Science.gov

Sample records for alkyl glycerol ethers

  1. Microemulsion formed by alkyl polyglucoside and an alkyl glycerol ether with weakly charged films.

    PubMed

    Fukuda; Olsson; Ueno

    2001-02-01

    We have studied the effects on phase equilibria of a nonionic surfactant mixture-water-oil system when replacing small amount of surfactant molecules by ionic surfactant, sodium dodecyl sulfate (SDS). The nonionic surfactant system contains dodecyl-beta-D-maltoside (C(12)AG2) and iso-octyl glyceryl ether (i-C(8)GE) as cosurfactant, water and cyclohexane at constant water to oil ratio of 60/40 (w/w). Adding a small amount of SDS has large impact on the phase behavior. Clear liquid crystalline phase and upper microemulsion phase are added to the phase sequence at high i-C(8)GE/(C(12)AG2+i-C(8)GE) ratio. We also compare the phase equilibria of pure dodecyl maltoside system with polyglucosides mixture system. PMID:11087985

  2. 40 CFR 721.3485 - Hydrofluorocarbon alkyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluorocarbon alkyl ether. 721... Substances § 721.3485 Hydrofluorocarbon alkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydrofluorocarbon alkyl...

  3. 40 CFR 721.3485 - Hydrofluorocarbon alkyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluorocarbon alkyl ether. 721... Substances § 721.3485 Hydrofluorocarbon alkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydrofluorocarbon alkyl...

  4. Oil compositions containing alkyl amine or alkyl mercaptan derivatives of copolymers of an alpha olefin or an alkyl vinyl ether

    SciTech Connect

    Le, H.T.

    1990-02-13

    This patent describes an oil composition. It comprises a major amount of an oil selected from a crude oil or fuel oil and a minor amount of an alkyl amine or alkyl mercaptan derivative of an alpha olefin or alkyl vinyl ether and an unsaturated alpha, beta-dicarboxylic compound copolymer having pour point depressant ;properties. The copolymer comprising the reaction product of an alpha olefin having from about 2 to about 30 carbon atoms or mixtures of alpha olefins having from about 2 to about 30 carbon atoms or an alkyl vinyl ether or mixture of alkyl vinyl ethers.

  5. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  6. Alkyl Aryl Ether Bond Formation with PhenoFluor**

    PubMed Central

    Shen, Xiao; Neumann, Constanze N.; Kleinlein, Claudia; Claudia, Nathaniel W.; Ritter, Tobias

    2015-01-01

    An alkyl aryl ether bond formation reaction between phenols and primary and secondary alcohols with PhenoFluor has been developed. The reaction features a broad substrate scope and tolerates many functional groups, and substrates that are challenging for more conventional ether bond forming processes may be coupled. A preliminary mechanistic study indicates reactivity distinct from conventional ether bond formation. PMID:25800679

  7. HPLC and TLC characterisation of ecdysteroid alkyl ethers.

    PubMed

    Lapenna, Silvia; Dinan, Laurence

    2009-10-01

    Semi-synthetic ecdysteroid alkyl ethers have increased potential over natural ecdysteroids as actuators of ligand-inducible gene-expression systems based on the ecdysteroid receptor for in vivo applications. However, a scalable synthesis of these compounds has yet to be developed. We report a set of reversed-phase (RP; C(18) and C(6)) and normal-phase (NP; diol) HPLC systems which can be used to analyse and separate ecdysteroid ethers with single or multiple O-methyl substitutions at the 2alpha-, 3beta-, 14alpha-, 22- and 25-positions. The elution order of methyl ether analogues of the prototypical ecdysteroid 20-hydroxyecdysone (20E) was 3-methyl<2-methyl<14-methyl<25-methyl<22-methyl with both C(18)- and C(6)-RP-HPLC, when eluted with methanol/water mixtures. Further, the elution order of 20E 22-O-alkyl ethers was methylalkyl ethers can also be adequately resolved by NP-HPLC and silica HPTLC. On the latter, detection of ecdysteroid O-alkyl ethers with the p-anisaldehyde/sulphuric acid reagent distinguishes 22-O-alkyl ethers from non-22-O-alkyl ether analogues by the colour of the resulting spot. PMID:19648067

  8. Dichloromethyl alkyl ethers and sulfides in the Reformatskii reaction

    SciTech Connect

    Lapkin, I.I.; Fotin, V.V.

    1986-09-10

    A study was carried out on the reaction of dichloromethyl alkyl ethers and sulfides with ..cap alpha..-brominated esters in the presence of zinc resulting in the formation of either ..cap alpha..-alkyl-..beta..-alkoxyacrylates (or ..cap alpha..-alkyl-..beta..-alkylthioacrylates) or ..cap alpha..,..cap alpha..,..cap alpha..',..cap alpha..'-tetramethyl-..beta..-alkoxyglutaric acid (or ..cap alpha..,..cap alpha..,..cap alpha..',..cap alpha..'-tetramethyl-..beta..-alkylthioglutaric acid) depending on the structure of the starting bromoester. PMR and IR spectroscopy indicates the geometry of the ..cap alpha..-alkyl-..beta..-alkoxyacrylates and ..cap alpha..-alkyl-..beta..-alkylthioacrylates.

  9. Synthesis of monophytanyl ether analogues of lysophosphatidic and lysophosphatidyl glycerol.

    PubMed

    Kates, M; Hancock, A J

    1976-10-01

    The chemical synthesis of 3-O-phytanyl-sn-glycero-1-phosphoric acid (monophytanyl ether analogue of lysophosphatidic acid) was effected by condensation of 1-iodo-2-O-benzyl-3-O-phytanyl-sn-glycerol with silver di-p-nitrobenzyl phosphate in anhydrous toluene followed by catalytic hydrogenolysis of the resulting phosphotriester to remove the benzyl and p-nitrobenzyl groups. Synthesis of 3-O-phytanyl-sn-glycero-1-phosphoryl-1'-sn-glycerol (monophytanyl ether analogue of lysophosphatidyl glycerol) was carried out by conversion of the above phosphotriester to the monosilver salt of the suitably blocked lysophosphatidic acid which was condensed with 1-iodo-2-O-t-butyl-3-O-benzyl-sn-glycerol. Removal of the protecting aromatic and t-butyl groups from the resulting blocked triester intermediate gave the desired phytanyl ether analogue of lysophosphatidyl glycerol. Both lyso analogues were isolated as analytically and chromatographically pure potassium salts. Their physical properties and behavior towards acid hydrolysis are described. PMID:991376

  10. 40 CFR 721.10669 - Tertiary amine alkyl ether (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tertiary amine alkyl ether (generic). 721.10669 Section 721.10669 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10669...

  11. 40 CFR 721.10669 - Tertiary amine alkyl ether (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tertiary amine alkyl ether (generic). 721.10669 Section 721.10669 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10669...

  12. Antioxidant activity of alkyl hydroxytyrosyl ethers in unsaturated lipids.

    PubMed

    Cert, Rosa; Madrona, Andrés; Espartero, José Luis; Pérez-Camino, M Carmen

    2015-06-01

    The antioxidant activity of ethyl and octyl hydroxytyrosyl ethers toward lipids was determined using the Rancimat and open cup methods at high temperatures and 50 °C, respectively. The effect of the unsaturation of the matrix was evaluated using sunflower, soya, and fish refined oils. The antioxidant activities of alkyl hydroxytyrosyl ethers (HTy ethers), hydroxytyrosyl esters, and free hydroxytyrosol are similar, and are much higher than that of α-tocopherol at the same millimolar concentration. The relationship between the induction period and the concentration of the HTy ethers is a sigmoidal curve; an accurate concentration of HTy ethers is necessary to achieve maximum activity, as it increases with the level of matrix unsaturation. The presence of tocopherols in commercial oils affects the antioxidant effect of HTy ethers. Thus, the addition of a low concentration of HTy ethers results in a positive effect, whereas the effect of the addition of high amounts of ethers is slightly less than that of the phenol alone. The addition of HTy ethers to commercial refined oils increases the stability of the oils and preserves tocopherols and polyunsaturated fatty acids from oxidation, enabling the oils to maintain their nutritional properties for longer periods of time. PMID:26018773

  13. Diphytanyl glycerol ether distributions in sediments of the Orca Basin

    SciTech Connect

    Pease, T.K.; VanVleet, E.S.; Barre, J.S. )

    1992-09-01

    Archaebacterially produced diphytanyl glycerol ether (DPGE) was examined in core sediments from the Orca Basin, an anoxic hypersaline basin in the northwestern Gulf of Mexico, to observe its spatial variability and potential origin. A differential extraction protocol was employed to quantify the isopranyl glycerol ethers associated with unbound, intermediate-bound, and kerogen-bound lipid fractions. Archaebacterial lipids were evident at all depths for the unbound and intermediate-bound fractions. Concentrations of DPGE ranged from 0.51 to 2.91 [mu]g/g dry sediment at the surface and showed secondary maxima deeper in basin sediments. Intermediate-bound DPGE concentrations exhibited an inverse relationship to unbound DPGE concentrations. Kerogen-bound DPGE concentrations were normally below detection limits. Earlier studies describing the general homogeneity of lipid components within the overlying brine and at the brine/seawater interface suggest that the large-scale sedimentary DPGE variations observed in this study result from spatial and temporal variations in in-situ production by methanogenic or extremely halophilic archaebacteria.

  14. Diphytanyl glycerol ether distributions in sediments of the Orca Basin

    NASA Astrophysics Data System (ADS)

    Pease, Tamara K.; Van Vleet, Edward S.; Barre, Jill S.

    1992-09-01

    Archaebacterially produced diphytanyl glycerol ether (DPGE) was examined in core sediments from the Orca Basin, an anoxic hypersaline basin in the northwestern Gulf of Mexico, to observe its spatial variability and potential origin. A differential extraction protocol was employed to quantify the isopranyl glycerol ethers associated with unbound, intermediate-bound, and kerogen-bound lipid fractions. Archaebacterial lipids were evident at all depths for the unbound and intermediate-bound fractions. Concentrations of DPGE ranged from 0.51 to 2.91 μg/g dry sediment at the surface and showed secondary maxima deeper in basin sediments. Intermediate-bound DPGE concentrations exhibited an inverse relationship to unbound DPGE concentrations. Kerogen-bound DPGE concentrations were normally below detection limits. Earlier studies describing the general homogeneity of lipid components within the overlying brine and at the brine/seawater interface suggest that the large-scale sedimentary DPGE variations observed in this study result from spatial and temporal variations in in situ production by methanogenic or extremely halophilic archaebacteria.

  15. Diphytanyl glycerol ether distributions in sediments of the Orca Basin.

    PubMed

    Pease, T K; Van Vleet, E S; Barre, J S

    1992-09-01

    Archaebacterially produced diphytanyl glycerol ether (DPGE) was examined in core sediments from the Orca Basin, an anoxic hypersaline basin in the northwestern Gulf of Mexico, to observe its spatial variability and potential origin. A differential extraction protocol was employed to quantify the isopranyl glycerol ethers associated with unbound, intermediate-bound, and kerogen-bound lipid fractions. Archaebacterial lipids were evident at all depths for the unbound and intermediate-bound fractions. Concentrations of DPGE ranged from 0.51 to 2.91 micrograms/g dry sediment at the surface and showed secondary maxima deeper in basin sediments. Intermediate-bound DPGE concentrations exhibited an inverse relationship to unbound DPGE concentrations. Kerogen-bound DPGE concentrations were normally below detection limits. Earlier studies describing the general homogeneity of lipid components within the overlying brine and at the brine/seawater interface suggest that the large-scale sedimentary DPGE variations observed in this study result from spatial and temporal variations in in situ production by methanogenic or extremely halophilic archaebacteria. PMID:11540108

  16. 40 CFR 721.3845 - Alkyl substituted aromatic glycidyl ether (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ether (generic). 721.3845 Section 721.3845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3845 Alkyl substituted aromatic glycidyl ether (generic). (a) Chemical... as alkyl substituted aromatic glycidyl ether (PMN P-97-661) is subject to reporting under...

  17. 40 CFR 721.3845 - Alkyl substituted aromatic glycidyl ether (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ether (generic). 721.3845 Section 721.3845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3845 Alkyl substituted aromatic glycidyl ether (generic). (a) Chemical... as alkyl substituted aromatic glycidyl ether (PMN P-97-661) is subject to reporting under...

