and MEK/ERK signaling.

    PubMed

    Chang, Mei-Chi; Chang, Hsiao-Hua; Lin, Po-Shuan; Huang, Yu-An; Chan, Chiu-Po; Tsai, Yi-Ling; Lee, Shen-Yang; Jeng, Po-Yuan; Kuo, Han-Yueh; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2016-10-09

    Transforming growth factor-β1 (TGF-β1) plays an important role in the pulpal repair and dentinogenesis. Plasminogen activation (PA) system regulates extracellular matrix turnover. In this study, we investigated the effects of TGF-β1 on PA system of dental pulp cells and its signaling pathways. Dental pulp cells were treated with different concentrations of TGF-β1. MTT assay, reverse transcription-polymerase chain reaction (RT-PCR), western blotting and enzyme-linked immunosorbant assay (ELISA) were used to detect the effect of TGF-β1 on cell viability, mRNA and protein expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1) as well as their secretion. The phosphorylation of Smad2 and TAK1 was analyzed by Pathscan ELISA or western blotting. Cells were pretreated with SB431542 (ALK5/Smad2/3 inhibitor), 5z-7-oxozeaenol (TAK1 inhibitor), U0126 (MEK/ERK inhibitor) for examining the related signaling. TGF-β1 slightly inhibited cell growth that was reversed by SB431542. TGF-β1 up-regulated both RNA and protein expression of PAI-1 and uPAR, whereas down-regulated uPA expression. Accordingly, TGF-β1 stimulated PAI-1 and soluble uPAR (suPAR) secretion of pulp cells, whereas uPA secretion was inhibited. TGF-β1 induced the phosphorylation of Smad2 and TAK1. In addition, SB431542, 5z-7-oxozeaenol and U0126 attenuated the TGF-β1-induced secretion of PAI-1 and suPAR. These results indicate that TGF-β1 is possibly involved in the repair/regeneration and inflammatory processes of dental pulp via regulation of PAI-1, uPA nd uPAR. These effects of TGF-β1 are related to activation of ALK5/Smad2, TAK1 and MEK/ERK signaling pathways. Clarifying the signal transduction for the effects of TGF-β1 is helpful for pulpo-dentin regeneration and tissue engineering. This article is protected by copyright. All rights reserved.

  2. Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer

    PubMed Central

    Rogers, Toni-Maree; Arnau, Gisela Mir; Ryland, Georgina L.; Huang, Stephen; Lira, Maruja E.; Emmanuel, Yvette; Perez, Omar D.; Irwin, Darryl; Fellowes, Andrew P.; Wong, Stephen Q.; Fox, Stephen B.

    2017-01-01

    ALK, ROS1 and RET gene fusions are important predictive biomarkers for tyrosine kinase inhibitors in lung cancer. Currently, the gold standard method for gene fusion detection is Fluorescence In Situ Hybridization (FISH) and while highly sensitive and specific, it is also labour intensive, subjective in analysis, and unable to screen a large numbers of gene fusions. Recent developments in high-throughput transcriptome-based methods may provide a suitable alternative to FISH as they are compatible with multiplexing and diagnostic workflows. However, the concordance between these different methods compared with FISH has not been evaluated. In this study we compared the results from three transcriptome-based platforms (Nanostring Elements, Agena LungFusion panel and ThermoFisher NGS fusion panel) to those obtained from ALK, ROS1 and RET FISH on 51 clinical specimens. Overall agreement of results ranged from 86–96% depending on the platform used. While all platforms were highly sensitive, both the Agena panel and Thermo Fisher NGS fusion panel reported minor fusions that were not detectable by FISH. Our proof–of–principle study illustrates that transcriptome-based analyses are sensitive and robust methods for detecting actionable gene fusions in lung cancer and could provide a robust alternative to FISH testing in the diagnostic setting. PMID:28181564

  3. Galangin inhibits hypertrophic scar formation via ALK5/Smad2/3 signaling pathway.

    PubMed

    Zhang, Yifan; Shan, Shengzhou; Wang, Jing; Cheng, Xinyu; Yi, Bo; Zhou, Jia; Li, Qingfeng

    2016-02-01

    Hypertrophic scar (HS) is characterized by excessive fibrosis associated with aberrant function of fibroblasts. Currently, no satisfactory drug has been developed to treat the disease. Here we found that a flavonoid natural product, galangin, could significantly attenuate hypertrophic scar formation in a mechanical load-induced mouse model. Both in vivo and in vitro studies demonstrated that galangin remarkably inhibited collagen production, proliferation, and activation of fibroblasts. Besides, galangin suppressed the contractile ability of hypertrophic scar fibroblasts. Further Western blot analysis revealed that galangin dose-dependently down-regulated Smad2 and Smad3 phosphorylation. Such bioactivity of galangin resulted from its selective targeting to the activin receptor-like kinase 5 (ALK5) was demonstrated by ALK5 knockdown and over-expression experiments. Taken together, this compound could simultaneously inhibit both the accumulation of collagen and abnormal activation/proliferation of fibroblasts, which were the two pivotal factors for hypertrophic scar formation, thus suggesting that galangin serves as a potential agent for treatment of HS or other fibroproliferative disorders.

  4. Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer.

    PubMed

    Rogers, Toni-Maree; Arnau, Gisela Mir; Ryland, Georgina L; Huang, Stephen; Lira, Maruja E; Emmanuel, Yvette; Perez, Omar D; Irwin, Darryl; Fellowes, Andrew P; Wong, Stephen Q; Fox, Stephen B

    2017-02-09

    ALK, ROS1 and RET gene fusions are important predictive biomarkers for tyrosine kinase inhibitors in lung cancer. Currently, the gold standard method for gene fusion detection is Fluorescence In Situ Hybridization (FISH) and while highly sensitive and specific, it is also labour intensive, subjective in analysis, and unable to screen a large numbers of gene fusions. Recent developments in high-throughput transcriptome-based methods may provide a suitable alternative to FISH as they are compatible with multiplexing and diagnostic workflows. However, the concordance between these different methods compared with FISH has not been evaluated. In this study we compared the results from three transcriptome-based platforms (Nanostring Elements, Agena LungFusion panel and ThermoFisher NGS fusion panel) to those obtained from ALK, ROS1 and RET FISH on 51 clinical specimens. Overall agreement of results ranged from 86-96% depending on the platform used. While all platforms were highly sensitive, both the Agena panel and Thermo Fisher NGS fusion panel reported minor fusions that were not detectable by FISH. Our proof-of-principle study illustrates that transcriptome-based analyses are sensitive and robust methods for detecting actionable gene fusions in lung cancer and could provide a robust alternative to FISH testing in the diagnostic setting.

  5. Nuclear Decay Factors Crack Up mRNA.

    PubMed

    Tudek, Agnieszka; Schmid, Manfred; Jensen, Torben Heick

    2017-03-02

    In this issue of Molecular Cell, Bresson et al. (2017) show that the nuclear RNA decay factors Nab3 and Mtr4 reshape the coding transcriptome during glucose starvation in budding yeast, placing nuclear mRNA metabolism as an important contributor of gene expression regulation.

  6. A malignant inflammatory myofibroblastic tumor of the hypopharynx harboring the 3a/b variants of the EML4-ALK fusion gene

    PubMed Central

    Muscarella, Lucia Anna; Rossi, Giulio; Trombetta, Domenico; La Torre, Annamaria; Di Candia, Leonarda; Mengoli, Maria Cecilia; Sparaneo, Angelo; Fazio, Vito Michele; Graziano, Paolo

    2017-01-01

    Inflammatory myofibroblastic tumors (IMT) in the head and neck region are rare neoplasms that generally mimic benign/low-grade neoplasms. Overexpression of anaplastic lymphoma kinase (ALK) has been reported in 50% of IMT cases, secondary to ALK activation by structural rearrangements in the ALK gene, which results in a fusion protein with echinoderm microtubule associated protein like 4 (EML4) in ~20% of cases. The present study describes a case of a 74-year-old woman with a malignant IMT in the right posterior hypopharynx harboring a previously unreported chromosomal rearrangement resulting in EML4 and ALK gene fusion. Strong ALK immunoreactivity was observed in neoplastic cells, while fluorescent in situ hybridization combined with fluorescent fragment analysis and direct sequencing identified the first case of the 3a/b variants of the EML4-ALK fusion gene in IMT. The results of the current study highlight the uncommon occurrence of ALK-positive IMT in the head/neck region and demonstrate the importance of integrating different molecular methodologies to identify unequivocal gene fusion characterization. PMID:28356934

  7. Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development.

    PubMed

    Matsunobu, Tomoya; Torigoe, Kiyoyuki; Ishikawa, Masaki; de Vega, Susana; Kulkarni, Ashok B; Iwamoto, Yukihide; Yamada, Yoshihiko

    2009-08-15

    TGF-beta has been implicated in the proliferation and differentiation of chondrocytes and osteoblasts. However, the in vivo function of TGF-beta in skeletal development is unclear. In this study, we investigated the role of TGF-beta signaling in growth plate development by creating mice with a conditional knockout of the TGF-beta type I receptor ALK5 (ALK5(CKO)) in skeletal progenitor cells using Dermo1-Cre mice. ALK5(CKO) mice had short and wide long bones, reduced bone collars, and trabecular bones. In ALK5(CKO) growth plates, chondrocytes proliferated and differentiated, but ectopic cartilaginous tissues protruded into the perichondrium. In normal growth plates, ALK5 protein was strongly expressed in perichondrial progenitor cells for osteoblasts, and in a thin chondrocyte layer located adjacent to the perichondrium in the peripheral cartilage. ALK5(CKO) growth plates had an abnormally thin perichondrial cell layer and reduced proliferation and differentiation of osteoblasts. These defects in the perichondrium likely caused the short bones and ectopic cartilaginous protrusions. Using tamoxifen-inducible Cre-ER-mediated ALK5-deficient primary calvarial cell cultures, we found that TGF-beta signaling promoted osteoprogenitor proliferation, early differentiation, and commitment to the osteoblastic lineage through the selective MAPKs and Smad2/3 pathways. These results demonstrate the important roles of TGF-beta signaling in perichondrium formation and differentiation, as well as in growth plate integrity during skeletal development.

  8. Critical roles of the TGF-β type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development

    PubMed Central

    Matsunobu, Tomoya; Torigoe, Kiyoyuki; Ishikawa, Masaki; de Vega, Susana; Kulkarni, Ashok B.; Iwamoto, Yukihide; Yamada, Yoshihiko

    2009-01-01

    TGF-β has been implicated in the proliferation and differentiation of chondrocytes and osteoblasts. However, the in vivo function of TGF-β in skeletal development is unclear. In this study, we investigated the role of TGF-β signaling in growth plate development by creating mice with a conditional knockout of the TGF-β type I receptor ALK5 (ALK5CKOCKO) in skeletal progenitor cells using Dermo1-Cre mice. ALK5CKO mice had short and wide long bones, reduced bone collars, and trabecular bones. In ALK5CKO growth plates, chondrocytes proliferated and differentiated, but ectopic cartilaginous tissues protruded into the perichondrium. In normal growth plates, ALK5 protein was strongly expressed in perichondrial progenitor cells for osteoblasts, and in a thin chondrocyte layer located adjacent to the perichondrium in the peripheral cartilage. ALK5CKO growth plates had an abnormally thin perichondrial cell layer and reduced proliferation and differentiation of osteoblasts. These defects in the perichondrium likely caused the short bones and ectopic cartilaginous protrusions. Using tamoxifen-inducible Cre-ER™-mediated ALK5-deficient primary calvarial cell cultures, we found that TGF-β signaling promoted osteoprogenitor proliferation, early differentiation, and commitment to the osteoblastic lineage through the selective MAPKs and Smad2/3 pathways. These results demonstrate the important roles of TGF-β signaling in perichondrium formation and differentiation, as well as in growth plate integrity during skeletal development. PMID:19501582

  9. EML4-ALK induces epithelial-mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells.

    PubMed

    Guo, Fuchun; Liu, Xiaoke; Qing, Qin; Sang, Yaxiong; Feng, Chengjun; Li, Xiaoyu; Jiang, Li; Su, Pei; Wang, Yongsheng

    2015-04-10

    The echinoderm microtubule-associated protein-like 4(EML4)--anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells. Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation.

  10. In situ detection of alkB2 gene involved in Alcanivorax borkumensis SK2(T) hydrocarbon biodegradation.

    PubMed

    Matturro, Bruna; Frascadore, Emanuela; Cappello, Simone; Genovese, Mariella; Rossetti, Simona

    2016-09-15

    This study aimed to develop a new assay based on the whole cell hybridization in order to monitor alkane hydroxylase genes (alkB system) of the marine bacterium Alcanivorax borkumensis SK2(T) commonly reported as the predominant microorganism responsible for the biodegradation of n-alkanes which are the major fraction of petroleum hydrocarbons. The assay based on the whole cell hybridization targeting alkB2 gene was successfully developed and calibrated on a pure culture of Alcanivorax borkumensis SK2(T) with a detection efficiency up to 80%. The approach was further successfully validated on hydrocarbon-contaminated seawater and provided cells abundance (6.74E+04alkB2-carryingcellsmL(-1)) higher of about one order of magnitude than those obtained by qPCR (4.96E+03alkB2genecopiesmL(-1)). This study highlights the validity of the assay for the detection at single cell level of key-functional genes involved in the biodegradation of n-alkanes.

  11. PGE2 induces angiogenesis via MT1-MMP-mediated activation of the TGFbeta/Alk5 signaling pathway.

    PubMed

    Alfranca, Arántzazu; López-Oliva, Juan Manuel; Genís, Laura; López-Maderuelo, Dolores; Mirones, Isabel; Salvado, Dolores; Quesada, Antonio J; Arroyo, Alicia G; Redondo, Juan Miguel

    2008-08-15

    The development of a new vascular network is essential for the onset and progression of many pathophysiologic processes. Cyclooxygenase-2 displays a proangiogenic activity in in vitro and in vivo models, mediated principally through its metabolite prostaglandin E(2) (PGE(2)). Here, we provide evidence for a novel signaling route through which PGE(2) activates the Alk5-Smad3 pathway in endothelial cells. PGE(2) induces Alk5-dependent Smad3 nuclear translocation and DNA binding, and the activation of this pathway involves the release of active TGFbeta from its latent form through a process mediated by the metalloproteinase MT1-MMP, whose membrane clustering is promoted by PGE(2). MT1-MMP-dependent transforming growth factor beta (TGFbeta) signaling through Alk5 is also required for PGE(2)-induced endothelial cord formation in vitro, and Alk5 kinase activity is required for PGE(2)-induced neovascularization in vivo. These findings identify a novel signaling pathway linking PGE(2) and TGFbeta, 2 effectors involved in tumor growth and angiogenesis, and reveal potential targets for the treatment of angiogenesis-related disorders.

  12. Kinetic studies of Escherichia coli AlkB using a new fluorescence-based assay for DNA demethylation.

    PubMed

    Roy, Todd W; Bhagwat, A S

    2007-01-01

    The Escherichia coli AlkB protein catalyzes the direct reversal of alkylation damage to DNA; primarily 1-methyladenine (1mA) and 3-methylcytosine (3mC) lesions created by endogenous or environmental alkylating agents. AlkB is a member of the non-heme iron (II) alpha-ketoglutarate-dependent dioxygenase superfamily, which removes the alkyl group through oxidation eliminating a methyl group as formaldehyde. We have developed a fluorescence-based assay for the dealkylation activity of this family of enzymes. It uses formaldehyde dehydrogenase to convert formaldehyde to formic acid and monitors the creation of an NADH analog using fluorescence. This assay is a great improvement over the existing assays for DNA demethylation in that it is continuous, rapid and does not require radioactively labeled material. It may also be used to study other demethylation reactions including demethylation of histones. We used it to determine the kinetic constants for AlkB and found them to be somewhat different than previously reported values. The results show that AlkB demethylates 1mA and 3mC with comparable efficiencies and has only a modest preference for a single-stranded DNA substrate over its double-stranded DNA counterpart.

  13. Management of crizotinib therapy for ALK-rearranged non-small cell lung carcinoma: an expert consensus.

    PubMed

    Cappuzzo, Federico; Moro-Sibilot, Denis; Gautschi, Oliver; Boleti, Ekaterini; Felip, Enriqueta; Groen, Harry J M; Germonpré, Paul; Meldgaard, Peter; Arriola, Edurne; Steele, Nicola; Fox, Jesme; Schnell, Patrick; Engelsberg, Arne; Wolf, Jürgen

    2015-02-01

    Within 4 years of the discovery of anaplastic lymphoma kinase (ALK) rearrangements in non-small cell lung cancer (NSCLC), the ALK inhibitor crizotinib gained US and European approval for the treatment of advanced ALK-positive NSCLC. This was due to the striking response data observed with crizotinib in phase I and II trials in patients with ALK-positive NSCLC, as well as the favorable tolerability and safety profile observed. Recently published phase III data established crizotinib as a new standard of care for this NSCLC molecular subset. A consequence of such rapid approval, however, is the limited clinical experience and relative paucity of information concerning optimal therapy management. In this review, we discuss the development of crizotinib and the clinical relevance of its safety profile, examining crizotinib-associated adverse events in detail and making specific management recommendations. Crizotinib-associated adverse events were mostly mild to moderate in severity in clinical studies, and appropriate monitoring and supportive therapies are considered effective in avoiding the need for dose interruption or reduction in most cases. Therapy management of patients following disease progression on crizotinib is also discussed. Based on available clinical data, it is evident that patients may have prolonged benefit from crizotinib after Response Evaluation Criteria in Solid Tumors-defined disease progression, and crizotinib should be continued for as long as the patient derives benefit.

  14. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  15. Combating autophagy is a strategy to increase cytotoxic effects of novel ALK inhibitor entrectinib in neuroblastoma cells

    PubMed Central

    Aveic, Sanja; Pantile, Marcella; Seydel, Anke; Esposito, Maria Rosaria; Zanon, Carlo; Li, Gary; Tonini, Gian Paolo

    2016-01-01

    Neuroblastoma (NB) is a threatening childhood malignancy. Its prognosis is affected by several morphological, and biological characteristics, including the constitutive expression of ALK tyrosine kinase. In this study we examined the therapeutic potential of a novel ALK inhibitor, entrectinib, in obliterating NB tumor cells. Entrectinib showed the growth-inhibitory effects on NB cells with a 50% inhibitory concentration range of 0.03–5 μM. In the ALK-dependent cells, entrectinib mediated G1-arrest, which was associated with modified expression of multiple cell-cycle regulators. Down-regulation of Ki-67, and attenuated phosphorylation of ERK1/2, and STAT3, correlated with observed antiproliferative capacity of entrectinib. Initial cytostatic activity of entrectinib was followed by concentration-dependent apoptotic cell death, and Caspase-3 activation. However, we delineated a reduced sensitivity of ALK mutated NB cells to entrectinib, and demonstrated strong activation of autophagy in SH-SY5YF1174L NB cell line. Abrogation of autophagy by chloroquine increased significantly the toxicity of entrectinib, as confirmed by enhanced death rate, and PARP protein cleavage in SH-SY5YF1174L cells. In aggregate, our data show that entrectinib inhibits proliferation, and induces G1-arrest, and apoptosis in NB cells. We propose entrectinib for further consideration in treatment of NB, and recommend pharmacological inhibition of autophagy to be explored for a combined therapeutic approach in NB patients that might develop resistance to entrectinib. PMID:26735175

  16. Effects of different compost amendments on the abundance and composition of alkB harboring bacterial communities in a soil under industrial use contaminated with hydrocarbons

    PubMed Central

    Wallisch, Stefanie; Gril, Tjasa; Dong, Xia; Welzl, Gerd; Bruns, Christian; Heath, Ester; Engel, Marion; Suhadolc, Marjetka; Schloter, Michael

    2014-01-01

    Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and

  17. ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases. A report from the ALCL99 study.

    PubMed

    Oschlies, Ilske; Lisfeld, Jasmin; Lamant, Laurence; Nakazawa, Atsuko; d'Amore, Emanuele S G; Hansson, Ulrika; Hebeda, Konnie; Simonitsch-Klupp, Ingrid; Maldyk, Jadwiga; Müllauer, Leonhard; Tinguely, Marianne; Stücker, Markus; Ledeley, Marie-Cecile; Siebert, Reiner; Reiter, Alfred; Brugières, Laurence; Klapper, Wolfram; Woessmann, Wilhelm

    2013-01-01

    Anaplastic large cell lymphomas are peripheral T-cell lymphomas that are characterized by a proliferation of large anaplastic blasts expressing CD30. In children, systemic anaplastic large cell lymphomas often present at advanced clinical stage and harbor translocations involving the anaplastic lymphoma kinase (ALK) gene leading to the expression of chimeric anaplastic lymphoma kinase (ALK)-fusion proteins. Primary cutaneous anaplastic large cell lymphoma is regarded as an ALK-negative variant confined to the skin and is part of the spectrum of primary cutaneous CD30-positive T-cell lymphoproliferative disorders. Thirty-three of 487 pediatric patients registered within the Anaplastic Large Cell Lymphoma-99 trial (1999 to 2006) presented with a skin limited CD30-positive lympho-proliferative disorder. In 23 of the 33 patients, material for international histopathological review was available, and the cases were studied for histopathological, immunophenotypical and clinical features as well as for breaks within the ALK gene. Five of 23 cases and one additional case (identified after closure of the trial) expressed ALK-protein. Complete staging excluded any other organ involvement in all children. Expression of ALK proteins was demonstrated by immunohistochemistry in all cases and the presence of breaks of the ALK gene was genetically confirmed in 5 evaluable cases. The histopathological and clinical picture of these skin-restricted ALK-positive lymphomas was indistinguishable from that of cutaneous anaplastic large cell lymphoma. Five children presented with a single skin lesion that was completely resected in 4 and incompletely resected in one. Three of these patients received no further therapy, 2 additional local radiotherapy, and one chemotherapy. All children remain in complete remission with a median follow up of seven years (range 1-8 years). We present 6 pediatric cases of ALK-positive primary cutaneous anaplastic large cell lymphomas. After thorough

  18. Effects of different compost amendments on the abundance and composition of alkB harboring bacterial communities in a soil under industrial use contaminated with hydrocarbons.

    PubMed

    Wallisch, Stefanie; Gril, Tjasa; Dong, Xia; Welzl, Gerd; Bruns, Christian; Heath, Ester; Engel, Marion; Suhadolc, Marjetka; Schloter, Michael

    2014-01-01

    Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and

  19. Fluoride Regulate Osteoblastic Transforming Growth Factor-β1 Signaling by Mediating Recycling of the Type I Receptor ALK5

    PubMed Central

    Yang, Chen; Wang, Yan; Xu, Hui

    2017-01-01

    This study aimed to preliminary investigate the role of activin receptor-like kinase (ALK) 5 as one of TGF-βR1 subtypes in bone turnover and osteoblastic differentiation induced by fluoride. We analyzed bone mineral density and the expression of genes related with transforming growth factor-β1(TGF-β1) signaling and bone turnover in rats treated by different concentrations of fluoride with or without SB431542 in vivo. Moreover, MTT assay, alkaline phosphatase staining, RT-PCR, immunocytochemical analysis and western blot analysis were used to detect the influence on bone marrow stem cells (BMSC) after stimulating by varying concentration of fluoride with or without SB431542 in vitro. The in vivo study showed SB431542 treatment affected bone density and gene expression of rats, which indicated TGF-β1 and ALK5 might take part in fluoride-induced bone turnover and bone formation. The in vitro study showed low concentration of fluoride improved BMSC cells viability, alkaline phosphatase activity, and osteocalcin protein expression which were inhibited by high concentration of fluoride. The gene expression of Runx2 and ALK5 in cells increased after low concentration fluoride treatment which was also inhibited by high concentration of fluoride. Fluoride treatment inhibited gene and protein expression of Samd3 (except 1 mgF-/L). Compared with fluoride treatment alone, cells differentiation was inhibited with SB431542 treatment. Moreover, the expression of Runx2, ALK5 and Smad3 were influenced by SB431542 treatment. In conclusion, this preliminary study indicated that fluoride regulated osteoblastic TGFβ1 signaling in bone turnover and cells differentiation via ALK5. PMID:28125630

  20. Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos.

    PubMed

    Piacentino, Michael L; Ramachandran, Janani; Bradham, Cynthia A

    2015-03-01

    Skeletal patterning in the sea urchin embryo requires a conversation between the skeletogenic primary mesenchyme cells (PMCs) and the overlying pattern-dictating ectoderm; however, our understanding of the molecular basis for this process remains incomplete. Here, we show that TGF-β-receptor signaling is required during gastrulation to pattern the anterior skeleton. To block TGF-β signaling, we used SB431542 (SB43), a specific inhibitor of the TGF-β type I receptor Alk4/5/7. Treatment with SB43 during gastrulation blocks anterior PMC positioning and the formation of the anterior skeleton, but does not perturb general ectoderm specification or development. This is the first example of a signaling event required for patterning of a specific part of the skeleton. Alk4/5/7 inhibition does not prevent the formation of a mouth, although SB43-treated plutei display reduced feeding ability, presumably due to the loss of the structural support for the mouth conferred by the anterior skeleton. Both Univin and Nodal are potential ligands for Alk4/5/7; however, Nodal is unilaterally expressed on only the right side, whereas Univin is bilaterally expressed in the ectoderm adjacent to the anterior skeleton during the relevant time period. Our results demonstrate that Univin is both necessary and sufficient for secondary skeletal development in a control background, consistent with the hypothesis that Univin is a relevant Alk4/5/7 ligand for anterior skeletal patterning. Taken together, our data demonstrate that Alk4/5/7 signaling during gastrulation is required to direct PMCs to the oral hood, and suggest that Univin is a relevant ligand for this signaling event.

  1. Decoding Tumor Phenotypes for ALK, ROS1, and RET Fusions in Lung Adenocarcinoma Using a Radiomics Approach

    PubMed Central

    Yoon, Hyun Jung; Sohn, Insuk; Cho, Jong Ho; Lee, Ho Yun; Kim, Jae-Hun; Choi, Yoon-La; Kim, Hyeseung; Lee, Genehee; Lee, Kyung Soo; Kim, Jhingook

    2015-01-01

    Abstract Quantitative imaging using radiomics can capture distinct phenotypic differences between tumors and may have predictive power for certain phenotypes according to specific genetic mutations. We aimed to identify the clinicoradiologic predictors of tumors with ALK (anaplastic lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged during transfection) fusions in patients with lung adenocarcinoma. A total of 539 pathologically confirmed lung adenocarcinomas were included in this retrospective study. The baseline clinicopathologic characteristics were retrieved from the patients’ medical records and the ALK/ROS1/RET fusion status was reviewed. Quantitative computed tomography (CT) and positron emission tomography imaging characteristics were evaluated using a radiomics approach. Significant features for the fusion-positive tumor prediction model were extracted from all of the clinicoradiologic features, and were used to calculate diagnostic performance for predicting 3 fusions’ positivity. The clinicoradiologic features were compared between ALK versus ROS1/RET fusion-positive tumors to identify the clinicoradiologic similarity between the 2 groups. The fusion-positive tumor prediction model was a combination of younger age, advanced tumor stage, solid tumor on CT, higher values for SUVmax and tumor mass, lower values for kurtosis and inverse variance on 3-voxel distance than those of fusion-negative tumors (sensitivity and specificity, 0.73 and 0.70, respectively). ALK fusion-positive tumors were significantly different in tumor stage, central location, SUVmax, homogeneity on 1-, 2-, and 3-voxel distances, and sum mean on 2-voxel distance compared with ROS1/RET fusion-positive tumors. ALK/ROS1/RET fusion-positive lung adenocarcinomas possess certain clinical and imaging features that enable good discrimination of fusion-positive from fusion-negative lung adenocarcinomas. PMID:26469915

  2. Alectinib's activity against CNS metastases from ALK-positive non-small cell lung cancer: a single institution case series.

    PubMed

    Metro, Giulio; Lunardi, Gianluigi; Bennati, Chiara; Chiarini, Pietro; Sperduti, Isabella; Ricciuti, Biagio; Marcomigni, Luca; Costa, Cinzia; Crinò, Lucio; Floridi, Piero; Gori, Stefania; Chiari, Rita

    2016-09-01

    In the present study we assessed the activity of the next-generation anaplastic lymphoma kinase (ALK)-tyrosine kinase inhibitor (-TKI) alectinib, in patients with ALK-postive, advanced non-small cell lung cancer (NSCLC) and central nervous system (CNS) metastases. NSCLCs with ALK-positive disease, as assessed by fluorescence in situ hybridization, and CNS metastases were treated with alectinib 600 mg BID. Included patients were followed prospectively in order to evaluate the efficacy of the drug, with particular emphasis on activity in the CNS. Eleven consecutive patients were enrolled. The majority of them were pretreated with crizotinib (n = 10, 90.9 %), and cranial radiotherapy (n = 8, 72.7 %). Six of the seven patients with measurable CNS disease experienced a CNS response, including three patients who were naïve for cranial radiation. Median duration of response was 8 months. For the whole population, median CNS-progression-free survival (-PFS), systemic-PFS, overall-PFS, overall survival, and 1-year survival were 8, 11, 8, 13 months, and 31.1 %, respectively. Two patients experiencing a CNS response were assessed for alectinib's concentrations in serum and cerebro-spinal fluid (CSF), and showed a CSF-to-serum ratio ranging from 0.001 to 0.003 ng/mL. Alectinib is highly active against CNS metastases from ALK-positive NSCLCs, irrespective of prior treatment(s) with ALK-TKI(s) and/or cranial radiotherapy. The low CSF-to-serum ratio of alectinib suggests that measuring the concentrations of the drug in the CSF may not be a reliable surrogate of its distribution into the CNS.

  3. Decoding Tumor Phenotypes for ALK, ROS1, and RET Fusions in Lung Adenocarcinoma Using a Radiomics Approach.

    PubMed

    Yoon, Hyun Jung; Sohn, Insuk; Cho, Jong Ho; Lee, Ho Yun; Kim, Jae-Hun; Choi, Yoon-La; Kim, Hyeseung; Lee, Genehee; Lee, Kyung Soo; Kim, Jhingook

    2015-10-01

    Quantitative imaging using radiomics can capture distinct phenotypic differences between tumors and may have predictive power for certain phenotypes according to specific genetic mutations. We aimed to identify the clinicoradiologic predictors of tumors with ALK (anaplastic lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged during transfection) fusions in patients with lung adenocarcinoma.A total of 539 pathologically confirmed lung adenocarcinomas were included in this retrospective study. The baseline clinicopathologic characteristics were retrieved from the patients' medical records and the ALK/ROS1/RET fusion status was reviewed. Quantitative computed tomography (CT) and positron emission tomography imaging characteristics were evaluated using a radiomics approach. Significant features for the fusion-positive tumor prediction model were extracted from all of the clinicoradiologic features, and were used to calculate diagnostic performance for predicting 3 fusions' positivity. The clinicoradiologic features were compared between ALK versus ROS1/RET fusion-positive tumors to identify the clinicoradiologic similarity between the 2 groups.The fusion-positive tumor prediction model was a combination of younger age, advanced tumor stage, solid tumor on CT, higher values for SUV(max) and tumor mass, lower values for kurtosis and inverse variance on 3-voxel distance than those of fusion-negative tumors (sensitivity and specificity, 0.73 and 0.70, respectively). ALK fusion-positive tumors were significantly different in tumor stage, central location, SUV(max), homogeneity on 1-, 2-, and 3-voxel distances, and sum mean on 2-voxel distance compared with ROS1/RET fusion-positive tumors.ALK/ROS1/RET fusion-positive lung adenocarcinomas possess certain clinical and imaging features that enable good discrimination of fusion-positive from fusion-negative lung adenocarcinomas.

  4. Genotype-driven therapies for non-small cell lung cancer: focus on EGFR, KRAS and ALK gene abnormalities.

    PubMed

    Gaughan, Elizabeth M; Costa, Daniel B

    2011-05-01

    Non-small cell lung cancers (NSCLCs) are heterogeneous cancers. In 2004, the identification of epidermal growth factor receptor (EGFR) somatic mutations provided the first glimpse of a clinically relevant NSCLC oncogene. Approximately 70% of NSCLCs with EGFR mutations (exon 19 deletions or the exon 21 L858R) attain responses to EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib, with improved response rate (RR), progression-free survival (PFS) and in some reports overall survival (OS) when compared with EGFR wildtype (WT) cases. Three randomized trials of gefitinib versus chemotherapy (IPASS, WJTOG3405, NEJ002) in stage IV NSCLC have consistently demonstrated better RR and PFS (hazard ratios of 0.48 [IPASS], 0.49 [WJTOG3405] and 0.30 [NEJ002]) for EGFR-mutated NSCLCs treated with gefitinib. Novel irreversible EGFR TKIs (afatinib, XL647, PF00299804) show similar activity in EGFR-mutated patients. A translocation involving the anaplastic lymphoma kinase (ALK) gene with EML4, identified in 2007, is the most recent oncogene found in NSCLC. Crizotinib (PF02341066), an ALK TKI, has shown impressive activity against ALK translocated NSCLC in an expanded cohort of a phase I trial (NCT00585195). Over 80 patients have been treated and the RR is ∼60% with the 6-month PFS rate exceeding 70%. A registration phase III trial of crizotinib versus second-line chemotherapy (pemetrexed/docetaxel) is underway (PROFILE 1007, NCT00932893). KRAS, EGFR mutations and ALK translocations are mutually exclusive and few EGFR WT NSCLCs respond to EGFR TKIs. The promising results of EGFR and ALK TKIs in molecular subgroups of NSCLCs herald a new age of drug and clinical trial development for patients with NSCLC.

  5. Ethical coding.

    PubMed

    Resnik, Barry I

    2009-01-01

    It is ethical, legal, and proper for a dermatologist to maximize income through proper coding of patient encounters and procedures. The overzealous physician can misinterpret reimbursement requirements or receive bad advice from other physicians and cross the line from aggressive coding to coding fraud. Several of the more common problem areas are discussed.

  6. Crizotinib for the Treatment of ALK-Rearranged Non-Small Cell Lung Cancer: A Success Story to Usher in the Second Decade of Molecular Targeted Therapy in Oncology

    PubMed Central

    Bartlett, Cynthia Huang; Mino-Kenudson, Mari; Cui, Jean; Iafrate, A. John

    2012-01-01

    Crizotinib, an ALK/MET/ROS1 inhibitor, was approved by the U.S. Food and Drug Administration for the treatment of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) in August 2011, merely 4 years after the first publication of ALK-rearranged NSCLC. The crizotinib approval was accompanied by the simultaneous approval of an ALK companion diagnostic fluorescent in situ hybridization assay for the detection of ALK-rearranged NSCLC. Crizotinib continued to be developed as an ALK and MET inhibitor in other tumor types driven by alteration in ALK and MET. Crizotinib has recently been shown to be an effective ROS1 inhibitor in ROS1-rearranged NSCLC, with potential future clinical applications in ROS1-rearranged tumors. Here we summarize the heterogeneity within the ALK- and ROS1-rearranged molecular subtypes of NSCLC. We review the past and future clinical development of crizotinib for ALK-rearranged NSCLC and the diagnostic assays to detect ALK-rearranged NSCLC. We highlight how the success of crizotinib has changed the paradigm of future drug development for targeted therapies by targeting a molecular-defined subtype of NSCLC despite its rarity and affected the practice of personalized medicine in oncology, emphasizing close collaboration between clinical oncologists, pathologists, and translational scientists. PMID:22989574

  7. The Drosophila midkine/pleiotrophin homologues Miple1 and Miple2 affect adult lifespan but are dispensable for alk signaling during embryonic gut formation.

    PubMed

    Hugosson, Fredrik; Sjögren, Camilla; Birve, Anna; Hedlund, Ludmilla; Eriksson, Therese; Palmer, Ruth H

    2014-01-01

    Midkine (MDK) and Pleiotrophin (PTN) are small heparin-binding cytokines with closely related structures. The Drosophila genome harbours two genes encoding members of the MDK/PTN family of proteins, known as miple1 and miple2. We have investigated the role of Miple proteins in vivo, in particular with regard to their proposed role as ligands for the Alk receptor tyrosine kinase (RTK). Here we show that Miple proteins are neither required to drive Alk signaling during Drosophila embryogenesis, nor are they essential for development in the fruit fly. Additionally we show that neither MDK nor PTN can activate hALK in vivo when ectopically co-expressed in the fly. In conclusion, our data suggest that Alk is not activated by MDK/PTN related growth factors Miple1 and Miple 2 in vivo.

  8. Imaging Characteristics of Driver Mutations in EGFR, KRAS, and ALK among Treatment-Naïve Patients with Advanced Lung Adenocarcinoma

    PubMed Central

    Park, Jangchul; Kobayashi, Yoshihisa; Urayama, Kevin Y.; Yamaura, Hidekazu; Yatabe, Yasushi; Hida, Toyoaki

    2016-01-01

    This study aimed to identify the computed tomography characteristics of treatment-naïve patients with lung adenocarcinoma and known driver mutations in EGFR, KRAS, or ALK. Patients with advanced lung adenocarcinoma (stage IIIB–IV) and known mutations in EGFR, KRAS, or ALK were assessed. The radiological findings for the main tumor and intra-thoracic status were retrospectively analyzed in each group, and the groups’ characteristics were compared. We identified 265 treatment-naïve patients with non-small-cell carcinoma, who had EGFR mutations (n = 159), KRAS mutations (n = 55), or ALK rearrangements (n = 51). Among the three groups, we evaluated only patients with stage IIIB–IV lung adenocarcinoma who had EGFR mutations (n = 126), KRAS mutations (n = 35), or ALK rearrangements (n = 47). We found that ground-glass opacity at the main tumor was significantly more common among EGFR-positive patients, compared to ALK-positive patients (p = 0.009). Lymphadenopathy was significantly more common among ALK-positive patients, compared to EGFR-positive patients (p = 0.003). Extranodal invasion was significantly more common among ALK-positive patients, compared to EGFR-positive patients and KRAS-positive patients (p = 0.001 and p = 0.049, respectively). Lymphangitis was significantly more common among ALK-positive patients, compared to EGFR-positive patients (p = 0.049). Pleural effusion was significantly less common among KRAS-positive patients, compared to EGFR-positive patients and ALK-positive patients (p = 0.046 and p = 0.026, respectively). Lung metastases were significantly more common among EGFR-positive patients, compared to KRAS-positive patients and ALK-positive patients (p = 0.007 and p = 0.04, respectively). In conclusion, EGFR mutations were associated with ground-glass opacity, KRAS-positive tumors were generally solid and less likely to metastasize to the lung and pleura, and ALK-positive tumors tended to present with lymphadenopathy, extranodal

  9. Clinicopathological features and relation between anaplastic lymphoma kinase (ALK) mutation and histological subtype of lung adenocarcinoma in Eastern European Caucasian population

    PubMed Central

    Zaric, Bojan; Stojsic, Vladimir; Panjkovic, Milana; Tegeltija, Dragana; Stepanov, Vanesa; Kovacevic, Tomi; Sarcev, Tatjana; Radosavljevic, Davorin; Milovancev, Aleksandar; Adamidis, Vasilis; Zarogoulidis, Paul; Hohenforst-Schmidt, Wolfgang; Trakada, Georgia; Rapti, Aggeliki; Perin, Branislav

    2016-01-01

    Introduction: The incidence of echinoderm microtubule-associated protein-like4-anaplastic lymphoma kinase (EML4-ALK) mutation among surgically treated patients with adenocarcinoma of the lung of the Eastern European ethnicity is underreported. The aim of this trial was the determination of EML4-ALK mutation frequency in investigated population, and the evaluation of correlations between lung adenocarcinoma subtype and clinical characteristics with mutation status. Patients and methods: This was a prospective trial which included 195 patients with adenocarcinoma of the lung who underwent surgical treatment. ALK mutation screening was performed by immunohistochemistry (IHC). IHC scores of 2+ and 3+ were regarded as positive. Confirmatory FISH was performed in all IHC positive and in 2:1 ratio in negative patients. Results: Overall ALK mutation rate established by IHC was 6.2%, while FISH confirmed rate of 5.1%. The FISH confirmed ALK positivity in 7.6% Hungarians, 5.5% Serbians, and 6.6% Slovakians. Acinar subtype of adenocarcinoma of the lung was significantly (p=0.02) related to EML4-ALK positive mutation status. Most of the patients were males (56.9%), smokers (50.8%), or former smokers (28.7%) with acinar (55.4%) or solid (35.9%) adenocarcinoma of the lung. Sensitivity and specificity of IHC were 100% and 98.9% respectively. Conclusions: ALK mutation rate in surgically treated patients with adenocarcinoma of the lung was found to be 6.2% by IHC and 5.1% by FISH. Acinar subtype of the adenocarcinoma of the lung was significantly related to ALK positive mutation. PMID:27994656

  10. In contrast to agonist monoclonal antibodies, both C-terminal truncated form and full length form of Pleiotrophin failed to activate vertebrate ALK (anaplastic lymphoma kinase)?

    PubMed

    Mathivet, Thomas; Mazot, Pierre; Vigny, Marc

    2007-12-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development in specific regions of the central and peripheral nervous system. ALK expression persists at a lower level in the adult brain. Thus, it might play an important role in both the normal development and function of the nervous system. The nature of the cognate ligand of this receptor in vertebrates is still a matter of debate. Pleiotrophin and midkine have been proposed as ligands of ALK but several independent studies do not confirm this hypothesis. Interestingly, a recent study proposed that a C-terminal truncated form of Pleiotrophin (Pleiotrophin.15) and not the full length form (Pleiotrophin.18) promotes glioblastoma proliferation in an ALK-dependent fashion. These data were obviously a strong basis to conciliate the conflicting results so far reported in the literature. In the present study, we first purified to homogeneity the two forms of Pleiotrophin secreted by HEK 293 cells. In contrast to agonist monoclonal antibodies, both Pleiotrophin.15 and Pleiotrophin.18 failed to activate ALK in neuroblastoma and glioblastoma cells expressing this receptor. Thus, for our point of view, ALK is still an orphan receptor in vertebrates.

  11. Responses to crizotinib in patients with ALK-positive lung adenocarcinoma who tested immunohistochemistry (IHC)-positive and fluorescence in situ hybridization (FISH)-negative

    PubMed Central

    Yang, Lin; Mu, Xinlin; Wang, Yan; Zhao, Xinming; Li, Junling; Lin, Dongmei

    2016-01-01

    Although the Ventana immunohistochemistry (IHC) platform for detecting anaplastic lymphoma kinase gene (ALK) (D5F3) expression was recently approved by the US Food and Drugs Administration (FDA), fluorescence in situ hybridization (FISH) is still the “gold-standard” method recommended by the US National Comprehensive Cancer Network (NCCN) guideline for NSCLC. We evaluated 6 ALK-positive lung adenocarcinoma patients who tested Ventana IHC-positive and FISH-negative and assessed their clinical responses to the ALK tyrosine kinase inhibitor (TKI) crizotinib. Histologic and cytologic specimens from the 6 patients were stained with Ventana anti-ALK(D5F3) rabbit monoclonal primary antibody using the OptiView™ DAB IHC detection kit and OptiView™ amplification kit on a Ventana BenchMark XT processor. In addition, they were also tested by FISH, qRT-PCR, next-generation sequencing (NGS), and RNAscope ISH analysis. All patients received crizotinib treatment and their follow-up clinical data were recorded. The objective response rate achieved with crizotinib therapy was 66.7% (4/6 partial responses and 2/6 stable disease). One patient in whom a new fusion type (EML4->EXOC6B->ALK fusion) was identified obtained a partial response. These findings indicate that patients with ALK-positive lung adenocarcinoma who test Ventana IHC-positive and FISH-negative may still respond to crizotinib therapy. PMID:27418132

  12. Comparison of small biopsy specimens and surgical specimens for the detection of EGFR mutations and EML4-ALK in non-small-cell lung cancer

    PubMed Central

    Xiao, DeSheng; Lu, Can; Zhu, Wei; He, QiuYan; Li, Yong; Fu, ChunYan; Zhou, JianHua; Liu, Shuang; Tao, YongGuang

    2016-01-01

    Epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) fusion genes represent novel oncogenes that are associated with non–small-cell lung cancers (NSCLC). The feasibility of detecting EGFR mutations and ALK fusion genes in small biopsy specimens or surgical specimens was determined. Of the 721 NSCLC patients, a total of 305 cases were positive for EGFR mutations (42.3%). The rate of EGFR mutations in women was significantly higher than that in men. Histologically, the EGFR mutation rate in adenocarcinomas was significantly higher than that in squamous cell carcinomas. No difference in the EGFR mutation rate was observed between surgical specimens (42.1%) and small biopsy specimens (42.4%), which indicated that the EGFR mutation ratios in surgical specimens and small biopsy specimens were not different. In 385 NSCLC patients, 26 cases were positive for EML4-ALK (6.8%). However, 11.7% of the surgical specimens were EML4-ALK-positive, whereas the positive proportion in the small biopsy specimens was only 4.7%, which indicated that EML4-ALK-positive rate in the surgical specimens was significantly higher than that in the small biopsy specimens. Detection of EGFR gene mutations was feasible in small biopsy specimens, and screening for EML4-ALK expression in small biopsy specimens can be used to guide clinical treatments. PMID:27322143

  13. Influence of the chemical structure on odor qualities and odor thresholds in homologous series of alka-1,5-dien-3-ones, alk-1-en-3-ones, alka-1,5-dien-3-ols, and alk-1-en-3-ols.

    PubMed

    Lorber, Katja; Schieberle, Peter; Buettner, Andrea

    2014-02-05

    Odor qualities and odor thresholds in air in homologous series of synthesized alk-1-en-3-ols and alka-1,5-dien-3-ols and their corresponding ketones were evaluated by gas chromatography-olfactometry. In the series of the alk-1-en-3-ols and alk-1-en-3-ones the odor quality changed successively from pungent for the compounds with five carbon atoms via metallic, vegetable-like for the six- and seven-carbon odorants to mushroom-like for the compounds with eight and nine carbon atoms. With further increase in chain length the mushroom-like impression decreased and changed to citrus-like, soapy, or herb-like. In both series, two odor threshold minima were found for the six-carbon and also for the eight- and nine-carbon odorants, respectively. In contrast to this, the odor qualities in the series of the (Z)- and (E)-alka-1,5-dien-3-ols and their corresponding ketones did not change significantly with geranium-like, metallic odors and an increasing mushroom-like odor note with increasing chain length. The lowest thresholds were found for the eight- and nine-carbon (Z)-compounds, respectively.

  14. Sharing code.

    PubMed

    Kubilius, Jonas

    2014-01-01

    Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing.

  15. Detecting non-coding selective pressure in coding regions

    PubMed Central

    Chen, Hui; Blanchette, Mathieu

    2007-01-01

    Background Comparative genomics approaches, where orthologous DNA regions are compared and inter-species conserved regions are identified, have proven extremely powerful for identifying non-coding regulatory regions located in intergenic or intronic regions. However, non-coding functional elements can also be located within coding region, as is common for exonic splicing enhancers, some transcription factor binding sites, and RNA secondary structure elements affecting mRNA stability, localization, or translation. Since these functional elements are located in regions that are themselves highly conserved because they are coding for a protein, they generally escaped detection by comparative genomics approaches. Results We introduce a comparative genomics approach for detecting non-coding functional elements located within coding regions. Codon evolution is modeled as a mixture of codon substitution models, where each component of the mixture describes the evolution of codons under a specific type of coding selective pressure. We show how to compute the posterior distribution of the entropy and parsimony scores under this null model of codon evolution. The method is applied to a set of growth hormone 1 orthologous mRNA sequences and a known exonic splicing elements is detected. The analysis of a set of CORTBP2 orthologous genes reveals a region of several hundred base pairs under strong non-coding selective pressure whose function remains unknown. Conclusion Non-coding functional elements, in particular those involved in post-transcriptional regulation, are likely to be much more prevalent than is currently known. With the numerous genome sequencing projects underway, comparative genomics approaches like that proposed here are likely to become increasingly powerful at detecting such elements. PMID:17288582

  16. Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB

    PubMed Central

    Yu, Bomina; Hunt, John F.

    2009-01-01

    Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis–Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher kcat and Km for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this “kcat/Km compensation,” which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O2 binding before nucleotide substrate binding. PMID:19706517

  17. Enzymological and Structural Studies of the Mechanism of Promiscuous Substrate Recognition by the Oxidative DNA Repair Enzyme AlkB

    SciTech Connect

    Yu, B.; Hunt, J

    2009-01-01

    Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis-Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher kcat and Km for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this 'kcat/Km compensation,' which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O2 binding before nucleotide substrate binding.

  18. Treatment patterns and survival in patients with ALK-positive non-small-cell lung cancer: a Canadian retrospective study

    PubMed Central

    Kayaniyil, S.; Hurry, M.; Wilson, J.; Wheatley-Price, P.; Melosky, B.; Rothenstein, J.; Cohen, V.; Koch, C.; Zhang, J.; Osenenko, K.; Liu, G.

    2016-01-01

    Background Crizotinib was the first agent approved for the treatment of anaplastic lymphoma kinase (ALK)–positive (+) non-small-cell lung cancer (nsclc), followed by ceritinib. However, patients eventually progress or develop resistance to crizotinib. With limited real-world data available, the objective of the present work was to evaluate treatment patterns and survival after crizotinib in patients with locally advanced or metastatic ALK+ nsclc in Canada. Methods In this retrospective study at 6 oncology centres across Canada, medical records of patients with locally advanced or metastatic ALK+ nsclc were reviewed. Demographic and clinical characteristics, treatments, and outcomes data were abstracted. Analyses focused on patients who discontinued crizotinib treatment. Results Of the 97 patients included, 9 were crizotinib-naïve, and 39 were still receiving crizotinib at study end. The 49 patients who discontinued crizotinib treatment were included in the analysis. Of those 49 patients, 43% received ceritinib at any time, 20% subsequently received systemic chemotherapy only (but never ceritinib), and 37% received no further treatment or died before receiving additional treatment. Median overall survival from crizotinib discontinuation was shorter in patients who did not receive ceritinib than in those who received ceritinib (1.7 months vs. 20.4 months, p < 0.001). In a multivariable analysis, factors associated with poorer survival included lack of additional therapies (particularly ceritinib), male sex, and younger age, but not smoking status; patients of Asian ethnicity showed a nonsignificant trend toward improved survival. Conclusions A substantial proportion of patients with ALK+ nsclc received no further treatment or died before receiving additional treatment after crizotinib. Treatment with systemic agents was associated with improved survival, with ceritinib use being associated with the longest survival. PMID:28050149

  19. A novel lead compound CM-118: antitumor activity and new insight into the molecular mechanism and combination therapy strategy in c-Met- and ALK-dependent cancers.

    PubMed

    Meng, Lanfang; Shu, Mengjun; Chen, Yaqing; Yang, Dexiao; He, Qun; Zhao, Hui; Feng, Zhiyong; Liang, Chris; Yu, Ker

    2014-06-01

    The anaplastic lymphoma kinase (ALK) and the c-Met receptor tyrosine kinase play essential roles in the pathogenesis in multiple human cancers and present emerging targets for cancer treatment. Here, we describe CM-118, a novel lead compound displaying low nanomolar biochemical potency against both ALK and c-Met with selectivity over>90 human kinases. CM-118 potently abrogated hepatocyte growth factor (HGF)-induced c-Met phosphorylation and cell migration, phosphorylation of ALK, EML4-ALK, and ALK resistance mutants in transfected cells. CM-118 inhibited proliferation and/or induced apoptosis in multiple c-Met- and ALK-addicted cancer lines with dose response profile correlating target blockade. We show that the CM-118-induced apoptosis in c-Met-amplified H1993 NSCLC cells involved a rapid suppression of c-Met activity and c-Met-to-EGFR cross-talk, and was profoundly potentiated by EGFR inhibitors as shown by the increased levels of apoptotic proteins cleaved-PARP and Bim as well as reduction of the survival protein Mcl-1. Bim-knockdown or Mcl-1 overexpression each significantly attenuated apoptosis. We also revealed a key role by mTOR in mediating CM-118 action against the EML4-ALK-dependent NSCLC cells. Abrogation of EML4-ALK in H2228 cells profoundly reduced signaling capacity of the rapamycin-sensitive mTOR pathway leading to G 1 cell cycle arrest and mitochondrial hyperpolarization, a metabolic perturbation linked to mTOR inhibition. Depletion of mTOR or mTORC1 inhibited H2228 cell growth, and mTOR inhibitors potentiated CM-118's antitumor activity in vitro and in vivo. Oral administration of CM-118 at a wide range of well tolerated dosages diminished c-Met- and ALK phosphorylation in vivo, and caused tumor regression or growth inhibition in multiple c-Met- and ALK-dependent tumor xenografts in mice. CM-118 exhibits favorable pharmacokinetic and drug metabolism properties hence presents a candidate for clinical evaluation.

  20. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications.

    PubMed

    Ardini, Elena; Menichincheri, Maria; Banfi, Patrizia; Bosotti, Roberta; De Ponti, Cristina; Pulci, Romana; Ballinari, Dario; Ciomei, Marina; Texido, Gemma; Degrassi, Anna; Avanzi, Nilla; Amboldi, Nadia; Saccardo, Maria Beatrice; Casero, Daniele; Orsini, Paolo; Bandiera, Tiziano; Mologni, Luca; Anderson, David; Wei, Ge; Harris, Jason; Vernier, Jean-Michel; Li, Gang; Felder, Eduard; Donati, Daniele; Isacchi, Antonella; Pesenti, Enrico; Magnaghi, Paola; Galvani, Arturo

    2016-04-01

    Activated ALK and ROS1 tyrosine kinases, resulting from chromosomal rearrangements, occur in a subset of non-small cell lung cancers (NSCLC) as well as other tumor types and their oncogenic relevance as actionable targets has been demonstrated by the efficacy of selective kinase inhibitors such as crizotinib, ceritinib, and alectinib. More recently, low-frequency rearrangements of TRK kinases have been described in NSCLC, colorectal carcinoma, glioblastoma, and Spitzoid melanoma. Entrectinib, whose discovery and preclinical characterization are reported herein, is a novel, potent inhibitor of ALK, ROS1, and, importantly, of TRK family kinases, which shows promise for therapy of tumors bearing oncogenic forms of these proteins. Proliferation profiling against over 200 human tumor cell lines revealed that entrectinib is exquisitely potent in vitro against lines that are dependent on the drug's pharmacologic targets. Oral administration of entrectinib to tumor-bearing mice induced regression in relevant human xenograft tumors, including the TRKA-dependent colorectal carcinoma KM12, ROS1-driven tumors, and several ALK-dependent models of different tissue origins, including a model of brain-localized lung cancer metastasis. Entrectinib is currently showing great promise in phase I/II clinical trials, including the first documented objective responses to a TRK inhibitor in colorectal carcinoma and in NSCLC. The drug is, thus, potentially suited to the therapy of several molecularly defined cancer settings, especially that of TRK-dependent tumors, for which no approved drugs are currently available. Mol Cancer Ther; 15(4); 628-39. ©2016 AACR.

  1. Reducing progoitrin and enriching glucoraphanin in Brassica napus seeds through silencing of the GSL-ALK gene family.

    PubMed

    Liu, Zheng; Hirani, Arvind H; McVetty, Peter B E; Daayf, Fouad; Quiros, Carlos F; Li, Genyi

    2012-05-01

    The hydrolytic products of glucosinolates in brassica crops are bioactive compounds. Some glucosinolate derivatives such as oxazolidine-2-thione from progoitrin in brassica oilseed meal are toxic and detrimental to animals, but some isothiocyanates such as sulforaphane are potent anti-carcinogens that have preventive effects on several human cancers. In most B. rapa, B. napus and B. juncea vegetables and oilseeds, there is no or only trace amount of glucoraphanin that is the precursor to sulforaphane. In this paper, RNA interference (RNAi) of the GSL-ALK gene family was used to down-regulate the expression of GSL-ALK genes in B. napus. The detrimental glucosinolate progoitrin was reduced by 65 %, and the beneficial glucosinolate glucoraphanin was increased to a relatively high concentration (42.6 μmol g(-1) seed) in seeds of B. napus transgenic plants through silencing of the GSL-ALK gene family. Therefore, there is potential application of the new germplasm with reduced detrimental glucosinolates and increased beneficial glucosinolates for producing improved brassica vegetables.

  2. Dickkopf-3 Upregulates VEGF in Cultured Human Endothelial Cells by Activating Activin Receptor-Like Kinase 1 (ALK1) Pathway

    PubMed Central

    Busceti, Carla L.; Marchitti, Simona; Bianchi, Franca; Di Pietro, Paola; Riozzi, Barbara; Stanzione, Rosita; Cannella, Milena; Battaglia, Giuseppe; Bruno, Valeria; Volpe, Massimo; Fornai, Francesco; Nicoletti, Ferdinando; Rubattu, Speranza

    2017-01-01

    Dkk-3 is a member of the dickkopf protein family of secreted inhibitors of the Wnt pathway, which has been shown to enhance angiogenesis. The mechanism underlying this effect is currently unknown. Here, we used cultured HUVECs to study the involvement of the TGF-β and VEGF on the angiogenic effect of Dkk-3. Addition of hrDkk-3 peptide (1 or 10 ng/ml) to HUVECs for 6 or 12 h enhanced the intracellular and extracellular VEGF protein levels, as assessed by RTPCR, immunoblotting, immunocytochemistry and ELISA. The increase in the extracellular VEGF levels was associated to the VEGFR2 activation. Pharmacological blockade of VEGFR2 abrogated Dkk-3-induced endothelial cell tubes formation, indicating that VEGF is a molecular player of the angiogenic effects of Dkk-3. Moreover, Dkk-3 enhanced Smad1/5/8 phosphorylation and recruited Smad4 to the VEGF gene promoter, suggesting that Dkk-3 activated ALK1 receptor leading to a transcriptional activation of VEGF. This mechanism was instrumental to the increased VEGF expression and endothelial cell tubes formation mediated by Dkk-3, because both effects were abolished by siRNA-mediated ALK1 knockdown. In summary, we have found that Dkk-3 activates ALK1 to stimulate VEGF production and induce angiogenesis in HUVECs. PMID:28352232

  3. Post-transcriptional gene regulation by mRNA modifications

    PubMed Central

    Zhao, Boxuan Simen; Roundtree, Ian A.; He, Chuan

    2016-01-01

    The recent discovery of reversible mRNA methylation has opened a new realm of post-transcriptional gene regulation in eukaryotes. The identification and functional characterization of proteins that specifically recognize RNA N6-methyladenosine (m6A) unveiled it as a modification that cells utilize to accelerate mRNA metabolism and translation. N6-adenosine methylation directs mRNAs to distinct fates by grouping them for differential processing, translation and decay in processes such as cell differentiation, embryonic development and stress responses. Other mRNA modifications, including N1-methyladenosine (m1A), 5-methylcytosine (m5C) and pseudouridine, together with m6A form the epitranscriptome and collectively code a new layer of information that controls protein synthesis. PMID:27808276

  4. Dinucleotide circular codes and bijective transformations.

    PubMed

    Fimmel, Elena; Giannerini, Simone; Gonzalez, Diego Luis; Strüngmann, Lutz

    2015-12-07

    The presence of circular codes in mRNA coding sequences is postulated to be involved in informational mechanisms aimed at detecting and maintaining the normal reading frame during protein synthesis. Most of the recent research is focused on trinucleotide circular codes. However, also dinucleotide circular codes are important since dinucleotides are ubiquitous in genomes and associated to important biological functions. In this work we adopt the group theoretic approach used for trinucleotide codes in Fimmel et al. (2015) to study dinucleotide circular codes and highlight their symmetry properties. Moreover, we characterize such codes in terms of n-circularity and provide a graph representation that allows to visualize them geometrically. The results establish a theoretical framework for the study of the biological implications of dinucleotide circular codes in genomic sequences.

  5. Spotlight on crizotinib in the first-line treatment of ALK-positive advanced non-small-cell lung cancer: patients selection and perspectives

    PubMed Central

    Leprieur, Etienne Giroux; Fallet, Vincent; Cadranel, Jacques; Wislez, Marie

    2016-01-01

    Around 4% of advanced non-small-cell lung cancers (NSCLCs) have an ALK rearrangement at the time of diagnosis. This molecular feature is more frequent in young patients, with no/light smoking habit and with adenocarcinoma pathological subtype. Crizotinib is a tyrosine kinase inhibitor, targeting ALK, ROS1, RON, and MET. The preclinical efficacy results led to a fast-track clinical development. The US Food and Drug Administration (FDA) approval was achieved after the Phase I clinical trial in 2011 in ALK-rearranged advanced NSCLC progressing after a first-line treatment. In 2013, the randomized Phase III trial PROFILE-1007 confirmed the efficacy of crizotinib in ALK-rearranged NSCLC, compared to cytotoxic chemotherapy, in second-line setting or more. In 2014, the PROFILE-1014 trial showed the superiority of crizotinib in the first-line setting compared to the pemetrexed platinum doublet chemotherapy. The response rate was 74%, and the progression-free survival was 10.9 months with crizotinib. Based on these results, crizotinib received approval from the FDA and European Medicines Agency for first-line treatment of ALK-rearranged NSCLC. The various molecular mechanisms at the time of the progression (ALK mutations or amplification, ALK-independent mechanisms) encourage performing re-biopsy at the time of progression under crizotinib. The best treatment strategy at the progression (crizotinib continuation beyond progression, switch to second-generation tyrosine kinase inhibitors, or cytotoxic chemotherapy) depends on the phenotype of the progression, the molecular status, and the physical condition of the patient. PMID:28210164

  6. Therapeutic efficacy of the bromodomain inhibitor OTX015/MK-8628 in ALK-positive anaplastic large cell lymphoma: an alternative modality to overcome resistant phenotypes

    PubMed Central

    Vurchio, Valentina; Yang, Shao Ning; Moon, John; Kwee, Ivo; Rinaldi, Andrea; Pan, Heng; Crescenzo, Ramona; Cheng, Mangeng; Cerchietti, Leandro; Elemento, Olivier; Riveiro, Maria E.; Cvitkovic, Esteban; Bertoni, Francesco; Inghirami, Giorgio

    2016-01-01

    Anaplastic large cell lymphomas (ALCL) represent a peripheral T-cell lymphoma subgroup, stratified based on the presence or absence of anaplastic lymphoma kinase (ALK) chimeras. Although ALK-positive ALCLs have a more favorable outcome than ALK-negative ALCL, refractory and/or relapsed forms are common and novel treatments are needed. Here we investigated the therapeutic potential of a novel bromodomain inhibitor, OTX015/MK-8628 in ALK-positive ALCLs. The effects of OTX015 on a panel of ALK+ ALCL cell lines was evaluated in terms of proliferation, cell cycle and downstream signaling, including gene expression profiling analyses. Synergy was tested with combination targeted therapies. Bromodomain inhibition with OTX015 led primarily to ALCL cell cycle arrest in a dose-dependent manner, along with downregulation of MYC and its downstream regulated genes. MYC overexpression did not compensate this OTX015-mediated phenotype. Transcriptomic analysis of OTX015-treated ALCL cells identified a gene signature common to various hematologic malignancies treated with bromodomain inhibitors, notably large cell lymphoma. OTX015-modulated genes included transcription factors (E2F2, NFKBIZ, FOS, JUNB, ID1, HOXA5 and HOXC6), members of multiple signaling pathways (ITK, PRKCH, and MKNK2), and histones (clusters 1-3). Combination of OTX015 with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib led to cell cycle arrest then cell death, and combination with suboptimal doses of the ALK inhibitor CEP28122 caused cell cycle arrest. When OTX015 was associated with GANT61, a selective GLI1/2 inhibitor, C1156Y-resistant ALK ALCL growth was impaired. These findings support OTX015 clinical trials in refractory ALCL in combination with inhibitors of interleukin-2-inducible kinase or SHH/GLI1. PMID:27793034

  7. Fluorescence in situ hybridization analysis of the ALK gene in 2,045 non-small cell lung cancer patients from North-Western Spain (Galicia).

    PubMed

    Sánchez-Ares, María; Cameselle-Teijeiro, José M; Vázquez-Estévez, Sergio; Lázaro-Quintela, Martín; Vázquez-Boquete, Ángel; Afonso-Afonso, Francisco J; Casal-Rubio, Joaquín; González-Piñeiro, Ana L; Rico-Rodríguez, Yolanda; Fírvida-Pérez, José L; Ruíz-Bañobre, Juan; Couso, Elena; Santomé, Lucía; Pérez-Becerra, Raquel; García-Campelo, Rosario; Amenedo, Margarita; Azpitarte-Raposeiras, Cristina; Antúnez, José; Abdulkader, Ihab

    2016-08-01

    Identification of anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements is a standard diagnostic test in patients with advanced non-small cell lung cancer (NSCLC). The current study describes the experience of ALK rearrangement detection of a referral center in the public health care system of Galicia in North-Western Spain. The fluorescence in situ hybridization (FISH) patterns of the ALK gene and the clinical and pathological features of these patients are reported. This study is also of interest for comparative purposes due to the relative geographical isolation of the area, which could have contributed to particular genetic features. A total of 2,045 tissue samples from NSCLC patients were collected between October 2010 and July 2015 and tested for ALK rearrangements by FISH. Examination of 1,686 paraffin-embedded tissue specimens and 395 cytological samples (306 cell block preparations and 53 cytological smears) was conducted, and any associations between the FISH results and clinicopathological features were assessed. The rate of successful evaluation was marginally higher in tissue samples than in cytological samples (92.9% vs. 84.1%); this difference was not significant. ALK rearrangements were identified in 82 patients(4%): 65 (79.3%) in tissue specimens, 15 (18.3%) in cell block samples and 2 (2.4%) in cytological smears. This genetic translocation appeared to be associated with a non-smoking history, younger age, female gender, stage IV and adenocarcinoma histological type. The findings demonstrate that ALK evaluation by FISH is feasible in tissue and cytological samples. The clinical and pathological features of the ALK-positive series of patients are similar to those previously reported in the literature.

  8. Sharing code

    PubMed Central

    Kubilius, Jonas

    2014-01-01

    Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing. PMID:25165519

  9. Nuclear Retention of mRNA in Mammalian Tissues

    PubMed Central

    Bahar Halpern, Keren; Caspi, Inbal; Lemze, Doron; Levy, Maayan; Landen, Shanie; Elinav, Eran; Ulitsky, Igor; Itzkovitz, Shalev

    2015-01-01

    Summary mRNA is thought to predominantly reside in the cytoplasm, where it is translated and eventually degraded. Although nuclear retention of mRNA has a regulatory potential, it is considered extremely rare in mammals. Here, to explore the extent of mRNA retention in metabolic tissues, we combine deep sequencing of nuclear and cytoplasmic RNA fractions with single-molecule transcript imaging in mouse beta cells, liver, and gut. We identify a wide range of protein-coding genes for which the levels of spliced polyadenylated mRNA are higher in the nucleus than in the cytoplasm. These include genes such as the transcription factor ChREBP, Nlrp6, Glucokinase, and Glucagon receptor. We demonstrate that nuclear retention of mRNA can efficiently buffer cytoplasmic transcript levels from noise that emanates from transcriptional bursts. Our study challenges the view that transcripts predominantly reside in the cytoplasm and reveals a role of the nucleus in dampening gene expression noise. PMID:26711333

  10. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer

    PubMed Central

    Nakaoku, Takashi; Tsuta, Koji; Tsuchihara, Katsuya; Matsumoto, Shingo; Yoh, Kiyotaka; Goto, Koichi

    2015-01-01

    Fusions of the RET and ROS1 protein tyrosine kinase oncogenes with several partner genes were recently identified as new targetable genetic aberrations in cases of non-small cell lung cancer (NSCLC) lacking activating EGFR, KRAS, ALK, BRAF, or HER2 oncogene aberrations. RET and ROS1 fusion-positive tumors are mainly observed in young, female, and/or never smoking patients. Studies based on in vitro and in vivo (i.e., mouse) models and studies of several fusion-positive patients indicate that inhibiting the kinase activity of the RET and ROS1 fusion proteins is a promising therapeutic strategy. Accordingly, there are several ongoing clinical trials aimed at examining the efficacy of tyrosine kinase inhibitors (TKIs) against RET and ROS1 proteins in patients with fusion-positive lung cancer. Other gene fusions (NTRK1, NRG1, and FGFR1/2/3) that are targetable by existing TKIs have also been identified in NSCLCs. Options for personalized lung cancer therapy will be increased with the help of multiplex diagnosis systems able to detect multiple druggable gene fusions. PMID:25870798

  11. Consequences of heat shock protein 72 (Hsp72) expression and activity on stress-induced apoptosis in CD30+ NPM-ALK+ anaplastic large-cell lymphomas.

    PubMed

    Bonvini, P; Zorzi, E; Mussolin, L; Pillon, M; Romualdi, C; Peron, M; d'Amore, E S G; Lamant, L; Rosolen, A

    2012-06-01

    Understanding the mechanisms that control stress-induced apoptosis is critical to explain how tumours respond to treatment, as cancer cells frequently escape drug toxicity by regulating stress response through heat shock protein (HSP) expression. The overexpression of Hsp72, in particular, results in increased incidence of cell transformation, and correlates with poor prognosis in a wide range of cancers. We have shown that Hsp72 assists folding of oncogenic NPM-ALK kinase in anaplastic large-cell lymphomas (ALCLs), but its role in the maintenance of the malignant phenotype remains uncertain. Therefore, we assessed Hsp72 expression in ALCLs, investigating more in detail the mechanisms that regulate its status and activity. We found that Hsp72 is unique among the HSPs involved in tumourigenesis to be overexpressed in ALK(+) tumours and cell lines and to be induced by stress. Different from other HSPs, Hsp72 prevents cell injury, Bax activation and death by apoptosis in ALK(+) cells, acting both upstream and downstream of mitochondria. Conversely, Hsp72 is underexpressed in ALK(-) ALCL cells, and it is unable to protect cells from apoptosis under stress. Moreover, when Hsp72 expression is reduced following NPM-ALK inhibition, lymphoma cells undergo apoptosis, demonstrating the importance of Hsp72 in regulating ALCL stress response and drug sensitivity.

  12. Compound genetically engineered mouse models of cancer reveal dual targeting of ALK1 and endoglin as a synergistic opportunity to impinge on angiogenic TGF-β signaling

    PubMed Central

    Eleftheriou, Nikolas M.; Sjölund, Jonas; Bocci, Matteo; Cortez, Eliane; Lee, Se-Jin

    2016-01-01

    Angiogenesis occurs early in tumor development, sustains primary tumor growth and provides a route for metastatic escape. The TGF-β family receptors modulate angiogenesis via endothelial-cell specific pathways. Here we investigate the interaction of two such receptors, ALK1 and endoglin, in pancreatic neuroendocrine tumors (PanNET). Independently, ALK1 and endoglin deficiencies exhibited genetically divergent phenotypes, while both highly correlate to an endothelial metagene in human and mouse PanNETs. A concurrent deficiency of both receptors synergistically decreased tumor burden to a greater extent than either individual knockdown. Furthermore, the knockout of Gdf2 (BMP9), the primary ligand for ALK1 and endoglin, exhibited a mixed phenotype from each of ALK1 and endoglin deficiencies; overall primary tumor burden decreased, but hepatic metastases increased. Tumors lacking BMP9 display a hyperbranching vasculature, and an increase in vascular mesenchymal-marker expression, which may be implicit in the increase in metastases. Taken together, our work cautions against singular blockade of BMP9 and instead demonstrates the utility of dual blockade of ALK1 and endoglin as a strategy for anti-angiogenic therapy in PanNET. PMID:27741515

  13. ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions.

    PubMed

    Han, Arum; Zhao, Hu; Li, Jingyuan; Pelikan, Richard; Chai, Yang

    2014-08-01

    The development of the craniofacial muscles requires reciprocal interactions with surrounding craniofacial tissues that originate from cranial neural crest cells (CNCCs). However, the molecular mechanism involved in the tissue-tissue interactions between CNCCs and muscle progenitors during craniofacial muscle development is largely unknown. In the current study, we address how CNCCs regulate the development of the tongue and other craniofacial muscles using Wnt1-Cre; Alk5(fl/fl) mice, in which loss of Alk5 in CNCCs results in severely disrupted muscle formation. We found that Bmp4 is responsible for reduced proliferation of the myogenic progenitor cells in Wnt1-Cre; Alk5(fl/fl) mice during early myogenesis. In addition, Fgf4 and Fgf6 ligands were reduced in Wnt1-Cre; Alk5(fl/fl) mice and are critical for differentiation of the myogenic cells. Addition of Bmp4 or Fgf ligands rescues the proliferation and differentiation defects in the craniofacial muscles of Alk5 mutant mice in vitro. Taken together, our results indicate that CNCCs play critical roles in controlling craniofacial myogenic proliferation and differentiation through tissue-tissue interactions.

  14. Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function.

    PubMed

    Del Campo, Cristian; Bartholomäus, Alexander; Fedyunin, Ivan; Ignatova, Zoya

    2015-10-01

    Messenger RNA acts as an informational molecule between DNA and translating ribosomes. Emerging evidence places mRNA in central cellular processes beyond its major function as informational entity. Although individual examples show that specific structural features of mRNA regulate translation and transcript stability, their role and function throughout the bacterial transcriptome remains unknown. Combining three sequencing approaches to provide a high resolution view of global mRNA secondary structure, translation efficiency and mRNA abundance, we unraveled structural features in E. coli mRNA with implications in translation and mRNA degradation. A poorly structured site upstream of the coding sequence serves as an additional unspecific binding site of the ribosomes and the degree of its secondary structure propensity negatively correlates with gene expression. Secondary structures within coding sequences are highly dynamic and influence translation only within a very small subset of positions. A secondary structure upstream of the stop codon is enriched in genes terminated by UAA codon with likely implications in translation termination. The global analysis further substantiates a common recognition signature of RNase E to initiate endonucleolytic cleavage. This work determines for the first time the E. coli RNA structurome, highlighting the contribution of mRNA secondary structure as a direct effector of a variety of processes, including translation and mRNA degradation.

  15. Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function

    PubMed Central

    Fedyunin, Ivan; Ignatova, Zoya

    2015-01-01

    Messenger RNA acts as an informational molecule between DNA and translating ribosomes. Emerging evidence places mRNA in central cellular processes beyond its major function as informational entity. Although individual examples show that specific structural features of mRNA regulate translation and transcript stability, their role and function throughout the bacterial transcriptome remains unknown. Combining three sequencing approaches to provide a high resolution view of global mRNA secondary structure, translation efficiency and mRNA abundance, we unraveled structural features in E. coli mRNA with implications in translation and mRNA degradation. A poorly structured site upstream of the coding sequence serves as an additional unspecific binding site of the ribosomes and the degree of its secondary structure propensity negatively correlates with gene expression. Secondary structures within coding sequences are highly dynamic and influence translation only within a very small subset of positions. A secondary structure upstream of the stop codon is enriched in genes terminated by UAA codon with likely implications in translation termination. The global analysis further substantiates a common recognition signature of RNase E to initiate endonucleolytic cleavage. This work determines for the first time the E. coli RNA structurome, highlighting the contribution of mRNA secondary structure as a direct effector of a variety of processes, including translation and mRNA degradation. PMID:26495981

  16. Speech coding

    SciTech Connect

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  17. A Catalytic Role for C-H/π Interactions in Base Excision Repair by Bacillus cereus DNA Glycosylase AlkD.