  18. Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-07-01

    The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety. PMID:27383199

  19. Chemistry of enol ethers. LXXXVIII. Condensation of the tetraethylacetal of malonaldehyde with /beta/-substituted enol alkyl ethers

    SciTech Connect

    Makin, S.M.; Kruglikova, R.I.; Kharitonova, O.V.; Arshava, B.M.

    1988-03-10

    The action of /beta/-substituted enol ethers on the tetraethylacetal of malonaldehyde gave the acetals of 1,5- and 1,7-dialdehydes. The nature of the substituent in the enol ether was found to affect the regioselectivity of the reaction: condensation with ethers containing an electron-withdrawing substituent leads to 1,5-dialdehyde acetals, while condensation with ethers containing a strong electron-donor substituent leads to 1,7-dialdehyde acetals. The condensation of malonaldehyde tetraethylacetal with /beta/-substituted enol alkyl ethers was carried out at room temperature in the presence of zinc chloride as catalyst.

  20. Technological approach of 1-O-alkyl-sn-glycerols separation from Berryteuthis magister squid liver oil.

    PubMed

    Ermolenko, Ekaterina; Latyshev, Nikolay; Sultanov, Ruslan; Kasyanov, Sergey

    2016-03-01

    Biological active compounds, 1-O-alkyl-sn-glycerols (AG), were isolated from liver oil of the squid Berryteuthis magister. The main components of the initial lipids were 1-O-alkyl-2,3-diacyl-sn-glycerols (38.50 %) and triacylglycerols (24.26 %). The first step of separation was the alkaline hydrolysis of oil to form a lipid mixture consisting of AG, free fatty acids and cholesterol. AG were separated by double recrystallization from acetone at -20 °C and 1 °C. A simple procedure is proposed for obtaining AG with a purity of 99.22 %, the main component of which is chimyl alcohol (94.39 %). Purity and structure of the obtained products were confirmed by GC and GC-MS technique. Isolated AG may be used in nutrition and cosmetics. PMID:27570298

  1. Mono- and Dialkyl Glycerol Ether Lipids in Anaerobic Bacteria: Biosynthetic Insights from the Mesophilic Sulfate Reducer Desulfatibacillum alkenivorans PF2803T

    PubMed Central

    Mollex, Damien; Vinçon-Laugier, Arnauld; Hakil, Florence; Pacton, Muriel; Cravo-Laureau, Cristiana

    2015-01-01

    Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803T grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1′-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803T. Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1′-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria. PMID:25724965

  2. Mono- and dialkyl glycerol ether lipids in anaerobic bacteria: biosynthetic insights from the mesophilic sulfate reducer Desulfatibacillum alkenivorans PF2803T.

    PubMed

    Grossi, Vincent; Mollex, Damien; Vinçon-Laugier, Arnauld; Hakil, Florence; Pacton, Muriel; Cravo-Laureau, Cristiana

    2015-05-01

    Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803T grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1'-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803T. Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1'-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria. PMID:25724965

  3. Oil compositions containing alkyl mercaptan derivatives of copolymers of an alpha olefin or an alkyl vinyl ether and an unsaturated alpha, beta-dicarboxylic compound

    SciTech Connect

    Le, H.T.

    1991-10-08

    This paper describes an oil composition. It comprises: a major amount of an oil selected from a mineral oil or synthetic oil and a manor amount of an alkyl mercaptan derivative of an alpha olefin or alkyl vinyl either and an unsaturated alpha, beta-dicarboxylic compound copolymer having pour point depressant properties, the copolymer comprising the reaction product of an alpha a olefin having from about 2 to about 30 carbon atoms or mixtures of alpha olefins having from about 2 to about 30 carbonates or an alkyl vinyl ether or mixture of alkyl vinyl ethers.

  4. 40 CFR 721.3845 - Alkyl substituted aromatic glycidyl ether (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... as alkyl substituted aromatic glycidyl ether (PMN P-97-661) is subject to reporting under this... in § 721.125 (a), (b), (c),(d),(e), (f), (g), (h),(i), and (k) are applicable to manufacturers... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses...

  5. 40 CFR 721.3845 - Alkyl substituted aromatic glycidyl ether (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as alkyl substituted aromatic glycidyl ether (PMN P-97-661) is subject to reporting under this... in § 721.125 (a), (b), (c),(d),(e), (f), (g), (h),(i), and (k) are applicable to manufacturers... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses...

  6. 40 CFR 721.10059 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of alkylphenyl... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10059 Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

  7. 40 CFR 721.10059 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of alkylphenyl... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10059 Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

  8. 40 CFR 721.10059 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of alkylphenyl... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10059 Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

  9. 40 CFR 721.10059 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkylphenyl... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10059 Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

  10. 40 CFR 721.10059 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkylphenyl... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10059 Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

  11. Condensation of perfluoroisobutylene with perfluorinated vinyl alkyl ethers

    SciTech Connect

    Postovoi, S.A.; Zeifman, Yu.V.; Knunyants, I.L.

    1986-12-10

    Condensation of perfluoroisobutylene with perfluorovinyl aklyl ethers with CsF catalysis takes place according to a scheme of concerted nucleophilic addition, with participation of the perfluoro-tert-butyl anion as nucleophile and perfluoroisobutylene as electrophile. In the presence of CO/sub 2/ the product of concerted perfluoroalkylcarboxylation forms.

  12. Synthesis and characterization of nonconventional surfactants of aromatic amino acid-glycerol ethers: effect of the amino acid moiety on the orientation and surface properties of these soap-type amphiphiles.

    PubMed

    Varka, Evdoxia-Maria A; Heli, Maria G; Coutouli-Argyropoulou, Evdoxia; Pegiadou, Sofia A

    2006-11-01

    The synthesis, characterization, and surface properties of soap-type amphiphiles comprising alkyl chains of 10-16 carbon atoms linked through an ether group to a glycerol-amino acid hydrophilic head group is described. The surface properties of members of this series derived from histidine and tyrosine were compared with those of phenylalanine and tryptophan derivatives described previously and with those of conventional soaps. In all cases, the amino acid derivatives showed superior surface properties, and an interesting differentiation was discovered regarding the orientation of tryptophan derivatives. PMID:16847987

  13. Influence of Alkoxy Groups on the Photoinduced Dynamics of Organic Molecules Exemplified on Alkyl Vinyl Ethers.

    PubMed

    Schalk, O; Stenrup, M; Geng, T; Lindh, R; Thomas, R D; Feifel, R; Hansson, T

    2015-11-12

    A series of different alkyl vinyl ethers is investigated to decipher the possible reaction channels upon photoexcitation to the π3s-Rydberg and the ππ*-valence state at 200 nm using time-resolved photoelectron spectroscopy and on-the-fly time-dependent density functional theory dynamics simulations. The results indicate two possible relaxation pathways: (1) a radiationless decay through the ππ*-state back to the ground state via torsion of the C═C double bond, in accordance with the dynamics found in ethylene; and (2) a fast dissociation of the C-O bond between the alkyl and the vinoxy group in the πσ*-state. The latter state can be accessed only after excitation to the π3s-Rydberg state (quantum yield of ∼50% according to the dynamics simulations). Additionally, the excited state barrier leading to formation of a vinyl radical was found to be too high to be crossed. These results indicate that the dynamics of ethers crucially depend on the excitation wavelength and that the πσ*-state constitutes an important competitive reaction channel that leads to dissociation of the molecules. PMID:26490385

  14. 40 CFR 721.10556 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers (PMN P-06-450; CAS...

  15. 40 CFR 721.10557 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers (PMN P-06-451; CAS...

  16. 40 CFR 721.10556 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers (PMN P-06-450; CAS...

  17. 40 CFR 721.10558 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS...

  18. 40 CFR 721.10557 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers (PMN P-06-451; CAS...

  19. 40 CFR 721.10558 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS...

  20. Electrochemical method for producing a biodiesel mixture comprising fatty acid alkyl esters and glycerol

    DOEpatents

    Lin, YuPo J; St. Martin, Edward J

    2013-08-13

    The present invention relates to an integrated method and system for the simultaneous production of biodiesel from free fatty acids (via esterification) and from triglycerides (via transesterification) within the same reaction chamber. More specifically, one preferred embodiment of the invention relates to a method and system for the production of biodiesel using an electrodeionization stack, wherein an ion exchange resin matrix acts as a heterogeneous catalyst for simultaneous esterification and transesterification reactions between a feedstock and a lower alcohol to produce biodiesel, wherein the feedstock contains significant levels of free fatty acid. In addition, because of the use of a heterogeneous catalyst, the glycerol and biodiesel have much lower salt concentrations than raw biodiesel produced by conventional transesterification processes. The present invention makes it much easier to purify glycerol and biodiesel.

  1. [Occupational lung cancer after inhalation of alkylating compounds: dichlordimethyl ether, monochlordimethyl ether and dimethyl sulphate (author's transl)].

    PubMed

    Bettendorf, U

    1977-03-18

    A 42-year-old chemist died from extensive pulmonary carcinoma, having inhaled for over seven years dichlordimethyl ether, monochlordimethyl ether and small amounts of dimethyl sulphate. This exposure took place in circumstances which, in animal experiments, have led to the development of cancer. A causal connection between the occupational exposure to these chemicals and carcinogenesis has to be accepted. PMID:844406

  2. Versatile assembly of p-carboxylatocalix[4]arene-O-alkyl ethers

    SciTech Connect

    Kennedy, Stuart; Teat, Simon J.; Dalgarno, Scott J.

    2009-07-08

    Crystallisation of lower-rim tetra-O-alkylated p-carboxylatocalix[4]arenes from pyridine results in the formation of both bi-layer and pillar type supramolecular motifs. Full alkylation at the calixarene lower rim has significant influence over the supramolecular self-assembly motif, including preclusion of pyridine guest molecules from the calixarene cavity in the solid state.

  3. Structure and Reactivity of Alkyl Ethers Adsorbed on CeO(2)(111) Model Catalysts

    SciTech Connect

    Calaza, Florencia C; Chen, Tsung-Liang; Mullins, David R; Overbury, Steven {Steve} H

    2011-01-01

    The effect of surface hydroxyls on the adsorption of ether on ceria was explored. Adsorption of dimethyl ether (DME) and diethyl ether (DEE) on oxidized and reduced CeO{sub 2}(111) films was studied and compared with Ru(0001) using RAIRS and sXPS within a UHV environment. On Ru(0001) the ethers adsorb weakly with the molecular plane close to parallel to the surface plane. On the ceria films, the adsorption of the ethers was stronger than on the metal surface, presumably due to stronger interaction of the ether oxygen lone pair electrons with a cerium cation. This interaction causes the ethers to tilt away from the surface plane compared to the Ru(0001) surface. No pronounced differences were found between oxidized (CeO{sub 2}) and reduced (CeOx) films. The adsorption of the ethers was found to be perturbed by the presence of OH groups on hydroxylated CeOx. In the case of DEE, the geometry of adsorption resembles that found on Ru, and in the case of dimethyl ether DME is in between that one found on clean CeOx and the metal surface. Decomposition of the DEE was observed on the OH/CeOx surface following high DEE exposure at 300 K and higher temperatures. Ethoxides and acetates were identified as adsorbed species on the surface by means of RAIRS and ethoxides and formates by s-XPS. No decomposition of dimethyl ether was observed on the OH/CeOx at these higher temperatures, implying that the dissociation of the C-O bond from ethers requires the presence of {beta}-hydrogen.