    PubMed

    Parsons, Zachary D; Bland, Joshua M; Mullins, Elwood A; Eichman, Brandt F

    2016-09-14

    DNA glycosylases protect genomic integrity by locating and excising aberrant nucleobases. Substrate recognition and excision usually take place in an extrahelical conformation, which is often stabilized by π-stacking interactions between the lesion nucleobase and aromatic side chains in the glycosylase active site. Bacillus cereus AlkD is the only DNA glycosylase known to catalyze base excision without extruding the damaged nucleotide from the DNA helix. Instead of contacting the nucleobase itself, the AlkD active site interacts with the lesion deoxyribose through a series of C-H/π interactions. These interactions are ubiquitous in protein structures, but evidence for their catalytic significance in enzymology is lacking. Here, we show that the C-H/π interactions between AlkD and the lesion deoxyribose participate in catalysis of glycosidic bond cleavage. This is the first demonstration of a catalytic role for C-H/π interactions as intermolecular forces important to DNA repair.

  18. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions

    NASA Astrophysics Data System (ADS)

    Mullins, Elwood A.; Shi, Rongxin; Parsons, Zachary D.; Yuen, Philip K.; David, Sheila S.; Igarashi, Yasuhiro; Eichman, Brandt F.

    2015-11-01

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.

  19. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration

    PubMed Central

    Pasteuning-Vuhman, Svitlana; Boertje-van der Meulen, Johanna W.; van Putten, Maaike; Overzier, Maurice; ten Dijke, Peter; Kiełbasa, Szymon M.; Arindrarto, Wibowo; Wolterbeek, Ron; Lezhnina, Ksenia V.; Ozerov, Ivan V.; Aliper, Aleksandr M.; Hoogaars, Willem M.; Aartsma-Rus, Annemieke; Loomans, Cindy J. M.

    2017-01-01

    Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro. Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways.—Pasteuning-Vuhman, S., Boertje-van der Meulen, J. W., van Putten, M., Overzier, M., ten Dijke, P., Kiełbasa, S. M., Arindrarto, W., Wolterbeek, R., Lezhnina, K. V., Ozerov, I. V., Aliper, A. M., Hoogaars, W. M., Aartsma-Rus, A., Loomans, C. J. M. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration. PMID:27733450

  20. Three-Year Follow-Up of an Alectinib Phase I/II Study in ALK-Positive Non-Small-Cell Lung Cancer: AF-001JP.

    PubMed

    Tamura, Tomohide; Kiura, Katsuyuki; Seto, Takashi; Nakagawa, Kazuhiko; Maemondo, Makoto; Inoue, Akira; Hida, Toyoaki; Yoshioka, Hiroshige; Harada, Masao; Ohe, Yuichiro; Nogami, Naoyuki; Murakami, Haruyasu; Kuriki, Hiroshi; Shimada, Tadashi; Tanaka, Tomohiro; Takeuchi, Kengo; Nishio, Makoto

    2017-03-15

    Purpose Alectinib is an anaplastic lymphoma kinase (ALK) -specific kinase inhibitor that seems to be effective against non-small-cell lung cancer (NSCLC) with a variety of ALK mutations. The primary analysis of AF-001JP reported a promising overall response rate. To assess progression-free survival (PFS) and overall survival (OS), patients from the phase II part of AF-001JP were followed up for approximately 3 years. Patients and Methods Oral alectinib 300 mg was administered twice per day to patients with ALK inhibitor-naïve, ALK-positive NSCLC who had progressed after one or more regimens of previous chemotherapy. In this long-term follow-up, efficacy (PFS, OS), correlation between tumor shrinkage and PFS, safety of alectinib, and relief of cancer symptoms were evaluated. Results At the updated data cutoff (September 10, 2015; first patient in August 30, 2011, last patient in April 18, 2012), 25 of 46 phase II patients were still receiving alectinib. Disease progression was confirmed in 18 patients (39%); median PFS was not reached (3-year PFS rate, 62%; 95% CI, 45 to 75). Fourteen patients had brain metastases at baseline; of these, 6 remained in the study without CNS and systemic progression. Tumor shrinkage and PFS showed no correlation. The 3-year OS rate was 78% (13 events). The most common treatment-related adverse event (all grades) was increased blood bilirubin (36.2%). Most cancer symptoms were relieved early, and medication for symptoms was dramatically decreased during alectinib therapy. Conclusion Alectinib was effective in this 3-year follow-up with a favorable safety profile over a long administration period in ALK-positive NSCLC without previous ALK inhibitor treatment.

  1. Mechanism of Repair of Acrolein- and Malondialdehyde-Derived Exocyclic Guanine Adducts by the α-Ketoglutarate/Fe(II) Dioxygenase AlkB

    PubMed Central

    2015-01-01

    The structurally related exocyclic guanine adducts α-hydroxypropano-dG (α-OH-PdG), γ-hydroxypropano-dG (γ-OH-PdG), and M1dG are formed when DNA is exposed to the reactive aldehydes acrolein and malondialdehyde (MDA). These lesions are believed to form the basis for the observed cytotoxicity and mutagenicity of acrolein and MDA. In an effort to understand the enzymatic pathways and chemical mechanisms that are involved in the repair of acrolein- and MDA-induced DNA damage, we investigated the ability of the DNA repair enzyme AlkB, an α-ketoglutarate/Fe(II) dependent dioxygenase, to process α-OH-PdG, γ-OH-PdG, and M1dG in both single- and double-stranded DNA contexts. By monitoring the repair reactions using quadrupole time-of-flight (Q-TOF) mass spectrometry, it was established that AlkB can oxidatively dealkylate γ-OH-PdG most efficiently, followed by M1dG and α-OH-PdG. The AlkB repair mechanism involved multiple intermediates and complex, overlapping repair pathways. For example, the three exocyclic guanine adducts were shown to be in equilibrium with open-ring aldehydic forms, which were trapped using (pentafluorobenzyl)hydroxylamine (PFBHA) or NaBH4. AlkB repaired the trapped open-ring form of γ-OH-PdG but not the trapped open-ring of α-OH-PdG. Taken together, this study provides a detailed mechanism by which three-carbon bridge exocyclic guanine adducts can be processed by AlkB and suggests an important role for the AlkB family of dioxygenases in protecting against the deleterious biological consequences of acrolein and MDA. PMID:25157679

  2. Durable brain response with pulse-dose crizotinib and ceritinib in ALK-positive non-small cell lung cancer compared with brain radiotherapy.

    PubMed

    Dudnik, Elizabeth; Siegal, Tali; Zach, Leor; Allen, Aaron M; Flex, Dov; Yust-Katz, Shlomit; Limon, Dror; Hirsch, Fred R; Peled, Nir

    2016-04-01

    Crizotinib achieves excellent systemic control in anaplastic lymphoma kinase-rearranged (ALK+) non-small cell lung cancer (NSCLC); however, central nervous system (CNS) metastases frequently occur as an early event. Whole brain irradiation, the standard treatment, results in neurocognitive impairment. We present a case series of three ALK+ NSCLC patients with progressing CNS metastases who were treated with pulse-dose crizotinib followed by ceritinib. Three ALK+ NSCLC patients treated between 2011 and 2014 (two males, two never smokers, age range 20-54years, all echinoderm microtubule-associated protein-like 4/ALK rearrangement), were diagnosed with progressing cerebral disease while receiving crizotinib. Clinico-pathological characteristics, treatments, and outcomes were analyzed. In two patients the progression was limited to the CNS, and radiological evidence of leptomeningeal spread was present in one patient. Sequential use of crizotinib 500mg administered once daily (pulse-dose) followed by ceritinib on progression achieved control of the disease in the CNS for over 18 months and over 7 months in Patient 1 and Patient 2, respectively. This strategy provided durable CNS control after whole-brain radiotherapy failure in Patient 1, and allowed the whole-brain radiotherapy to be deferred in Patient 2. Limited CNS progression was documented in Patient 3 while he was on standard-dose/pulse-dose crizotinib for 15months; durable (over 7 months) complete remission was achieved with stereotactic radiotherapy and ceritinib. Manipulating the crizotinib schedule in ALK+ NSCLC patients with CNS metastases and using a novel ALK-inhibitor at the time of further progression may provide durable CNS control and allow brain radiotherapy to be deferred.

  3. DNA alkylation lesions and their repair in human cells: modification of the comet assay with 3-methyladenine DNA glycosylase (AlkD).

    PubMed

    Hašplová, Katarína; Hudecová, Alexandra; Magdolénová, Zuzana; Bjøras, Magnar; Gálová, Eliška; Miadoková, Eva; Dušinská, Mária

    2012-01-05

    3-methyladenine DNA glycosylase (AlkD) belongs to a new family of DNA glycosylases; it initiates repair of cytotoxic and promutagenic alkylated bases (its main substrates being 3-methyladenine and 7-methylguanine). The modification of the comet assay (single cell gel electrophoresis) using AlkD enzyme thus allows assessment of specific DNA alkylation lesions. The resulting baseless sugars are alkali-labile, and under the conditions of the alkaline comet assay they appear as DNA strand breaks. The alkylating agent methyl methanesulfonate (MMS) was used to induce alkylation lesions and to optimize conditions for the modified comet assay method with AlkD on human lymphoblastoid (TK6) cells. We also studied cellular and in vitro DNA repair of alkylated bases in DNA in TK6 cells after treatment with MMS. Results from cellular repair indicate that 50% of DNA alkylation is repaired in the first 60 min. The in vitro repair assay shows that while AlkD recognises most alkylation lesions after 60 min, a cell extract from TK6 cells recognises most of the MMS-induced DNA adducts already in the first 15 min of incubation, with maximum detection of lesions after 60 min' incubation. Additionally, we tested the in vitro repair capacity of human lymphocyte extracts from 5 individuals and found them to be able to incise DNA alkylations in the same range as AlkD. The modification of the comet assay with AlkD can be useful for in vitro and in vivo genotoxicity studies to detect alkylation damage and repair and also for human biomonitoring and molecular epidemiology studies.

  4. Metachronous neuroblastoma in an infant with germline translocation resulting in partial trisomy 2p: a role for ALK?

    PubMed

    Morgenstern, Daniel A; Soh, Shui Yen; Stavropoulos, Dimitri J; Bowdin, Sarah; Baruchel, Sylvain; Malkin, David; Meyn, M Stephen; Irwin, Meredith S

    2014-04-01

    A male infant with dysmorphic features, intestinal malrotation, and developmental delay was found to have a germline translocation resulting in partial trisomy 2p and monosomy 16p. At 3 and 9 months of age, he developed localized neuroblastoma in each adrenal, which was managed with surgical resection. Tumors were MYCN non-amplified, with 2p copy gain consistent with the germline translocation. The potential increased risk of neuroblastoma associated with partial trisomy 2p is discussed in the context of this and previously published cases, and may be due to increased constitutional expression of MYCN and ALK genes, both located within the duplicated 2p region.

  5. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells.

    PubMed

    Wilson, T; Wu, X Y; Juengel, J L; Ross, I K; Lumsden, J M; Lord, E A; Dodds, K G; Walling, G A; McEwan, J C; O'Connell, A R; McNatty, K P; Montgomery, G W

    2001-04-01

    The Booroola fecundity gene (FecB) increases ovulation rate and litter size in sheep and is inherited as a single autosomal locus. The effect of FecB is additive for ovulation rate (increasing by about 1.6 corpora lutea per cycle for each copy) and has been mapped to sheep chromosome 6q23-31, which is syntenic to human chromosome 4q21-25. Bone morphogenetic protein IB (BMP-IB) receptor (also known as ALK-6), which binds members of the transforming growth factor-beta (TGF-beta) superfamily, is located in the region containing the FecB locus. Booroola sheep have a mutation (Q249R) in the highly conserved intracellular kinase signaling domain of the BMP-IB receptor. The mutation segregated with the FecB phenotype in the Booroola backcross and half-sib flocks of sheep with no recombinants. The mutation was not found in individuals from a number of sheep breeds not derived from the Booroola strain. BMPR-IB was expressed in the ovary and in situ hybridization revealed its specific location to the oocyte and the granulosa cell. Expression of mRNA encoding the BMP type II receptor was widespread throughout the ovary. The mutation in BMPR-IB found in Booroola sheep is the second reported defect in a gene from the TGF-beta pathway affecting fertility in sheep following the recent discovery of mutations in the growth factor, GDF9b/BMP15.

  6. QR Codes

    ERIC Educational Resources Information Center

    Lai, Hsin-Chih; Chang, Chun-Yen; Li, Wen-Shiane; Fan, Yu-Lin; Wu, Ying-Tien

    2013-01-01

    This study presents an m-learning method that incorporates Integrated Quick Response (QR) codes. This learning method not only achieves the objectives of outdoor education, but it also increases applications of Cognitive Theory of Multimedia Learning (CTML) (Mayer, 2001) in m-learning for practical use in a diverse range of outdoor locations. When…

  7. Novel tetracyclic benzo[b]carbazolones as highly potent and orally bioavailable ALK inhibitors: design, synthesis, and structure-activity relationship study.

    PubMed

    Jiang, Xiaolong; Zhou, Ji; Ai, Jing; Song, Zilan; Peng, Xia; Xing, Li; Xi, Yong; Guo, Junfeng; Yao, Qizheng; Ding, Jian; Geng, Meiyu; Zhang, Ao

    2015-11-13

    Four series of tetracyclic benzo[b]carbazolone compounds possessing more rotatable bonds and higher molecular flexibility were designed by either inserting a linker within the C8-side chain or by opening the middle ketone ring on the basis of compound 5 (Alectinib, CH5424802). Compound 15b was identified showing nearly identical high potency against both wild-type and the gatekeeper mutant ALK kinase (3.4 vs 3.9 nM). This compound has favorable PK profile with an oral bioavailability of 67.1% in rats. Moreover, compound 15b showed significant growth inhibition against ALK driven cancer cells and KARPAS-299 xenograft model.

  8. Smac mimetic LCL161 supports neuroblastoma chemotherapy in a drug class-dependent manner and synergistically interacts with ALK inhibitor TAE684 in cells with ALK mutation F1174L

    PubMed Central

    Najem, Safiullah; Langemann, Doerte; Appl, Birgit; Trochimiuk, Magdalena; Hundsdoerfer, Patrick; Reinshagen, Konrad; Eschenburg, Georg

    2016-01-01

    Neuroblastoma is the most common extracranial solid tumor during infancy and childhood. Outcome of high-risk and late-stage disease remains poor despite intensive treatment regimens. Suppressing inhibitor of apoptosis proteins (IAPs) using Smac mimetics (SM) significantly sensitizes neuroblastoma (NB) cells for chemotherapy, however strongly dependent on the cytotoxic drug combined with SM. Therefore, a systematic analysis of the impact of SM in combination with different classes of chemotherapeutics was of crucial importance. Treatment of NB cell lines with SM LCL161 and vinca alkaloids revealed a strong synergistic inhibition of proliferation and significant induction of apoptosis in virtually all established and de novo NB cell lines (n=8). In contrast, combination of anthracyclines or topoisomerase inhibitors with LCL161 showed a synergism for single drugs and/or cell lines only. Furthermore, we could show that insensibility to LCL161-mediated sensitization for chemotherapeutics is associated with aberrant activation of anaplastic lymphoma kinase (ALK) by common mutation F1174L. Inhibition of ALK using TAE684 is able to overcome this resistance in a synergistic fashion, a finding that could be highly relevant for improvement of neuroblastoma therapy. PMID:27655666

  9. Smac mimetic LCL161 supports neuroblastoma chemotherapy in a drug class-dependent manner and synergistically interacts with ALK inhibitor TAE684 in cells with ALK mutation F1174L.

    PubMed

    Najem, Safiullah; Langemann, Doerte; Appl, Birgit; Trochimiuk, Magdalena; Hundsdoerfer, Patrick; Reinshagen, Konrad; Eschenburg, Georg

    2016-11-08

    Neuroblastoma is the most common extracranial solid tumor during infancy and childhood.Outcome of high-risk and late-stage disease remains poor despite intensive treatment regimens.Suppressing inhibitor of apoptosis proteins (IAPs) using Smac mimetics (SM) significantly sensitizes neuroblastoma (NB) cells for chemotherapy, however strongly dependent on the cytotoxic drug combined with SM.Therefore, a systematic analysis of the impact of SM in combination with different classes of chemotherapeutics was of crucial importance. Treatment of NB cell lines with SM LCL161 and vinca alkaloids revealed a strong synergistic inhibition of proliferation and significant induction of apoptosis in virtually all established and de novo NB cell lines (n=8).In contrast, combination of anthracyclines or topoisomerase inhibitors with LCL161 showed a synergism for single drugs and/or cell lines only.Furthermore, we could show that insensibility to LCL161-mediated sensitization for chemotherapeutics is associated with aberrant activation of anaplastic lymphoma kinase (ALK) by common mutation F1174L. Inhibition of ALK using TAE684 is able to overcome this resistance in a synergistic fashion, a finding that could be highly relevant for improvement of neuroblastoma therapy.

  10. Molecular cloning of seal myoglobin mRNA.

    PubMed Central

    Wood, D; Blanchetot, A; Jeffreys, A J

    1982-01-01

    Grey seal skeletal muscle containing high levels of myoglobin was used to prepare poly(A)+ RNA. In vitro translation of this RNA produced a range of polypeptides including myoglobin. cDNA was prepared by reverse transcription of muscle poly(A)+ RNA and cloned into the plasmid pAT 153. 4% of cDNA recombinants were shown to contain myoglobin cDNA inserts. DNA sequence analysis of one clone (pSM 178) which contained a relatively large myoglobin cDNA insert showed an incomplete cDNA comprising the terminal 293 nucleotides of 3' non-translated mRNA sequences. Hybridization experiments using this myoglobin cDNA indicated that seal myoglobin is coded by a single gene which is transcribed to give a 1400 nucleotide mRNA considerably longer than related haemoglobin mRNAs. Images PMID:6185919

  11. Control of mRNA Translation in ALS Proteinopathy

    PubMed Central

    Cestra, Gianluca; Rossi, Simona; Di Salvio, Michela; Cozzolino, Mauro

    2017-01-01

    Cells robustly reprogram gene expression during stress generated by protein misfolding and aggregation. In this condition, cells assemble the bulk of mRNAs into translationally silent stress granules (SGs), while they sustain the translation of specific mRNAs coding for proteins that are needed to overcome cellular stress. Alterations of this process are deeply associated to neurodegeneration. This is the case of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder caused by a selective loss of motor neurons. Indeed, impairment of protein homeostasis as well as alterations of RNA metabolism are now recognized as major players in the pathogenesis of ALS. In particular, evidence shows that defective mRNA transport and translation are implicated. Here, we provide a review of what is currently known about altered mRNA translation in ALS and how this impacts on the ability of affected cells to cope with proteotoxic stress. PMID:28386218

  12. ARM-Seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments

    PubMed Central

    Cozen, Aaron E.; Quartley, Erin; Holmes, Andrew D.; Robinson, Eva H.; Phizicky, Eric M.; Lowe, Todd M.

    2015-01-01

    High throughput RNA sequencing has accelerated discovery of the complex regulatory roles of small RNAs, but RNAs containing modified nucleosides may escape detection when those modifications interfere with reverse transcription during RNA-seq library preparation. Here we describe AlkB-facilitated RNA Methylation sequencing (ARM-Seq) which uses pre-treatment with Escherichia coli AlkB to demethylate 1-methyladenosine, 3-methylcytidine, and 1-methylguanosine, all commonly found in transfer RNAs. Comparative methylation analysis using ARM-Seq provides the first detailed, transcriptome-scale map of these modifications, and reveals an abundance of previously undetected, methylated small RNAs derived from tRNAs. ARM-Seq demonstrates that tRNA-derived small RNAs accurately recapitulate the m1A modification state for well-characterized yeast tRNAs, and generates new predictions for a large number of human tRNAs, including tRNA precursors and mitochondrial tRNAs. Thus, ARM-Seq provides broad utility for identifying previously overlooked methyl-modified RNAs, can efficiently monitor methylation state, and may reveal new roles for tRNA-derived RNAs as biomarkers or signaling molecules. PMID:26237225

  13. Quantum mechanics/molecular mechanics study on the oxygen binding and substrate hydroxylation step in AlkB repair enzymes.

    PubMed

    Quesne, Matthew G; Latifi, Reza; Gonzalez-Ovalle, Luis E; Kumar, Devesh; de Visser, Sam P

    2014-01-07

    AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N(1) -methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)-oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive σ- and π-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained.

  14. Alectinib for choroidal metastasis in a patient with crizotinib-resistant ALK rearranged positive non-small cell lung cancer.

    PubMed

    Okuma, Yusuke; Tanaka, Yuichiro; Kamei, Tina; Hosomi, Yukio; Okamura, Tatsuru

    2015-01-01

    Choroidal metastasis is rare in cancer patients. Small molecules of molecular targeted agents for lung cancer with actionable mutations were reported to be palliated for symptoms caused by choroidal metastasis. Visual disturbance by choroidal metastasis significantly decreases quality of life during the patient's remaining lifespan; therefore, radiotherapy or laser photocoagulation is proposed with consensus. However, improvement in survival with matched molecular targeted agents for oncogenic driver mutations reminds us to also be concerned with late treatment toxicities. A 30-year-old female patient previously treated with crizotinib harboring ALK rearranged non-small cell lung cancer complained of visual disturbance, fever, and bone pains undergoing anti-PD-1 antibody treatment. A decreased proportion of ALK fusion was demonstrated by fluorescence in situ hybridization in liver metastasis compared to the primary site in a chemo-naïve state. She was diagnosed with low vision, choroidal metastasis and retinal detachment. Therefore, she started alectinib treatment and both her ocular and systemic symptoms were palliated in a week. Later, she temporarily discontinued alectinib because of skin rash although the choroidal metastasis and retinal detachment resolved and she regained low vision completely at 2 weeks. She obtained partial response with alectinib for more than 5 months after recovering from skin rash.

  15. ALK-negative anaplastic large cell lymphoma with urinary bladder involvement diagnosed in urine cytology: A case report and literature review.

    PubMed

    Lobo, João; Henrique, Rui; Monteiro, Paula; Lobo, Cláudia

    2017-04-01

    Anaplastic large cell lymphoma is an aggressive T-cell neoplasm. It rarely involves the urinary bladder, with just twelve cases reported thus far and only one being ALK-negative. Immunophenotyping (particularly for ALK) is mandatory, both for prognostic and therapeutic reasons. Herein, we report the case of a patient with an ALK-negative anaplastic large cell lymphoma involving the bladder which was diagnosed and fully characterized by immunocytochemistry in urine cytology. The patient underwent a cystoscopy and the urine sample disclosed tumor diathesis background and aggregates of atypical cells, with evidence of multinucleation and mitotic figures. Immunocytochemistry revealed strong membrane/Golgi positivity for CD30 and negativity for ALK. The patient was submitted to transurethral resection for therapeutic purposes, which confirmed the diagnosis. To the best of our knowledge, this represents only the third case of anaplastic large cell lymphoma with bladder involvement diagnosed in urine cytology and the very first with diagnostic findings allowing for immunophenotyping of the disease in a bladder wash. The present report reinforces the role of urine cytology as a suitable method for establishing an earlier diagnosis and characterization of the disease, avoiding submitting patients to invasive procedures like transurethral resections. Diagn. Cytopathol. 2017;45:354-358. © 2016 Wiley Periodicals, Inc.

  16. Chromoplectic TPM3–ALK rearrangement in a patient with inflammatory myofibroblastic tumor who responded to ceritinib after progression on crizotinib

    PubMed Central

    Mansfield, A. S.; Murphy, S. J.; Harris, F. R.; Robinson, S. I.; Marks, R. S.; Johnson, S. H.; Smadbeck, J. B.; Halling, G. C.; Yi, E. S.; Wigle, D.; Vasmatzis, G.; Jen, J.

    2016-01-01

    Background Inflammatory myofibroblastic tumors (IMTs) are rare sarcomas that can occur at any age. Surgical resection is the primary treatment for patients with localized disease; however, these tumors frequently recur. Less commonly, patients with IMTs develop or present with metastatic disease. There is no standard of care for these patients and traditional cytotoxic therapy is largely ineffective. Most IMTs are associated with oncogenic ALK, ROS1 or PDGFRβ fusions and may benefit from targeted therapy. Patient and methods We sought to understand the genomic abnormalities of a patient who presented for management of metastatic IMT after progression of disease on crizotinib and a significant and durable partial response to the more potent ALK inhibitor ceritinib. Results The residual IMT was resected based on the recommendations of a multidisciplinary tumor sarcoma tumor board and analyzed by whole-genome mate pair sequencing. Analysis of the residual, resected tumor identified a chromoplectic TPM3–ALK rearrangement that involved many other known oncogenes and was confirmed by rtPCR. Conclusions In our analysis of the treatment-resistant, residual IMT, we identified a complex pattern of genetic rearrangements consistent with chromoplexy. Although it is difficult to know for certain if these chromoplectic rearrangements preceded treatment, their presence suggests that chromoplexy has a role in the oncogenesis of IMTs. Furthermore, this patient's remarkable response suggests that ceritinib should be considered as an option after progression on crizotinib for patients with metastatic or unresectable IMT and ALK mutations. PMID:27742657

  17. Fine-needle aspiration cytology yield as a basis for morphological, molecular, and cytogenetic diagnosis in alk-positive anaplastic large cell lymphoma with atypical clinical presentation.

    PubMed

    Bogdanic, Maja; Ostojic Kolonic, Slobodanka; Kaic, Gordana; Kardum Paro, Mirjana Mariana; Lasan Trcic, Ruzica; Kardum-Skelin, Ika

    2017-01-01

    ALK positive anaplastic large cell lymphoma is a T-cell lymphoma usually occurring in children and young adults. It frequently involves lymph nodes and extranodal sites and is associated with favorable prognosis. A 20-year old man was admitted for painful mass in the left axilla with overlying skin redness. Clinical presentation and US findings were highly suspicious for sarcoma. Definitive diagnosis was established cytolologically and using ancillary technologies from cytological samples. Fine needle aspiration cytology of tumor mass (lymph node conglomerate and surrounding tissue) show predominance of large, pleomorphic, atypical cells with large nuclei and vacuolised cytoplasm. Atypical cells immunocytochemically were positive for LCA, CD30, CD3, EMA, and ALK; negative for CD15 and CD56. NPM-ALK transcript was detected by reverse transcriptase-polymerase chain reaction (RT-PCT). Molecular analysis of TCRß and TCRγ genes demonstrated clonal TCR genes rearrangement. Complex karyotype with multiple numerical and structural changes was found on conventional cytogenetics. These findings excluded sarcoma and corroborated the diagnosis of ALK positive ALCL. Cutaneous involvement in ALCL can clinically mimic sarcoma, especially in cases with localized disease without B symptoms. In those cases, immunostaining, PCR, and conventional cytogenetics are helpful to exclude sarcoma. Diagn. Cytopathol. 2017;45:51-54. © 2016 Wiley Periodicals, Inc.

  18. Diversity of alkane degrading bacteria associated with plants in a petroleum oil-contaminated environment and expression of alkane monooxygenase (alkB) genes

    NASA Astrophysics Data System (ADS)

    Andria, V.; Yousaf, S.; Reichenauer, T. G.; Smalla, K.; Sessitsch, A.

    2009-04-01

    Among twenty-six different plant species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo), and the combination of both plants performed well in a petroleum oil contaminated soil. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Higher numbers of culturable, degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Our results indicated that alkB genes have spread through horizontal gene transfer, particularly in the Italian ryegrass rhizosphere, and suggested mobility of catabolic genes between Gram-negative and Gram-positive bacteria. We furthermore studied the colonization behaviour of selected hydrocarbon-degrading strains (comprising an endopyhte and a rhizosphere strain) as well as the expression of their alkane monooxygenase genes in association with Italian ryegrass. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior.

  19. Functional mapping of the translation-dependent instability element of yeast MATalpha1 mRNA.

    PubMed Central

    Hennigan, A N; Jacobson, A

    1996-01-01

    The determinants of mRNA stability include specific cis-acting destabilizing sequences located within mRNA coding and noncoding regions. We have developed an approach for mapping coding-region instability sequences in unstable yeast mRNAs that exploits the link between mRNA translation and turnover and the dependence of nonsense-mediated mRNA decay on the activity of the UPF1 gene product. This approach, which involves the systematic insertion of in-frame translational termination codons into the coding sequence of a gene of interest in a upf1delta strain, differs significantly from conventional methods for mapping cis-acting elements in that it causes minimal perturbations to overall mRNA structure. Using the previously characterized MATalpha1 mRNA as a model, we have accurately localized its 65-nucleotide instability element (IE) within the protein coding region. Termination of translation 5' to this element stabilized the MATalpha1 mRNA two- to threefold relative to wild-type transcripts. Translation through the element was sufficient to restore an unstable decay phenotype, while internal termination resulted in different extents of mRNA stabilization dependent on the precise location of ribosome stalling. Detailed mutagenesis of the element's rare-codon/AU-rich sequence boundary revealed that the destabilizing activity of the MATalpha1 IE is observed when the terminal codon of the element's rare-codon interval is translated. This region of stability transition corresponds precisely to a MATalpha1 IE sequence previously shown to be complementary to 18S rRNA. Deletion of three nucleotides 3' to this sequence shifted the stability boundary one codon 5' to its wild-type location. Conversely, constructs containing an additional three nucleotides at this same location shifted the transition downstream by an equivalent sequence distance. Our results suggest a model in which the triggering of MATalpha1 mRNA destabilization results from establishment of an interaction

  20. Anaplastic lymphoma kinase (ALK 1) staining and molecular analysis in inflammatory myofibroblastic tumours of the bladder: a preliminary clinicopathological study of nine cases and review of the literature.

    PubMed

    Freeman, Alex; Geddes, Nicola; Munson, Philippa; Joseph, Jean; Ramani, Pramila; Sandison, Ann; Fisher, Cyril; Parkinson, M Connie

    2004-07-01

    Inflammatory myofibroblastic tumours (IMFT) may arise at any anatomical site, including lung, soft tissues, retroperitoneum and bladder. Although morphologically similar, these lesions encompass a spectrum of entities with differing aetiology, ranging from reactive/regenerative proliferations to low-grade neoplasms with a risk of local recurrence, but no significant metastatic potential. Vesical IMFT usually presents as a polypoid mass with a pale firm cut surface and can be of considerable size, mimicking a malignant tumour clinically and radiologically. Its good outcome, however, warrants conservative surgical excision, emphasising the importance of identification and distinction from malignant tumours of the bladder that may require more radical surgery and/or adjuvant therapy. We conducted a preliminary retrospective, comparative immunocytochemical study of 20 bladder tumours, including nine IMFTs, five spindle cell (sarcomatoid) carcinomas, two rhabdomyosarcomas, two leiomyosarcomas and two neurofibromas. The results confirmed IMFT positivity for smooth muscle actin, desmin and cytokeratin in 78-89% cases, resulting in potential confusion with sarcomatoid carcinoma or leiomyosarcoma. In contrast, cytoplasmic anaplastic lymphoma kinase (ALK 1) staining was present in eight IMFT (89%), but was not seen in any other lesion examined. The ALK 1 staining was confirmed by fluorescence in situ hybridisation, with translocation of the ALK gene present in 15-60% tumour cells in four of six IMFT examined, but not in four cases of sarcomatoid carcinoma or three of leiomyosarcoma. In conclusion, ALK 1 staining may be of value in the distinction of vesical IMFT from morphologically similar entities, and often reflects ALK gene translocations in these lesions.

  1. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    PubMed

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer.

  2. Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB

    PubMed Central

    Haddad, Yazan; Heger, Zbyněk; Adam, Vojtech

    2017-01-01

    Targeted therapy is a promising approach for treatment of neuroblastoma as evident from the large number of targeting agents employed in clinical practice today. In the absence of known crystal structures, researchers rely on homology modeling to construct template-based theoretical structures for drug design and testing. Here, we discuss three candidate cell surface proteins that are suitable for homology modeling: human norepinephrine transporter (hNET), anaplastic lymphoma kinase (ALK), and neurotrophic tyrosine kinase receptor 2 (NTRK2 or TrkB). When choosing templates, both sequence identity and structure quality are important for homology modeling and pose the first of many challenges in the modeling process. Homology modeling of hNET can be improved using template models of dopamine and serotonin transporters instead of the leucine transporter (LeuT). The extracellular domains of ALK and TrkB are yet to be exploited by homology modeling. There are several idiosyncrasies that require direct attention throughout the process of model construction, evaluation and refinement. Shifts/gaps in the alignment between the template and target, backbone outliers and side-chain rotamer outliers are among the main sources of physical errors in the structures. Low-conserved regions can be refined with loop modeling method. Residue hydrophobicity, accessibility to bound metals or glycosylation can aid in model refinement. We recommend resolving these idiosyncrasies as part of “good modeling practice” to obtain highest quality model. Decreasing physical errors in protein structures plays major role in the development of targeting agents and understanding of chemical interactions at the molecular level. PMID:28163672

  3. Error-correction coding

    NASA Technical Reports Server (NTRS)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  4. BMP4 and BMP7 Suppress StAR and Progesterone Production via ALK3 and SMAD1/5/8-SMAD4 in Human Granulosa-Lutein Cells.

    PubMed

    Zhang, Han; Klausen, Christian; Zhu, Hua; Chang, Hsun-Ming; Leung, Peter C K

    2015-11-01

    Adequate production of progesterone by the corpus luteum is critical to the successful establishment of pregnancy. In animal models, bone morphogenetic protein (BMP) 4 and BMP7 have been shown to suppress either basal or gonadotropin-induced progesterone production, depending on the species examined. However, the effects of BMP4 and BMP7 on progesterone production in human granulosa cells are unknown. In the present study, we used immortalized (SVOG) and primary human granulosa-lutein cells to investigate the effects of BMP4 and BMP7 on steroidogenic acute regulatory protein (StAR) expression and progesterone production and to examine the underlying molecular mechanism. Treatment of primary and immortalized human granulosa cells with recombinant BMP4 or BMP7 decreased StAR expression and progesterone accumulation. In SVOG cells, the suppressive effects of BMP4 and BMP7 on StAR expression were blocked by pretreatment with inhibitors of activin receptor-like kinase (ALK)2/3/6 (dorsomorphin) or ALK2/3 (DMH1) but not ALK4/5/7 (SB-431542). Moreover, small interfering RNA-mediated depletion of ALK3, but not ALK2 or ALK6, reversed the effects of BMP4 and BMP7 on StAR expression. Likewise, BMP4- and BMP7-induced phosphorylation of SMAD 1/5/8 was reversed by treatment with DMH1 or small interfering RNA targeting ALK3. Knockdown of SMAD4, the essential common SMAD for BMP/TGF-β signaling, abolished the effects of BMP4 and BMP7 on StAR expression. Our results suggest that BMP4 and BMP7 down-regulate StAR and progesterone production via ALK3 and SMAD1/5/8-SMAD4 signaling in human granulosa-lutein cells.

  5. Global decay of mRNA is a hallmark of apoptosis in aging Xenopus eggs

    PubMed Central

    Tokmakov, Alexander A.; Iguchi, Sho; Iwasaki, Tetsushi; Fukami, Yasuo; Sato, Ken-Ichi

    2017-01-01

    ABSTRACT Cytoplasmic mRNAs are specifically degraded in somatic cells as a part of early apoptotic response. However, no reports have been presented so far concerning mRNA fate in apoptotic gametes. In the present study, we analyzed the content of various cytoplasmic mRNAs in aging oocytes and eggs of the African clawed frog, Xenopus laevis. To circumvent large gene expression variation among the individual oocytes and eggs, single-cell monitoring of transcript levels has been implemented, using multiple cytoplasmic collections and reverse transcriptase quantitative PCR. It was found that numerous cytoplasmic mRNAs, coding for proteins classified in different functional types, are robustly degraded in apoptotic Xenopus eggs, but not in aging oocytes. mRNA degradation becomes evident in the eggs after meiotic exit at the time of cytochrome c release. A strong correlation between the length of PCR amplicon and specific transcript content was observed, suggesting endonucleolytic cleavage of mRNA. In addition, it was found that mRNA deadenylation also contributes to apoptotic mRNA degradation. Altogether, these findings indicate that the global decay of mRNA represents a hallmark of apoptosis in aging Xenopus eggs. To our knowledge, this is the first description of mRNA degradation in apoptotic gamete cells. PMID:28045588

  6. Expression of a streptomycete leaderless mRNA encoding chloramphenicol acetyltransferase in Escherichia coli.

    PubMed Central

    Wu, C J; Janssen, G R

    1997-01-01

    The chloramphenicol acetyltransferase (cat) gene from Streptomyces acrimycini encodes a leaderless mRNA. Expression of the cat coding sequence as a leaderless mRNA from a modified lac promoter resulted in chloramphenicol resistance in Escherichia coli. Transcript mapping with nuclease S1 confirmed that the 5' end of the cat message initiated at the A of the AUG translational start codon. Site-directed mutagenesis of the lac promoter or the cat start codon abolished chloramphenicol resistance, indicating that E. coli initiated translation at the 5' terminal AUG of the cat leaderless mRNA. Addition of 5'-AUGC-3' to the 5' end of the cat mRNA resulted in translation occurring also from the reading frame defined by the added AUG triplet, suggesting that a 5'-terminal start codon is an important recognition feature for initiation and establishing reading frame during translation of leaderless mRNA. Addition of an untranslated leader and Shine-Dalgarno sequence to the cat coding sequence increased cat expression in a cat:lacZ fusion; however, the level of expression was significantly lower than when a fragment of the bacteriophage lambda cI gene, also encoding a leaderless mRNA, was fused to lacZ. These results indicate that in the absence of an untranslated leader and Shine-Dalgarno sequence, the streptomycete cat mRNA is translated by E. coli; however, the cat translation signals, or other features of the cat mRNA, provide for only a low level of expression in E. coli. PMID:9352935

  7. Characterization of a CYP153 alkane hydroxylase gene in a Gram-positive Dietzia sp. DQ12-45-1b and its "team role" with alkW1 in alkane degradation.

    PubMed

    Nie, Yong; Liang, Jie-Liang; Fang, Hui; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-01-01

    CYP153 and AlkB-like hydroxylases were recently discovered in Gram-positive alkane-degrading bacteria. However, it is unclear whether they cooperate with each other in alkane degradation as they do in Gram-negative bacteria. In this paper, we cloned the CYP153 gene from a representative Gram-positive alkane-degrading bacterium, Dietzia sp. DQ12-45-1b. The CYP153 gene transcription in Dietzia sp. DQ12-45-1b and heterologous expression in alkB gene knockout mutant strain Pseudomonas fluorescens KOB2∆1 both confirmed the functions of CYP153 on C6-C10 n-alkanes degradation, but not on longer chain-length n-alkanes. In addition, substrate-binding analysis of the purified CYP153 protein revealed different substrate affinities to C6-C16 n-alkanes, confirming n-alkanes binding to CYP153 protein. Along with AlkW1, an AlkB-like alkane hydroxylase in Dietzia sp. DQ12-45-1b, a teamwork pattern was found in n-alkane degradation, i.e. CYP153 was responsible for hydroxylating n-alkanes shorter than C10 while AlkW1 was responsible for those longer than C14. Further sequence analysis suggested that the high horizontal gene transfer (HGT) potential of CYP153 genes may be universal in Gram-positive alkane-degrading actinomycetes that contain both alkB and CYP153 genes.

  8. Secondary structure of bacteriophage T4 gene 60 mRNA: implications for translational bypassing.

    PubMed

    Todd, Gabrielle C; Walter, Nils G

    2013-05-01

    Translational bypassing is a unique phenomenon of bacteriophage T4 gene 60 mRNA wherein the bacterial ribosome produces a single polypeptide chain from a discontinuous open reading frame (ORF). Upon reaching the 50-nucleotide untranslated region, or coding gap, the ribosome either dissociates or bypasses the interruption to continue translating the remainder of the ORF, generating a subunit of a type II DNA topoisomerase. Mutational and computational analyses have suggested that a compact structure, including a stable hairpin, forms in the coding gap to induce bypassing, yet direct evidence is lacking. Here we have probed the secondary structure of gene 60 mRNA with both Tb³⁺ ions and the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) reagent 1M7 under conditions where bypassing is observed. The resulting experimentally informed secondary structure models strongly support the presence of the predicted coding gap hairpin and highlight the benefits of using Tb³⁺ as a second, complementary probing reagent. Contrary to several previously proposed models, however, the rest of the coding gap is highly reactive with both probing reagents, suggesting that it forms only a short stem-loop. Mutational analyses coupled with functional assays reveal that two possible base-pairings of the coding gap with other regions of the mRNA are not required for bypassing. Such structural autonomy of the coding gap is consistent with its recently discovered role as a mobile genetic element inserted into gene 60 mRNA to inhibit cleavage by homing endonuclease MobA.

  9. Quantitative determination of allergenic 5-alk(en)ylresorcinols in mango (Mangifera indica L.) peel, pulp, and fruit products by high-performance liquid chromatography.

    PubMed

    Knödler, Matthias; Reisenhauer, Katharina; Schieber, Andreas; Carle, Reinhold

    2009-05-13

    Despite a number of serious case reports of mango dermatitis, no attempts at the identification and quantification of allergenic 5-alk(en)ylresorcinols in mango fruits have so far been made. Therefore, total alk(en)ylresorcinol content and relative homologue composition in 13 mango peel samples and 7 samples of mango pulp were determined by HPLC and LC-MS/MS analyses. Furthermore, mango puree and nectar prepared on pilot plant scale were also analyzed and compared with commercially available thermally preserved products. Depending on cultivar, alk(en)ylresorcinol contents ranged from 79.3 to 1850.5 mg/kg of dry matter (DM) in mango peels and from 4.9 to 187.3 mg/kg of DM in samples of mango pulp. The profile of alk(en)ylresorcinols was found to be highly characteristic, with an average homologue composition of C15:0 (6.1%), C15:1 (1.7%), C17:0 (1.1%), C17:1 (52.5%), C17:2 (33.4%), C17:3 (2.4%), C19:1 (2.1%), and C19:2 (0.8%). Mango puree samples prepared from peeled and unpeeled fruits revealed contents of 3.8 and 12.3 mg/kg of fresh weight, respectively. Content and homologue composition were not significantly affected during puree processing and thermal preservation. In nectar samples prepared from peeled and unpeeled fruits, contents of 1.4 and 4.6 mg/L, respectively, were found.

  10. The expression of SALL4 is significantly associated with EGFR, but not KRAS or EML4-ALK mutations in lung cancer

    PubMed Central

    Jia, Xiangbo; Qian, Rulin; Zhang, Binbin

    2016-01-01

    Background Lung cancer is the leading cause of cancer-related deaths worldwide; unfortunately, its prognosis is still very poor. Therefore, developing the target molecular is very important for lung cancer diagnosis and treatment, especially in the early stage. With this in view, spalt-like transcription factor 4 (SALL4) is considered a potential biomarker for diagnosis and prognosis in cancers, including lung cancer. Methods In order to better investigate the association between the expression of SALL4 and driver genes mutation, 450 histopathologically diagnosed patients with lung cancer and 11 non-cancer patients were enrolled to test the expression of SALL4 and the status of driver genes mutation. This investigation included epidermal growth factor receptor (EGFR), kirsten rat sarcoma viral oncogene homolog (KRAS), and a fusion gene of the echinoderm microtubule-associated protein-like 4 (EML4) and the anaplastic lymphoma kinase (ALK). Results The results of the study showed that females harbored more EGFR mutation in adenocarcinoma (ADC). The mutation rate of KRAS and EML4-ALK was about 5%, and the double mutations of EGFR/EML4-ALK were higher than EGFR/KRAS. In the expression analysis, the expression of SALL4 was much higher in cancer tissues than normally expected, especially in tissues that carried EGFR mutation (P<0.05), however, there were no significant differences between different mutation types. Likewise, there were no significant differences between expression of SALL4 and KRAS and EML4-ALK mutations. Conclusions SALL4 is up regulated in lung cancer specimens and harbors EGFR mutation; this finding indicates that SALL4 expression may be relevant with EGFR, which could provide a new insight to lung cancer therapy. The mechanism needs further investigation and analysis. PMID:27867542

  11. The life of an mRNA in space and time.

    PubMed

    Ben-Ari, Ya'ara; Brody, Yehuda; Kinor, Noa; Mor, Amir; Tsukamoto, Toshiro; Spector, David L; Singer, Robert H; Shav-Tal, Yaron

    2010-05-15

    Nuclear transcribed genes produce mRNA transcripts destined to travel from the site of transcription to the cytoplasm for protein translation. Certain transcripts can be further localized to specific cytoplasmic regions. We examined the life cycle of a transcribed beta-actin mRNA throughout gene expression and localization, in a cell system that allows the in vivo detection of the gene locus, the transcribed mRNAs and the cytoplasmic beta-actin protein that integrates into the actin cytoskeleton. Quantification showed that RNA polymerase II elongation progressed at a rate of 3.3 kb/minute and that transactivator binding to the promoter was transient (40 seconds), and demonstrated the unique spatial structure of the coding and non-coding regions of the integrated gene within the transcription site. The rates of gene induction were measured during interphase and after mitosis, demonstrating that daughter cells were not synchronized in respect to transcription initiation of the studied gene. Comparison of the spatial and temporal kinetics of nucleoplasmic and cytoplasmic mRNA transport showed that the beta-actin-localization response initiates from the existing cytoplasmic mRNA pool and not from the newly synthesized transcripts arising after gene induction. It was also demonstrated that mechanisms of random movement were predominant in mediating the efficient translocation of mRNA in the eukaryotic cell.

  12. DNA bending and a flip-out mechanism for base excision by the helix–hairpin–helix DNA glycosylase, Escherichia coli AlkA

    PubMed Central

    Hollis, Thomas; Ichikawa, Yoshitaka; Ellenberger, Tom

    2000-01-01

    The Escherichia coli AlkA protein is a base excision repair glycosylase that removes a variety of alkylated bases from DNA. The 2.5 Å crystal structure of AlkA complexed to DNA shows a large distortion in the bound DNA. The enzyme flips a 1–azaribose abasic nucleotide out of DNA and induces a 66° bend in the DNA with a marked widening of the minor groove. The position of the 1–azaribose in the enzyme active site suggests an SN1-type mechanism for the glycosylase reaction, in which the essential catalytic Asp238 provides direct assistance for base removal. Catalytic selectivity might result from the enhanced stacking of positively charged, alkylated bases against the aromatic side chain of Trp272 in conjunction with the relative ease of cleaving the weakened glycosylic bond of these modified nucleotides. The structure of the AlkA–DNA complex offers the first glimpse of a helix–hairpin–helix (HhH) glycosylase complexed to DNA. Modeling studies suggest that other HhH glycosylases can bind to DNA in a similar manner. PMID:10675345

  13. Expression of the BMP Receptor Alk3 in the Second Heart Field is Essential for Development of the Dorsal Mesenchymal Protrusion and Atrioventricular Septation

    PubMed Central

    Briggs, Laura E.; Phelps, Aimee L.; Brown, Elizabeth; Kakarla, Jayant; Anderson, Robert H.; van den Hoff, Maurice J. B.; Wessels, Andy

    2013-01-01

    Rationale The Dorsal Mesenchymal Protrusion (DMP) is a prong of mesenchyme derived from the Second Heart Field (SHF) located at the venous pole of the developing heart. Recent studies have shown that perturbation of its development is associated with the pathogenesis of atrioventricular septal defect (AVSD). Although the importance of the DMP to AV septation is now established, the molecular and cellular mechanisms underlying its development are far from fully understood. Prior studies have demonstrated that bone morphogenetic protein (BMP) signaling is essential for proper formation of the AV endocardial cushions and the cardiac outflow tract. A role for BMP signaling in regulation of DMP development remained to be elucidated. Objective To determine the role of BMP signaling in DMP development. Methods and Results Conditional deletion of the BMP receptor Alk3 from venous pole SHF cells leads to impaired formation of the DMP and a completely penetrant phenotype of ostium primum defect, a hallmark feature of AVSDs. Analysis of mutants revealed decreased proliferative index of SHF cells and, consequently, reduced number of SHF cells at the cardiac venous pole. In contrast, volume and expression of markers associated with proliferation and active BMP/TGFβ signaling was not significantly altered in the AV cushions of SHF-Alk3 mutants. Conclusions BMP signaling is required for expansion of the SHF-derived DMP progenitor population at the cardiac venous pole. Perturbation of Alk3-mediated BMP signaling from the SHF results in impaired development of the DMP and ostium primum defects. PMID:23584254

  14. Diagnostic Coding for Epilepsy.

    PubMed

    Williams, Korwyn; Nuwer, Marc R; Buchhalter, Jeffrey R

    2016-02-01

    Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.

  15. Model Children's Code.

    ERIC Educational Resources Information Center

    New Mexico Univ., Albuquerque. American Indian Law Center.

    The Model Children's Code was developed to provide a legally correct model code that American Indian tribes can use to enact children's codes that fulfill their legal, cultural and economic needs. Code sections cover the court system, jurisdiction, juvenile offender procedures, minor-in-need-of-care, and termination. Almost every Code section is…

  16. Phylogeny of genetic codes and punctuation codes within genetic codes.

    PubMed

    Seligmann, Hervé

    2015-03-01

    Punctuation codons (starts, stops) delimit genes, reflect translation apparatus properties. Most codon reassignments involve punctuation. Here two complementary approaches classify natural genetic codes: (A) properties of amino acids assigned to codons (classical phylogeny), coding stops as X (A1, antitermination/suppressor tRNAs insert unknown residues), or as gaps (A2, no translation, classical stop); and (B) considering only punctuation status (start, stop and other codons coded as -1, 0 and 1 (B1); 0, -1 and 1 (B2, reflects ribosomal translational dynamics); and 1, -1, and 0 (B3, starts/stops as opposites)). All methods separate most mitochondrial codes from most nuclear codes; Gracilibacteria consistently cluster with metazoan mitochondria; mitochondria co-hosted with chloroplasts cluster with nuclear codes. Method A1 clusters the euplotid nuclear code with metazoan mitochondria; A2 separates euplotids from mitochondria. Firmicute bacteria Mycoplasma/Spiroplasma and Protozoan (and lower metazoan) mitochondria share codon-amino acid assignments. A1 clusters them with mitochondria, they cluster with the standard genetic code under A2: constraints on amino acid ambiguity versus punctuation-signaling produced the mitochondrial versus bacterial versions of this genetic code. Punctuation analysis B2 converges best with classical phylogenetic analyses, stressing the need for a unified theory of genetic code punctuation accounting for ribosomal constraints.

  17. Cytoplasmic mRNA turnover and ageing

    PubMed Central

    Borbolis, Fivos; Syntichaki, Popi

    2015-01-01

    Messenger RNA (mRNA) turnover that determines the lifetime of cytoplasmic mRNAs is a means to control gene expression under both normal and stress conditions, whereas its impact on ageing and age-related disorders has just become evident. Gene expression control is achieved at the level of the mRNA clearance as well as mRNA stability and accessibility to other molecules. All these processes are regulated by cis-acting motifs and trans-acting factors that determine the rates of translation and degradation of transcripts. Specific messenger RNA granules that harbor the mRNA decay machinery or various factors, involved in translational repression and transient storage of mRNAs, are also part of the mRNA fate regulation. Their assembly and function can be modulated to promote stress resistance to adverse conditions and over time affect the ageing process and the lifespan of the organism. Here, we provide insights into the complex relationships of ageing modulators and mRNA turnover mechanisms. PMID:26432921

  18. Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-encoded activity.

    PubMed Central

    Vidal, S; Curran, J; Kolakofsky, D

    1990-01-01

    Two forms of the Sendai virus P/C mRNA have been predicted: one an exact copy of the viral genome, and the other with a single G insertion within a run of three G's. We directly cloned the mRNA or portions of it containing the insertion site and screened the resulting colonies with oligonucleotides that could distinguish the presence of three or four G's at this position. We found that 31% of the mRNAs did in fact contain the predicted insertion, whereas the viral genomes contained no heterogeneity at this position. A smaller fraction (7%) of the mRNA contained two to eight G's inserted at this position. The insertions also took place during RNA synthesis in vitro with purified virions but were not detected when the mRNA was expressed in vivo via a vaccinia virus recombinant. When the Sendai virus- and vaccinia virus-derived P/C mRNAs were coexpressed in the same cells under conditions in which each could be distinguished, those from the Sendai genome were altered as before, but those from the vaccinia virus genome remained unaltered. The activity that alters the mRNA is therefore likely to be coded for by the virus and cannot function in trans. Images PMID:1688384

  19. Gene and genon concept: coding versus regulation

    PubMed Central

    2007-01-01

    We analyse here the definition of the gene in order to distinguish, on the basis of modern insight in molecular biology, what the gene is coding for, namely a specific polypeptide, and how its expression is realized and controlled. Before the coding role of the DNA was discovered, a gene was identified with a specific phenotypic trait, from Mendel through Morgan up to Benzer. Subsequently, however, molecular biologists ventured to define a gene at the level of the DNA sequence in terms of coding. As is becoming ever more evident, the relations between information stored at DNA level and functional products are very intricate, and the regulatory aspects are as important and essential as the information coding for products. This approach led, thus, to a conceptual hybrid that confused coding, regulation and functional aspects. In this essay, we develop a definition of the gene that once again starts from the functional aspect. A cellular function can be represented by a polypeptide or an RNA. In the case of the polypeptide, its biochemical identity is determined by the mRNA prior to translation, and that is where we locate the gene. The steps from specific, but possibly separated sequence fragments at DNA level to that final mRNA then can be analysed in terms of regulation. For that purpose, we coin the new term “genon”. In that manner, we can clearly separate product and regulative information while keeping the fundamental relation between coding and function without the need to introduce a conceptual hybrid. In mRNA, the program regulating the expression of a gene is superimposed onto and added to the coding sequence in cis - we call it the genon. The complementary external control of a given mRNA by trans-acting factors is incorporated in its transgenon. A consequence of this definition is that, in eukaryotes, the gene is, in most cases, not yet present at DNA level. Rather, it is assembled by RNA processing, including differential splicing, from various

  20. Creatine kinase and alpha-actin mRNA levels decrease in diabetic rat hearts

    SciTech Connect

    Popovich, B.; Barrieux, A.; Dillmann, W.H.

    1987-05-01

    Diabetic cardiomyopathy is associated with cardiac atrophy and isoenzyme redistribution. To determine if tissue specific changes occur in mRNAs coding for ..cap alpha..-actin and creatine kinase (CK), they performed RNA blot analysis. Total ventricular RNA from control (C) and 4 wk old diabetic (D) rats were hybridized with /sup 32/P cDNA probes for ..cap alpha..-actin and CK. A tissue independent cDNA probe, CHOA was also used. Signal intensity was quantified by photodensitometry. D CK mRNA was 47 +/- 16% lower in D vs C. Insulin increases CK mRNA by 20% at 1.5 hs, and completely reverses the deficit after 4 wks. D ..cap alpha..-actin mRNA is 66 +/- 18% lower in D vs C. Insulin normalized ..cap alpha..-actin mRNA by 5 hs. CHOA mRNA is unchanged in D vs C, but D + insulin CHOA mRNA is 30 +/- 2% lower than C. In rats with diabetic cardiomyopathy, muscle specific CK and ..cap alpha..-actin mRNAs are decreased. Insulin treatment reverses these changes.

  1. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA.

    PubMed Central

    de Moor, C H; Richter, J D

    1999-01-01

    During oocyte maturation, cyclin B1 mRNA is translationally activated by cytoplasmic polyadenylation. This process is dependent on cytoplasmic polyadenylation elements (CPEs) in the 3' untranslated region (UTR) of the mRNA. To determine whether a titratable factor might be involved in the initial translational repression (masking) of this mRNA, high levels of cyclin B1 3' UTR were injected into oocytes. While this treatment had no effect on the poly(A) tail length of endogenous cyclin B1 mRNA, it induced cyclin B1 synthesis. A mutational analysis revealed that the most efficient unmasking element in the cyclin 3' UTR was the CPE. However, other U-rich sequences that resemble the CPE in structure, but which do not bind the CPE-binding polyadenylation factor CPEB, failed to induce unmasking. When fused to the chloramphenical acetyl transferase (CAT) coding region, the cyclin B1 3' UTR inhibited CAT translation in injected oocytes. In addition, a synthetic 3' UTR containing multiple copies of the CPE also inhibited translation, and did so in a dose-dependent manner. Furthermore, efficient CPE-mediated masking required cap-dependent translation. During the normal course of progesterone-induced maturation, cytoplasmic polyadenylation was necessary for mRNA unmasking. A model to explain how cyclin B1 mRNA masking and unmasking could be regulated by the CPE is presented. PMID:10205182

  2. Molecular structure of the human argininosuccinate synthetase gene: Occurrence of alternative mRNA splicing

    SciTech Connect

    Freytag, S.O.; Beaudet, A.L.; Bock, H.G.O.; O'Brien, W.E.

    1984-10-01

    The human genome contains one expressed argininosuccinate synthetase gene and ca. 14 pseudogenes that are dispersed to at least 11 human chromosomes. Eleven clones isolated from a human genomic DNA library were characterized extensively by restriction mapping, Southern blotting, and nucleotide sequencing. These 11 clones represent the entire expressed argininosuccinate synthetase gene that spans 63 kilobases and contains at least 13 exons. The expressed gene codes for two mRNAs that differ in their 5' untranslated sequences and arise by alternative splicing involving the inclusion or deletion of an entire exon. In normal human liver and cultured fibroblasts, the predominant mature argininosuccinate synthetase mRNA lacks sequences encoded by exon 2 in the expressed gene. In contrast, the predominant argininosuccinate synthetase mRNA in baboon liver contains exon 2 sequences. A transformed canavanine-resistant human cell line in which argininosuccinate synthetase activity is 180-fold higher than that in wild-type cells contains abundant amounts of both forms of the argininosuccinate synthetase mRNA. The mRNA lacking exon 2 sequences is the more abundant mRNA species in the canavanine-resistant cells. These observations show that splicing of the argininosuccinate synthetase mRNA is species specific in primates and varies among different human cell types.

  3. Pre-Mrna Introns as a Model for Cryptographic Algorithm:. Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Regoli, Massimo

    2010-01-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. In particular the RNA sequences have some sections called Introns. Introns, derived from the term "intragenic regions", are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by Biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behaviour in the access to the secret key to code the messages. In the RNA-Crypto System algorithm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  4. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions.

    PubMed

    Kumari, Pooja; Sampath, Karuna

    2015-12-01

    For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as 'cncRNAs', have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions.

  5. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  6. Concatenated Coding Using Trellis-Coded Modulation

    NASA Technical Reports Server (NTRS)

    Thompson, Michael W.

    1997-01-01

    In the late seventies and early eighties a technique known as Trellis Coded Modulation (TCM) was developed for providing spectrally efficient error correction coding. Instead of adding redundant information in the form of parity bits, redundancy is added at the modulation stage thereby increasing bandwidth efficiency. A digital communications system can be designed to use bandwidth-efficient multilevel/phase modulation such as Amplitude Shift Keying (ASK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK) or Quadrature Amplitude Modulation (QAM). Performance gain can be achieved by increasing the number of signals over the corresponding uncoded system to compensate for the redundancy introduced by the code. A considerable amount of research and development has been devoted toward developing good TCM codes for severely bandlimited applications. More recently, the use of TCM for satellite and deep space communications applications has received increased attention. This report describes the general approach of using a concatenated coding scheme that features TCM and RS coding. Results have indicated that substantial (6-10 dB) performance gains can be achieved with this approach with comparatively little bandwidth expansion. Since all of the bandwidth expansion is due to the RS code we see that TCM based concatenated coding results in roughly 10-50% bandwidth expansion compared to 70-150% expansion for similar concatenated scheme which use convolution code. We stress that combined coding and modulation optimization is important for achieving performance gains while maintaining spectral efficiency.

  7. Coset Codes Viewed as Terminated Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Fossorier, Marc P. C.; Lin, Shu

    1996-01-01

    In this paper, coset codes are considered as terminated convolutional codes. Based on this approach, three new general results are presented. First, it is shown that the iterative squaring construction can equivalently be defined from a convolutional code whose trellis terminates. This convolutional code determines a simple encoder for the coset code considered, and the state and branch labelings of the associated trellis diagram become straightforward. Also, from the generator matrix of the code in its convolutional code form, much information about the trade-off between the state connectivity and complexity at each section, and the parallel structure of the trellis, is directly available. Based on this generator matrix, it is shown that the parallel branches in the trellis diagram of the convolutional code represent the same coset code C(sub 1), of smaller dimension and shorter length. Utilizing this fact, a two-stage optimum trellis decoding method is devised. The first stage decodes C(sub 1), while the second stage decodes the associated convolutional code, using the branch metrics delivered by stage 1. Finally, a bidirectional decoding of each received block starting at both ends is presented. If about the same number of computations is required, this approach remains very attractive from a practical point of view as it roughly doubles the decoding speed. This fact is particularly interesting whenever the second half of the trellis is the mirror image of the first half, since the same decoder can be implemented for both parts.

  8. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    PubMed Central

    Toro-Ascuy, Daniela; Rojas-Araya, Bárbara; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo

    2016-01-01

    The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A), allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries. PMID:27886048

  9. Discussion on LDPC Codes and Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  10. Self-amplifying mRNA vaccines.

    PubMed

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization.

  11. Bar Codes for Libraries.

    ERIC Educational Resources Information Center

    Rahn, Erwin

    1984-01-01

    Discusses the evolution of standards for bar codes (series of printed lines and spaces that represent numbers, symbols, and/or letters of alphabet) and describes the two types most frequently adopted by libraries--Code-A-Bar and CODE 39. Format of the codes is illustrated. Six references and definitions of terminology are appended. (EJS)

  12. Manually operated coded switch

    DOEpatents

    Barnette, Jon H.

    1978-01-01

    The disclosure relates to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made.

  13. Degradation of Gadd45 mRNA by nonsense-mediated decay is essential for viability

    PubMed Central

    Nelson, Jonathan O; Moore, Kristin A; Chapin, Alex; Hollien, Julie; Metzstein, Mark M

    2016-01-01

    The nonsense-mediated mRNA decay (NMD) pathway functions to degrade both abnormal and wild-type mRNAs. NMD is essential for viability in most organisms, but the molecular basis for this requirement is unknown. Here we show that a single, conserved NMD target, the mRNA coding for the stress response factor growth arrest and DNA-damage inducible 45 (GADD45) can account for lethality in Drosophila lacking core NMD genes. Moreover, depletion of Gadd45 in mammalian cells rescues the cell survival defects associated with NMD knockdown. Our findings demonstrate that degradation of Gadd45 mRNA is the essential NMD function and, surprisingly, that the surveillance of abnormal mRNAs by this pathway is not necessarily required for viability. DOI: http://dx.doi.org/10.7554/eLife.12876.001 PMID:26952209

  14. Expression of SART-1 mRNA in canine squamous cell carcinomas.

    PubMed

    Takaishi, Yumi; Yoshida, Yukari; Nakagaki, Kazuhide; Fujita, Michio; Taniguchi, Akiko; Orima, Hiromitsu

    2008-12-01

    SART-1, a squamous cell carcinoma (SCC) antigen recognized by cytotoxic T lymphocytes, has been useful in human cancer therapy. The SART-1(259) peptide is a potential candidate for vaccine. The present study examined an orthologue of the mRNA coding this peptide in canine SCCs. Specimens were obtained from seven canine patients with SCC, and the mRNA was isolated from the samples. The SART-1 and beta-actin genes were amplified by reverse-transcription polymerase chain reaction, using the isolated mRNA as a template. Canine SART-1 was amplified in six of the seven specimens, while beta-actin was detected in all the samples. In dogs, carcinomas expressing SART-1 could be a target for cytotoxic T lymphocyte mediated immunotherapy.

  15. In vitro synthesis of thymosin beta 4 encoded by rat spleen mRNA.

    PubMed Central

    Filipowicz, A W; Horecker, B L

    1983-01-01

    Thymosin beta 4, containing 43 amino acids and acetylated at the NH2 terminus, is synthesized in vitro in a rabbit reticulocyte lysate or in a yeast protein-synthesis system in the presence of mRNA from rat spleen. The product formed was identified as beta 4 by immunoprecipitation by a specific anti-beta 4 antiserum, comigration with authentic beta 4 in NaDodSO4/polyacrylamide gel electrophoresis and in HPLC, and identity of peptide fragments. The immunoprecipitable product generated in the wheat germ protein-synthesizing system emerged slightly ahead of beta 4 in HPLC and appeared to lack the NH2-terminal acetyl group. There was no evidence for formation of a larger polypeptide precursor of beta 4 in any of the three systems used. In sucrose density gradient centrifugation, the mRNA coding for beta 4 was recovered in the 7-8S mRNA fraction. Images PMID:6572941

  16. QR Codes 101

    ERIC Educational Resources Information Center

    Crompton, Helen; LaFrance, Jason; van 't Hooft, Mark

    2012-01-01

    A QR (quick-response) code is a two-dimensional scannable code, similar in function to a traditional bar code that one might find on a product at the supermarket. The main difference between the two is that, while a traditional bar code can hold a maximum of only 20 digits, a QR code can hold up to 7,089 characters, so it can contain much more…

  17. ARA type protograph codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2008-01-01

    An apparatus and method for encoding low-density parity check codes. Together with a repeater, an interleaver and an accumulator, the apparatus comprises a precoder, thus forming accumulate-repeat-accumulate (ARA codes). Protographs representing various types of ARA codes, including AR3A, AR4A and ARJA codes, are described. High performance is obtained when compared to the performance of current repeat-accumulate (RA) or irregular-repeat-accumulate (IRA) codes.

  18. Differential regulation of trypsinogen mRNA translation: full-length mRNA sequences encoding two oppositely charged trypsinogen isoenzymes in the dog pancreas.

    PubMed Central

    Pinsky, S D; LaForge, K S; Scheele, G

    1985-01-01

    In the absence of changes in functional mRNA levels, stimulation of the pancreas with caerulein, a peptide analog of cholecystokinin, has been previously shown to increase the synthesis of anionic but not cationic trypsinogen. To look for structure-function correlations, a high-yield, full-length cDNA library has been constructed from canine pancreatic poly(A)+ mRNA. Full-length clones coding for the two major trypsinogen isoenzyme forms have been identified by colony hybridization and verified by in vitro translation of hybrid-selected mRNA in the presence of microsomal membranes and an optimal redox potential. Disulfide-bonded translation products were separated and identified by two-dimensional isoelectric focusing-sodium dodecyl sulfate-gel electrophoresis. Nucleotide sequence analysis allowed us to deduce the amino acid sequences for the anionic and cationic forms of canine trypsinogen, which contain 232 and 231 residues, respectively (77% amino acid identity), and the 15-residue amino terminal signal sequences (53% amino acid identity) associated with the two presecretory forms. Measurements of relative and absolute mRNA levels, when related to relative protein synthesis values, indicated that the translational efficiency of anionic trypsinogen mRNA exceeded that of cationic trypsinogen mRNA by 1.5- to 2.9-fold under basal conditions. Analysis of the 5' noncoding regions of trypsinogen mRNAs revealed a striking conservation of sequence (10 of 12 bases) between dog and rat anionic trypsinogen forms. This contrasted markedly with the divergence of the 5' noncoding regions observed between dog anionic and cationic trypsinogen mRNAs. Images PMID:3841794

  19. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Li, Jiaqi; Dong, Nan; Guan, Fanglin; Liu, Yufeng; Ma, Dongliang; Goh, Eyleen L. K.; Chen, Teng

    2016-11-01

    Methamphetamine (METH) is a highly addictive psychostimulant that elicits aberrant changes in the expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the nucleus accumbens of mice, indicating a potential role of METH in post-transcriptional regulations. To decipher the potential consequences of these post-transcriptional regulations in response to METH, we performed strand-specific RNA sequencing (ssRNA-Seq) to identify alterations in mRNA expression and their alternative splicing in the nucleus accumbens of mice following exposure to METH. METH-mediated changes in mRNAs were analyzed and correlated with previously reported changes in non-coding RNAs (miRNAs and lncRNAs) to determine the potential functions of these mRNA changes observed here and how non-coding RNAs are involved. A total of 2171 mRNAs were differentially expressed in response to METH with functions involved in synaptic plasticity, mitochondrial energy metabolism and immune response. 309 and 589 of these mRNAs are potential targets of miRNAs and lncRNAs respectively. In addition, METH treatment decreases mRNA alternative splicing, and there are 818 METH-specific events not observed in saline-treated mice. Our results suggest that METH-mediated addiction could be attributed by changes in miRNAs and lncRNAs and consequently, changes in mRNA alternative splicing and expression. In conclusion, our study reported a methamphetamine-modified nucleus accumbens transcriptome and provided non-coding RNA-mRNA interaction networks possibly involved in METH addiction.

  20. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice

    PubMed Central

    Zhu, Li; Li, Jiaqi; Dong, Nan; Guan, Fanglin; Liu, Yufeng; Ma, Dongliang; Goh, Eyleen L. K.; Chen, Teng

    2016-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant that elicits aberrant changes in the expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the nucleus accumbens of mice, indicating a potential role of METH in post-transcriptional regulations. To decipher the potential consequences of these post-transcriptional regulations in response to METH, we performed strand-specific RNA sequencing (ssRNA-Seq) to identify alterations in mRNA expression and their alternative splicing in the nucleus accumbens of mice following exposure to METH. METH-mediated changes in mRNAs were analyzed and correlated with previously reported changes in non-coding RNAs (miRNAs and lncRNAs) to determine the potential functions of these mRNA changes observed here and how non-coding RNAs are involved. A total of 2171 mRNAs were differentially expressed in response to METH with functions involved in synaptic plasticity, mitochondrial energy metabolism and immune response. 309 and 589 of these mRNAs are potential targets of miRNAs and lncRNAs respectively. In addition, METH treatment decreases mRNA alternative splicing, and there are 818 METH-specific events not observed in saline-treated mice. Our results suggest that METH-mediated addiction could be attributed by changes in miRNAs and lncRNAs and consequently, changes in mRNA alternative splicing and expression. In conclusion, our study reported a methamphetamine-modified nucleus accumbens transcriptome and provided non-coding RNA-mRNA interaction networks possibly involved in METH addiction. PMID:27869204

  1. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice.

    PubMed

    Zhu, Li; Li, Jiaqi; Dong, Nan; Guan, Fanglin; Liu, Yufeng; Ma, Dongliang; Goh, Eyleen L K; Chen, Teng

    2016-11-21

    Methamphetamine (METH) is a highly addictive psychostimulant that elicits aberrant changes in the expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the nucleus accumbens of mice, indicating a potential role of METH in post-transcriptional regulations. To decipher the potential consequences of these post-transcriptional regulations in response to METH, we performed strand-specific RNA sequencing (ssRNA-Seq) to identify alterations in mRNA expression and their alternative splicing in the nucleus accumbens of mice following exposure to METH. METH-mediated changes in mRNAs were analyzed and correlated with previously reported changes in non-coding RNAs (miRNAs and lncRNAs) to determine the potential functions of these mRNA changes observed here and how non-coding RNAs are involved. A total of 2171 mRNAs were differentially expressed in response to METH with functions involved in synaptic plasticity, mitochondrial energy metabolism and immune response. 309 and 589 of these mRNAs are potential targets of miRNAs and lncRNAs respectively. In addition, METH treatment decreases mRNA alternative splicing, and there are 818 METH-specific events not observed in saline-treated mice. Our results suggest that METH-mediated addiction could be attributed by changes in miRNAs and lncRNAs and consequently, changes in mRNA alternative splicing and expression. In conclusion, our study reported a methamphetamine-modified nucleus accumbens transcriptome and provided non-coding RNA-mRNA interaction networks possibly involved in METH addiction.

  2. Sensitivity of mRNA Translation.

    PubMed

    Poker, Gilad; Margaliot, Michael; Tuller, Tamir

    2015-08-04

    Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, elongation, and termination rates along the mRNA strand on the steady-state protein translation rate. We show that the sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results as well as efficient numerical schemes that are applicable for large-scale models. Our results show that in the usual endogenous case, when initiation is more rate-limiting than elongation, the sensitivity of the translation rate to small mutations rapidly increases towards the 5' end of the ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation rate. These results are in agreement with previous molecular evolutionary and synthetic biology experimental studies.

  3. Sensitivity of mRNA Translation

    PubMed Central

    Poker, Gilad; Margaliot, Michael; Tuller, Tamir

    2015-01-01

    Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, elongation, and termination rates along the mRNA strand on the steady-state protein translation rate. We show that the sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results as well as efficient numerical schemes that are applicable for large-scale models. Our results show that in the usual endogenous case, when initiation is more rate-limiting than elongation, the sensitivity of the translation rate to small mutations rapidly increases towards the 5′ end of the ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation rate. These results are in agreement with previous molecular evolutionary and synthetic biology experimental studies. PMID:26238363

  4. Efficient entropy coding for scalable video coding

    NASA Astrophysics Data System (ADS)

    Choi, Woong Il; Yang, Jungyoup; Jeon, Byeungwoo

    2005-10-01

    The standardization for the scalable extension of H.264 has called for additional functionality based on H.264 standard to support the combined spatio-temporal and SNR scalability. For the entropy coding of H.264 scalable extension, Context-based Adaptive Binary Arithmetic Coding (CABAC) scheme is considered so far. In this paper, we present a new context modeling scheme by using inter layer correlation between the syntax elements. As a result, it improves coding efficiency of entropy coding in H.264 scalable extension. In simulation results of applying the proposed scheme to encoding the syntax element mb_type, it is shown that improvement in coding efficiency of the proposed method is up to 16% in terms of bit saving due to estimation of more adequate probability model.

  5. Separate fractions of mRNA from Torpedo electric organ induce chloride channels and acetylcholine receptors in Xenopus oocytes.

    PubMed Central

    Sumikawa, K; Parker, I; Amano, T; Miledi, R

    1984-01-01

    Poly(A)+ mRNA extracted from the electric organ of Torpedo was fractionated by sucrose density gradient centrifugation. After injection into Xenopus oocytes one mRNA fraction induced the appearance of chloride channels in the oocyte membrane. Many of these channels were normally open, and the ensuing chloride current kept the resting potential of injected oocytes close to the chloride equilibrium potential. When the membrane was hyperpolarized, the chloride current was reduced. A separate fraction of mRNA induced the incorporation of acetylcholine receptors into the oocyte membrane. When translated in a cell-free system this fraction directed the synthesis of the alpha, beta, gamma, and delta subunits of the acetylcholine receptor. In contrast, the mRNA fraction that induced the chloride channels caused the synthesis of the delta subunit, a very small amount of alpha, and no detectable beta or gamma subunits. This suggests that the size of the mRNA coding for the chloride channel is similar to the preponderant species of mRNA coding for the delta subunit of the acetylcholine receptor. Images Fig. 1. PMID:6094179

  6. Breast implant-associated ALK-negative anaplastic large cell lymphoma: a case report and discussion of possible pathogenesis.