  4. Structure and Reactivity of Alkyl Ethers Adsorbed on CeO2(111) Model Catalysts

    SciTech Connect

    F Calaza; T Chen; D Mullins; S Overbury

    2011-12-31

    The effect of surface hydroxyls on the adsorption of ether on ceria was explored. Adsorption of dimethyl ether (DME) and diethyl ether (DEE) on oxidized and reduced CeO{sub 2}(111) films was studied and compared with Ru(0001) using RAIRS and sXPS within a UHV environment. On Ru(0001) the ethers adsorb weakly with the molecular plane close to parallel to the surface plane. On the ceria films, the adsorption of the ethers was stronger than on the metal surface, presumably due to stronger interaction of the ether oxygen lone pair electrons with a cerium cation. This interaction causes the ethers to tilt away from the surface plane compared to the Ru(0001) surface. No pronounced differences were found between oxidized (CeO{sub 2}) and reduced (CeOx) films. The adsorption of the ethers was found to be perturbed by the presence of OH groups on hydroxylated CeOx. In the case of DEE, the geometry of adsorption resembles that found on Ru, and in the case of dimethyl ether DME is in between that one found on clean CeOx and the metal surface. Decomposition of the DEE was observed on the OH/CeOx surface following high DEE exposure at 300 K and higher temperatures. Ethoxides and acetates were identified as adsorbed species on the surface by means of RAIRS and ethoxides and formates by s-XPS. No decomposition of dimethyl ether was observed on the OH/CeOx at these higher temperatures, implying that the dissociation of the C-O bond from ethers requires the presence of {beta}-hydrogen.

  5. Tandem β-elimination/hetero-michael addition rearrangement of an N-alkylated pyridinium oxime to an O-alkylated pyridine oxime ether: an experimental and computational study.

    PubMed

    Picek, Igor; Vianello, Robert; Šket, Primož; Plavec, Janez; Foretić, Blaženka

    2015-02-20

    A novel OH(-)-promoted tandem reaction involving C(β)-N(+)(pyridinium) cleavage and ether C(β)-O(oxime) bond formation in aqueous media has been presented. The study fully elucidates the fascinating reaction behavior of N-benzoylethylpyridinium-4-oxime chloride in aqueous media under mild reaction conditions. The reaction journey begins with the exclusive β-elimination and formation of pyridine-4-oxime and phenyl vinyl ketone and ends with the formation of O-alkylated pyridine oxime ether. A combination of experimental and computational studies enabled the introduction of a new type of rearrangement process that involves a unique tandem reaction sequence. We showed that (E)-O-benzoylethylpyridine-4-oxime is formed in aqueous solution by a base-induced tandem β-elimination/hetero-Michael addition rearrangement of (E)-N-benzoylethylpyridinium-4-oximate, the novel synthetic route to this engaging target class of compounds. The complete mechanistic picture of this rearrangement process was presented and discussed in terms of the E1cb reaction scheme within the rate-limiting β-elimination step. PMID:25562471

  6. Iron-Catalyzed Cross-Coupling of Unactivated, Secondary Alkyl Thio Ethers and Sulfones with Aryl Grignard Reagents

    PubMed Central

    Denmark, Scott E.; Cresswell, Alexander J.

    2013-01-01

    The first systematic investigation of unactivated aliphatic sulfur compounds as electrophiles in transition metal-catalyzed cross-coupling are described. Initial studies focused on discerning the structural and electronic features of the organosulfur substrate which enable the challenging oxidative addition to the C(sp3)–S bond. Through extensive optimization efforts, an Fe(acac)3-catalyzed cross-coupling of unactivated alkyl aryl thio ethers with aryl Grignard reagents was realized, in which a nitrogen “directing group” on the S-aryl moiety of the thio ether served a critical role in facilitating the oxidative addition step. In addition, alkyl phenyl sulfones were found to be effective electrophiles in the Fe(acac)3-catalyzed cross-coupling with aryl Grignard reagents. For the latter class of electrophile, a thorough assessment of the various reaction parameters revealed a dramatic enhancement in reaction efficiency with an excess of TMEDA (8.0 equiv). The optimized reaction protocol was used to evaluate the scope of the method with respect to both the organomagnesium nucleophile and sulfone electrophile. PMID:24256193

  7. Lewis Acid Assisted Nickel-Catalyzed Cross-Coupling of Aryl Methyl Ethers by C-O Bond-Cleaving Alkylation: Prevention of Undesired β-Hydride Elimination.

    PubMed

    Liu, Xiangqian; Hsiao, Chien-Chi; Kalvet, Indrek; Leiendecker, Matthias; Guo, Lin; Schoenebeck, Franziska; Rueping, Magnus

    2016-05-10

    In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C-O bond-cleaving alkylation, for the first time without the limiting β-hydride elimination. This new nickel-catalyzed dealkoxylative alkylation method enables powerful orthogonal synthetic strategies for the transformation of a variety of naturally occurring and easily accessible anisole derivatives. The directing and/or activating properties of aromatic methoxy groups are utilized first, before they are replaced by alkyl chains in a subsequent coupling process. PMID:27062726

  8. Neuroprotective effect of alkyl hydroxytyrosyl ethers in rat brain slices subjected to a hypoxia-reoxygenation model.

    PubMed

    Guerrero, A; De la Cruz, J P; Muñoz-Marín, J; López-Villodres, J A; Madrona, A; Espartero, J L; González-Correa, J A

    2012-10-15

    The aim of the present study was to investigate the antioxidant and possible neuroprotective and antioxidant effects of five alkyl hydroxytyrosyl (HT) ethers (ethyl, butyl, hexyl, octyl and dodecyl) in rat brain slices. None of the compounds modified lipid peroxidation or glutathione concentrations (GSH) in oxygenated samples. The effects of oxidative stress were investigated with ferrous salts to induce lipid peroxidation and diethylmaleate (DEM) to reduce GSH. All compounds inhibited lipid peroxidation with an inhibitory concentration 50% (IC(50)) one tenth that of HT. These compounds, especially the butyl derivative, prevented GSH depletion after incubation with DEM. We also explored the neuroprotective effect of these compounds in an experimental model of hypoxia-reoxygenation in rat brain slices. All compounds showed neuroprotective and antioxidant effects. Our results established a relationship between these effects and the length of the carbon chain (maximum effect in the range of C4-C8). PMID:23442672

  9. 40 CFR 721.10060 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, alkyl diglycidyl dibenzene...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Specific Chemical Substances § 721.10060 Reaction product of alkylphenyl glycidyl ether... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of...

  10. 40 CFR 721.10060 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, alkyl diglycidyl dibenzene...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Specific Chemical Substances § 721.10060 Reaction product of alkylphenyl glycidyl ether... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of...

  11. 40 CFR 721.10060 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, alkyl diglycidyl dibenzene...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Specific Chemical Substances § 721.10060 Reaction product of alkylphenyl glycidyl ether... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of...

  12. 40 CFR 721.10060 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, alkyl diglycidyl dibenzene...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Specific Chemical Substances § 721.10060 Reaction product of alkylphenyl glycidyl ether... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of...

  13. 40 CFR 721.10060 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, alkyl diglycidyl dibenzene...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Specific Chemical Substances § 721.10060 Reaction product of alkylphenyl glycidyl ether... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of...

  14. Digestion of the 1-O-alkyl diacylglycerol ethers of Atlantic dogfish liver oils by Atlantic salmon Salmo salar.

    PubMed

    Kang, S J; Lall, S P; Ackman, R G

    1997-01-01

    Dogfish (Squalus acanthias) liver poses a waste disposal problem in Canada because it is not utilized for any commercial purpose. The liver of Atlantic dogfish, which is often up to 20% of the weight of the fish, contains 40-70% oil. The oil contains about 30-40% 1-O-alkyl diacylglycerol ethers (DAGE) which render it unacceptable for human use, and it has also not been considered satisfactory for animal feed use. Polyunsaturated fatty acids (20:5n-3 and 22:6n-3) are present in dogfish liver oils at levels comparable to those in herring oil. Dogfish liver oil could be a source of essential fatty acids for Atlantic salmon (Salmo salar), but their ability to hydrolyze DAGE from dogfish oil has not been examined. Experiments were designed to measure the digestibility of fatty acids of DAGE in salmon. The fatty acid moieties were liberated by the digestive enzymes of the fish and made readily available as a source of energy. The 1-O-alkylglycerol ether moiety was absorbed to a small extent but should not constitute a health problem in either the fish or the human fish consumer. The long-chain polyunsaturated fatty acids were particularly well absorbed, with an apparent digestibility in salmon of 87-95% when feeding on dogfish liver oil. The total fatty acids and other lipids were in fact both absorbed to the extent of approximately 85%. PMID:9075189

  15. N-alkyl pyrrolidone ether podands as versatile alkali metal ion chelants.

    PubMed

    Perrin, Andrea; Myers, Dominic; Fucke, Katharina; Musa, Osama M; Steed, Jonathan W

    2014-02-28

    This work explores the coordination chemistry of a bis(pyrrolidone) ether ligand. Pyrrolidones are commercially important functional groups because of the high polarity and hence high hydrophilicity and surface affinity. An array of alkali metal ion complexes of a podand bearing two pendant pyrrolidone functionalities, namely 1-{2-[2-(2-oxo-pyrrolid-1-yl)-ethoxy]-ethyl}-pyrrolid-2-one (1) are reported. Reaction of this ligand with sodium hexafluorophosphate gives two discrete species of formulae [Na(1)2]PF6 (3) and [Na3(H2O)2(μ-1)2](PF6)3 (4), and a coordination polymer {[Na3(μ3-1)3(μ2-1)](PF6)3}n (5). The same reaction in methanol gives a 1 : 1 complex, namely [Na2(μ-1)2(MeOH)2](PF6)2 (6). Use of tetraphenyl borate as a less coordinating counter ion gives [Na2(1)2(H2O)4](BPh4)2 (7) and [Na2(1)4](BPh4)2 (8). Two potassium complexes have also been isolated, a monomer [K(1)2]PF6 (9) and a cyclic tetramer [K4(μ4-H2O)2(μ-1)4](PF6)4 (10). The structures illustrate the highly polar nature of the amide carbonyl moiety within bis(pyrrolidone) ethers with longer interactions to the ether oxygen atom. The zinc complex is also reported and {[ZnCl2(μ-1)]}n (11) exhibits bonding only to the carbonyl moieties. The ether oxygen atom is not necessary for Na(+) complexation as exemplified by the structure of the sodium complex of the analogue 1,3-bis(pyrrolid-2-on-1-yl)butane (2). Reaction of compound 1 with lithium salts results in isolation of the protonated ligand. PMID:24336897

  16. Hydroxytyrosyl alkyl ether derivatives inhibit platelet activation after oral administration to rats.

    PubMed

    Muñoz-Marín, Javier; De la Cruz, José Pedro; Reyes, José Julio; López-Villodres, Juan Antonio; Guerrero, Ana; López-Leiva, Inmaculada; Espartero, José Luis; Labajos, María Teresa; González-Correa, José Antonio

    2013-08-01

    The low lipophilicity of hydroxytyrosol (HT) has motivated efforts to synthesize homologous series with better lipid solubility, such as the ethers, which are more lipophilic than HT. Because HT inhibits platelet aggregation, the aim of the study was to assess the possible anti-platelet effect of five HT ether derivatives (ethyl, butyl, hexyl, octyl and dodecyl) after oral administration to rats. Whole blood collagen-induced platelet aggregation and calcium-induced thromboxane B2 (TxB2), aortic 6-keto-prostaglandin F1α (6-keto-PGF1α) and nitrites+nitrates, plasma concentration of lipid peroxides (TBARS) and red blood cell content of reduced glutathione (GSH) were measured. The administration of 20 mg/kg/day inhibited platelet aggregation, TxB2 and TBARS in a non-linear manner related to the length of the carbon chain, with a cut-off effect in the hexyl derivative. Aortic nitrite and red blood cell GSH production were also increased. The aortic production of 6-keto-PGF1α was unaltered except in the group treated with the dodecyl derivative. The administration of 50 mg/kg/day showed a similar pharmacodynamic profile but without the non-linear effect. In conclusion, HT ethers, especially the hexyl derivative, are a potential alternative to hydroxytyrosol, and their effect merits additional research to determine their role in the prophylaxis of vascular disease. PMID:23643702

  17. Stabilization of alkylated azacrown ether by fatty acid at the air-water interface.

    PubMed

    Zarbakhsh, Ali; Campana, Mario; Webster, John R P; Wojciechowski, Kamil

    2010-12-01

    The adsorbed amount of partially deuterated dihexadecyl-diaza-18-crown-6 ether (d-ACE16) in the presence of different chain length fatty acids as a function of surface pressure was determined by neutron reflectometry technique. The highest adsorbed amount of the azacrown ether was observed for the mixture of ACE16 with hexadecanoic (palmitic) acid, pointing to the importance of chain length matching between the two species for optimum stabilization of the mixed monolayer. The contrast variation technique was used to estimate the contribution to the total adsorbed amount from stearic acid and ACE16. It was found that the mixed Langmuir monolayer is stable against dissolution up to a surface pressure of 20 mN m(-1). Above this pressure, however, the spread and adsorbed amounts start to deviate, indicative of partial dissolution into the aqueous subphase. The consequences of this behavior for the transport of metal ions through the interfaces of permeation liquid membranes (PLMs) are discussed. PMID:21049946

  18. Characterization and quantitation of mixtures of alkyl ether sulfates and carboxylic acids by capillary electrophoresis with indirect photometric detection.

    PubMed

    Bernabé-Zafón, Virginia; Ortega-Gadea, Silvia; Simó-Alfonso, Ernesto F; Ramis-Ramos, Guillermo

    2003-08-01

    The separation, characterization, and determination of mixtures of alkyl ether sulfates (AES) and fatty acids (C10-C16) in background electrolytes (BGEs) containing acetonitrile (ACN)-water mixtures is addressed. Due to inhibition of the ionization of the carboxylate groups, the migration time and the resolution between the fatty acids decreased when the water content of the BGE was reduced, but efficiency and resolution between the AES oligomers improved. The migration times increased and resolution improved by substituting 5% ACN by an equivalent amount of dioxane. A complete separation of the two surfactant classes, up to the AES oligomers with 8 ethylene oxide units (EOs) with respect to C10, with excellent resolution between the AES oligomers, while preserving a satisfactory resolution between the fatty acids, was achieved with a BGE containing 5 mM trimethoxybenzoic acid, 7 mM dipentylamine, 85% ACN, 5% dioxane, and 10% water. The two surfactant classes were increasingly resolved by further reducing the water content of the BGE. Thus, C2 (acetate) was resolved from the AES oligomers up to 7 EOs using 90% ACN and 5% dioxane, but the resolution between the heavier fatty acids was poor with this BGE. Identification of the AES oligomers was eased by the excellent regularity of the successive migration times; thus, within each AES subclass or series of oligomers with the same number of carbon atoms in the alkyl chain, the migration times decreased following a mild curve as the number of EOs increased. The way how the data obtained by indirect photometry (corrected peak areas that are proportional to the molar concentrations) should be managed to avoid systematic error when the calibration curve is constructed using an AES standard with an oligomer distribution different from that of the samples is discussed and equations are given. Decyl sulfate was successfully used as internal standard. The detection limits (S/N = 3) were of ca. 2 microM for individual AES

  19. Ludwig-Soret effect of aqueous solutions of ethylene glycol oligomers, crown ethers, and glycerol: Temperature, molecular weight, and hydrogen bond effect

    NASA Astrophysics Data System (ADS)

    Maeda, Kousaku; Shinyashiki, Naoki; Yagihara, Shin; Wiegand, Simone; Kita, Rio

    2015-09-01

    The thermal diffusion, also called the Ludwig-Soret effect, of aqueous solutions of ethylene glycol oligomers, crown ethers, and glycerol is investigated as a function of temperature by thermal diffusion forced Rayleigh scattering. The Soret coefficient, ST, and the thermal diffusion coefficient, DT, show a linear temperature dependence for all studied compounds in the investigated temperature range. The magnitudes and the slopes of ST and DT vary with the chemical structure of the solute molecules. All studied molecules contain ether and/or hydroxyl groups, which can act as acceptor or donor to form hydrogen bonds, respectively. By introducing the number of donor and acceptor sites of each solute molecule, we can express their hydrogen bond capability. ST and DT can be described by an empirical equation depending on the difference of donor minus acceptor sites and the molecular weight of the solute molecule.

  20. Ludwig-Soret effect of aqueous solutions of ethylene glycol oligomers, crown ethers, and glycerol: Temperature, molecular weight, and hydrogen bond effect.

    PubMed

    Maeda, Kousaku; Shinyashiki, Naoki; Yagihara, Shin; Wiegand, Simone; Kita, Rio

    2015-09-28

    The thermal diffusion, also called the Ludwig-Soret effect, of aqueous solutions of ethylene glycol oligomers, crown ethers, and glycerol is investigated as a function of temperature by thermal diffusion forced Rayleigh scattering. The Soret coefficient, ST, and the thermal diffusion coefficient, DT, show a linear temperature dependence for all studied compounds in the investigated temperature range. The magnitudes and the slopes of ST and DT vary with the chemical structure of the solute molecules. All studied molecules contain ether and/or hydroxyl groups, which can act as acceptor or donor to form hydrogen bonds, respectively. By introducing the number of donor and acceptor sites of each solute molecule, we can express their hydrogen bond capability. ST and DT can be described by an empirical equation depending on the difference of donor minus acceptor sites and the molecular weight of the solute molecule. PMID:26429021

  1. Asymmetric Total Synthesis of (+)- and (−)-Clusianone and (+)- and (−)Clusianone Methyl Enol Ether via ACC Alkylation and Evaluation of their Anti-HIV Activity

    PubMed Central

    Garnsey, Michelle R.; Matous, James A.; Kwiek, Jesse J.; Coltart, Don M.

    2011-01-01

    The total asymmetric synthesis of (+)- and (−)-clusianone and (+)- and (−)-clusianone methyl enol ether is reported. Asymmetric induction is achieved through the use of ACC alkylation, providing the key intermediates with an er of 99:1. The four synthetic compounds were evaluated for their anti-HIV activity. Both (+)- and (−)-clusianone displayed significant anti-HIV activity. PMID:21414776

  2. The thickening additives for mineral and synthetic oils based on the copolymers of alkyl acrylates or methacrylates and butyl vinyl ether

    NASA Astrophysics Data System (ADS)

    Geraskina, Evgeniya V.; Moikin, Alexey A.; Semenycheva, Ludmila L.

    2014-05-01

    A new method for synthesizing of the copolymers of acrylic and methacrylic acid esters with butyl vinyl ether in an excess of low-boiling monomer, which has proven effective for a number of alkyl methacrylates was proposed. Tests of thickening efficiency of the obtained copolymers were carried out. The resistance to mechanical degradation of the mineral, semi synthetic and synthetic base oils doped with the copolymers was evaluated.

  3. Spontaneous Emulsification of Triolein Induced by Mixed Micellar Solutions of Sodium Polyoxyethylene Alkyl Ether Sulfate and Dodecyldimethyl Amine Oxide.

    PubMed

    Endo, Chika; Ito, Yoshiko; Akabane, Chika; Kaneko, Yukihiro; Sakai, Hideki

    2015-01-01

    A new mechanism of spontaneous emulsification without any salts or co-solvents is described, and is related to the dilatational behavior. Spontaneous emulsification can reduce the time required to remove oily soils from hard surfaces and enhance the detergency, because this type of emulsification requires no external mechanical work. In this paper, we focused on triolein, the main component of food oils and human sebum soil, and tried to induce spontaneous emulsification by using mixed micellar solutions of sodium polyoxyethylene alkyl ether sulfate and N, N-dimethyldodecylamine oxide (AES/DDAO). We characterized the dilatation of the oil/water interface using dynamic interfacial tension and elasticity measurements. This study confirmed that the degree of spontaneous emulsification can be enhanced by controlling the molar ratio of DDAO to AES. This enhancement can be attributed to an increased rate of decrease in the dynamic interfacial tension (i.e., a decreased interface dilatational elasticity), allowing for much greater suppression of the Marangoni effect. Further, we determined that one of the reasons for the decrease in the interface dilatational elasticity is the increasing number of micelles near the oil drop interface, which results from a decrease in the electrostatic repulsion between the micelles and the drop interface. Therefore, controlling the molar ratio of a mixed anionic/amphoteric surfactant solution is an effective way to induce spontaneous emulsification in the absence of salts or co-solvents. PMID:26250425

  4. Structures and Surface Properties of "Cyclic" Polyoxyethylene Alkyl Ethers: Unusual Behavior of Cyclic Surfactants in Water.

    PubMed

    Hirose, Yuki; Taira, Toshiaki; Sakai, Kenichi; Sakai, Hideki; Endo, Akira; Imura, Tomohiro

    2016-08-23

    The cyclization of amphiphiles has emerged as an attractive strategy for inducing remarkable properties in these materials without changing their chemical composition. In this study, we successfully synthesized three cyclic polyoxyethylene dodecyl ethers (c-POEC12's) with different ring sizes and explored the effects of their topology on their surface and self-assembly properties related to their function, comparing them with those of their linear counterparts (l-POEC12's). The surface activity of the c-POEC12's remained almost constant despite the change in their hydrophobic and hydrophilic balance (HLB) value, while that of the l-POEC12's decreased with an increase in the HLB value as general surfactants. In contrast to the normal micelles seen in the case of the l-POEC12's (3.4-9.7 nm), the cyclization of the POEC12's resulted in the formation of large spherical structures 72.8-256.8 nm in size. It also led to a dramatic decrease of 28 °C in the cloud point temperature. Furthermore, the cyclization of the POEC12's markedly suppressed the rate of protease hydrolysis caused by the surfactants. The initial rate of reduction of a detergent enzyme from Bacillus licheniformis was increased by more than 40% in the case of c-POE600C12 and c-POE1000C12, even though they exhibited surface activities almost equal to or higher than those of their linear counterparts. These results suggest that cyclization induces unusual aqueous behaviors in POEC12, making the surfactant milder with respect to detergent enzymes while ensuring it exhibits increased surface activity. PMID:27462805

  5. Preparation of Glycerol Cinnamate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol was combined with cinnamic acid to prepare the corresponding ester, glycerol cinnamate. Conversions of 81% were achieved after 16 hr in toluene at reflux conditions. The product was recovered by extraction with distilled water and diethyl ether. The isolated product displayed strong abso...

  6. NMR spectroscopy of heterosubstituted alkenyl alkyl ethers. I. Fast and reliable method for determination of double bond configuration in 2-alkoxyalkenylphosphonic dihaloanhydrides

    SciTech Connect

    Lazhko, E.I.; Trostyanskaya, I.G.; Kazankova, M.A.; Ustynyuk, Yu.A.

    1986-12-20

    As criterion for determination of the geometric configuration of P(III) substituted alkyl vinyl ethers, the importance of the geminal /sup 31/P-/sup 13/C coupling constants was proposed. It was established that the ranges of /sup 2/J (CP) for the E and Z isomers of the investigated series of compounds do not overlap (120.1-40.0 and 31.8-18.6 Hz respectively). This allows the determination of the geometric configuration of a compound even from the /sup 13/C parameters of only one isomer.

  7. Human platelets respond differentially to lysophosphatidic acids having a highly unsaturated fatty acyl group and alkyl ether-linked lysophosphatidic acids.

    PubMed Central

    Tokumura, Akira; Sinomiya, Junya; Kishimoto, Seishi; Tanaka, Tamotsu; Kogure, Kentaro; Sugiura, Takayuki; Satouchi, Kiyoshi; Waku, Keizo; Fukuzawa, Kenji

    2002-01-01

    Lysophosphatidic acid (LPA) is a physiological agonist that is produced by lysophospholipase D, phospholipase A(1) and phospholipase A(2) in the blood of animals. It exerts diverse biological actions on a broad range of animal cells. Specific receptors for this important agonist have been characterized. In this investigation, for the first time we prepared LPAs having a highly unsaturated fatty acyl group, such as the eicosapentaenoyl or docosahexaenoyl residue, and their acetylated derivatives. Human platelets aggregated more potently in response to the highly unsaturated acyl-LPAs than to LPAs with a C(18) fatty acyl group, such as an oleoyl group, while alkyl ether-linked LPAs (alkyl-LPA) had much stronger aggregating activity. Two positional isomers of LPAs with an arachidonoyl, eicosapentaenoyl or docosahexaenoyl group had equipotent aggregatory activity as well as the positional isomers of their acetylated analogues, indicating that putative LPA receptors could not distinguish the difference between the positional isomers. We found that platelet preparations from two individuals showed no aggregatory response to alkyl-LPAs, although they contained mRNAs for known LPA receptors in the following order of expression level: endothelial differentiation gene (Edg)-4>Edg-7>Edg-2. We also obtained evidence that 2-(p-amylcinnamoyl)amino-4-chlorobenzoic acid (ONO-RS-082), a phospholipase A(2) inhibitor, potentiated alkyl-LPA-induced platelet aggregation, but inhibited highly unsaturated acyl-LPA-induced platelet aggregation. These results indicated that human platelets express acyl-LPA-selective and alkyl-LPA-selective receptors on their plasma membrane. PMID:11982483

  8. Radical Reactions of Alkyl 2-Bromo-2,2-difluoroacetates with Vinyl Ethers: "Omitted" Examples and Application for the Synthesis of 3,3-Difluoro-GABA.