    PubMed

    George, Eva V; Pharm, John; Houston, Courtney; Al-Quran, Semar; Brian, Grey; Dong, Huijia; Hai, Wang; Reeves, Westley; Yang, Li-Jun

    2013-01-01

    Breast implant associated anaplastic large cell lymphoma (BIA-ALCL) is a recently recognized clinical entity, with only 39 well-documented cases reported worldwide, including 3 fatalities. Because of its rarity, the clinical and pathologic features of this malignancy have yet to be fully defined. Moreover, the pathogenesis of ALCL in association with textured silicone gel breast implants is poorly understood. Here we report a case of BIA-ALCL arising in a 67-year-old woman with a mastectomy due to breast cancer followed by implantation of textured silicone gel breast prosthesis. The patient presented with breast enlargement and tenderness 8 years following reconstructive surgery. MRI revealed a fluid collection surrounding the affected breast implant. Pathologic examination confirmed the presence of malignant ALCL T cells that were CD30+, CD8+, CD15+, HLA-DR+, CD25+ ALK- and p53. A diagnosis of indolent BIA-ALCL was made since tumor cells were not found outside of the capsule. Interestingly, an extensive mixed lymphocytic infiltrate and ectopic lymphoid tissue (lymphoid neogenesis) adjacent to the fibrous implant capsule were present. The patient was treated with capsulectomy and implantation of new breast prostheses. Six months later, the patient was found to have BIA-ALCL involvement of an axillary lymph node with cytogenetic evolution of the tumor. To our knowledge, this is the sixth reported case of aggressive BIA-ALCL. Unique features of this case include the association with lymphoid neogenesis and the in vivo cytogenetic progression of the tumor. This case provides insight into the potential role of chronic inflammation and genetic instability in the pathogenesis of BIA-ALCL.

  7. S-alk(en)yl-L-cysteine sulfoxides and relative pungency measurements of photosynthetic and nonphotosynthetic tissues of Allium porrum.

    PubMed

    Doran, James A; O'Donnell, Jennifer S; Lairson, Luke L; McDonald, Mary Ruth; Schwan, Adrian L; Grodzinski, Bernard

    2007-10-03

    Three standard assays for pyruvate gave equivalent measurements of relative pungency for two leek cultivars ( 'Tadorna' and 'Ramona'). Background pyruvate levels varied depending on the assay used, ranging from 0.4 (lactate dehydrogenase) to 1.5 (high-performance liquid chromatography, HPLC) micromol g(-1) fresh weight (FW) on average. The relative pungencies of the two leek cultivars were also compared to total concentrations of the S-alk(en)yl-L-cysteine sulfoxides (RCSOs). The average ratio of EPy to total RCSOs was 10.9, indicating that standard pungency assays underestimate the levels of RCSOs in the tissue. A detailed analysis of 'Tadorna' leaves showed that total RCSO concentrations decreased acropetally. Profiles were composed of (-/+)-methyl-, (-/+)-ethyl-, (+)-propyl-, and (+)-1-propenyl-L-cysteine sulfoxide (MCSO, ECSO, PCSO, and 1-PeCSO, respectively). (+)-PCSO was the most prominent in green (2.4 mg g (-1) FW), yellow (5.5 mg g (-1) FW), and white (3.8 mg g (-1) FW) tissues. The prop(en)yl-L-cysteine sulfoxide derivatives were dominant in tissues that had photosynthetic capacity. The (+)-MCSO levels were high in the bulb (3.6 mg g (-1) FW). Interestingly, detectable levels of (-/+)-ECSO were measured in the leaves ( approximately 0.5 mg g (-1) FW). RCSO profiles of the different tissue regions were similar, but more (+)-PCSO and (+)-1-PeCSO were detected in the bulb. In general, mature upper leaf tissues had lower levels of total RCSOs. Overall, mild extraction methods and a low-temperature HPLC protocol (preferably with long retention times) achieved adequate compound separation and resolution of the diastereomers.

  8. Ubiquitin mRNA is a major stress-induced transcript in mammalian cells.

    PubMed Central

    Fornace, A J; Alamo, I; Hollander, M C; Lamoreaux, E

    1989-01-01

    Ubiquitin mRNA was found to be an abundant transcript which was induced by heat shock (HS), and certain other stresses in mammalian cells. In Chinese hamster cells, the 2 major ubiquitin transcripts of 2.6 kb and 1.7 kb were induced coordinately, while a minor ubiquitin transcript of 0.8 kb was not induced; the response was similar in human cells with induction of the 2.5 kb Ub C and 1.0 kb Ub B transcripts. A representative ubiquitin cDNA clone, isolated from a cDNA library derived from HS-treated Chinese hamster cells, coded for a typical tandem repeat polyubiquitin transcript. Only a portion of the 5' nontranslated sequence of this clone had homology with the previously published corresponding region in human Ub B mRNA. Oligonucleotide probes complementary to the portion of the 5' nontranslated sequence with homology to the human sequence and also portions with no homology hybridized only to the 1.7 kb transcript. There was coordinate induction of ubiquitin, HSP27, and HSP70 mRNA by HS as determined by both increased RNA and increased transcription. Ubiquitin mRNA was induced by certain DNA damaging agents, in particular the alkylating agent methylmethane sulfonate, or incubation in isoleucine-deficient medium under conditions where the other HSP mRNA were not. Images PMID:2537950

  9. Lipid Nanoparticle Assisted mRNA Delivery for Potent Cancer Immunotherapy.

    PubMed

    Oberli, Matthias A; Reichmuth, Andreas M; Dorkin, J Robert; Mitchell, Michael J; Fenton, Owen S; Jaklenec, Ana; Anderson, Daniel G; Langer, Robert; Blankschtein, Daniel

    2017-03-08

    The induction of a strong cytotoxic T cell response is an important prerequisite for successful immunotherapy against many viral diseases and tumors. Nucleotide vaccines, including mRNA vaccines with their intracellular antigen synthesis, have been shown to be potent activators of a cytotoxic immune response. The intracellular delivery of mRNA vaccines to the cytosol of antigen presenting immune cells is still not sufficiently well understood. Here, we report on the development of a lipid nanoparticle formulation for the delivery of mRNA vaccines to induce a cytotoxic CD 8 T cell response. We show transfection of dendritic cells, macrophages, and neutrophils. The efficacy of the vaccine was tested in an aggressive B16F10 melanoma model. We found a strong CD 8 T cell activation after a single immunization. Treatment of B16F10 melanoma tumors with lipid nanoparticles containing mRNA coding for the tumor-associated antigens gp100 and TRP2 resulted in tumor shrinkage and extended the overall survival of the treated mice. The immune response can be further increased by the incorporation of the adjuvant LPS. In conclusion, the lipid nanoparticle formulation presented here is a promising vector for mRNA vaccine delivery, one that is capable of inducing a strong cytotoxic T cell response. Further optimization, including the incorporation of different adjuvants, will likely enhance the potency of the vaccine.

  10. Reduced secreted mu mRNA synthesis in selective IgM deficiency of Bloom's syndrome.

    PubMed Central

    Kondo, N; Ozawa, T; Kato, Y; Motoyoshi, F; Kasahara, K; Kameyama, T; Orii, T

    1992-01-01

    Serum IgM concentrations were low although serum IgG and IgA concentrations were normal in both our patients with Bloom's syndrome. Although the percentages of surface IgM-bearing cells were not reduced, the numbers of IgM-secreting cells were markedly reduced. The membrane-bound mu (microns) and secreted mu (microseconds) mRNAs are produced from transcripts of a single immunoglobulin mu gene by alternative RNA processing pathways. The control of microseconds mRNA synthesis depends on the addition of poly(A) to microseconds C-terminal segment. In both patients, mu mRNA was well detected but microseconds C-terminal mRNA was scarcely detected, suggesting that microns mRNA was well transcribed but microseconds mRNA was not. There was, at least, no mutation or deletion in the microseconds C-terminal coding sequence, the RNA splice site (GG/TAAAC) at the 5' end of microseconds C-terminal segment and the AATAAA poly(A) signal sequence in both patients. Our results suggest that selective IgM deficiency in Bloom's syndrome is due to an abnormality in the maturation of surface IgM-bearing B cells into IgM-secreting cells and a failure of microseconds mRNA synthesis. Moreover, reduced microseconds mRNA synthesis may be due to the defect on developmental regulation of the site at which poly(A) is added to transcripts of the mu gene. Images Fig. 2 PMID:1563106

  11. Deficient BIM Expression as a Mechanism of Intrinsic and Acquired Resistance to Targeted Therapies in EGFR-Mutant and ALK-Positive Lung Cancers

    DTIC Science & Technology

    2014-08-01

    depressed   in  patients’  specimens  following  acquired...second-­‐generation  ALK  inhibitors.   2C.  Current  objectives:  Determine  if  BIM  levels  are   depressed  (or  BIM  has...whether  resistant  lines  have  a   depressed  apoptotic  response  to  second-­‐line  targeted   therapies  by

  12. Proactive management strategies for potential gastrointestinal adverse reactions with ceritinib in patients with advanced ALK-positive non-small-cell lung cancer

    PubMed Central

    Schaefer, Eric S; Baik, Christina

    2016-01-01

    Anaplastic lymphoma kinase (ALK) gene fusions occur in 3%–7% of non-small-cell lung cancer (NSCLC) cases. Ceritinib, a once-daily, oral ALK inhibitor, has activity against crizotinib-resistant and crizotinib-naïve NSCLC, including brain metastases. Ceritinib (Zykadia™) was granted accelerated approval by the US Food and Drug Administration in 2014 for treating crizotinib-resistant ALK-positive NSCLC. Adverse events (AEs), particularly gastrointestinal (GI) AEs, are commonly experienced at the recommended dose of 750 mg/d and ∼38% of patients require dose interruption or reduction for GI AEs. This case study details our experience with the use of proactive GI AE management regimens in patients treated with ceritinib (750 mg/d) across two study sites. Proactive Regimens A and B were implemented in patients with metastatic ALK-positive NSCLC treated with ceritinib to manage drug-related GI AEs. Regimen A comprised ondansetron and diphenoxylate/atropine or loperamide, taken 30 minutes prior to ceritinib dose. Regimen B included dicyclomine (taken with the first ceritinib dose), ondansetron (taken 30 minutes prior to ceritinib dose for the first seven doses), and loperamide (taken as needed with the onset of diarrhea). The proactive medications were tapered off depending on patient tolerability to ceritinib. Nine patient cases are presented. Starting Regimens A or B before the first dose of ceritinib, or as soon as GI symptoms were encountered, prevented the need for dose reduction due to GI toxicity in eight of the nine patients. Using these regimens, 78% of patients were able to remain on 750 mg/d fasting. Two patients received 23 months and 16 months of therapy and remain on ceritinib 750 mg/d and 600 mg/d, respectively. Although not currently recommended or implemented in clinical studies, based on the patients evaluated here, upfront or proactive treatment plans that address AEs early on can allow the majority of patients to remain on the approved 750 mg

  13. Alterations in genes other than EGFR/ALK/ROS1 in non-small cell lung cancer: trials and treatment options

    PubMed Central

    Desai, Arpita; Menon, Smitha P.; Dy, Grace K.

    2016-01-01

    During the last decade, we have seen tremendous progress in the therapy of lung cancer. Discovery of actionable mutations in EGFR and translocations in ALK and ROS1 have identified subsets of patients with excellent tumor response to oral targeted agents with manageable side effects. In this review, we highlight treatment options including corresponding clinical trials for oncogenic alterations affecting the receptor tyrosine kinases MET, FGFR, NTRK, RET, HER2, HER3, and HER4 as well as components of the RAS-RAF-MEK signaling pathway. PMID:27144064

  14. Honesty and Honor Codes.

    ERIC Educational Resources Information Center

    McCabe, Donald; Trevino, Linda Klebe

    2002-01-01

    Explores the rise in student cheating and evidence that students cheat less often at schools with an honor code. Discusses effective use of such codes and creation of a peer culture that condemns dishonesty. (EV)

  15. Cellulases and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-02-20

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  16. Cellulases and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-01-01

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  17. QR Code Mania!

    ERIC Educational Resources Information Center

    Shumack, Kellie A.; Reilly, Erin; Chamberlain, Nik

    2013-01-01

    space, has error-correction capacity, and can be read from any direction. These codes are used in manufacturing, shipping, and marketing, as well as in education. QR codes can be created to produce…

  18. DIANE multiparticle transport code

    NASA Astrophysics Data System (ADS)

    Caillaud, M.; Lemaire, S.; Ménard, S.; Rathouit, P.; Ribes, J. C.; Riz, D.

    2014-06-01

    DIANE is the general Monte Carlo code developed at CEA-DAM. DIANE is a 3D multiparticle multigroup code. DIANE includes automated biasing techniques and is optimized for massive parallel calculations.

  19. Regulatory Roles for Long ncRNA and mRNA

    PubMed Central

    Karapetyan, Armen R.; Buiting, Coen; Kuiper, Renske A.; Coolen, Marcel W.

    2013-01-01

    Recent advances in high-throughput sequencing technology have identified the transcription of a much larger portion of the genome than previously anticipated. Especially in the context of cancer it has become clear that aberrant transcription of both protein-coding and long non-coding RNAs (lncRNAs) are frequent events. The current dogma of RNA function describes mRNA to be responsible for the synthesis of proteins, whereas non-coding RNA can have regulatory or epigenetic functions. However, this distinction between protein coding and regulatory ability of transcripts may not be that strict. Here, we review the increasing body of evidence for the existence of multifunctional RNAs that have both protein-coding and trans-regulatory roles. Moreover, we demonstrate that coding transcripts bind to components of the Polycomb Repressor Complex 2 (PRC2) with similar affinities as non-coding transcripts, revealing potential epigenetic regulation by mRNAs. We hypothesize that studies on the regulatory ability of disease-associated mRNAs will form an important new field of research. PMID:24216986

  20. Mechanism of Cytoplasmic mRNA Translation

    PubMed Central

    2015-01-01

    Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings. PMID:26019692

  1. EMF wire code research

    SciTech Connect

    Jones, T.

    1993-11-01

    This paper examines the results of previous wire code research to determines the relationship with childhood cancer, wire codes and electromagnetic fields. The paper suggests that, in the original Savitz study, biases toward producing a false positive association between high wire codes and childhood cancer were created by the selection procedure.

  2. Universal Noiseless Coding Subroutines

    NASA Technical Reports Server (NTRS)

    Schlutsmeyer, A. P.; Rice, R. F.

    1986-01-01

    Software package consists of FORTRAN subroutines that perform universal noiseless coding and decoding of integer and binary data strings. Purpose of this type of coding to achieve data compression in sense that coded data represents original data perfectly (noiselessly) while taking fewer bits to do so. Routines universal because they apply to virtually any "real-world" data source.

  3. Mapping Local Codes to Read Codes.

    PubMed

    Bonney, Wilfred; Galloway, James; Hall, Christopher; Ghattas, Mikhail; Tramma, Leandro; Nind, Thomas; Donnelly, Louise; Jefferson, Emily; Doney, Alexander

    2017-01-01

    Background & Objectives: Legacy laboratory test codes make it difficult to use clinical datasets for meaningful translational research, where populations are followed for disease risk and outcomes over many years. The Health Informatics Centre (HIC) at the University of Dundee hosts continuous biochemistry data from the clinical laboratories in Tayside and Fife dating back as far as 1987. However, the HIC-managed biochemistry dataset is coupled with incoherent sample types and unstandardised legacy local test codes, which increases the complexity of using the dataset for reasonable population health outcomes. The objective of this study was to map the legacy local test codes to the Scottish 5-byte Version 2 Read Codes using biochemistry data extracted from the repository of the Scottish Care Information (SCI) Store.

  4. Quantitative analysis of sperm mRNA in the pig: relationship with early embryo development and capacitation.

    PubMed

    Hwang, Jae Yeon; Mulligan, Brendan P; Kim, Hyung-Min; Yang, Byoung-Chul; Lee, Chang-Kyu

    2013-01-01

    Although it is well known that mRNA is present in mammalian spermatozoa, the relevance of mRNA to capacitation and early embryo development in the pig remains unclear. In the present study, we investigated differences in the abundance of selected mRNAs coding for MYC, CYP19, ADAM2, PRM1 and PRM2 in purified porcine spermatozoa depending on embryo cleavage rate and capacitation (n=20 semen samples). Semen samples were used in IVF procedures, with subsequent embryo development classified into one of two groups based on cleavage rate (i.e. high (>75%) and low (<75%) cleavage groups) and mRNA abundance in purified spermatozoa compared between these two groups. In addition, mRNA abundance was compared between capacitated and non-capacitated spermatozoa. Comparison of mRNA levels between porcine spermatozoa revealed that the abundance of MYC, CYP19, ADAM2, PRM1 and PRM2 mRNA was significantly greater in the high cleavage group (n=10 high cleavage group semen samples) than in the low cleavage group (n=10; P<0.05). Significant downregulation of MYC mRNA was observed in capacitated spermatozoa (n=12; P<0.05). The results of the present study suggest that the amount of specific mRNAs could be used for estimating the quality of spermatozoa in the pig.

  5. Permissive effect of dexamethasone on the increase of proenkephalin mRNA induced by depolarization of chromaffin cells

    SciTech Connect

    Naranjo, J.R.; Mocchetti, I.; Schwartz, J.P.; Costa, E.

    1986-03-01

    In cultured bovine chromaffin cells, changes in the dynamic state of enkephalin stores elicited experimentally were studied by measuring cellular proenkephalin mRNA, as well as enkephalin precursors and authentic enkephalin content of cells and culture media. In parallel, tyrosine hydroxylase mRNA and catecholamine cell content were also determined. Low concentrations (0.5-100 pM) of dexamethasone increased the cell contents of proenkephalin mRNA and enkephalin-containing peptides. High concentrations of the hormone(1 ..mu..M) were required to increase the cell contents of tyrosine hydroxylase mRNA and catecholamines. Depolarization of the cells with 10 ..mu..M veratridine resulted in a depletion of enkephalin and catecholamine stores after 24 hr. The enkephalin, but not the catecholamine, content was restored by 48 hr. An increase in proenkephalin mRNA content might account for the recovery; this increase was curtailed by tetrodotoxin and enhanced by 10 pM dexamethasone. Tyrosine hydroxylase mRNA content was not significantly modified by depolarization, even in the presence of 1 ..mu..M dexamethasone. Aldosterone, progesterone, testosterone, or estradiol (1 ..mu..M) failed to change proenkephalin mRNA. Hence, dexamethasone appears to exert a specific permissive action on the stimulation of the proenkephalin gene elicited by depolarization. Though the catecholamines and enkephalins are localized in the same chromaffin granules and are coreleased by depolarization, the genes coding for the processes that are rate limiting in the production of these neuromodulators can be differentially regulated.

  6. Staufen-mediated mRNA decay

    PubMed Central

    Park, Eonyoung; Maquat, Lynne E.

    2013-01-01

    Staufen1 (STAU1)-mediated mRNA decay (SMD) is an mRNA degradation process in mammalian cells that is mediated by the binding of STAU1 to a STAU1-binding site (SBS) within the 3'-untranslated region (3'UTR) of target mRNAs. During SMD, STAU1, a double-stranded (ds) RNA-binding protein, recognizes dsRNA structures formed either by intramolecular base-pairing of 3'UTR sequences or by intermolecular base-pairing of 3'UTR sequences with a long noncoding RNA (lncRNA) via partially complementary Alu elements. Recently, STAU2, a paralog of STAU1, has also been reported to mediate SMD. Both STAU1 and STAU2 interact directly with the ATP-dependent RNA helicase UPF1, a key SMD factor, enhancing its helicase activity to promote effective SMD. Moreover, STAU1 and STAU2 form homodimeric and heterodimeric interactions via domain-swapping. Since both SMD and the mechanistically related nonsense-mediated mRNA decay (NMD) employ UPF1, SMD and NMD are competitive pathways. Competition contributes to cellular differentiation processes, such as myogenesis and adipogenesis, placing SMD at the heart of various physiologically important mechanisms. PMID:23681777

  7. Problem-Based Test: An "In Vitro" Experiment to Analyze the Genetic Code

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    Terms to be familiar with before you start to solve the test: genetic code, translation, synthetic polynucleotide, leucine, serine, filter precipitation, radioactivity measurement, template, mRNA, tRNA, rRNA, aminoacyl-tRNA synthesis, ribosomes, degeneration of the code, wobble, initiation, and elongation of protein synthesis, initiation codon.…

  8. Software Certification - Coding, Code, and Coders

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  9. Evolutionary changes in the genetic code.

    PubMed

    Jukes, T H; Osawa, S

    1993-11-01

    1. The genetic code was thought to be identical ("universal") in all biological systems until 1981, when it was discovered that the coding system in mammalian mitochondria differed from the universal code in the use of codons AUA, UGA, AGA and AGG. 2. Many other differences have since been discovered, some in mitochondria of various phyla, others in bacteria, ciliated protozoa, algae and yeasts. 3. The original thesis that the code was universal and "frozen" depended on the precept that any mutational change in the code would be lethal, because it would produce widespread alterations in the amino acid sequences of proteins. Such changes would destroy protein function, and hence would be intolerable. 4. The objection was "by-passed" by nature. It is possible for a codon to disappear from mRNA molecules, often as a result of directional mutation pressure in DNA: thus all UGA stop codons can be replaced by UAA. 5. The missing UGA codon can then reappear when some UGG tryptophan codons mutate to UGA. The new UGA codons will be translated as tryptophan, as is the case in non-plant mitochondria and Mycoplasma. Therefore, no changes have taken place in the amino acid sequences of proteins. 6. Variations of this procedure have occurred, affecting various codons, and discoveries are still being made. The findings illustrate the evolutionary interplay between tRNA, release factors and codon-anticodon pairing.

  10. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction

    PubMed Central

    Weissberg, Itai; Wood, Lydia; Kamintsky, Lyn; Vazquez, Oscar; Milikovsky, Dan Z.; Alexander, Allyson; Oppenheim, Hannah; Ardizzone, Carolyn; Becker, Albert; Frigerio, Federica; Vezzani, Annamaria; Buckwalter, Marion S.; Huguenard, John; Friedman, Alon; Kaufer, Daniela

    2015-01-01

    Post injury epilepsy (PIE) is a common complication following brain insults, including ischemic and traumatic brain injuries. At present there are no means to identify the patients at-risk to develop PIE or to prevent its development. Seizures can occur months or years after the insult, do not respond to anti-seizure medications in over third of the patients, and are often associated with significant neuropsychiatric morbidities. We have previously established the critical role of blood-brain barrier dysfunction in PIE, demonstrating that exposure of brain tissue to extravasated serum albumin induces activation of inflammatory transforming growth factor beta (TGF-β) signaling in astrocytes and eventually seizures. However, the link between the acute astrocytic inflammatory responses and reorganization of neural networks that underlie recurrent spontaneous seizures, remains unknown. Here we demonstrate in-vitro and in-vivo that activation of the astrocytic ALK5/TGF-β-pathway induces excitatory, but not inhibitory, synaptogenesis that precedes the appearance of seizures. Moreover, we show that treatment with SJN2511, a specific ALK5/TGF-β inhibitor, prevents synaptogenesis and epilepsy. Our findings point to astrocyte-mediated synaptogenesis as a key epileptogenic process, and highlight manipulation of the TGF-β-pathway as a potential strategy for the prevention of PIE. PMID:25836421

  11. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction.

    PubMed

    Weissberg, Itai; Wood, Lydia; Kamintsky, Lyn; Vazquez, Oscar; Milikovsky, Dan Z; Alexander, Allyson; Oppenheim, Hannah; Ardizzone, Carolyn; Becker, Albert; Frigerio, Federica; Vezzani, Annamaria; Buckwalter, Marion S; Huguenard, John R; Friedman, Alon; Kaufer, Daniela

    2015-06-01

    Post-injury epilepsy (PIE) is a common complication following brain insults, including ischemic, and traumatic brain injuries. At present, there are no means to identify the patients at risk to develop PIE or to prevent its development. Seizures can occur months or years after the insult, do not respond to anti-seizure medications in over third of the patients, and are often associated with significant neuropsychiatric morbidities. We have previously established the critical role of blood-brain barrier dysfunction in PIE, demonstrating that exposure of brain tissue to extravasated serum albumin induces activation of inflammatory transforming growth factor beta (TGF-β) signaling in astrocytes and eventually seizures. However, the link between the acute astrocytic inflammatory responses and reorganization of neural networks that underlie recurrent spontaneous seizures remains unknown. Here we demonstrate in vitro and in vivo that activation of the astrocytic ALK5/TGF-β-pathway induces excitatory, but not inhibitory, synaptogenesis that precedes the appearance of seizures. Moreover, we show that treatment with SJN2511, a specific ALK5/TGF-β inhibitor, prevents synaptogenesis and epilepsy. Our findings point to astrocyte-mediated synaptogenesis as a key epileptogenic process and highlight the manipulation of the TGF-β-pathway as a potential strategy for the prevention of PIE.

  12. Occurrence of alk(en)ylresorcinols in the fruits of two mango (Mangifera indica L.) cultivars during on-tree maturation and postharvest storage.

    PubMed

    Kienzle, Stefanie; Carle, Reinhold; Sruamsiri, Pittaya; Tosta, Carola; Neidhart, Sybille

    2014-01-08

    Regarding their relevance for the fungal resistance of mangoes in long supply chains, the alk(en)ylresorcinols (AR) were quantitated in peel and mesocarp throughout storage (27 days, 14 °C, ethylene absorption). The 12 'Chok Anan' and 11 'Nam Dokmai #4' lots picked between 83 and 115 days after full bloom (DAFB) had different harvest maturity indices. The development of dry matter and fruit growth indicated physiological maturity ∼100 DAFB. During storage, all fruits ripened slowly, mostly until over-ripeness and visible decay. The total AR contents always ranged at 73 ± 4.5 and 6.4 ± 0.7 mg hg(-1) of 'Chok Anan' and 'Nam Dokmai #4' peel dry weight, respectively, but only at 6.7 ± 0.7 and 0.9 ± 0.1 mg hg(-1) for the corresponding mesocarp (P ≤ 0.05). These narrow concentration ranges were contradictory to the decreasing fungal resistance. Accordingly, the alk(en)ylresorcinols have not been a deciding factor for the fungal resistance.

  13. XSOR codes users manual

    SciTech Connect

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ``XSOR``. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms.

  14. DLLExternalCode

    SciTech Connect

    Greg Flach, Frank Smith

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read from files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.

  15. Defeating the coding monsters.

    PubMed

    Colt, Ross

    2007-02-01

    Accuracy in coding is rapidly becoming a required skill for military health care providers. Clinic staffing, equipment purchase decisions, and even reimbursement will soon be based on the coding data that we provide. Learning the complicated myriad of rules to code accurately can seem overwhelming. However, the majority of clinic visits in a typical outpatient clinic generally fall into two major evaluation and management codes, 99213 and 99214. If health care providers can learn the rules required to code a 99214 visit, then this will provide a 90% solution that can enable them to accurately code the majority of their clinic visits. This article demonstrates a step-by-step method to code a 99214 visit, by viewing each of the three requirements as a monster to be defeated.

  16. Differential expression of IGF-1 mRNA isoforms in colorectal carcinoma and normal colon tissue.

    PubMed

    Kasprzak, Aldona; Szaflarski, Witold; Szmeja, Jacek; Andrzejewska, Małgorzata; Przybyszewska, Wiesława; Kaczmarek, Elżbieta; Koczorowska, Maria; Kościński, Tomasz; Zabel, Maciej; Drews, Michał

    2013-01-01

    The insulin-like growth factor (IGF)-1 gene consists of 6 exons resulting in the expression of 6 variant forms of mRNA (IA, IB, IC, IIA, IIB and IIC) due to an alternative splicing. The mechanisms of IGF-1 gene splicing and the role of local expression manifested by IGF-1 mRNA variants in colorectal carcinoma (CRC) have not been extensively investigated. Therefore, the aim of our study was to analyse the expression of IGF-1 mRNA isoforms [A, B, C, P1 (class I) and P2 (class II)], as well as the protein expression in CRC and control samples isolated from 28 patients. The expression of Ki-67 was also analysed and clinical data were obtained. For this purpose, we used quantitative real-time PCR (qPCR) and immunocytochemistry. The expression of mRNAs coding for all splicing isoforms of IGF-1 was observed in every tissue sample studied, with a significantly lower expression noted in the CRC as compared to the control samples. The cytoplasmic expression of IGF-1 protein was found in 50% of the CRC and in ~40% of the non-tumor tissues; however, no significant quantitative inter-group differences were observed. The expression of the IGF-1 gene in the 2 groups of tissues was controlled by the P1 and P2 promoters in a similar manner. No significant differences were detected in the expression of the IGF-1 A and B isoforms; however, their expression was significantly higher compared to that of isoform C. No significant differences were observed between the expression of Ki-67 mRNA in the CRC and control tissue even though the expression of the Ki-67 protein was higher in the CRC compared to the control samples. Ki-67 protein expression was associated with the macroscopic and microscopic aspects of CRC. A significant positive correlation was found between the local production of total mRNA and isoform A and the expression of Ki-67 mRNA, although only in the non-tumor tissues. In CRC samples, the local expression of the total IGF-1 mRNA and all splicing isoforms of IGF-1 mRNA

  17. Assessment of translational importance of mammalian mRNA sequence features based on Ribo-Seq and mRNA-Seq data.

    PubMed

    Volkova, Oxana A; Kondrakhin, Yury V; Yevshin, Ivan S; Valeev, Tagir F; Sharipov, Ruslan N

    2016-04-01

    Ribosome profiling technology (Ribo-Seq) allowed to highlight more details of mRNA translation in cell and get additional information on importance of mRNA sequence features for this process. Application of translation inhibitors like harringtonine and cycloheximide along with mRNA-Seq technique helped to assess such important characteristic as translation efficiency. We assessed the translational importance of features of mRNA sequences with the help of statistical analysis of Ribo-Seq and mRNA-Seq data. Translationally important features known from literature as well as proposed by the authors were used in analysis. Such comparisons as protein coding versus non-coding RNAs and high- versus low-translated mRNAs were performed. We revealed a set of features that allowed to discriminate the compared categories of RNA. Significant relationships between mRNA features and efficiency of translation were also established.

  18. Characterization of a major late herpes simplex virus type 1 mRNA.

    PubMed

    Costa, R H; Devi, B G; Anderson, K P; Gaylord, B H; Wagner, E K

    1981-05-01

    A major, late 6-kilobase (6-kb) mRNa mapping in the large unique region of herpes simplex virus type 1 (HSV-1) was characterized by using two recombinant DNA clones, one containing EcoRI fragment G (0.190 to 0.30 map units) in lambda. WES.B (L. Enquist, M. Madden, P. Schiop-Stansly, and G. Vandl Woude, Science 203:541-544, 1979) and one containing HindIII fragment J (0.181 to 0.259 map units) in pBR322. This 6-kb mRNA had its 3' end to the left of 0.231 on the prototypical arrangement of the HSV-1 genome and was transcribed from right to left. It was bounded on both sides by regions containing a large number of distinct mRNA species, and its 3' end was partially colinear with a 1.5-kb mRNA which encoded a 35,000-dalton polypeptide. The 6-kb mRNA encoded a 155,000-dalton polypeptide which was shown to be the only one of this size detectable by hybrid-arrested translation encoded by late polyadenylated polyribosomal RNA. The S1 nuclease mapping experiments indicated that there were no introns in the coding sequence for this mRNA and that its 3' end mapped approximately 800 nucleotides to the left of the BglII site at 0.231, whereas its 5' end extended very close to the BamHI site at 0.266.

  19. Identification of a Functionally Distinct Truncated BDNF mRNA Splice Variant and Protein in Trachemys scripta elegans

    PubMed Central

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein. PMID:23825634

  20. Mechanical code comparator

    DOEpatents

    Peter, Frank J.; Dalton, Larry J.; Plummer, David W.

    2002-01-01

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  1. More box codes

    NASA Technical Reports Server (NTRS)

    Solomon, G.

    1992-01-01

    A new investigation shows that, starting from the BCH (21,15;3) code represented as a 7 x 3 matrix and adding a row and column to add even parity, one obtains an 8 x 4 matrix (32,15;8) code. An additional dimension is obtained by specifying odd parity on the rows and even parity on the columns, i.e., adjoining to the 8 x 4 matrix, the matrix, which is zero except for the fourth column (of all ones). Furthermore, any seven rows and three columns will form the BCH (21,15;3) code. This box code has the same weight structure as the quadratic residue and BCH codes of the same dimensions. Whether there exists an algebraic isomorphism to either code is as yet unknown.

  2. Generating code adapted for interlinking legacy scalar code and extended vector code

    DOEpatents

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  3. Heterogeneous expression of protein and mRNA in pyruvate dehydrogenase deficiency.

    PubMed Central

    Wexler, I D; Kerr, D S; Ho, L; Lusk, M M; Pepin, R A; Javed, A A; Mole, J E; Jesse, B W; Thekkumkara, T J; Pons, G

    1988-01-01

    Deficiency of pyruvate dehydrogenase [pyruvate:lipoamide 2-oxidoreductase (decarboxylating and acceptor-acetylating), EC 1.2.4.1], the first component of the pyruvate dehydrogenase complex, is associated with lactic acidosis and central nervous system dysfunction. Using both specific antibodies to pyruvate dehydrogenase and cDNAs coding for its two alpha and beta subunits, we characterized pyruvate dehydrogenase deficiency in 11 patients. Three different patterns were found on immunologic and RNA blot analyses. (i) Seven patients had immunologically detectable crossreactive material for the alpha and beta proteins of pyruvate dehydrogenase. (ii) Two patients had no detectable crossreactive protein for either the alpha or beta subunit but had normal amounts of mRNA for both alpha and beta subunits. (iii) The remaining two patients also had no detectable crossreactive protein but had diminished amounts of mRNA for the alpha subunit of pyruvate dehydrogenase only. These results indicate that loss of pyruvate dehydrogenase activity may be associated with either absent or catalytically inactive proteins, and in those cases in which this enzyme is absent, mRNA for one of the subunits may also be missing. When mRNA for one of the subunits is lacking, both protein subunits are absent, suggesting that a mutation affecting the expression of one of the subunit proteins causes the remaining uncomplexed subunit to be unstable. The results show that several different mutations account for the molecular heterogeneity of pyruvate dehydrogenase deficiency. Images PMID:3140238

  4. N6-methyladenosine in mRNA disrupts tRNA selection and translation elongation dynamics

    PubMed Central

    Choi, Junhong; Ieong, Ka-Weng; Demirci, Hasan; Chen, Jin; Petrov, Alexey; Prabhakar, Arjun; O'Leary, Seán E.; Dominissini, Dan; Rechavi, Gideon; Soltis, S. Michael; Ehrenberg, Måns

    2016-01-01

    N6-methylation of adenosine (m6A) is the most abundant post-transcriptional modification within the coding region of mRNA, but its role during translation remains unknown. Here, we used bulk kinetic and single-molecule methods to probe the effect of m6A in mRNA decoding. Although m6A base pairs with uridine during decoding as shown by x-ray crystallographic analyses of Thermus thermophilus ribosomal complexes, our measurements employing an Escherichia coli translation system revealed that m6A modification of mRNA can act as a barrier to tRNA accommodation and translation elongation. The interaction between an m6A-modified codon and cognate tRNA echoes the interaction between a near-cognate codon and tRNA, as delay in tRNA accommodation depends on the position and context of m6A within codons and on the accuracy level of translation. Overall, our results demonstrate that chemical modification of mRNA can change translational dynamics. PMID:26751643

  5. Intronless mRNA transport elements may affect multiple steps of pre-mRNA processing.

    PubMed Central

    Huang, Y; Wimler, K M; Carmichael, G G

    1999-01-01

    We have reported recently that a small element within the mouse histone H2a-coding region permits efficient cytoplasmic accumulation of intronless beta-globin cDNA transcripts. This sequence lowers the levels of spliced products from intron-containing constructs and can functionally replace Rev and the Rev-responsive element (RRE) in the nuclear export of unspliced HIV-1-related mRNAs. In work reported here, we further investigate the molecular mechanisms by which this element might work. We demonstrate here through both in vivo and in vitro assays that, in addition to promoting mRNA nuclear export, this element acts as a polyadenylation enhancer and as a potent inhibitor of splicing. Surprisingly, two other described intronless mRNA transport elements (from the herpes simplex virus thymidine kinase gene and hepatitis B virus) appear to function in a similar manner. These findings prompt us to suggest that a general feature of intronless mRNA transport elements might be a collection of phenotypes, including the inhibition of splicing and the enhancement of both polyadenylation and mRNA export. PMID:10075934

  6. Industrial Computer Codes

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur

    1996-01-01

    This is an overview of new and updated industrial codes for seal design and testing. GCYLT (gas cylindrical seals -- turbulent), SPIRALI (spiral-groove seals -- incompressible), KTK (knife to knife) Labyrinth Seal Code, and DYSEAL (dynamic seal analysis) are covered. CGYLT uses G-factors for Poiseuille and Couette turbulence coefficients. SPIRALI is updated to include turbulence and inertia, but maintains the narrow groove theory. KTK labyrinth seal code handles straight or stepped seals. And DYSEAL provides dynamics for the seal geometry.

  7. Phonological coding during reading

    PubMed Central

    Leinenger, Mallorie

    2014-01-01

    The exact role that phonological coding (the recoding of written, orthographic information into a sound based code) plays during silent reading has been extensively studied for more than a century. Despite the large body of research surrounding the topic, varying theories as to the time course and function of this recoding still exist. The present review synthesizes this body of research, addressing the topics of time course and function in tandem. The varying theories surrounding the function of phonological coding (e.g., that phonological codes aid lexical access, that phonological codes aid comprehension and bolster short-term memory, or that phonological codes are largely epiphenomenal in skilled readers) are first outlined, and the time courses that each maps onto (e.g., that phonological codes come online early (pre-lexical) or that phonological codes come online late (post-lexical)) are discussed. Next the research relevant to each of these proposed functions is reviewed, discussing the varying methodologies that have been used to investigate phonological coding (e.g., response time methods, reading while eyetracking or recording EEG and MEG, concurrent articulation) and highlighting the advantages and limitations of each with respect to the study of phonological coding. In response to the view that phonological coding is largely epiphenomenal in skilled readers, research on the use of phonological codes in prelingually, profoundly deaf readers is reviewed. Finally, implications for current models of word identification (activation-verification model (Van Order, 1987), dual-route model (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001), parallel distributed processing model (Seidenberg & McClelland, 1989)) are discussed. PMID:25150679

  8. Tokamak Systems Code

    SciTech Connect

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  9. Topological subsystem codes

    SciTech Connect

    Bombin, H.

    2010-03-15

    We introduce a family of two-dimensional (2D) topological subsystem quantum error-correcting codes. The gauge group is generated by two-local Pauli operators, so that two-local measurements are enough to recover the error syndrome. We study the computational power of code deformation in these codes and show that boundaries cannot be introduced in the usual way. In addition, we give a general mapping connecting suitable classical statistical mechanical models to optimal error correction in subsystem stabilizer codes that suffer from depolarizing noise.

  10. FAA Smoke Transport Code

    SciTech Connect

    Domino, Stefan; Luketa-Hanlin, Anay; Gallegos, Carlos

    2006-10-27

    FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a code obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.

  11. Transonic airfoil codes

    NASA Technical Reports Server (NTRS)

    Garabedian, P. R.

    1979-01-01

    Computer codes for the design and analysis of transonic airfoils are considered. The design code relies on the method of complex characteristics in the hodograph plane to construct shockless airfoil. The analysis code uses artificial viscosity to calculate flows with weak shock waves at off-design conditions. Comparisons with experiments show that an excellent simulation of two dimensional wind tunnel tests is obtained. The codes have been widely adopted by the aircraft industry as a tool for the development of supercritical wing technology.

  12. The translation initiation factor DAP5 promotes IRES-driven translation of p53 mRNA.

    PubMed

    Weingarten-Gabbay, S; Khan, D; Liberman, N; Yoffe, Y; Bialik, S; Das, S; Oren, M; Kimchi, A

    2014-01-30

    Translational regulation of the p53 mRNA can determine the ratio between p53 and its N-terminal truncated isoforms and therefore has a significant role in determining p53-regulated signaling pathways. Although its importance in cell fate decisions has been demonstrated repeatedly, little is known about the regulatory mechanisms that determine this ratio. Two internal ribosome entry sites (IRESs) residing within the 5'UTR and the coding sequence of p53 mRNA drive the translation of full-length p53 and Δ40p53 isoform, respectively. Here, we report that DAP5, a translation initiation factor shown to positively regulate the translation of various IRES containing mRNAs, promotes IRES-driven translation of p53 mRNA. Upon DAP5 depletion, p53 and Δ40p53 protein levels were decreased, with a greater effect on the N-terminal truncated isoform. Functional analysis using bicistronic vectors driving the expression of a reporter gene from each of these two IRESs indicated that DAP5 preferentially promotes translation from the second IRES residing in the coding sequence. Furthermore, p53 mRNA expressed from a plasmid carrying this second IRES was selectively shifted to lighter polysomes upon DAP5 knockdown. Consequently, Δ40p53 protein levels and the subsequent transcriptional activation of the 14-3-3σ gene, a known target of Δ40p53, were strongly reduced. In addition, we show here that DAP5 interacts with p53 IRES elements in in vitro and in vivo binding studies, proving for the first time that DAP5 directly binds a target mRNA. Thus, through its ability to regulate IRES-dependent translation of the p53 mRNA, DAP5 may control the ratio between different p53 isoforms encoded by a single mRNA.

  13. Vitamin D and the RNA transcriptome: more than mRNA regulation

    PubMed Central

    Campbell, Moray J.

    2014-01-01

    The GRCh37.p13 primary assembly of the human genome contains 20805 protein coding mRNA, and 37147 non-protein coding genes and pseudogenes that as a result of RNA processing and editing generate 196501 gene transcripts. Given the size and diversity of the human transcriptome, it is timely to revisit what is known of VDR function in the regulation and targeting of transcription. Early transcriptomic studies using microarray approaches focused on the protein coding mRNA that were regulated by the VDR, usually following treatment with ligand. These studies quickly established the approximate size, and surprising diversity of the VDR transcriptome, revealing it to be highly heterogenous and cell type and time dependent. With the discovery of microRNA, investigators also considered VDR regulation of these non-protein coding RNA. Again, cell and time dependency has emerged. Attempts to integrate mRNA and miRNA regulation patterns are beginning to reveal patterns of co-regulation and interaction that allow for greater control of mRNA expression, and the capacity to govern more complex cellular events. As the awareness of the diversity of non-coding RNA increases, it is increasingly likely it will be revealed that VDR actions are mediated through these molecules also. Key knowledge gaps remain over the VDR transcriptome. The causes for the cell and type dependent transcriptional heterogenetiy remain enigmatic. ChIP-Seq approaches have confirmed that VDR binding choices differ very significantly by cell type, but as yet the underlying causes distilling VDR binding choices are unclear. Similarly, it is clear that many of the VDR binding sites are non-canonical in nature but again the mechanisms underlying these interactions are unclear. Finally, although alternative splicing is clearly a very significant process in cellular transcriptional control, the lack of RNA-Seq data centered on VDR function are currently limiting the global assessment of the VDR transcriptome. VDR

  14. Bio—Cryptography: A Possible Coding Role for RNA Redundancy

    NASA Astrophysics Data System (ADS)

    Regoli, M.

    2009-03-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. The RNA sequences have some sections called Introns. Introns, derived from the term "intragenic regions," are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behavior in the access to the secret key to code the messages. In the RNA-Crypto System algorithm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  15. Pharmacologic study (JP28927) of alectinib in Japanese patients with ALK+ non-small-cell lung cancer with or without prior crizotinib therapy.

    PubMed

    Hida, Toyoaki; Nakagawa, Kazuhiko; Seto, Takashi; Satouchi, Miyako; Nishio, Makoto; Hotta, Katsuyuki; Takahashi, Toshiaki; Ohe, Yuichiro; Takeda, Koji; Tatsuno, Masahiro; Asakawa, Takashi; Shimada, Tadashi; Tanaka, Tomohiro; Tamura, Tomohide

    2016-11-01

    We report pharmacokinetics, efficacy and safety data for a new 150-mg alectinib capsule in ALK+ non-small-cell lung cancer in a multicenter, open-label pharmacologic study (JP28927). Eligible patients (≥20 years, locally advanced/metastatic ALK+ disease, ALK inhibitor-naïve and -pretreated [including crizotinib refractory]) were randomized 1:1 to receive one of two sequences of alectinib 300 mg twice daily (comprising different schedules of 20/40-mg and 150-mg capsules) until investigator-determined lack of clinical benefit. Co-primary endpoints were: bioequivalence of alectinib 20/40 mg vs 150 mg; food effect with 150 mg; and safety. Thirty-five patients were enrolled; median treatment duration was 13.1 months (range 1.1-15.0). Under fasting conditions, exposure of the two formulations was similar; mean AUClast  ± standard deviation 3230 ± 914 h·ng/mL vs 3710 ± 1040 h·ng/mL, respectively, for 150-mg vs 20/40-mg capsules. Food effect with 150 mg alectinib was negligible. Treatment-related adverse events in >20% of patients were constipation (31.4%), dysgeusia (25.7%), and decreased white blood cell and neutrophil count (22.9% each). No treatment-related grade 4/5 events occurred. Median time to response was 1.2 months (95% CI 1.1-2.1). For the full analysis set (n = 35) and crizotinib-failure subpopulations (n = 23), the overall response rate was 70.0% (95% CI 50.6-85.3) and 65.0% (95% CI 40.8-84.6), and median progression-free survival was 13.9 months (95% CI 11.1-not reached) and 12.9 months (95% CI 3.9-not reached), respectively. The 150-mg capsule had a similar exposure profile to 20/40-mg capsules. Alectinib demonstrated promising efficacy and was well tolerated.

  16. Pooled Analysis of CNS Response to Alectinib in Two Studies of Pretreated Patients With ALK-Positive Non-Small-Cell Lung Cancer.

    PubMed

    Gadgeel, Shirish M; Shaw, Alice T; Govindan, Ramaswamy; Gandhi, Leena; Socinski, Mark A; Camidge, D Ross; De Petris, Luigi; Kim, Dong-Wan; Chiappori, Alberto; Moro-Sibilot, Denis L; Duruisseaux, Michael; Crino, Lucio; De Pas, Tommaso; Dansin, Eric; Tessmer, Antje; Yang, James Chih-Hsin; Han, Ji-Youn; Bordogna, Walter; Golding, Sophie; Zeaiter, Ali; Ou, Sai-Hong Ignatius

    2016-12-01

    Purpose Alectinib has shown activity in the CNS in phase I and II studies. To further evaluate this activity, we pooled efficacy and safety data from two single-arm phase II studies (NP28761 and NP28673; ClinicalTrials.gov identifiers: NCT01871805 and NCT01801111, respectively) in patients with ALK-positive non-small-cell lung cancer (NSCLC). Patients and Methods Both studies included patients with ALK-positive NSCLC who had previously received crizotinib; all patients received alectinib 600 mg twice per day. The primary end point in both studies was independent review committee (IRC)-assessed objective response rate (ORR; by Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1). Additional end points (all by IRC) included CNS ORR (CORR), CNS disease control rate (CDCR), and CNS duration of response (CDOR). Results One hundred thirty-six patients had baseline CNS metastases (60% of the overall study populations); 50 patients (37%) had measurable CNS disease at baseline. Ninety-five patients (70%) had prior CNS radiotherapy; 55 patients completed the CNS radiotherapy more than 6 months before starting alectinib. Median follow-up time was 12.4 months (range, 0.9 to 19.7 months). For patients with baseline measurable CNS disease, IRC CORR was 64.0% (95% CI, 49.2% to 77.1%), CDCR was 90.0% (95% CI, 78.2% to 96.7%), and median CDOR was 10.8 months (95% CI, 7.6 to 14.1 months). For patients with measurable and/or nonmeasurable baseline CNS disease, IRC CORR was 42.6% (95% CI, 34.2% to 51.4%), CDCR was 85.3% (95% CI, 78.2% to 90.8%), and median CDOR was 11.1 months (95% CI, 10.3 months to not evaluable). CORR was 35.8% (95% CI, 26.2% to 46.3%) for patients with prior radiotherapy (n = 95) and 58.5% (95% CI, 42.1% to 73.7%) for patients without prior radiotherapy (n = 41). As previously reported, alectinib was well tolerated, regardless of baseline CNS disease. Conclusion Alectinib showed good efficacy against CNS metastases, in addition to systemic activity

  17. Exclusion of exon 2 is a common mRNA splice variant of primate telomerase reverse transcriptases.

    PubMed

    Withers, Johanna B; Ashvetiya, Tamara; Beemon, Karen L

    2012-01-01

    Telomeric sequences are added by an enzyme called telomerase that is made of two components: a catalytic protein called telomerase reverse transcriptase (TERT) and an integral RNA template (TR). Telomerase expression is tightly regulated at each step of gene expression, including alternative splicing of TERT mRNA. While over a dozen different alternative splicing events have been reported for human TERT mRNA, these were all in the 3' half of the coding region. We were interested in examining splicing of the 5' half of hTERT mRNA, especially since exon 2 is unusually large (1.3 kb). Internal mammalian exons are usually short, typically only 50 to 300 nucleotides, and most long internal exons are alternatively processed. We used quantitative RT-PCR and high-throughput sequencing data to examine the variety and quantity of mRNA species generated from the hTERT locus. We determined that there are approximately 20-40 molecules of hTERT mRNA per cell in the A431 human cell line. In addition, we describe an abundant, alternatively-spliced mRNA variant that excludes TERT exon 2 and was seen in other primates. This variant causes a frameshift and results in translation termination in exon 3, generating a 12 kDa polypeptide.

  18. Fast Coding Unit Encoding Mechanism for Low Complexity Video Coding

    PubMed Central

    Wu, Yueying; Jia, Kebin; Gao, Guandong

    2016-01-01

    In high efficiency video coding (HEVC), coding tree contributes to excellent compression performance. However, coding tree brings extremely high computational complexity. Innovative works for improving coding tree to further reduce encoding time are stated in this paper. A novel low complexity coding tree mechanism is proposed for HEVC fast coding unit (CU) encoding. Firstly, this paper makes an in-depth study of the relationship among CU distribution, quantization parameter (QP) and content change (CC). Secondly, a CU coding tree probability model is proposed for modeling and predicting CU distribution. Eventually, a CU coding tree probability update is proposed, aiming to address probabilistic model distortion problems caused by CC. Experimental results show that the proposed low complexity CU coding tree mechanism significantly reduces encoding time by 27% for lossy coding and 42% for visually lossless coding and lossless coding. The proposed low complexity CU coding tree mechanism devotes to improving coding performance under various application conditions. PMID:26999741

  19. Fast Coding Unit Encoding Mechanism for Low Complexity Video Coding.

    PubMed

    Gao, Yuan; Liu, Pengyu; Wu, Yueying; Jia, Kebin; Gao, Guandong

    2016-01-01

    In high efficiency video coding (HEVC), coding tree contributes to excellent compression performance. However, coding tree brings extremely high computational complexity. Innovative works for improving coding tree to further reduce encoding time are stated in this paper. A novel low complexity coding tree mechanism is proposed for HEVC fast coding unit (CU) encoding. Firstly, this paper makes an in-depth study of the relationship among CU distribution, quantization parameter (QP) and content change (CC). Secondly, a CU coding tree probability model is proposed for modeling and predicting CU distribution. Eventually, a CU coding tree probability update is proposed, aiming to address probabilistic model distortion problems caused by CC. Experimental results show that the proposed low complexity CU coding tree mechanism significantly reduces encoding time by 27% for lossy coding and 42% for visually lossless coding and lossless coding. The proposed low complexity CU coding tree mechanism devotes to improving coding performance under various application conditions.

  20. Messenger RNA (mRNA) nanoparticle tumour vaccination

    NASA Astrophysics Data System (ADS)

    Phua, Kyle K. L.; Nair, Smita K.; Leong, Kam W.

    2014-06-01

    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA's biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research.

  1. Dress Codes for Teachers?

    ERIC Educational Resources Information Center

    Million, June

    2004-01-01

    In this article, the author discusses an e-mail survey of principals from across the country regarding whether or not their school had a formal staff dress code. The results indicate that most did not have a formal dress code, but agreed that professional dress for teachers was not only necessary, but showed respect for the school and had a…

  2. Lichenase and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2000-08-15

    The present invention provides a fungal lichenase, i.e., an endo-1,3-1,4-.beta.-D-glucanohydrolase, its coding sequence, recombinant DNA molecules comprising the lichenase coding sequences, recombinant host cells and methods for producing same. The present lichenase is from Orpinomyces PC-2.

  3. Legacy Code Modernization

    NASA Technical Reports Server (NTRS)

    Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.

  4. Synthesizing Certified Code

    NASA Technical Reports Server (NTRS)

    Whalen, Michael; Schumann, Johann; Fischer, Bernd

    2002-01-01

    Code certification is a lightweight approach to demonstrate software quality on a formal level. Its basic idea is to require producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates which can be checked independently. Since code certification uses the same underlying technology as program verification, it also requires many detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding theses annotations to the code is time-consuming and error-prone. We address this problem by combining code certification with automatic program synthesis. We propose an approach to generate simultaneously, from a high-level specification, code and all annotations required to certify generated code. Here, we describe a certification extension of AUTOBAYES, a synthesis tool which automatically generates complex data analysis programs from compact specifications. AUTOBAYES contains sufficient high-level domain knowledge to generate detailed annotations. This allows us to use a general-purpose verification condition generator to produce a set of proof obligations in first-order logic. The obligations are then discharged using the automated theorem E-SETHEO. We demonstrate our approach by certifying operator safety for a generated iterative data classification program without manual annotation of the code.

  5. Coding Acoustic Metasurfaces.

    PubMed

    Xie, Boyang; Tang, Kun; Cheng, Hua; Liu, Zhengyou; Chen, Shuqi; Tian, Jianguo

    2017-02-01

    Coding acoustic metasurfaces can combine simple logical bits to acquire sophisticated functions in wave control. The acoustic logical bits can achieve a phase difference of exactly π and a perfect match of the amplitudes for the transmitted waves. By programming the coding sequences, acoustic metasurfaces with various functions, including creating peculiar antenna patterns and waves focusing, have been demonstrated.

  6. Computerized mega code recording.

    PubMed

    Burt, T W; Bock, H C

    1988-04-01

    A system has been developed to facilitate recording of advanced cardiac life support mega code testing scenarios. By scanning a paper "keyboard" using a bar code wand attached to a portable microcomputer, the person assigned to record the scenario can easily generate an accurate, complete, timed, and typewritten record of the given situations and the obtained responses.

  7. Pseudonoise code tracking loop

    NASA Technical Reports Server (NTRS)

    Laflame, D. T. (Inventor)

    1980-01-01

    A delay-locked loop is presented for tracking a pseudonoise (PN) reference code in an incoming communication signal. The loop is less sensitive to gain imbalances, which can otherwise introduce timing errors in the PN reference code formed by the loop.

  8. Evolving genetic code

    PubMed Central

    OHAMA, Takeshi; INAGAKI, Yuji; BESSHO, Yoshitaka; OSAWA, Syozo

    2008-01-01

    In 1985, we reported that a bacterium, Mycoplasma capricolum, used a deviant genetic code, namely UGA, a “universal” stop codon, was read as tryptophan. This finding, together with the deviant nuclear genetic codes in not a few organisms and a number of mitochondria, shows that the genetic code is not universal, and is in a state of evolution. To account for the changes in codon meanings, we proposed the codon capture theory stating that all the code changes are non-disruptive without accompanied changes of amino acid sequences of proteins. Supporting evidence for the theory is presented in this review. A possible evolutionary process from the ancient to the present-day genetic code is also discussed. PMID:18941287

  9. Combustion chamber analysis code

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Lai, Y. G.; Krishnan, A.; Avva, R. K.; Giridharan, M. G.

    1993-01-01

    A three-dimensional, time dependent, Favre averaged, finite volume Navier-Stokes code has been developed to model compressible and incompressible flows (with and without chemical reactions) in liquid rocket engines. The code has a non-staggered formulation with generalized body-fitted-coordinates (BFC) capability. Higher order differencing methodologies such as MUSCL and Osher-Chakravarthy schemes are available. Turbulent flows can be modeled using any of the five turbulent models present in the code. A two-phase, two-liquid, Lagrangian spray model has been incorporated into the code. Chemical equilibrium and finite rate reaction models are available to model chemically reacting flows. The discrete ordinate method is used to model effects of thermal radiation. The code has been validated extensively against benchmark experimental data and has been applied to model flows in several propulsion system components of the SSME and the STME.

  10. Nodal anaplastic large-cell lymphoma ALK-1- with CD30+ cutaneous lymphoproliferation treated with mistletoe: spontaneous remission or treatment response?

    PubMed

    Kameda, G; Kempf, W; Oschlies, I; Michael, K; Seifert, G; Längler, A

    2011-11-01

    A 12-year old girl presented with general weakness and weight loss, a localised cervical lymph node enlargement and cutaneous lesions compatible with lymphomatoid papulosis (LyP). Biopsies from lymph node and skin revealed a histological diagnosis of nodal large cell ALK-1- anaplastic lymphoma (ALCL) with a synchronous CD30+ cutaneous lymphoproliferation consistent with lymphomatoid papulosis (LyP). The girl was treated with mistletoe (MT) as monotherapy. Within 1 week after initiation of MT-treatment the skin lesions and lymph node enlargement improved. Under continuing MT-therapy 30 months after diagnosis the patient is still in complete remission. It is not possible to know whether this was a rare case of spontaneous remission of the nodal and skin-manifestations of this CD30+ T-cell lymphoproliferation or whether the observed effect was a specific therapeutic response to MT-treatment.

  11. Enhanced translational efficiency of a novel transforming growth factor beta 3 mRNA in human breast cancer cells.

    PubMed Central

    Arrick, B A; Grendell, R L; Griffin, L A

    1994-01-01

    The mRNA for transforming growth factor beta 3 (TGF-beta 3) includes a long (1.1-kb) 5' noncoding region which exerts a potent inhibitory effect on translational efficiency. We now report that many human breast cancer cell lines (T47-D, SK-BR-3, ZR-75-1, and BT-474) express two mRNA species for TGF-beta 3: the 3.5-kb transcript previously described as the only TGF-beta 3 mRNA species in cells and a novel 2.6-kb transcript which lacks approximately 870 nucleotides from the 5' noncoding region. The 5' end of the shorter transcript was sequenced, establishing it to be a 5' truncation of the full-length TGF-beta 3 transcript. Estradiol decreased mRNA levels of both TGF-beta 3 mRNA transcripts to an equivalent degree in estrogen receptor-positive cells. In contrast, the synthetic progestin gestodene altered the relative abundance of the two transcripts, preferentially diminishing the expression of the 2.6-kb transcript. The potential for enhanced mRNA translation attributable to the shorter 5' noncoding region was evaluated by transfection of cells with chimeric plasmid constructs in which the transcription unit consisted of coding sequence for chloramphenicol acetyltransferase downstream of the 5' noncoding sequence from TGF-beta 3. The translational efficiency of chloramphenicol acetyltransferase-encoding mRNA containing the shorter 5' noncoding region of the 2.6-kb TGF-beta 3 transcript was approximately seven times greater than with the full-length 5' noncoding region of TGF-beta 3. Polysome analysis of TGF-beta 3 mRNA in SK-BR-3 cells supported the hypothesis that the 2.6-kb transcript was more actively engaged in translation. Images PMID:8264630

  12. Annotation of the Protein Coding Regions of the Equine Genome.

    PubMed

    Hestand, Matthew S; Kalbfleisch, Theodore S; Coleman, Stephen J; Zeng, Zheng; Liu, Jinze; Orlando, Ludovic; MacLeod, James N

    2015-01-01

    Current gene annotation of the horse genome is largely derived from in silico predictions and cross-species alignments. Only a small number of genes are annotated based on equine EST and mRNA sequences. To expand the number of equine genes annotated from equine experimental evidence, we sequenced mRNA from a pool of forty-three different tissues. From these, we derived the structures of 68,594 transcripts. In addition, we identified 301,829 positions with SNPs or small indels within these transcripts relative to EquCab2. Interestingly, 780 variants extend the open reading frame of the transcript and appear to be small errors in the equine reference genome, since they are also identified as homozygous variants by genomic DNA resequencing of the reference horse. Taken together, we provide a resource of equine mRNA structures and protein coding variants that will enhance equine and cross-species transcriptional and genomic comparisons.

  13. Annotation of the Protein Coding Regions of the Equine Genome

    PubMed Central

    Hestand, Matthew S.; Kalbfleisch, Theodore S.; Coleman, Stephen J.; Zeng, Zheng; Liu, Jinze; Orlando, Ludovic; MacLeod, James N.

    2015-01-01

    Current gene annotation of the horse genome is largely derived from in silico predictions and cross-species alignments. Only a small number of genes are annotated based on equine EST and mRNA sequences. To expand the number of equine genes annotated from equine experimental evidence, we sequenced mRNA from a pool of forty-three different tissues. From these, we derived the structures of 68,594 transcripts. In addition, we identified 301,829 positions with SNPs or small indels within these transcripts relative to EquCab2. Interestingly, 780 variants extend the open reading frame of the transcript and appear to be small errors in the equine reference genome, since they are also identified as homozygous variants by genomic DNA resequencing of the reference horse. Taken together, we provide a resource of equine mRNA structures and protein coding variants that will enhance equine and cross-species transcriptional and genomic comparisons. PMID:26107351

  14. Mammalian nonsense codons can be cis effectors of nuclear mRNA half-life.

    PubMed Central

    Belgrader, P; Cheng, J; Zhou, X; Stephenson, L S; Maquat, L E

    1994-01-01

    Frameshift and nonsense mutations within the gene for human triosephosphate isomerase (TPI) that generate a nonsense codon within the first three-fourths of the protein coding region have been found to reduce the abundance of the product mRNA that copurifies with nuclei. The cellular process and location of the nonsense codon-mediated reduction have proven difficult to elucidate for technical reasons. We show here, using electron microscopy to judge the purity of isolated nuclei, that the previously established reduction to 25% of the normal mRNA level is evident for nuclei that are free of detectable cytoplasmic contamination. Therefore, the reduction is likely to be characteristic of bona fide nuclear RNA. Fully spliced nuclear mRNA is identified by Northern (RNA) blot hybridization and a reverse transcription-PCR assay as the species that undergoes decay in experiments that used the human c-fos promoter to elicit a burst and subsequent shutoff of TPI gene transcription upon the addition of serum to serum-deprived cells. Finally, the finding that deletion of a 5' splice site of the TPI gene results predominantly but not exclusively in the removal by splicing (i.e., skipping) of the upstream exon as a part of the flanking introns has been used to demonstrate that decay is specific to those mRNA products that maintain the nonsense codon. This result, together with our previous results that implicate translation by ribosomes and charged tRNAs in the decay mechanism, indicate that nonsense codon recognition takes place after splicing and triggers decay solely in cis. The possibility that decay takes place during the process of mRNA export from the nucleus to the cytoplasm is discussed. Images PMID:7969159

  15. Constitutive and allergen-induced expression of eotaxin mRNA in the guinea pig lung

    PubMed Central

    1995-01-01

    Eotaxin is a member of the C-C family of chemokines and is related during antigen challenge in a guinea pig model of allergic airway inflammation (asthma). Consistent with its putative role in eosinophilic inflammation, eotaxin induces the selective infiltration of eosinophils when injected into the lung and skin. Using a guinea pig lung cDNA library, we have cloned full-length eotaxin cDNA. The cDNA encodes a protein of 96 amino acids, including a putative 23-amino acid hydrophobic leader sequence, followed by 73 amino acids composing the mature active eotaxin protein. The protein-coding region of this cDNA is 73, 71, 50, and 48% identical in nucleic acid sequence to those of human macrophage chemoattractant protein (MCP) 3, MCP-1, macrophage inflammatory protein (MIP) 1 alpha, and RANTES, respectively. Analysis of genomic DNA suggested that there is a single eotaxin gene in guinea pig which is apparently conserved in mice. High constitutive levels of eotaxin mRNA expression were observed in the lung, while the intestines, stomach, spleen, liver, heart, thymus, testes, and kidney expressed lower levels. To determine if eotaxin mRNA levels are elevated during allergen-induced eosinophilic airway inflammation, ovalbumin (OVA)-sensitized guinea pigs were challenged with aerosolized antigen. Compared with the lungs from saline-challenged animals, eotaxin mRNA levels increased sixfold within 3 h and returned to baseline by 6 h. Thus, eotaxin mRNA levels are increased in response to allergen challenge during the late phase response. The identification of constitutive eotaxin mRNA expression in multiple tissues suggests that in addition to regulating airway eosinophilia, eotaxin is likely to be involved in eosinophil recruitment into other tissues as well as in baseline tissue homing. PMID:7869037

  16. Pyramid image codes

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1990-01-01

    All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.

  17. Report number codes

    SciTech Connect

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  18. Embedded foveation image coding.

    PubMed

    Wang, Z; Bovik, A C

    2001-01-01

    The human visual system (HVS) is highly space-variant in sampling, coding, processing, and understanding. The spatial resolution of the HVS is highest around the point of fixation (foveation point) and decreases rapidly with increasing eccentricity. By taking advantage of this fact, it is possible to remove considerable high-frequency information redundancy from the peripheral regions and still reconstruct a perceptually good quality image. Great success has been obtained previously by a class of embedded wavelet image coding algorithms, such as the embedded zerotree wavelet (EZW) and the set partitioning in hierarchical trees (SPIHT) algorithms. Embedded wavelet coding not only provides very good compression performance, but also has the property that the bitstream can be truncated at any point and still be decoded to recreate a reasonably good quality image. In this paper, we propose an embedded foveation image coding (EFIC) algorithm, which orders the encoded bitstream to optimize foveated visual quality at arbitrary bit-rates. A foveation-based image quality metric, namely, foveated wavelet image quality index (FWQI), plays an important role in the EFIC system. We also developed a modified SPIHT algorithm to improve the coding efficiency. Experiments show that EFIC integrates foveation filtering with foveated image coding and demonstrates very good coding performance and scalability in terms of foveated image quality measurement.

  19. Sequences controlling histone H4 mRNA abundance.

    PubMed Central

    Capasso, O; Bleecker, G C; Heintz, N

    1987-01-01

    The post-transcriptional regulation of histone mRNA abundance is manifest both by accumulation of histone mRNA during the S phase, and by the rapid degradation of mature histone mRNA following the inhibition of DNA synthesis. We have constructed a comprehensive series of substitution mutants within a human H4 histone gene, introduced them into the mouse L cell genome, and analyzed their effects on the post-transcriptional control of the H4 mRNA. Our results demonstrate that most of the H4 mRNA is dispensable for proper regulation of histone mRNA abundance. However, recognition of the 3' terminus of the mature H4 mRNA is critically important for regulating its cytoplasmic half-life. Thus, this region of the mRNA functions both in the nucleus as a signal for proper processing of the mRNA terminus, and in the cytoplasm as an essential element in the control of mRNA stability. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3608993

  20. Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein

    SciTech Connect

    Rozenblatt, S.; Eizenberg, O.; Englund, G.; Bellini, W.J.

    1985-02-01

    Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, /sup 32/P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1500, 1850, 1850 and 2500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV.

  1. DNA: Polymer and molecular code

    NASA Astrophysics Data System (ADS)

    Shivashankar, G. V.

    1999-10-01

    gene expression a prime example of a biological code. We developed a novel method of making DNA micro- arrays, the so-called DNA chip. Using the optical tweezer concept, we were able to pattern biomolecules on a solid substrate, developing a new type of sub-micron laser lithography. A laser beam is focused onto a thin gold film on a glass substrate. Laser ablation of gold results in local aggregation of nanometer scale beads conjugated with small DNA oligonucleotides, with sub-micron resolution. This leads to specific detection of cDNA and RNA molecules. We built a simple micro-array fabrication and detection in the laboratory, based on this method, to probe addressable pools (genes, proteins or antibodies). We have lately used molecular beacons (single stranded DNA with a stem-loop structure containing a fluorophore and quencher), for the direct detection of unlabelled mRNA. As a first step towards a study of the dynamics of the biological code, we have begun to examine the patterns of gene expression during virus (T7 phage) infection of E-coli bacteria.

  2. Synthesis of polyester by means of genetic code reprogramming.

    PubMed

    Ohta, Atsushi; Murakami, Hiroshi; Higashimura, Eri; Suga, Hiroaki

    2007-12-01

    Here we report the ribosomal polymerization of alpha-hydroxy acids by means of genetic code reprogramming. The flexizyme system, a ribozyme-based tRNA acylation tool, was used to re-assign individual codons to seven types of alpha-hydroxy acids, and then polyesters were synthesized under controls of the reprogrammed genetic code using a reconstituted cell-free translation system. The sequence and length of the polyester segments were specified by the mRNA template, indicating that high-fidelity ribosome expression of polyesters was possible. This work opens a door for the mRNA-directed synthesis of backbone-altered biopolymers.

  3. LARP4B is an AU-rich sequence associated factor that promotes mRNA accumulation and translation.

    PubMed

    Küspert, Maritta; Murakawa, Yasuhiro; Schäffler, Katrin; Vanselow, Jens T; Wolf, Elmar; Juranek, Stefan; Schlosser, Andreas; Landthaler, Markus; Fischer, Utz

    2015-07-01

    mRNAs are key molecules in gene expression and subject to diverse regulatory events. Regulation is accomplished by distinct sets of trans-acting factors that interact with mRNAs and form defined mRNA-protein complexes (mRNPs). The resulting "mRNP code" determines the fate of any given mRNA and thus controlling gene expression at the post-transcriptional level. The La-related protein 4B (LARP4B) belongs to an evolutionarily conserved family of RNA-binding proteins characterized by the presence of a La-module implicated in direct RNA binding. Biochemical experiments have shown previously direct interactions of LARP4B with factors of the translation machinery. This finding along with the observation of an association with actively translating ribosomes suggested that LARP4B is a factor contributing to the mRNP code. To gain insight into the function of LARP4B in vivo we tested its mRNA association at the transcriptome level and its impact on the proteome. PAR-CLIP analyses allowed us to identify the in vivo RNA targets of LARP4B. We show that LARP4B binds to a distinct set of cellular mRNAs by contacting their 3' UTRs. Biocomputational analysis combined with in vitro binding assays identified the LARP4B-binding motif on mRNA targets. The reduction of cellular LARP4B levels leads to a marked destabilization of its mRNA targets and consequently their reduced translation. Our data identify LARP4B as a component of the mRNP code that influences the expression of its mRNA targets by affecting their stability.

  4. Sequence analysis of bone morphogenetic protein receptor type II mRNA from ascitic and nonascitic commercial broilers.

    PubMed

    Cisar, C R; Balog, J M; Anthony, N B; Donoghue, A M

    2003-10-01

    Ascites syndrome, also known as pulmonary hypertension syndrome (PHS), is a common metabolic disorder in rapidly growing meat-type chickens. Environmental factors, such as cold, altitude, and diet, play significant roles in development of the disease, but there is also an important genetic component to PHS susceptibility. The human disease familial primary pulmonary hypertension (FPPH) is similar to PHS in broilers both genetically and physiologically. Several recent studies have shown that mutations in the bone morphogenetic protein receptor type II (BMPR2) gene are a cause of FPPH in humans. To determine whether mutations in the chicken BMPR2 gene play a similar role in PHS susceptibility, BMPR-II mRNA from ascitic and nonascitic commercial broilers were sequenced and compared with the published Leghorn chicken BMPR-II mRNA sequence. Fourteen single nucleotide polymorphisms (SNP) were identified in the commercial broiler BMPR-II mRNA. No mutations unique to ascites-susceptible broilers were present in the coding, 5' untranslated or 3' untranslated regions of BMPR-II mRNA. The twelve SNP present within the coding region of BMPR-II mRNA were synonymous substitutions and did not alter the BMPR-II protein sequence. In addition, analysis of BMPR2 gene expression by reverse transcriptase-PCR indicated that there were no differences in BMPR-II mRNA levels in ascitic and nonascitic birds. Therefore, it appears unlikely that mutations in the BMPR2 gene were responsible for susceptibility to PHS in these commercial broilers.

  5. Code Disentanglement: Initial Plan

    SciTech Connect

    Wohlbier, John Greaton; Kelley, Timothy M.; Rockefeller, Gabriel M.; Calef, Matthew Thomas

    2015-01-27

    The first step to making more ambitious changes in the EAP code base is to disentangle the code into a set of independent, levelized packages. We define a package as a collection of code, most often across a set of files, that provides a defined set of functionality; a package a) can be built and tested as an entity and b) fits within an overall levelization design. Each package contributes one or more libraries, or an application that uses the other libraries. A package set is levelized if the relationships between packages form a directed, acyclic graph and each package uses only packages at lower levels of the diagram (in Fortran this relationship is often describable by the use relationship between modules). Independent packages permit independent- and therefore parallel|development. The packages form separable units for the purposes of development and testing. This is a proven path for enabling finer-grained changes to a complex code.

  6. Compressible Astrophysics Simulation Code

    SciTech Connect

    Howell, L.; Singer, M.

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  7. Seals Flow Code Development

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In recognition of a deficiency in the current modeling capability for seals, an effort was established by NASA to develop verified computational fluid dynamic concepts, codes, and analyses for seals. The objectives were to develop advanced concepts for the design and analysis of seals, to effectively disseminate the information to potential users by way of annual workshops, and to provide experimental verification for the models and codes under a wide range of operating conditions.

  8. A Candida albicans gene expressed in Saccharomyces cerevisiae results in a distinct pattern of mRNA processing.

    PubMed

    Iborra, A; Sentandreu, R; Gozalbo, D

    1996-09-01

    Two plasmids (derived from YCplac22 and YEplac112) carrying a Candida albicans gene (including the 5' non-coding promoter sequences) coding for a 30 kDa membrane-bound protein, were used to transform Saccharomyces cerevisiae cells. A 30 kDa protein was immunodetected by Western blot in the membrane fraction of transformants. Northern analysis showed the presence of three mRNA species (of about 1.1, 0.7 and 0.5 kb) hybridizing with the C. albicans gene as a probe. The same result was obtained using the 5' and 3' regions of the gene as probes, whereas only a 1.1 kb mRNA was found in C. albicans and none was detected in S. cerevisiae control transformants. Thus, heterologous expression of this gene in S. cerevisiae results in a distinct pattern of mRNA processing, either due to the location on plasmid vectors and/or to differences in the mRNA processing systems in the two microorganisms.