    PubMed

    Kondratov, Ivan S; Bugera, Maksym Ya; Tolmachova, Nataliya A; Posternak, Ganna G; Daniliuc, Constantin G; Haufe, Günter

    2015-12-18

    Addition reactions of perfluoroalkyl radicals to ordinary or polyfluorinated alkenes have been frequently used to synthesize perfluoroalkylated organic compounds. Here ethyl/methyl 2-bromo-2,2-difluoroacetate, diethyl (bromodifluoromethyl)phosphonate, [(bromodifluoromethyl)sulfonyl]benzene, and ethyl 2-bromo-2-fluoroacetate were involved in Na2S2O4-mediated radical additions to vinyl ethers in the presence of alcohols to give difluoro or monofluoroacetyl-substituted acetals or corresponding difluoromethylphosphonate- and (difluoromethylphenyl)sulfonyl-substituted alkyl acetals. This methodology has also been applied as a key step in the synthesis of hitherto unknown 3,3-difluoro-GABA, completing the series of isomeric difluoro GABAs. Comparison of the pKa values of 3-fluoro- and 3,3-difluoro-GABA with that of the fluorine free parent compound showed that introduction of each fluorine lead to acidification of both the amino and the carboxyl functions by approximately one unit. PMID:26550962

  9. Interactions of water with the nonionic surfactant polyoxyethylene glycol alkyl ethers studied by phase-sensitive sum frequency generation and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Mafi, Amirhossein; Hu, Dan; Chou, Keng C.

    2016-06-01

    Phase-sensitive sum frequency generation (SFG) vibrational spectroscopy and molecular dynamics (MD) simulation were used to study the interactions between water molecules and the surfactant polyoxyethylene glycol alkyl ether (C12E4) at its critical micelle concentration. The surfactant enhanced the positive peak of water's SFG spectrum suggesting that C12E4 was more anionic-like, even though the surfactant was overall neutral. MD simulations showed that the surfactant increased the depth of the surface anisotropic layer from 0.31 to 1.82 nm and the average number of hydrogen bonds per water molecule from 2.7 to 3.1. For water molecules near the surfactant, their H and O atoms are confined in well-separated shells. Both the O and C atoms in the head group of the surfactant are surrounded by the H atoms, instead of the O atoms, of water indicating that the negatively charged O atoms of the surfactant play a more important role than the C atoms in determining the orientation of water. The simulation also showed that the orientation of surface water molecules was flipped in the presence of the surfactant, which was consistent with the observed SFG spectra.

  10. Formation and cleansing performance of bicontinuous microemulsions in water/poly (oxyethylene) alkyl ether/ester-type oil systems.

    PubMed

    Aramaki, Kenji; Tawa, Kosuke; Shrestha, Lok Kumar; Iwanaga, Tetsuro; Kamada, Miho

    2013-01-01

    Phase behaviors in water/poly(oxyethylene) dodecyl ether (C₁₂EO(n), n = 4, 6, 8)/cetyl isooctanoate (CIO) systems were studied. In the C₁₂EO₆ and C₁₂EO₈ systems, self-assembled structures with positive curvatures, such as O/W microemulsions, and micellar cubic and hexagonal phases, were observed. A wider region of a lamellar liquid-crystalline phase, which included a narrow microemulsion region joined by a miscibility gap, was observed in the C₁₂EO₄ system. The structure of the microemulsion phase in the C₁₂EO₄ system was characterized by pulsed-field-gradient NMR (PFG-NMR) and small angle X-ray scattering (SAXS) techniques. PFG-NMR measurements indicated that the structure of the microemulsion was bicontinuous; both water and oil phases were continuous within the microemulsion. Pair-distance distribution function, p (r), and structure factors obtained by Generalized Indirect Fourier Transformation (GIFT) analysis of the SAXS data showed that the microemulsion domain sizes decreased with an increase in the oil content. The structure of the bicontinuous microemulsion was consistent with the results of a detergency test, in which the microemulsion samples were applied to lipstick dirt on an artificial skin plate. Detergency was observed to be better for the microemulsion at lower oil contents because of the larger oil domain size at these low concentrations. PMID:24088518

  11. Synthetic applications of aqueous accelerated [3,3] sigmatropic rearrangements of allyl vinyl ethers. [1,3] sigmatropic rearrangements of allyl vinyl ethers in 3 M lithium perchlorate-diethyl ether at ambient temperature. New methods to effect the retro Diels-Alder reaction of N-alkyl-2-azanorbornenes

    SciTech Connect

    Clark, J.D.

    1992-01-01

    Claisen rearrangements employed in the synthesis of natural and unnatural products that were heretofore difficult or impossible using conventional means are realized through the agency of water. Allyl vinyl ether 35, the unprotected form of McMurry's aphidicolin intermediate 7, rearranged after 24 h in 2.5:1 water/methanol at 80[degrees]C, affording aldehyde 40 in 70--85% yield. Acetaldehyde elimination witnessed using conventional reaction conditions was suppressed when employing water. The application of a Claisen rearrangement within the molecular framework of fenestranes was realized for the first time. Fenestrene vinyl ethers 28 and 30 rearranged to form the fenestrenes 29 and 31, respectively. Noteworthy is fenestrene 29, the first fenestrane synthesized possessing a trans-ring fusion common to two five-membered rings. The medium of 3.0 M lithium perchlorate-diethyl ether has been found to induce the rarely witnessed rearrangement of allyl vinyl ethers, despite the fact that the corresponding sigmatropic rearrangement is energetically more favorable. Yields are very good; however, in some instances the sigmatropic rearrangement and elimination processes compete slightly. Results from the observed stereoselectivities, concentration effects on reaction rate, and a crossover study indicate that these shifts take place via dissociated ions followed by recombination, and that the observed stereoselectivities are a result of unequal steric effects in the transition states for recombination. Copper(II) and sulfonic acid ion exchange resins have been found to readily catalyze the heterocycloreversion of N-alkyl-2-azanorbornenes to the corresponding primary amines, eliminating the necessity of employing a reactive dienophile to trap out the released cyclopentadiene.

  12. Electrochemical valorisation of glycerol.

    PubMed

    Simões, Mário; Baranton, Stève; Coutanceau, Christophe

    2012-11-01

    The worldwide glycerol stocks are increasing; to make the biodiesel industry sustainable economically, this chemical could be used as a secondary primary raw material. Electric energy or hydrogen and added-value-chemical cogeneration becomes more and more an important research topic for increasing economical and industrial interests towards electrochemical technologies. Studies on glycerol electrooxidation for fuel or electrolysis cell applications are scarce. The valorisation of glycerol is generally performed by organic chemistry reactions forming, for example, esters, glycerol carbonates, ethers, acetals or ketals. Glycerol oxidation is made up of complex pathway reactions that can produce a large number of useful intermediates or valuable fine chemicals with presently limited market impact due to expensive production processes. Many of these chemical oxidation routes lead to significant amounts of undesired by-products, and enzymatic processes are limited. Converse to classical heterogeneous processes, electrocatalytic oxidation processes can be tuned by controlling the nature, composition and structure of the electrocatalyts as well as the electrode potential. Such control may lead to very high selectivity and activity, avoiding or limiting product separation steps. The coupling of glycerol oxidation to produce chemicals with the oxygen reduction reaction in a fuel cell or water reduction reaction in an electrolysis cell on Pt-free catalysts results either in coproduction of electrical energy or hydrogen for energy storage. PMID:23112136

  13. A Mild Synthesis of New Aryl Vinyl Ethers and Diethyl 1-[(Alkyl)(cyano)methyl]vinylphosphonates via the Substitution of a 2,3-Difunctional Allyl Bromide

    PubMed Central

    Ben Kraïem, Jihène; Arfaoui, Aïcha; Amri, Hassen

    2014-01-01

    A novel class of aryl vinyl ethers 3 and diethyl 3-cyano-3-alkylprop-1-en-2-ylphosphonates 4 has been prepared, respectively, from coupling reaction of diethyl 1-(bromomethyl)-2-cyanovinylphosphonate 2 with phenols and Gilman reagents. PMID:24688373

  14. Chemistry of enol ethers. LXXXIV. Condensation of acetals of saturated aldehydes with 2-trimethylsilyloxy-1,3-dienes. Synthesis of /beta/-alkoxy-alkyl vinyl and divinyl ketones

    SciTech Connect

    Makin, S.M.; Nazarova, O.N.; Dymshakova, G.M.; Kundryutskova, L.A.

    1988-11-10

    The addition of the acetals of saturated aldehydes (formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and isobutyraldehyde) to 2-trimethylsilyloxy-4-methyl-1,3-pentadiene in the presence of aprotic acids (ZnCl/sub 2/, ZnBr/sub 2/, FeCl/sub 3/, SnCl/sub 4/, BF/sub 3/ /times/ OEt/sub 2/) takes place at positions 1, 2 of the diene system with the formation of /beta/-alkoxyalkyl vinyl ketones. The most effective catalysts of this reaction were stannic chloride and zinc bromide. The alkyl derivatives of divinyl ketones are formed when the obtained /beta/-alkoxyalkyl vinyl ketones are heated with p-toluenesulfonic acid.

  15. Alkylating potential of oxetanes.

    PubMed

    Gómez-Bombarelli, Rafael; Palma, Bernardo Brito; Martins, Célia; Kranendonk, Michel; Rodrigues, Antonio S; Calle, Emilio; Rueff, José; Casado, Julio

    2010-07-19

    Small, highly strained heterocycles are archetypical alkylating agents (oxiranes, beta-lactones, aziridinium, and thiirinium ions). Oxetanes, which are tetragonal ethers, are higher homologues of oxiranes and reduced counterparts of beta-lactones, and would therefore be expected to be active alkylating agents. Oxetanes are widely used in the manufacture of polymers, especially in organic light-emitting diodes (OLEDs), and are present, as a substructure, in compounds such as the widely used antimitotic taxol. Whereas the results of animal tests suggest that trimethylene oxide (TMO), the parent compound, and beta,beta-dimethyloxetane (DMOX) are active carcinogens at the site of injection, no studies have explored the alkylating ability and genotoxicity of oxetanes. This work addresses the issue using a mixed methodology: a kinetic study of the alkylation reaction of 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilicity similar to that of DNA bases, by three oxetanes (TMO, DMOX, and methyloxetanemethanol), and a mutagenicity, genotoxicity, and cell viability study (Salmonella microsome test, BTC E. coli test, alkaline comet assay, and MTT assay). The results suggest either that oxetanes lack genotoxic capacity or that their mode of action is very different from that of epoxides and beta-lactones. PMID:20550097

  16. PREPARATION AND CHARACTERIZATION OF 4-METHOXY CINNAMOYL GLYCEROL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol was combined with cinnamic acid to prepare the corresponding ester, glycerol cinnamate. Conversions of 81% were achieved after 16 hr in toluene at reflux conditions. The product was recovered by extraction with distilled water and diethyl ether. The isolated product displayed strong abso...

  17. Rearrangements of Cycloalkenyl Aryl Ethers.

    PubMed

    Törincsi, Mercedesz; Nagy, Melinda; Bihari, Tamás; Stirling, András; Kolonits, Pál; Novak, Lajos

    2016-01-01

    Rearrangement reactions of cycloalkenyl phenol and naphthyl ethers and the acid-catalyzed cyclization of the resulting product were investigated. Claisen rearrangement afforded 2-substituted phenol and naphthol derivatives. Combined Claisen and Cope rearrangement resulted in the formation of 4-substituted phenol and naphthol derivatives. In the case of cycloocthylphenyl ether the consecutive Claisen and Cope rearrangements were followed by an alkyl migration. The mechanism of this novel rearrangement reaction is also discussed. PMID:27104504

  18. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Booth, A. M.; Lienhard, D. M.; Soonsin, V.; Krieger, U. K.; Topping, D. O.; McFiggans, G.; Peter, T.; Seinfeld, J. H.