  9. Translation of vph mRNA in Streptomyces lividans and Escherichia coli after removal of the 5' untranslated leader.

    PubMed

    Wu, C J; Janssen, G R

    1996-10-01

    The Streptomyces vinaceus viomycin phosphotransferase (vph) mRNA contains an untranslated leader with a conventional Shine-Dalgarno homology. The vph leader was removed by ligation of the vph coding sequence to the transcriptional start site of a Streptomyces or an Escherichia coli promoter, such that transcription would initiate at the first position of the vph start codon. Analysis of mRNA demonstrated that transcription initiated primarily at the A of the vph AUG translational start codon in both Streptomyces lividans and E. coli; cells expressing the unleadered vph mRNA were resistant to viomycin indicating that the Shine-Dalgarno sequence, or other features contained within the leader, was not necessary for vph translation. Addition of four nucleotides (5'-AUGC-3') onto the 5' end of the unleadered vph mRNA resulted in translation initiation from the vph start codon and the AUG triplet contained within the added sequence. Translational fusions of vph sequence to a Tn5 neo reporter gene indicated that the first 16 codons of vph coding sequence were sufficient to specify the translational start site and reading frame for expression of neomycin resistance in both E. coli and S. lividans.

  10. Links between mRNA splicing, mRNA quality control, and intellectual disability

    PubMed Central

    Fasken, Milo B.; Corbett, Anita H.

    2016-01-01

    In recent years, the impairment of RNA binding proteins that play key roles in the post-transcriptional regulation of gene expression has been linked to numerous neurological diseases. These RNA binding proteins perform critical mRNA processing steps in the nucleus, including splicing, polyadenylation, and export. In many cases, these RNA binding proteins are ubiquitously expressed raising key questions about why only brain function is impaired. Recently, mutations in the ZC3H14 gene, encoding an evolutionarily conserved, polyadenosine RNA binding protein, have been linked to a nonsyndromic form of autosomal recessive intellectual disability. Thus far, research on ZC3H14 and its Nab2 orthologs in budding yeast and Drosophila reveals that ZC3H14/Nab2 is important for mRNA processing and neuronal patterning. Two recent studies now provide evidence that ZC3H14/Nab2 may function in the quality control of mRNA splicing and export and could help to explain the molecular defects that cause neuronal dysfunction and lead to an inherited form of intellectual disability. These studies on ZC3H14/Nab2 reveal new clues to the puzzle of why loss of the ubiquitously expressed ZC3H14 protein specifically affects neurons. PMID:27868086

  11. Robust Nonlinear Neural Codes

    NASA Astrophysics Data System (ADS)

    Yang, Qianli; Pitkow, Xaq

    2015-03-01

    Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.

  12. Effect of copy number and mRNA processing and stabilization on transcript and protein levels from an engineered dual-gene operon.

    PubMed

    Smolke, Christina D; Keasling, Jay D

    2002-05-20

    To study the effect of mRNA stability and DNA copy number on protein production from a dual-gene operon, a synthetic operon containing the reporter genes gfp and lacZ under the control of the araBAD promoter was placed in pMB1-based (approximately 100 copies/cell) and F plasmid-based (approximately 1 copy/cell) vectors. DNA cassettes encoding secondary structures were placed at the 5' and 3' ends of the genes and a putative RNase E site was placed between the two genes. Although the copy number of the pMB1-based vectors was approximately 100-fold greater than the copy number of the F plasmid-based vectors, transcript and protein levels from the pMB1-based vector were not 100-fold greater than from the F plasmid-based vectors. In identical plasmid backbones, different combinations of mRNA control elements were used to alter steady-state levels of transcripts. Control elements that amplified the stability of one coding region relative to another amplified the ratio of protein produced from those transcripts. The effects of mRNA stability control elements were greater at low inducer concentrations, where mRNA levels limit protein production, than at high inducer concentrations. Although we can alter mRNA and protein levels through copy number, induction level, and mRNA stability control elements, some aspect of gene expression remains dependent on inherent characteristics of the coding region.

  13. BDNF and trkB mRNA expression in the rat hippocampus following entorhinal cortex lesions.

    PubMed

    Lapchak, P A; Araujo, D M; Hefti, F

    1993-02-01

    Quantitative in situ hybridization was used to determine whether the prevalence or topographical distribution of brain-derived neurotrophic factor (BDNF) or tyrosine receptor kinase (trk) B mRNA is altered in the hippocampal formation following lesions of excitatory afferents from the entorhinal cortex which provides an external source of innervation for the hippocampal formation. BDNF mRNA levels were not altered in the hippocampal formation up to 10 days following entorhinal cortex lesions (ECLs). The levels of mRNA coding for all known forms of trkB receptors also remained unchanged. The prevalence of the synaptic plasticity marker SNAP-25 mRNA was increased in the CA2 and CA3 pyramidal cell layers and the dentate gyrus by 6 days following ECLs and remained elevated at 10 days following ECLs. Our findings indicate that hippocampal neuron sprouting which occurs in response to ECLs is not the result of changes in the expression of the BDNF or trkB mRNA.

  14. Structure Based Drug Design of Crizotinib (PF-02341066), a Potent and Selective Dual Inhibitor of Mesenchymal-Epithelial Transition Factor (c-MET) Kinase and Anaplastic Lymphoma Kinase (ALK)

    SciTech Connect

    Cui, J Jean; Tran-Dube,; #769; Michelle,; Shen, Hong; Nambu, Mitchell; Kung, Pei-Pei; Pairish, Mason; Jia, Lei; Meng, Jerry; Funk, Lee; Botrous, Iriny; McTigue, Michele; Grodsky, Neil; Ryan, Kevin; Padrique, Ellen; Alton, Gordon; Timofeevski, Sergei; Yamazaki, Shinji; Li, Qiuhua; Zou, Helen; Christensen, James; Mroczkowski, Barbara; Bender, Steve; Kania, Robert S; Edwards, Martin P

    2011-08-03

    Because of the critical roles of aberrant signaling in cancer, both c-MET and ALK receptor tyrosine kinases are attractive oncology targets for therapeutic intervention. The cocrystal structure of 3 (PHA-665752), bound to c-MET kinase domain, revealed a novel ATP site environment, which served as the target to guide parallel, multiattribute drug design. A novel 2-amino-5-aryl-3-benzyloxypyridine series was created to more effectively make the key interactions achieved with 3. In the novel series, the 2-aminopyridine core allowed a 3-benzyloxy group to reach into the same pocket as the 2,6-dichlorophenyl group of 3 via a more direct vector and thus with a better ligand efficiency (LE). Further optimization of the lead series generated the clinical candidate crizotinib (PF-02341066), which demonstrated potent in vitro and in vivo c-MET kinase and ALK inhibition, effective tumor growth inhibition, and good pharmaceutical properties.

  15. Regulation of mRNA splicing by MeCP2 via epigenetic modifications in the brain.

    PubMed

    Cheng, Tian-Lin; Chen, Jingqi; Wan, Huida; Tang, Bin; Tian, Weidong; Liao, Lujian; Qiu, Zilong

    2017-02-17

    Mutations of X-linked gene Methyl CpG binding protein 2 (MECP2) are the major causes of Rett syndrome (RTT), a severe neurodevelopmental disorder. Duplications of MECP2-containing genomic segments lead to severe autistic symptoms in human. MECP2-coding protein methyl-CpG-binding protein 2 (MeCP2) is involved in transcription regulation, microRNA processing and mRNA splicing. However, molecular mechanisms underlying the involvement of MeCP2 in mRNA splicing in neurons remain largely elusive. In this work we found that the majority of MeCP2-associated proteins are involved in mRNA splicing using mass spectrometry analysis with multiple samples from Mecp2-null rat brain, mouse primary neuron and human cell lines. We further showed that Mecp2 knockdown in cultured cortical neurons led to widespread alternations of mRNA alternative splicing. Analysis of ChIP-seq datasets indicated that MeCP2-regulated exons display specific epigenetic signatures, with DNA modification 5-hydroxymethylcytosine (5hmC) and histone modification H3K4me3 are enriched in down-regulated exons, while the H3K36me3 signature is enriched in exons up-regulated in Mecp2-knockdown neurons comparing to un-affected neurons. Functional analysis reveals that genes containing MeCP2-regulated exons are mainly involved in synaptic functions and mRNA splicing. These results suggested that MeCP2 regulated mRNA splicing through interacting with 5hmC and epigenetic changes in histone markers, and provide functional insights of MeCP2-mediated mRNA splicing in the nervous system.

  16. Regulation of mRNA splicing by MeCP2 via epigenetic modifications in the brain

    PubMed Central

    Cheng, Tian-Lin; Chen, Jingqi; Wan, Huida; Tang, Bin; Tian, Weidong; Liao, Lujian; Qiu, Zilong

    2017-01-01

    Mutations of X-linked gene Methyl CpG binding protein 2 (MECP2) are the major causes of Rett syndrome (RTT), a severe neurodevelopmental disorder. Duplications of MECP2-containing genomic segments lead to severe autistic symptoms in human. MECP2-coding protein methyl-CpG-binding protein 2 (MeCP2) is involved in transcription regulation, microRNA processing and mRNA splicing. However, molecular mechanisms underlying the involvement of MeCP2 in mRNA splicing in neurons remain largely elusive. In this work we found that the majority of MeCP2-associated proteins are involved in mRNA splicing using mass spectrometry analysis with multiple samples from Mecp2-null rat brain, mouse primary neuron and human cell lines. We further showed that Mecp2 knockdown in cultured cortical neurons led to widespread alternations of mRNA alternative splicing. Analysis of ChIP-seq datasets indicated that MeCP2-regulated exons display specific epigenetic signatures, with DNA modification 5-hydroxymethylcytosine (5hmC) and histone modification H3K4me3 are enriched in down-regulated exons, while the H3K36me3 signature is enriched in exons up-regulated in Mecp2-knockdown neurons comparing to un-affected neurons. Functional analysis reveals that genes containing MeCP2-regulated exons are mainly involved in synaptic functions and mRNA splicing. These results suggested that MeCP2 regulated mRNA splicing through interacting with 5hmC and epigenetic changes in histone markers, and provide functional insights of MeCP2-mediated mRNA splicing in the nervous system. PMID:28211484

  17. Origin and palaeoenvironmental significance of C25 and C27n-alk-1-enes in a 25,000-year lake-sedimentary record from equatorial East Africa

    NASA Astrophysics Data System (ADS)

    van Bree, L. G. J.; Rijpstra, W. I. C.; Cocquyt, C.; Al-Dhabi, N. A.; Verschuren, D.; Sinninghe Damsté, J. S.; de Leeuw, J. W.

    2014-11-01

    We studied the distribution of long-chain alkenes (n-C23 to n-C31) in well-dated sediments from Lake Challa, a deep crater lake near Mt. Kilimanjaro in equatorial East Africa, to reveal signatures of palaeo-environmental and palaeo-climatic changes affecting the production of these compounds during the last 25 kyr. The apolar fractions of organic sediment extracts dated to the last 16 kyr showed an unusual dominance of δ13C-depleted n-C25:1 and n-C27:1 alk-1-enes. These alkenes were not detected in soil and litter from near the shoreline and from the inner rim of the crater, pointing to an autochthonous, aquatic source. Analysis of suspended particulate matter indicated that the n-alk-1-enes are produced in the well-oxygenated upper 30 m of the water column, indicating a phytoplanktonic origin. Sedimenting particles collected monthly from December 2006 to November 2007 showed increased fluxes of n-alk-1-enes following the locally prominent short rain season in November-December. Green algae and/or cyanobacteria were identified as candidate sources of these alkenes. Production of the n-C25:1 and n-C27:1 alkenes in Lake Challa was much reduced during the Last Glacial Maximum and early late-glacial period, suggesting a temperature or CO2 effect on habitat suitability. We explored the potential of n-alk-1-ene accumulation rates, and of a derived Alkene Index [n-C27:1]/([n-C25:1] + [n-C27:1]), to record longer-term climatic changes. The Alkene Index record of Lake Challa over the past 25 kyr shows clear periodicity with a dominant frequency of ∼2.3 kyr, potentially indicative of monsoon variability directly or indirectly forced by variation in solar radiation.

  18. Coded source neutron imaging

    SciTech Connect

    Bingham, Philip R; Santos-Villalobos, Hector J

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  19. Error coding simulations

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1993-01-01

    There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.

  20. Coded source neutron imaging

    NASA Astrophysics Data System (ADS)

    Bingham, Philip; Santos-Villalobos, Hector; Tobin, Ken

    2011-03-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100μm) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100μm and 10μm aperture hole diameters show resolutions matching the hole diameters.

  1. MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects.

    PubMed

    Martínez-Pacheco, M; Hidalgo-Miranda, A; Romero-Córdoba, S; Valverde, M; Rojas, E

    2014-01-10

    Metals are a threat to human health by increasing disease risk. Experimental data have linked altered miRNA expression with exposure to some metals. MiRNAs comprise a large family of non-coding single-stranded molecules that primarily function to negatively regulate gene expression post-transcriptionally. Although several human populations are exposed to low concentrations of As, Cd and Pb as a mixture, most toxicology research focuses on the individual effects that these metals exert. Thus, this study aims to evaluate global miRNA and mRNA expression changes induced by a metal mixture containing NaAsO2, CdCl2, Pb(C2H3O2)2·3H2O and to predict possible metal-associated disease development under these conditions. Our results show that this metal mixture results in a miRNA expression profile that may be responsible for the mRNA expression changes observed under experimental conditions in which coding proteins are involved in cellular processes, including cell death, growth and proliferation related to the metal-associated inflammatory response and cancer.

  2. GeneTack database: genes with frameshifts in prokaryotic genomes and eukaryotic mRNA sequences.

    PubMed

    Antonov, Ivan; Baranov, Pavel; Borodovsky, Mark

    2013-01-01

    Database annotations of prokaryotic genomes and eukaryotic mRNA sequences pay relatively low attention to frame transitions that disrupt protein-coding genes. Frame transitions (frameshifts) could be caused by sequencing errors or indel mutations inside protein-coding regions. Other observed frameshifts are related to recoding events (that evolved to control expression of some genes). Earlier, we have developed an algorithm and software program GeneTack for ab initio frameshift finding in intronless genes. Here, we describe a database (freely available at http://topaz.gatech.edu/GeneTack/db.html) containing genes with frameshifts (fs-genes) predicted by GeneTack. The database includes 206 991 fs-genes from 1106 complete prokaryotic genomes and 45 295 frameshifts predicted in mRNA sequences from 100 eukaryotic genomes. The whole set of fs-genes was grouped into clusters based on sequence similarity between fs-proteins (conceptually translated fs-genes), conservation of the frameshift position and frameshift direction (-1, +1). The fs-genes can be retrieved by similarity search to a given query sequence via a web interface, by fs-gene cluster browsing, etc. Clusters of fs-genes are characterized with respect to their likely origin, such as pseudogenization, phase variation, etc. The largest clusters contain fs-genes with programed frameshifts (related to recoding events).

  3. Functional Integration of mRNA Translational Control Programs

    PubMed Central

    MacNicol, Melanie C.; Cragle, Chad E.; Arumugam, Karthik; Fosso, Bruno; Pesole, Graziano; MacNicol, Angus M.

    2015-01-01

    Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs) but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease. PMID:26197342

  4. Code query by example

    NASA Astrophysics Data System (ADS)

    Vaucouleur, Sebastien

    2011-02-01

    We introduce code query by example for customisation of evolvable software products in general and of enterprise resource planning systems (ERPs) in particular. The concept is based on an initial empirical study on practices around ERP systems. We motivate our design choices based on those empirical results, and we show how the proposed solution helps with respect to the infamous upgrade problem: the conflict between the need for customisation and the need for upgrade of ERP systems. We further show how code query by example can be used as a form of lightweight static analysis, to detect automatically potential defects in large software products. Code query by example as a form of lightweight static analysis is particularly interesting in the context of ERP systems: it is often the case that programmers working in this field are not computer science specialists but more of domain experts. Hence, they require a simple language to express custom rules.

  5. Seals Code Development Workshop

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C. (Compiler); Liang, Anita D. (Compiler)

    1996-01-01

    Seals Workshop of 1995 industrial code (INDSEAL) release include ICYL, GCYLT, IFACE, GFACE, SPIRALG, SPIRALI, DYSEAL, and KTK. The scientific code (SCISEAL) release includes conjugate heat transfer and multidomain with rotordynamic capability. Several seals and bearings codes (e.g., HYDROFLEX, HYDROTRAN, HYDROB3D, FLOWCON1, FLOWCON2) are presented and results compared. Current computational and experimental emphasis includes multiple connected cavity flows with goals of reducing parasitic losses and gas ingestion. Labyrinth seals continue to play a significant role in sealing with face, honeycomb, and new sealing concepts under investigation for advanced engine concepts in view of strict environmental constraints. The clean sheet approach to engine design is advocated with program directions and anticipated percentage SFC reductions cited. Future activities center on engine applications with coupled seal/power/secondary flow streams.

  6. SAC: Sheffield Advanced Code

    NASA Astrophysics Data System (ADS)

    Griffiths, Mike; Fedun, Viktor; Mumford, Stuart; Gent, Frederick

    2013-06-01

    The Sheffield Advanced Code (SAC) is a fully non-linear MHD code designed for simulations of linear and non-linear wave propagation in gravitationally strongly stratified magnetized plasma. It was developed primarily for the forward modelling of helioseismological processes and for the coupling processes in the solar interior, photosphere, and corona; it is built on the well-known VAC platform that allows robust simulation of the macroscopic processes in gravitationally stratified (non-)magnetized plasmas. The code has no limitations of simulation length in time imposed by complications originating from the upper boundary, nor does it require implementation of special procedures to treat the upper boundaries. SAC inherited its modular structure from VAC, thereby allowing modification to easily add new physics.

  7. Autocatalysis, information and coding.

    PubMed

    Wills, P R

    2001-01-01

    Autocatalytic self-construction in macromolecular systems requires the existence of a reflexive relationship between structural components and the functional operations they perform to synthesise themselves. The possibility of reflexivity depends on formal, semiotic features of the catalytic structure-function relationship, that is, the embedding of catalytic functions in the space of polymeric structures. Reflexivity is a semiotic property of some genetic sequences. Such sequences may serve as the basis for the evolution of coding as a result of autocatalytic self-organisation in a population of assignment catalysts. Autocatalytic selection is a mechanism whereby matter becomes differentiated in primitive biochemical systems. In the case of coding self-organisation, it corresponds to the creation of symbolic information. Prions are present-day entities whose replication through autocatalysis reflects aspects of biological semiotics less obvious than genetic coding.

  8. Code inspection instructional validation

    NASA Technical Reports Server (NTRS)

    Orr, Kay; Stancil, Shirley

    1992-01-01

    The Shuttle Data Systems Branch (SDSB) of the Flight Data Systems Division (FDSD) at Johnson Space Center contracted with Southwest Research Institute (SwRI) to validate the effectiveness of an interactive video course on the code inspection process. The purpose of this project was to determine if this course could be effective for teaching NASA analysts the process of code inspection. In addition, NASA was interested in the effectiveness of this unique type of instruction (Digital Video Interactive), for providing training on software processes. This study found the Carnegie Mellon course, 'A Cure for the Common Code', effective for teaching the process of code inspection. In addition, analysts prefer learning with this method of instruction, or this method in combination with other methods. As is, the course is definitely better than no course at all; however, findings indicate changes are needed. Following are conclusions of this study. (1) The course is instructionally effective. (2) The simulation has a positive effect on student's confidence in his ability to apply new knowledge. (3) Analysts like the course and prefer this method of training, or this method in combination with current methods of training in code inspection, over the way training is currently being conducted. (4) Analysts responded favorably to information presented through scenarios incorporating full motion video. (5) Some course content needs to be changed. (6) Some content needs to be added to the course. SwRI believes this study indicates interactive video instruction combined with simulation is effective for teaching software processes. Based on the conclusions of this study, SwRI has outlined seven options for NASA to consider. SwRI recommends the option which involves creation of new source code and data files, but uses much of the existing content and design from the current course. Although this option involves a significant software development effort, SwRI believes this option

  9. Probing dimensionality beyond the linear sequence of mRNA.

    PubMed

    Del Campo, Cristian; Ignatova, Zoya

    2016-05-01

    mRNA is a nexus entity between DNA and translating ribosomes. Recent developments in deep sequencing technologies coupled with structural probing have revealed new insights beyond the classic role of mRNA and place it more centrally as a direct effector of a variety of processes, including translation, cellular localization, and mRNA degradation. Here, we highlight emerging approaches to probe mRNA secondary structure on a global transcriptome-wide level and compare their potential and resolution. Combined approaches deliver a richer and more complex picture. While our understanding on the effect of secondary structure for various cellular processes is quite advanced, the next challenge is to unravel more complex mRNA architectures and tertiary interactions.

  10. Polar Code Validation

    DTIC Science & Technology

    1989-09-30

    Unclassified 2a SECURITY CLASSiF-ICATiON AUTHORIT’Y 3 DIStRIBUTION AVAILABILITY OF REPORT N,A Approved for public release; 2o DECLASSIFICAIiON DOWNGRADING SCH DI...SUMMARY OF POLAR ACHIEVEMENTS ..... .......... 3 3 . POLAR CODE PHYSICAL MODELS ..... ............. 5 3.1 PL-ASMA Su ^"ru5 I1LS SH A...11 Structure of the Bipolar Plasma Sheath Generated by SPEAR I ... ...... 1 3 The POLAR Code Wake Model: Comparison with in Situ Observations . . 23

  11. Aeroacoustic Prediction Codes

    NASA Technical Reports Server (NTRS)

    Gliebe, P; Mani, R.; Shin, H.; Mitchell, B.; Ashford, G.; Salamah, S.; Connell, S.; Huff, Dennis (Technical Monitor)

    2000-01-01

    This report describes work performed on Contract NAS3-27720AoI 13 as part of the NASA Advanced Subsonic Transport (AST) Noise Reduction Technology effort. Computer codes were developed to provide quantitative prediction, design, and analysis capability for several aircraft engine noise sources. The objective was to provide improved, physics-based tools for exploration of noise-reduction concepts and understanding of experimental results. Methods and codes focused on fan broadband and 'buzz saw' noise and on low-emissions combustor noise and compliment work done by other contractors under the NASA AST program to develop methods and codes for fan harmonic tone noise and jet noise. The methods and codes developed and reported herein employ a wide range of approaches, from the strictly empirical to the completely computational, with some being semiempirical analytical, and/or analytical/computational. Emphasis was on capturing the essential physics while still considering method or code utility as a practical design and analysis tool for everyday engineering use. Codes and prediction models were developed for: (1) an improved empirical correlation model for fan rotor exit flow mean and turbulence properties, for use in predicting broadband noise generated by rotor exit flow turbulence interaction with downstream stator vanes: (2) fan broadband noise models for rotor and stator/turbulence interaction sources including 3D effects, noncompact-source effects. directivity modeling, and extensions to the rotor supersonic tip-speed regime; (3) fan multiple-pure-tone in-duct sound pressure prediction methodology based on computational fluid dynamics (CFD) analysis; and (4) low-emissions combustor prediction methodology and computer code based on CFD and actuator disk theory. In addition. the relative importance of dipole and quadrupole source mechanisms was studied using direct CFD source computation for a simple cascadeigust interaction problem, and an empirical combustor

  12. Securing mobile code.

    SciTech Connect

    Link, Hamilton E.; Schroeppel, Richard Crabtree; Neumann, William Douglas; Campbell, Philip LaRoche; Beaver, Cheryl Lynn; Pierson, Lyndon George; Anderson, William Erik

    2004-10-01

    If software is designed so that the software can issue functions that will move that software from one computing platform to another, then the software is said to be 'mobile'. There are two general areas of security problems associated with mobile code. The 'secure host' problem involves protecting the host from malicious mobile code. The 'secure mobile code' problem, on the other hand, involves protecting the code from malicious hosts. This report focuses on the latter problem. We have found three distinct camps of opinions regarding how to secure mobile code. There are those who believe special distributed hardware is necessary, those who believe special distributed software is necessary, and those who believe neither is necessary. We examine all three camps, with a focus on the third. In the distributed software camp we examine some commonly proposed techniques including Java, D'Agents and Flask. For the specialized hardware camp, we propose a cryptographic technique for 'tamper-proofing' code over a large portion of the software/hardware life cycle by careful modification of current architectures. This method culminates by decrypting/authenticating each instruction within a physically protected CPU, thereby protecting against subversion by malicious code. Our main focus is on the camp that believes that neither specialized software nor hardware is necessary. We concentrate on methods of code obfuscation to render an entire program or a data segment on which a program depends incomprehensible. The hope is to prevent or at least slow down reverse engineering efforts and to prevent goal-oriented attacks on the software and execution. The field of obfuscation is still in a state of development with the central problem being the lack of a basis for evaluating the protection schemes. We give a brief introduction to some of the main ideas in the field, followed by an in depth analysis of a technique called 'white-boxing'. We put forth some new attacks and improvements

  13. Identification of proteins binding coding and non-coding human RNAs using protein microarrays

    PubMed Central

    2012-01-01

    Background The regulation and function of mammalian RNAs has been increasingly appreciated to operate via RNA-protein interactions. With the recent discovery of thousands of novel human RNA molecules by high-throughput RNA sequencing, efficient methods to uncover RNA-protein interactions are urgently required. Existing methods to study proteins associated with a given RNA are laborious and require substantial amounts of cell-derived starting material. To overcome these limitations, we have developed a rapid and large-scale approach to characterize binding of in vitro transcribed labeled RNA to ~9,400 human recombinant proteins spotted on protein microarrays. Results We have optimized methodology to probe human protein microarrays with full-length RNA molecules and have identified 137 RNA-protein interactions specific for 10 coding and non-coding RNAs. Those proteins showed strong enrichment for common human RNA binding domains such as RRM, RBD, as well as K homology and CCCH type zinc finger motifs. Previously unknown RNA-protein interactions were discovered using this technique, and these interactions were biochemically verified between TP53 mRNA and Staufen1 protein as well as between HRAS mRNA and CNBP protein. Functional characterization of the interaction between Staufen 1 protein and TP53 mRNA revealed a novel role for Staufen 1 in preserving TP53 RNA stability. Conclusions Our approach demonstrates a scalable methodology, allowing rapid and efficient identification of novel human RNA-protein interactions using RNA hybridization to human protein microarrays. Biochemical validation of newly identified interactions between TP53-Stau1 and HRAS-CNBP using reciprocal pull-down experiments, both in vitro and in vivo, demonstrates the utility of this approach to study uncharacterized RNA-protein interactions. PMID:23157412

  14. Retargeting a Dual-Acting sRNA for Multiple mRNA Transcript Regulation.

    PubMed

    Lahiry, Ashwin; Stimple, Samuel D; Wood, David W; Lease, Richard A

    2017-01-24

    Multitargeting small regulatory RNAs (sRNAs) represent a potentially useful tool for metabolic engineering applications. Natural multitargeting sRNAs govern bacterial gene expression by binding to the translation initiation regions of protein-coding mRNAs through base pairing. We designed an Escherichia coli based genetic system to create and assay dual-acting retargeted-sRNA variants. The variants can be assayed for coordinate translational regulation of two alternate mRNA leaders fused to independent reporter genes. Accordingly, we began with the well-characterized E. coli native DsrA sRNA. The merits of using DsrA include its well-characterized separation of function into two independently folded stem-loop domains, wherein alterations at one stem do not necessarily abolish activity at the other stem. Expression of the sRNA and each reporter mRNA was independently controlled by small inducer molecules, allowing precise quantification of the regulatory effects of each sRNA:mRNA interaction in vivo with a microtiter plate assay. Using this system, we semirationally designed DsrA variants screened in E. coli for their ability to regulate key mRNA leader sequences from the Clostridium acetobutylicum n-butanol synthesis pathway. To coordinate intervention at two points in a metabolic pathway, we created bifunctional sRNA prototypes by combining sequences from two singly retargeted DsrA variants. This approach constitutes a platform for designing sRNAs to specifically target arbitrary mRNA transcript sequences, and thus provides a generalizable tool for retargeting and characterizing multitarget sRNAs for metabolic engineering.

  15. Optimization of mRNA design for protein expression in the crustacean Daphnia magna.

    PubMed

    Törner, Kerstin; Nakanishi, Takashi; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2014-08-01

    The water flea Daphnia is a new model organism for ecological, evolutionary, and toxicological genomics. Detailed functional analysis of genes newly discovered through genomic approaches often requires overexpression of the identified protein. In the present study, we report the microinjection of in vitro-synthesized RNAs into the eggs as a method for overexpressing ubiquitous proteins in Daphnia magna. We injected a 1.3-kb mRNA that coded for the red fluorescent protein (DsRed2) flanked by UTRs from the ubiquitously expressed elongation factor 1α-1 (EF1α-1) into D. magna embryos. DsRed2 fluorescence in the embryos was measured 24 h after microinjection. Unexpectedly, the reporter RNA containing the 522-bp full-length EF1α-1 3' UTR failed to induce fluorescence. To assess reporter expression, the length of the 3' UTR that potentially contained negative regulatory elements of protein expression, including AU-rich regions and Musashi binding elements, was serially reduced from the 3' end. Assessing all injected RNA alternatives, mRNA containing the first 60 bp of the 3' UTR gave rise to the highest fluorescence, 14 times the Daphnia auto-fluorescence. In contrast, mRNA lacking the entire 3' UTR hardly induced any change in fluorescence intensity. This is the first evaluation of UTRs of mRNAs delivered into Daphnia embryos by microinjection for overexpressing proteins. The mRNA with truncated 3' UTRs of Daphnia EF1α-1 will be useful not only for gain-of-function analyses but also for labeling proteins and organelles with fluorescent proteins in Daphnia.

  16. An RNA trapping mechanism in Alphavirus mRNA promotes ribosome stalling and translation initiation

    PubMed Central

    Toribio, René; Díaz-López, Irene; Boskovic, Jasminka; Ventoso, Iván

    2016-01-01

    During translation initiation, eukaryotic initiation factor 2 (eIF2) delivers the Met-tRNA to the 40S ribosomal subunit to locate the initiation codon (AUGi) of mRNA during the scanning process. Stress-induced eIF2 phosphorylation leads to a general blockade of translation initiation and represents a key antiviral pathway in mammals. However, some viral mRNAs can initiate translation in the presence of phosphorylated eIF2 via stable RNA stem-loop structures (DLP; Downstream LooP) located in their coding sequence (CDS), which promote 43S preinitiation complex stalling on the initiation codon. We show here that during the scanning process, DLPs of Alphavirus mRNA become trapped in ES6S region (680–914 nt) of 18S rRNA that are projected from the solvent side of 40S subunit. This trapping can lock the progress of the 40S subunit on the mRNA in a way that places the upstream initiator AUGi on the P site of 40S subunit, obviating the participation of eIF2. Notably, the DLP structure is released from 18S rRNA upon 60S ribosomal subunit joining, suggesting conformational changes in ES6Ss during the initiation process. These novel findings illustrate how viral mRNA is threaded into the 40S subunit during the scanning process, exploiting the topology of the 40S subunit solvent side to enhance its translation in vertebrate hosts. PMID:26984530

  17. Coding for urologic office procedures.

    PubMed

    Dowling, Robert A; Painter, Mark

    2013-11-01

    This article summarizes current best practices for documenting, coding, and billing common office-based urologic procedures. Topics covered include general principles, basic and advanced urologic coding, creation of medical records that support compliant coding practices, bundled codes and unbundling, global periods, modifiers for procedure codes, when to bill for evaluation and management services during the same visit, coding for supplies, and laboratory and radiology procedures pertinent to urology practice. Detailed information is included for the most common urology office procedures, and suggested resources and references are provided. This information is of value to physicians, office managers, and their coding staff.

  18. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  19. Circular code motifs in transfer and 16S ribosomal RNAs: a possible translation code in genes.

    PubMed

    Michel, Christian J

    2012-04-01

    In 1996, a common trinucleotide circular code, called X, is identified in genes of eukaryotes and prokaryotes (Arquès and Michel, 1996). This circular code X is a set of 20 trinucleotides allowing the reading frames in genes to be retrieved locally, i.e. anywhere in genes and in particular without start codons. This reading frame retrieval needs a window length l of 12 nucleotides (l ≥ 12). With a window length strictly less than 12 nucleotides (l < 12), some words of X, called ambiguous words, are found in the shifted frames (the reading frame shifted by one or two nucleotides) preventing the reading frame in genes to be retrieved. Since 1996, these ambiguous words of X were never studied. In the first part of this paper, we identify all the ambiguous words of the common trinucleotide circular code X. With a length l varying from 1 to 11 nucleotides, the type and the occurrence number (multiplicity) of ambiguous words of X are given in each shifted frame. Maximal ambiguous words of X, words which are not factors of another ambiguous words, are also determined. Two probability definitions based on these results show that the common trinucleotide circular code X retrieves the reading frame in genes with a probability of about 90% with a window length of 6 nucleotides, and a probability of 99.9% with a window length of 9 nucleotides (100% with a window length of 12 nucleotides, by definition of a circular code). In the second part of this paper, we identify X circular code motifs (shortly X motifs) in transfer RNA and 16S ribosomal RNA: a tRNA X motif of 26 nucleotides including the anticodon stem-loop and seven 16S rRNA X motifs of length greater or equal to 15 nucleotides. Window lengths of reading frame retrieval with each trinucleotide of these X motifs are also determined. Thanks to the crystal structure 3I8G (Jenner et al., 2010), a 3D visualization of X motifs in the ribosome shows several spatial configurations involving mRNA X motifs, A-tRNA and E-tRNA X

  20. Possibilities for the evolution of the genetic code from a preceding form

    NASA Technical Reports Server (NTRS)

    Jukes, T. H.

    1973-01-01

    Analysis of the interaction between mRNA codons and tRNA anticodons suggests a model for the evolution of the genetic code. Modification of the nucleic acid following the anticodon is at present essential in both eukaryotes and prokaryotes to ensure fidelity of translation of codons starting with A, and the amino acids which could be coded for before the evolution of the modifying enzymes can be deduced.

  1. Dress Codes. Legal Brief.

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    2000-01-01

    As illustrated by two recent decisions, the courts in the past decade have demarcated wide boundaries for school officials considering dress codes, whether in the form of selective prohibitions or required uniforms. Administrators must warn the community, provide legitimate justification and reasonable clarity, and comply with state law. (MLH)

  2. Dress Codes and Uniforms.

    ERIC Educational Resources Information Center

    Lumsden, Linda; Miller, Gabriel

    2002-01-01

    Students do not always make choices that adults agree with in their choice of school dress. Dress-code issues are explored in this Research Roundup, and guidance is offered to principals seeking to maintain a positive school climate. In "Do School Uniforms Fit?" Kerry White discusses arguments for and against school uniforms and summarizes the…

  3. Building Codes and Regulations.

    ERIC Educational Resources Information Center

    Fisher, John L.

    The hazard of fire is of great concern to libraries due to combustible books and new plastics used in construction and interiors. Building codes and standards can offer architects and planners guidelines to follow but these standards should be closely monitored, updated, and researched for fire prevention. (DS)

  4. Student Dress Codes.

    ERIC Educational Resources Information Center

    Uerling, Donald F.

    School officials see a need for regulations that prohibit disruptive and inappropriate forms of expression and attire; students see these regulations as unwanted restrictions on their freedom. This paper reviews court litigation involving constitutional limitations on school authority, dress and hair codes, state law constraints, and school…

  5. Video Coding for ESL.

    ERIC Educational Resources Information Center

    King, Kevin

    1992-01-01

    Coding tasks, a valuable technique for teaching English as a Second Language, are presented that enable students to look at patterns and structures of marital communication as well as objectively evaluate the degree of happiness or distress in the marriage. (seven references) (JL)

  6. Electrical Circuit Simulation Code

    SciTech Connect

    Wix, Steven D.; Waters, Arlon J.; Shirley, David

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  7. Multiple trellis coded modulation

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)

    1990-01-01

    A technique for designing trellis codes to minimize bit error performance for a fading channel. The invention provides a criteria which may be used in the design of such codes which is significantly different from that used for average white Gaussian noise channels. The method of multiple trellis coded modulation of the present invention comprises the steps of: (a) coding b bits of input data into s intermediate outputs; (b) grouping said s intermediate outputs into k groups of s.sub.i intermediate outputs each where the summation of all s.sub.i,s is equal to s and k is equal to at least 2; (c) mapping each of said k groups of intermediate outputs into one of a plurality of symbols in accordance with a plurality of modulation schemes, one for each group such that the first group is mapped in accordance with a first modulation scheme and the second group is mapped in accordance with a second modulation scheme; and (d) outputting each of said symbols to provide k output symbols for each b bits of input data.

  8. Identification of cDNA clones encoding secretory isoenzyme forms: sequence determination of canine pancreatic prechymotrypsinogen 2 mRNA.