    2011-09-01

    We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42-. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with

  19. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Booth, A. M.; Lienhard, D. M.; Soonsin, V.; Krieger, U. K.; Topping, D. O.; McFiggans, G.; Peter, T.; Seinfeld, J. H.

    2011-05-01

    We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42-. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with

  20. Ether-linked lipids of Dermabacter hominis, a human skin actinobacterium.

    PubMed

    Valero-Guillén, Pedro L; Fernández-Natal, Isabel; Marrodán-Ciordia, Teresa; Tauch, Andreas; Soriano, Francisco

    2016-03-01

    Dermabacter hominis is a medically important actinobacterial inhabitant of human skin, although it is rarely implicated in infections. The lipid composition of D. hominis is revisited in this study in the context of its natural resistance to daptomycin, an antibiotic whose activity is influenced by membrane lipids. Thin layer chromatography and mass spectrometry revealed that this species contains phospholipids and glycolipids. Using electrospray ionization time of flight mass spectrometry (exact mass) and gas chromatography-mass spectrometry, the major phospholipid of D. hominis was identified as plasmanyl-phosphatidylglycerol (pPG), because it presented one alkyl chain and one acyl chain in the glycerol moiety of the molecule. The structure of the major glycolipid (GL1) was studied by combined gas-liquid chromatography, mass spectrometry and nuclear magnetic resonance, and was established as galactosyl-α-(1→2)-glucosyl-alkyl-acyl-glycerol. Lipid analyses showed differences between one daptomycin-resistant (DAP-R) strain and one daptomycin-sensitive (DAP-S) strain growing in the presence of the antibiotic: DAP-R tended to accumulate GL1 and to reduce pPG, whereas DAP-S maintained high proportions of pPG. The results demonstrate the existence of ether-linked lipids in D. hominis and reveal a differential distribution of phospholipids and glycolipids according to the sensitivity or resistance to daptomycin, although the mechanism(s) operating in the resistance to the antibiotic remain(s) to be elucidated. PMID:26867985

  1. Motor fuel alkylation process utilizing low acid

    SciTech Connect

    Kocal, J.A.; Imai, T.

    1987-01-06

    A process is described for the alkylation of an isoparaffin with an olefin acting agent comprising contacting the isoparaffin with the olefin acting agent at alkylation conditions in the presence of a catalyst. The catalyst consists essentially of an anhydrous, nonalcoholic mixture of from about 5 to 15 wt. % methyl tert-butyl ether and from 85 to 95 wt. % hydrofluoric acid. The volumetric ratio of hydrofluoric acid to isoparaffin and olefin acting agent is less than 0.75.

  2. An efficient copper-catalyzed cross-coupling reaction of alkyl-triflates with alkyl-Grignard reagents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A highly efficient method for the formation of C-C covalent bonds by cross-coupling reaction between alkyl-triflates and alkyl-Grignard reagents catalyzed by copper catalyst, Li2CuCl4, is described. The reaction works with most primary triflates in diethyl ether at low temperature within 0.5-3 h an...

  3. Activity of organophosphorus insecticides in bacterial tests for mutagenicity and DNA repair--direct alkylation versus metabolic activation and breakdown. II. O,O-dimethyl-O-(1,2-dibromo-2,2-dichloroethyl)-phosphate and two O-ether derivatives of trichlorfon.

    PubMed

    Braun, R; Schöneich, J; Weissflog, L; Dedek, W

    1983-03-01

    The following organophosphates were tested for their ability to induce DNA damage in a rec-type repair test with Proteus mirabilis strains PG713 (rec- hcr-) and PG273 (wild-type) and point mutations in the his- strain TA100 of Salmonella typhimurium: O,O-dimethyl-O-(1,2-dibromo-2,2-dichloroethyl)-phosphate (NALED); trichlorfon-O-methyl ether (TCP-O-ME), O,O-dimethyl-(1-methoxy-2,2,2-trichlorethyl)-phosphonate; trichlorfon-O-methyl ether vinyl derivative (TCP-O-MEVD), O,O-dimethyl-(1-methoxy-2,2-dichlorovinyl)-phosphonate. All compounds were negative in the repair test but induced base pair substitutions in S. typhimurium. The mutagenicity of NALED is due to the direct alkylating ability of the parental molecule and to mutagenic metabolites generated by enzymatic splitting of the side chain. Glutathion-dependent enzymes in the S9-mix eliminate the mutagenic activity of NALED completely. Mutation induction by TCP-O-ME and TCP-O-MEVD is predominantly caused by the reactive O-methyl ether configuration of the side chain and is resistant to metabolic inactivation by NADPH- or glutathion-dependent enzymatic pathways in the S9-mix of mice. PMID:6337735

  4. Reactions of perfluoro-1-alkylcycloalkenes with alcohols and properties of vinyl ethers formed

    SciTech Connect

    Snegirev, V.F.; Makarov, K.N.

    1986-12-10

    Perfluoro-1-alkylcycloalkenes react with alcohols to form products of vinyl and allyl substitution. Alkyl perfluorocycloakenyl ethers readily alkylate the fluoride ion and triethylamine, and by the action of SbF/sub 5/ convert into ..cap alpha.., ..beta..-unsaturated perfluoro ketones. When allyl perfluorocycloalkenyl ethers are heated, they isomerize into the corresponding ..cap alpha..-allylperfluorocycloalkanones.

  5. Method for making aromatic ethers using diorganoamino pyridinium salt catalyst

    SciTech Connect

    Brunelle, D. J.; Singleton, D. A.

    1985-04-23

    A method is provided for making aromatic ethers by effecting the displacement of reactive radicals on an activated aromatic nucleus such as a phthalimide with a mono or bisalkali metal phenoxide in the presence of an organic solvent and a dialkylamino branched alkyl substituted pyridinium salt as a phase transfer catalyst. Improved yields of bis(aromatic ethers) are achieved without the production of undesirable by-products, such as alkylated phenols.

  6. Catalytic cleavage of ether C-O bonds by pincer iridium complexes.

    PubMed

    Haibach, Michael C; Lease, Nicholas; Goldman, Alan S

    2014-09-15

    The development of efficient catalytic methods to cleave the relatively unreactive C-O bonds of ethers remains an important challenge in catalysis. Building on our group's recent work, we report the dehydroaryloxylation of aryl alkyl ethers using pincer iridium catalysts. This method represents a rare fully atom-economical method for ether C-O bond cleavage. PMID:25060043

  7. Glycerol combustion and emissions

    EPA Science Inventory

    With the growing capacity in biodiesel production and the resulting glut of the glycerol by-product, there is increasing interest in finding alternative uses for crude glycerol. One option may be to burn it locally for combined process heat and power, replacing fossil fuels and i...

  8. Conversion of glycerol to hydrogen rich gas.

    PubMed

    Tran, Nguyen H; Kannangara, G S Kamali

    2013-12-21

    Presently there is a glut of glycerol as the by-product of biofuel production and it will grow as production increases. The conundrum is how we can consume this material and convert it into a more useful product. One potential route is to reform glycerol to hydrogen rich gas including synthesis gas (CO + H2) and hydrogen. However, there is recent literature on various reforming techniques which may have a bearing on the efficiency of such a process. Hence in this review reforming of glycerol at room temperature (normally photo-catalytic), catalysis at moderate and high temperature and a non-catalytic pyrolysis process are presented. The high temperature processes allow the generation of synthesis gas with the hydrogen to carbon monoxide ratios being suitable for synthesis of dimethyl ether, methanol and for the Fischer-Tropsch process using established catalysts. Efficient conversion of synthesis gas to hydrogen involves additional catalysts that assist the water gas shift reaction, or involves in situ capture of carbon dioxide and hydrogen. Reforming at reduced temperatures including photo-reforming offers the opportunity of producing synthesis gas or hydrogen using single catalysts. Together, these processes will assist in overcoming the worldwide glut of glycerol, increasing the competitiveness of the biofuel production and reducing our dependency on the fossil based, hydrogen rich gas. PMID:24043264

  9. Certain glycol ethers eliminated from toxic chemical release reporting requirements

    SciTech Connect

    1994-09-01

    Effective June 28, 1994, the U.S. Environmental Protection Agency (EPA) eliminated high molecular weight glycol ethers from the reporting requirements of section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 (EPCRA). EPCRA (42 U.S.C. 11023) is also referred to as Title III of the Superfund Amendments and Reauthorization Act (SARA) of 1986. EPA redefined the glycol ethers category list of chemicals subject to reporting based on an EPA review of available human health data on short-chain glycol ethers. EPA is removing only the surfactant glycol ethers, which are high molecular weight glycol ethers, i.e., those with pendant alkyl groups and that typically have eight or more carbon atoms. The redefinition retains certain glycol ethers (i.e., ethylene glycol ethers where there are 1,2, or 3 repeating ethylene oxide groups) in the category. These are reasonably anticipated to cause adverse human health effects.

  10. Catalytic alkylation apparatus

    SciTech Connect

    Hann, P.D.; VanPool, J.

    1989-09-05

    This patent describes an apparatus. It comprises alkylation reactor means for producing alkylate product; acid catalyst settler means having an upper portion, an intermediate portion and a lower portion; means for withdrawing alkylate product from the alkylation reactor means and for providing alkylate product from the alkylation reactor means to a point of introduction in the intermediate portion of the acid catalyst settler means; and means for establishing a temperature gradient in the upper the gas lines to the detector so that a flow rate of a sample gas passing through the detector is constant.

  11. Pentabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Pentabromodiphenyl ether ; CASRN 32534 - 81 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncar

  12. Hexabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Hexabromodiphenyl ether ; CASRN 36483 - 60 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  13. Ethyl ether

    Integrated Risk Information System (IRIS)

    Ethyl ether ; CASRN 60 - 29 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  14. Tetrabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Tetrabromodiphenyl ether ; CASRN 40088 - 47 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncar

  15. Nonabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Nonabromodiphenyl ether ; CASRN 63936 - 56 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  16. Tribromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Tribromodiphenyl ether ; CASRN 49690 - 94 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  17. Octabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Octabromodiphenyl ether ; CASRN 32536 - 52 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  18. Glycerol-induced hyperhydration

    NASA Technical Reports Server (NTRS)

    Riedesel, Marvin L.; Lyons, Timothy P.; Mcnamara, M. Colleen

    1991-01-01

    Maintenance of euhydration is essential for maximum work performance. Environments which induce hypohydration reduce plasma volume and cardiovascular performance progressively declines as does work capacity. Hyperhydration prior to exposure to dehydrating environments appears to be a potential countermeasure to the debilitating effects of hypohydration. The extravascular fluid space, being the largest fluid compartment in the body, is the most logical space by which significant hyperhydration can be accomplished. Volume and osmotic receptors in the vascular space result in physiological responses which counteract hyperhydration. Our hypothesis is that glycerol-induced hyperhydration (GIH) can accomplish extravascular fluid expansion because of the high solubility of glycerol in lipid and aqueous media. A hypertonic solution of glycerol is rapidly absorbed from the gastrointestinal tract, results in mild increases in plasma osmolality and is distributed to 65 percent of the body mass. A large volume of water ingested within minutes after glycerol intake results in increased total body water because of the osmotic action and distribution of glycerol. The resulting expanded extravascular fluid space can act as a reservoir to maintain plasma volume during exposure to dehydrating environments. The fluid shifts associated with exposure to microgravity result in increased urine production and is another example of an environment which induces hypohydration. Our goal is to demonstrate that GIH will facilitate maintenance of euhydration and cardiovascular performance during space flight and upon return to a 1 g environment.

  19. Alkylated lariat ethers as solvent extraction reagents: Surveying the extraction of alkali metals by bis-t-octylbenzo-14-crown-4-acetic acid by use of potentiometric two-phase titration

    SciTech Connect

    Sachleben, R.A.; Moyer, B.A.; Case, F.I.; Garmon, S.A.