    PubMed Central

    Pinsky, S D; LaForge, K S; Luc, V; Scheele, G

    1983-01-01

    A cDNA library has been constructed from canine poly(A)+ mRNA. Clones containing cDNA inserts coding for prechymotrypsinogen 2 (isoelectric point = 7.1; Mr = 27,500), one of three canine pancreatic isoenzyme forms, were selected by colony hybridization using a cDNA probe synthesized from immunoselected prechymotrypsinogen 2 mRNA. To verify that cDNA clones code for prechymotrypsinogen 2 forms that translocate across rough endoplasmic reticulum membranes and fold into stable and identifiable secretory proteins, we conducted in vitro translation of hybrid-selected mRNA in the presence of microsomal membranes and optimal concentrations of glutathione and analyzed nascent translation products in their nonreduced state by two-dimensional isoelectric focusing/NaDodSO4 gel electrophoresis and fluorography. A near full-length chymotrypsinogen 2 cDNA and its primed extension were used to determine the nucleotide sequence for the entire coding region of prechymotrypsinogen 2 mRNA and 87 residues, including a poly(A) addition signal, in the 3' nontranslated region. The deduced amino acid sequence shows a 263-residue presecretory protein containing an 18-residue amino-terminal transport peptide (Met-Ala-Phe-Leu-Trp-Leu-Leu-Ser-Cys-Phe-Ala-Leu-Leu-Gly-Thr-Ala-Phe-Gly ), which we have previously shown to mediate the translocation of chymotrypsinogen 2 across the rough endoplasmic reticulum membrane. Following the transport peptide is a 245-residue proenzyme, which shows 82% and 80% sequence identity with bovine chymotrypsinogens A and B, respectively. Conserved among the three zymogens are 10 Cys residues that form five disulfide bonds in bovine chymotrypsinogens A and B and the residues that are required for zymogen activation, substrate binding, and catalytic activity. Images PMID:6584866

  9. Cloning of the 5' mRNA for the 230-kD bullous pemphigoid antigen by rapid amplification of cDNA ends.

    PubMed

    Elgart, G W; Stanley, J R

    1993-08-01

    The 230-kD bullous pemphigoid antigen (BPAG1), defined by autoantibodies in patient sera, is a hemidesmosomal plaque protein in the same gene family as the intracellular proteins desmoplakin I/II and plectin. We had previously isolated, from a lambda gt11 library, overlapping cDNA clones with 6921 bp of mRNA sequence for BPAG1. The coding sequence encoded by these clones included the 3' stop codon but not the 5' coding and non-coding region of the mRNA. To obtain these sequences we used the polymerase chain reaction (PCR) method called rapid amplification of cDNA ends (RACE). The PCR products were cloned into plasmids and sequenced. With five PCR primers we were able to obtain overlapping clones containing the 5' region of the mRNA. An upstream stop codon in frame with the rest of the coding sequence demonstrates that the full 5' coding sequence is obtained. Four different PCR products from two separate reactions had the same 5' end, suggesting that this 5' end is near, or at, the transcription start site. No alternatively spliced clones were found and no transmembrane site was predicted, confirming that BPAG1 is an intracellular hemidesmosomal plaque protein.

  10. Coding Theory and Projective Spaces

    NASA Astrophysics Data System (ADS)

    Silberstein, Natalia

    2008-05-01

    The projective space of order n over a finite field F_q is a set of all subspaces of the vector space F_q^{n}. In this work, we consider error-correcting codes in the projective space, focusing mainly on constant dimension codes. We start with the different representations of subspaces in the projective space. These representations involve matrices in reduced row echelon form, associated binary vectors, and Ferrers diagrams. Based on these representations, we provide a new formula for the computation of the distance between any two subspaces in the projective space. We examine lifted maximum rank distance (MRD) codes, which are nearly optimal constant dimension codes. We prove that a lifted MRD code can be represented in such a way that it forms a block design known as a transversal design. The incidence matrix of the transversal design derived from a lifted MRD code can be viewed as a parity-check matrix of a linear code in the Hamming space. We find the properties of these codes which can be viewed also as LDPC codes. We present new bounds and constructions for constant dimension codes. First, we present a multilevel construction for constant dimension codes, which can be viewed as a generalization of a lifted MRD codes construction. This construction is based on a new type of rank-metric codes, called Ferrers diagram rank-metric codes. Then we derive upper bounds on the size of constant dimension codes which contain the lifted MRD code, and provide a construction for two families of codes, that attain these upper bounds. We generalize the well-known concept of a punctured code for a code in the projective space to obtain large codes which are not constant dimension. We present efficient enumerative encoding and decoding techniques for the Grassmannian. Finally we describe a search method for constant dimension lexicodes.

  11. Brain and heart sodium channel subtype mRNA expression in rat cerebral cortex.

    PubMed Central

    Yarowsky, P J; Krueger, B K; Olson, C E; Clevinger, E C; Koos, R D

    1991-01-01

    The expression of mRNAs coding for the alpha subunit of rat brain and rat heart sodium channels has been studied in adult and neonatal rat cerebral cortex using the reverse transcription-polymerase chain reaction (RT-PCR). Rat brain sodium channel subtype I, II, IIA, and III sequences were simultaneously amplified in the same PCR using a single oligonucleotide primer pair matched to all four subtype sequences. Identification of each subtype-specific product was inferred from the appearance of unique fragments when the product was digested with specific restriction enzymes. By using this RT-PCR method, products arising from mRNAs for all four brain sodium channel subtypes were identified in RNA extracted from adult rat cerebral cortex. The predominant component was type IIA with lesser levels of types I, II, and III. In contrast, the type II and IIA sequences were the predominant RT-PCR products in neonatal rat cortex, with slightly lower levels of type III and undetectable levels of type I. Thus, from neonate to adult, type II mRNA levels decrease relative to type IIA levels. Using a similar approach, we detected mRNA coding for the rat heart sodium channel in neonatal and adult rat cerebral cortex and in adult rat heart. These results reveal that mRNAs coding for the heart sodium channel and all four previously sequenced rat brain sodium channel subtypes are expressed in cerebral cortex and that type II and IIA channels may be differentially regulated during development. Images PMID:1658783

  12. Effects of DNA replication on mRNA noise.

    PubMed

    Peterson, Joseph R; Cole, John A; Fei, Jingyi; Ha, Taekjip; Luthey-Schulten, Zaida A

    2015-12-29

    There are several sources of fluctuations in gene expression. Here we study the effects of time-dependent DNA replication, itself a tightly controlled process, on noise in mRNA levels. Stochastic simulations of constitutive and regulated gene expression are used to analyze the time-averaged mean and variation in each case. The simulations demonstrate that to capture mRNA distributions correctly, chromosome replication must be realistically modeled. Slow relaxation of mRNA from the low copy number steady state before gene replication to the high steady state after replication is set by the transcript's half-life and contributes significantly to the shape of the mRNA distribution. Consequently both the intrinsic kinetics and the gene location play an important role in accounting for the mRNA average and variance. Exact analytic expressions for moments of the mRNA distributions that depend on the DNA copy number, gene location, cell doubling time, and the rates of transcription and degradation are derived for the case of constitutive expression and subsequently extended to provide approximate corrections for regulated expression and RNA polymerase variability. Comparisons of the simulated models and analytical expressions to experimentally measured mRNA distributions show that they better capture the physics of the system than previous theories.

  13. Linking gene regulation to mRNA production and export.

    PubMed

    Rodríguez-Navarro, Susana; Hurt, Ed

    2011-06-01

    Regulation of gene expression can occur at many different levels. One important step in the gene expression process is the transport of mRNA from the nucleus to the cytoplasm. In recent years, studies have described how nuclear mRNA export depends on the steps preceding and following transport through nuclear pore complexes. These include gene activation, transcription, mRNA processing and mRNP assembly and disassembly. In this review, we summarise recent insights into the links between these steps in the gene expression cascade.

  14. The "periodic table" of the genetic code: A new way to look at the code and the decoding process.

    PubMed

    Komar, Anton A

    2016-01-01

    Henri Grosjean and Eric Westhof recently presented an information-rich, alternative view of the genetic code, which takes into account current knowledge of the decoding process, including the complex nature of interactions between mRNA, tRNA and rRNA that take place during protein synthesis on the ribosome, and it also better reflects the evolution of the code. The new asymmetrical circular genetic code has a number of advantages over the traditional codon table and the previous circular diagrams (with a symmetrical/clockwise arrangement of the U, C, A, G bases). Most importantly, all sequence co-variances can be visualized and explained based on the internal logic of the thermodynamics of codon-anticodon interactions.

  15. Different mRNAs code for dopa decarboxylase in tissues of neuronal and nonneuronal origin

    SciTech Connect

    Krieger, M.; Coge, F.; Gros, F.; Thibault, J. )

    1991-03-15

    A cDNA clone for dopa decarboxylase has been isolated from a rat pheochromocytoma cDNA library and the cDNA sequence has been determined. It corresponds to an mRNA of 2094 nucleotides. The length of the mRNA was measured by primer-extension of rat pheochromocytoma RNA and the 5{prime} end of the sequence of the mRNA was confirmed by the PCR. A probe spanning the translation initiation site of the mRNA was used to hybridize with mRNAs from various organs of the rat. S1 nuclease digestion of the mRNAs annealed with this probe revealed two classes of mRNAs. The comparison of the cDNA sequence and published sequences for rat liver, human pheochromocytoma, and Droxophila dopa decarboxylase supported the conclusion that two mRNAs are produced: one is specific for tissue of neuronal origin and the other is specific for tissues of nonneuronal (mesodermal or endodermal) origin. The neuronal mRNA contains a 5{prime} untranslated sequence that is highly conserved between human and rat pheochromocytoma including a GA stretch. The coding sequence and the 3{prime} untranslated sequence of mRNAs from rat liver and pheochromocytoma are identical. The rat mRNA differs only in the 5{prime} untranslated region. Thus a unique gene codes for dopa decarboxylase and this gene gives rise to at least two transcripts presumably in response to different signals during development.

  16. Characterization of major and minor alk(en)ylresorcinols from mango (Mangifera indica L.) peels by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Knödler, Matthias; Berardini, Nicolai; Kammerer, Dietmar R; Carle, Reinhold; Schieber, Andreas

    2007-01-01

    5-Alkyl- and 5-alkenylresorcinols, as well as their hydroxylated derivatives, were extracted from mango (Mangifera indica L.) peels, purified on polyamide and characterized by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (HPLC/APcI-MS) for the first time. Among the 15 compounds analyzed, 3 major and 12 minor C(15)-, C(17)-, and C(19)-substituted resorcinols and related analogues, showing varying degrees of unsaturation, were characterized by their specific fragmentation patterns in collision-induced dissociation experiments. This marks the first report on the occurrence of mono-, di-, and triunsaturated C(15)-homologues, saturated and triunsaturated C(17)-homologues, and mono- and diunsaturated C(19)-homologues in mango peels. Additionally, several hydroxylated C(15)- and C(17)-homologues, also not yet described in mango, and a C(14)-monoene, unique because of its even-numbered side chain, were tentatively identified on the basis of their fragmentation patterns. The results obtained in the present study indicate that HPLC-DAD-APcI-MS(n), combined with the newly developed solid-phase extraction, is a powerful tool for the analysis of alk(en)ylresorcinols and could therefore be used for their determination in various matrices.

  17. Development and validation of an HPLC method for the determination of alk(en)ylresorcinols using rapid ultrasound-assisted extraction of mango peels and rye grains.

    PubMed

    Geerkens, Christian H; Matejka, Anna E; Carle, Reinhold; Schweiggert, Ralf M

    2015-02-15

    Exhaustive extraction of alk(en)ylresorcinols (ARs) from biological matrices is a prerequisite for economic screening of extensive plant collections including their rapid quantitation. For this purpose, an ultrasound-assisted extraction protocol was developed to facilitate the liberation of ARs from mango peels (Mangifera indica L.) and rye grains (Secale cereale L.). While maintaining or even improving the extraction efficiency of the analytes, the duration of analytical extraction was shortened from more than 1h to only 45s as compared to previous methods. In addition, sample weight and solvent use were significantly reduced. Besides the validation of the extraction procedure, validation parameters for the HPLC-DAD-MS(n) based characterisation and quantitation method are provided. In particular, fully satisfactory recovery rates and quantitation limits were achieved, and coefficients of variation (CV) for repeatability and reproducibility were ⩽8 and <5%, respectively. Moreover, a high compound stability was shown for all ARs during storage in methanolic solution at room temperature for 48h and at -80°C for up to 13months. The developed method was exemplified using two mango and three rye cultivars, and the results were compared to previously published data.

  18. Integrating in silico prediction methods, molecular docking, and molecular dynamics simulation to predict the impact of ALK missense mutations in structural perspective.

    PubMed

    Doss, C George Priya; Chakraborty, Chiranjib; Chen, Luonan; Zhu, Hailong

    2014-01-01

    Over the past decade, advancements in next generation sequencing technology have placed personalized genomic medicine upon horizon. Understanding the likelihood of disease causing mutations in complex diseases as pathogenic or neutral remains as a major task and even impossible in the structural context because of its time consuming and expensive experiments. Among the various diseases causing mutations, single nucleotide polymorphisms (SNPs) play a vital role in defining individual's susceptibility to disease and drug response. Understanding the genotype-phenotype relationship through SNPs is the first and most important step in drug research and development. Detailed understanding of the effect of SNPs on patient drug response is a key factor in the establishment of personalized medicine. In this paper, we represent a computational pipeline in anaplastic lymphoma kinase (ALK) for SNP-centred study by the application of in silico prediction methods, molecular docking, and molecular dynamics simulation approaches. Combination of computational methods provides a way in understanding the impact of deleterious mutations in altering the protein drug targets and eventually leading to variable patient's drug response. We hope this rapid and cost effective pipeline will also serve as a bridge to connect the clinicians and in silico resources in tailoring treatments to the patients' specific genotype.

  19. Developmental expression of BMP4/ALK3/SMAD5 signaling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation.

    PubMed

    Pellegrini, Manuela; Grimaldi, Paola; Rossi, Pellegrino; Geremia, Raffaele; Dolci, Susanna

    2003-08-15

    It is well established that the c-kit gene plays an essential role in the proliferation of differentiating spermatogonia in prepuberal mice. However, the mechanisms that regulate the onset of spermatogenesis, i.e. differentiation of spermatogonial stem cells and c-kit expression, are poorly understood. Here we identify a novel signal transduction system in mouse prepuberal testis regulating this developmental event, involving bone morphogenetic protein 4 (BMP4) and its transduction machinery. BMP4 is produced by Sertoli cells very early in the postnatal life and is successively down regulated in peri-puberal Sertoli cells. Its receptor Alk3 and the R-Smad Smad5 are specifically expressed both in proliferating primordial germ cells and in postnatal spermatogonia. BMP4 stimulation of cultured spermatogonia induces Smad4/5 nuclear translocation and the formation of a DNA-binding complex with the transcriptional coactivator p300/CBP. In vitro exposure of undifferentiated spermatogonia to BMP4 exerts both mitogenic and differentiative effects, inducing [3H]thymidine incorporation and Kit expression. As a result of the latter event, Kit-negative spermatogonia acquire sensitivity to Stem Cell Factor.

  20. On the possible origin and evolution of the genetic code

    NASA Technical Reports Server (NTRS)

    Jukes, T. H.

    1974-01-01

    The genetic code is examined for indications of possible preceding codes that existed during early evolution. Eight of the 20 amino acids are coded by 'quartets' of codons with fourfold degeneracy, and 16 such quartets can exist, so that an earlier code could have provided for 15 or 16 amino acids, rather than 20. If twofold degeneracy is postulated for the first position of the codon, there could have been ten amino acids in the code. It is speculated that these may have been phenylalanine, valine, proline, alanine, histidine, glutamine, glutanic acid, aspartic acid, cysteine and glycine. There is a notable deficiency of arginine in proteins, despite the fact that it has six codons. Simultaneously, there is more lysine in proteins than would be expected from its two codons, if the four bases in mRNA are equiprobable and are arranged randomly. It is speculated that arginine is an 'intruder' into the genetic code, and that it may have displayed another amino acid such as ornithine, or may even have displayed lysine from some of its previous codon assignments. As a result, natural selection has favored lysine against the fact that it has only two codons.

  1. Binary coding for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chang, Chein-I.; Chang, Chein-Chi; Lin, Chinsu

    2004-10-01

    Binary coding is one of simplest ways to characterize spectral features. One commonly used method is a binary coding-based image software system, called Spectral Analysis Manager (SPAM) for remotely sensed imagery developed by Mazer et al. For a given spectral signature, the SPAM calculates its spectral mean and inter-band spectral difference and uses them as thresholds to generate a binary code word for this particular spectral signature. Such coding scheme is generally effective and also very simple to implement. This paper revisits the SPAM and further develops three new SPAM-based binary coding methods, called equal probability partition (EPP) binary coding, halfway partition (HP) binary coding and median partition (MP) binary coding. These three binary coding methods along with the SPAM well be evaluated for spectral discrimination and identification. In doing so, a new criterion, called a posteriori discrimination probability (APDP) is also introduced for performance measure.

  2. Sinusoidal transform coding

    NASA Technical Reports Server (NTRS)

    Mcaulay, Robert J.; Quatieri, Thomas F.

    1988-01-01

    It has been shown that an analysis/synthesis system based on a sinusoidal representation of speech leads to synthetic speech that is essentially perceptually indistinguishable from the original. Strategies for coding the amplitudes, frequencies and phases of the sine waves have been developed that have led to a multirate coder operating at rates from 2400 to 9600 bps. The encoded speech is highly intelligible at all rates with a uniformly improving quality as the data rate is increased. A real-time fixed-point implementation has been developed using two ADSP2100 DSP chips. The methods used for coding and quantizing the sine-wave parameters for operation at the various frame rates are described.

  3. WHPA Code available

    NASA Astrophysics Data System (ADS)

    The Wellhead Protection Area code is now available for distribution by the International Ground Water Modeling Center in Indianapolis, Ind. The WHPA code is a modular, semianalytical, groundwater flow model developed for the U.S. Environmental Protection Agency, Office of Ground Water Protection, designed to assist state and local technical staff with the task of Wellhead Protection Area (WHPA) delineation. A complete news item appeared in Eos, May 1, 1990, p. 690.The model consists of four independent, semianalytical modules that may be used to identify the areal extent of groundwater contribution to one or multiple pumping wells. One module is a general particle tracking program that may be used as a post-processor for two-dimensional, numerical models of groundwater flow. One module incorporates a Monte Carlo approach to investigate the effects of uncertain input parameters on capture zones. Multiple pumping and injection wells may be present and barrier or stream boundary conditions may be investigated.

  4. WHPA Code available

    NASA Astrophysics Data System (ADS)

    The Wellhead Protection Area (WHPA) code is now available for distribution by the International Ground Water Modeling Center in Indianapolis, Ind. The WHPA code is a modular, semi-analytical, groundwater flow model developed for the U.S. Environmental Protection Agency, Office of Ground Water Protection. It is designed to assist state and local technical staff with the task of WHPA delineation.The model consists of four independent, semi-analytical modules that may be used to identify the areal extent of groundwater contribution to one or multiple pumping wells. One module is a general particle tracking program that may be used as a post-processor for two-dimensional, numerical models of groundwater flow. One module incorporates a Monte Carlo approach to investigate the effects of uncertain input parameters on capture zones. Multiple pumping and injection wells may be present and barrier or stream boundary conditions may be investigated.

  5. Confocal coded aperture imaging

    DOEpatents

    Tobin, Jr., Kenneth William; Thomas, Jr., Clarence E.

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  6. Nucleotide sequence from the coding region of rabbit β-globin messenger RNA

    PubMed Central

    Proudfoot, N.J.

    1976-01-01

    A sequence of 89 nucleotides from rabbit β-globin mRNA has been determined and is shown to code for residues 107 to 137 of the β-globin protein. In addition, a sequence heterogeneity has been identified within this 89 nucleotide long sequence which corresponds to a known polymorphic variant of rabbit β-globin. Images PMID:61580

  7. HYCOM Code Development

    DTIC Science & Technology

    2003-02-10

    HYCOM code development Alan J. Wallcraft Naval Research Laboratory 2003 Layered Ocean Model Users’ Workshop February 10, 2003 Report Documentation...unlimited 13. SUPPLEMENTARY NOTES Layered Ocean Modeling Workshop (LOM 2003), Miami, FL, Feb 2003 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY...Kraus-Turner mixed-layer Æ Energy-Loan (passive) ice model Æ High frequency atmospheric forcing Æ New I/O scheme (.a and .b files) Æ Scalability via

  8. Reeds computer code

    NASA Technical Reports Server (NTRS)

    Bjork, C.

    1981-01-01

    The REEDS (rocket exhaust effluent diffusion single layer) computer code is used for the estimation of certain rocket exhaust effluent concentrations and dosages and their distributions near the Earth's surface following a rocket launch event. Output from REEDS is used in producing near real time air quality and environmental assessments of the effects of certain potentially harmful effluents, namely HCl, Al2O3, CO, and NO.

  9. Trajectory Code Studies, 1987

    SciTech Connect

    Poukey, J.W.

    1988-01-01

    The trajectory code TRAJ has been used extensively to study nonimmersed foilless electron diodes. The basic goal of the research is to design low-emittance injectors for electron linacs and propagation experiments. Systems studied during 1987 include Delphi, Recirc, and Troll. We also discuss a partly successful attempt to extend the same techniques to high currents (tens of kA). 7 refs., 30 figs.

  10. The PHARO Code.

    DTIC Science & Technology

    1981-11-24

    n.cet..ary ad Identfy by block nutrb.) Visible radiation Sensors Infrared radiation Line and band transitions Isophots High altitude nuclear data...radiation (watts sr) in arbitrary wavelength intervals is determined. The results are a series of " isophot " plots for rbitrariiy placed cameras or sensors...Section II. The output of the PHARO code consists of contour plots of radiative intensity (watts/cm ster) or " isophot " plots for arbitrarily placed sensors

  11. The Phantom SPH code

    NASA Astrophysics Data System (ADS)

    Price, Daniel; Wurster, James; Nixon, Chris

    2016-05-01

    I will present the capabilities of the Phantom SPH code for global simulations of dust and gas in protoplanetary discs. I will present our new algorithms for simulating both small and large grains in discs, as well as our progress towards simulating evolving grain populations and coupling with radiation. Finally, I will discuss our recent applications to HL Tau and the physics of dust gap opening.

  12. Status of MARS Code

    SciTech Connect

    N.V. Mokhov

    2003-04-09

    Status and recent developments of the MARS 14 Monte Carlo code system for simulation of hadronic and electromagnetic cascades in shielding, accelerator and detector components in the energy range from a fraction of an electronvolt up to 100 TeV are described. these include physics models both in strong and electromagnetic interaction sectors, variance reduction techniques, residual dose, geometry, tracking, histograming. MAD-MARS Beam Line Build and Graphical-User Interface.

  13. Orthopedics coding and funding.

    PubMed

    Baron, S; Duclos, C; Thoreux, P

    2014-02-01

    The French tarification à l'activité (T2A) prospective payment system is a financial system in which a health-care institution's resources are based on performed activity. Activity is described via the PMSI medical information system (programme de médicalisation du système d'information). The PMSI classifies hospital cases by clinical and economic categories known as diagnosis-related groups (DRG), each with an associated price tag. Coding a hospital case involves giving as realistic a description as possible so as to categorize it in the right DRG and thus ensure appropriate payment. For this, it is essential to understand what determines the pricing of inpatient stay: namely, the code for the surgical procedure, the patient's principal diagnosis (reason for admission), codes for comorbidities (everything that adds to management burden), and the management of the length of inpatient stay. The PMSI is used to analyze the institution's activity and dynamism: change on previous year, relation to target, and comparison with competing institutions based on indicators such as the mean length of stay performance indicator (MLS PI). The T2A system improves overall care efficiency. Quality of care, however, is not presently taken account of in the payment made to the institution, as there are no indicators for this; work needs to be done on this topic.

  14. MELCOR computer code manuals

    SciTech Connect

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L.; Hodge, S.A.; Hyman, C.R.; Sanders, R.L.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  15. Bar coded retroreflective target

    DOEpatents

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  16. Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation

    PubMed Central

    Weinberg, David E.; Shah, Premal; Eichhorn, Stephen W.; Hussmann, Jeffrey A.; Plotkin, Joshua B.; Bartel, David P.

    2016-01-01

    SUMMARY Ribosome-footprint profiling provides genome-wide snapshots of translation, but technical challenges can confound its analysis. Here, we use improved methods to obtain ribosome-footprint profiles and mRNA abundances that more faithfully reflect gene expression in Saccharomyces cerevisiae. Our results support proposals that both the beginning of coding regions and condos matching rare tRNAs are more slowly translated. They also indicate that emergent polypeptides with as few as three basic residues within a 10-residue window tend to slow translation. With the improved mRNA measurements, the variation attributable to translational control in exponentially growing yeast was less than previously reported, and most of this variation could be predicted with a simple model that considered mRNA abundance, upstream open reading frames, cap-proximal structure and nucleotide composition, and lengths of the coding and 5’-untranslated regions. Collectively, our results provide a framework for executing and interpreting ribosome-profiling studies and reveal key features of translational control in yeast. PMID:26876183

  17. Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA.

    PubMed

    Corcoran, Colin P; Podkaminski, Dimitri; Papenfort, Kai; Urban, Johannes H; Hinton, Jay C D; Vogel, Jörg

    2012-05-01

    MicF is a textbook example of a small regulatory RNA (sRNA) that acts on a trans-encoded target mRNA through imperfect base pairing. Discovery of MicF as a post-transcriptional repressor of the major Escherichia coli porin OmpF established the paradigm for a meanwhile common mechanism of translational inhibition, through antisense sequestration of a ribosome binding site. However, whether MicF regulates additional genes has remained unknown for almost three decades. Here, we have harnessed the new superfolder variant of GFP for reporter-gene fusions to validate newly predicted targets of MicF in Salmonella. We show that the conserved 5' end of MicF acts by seed pairing to repress the mRNAs of global transcriptional regulator Lrp, and periplasmic protein YahO, while a second targeting region is also required to regulate the mRNA of the lipid A-modifying enzyme LpxR. Interestingly, MicF targets lpxR at both the ribosome binding site and deep within the coding sequence. MicF binding in the coding sequence of lpxR decreases mRNA stability through exacerbating the use of a native RNase E site proximal to the short MicF-lpxR duplex. Altogether, this study assigns the classic MicF sRNA to the growing class of Hfq-associated regulators that use diverse mechanisms to impact multiple loci.

  18. Translation initiation of the HIV-1 mRNA

    PubMed Central

    Ohlmann, Théophile; Mengardi, Chloé; López-Lastra, Marcelo

    2014-01-01

    Translation initiation of the full-length mRNA of the human immunodeficiency virus can occur via several different mechanisms to maintain production of viral structural proteins throughout the replication cycle. HIV-1 viral protein synthesis can occur by the use of both a cap-dependant and IRES-driven mechanism depending on the physiological conditions of the cell and the status of the ongoing infection. For both of these mechanisms there is a need for several viral and cellular co-factors for optimal translation of the viral mRNA. In this review we will describe the mechanism used by the full-length mRNA to initiate translation highlighting the role of co-factors within this process. A particular emphasis will be given to the role of the DDX3 RNA helicase in HIV-1 mRNA translation initiation. PMID:26779410

  19. Translation initiation of the HIV-1 mRNA.

    PubMed

    Ohlmann, Théophile; Mengardi, Chloé; López-Lastra, Marcelo

    2014-09-01

    Translation initiation of the full-length mRNA of the human immunodeficiency virus can occur via several different mechanisms to maintain production of viral structural proteins throughout the replication cycle. HIV-1 viral protein synthesis can occur by the use of both a cap-dependant and IRES-driven mechanism depending on the physiological conditions of the cell and the status of the ongoing infection. For both of these mechanisms there is a need for several viral and cellular co-factors for optimal translation of the viral mRNA. In this review we will describe the mechanism used by the full-length mRNA to initiate translation highlighting the role of co-factors within this process. A particular emphasis will be given to the role of the DDX3 RNA helicase in HIV-1 mRNA translation initiation.

  20. Signaling Pathways That Control mRNA Turnover

    PubMed Central

    Thapar, Roopa; Denmon, Andria P.

    2013-01-01

    Cells regulate their genomes mainly at the level of transcription and at the level of mRNA decay. While regulation at the level of transcription is clearly important, the regulation of mRNA turnover by signaling networks is essential for a rapid response to external stimuli. Signaling pathways result in posttranslational modification of RNA binding proteins by phosphorylation, ubiquitination, methylation, acetylation etc. These modifications are important for rapid remodeling of dynamic ribonucleoprotein complexes and triggering mRNA decay. Understanding how these posttranslational modifications alter gene expression is therefore a fundamental question in biology. In this review we highlight recent findings on how signaling pathways and cell cycle checkpoints involving phosphorylation, ubiquitination, and arginine methylation affect mRNA turnover. PMID:23602935

  1. Suboptimum decoding of block codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao

    1991-01-01

    This paper investigates a class of decomposable codes, their distance and structural properties. it is shown that this class includes several classes of well known and efficient codes as subclasses. Several methods for constructing decomposable codes or decomposing codes are presented. A two-stage soft decision decoding scheme for decomposable codes, their translates or unions of translates is devised. This two-stage soft-decision decoding is suboptimum, and provides an excellent trade-off between the error performance and decoding complexity for codes of moderate and long block length.

  2. Preliminary Assessment of Turbomachinery Codes

    NASA Technical Reports Server (NTRS)

    Mazumder, Quamrul H.

    2007-01-01

    This report assesses different CFD codes developed and currently being used at Glenn Research Center to predict turbomachinery fluid flow and heat transfer behavior. This report will consider the following codes: APNASA, TURBO, GlennHT, H3D, and SWIFT. Each code will be described separately in the following section with their current modeling capabilities, level of validation, pre/post processing, and future development and validation requirements. This report addresses only previously published and validations of the codes. However, the codes have been further developed to extend the capabilities of the codes.

  3. Multiple crosstalks between mRNA biogenesis and SUMO.

    PubMed

    Rouvière, Jérôme O; Geoffroy, Marie-Claude; Palancade, Benoit

    2013-10-01

    mRNA metabolism involves the orchestration of multiple nuclear events, including transcription, processing (e.g., capping, splicing, polyadenylation), and quality control. This leads to the accurate formation of messenger ribonucleoparticles (mRNPs) that are finally exported to the cytoplasm for translation. The production of defined sets of mRNAs in given environmental or physiological situations relies on multiple regulatory mechanisms that target the mRNA biogenesis machineries. Among other regulations, post-translational modification by the small ubiquitin-like modifier SUMO, whose prominence in several cellular processes has been largely demonstrated, also plays a key role in mRNA biogenesis. Analysis of the multiple available SUMO proteomes and functional validations of an increasing number of sumoylated targets have revealed the key contribution of SUMO-dependent regulation in nuclear mRNA metabolism. While sumoylation of transcriptional activators and repressors is so far best documented, SUMO contribution to other stages of mRNA biogenesis is also emerging. Modification of mRNA metabolism factors by SUMO determine their subnuclear targeting and biological activity, notably by regulating their molecular interactions with nucleic acids or protein partners. In particular, sumoylation of DNA-bound transcriptional regulators interfere with their association to target sequences or chromatin modifiers. In addition, the recent identification of enzymes of the SUMO pathway within specialized mRNA biogenesis machineries may provide a further level of regulation to their specificity. These multiple crosstalks between mRNA metabolism and SUMO appear therefore as important players in cellular regulatory networks.

  4. Construction of new quantum MDS codes derived from constacyclic codes

    NASA Astrophysics Data System (ADS)

    Taneja, Divya; Gupta, Manish; Narula, Rajesh; Bhullar, Jaskaran

    Obtaining quantum maximum distance separable (MDS) codes from dual containing classical constacyclic codes using Hermitian construction have paved a path to undertake the challenges related to such constructions. Using the same technique, some new parameters of quantum MDS codes have been constructed here. One set of parameters obtained in this paper has achieved much larger distance than work done earlier. The remaining constructed parameters of quantum MDS codes have large minimum distance and were not explored yet.

  5. Convolutional coding techniques for data protection

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1975-01-01

    Results of research on the use of convolutional codes in data communications are presented. Convolutional coding fundamentals are discussed along with modulation and coding interaction. Concatenated coding systems and data compression with convolutional codes are described.

  6. Model of ribosome translation and mRNA unwinding.

    PubMed

    Xie, Ping

    2013-05-01

    A ribosome is an enzyme that catalyzes translation of the genetic information encoded in messenger RNA (mRNA) into proteins. Besides translation through the single-stranded mRNA, the ribosome is also able to translate through the duplex region of mRNA via unwinding the duplex. Here, based on our proposed ribosome translation model, we study analytically the dynamics of Escherichia coli ribosome translation through the duplex region of mRNA, and compare with the available single molecule experimental data. It is shown that the ribosome uses only one active mechanism (mechanical unwinding), rather than two active mechanisms (open-state stabilization and mechanical unwinding), as proposed before, to unwind the duplex. The reduced rate of translation through the duplex region is due to the occurrence of futile transitions, which are induced by the energy barrier from the duplex unwinding to the forward translocation along the single-stranded mRNA. Moreover, we also present predicted results of the average translation rate versus the external force acting on the ribosome translating through the duplex region and through the single-stranded region of mRNA, which can be easily tested by future experiments.

  7. AtTCTP2 mRNA and protein movement correlates with formation of adventitious roots in tobacco

    PubMed Central

    Toscano-Morales, Roberto; Xoconostle-Cázares, Beatriz; Martínez-Navarro, Angélica Concepción; Ruiz-Medrano, Roberto

    2016-01-01

    The Translationally Controlled Tumor Proteins, or TCTP, is a superfamily of exclusively eukaryotic proteins essential in the regulation of proliferation and general growth. However, it is clear that these are multifunctional proteins given (1) the pleiotropic effects of its mutations, and (2), the multiple processes in which this protein is involved. TCTP function in general is conserved, since Arabidopsis AtTCTP1 can rescue a Drosophila mutant, and vice versa. It has become clear, however, that these proteins may have “taxon-specific” functions. In the case of plants, mRNA and/or proteins have been found in the phloem translocation stream of different species, suggesting a role in long-distance signaling. We have found that a second Arabidopsis TCTP gene, AtTCTP2, codes for a protein that moves long-distance through a graft union in tobacco. Interestingly, the mRNA is also transported long-distance. Both mRNA and protein move long-distance; interestingly, the movement, while more efficient from source to sink tissues, also occurs in the opposite direction. The protein reaches the nuclei of parenchyma cells and adventitious roots. Furthermore, it is clear that the long-distance delivery of AtTCTP2 protein and mRNA is required for the induction of adventitious roots. A model is presented that accounts for these observations. PMID:26237533

  8. Base pairing interaction between 5'- and 3'-UTRs controls icaR mRNA translation in Staphylococcus aureus.

    PubMed

    Ruiz de los Mozos, Igor; Vergara-Irigaray, Marta; Segura, Victor; Villanueva, Maite; Bitarte, Nerea; Saramago, Margarida; Domingues, Susana; Arraiano, Cecilia M; Fechter, Pierre; Romby, Pascale; Valle, Jaione; Solano, Cristina; Lasa, Iñigo; Toledo-Arana, Alejandro

    2013-01-01

    The presence of regulatory sequences in the 3' untranslated region (3'-UTR) of eukaryotic mRNAs controlling RNA stability and translation efficiency is widely recognized. In contrast, the relevance of 3'-UTRs in bacterial mRNA functionality has been disregarded. Here, we report evidences showing that around one-third of the mapped mRNAs of the major human pathogen Staphylococcus aureus carry 3'-UTRs longer than 100-nt and thus, potential regulatory functions. We selected the long 3'-UTR of icaR, which codes for the repressor of the main exopolysaccharidic compound of the S. aureus biofilm matrix, to evaluate the role that 3'-UTRs may play in controlling mRNA expression. We showed that base pairing between the 3'-UTR and the Shine-Dalgarno (SD) region of icaR mRNA interferes with the translation initiation complex and generates a double-stranded substrate for RNase III. Deletion or substitution of the motif (UCCCCUG) within icaR 3'-UTR was sufficient to abolish this interaction and resulted in the accumulation of IcaR repressor and inhibition of biofilm development. Our findings provide a singular example of a new potential post-transcriptional regulatory mechanism to modulate bacterial gene expression through the interaction of a 3'-UTR with the 5'-UTR of the same mRNA.

  9. Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts.

    PubMed

    Ferizi, Mehrije; Aneja, Manish K; Balmayor, Elizabeth R; Badieyan, Zohreh Sadat; Mykhaylyk, Olga; Rudolph, Carsten; Plank, Christian

    2016-12-15

    Modified nucleotide chemistries that increase the half-life (T1/2) of transfected recombinant mRNA and the use of non-native 5'- and 3'-untranslated region (UTR) sequences that enhance protein translation are advancing the prospects of transcript therapy. To this end, a set of UTR sequences that are present in mRNAs with long cellular T1/2 were synthesized and cloned as five different recombinant sequence set combinations as upstream 5'-UTR and/or downstream 3'-UTR regions flanking a reporter gene. Initial screening in two different cell systems in vitro revealed that cytochrome b-245 alpha chain (CYBA) combinations performed the best among all other UTR combinations and were characterized in detail. The presence or absence of CYBA UTRs had no impact on the mRNA stability of transfected mRNAs, but appeared to enhance the productivity of transfected transcripts based on the measurement of mRNA and protein levels in cells. When CYBA UTRs were fused to human bone morphogenetic protein 2 (hBMP2) coding sequence, the recombinant mRNA transcripts upon transfection produced higher levels of protein as compared to control transcripts. Moreover, transfection of human adipose mesenchymal stem cells with recombinant hBMP2-CYBA UTR transcripts induced bone differentiation demonstrating the osteogenic and therapeutic potential for transcript therapy based on hybrid UTR designs.

  10. Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts

    PubMed Central

    Ferizi, Mehrije; Aneja, Manish K.; Balmayor, Elizabeth R.; Badieyan, Zohreh Sadat; Mykhaylyk, Olga; Rudolph, Carsten; Plank, Christian

    2016-01-01

    Modified nucleotide chemistries that increase the half-life (T1/2) of transfected recombinant mRNA and the use of non-native 5′- and 3′-untranslated region (UTR) sequences that enhance protein translation are advancing the prospects of transcript therapy. To this end, a set of UTR sequences that are present in mRNAs with long cellular T1/2 were synthesized and cloned as five different recombinant sequence set combinations as upstream 5′-UTR and/or downstream 3′-UTR regions flanking a reporter gene. Initial screening in two different cell systems in vitro revealed that cytochrome b