    1993-01-01

    Two-phase potentiometric titrimetry was used to survey the extraction of alkali metal cations from aqueous chloride solution by the lipophilic, ionizable lariat ether bis-(t-octylbenzo)-14-crown-4-acetic acid (BOB14C4AA) in o-xylene. Analysis of the data indicates that ion-exchange extraction by the crown-carboxylic acid at low loading (i.e., low conversion of BOB14C4AA to its salt form) is stronger for lithium ion than for the other alkali metals. Little or no selectivity occurs at high loadings. In comparison with the long-chain carboxylic acid 2-methyl-2-heptylnonanoic acid (HMHN), BOB14C4AA extracts lithium and sodium at significantly lower pH; in the loading range of 0.1 to 0.7, the pH shift is 1.4-1.8 pH units for sodium ion and 1.7-2.3 pH units for lithium ion. The titration data are interpreted in terms of aggregated organic-phase species. In the case of lithium extraction, clear evidence was found for a species in which neutral BOB14C4AA participates in the organic-phase complexation of the metal cation.

  20. PROCESS FOR PRODUCING ALKYL ORTHOPHOSPHORIC ACID EXTRACTANTS

    DOEpatents

    Grinstead, R.R.

    1962-01-23

    A process is given for producing superior alkyl orthophosphoric acid extractants for use in solvent extraction methods to recover and purify various metals such as uranium and vanadium. The process comprises slurrying P/sub 2/O/ sub 5/ in a solvent diluent such as kerosene, benzene, isopropyl ether, and the like. An alipbatic alcohol having from nine to seventeen carbon atoms, and w- hcrein ihc OH group is situated inward of the terminal carbon atoms, is added to the slurry while the reaction temperature is mainiained below 60 deg C. The alcohol is added in the mole ratio of about 2 to l, alcohol to P/sub 2/O/sub 5/. A pyrophosphate reaotion product is formed in the slurry-alcohol mixture. Subsequently, the pyrophosphate reaction product is hydrolyzed with dilute mineral acid to produce the desired alkyl orthophosphoric aeid extractant. The extraetant may then be separated and utilized in metal-recovery, solvent- extraction processes. (AEC)

  1. Polygas spells relief from alkylation ills

    SciTech Connect

    Weismantel, G.E.

    1980-06-16

    Tight supplies and soaring prices of isobutane (for olefin alkylation), are causing renewed interest in the olefin ''polymerization'' (i.e., dimerization), route to high-octane gasoline-blending components. Modern polymerization processes, intended to supplement rather than replace alkylation offer considerable energy and capital savings, compared with alkylation-only schemes. In addition to the Institut Francais du Petrole's Dimersol ''polymerization'' tecnique which is already being used or will be used by 1981 in at least five U.S. refineries, with six more units in the planning stage, a low-cost process to ''polymerize'' excess refinery olefins, developed by International Energy Consultants Inc., is nearing commercialization. A third route to process C/sub 3//C/sub 4/ refinery streams with high conversion rates has been proposed by UOP Inc. The low motor octane number (MON) of the product gasoline (approx. 13 numbers lower than a typical alkylate), was recently confirmed in Total Petroleum Inc.'s studies, but Good Hope Refineries Inc. plans to increase its polymer gasoline MON by adding methyl tert.-butyl ether.

  2. Coproduction of ethanol and glycerol.

    PubMed

    Gong, C S; Du, J X; Cao, N J; Tsao, G T

    2000-01-01

    Ethanol and glycerol are both metabolic products of yeasts. There are occasions when coproduction of both is considered desirable in industrial operations. In this article, we describe the potential of integrating the two processes. A LORRE Y8 yeast culture isolated from molasses is capable of efficient glycerol production from glucose, and a yeast Culture 1400 is an excellent producer of ethanol. By controlling the process conditions, the ratio of ethanol and glycerol production can be varied. PMID:10849818

  3. A Caenorhabditis elegans model for ether lipid biosynthesis and function[S

    PubMed Central

    Shi, Xun; Tarazona, Pablo; Brock, Trisha J.; Browse, John; Feussner, Ivo; Watts, Jennifer L.

    2016-01-01

    Ether lipids are widespread in nature, and they are structurally and functionally important components of membranes. The roundworm, Caenorhabditis elegans, synthesizes numerous lipid species containing alkyl and alkenyl ether bonds. We isolated C. elegans strains carrying loss-of-function mutations in three genes encoding the proteins required for the initial three steps in the ether lipid biosynthetic pathway, FARD-1/FAR1, ACL-7/GNPAT, and ADS-1/AGPS. Analysis of the mutant strains show that they lack ether lipids, but possess the ability to alter their lipid composition in response to lack of ether lipids. We found that increases in de novo fatty acid synthesis and reduction of stearoyl- and palmitoyl-CoA desaturase activity, processes that are at least partially regulated transcriptionally, mediate the altered lipid composition in ether lipid-deficient mutants. Phenotypic analysis demonstrated the importance of ether lipids for optimal fertility, lifespan, survival at cold temperatures, and resistance to oxidative stress.Caenorhabditis PMID:26685325

  4. Catalytic etherification of glycerol to produce biofuels over novel spherical silica supported Hyflon® catalysts.

    PubMed

    Frusteri, Francesco; Frusteri, Leone; Cannilla, Catia; Bonura, Giuseppe

    2012-08-01

    Etherification of glycerol (GLY) with isobutylene (IB) to produce biofuels was investigated in liquid phase using spherical silica supported Hyflon® catalysts (SSHC). As reference catalyst, Amberlyst® 15 (A-15) acid ion-exchange resin was used. Experiments were carried out in batch mode at a reaction temperature ranging from 323 to 343 K. SSHC were found to be very effective systems in etherification of glycerol with IB, providing cumulative di- and tri-ethers yields higher than that obtained by using A-15 catalyst. Furthermore, such catalysts were stable and easily reusable; no leaching of active phase was observed. The formation of poly-substituted ethers, suitable additives for conventional fuels, was favored by operating at an isobutylene/glycerol molar ratio >3 and low reaction time (<6 h); however, the concentration of mono-ether reached values lower than 3 wt.% only when SSHC catalyst was used. Turnover frequency of glycerol (TOF(GLY)) highlighted that SSHC systems were much more active than A-15 catalyst: the accessibility and nature of active sites and the surface properties of catalysts were indicated as the main factors affecting the catalytic behavior. A lower acid site density of SSHC than that of A-15 catalyst was decisive in preventing the occurrence of oligomerization reaction which leads to the formation of di-isobutylene (DIB), precursors of gummy products. PMID:22705542

  5. Safety Assessment of Alkyl PEG Sulfosuccinates as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of alkyl polyethylene glycol (PEG) sulfosuccinates, which function in cosmetics mostly as surfactants/cleansing agents. Although these ingredients may cause ocular and skin irritation, dermal penetration is unlikely because of the substantial polarity and molecular size of these ingredients. The Panel considered the negative oral carcinogenicity and reproductive and developmental toxicity data on chemically related laureths (PEG lauryl ethers) and negative repeated dose toxicity and skin sensitization data on disodium laureth sulfosuccinate supported the safety of these alkyl PEG sulfosuccinates in cosmetic products, but. The CIR Expert Panel concluded that the alkyl PEG sulfosuccinates are safe in the present practices of use and concentration when formulated to be nonirritating. PMID:26362121

  6. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    DOEpatents

    Smith, Jr., Lawrence A.; Jones, Jr., Edward M.; Hearn, Dennis

    1984-01-01

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150.degree. to 250.degree. F. at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C.sub.3 to C.sub.6 and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom.

  7. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    DOEpatents

    Smith, L.A. Jr.; Jones, E.M. Jr.; Hearn, D.

    1984-05-08

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150 to 250 F at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C[sub 3] to C[sub 6] and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom. 2 figs.

  8. Synthesis of amphiphilic 6-carboxypullulan ethers.

    PubMed

    Pereira, Junia M; Mahoney, Michelle; Edgar, Kevin J

    2014-01-16

    Hydrophobically modified polysaccharides that contain carboxyl groups possess exceptional features for drug delivery and other applications. Carboxyl groups were introduced at C-6 in the pullulan backbone by applying the well-established oxidation with TEMPO and NaOCl/NaBr. The oxidized product, 6-carboxypullulan, is even more water-soluble than pullulan. Consequently, further chemical modifications have been mainly restricted to reactions that can be performed in water or under heterogeneous conditions. We find that the TBA salt of 6-carboxypullulan is soluble in a range of organic solvents and can be reacted homogeneously with various alkyl halides in DMSO and sodium hydroxide at 40 °C to yield 6-carboxypullulan ethers. Complete substitution (DS 7 per trisaccharide repeat unit) was achieved upon reaction with iodoethane, while products from reaction with longer chain alkyl halides (propyl and butyl derivatives) achieved DS up to about 3. The amphiphilic products have impressive surfactant properties. PMID:24188839

  9. Synthesis and Cytotoxicity of Silicon and Germanium Containing Pyridine Oxime O-Ethers

    PubMed Central

    Abele, Edgars; Abele, Ramona; Arsenyan, Pavel; Shestakova, Irina; Kanepe, Iveta; Antonenko, Inga; Popelis, Juris; Lukevics, Edmunds

    2003-01-01

    Silicon and germanium containing pyridine aldoxime, ketoxime and amidoxime O-ethers have been prepared using phase transfer catalytic systems oxime alkyl halide solid KOH 18-crown-6 benzene and oxime alkyl halide solid K2CO3 or Cs2CO3 18-crown-6 toluene. Cytotoxic activity of silicon and germanium containing pyridine oxime O-ethers was tested in vitro on two monolayer tumor cell lines: MG- 22A (mouse hepatoma) and HT-1080 (human fibrosarcoma). O-[3-Yriethylsilylpropyl]- and O-[3-(1-methyl- 1-silacyclopentyl)propyl] oximes of pyridine aldehydes and ketones exhibit high cytotoxicity. Presence of methyl group in the pyridine ring considerably decreased activity of amidoxime O-ethers. Oxime ethers containing two elements are essentially inactive. For 2-acetylpyridine oxime ethers the activity increases in order of alkyl substituents: Et3GeCH2CH2SiMe2CH2 < Et3SiCH2CH2CH2 < (CH2)4SiCH2CH2CH2. Cytotoxicity of ketoxime O-ethers is considerably lower in comparison with aldoxime O-ethers. PMID:18365061

  10. Biosynthesis of archaeal membrane ether lipids

    PubMed Central

    Jain, Samta; Caforio, Antonella; Driessen, Arnold J. M.

    2014-01-01

    A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA). In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol) and the tetraether (or caldarchaeol) lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria. PMID:25505460

  11. Poly(arylene ether)s containing pendent ethynyl groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Jensen, Brian J. (Inventor)

    1996-01-01

    Poly(arylene ether)s containing pendent ethynyl and substituted ethynyl groups and poly(arylene ether) copolymers containing pendent ethynyl and substituted ethynyl groups are readily prepared from bisphenols containing ethynyl and substituted ethynyl groups. The resulting polymers are cured up to 350.degree. C. to provide crosslinked poly(arylene ether)s with good solvent resistance, high strength and modulus.

  12. Thermolysis of phenethyl phenyl ether: A model of ether linkages in low rank coal

    SciTech Connect

    Britt, P.F.; Buchanan, A.C. III; Malcolm, E.A.

    1994-09-01

    Currently, an area of interest and frustration for coal chemists has been the direct liquefaction of low rank coal. Although low rank coals are more reactive than bituminous coals, they are more difficult to liquefy and offer lower liquefaction yields under conditions optimized for bituminous coals. Solomon, Serio, and co-workers have shown that: in the pyrolysis and liquefaction of low rank coals, a low temperature cross-linking reaction associated with oxygen functional groups occurs before tar evolution. A variety of pretreatments (demineralization, alkylation, and ion-exchange) have been shown to reduce these retrogressive reactions and increase tar yields, but the actual chemical reactions responsible for these processes have not been defined. In order to gain insight into the thermochemical reactions leading to cross-linking in low rank coal, we have undertaken a study of the pyrolysis of oxygen containing coal model compounds. Solid state NMR studies suggest that the alkyl aryl ether linkage may be present in modest amounts in low rank coal. Therefore, in this paper, we will investigate the thermolysis of phenethyl phenyl ether (PPE) as a model of 0-aryl ether linkages found in low rank coal, lignites, and lignin, an evolutionary precursor of coal. Our results have uncovered a new reaction channel that can account for 25% of the products formed. The impact of reaction conditions, including restricted mass transport, on this new reaction pathway and the role of oxygen functional groups in cross-linking reactions will be investigated.

  13. Characterization of crude glycerol from biodiesel plants.

    PubMed

    Hu, Shengjun; Luo, Xiaolan; Wan, Caixia; Li, Yebo

    2012-06-13

    Characterization of crude glycerol is very important to its value-added conversion. In this study, the physical and chemical properties of five biodiesel-derived crude glycerol samples were determined. Three methods, including iodometric-periodic acid method, high performance liquid chromatography (HPLC), and gas chromatography (GC), were shown to be suitable for the determination of glycerol content in crude glycerol. The compositional analysis of crude glycerol was successfully achieved by crude glycerol fractionation and characterization of the obtained fractions (aqueous and organic) using titrimetric, HPLC, and GC analyses. The aqueous fraction consisted mainly of glycerol, methanol, and water, while the organic fraction contained fatty acid methyl esters (FAMEs), free fatty acids (FFAs), and glycerides. Despite the wide variations in the proportion of their components, all raw crude glycerol samples were shown to contain glycerol, soap, methanol, FAMEs, water, glycerides, FFAs, and ash. PMID:22612334

  14. Glycerol production of various strains of saccharomyces

    SciTech Connect

    Radler, F.; Schuetz, H.

    1982-01-01

    The quantity of glycerol as principal by-product of the alcoholic fermentation depends to a large extent on the yeast strain. Different strains of Saccharomyces cerevisiae were found to form amounts of glycerol varying between 4.2 to 10.4 g/L. The formation of glycerol is regarded as a result of the competition between alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase that compete for the reduced coenzyme NADH/sub 2/. High and low glycerol forming yeast strains showed large differences in the activity of glycerol-3-phosphate dehydrogenase and only small variation in the activity of alcohol dehydrogenase. The total amount of glycerol formed was also influenced by amino acids. In thiamine deficient media a decrease in glycerol formation was observed. Experiments indicate a correlation between the formation of acetaldehyde and glycerol and the production of cell mass that may be of practical interest. (Refs. 12).

  15. Synthesis of Ethers via Reaction of Carbanions and Monoperoxyacetals

    PubMed Central

    2015-01-01

    Although transfer of electrophilic alkoxyl (“RO+”) from organic peroxides to organometallics offers a complement to traditional methods for etherification, application has been limited by constraints associated with peroxide reactivity and stability. We now demonstrate that readily prepared tetrahydropyranyl monoperoxyacetals react with sp3 and sp2 organolithium and organomagnesium reagents to furnish moderate to high yields of ethers. The method is successfully applied to the synthesis of alkyl, alkenyl, aryl, heteroaryl, and cyclopropyl ethers, mixed O,O-acetals, and S,S,O-orthoesters. In contrast to reactions of dialkyl and alkyl/silyl peroxides, the displacements of monoperoxyacetals provide no evidence for alkoxy radical intermediates. At the same time, the high yields observed for transfer of primary, secondary, or tertiary alkoxides, the latter involving attack on neopentyl oxygen, are inconsistent with an SN2 mechanism. Theoretical studies suggest a mechanism involving Lewis acid promoted insertion of organometallics into the O–O bond. PMID:26560686

  16. Boost refining profits by converting surplus butadiene to valuable feedstocks for MTBE and/or alkylation

    SciTech Connect

    Nocca, J.L. ); Hennico, A.; Cosyns, J.; Torck, B. )

    1994-01-01

    Ethylene plants produce a C4 butadiene-rich cut as a by-product. Although it has been a highly valued chemical intermediate for a long time, butadiene is now in over supply due to the installation of new steam cracking plants and the growing use of naphtha, the main butadiene generator, as feedstock. In the meantime, the demand for alkylate and ethers has increased steadily to produce environmentally friendly gasoline. This paper presents processes developed by IFP to convert surplus butadiene into ethers or alkylate for gasoline production. The first process transforms the butadiene-rich stream into a butenes-rich stream, an ideal alkylation feedstock. The second process generates isobutene from the butenes stream by skeletal isomerization for MTBE production.

  17. Identifying plasma glycerol concentration associated with urinary glycerol excretion in trained humans.

    PubMed

    Nelson, Jeff L; Harmon, Molly E; Robergs, Robert A

    2011-11-01

    Glycerol has been used as a means to legitimately hyperhydrate the body in an attempt to offset the deleterious effects of dehydration. It has the potential to mask blood doping practices and as a result has been added to the WADA prohibited substance list. The purpose of this study was to identify the plasma glycerol concentration coinciding with urinary glycerol excretion. Twelve healthy, trained male subjects completed five separate trials under resting conditions. For each trial, subjects consumed a different glycerol dose (0.025, 0.05, 0.10, 0.15, or 0.20 g glycerol/kg LBM) of a 5% glycerol solution in order to determine at what plasma glycerol concentration an increase in urine glycerol concentration becomes apparent. Based on regression analysis, plasma glycerol concentrations > 0.327 ± 0.190 mmol/L and a glycerol dose > 0.032 ± 0.010 g glycerol/kg LBM would be associated with urinary glycerol excretion. There were significant linear relationships between peak plasma glycerol concentration and time to reach peak plasma glycerol concentration to the ingested glycerol doses. Our findings illustrate the importance of considering the effect of urinary glycerol excretion on legitimate hyperhydration regimens as well as suggesting that it is possible to detect surreptitious use of glycerol as a masking agent through urinary analysis. PMID:22080901

  18. Glycerol inhibition of ruminal lipolysis in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supplemental glycerol inhibits rumen lipolysis, a prerequisite for rumen biohydrogenation, which is responsible for the saturation of dietary fatty acids consumed by ruminant animals. Feeding excess glycerol, however, adversely affects dry matter digestibility. To more clearly define the effect of...

  19. Glycerol clearance in alcoholic liver disease.

    PubMed Central

    Johnston, D G; Alberti, K G; Wright, R; Blain, P G

    1982-01-01

    Glycerol clearance was studied by a primed dose-constant infusion technique in 14 patients with alcoholic liver disease and six normal control subjects. Fasting blood glycerol concentrations were raised in the alcoholic subjects (0.09 +/- 0.01 vs 0.06 +/- 0.01 mumol/l, p less than 0.05) and glycerol clearance was impaired (24.5 +/- 1.9 vs 37.5 +/- 3.2 ml/kg/min, p less than 0.005). Endogenous production rate of glycerol and distribution space at steady state were similar in alcoholic and control subjects. The metabolic clearance rate of glycerol correlated negatively with basal glycerol concentrations. Thus tissue uptake of glycerol is impaired in liver disease. As glycerol is metabolised primarily in the liver by conversion to glucose, these data suggest a defect of gluconeogenesis in alcoholic liver disease. PMID:7076002

  20. Crown ethers in graphene

    SciTech Connect

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I.; Gallego, Nidia C.; Pantelides, Sokrates T.; Pennycook, Stephen J.; Moyer, Bruce A.; Chisholm, Matthew F.

    2014-11-13

    Crown ethers, introduced by Pedersen1, are at their most basic level neutral rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted special attention for their ability to selectively incorporate various atoms2 or molecules within the cavity formed by the ring3-6. This property has led to the use of crown ethers and their compounds in a wide range of chemical and biological applications7,8. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity9,10. In this Letter, we report atomic-resolution images of the same basic structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar and thus uniquely suited for the many applications that crown ethers are known for. First-principles calculations show that the close similarity of the structures seen in graphene with those of crown ether molecules also extends to their selectivity towards specific metal cations depending on the ring size. Atoms (or molecules) incorporated within the crown ethers in graphene offer a simple environment that can be easily and systematically probed and modeled. Thus, we expect that this discovery will introduce a new wave of investigations and applications of chemically functionalized graphene.

  1. Crown ethers in graphene

    DOE PAGESBeta

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I.; Gallego, Nidia C.; Pantelides, Sokrates T.; Pennycook, Stephen J.; Moyer, Bruce A.; Chisholm, Matthew F.

    2014-11-13

    Crown ethers, introduced by Pedersen1, are at their most basic level neutral rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted special attention for their ability to selectively incorporate various atoms2 or molecules within the cavity formed by the ring3-6. This property has led to the use of crown ethers and their compounds in a wide range of chemical and biological applications7,8. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity9,10. In this Letter, we report atomic-resolution images of the same basicmore » structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar and thus uniquely suited for the many applications that crown ethers are known for. First-principles calculations show that the close similarity of the structures seen in graphene with those of crown ether molecules also extends to their selectivity towards specific metal cations depending on the ring size. Atoms (or molecules) incorporated within the crown ethers in graphene offer a simple environment that can be easily and systematically probed and modeled. Thus, we expect that this discovery will introduce a new wave of investigations and applications of chemically functionalized graphene.« less

  2. Antioxidant properties of feruloyl glycerol derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural plant components, 1-feruloyl-sn-glycerol (FG) and 1,3-diferuloyl-sn-glycerol (F2G), were synthesized by the enzymatic esterification of glycerol and soybean oil mono- and diacylglycerols, respectively, with ethyl ferulate. The isolated FG and F2G were examined for their antioxidant acti...

  3. Kinetics of cinnamoyl glycerol formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The esterifications of glycerol with cinnamic acid, 2-methoxy cinnamic acid, and 4-methoxy cinnamic acid were investigated in batch reactions. Conversions of over 50% were achieved for cinnamic acid and 4-methoxy cinnamic acid within 8 hours. After 24 hours conversions of over 80% were obtained fo...

  4. Crown ethers in graphene

    NASA Astrophysics Data System (ADS)

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I.; Gallego, Nidia C.; Pantelides, Sokrates T.; Pennycook, Stephen J.; Moyer, Bruce A.; Chisholm, Matthew F.

    2014-11-01

    Crown ethers are at their most basic level rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted attention for their ability to selectively incorporate various atoms or molecules within the cavity formed by the ring. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity. Here we present atomic-resolution images of the same basic structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar. First-principles calculations show that the close similarity of the structures should also extend to their selectivity towards specific metal cations. Crown ethers in graphene offer a simple environment that can be systematically tested and modelled. Thus, we expect that our finding will introduce a new wave of investigations and applications of chemically functionalized graphene.

  5. Esterification of glycerol from biodiesel production to glycerol carbonate in non-catalytic supercritical dimethyl carbonate.

    PubMed

    Ilham, Zul; Saka, Shiro

    2016-01-01

    Conversion of glycerol from biodiesel production to glycerol carbonate was studied by esterification with dimethyl carbonate in a non-catalytic supercritical condition. It was found that in a non-catalytic supercritical condition, glycerol at higher purity gave higher yield of glycerol carbonate at 98 wt% after reaction at 300 °C/20-40 MPa/15 min. The yield of glycerol carbonate was observed to increase with molar ratio, temperature, pressure and time until a certain equilibrium limit. The existence of impurities such as water and remnants of alkaline catalyst in crude glycerol will direct the reaction to produce glycidol. Although impurities might not be desirable, the non-catalytic supercritical dimethyl carbonate could be an alternative method for conversion of glycerol from biodiesel production to value-added glycerol carbonate.Graphical abstractPlausible reaction scheme for conversion of glycerol to glycerol carbonate in non-catalytic supercritical dimethyl carbonate. PMID:27386367

  6. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  7. Determination of esters in glycerol phase after transesterification of vegetable oil.

    PubMed

    Hájek, Martin; Skopal, Frantisek; Kwiecien, Jirí; Cernoch, Michal

    2010-06-30

    In biodiesel production, glycerol is formed as a side product and it is contained in the glycerol phase. This phase contains (besides glycerol): water, soaps, alcohol, traces of catalyst and glycerides and the remaining esters. In this paper, a new method for the determination of esters in the glycerol phase is introduced. The determination enables the minimization of the losses of biodiesel within the production process. It is based on the gradient RP-LC method (water and acetonitrile) with refractometric detection. The analysis is easy and the samples do not need any treatment (only dilution by water) and has a low detection limit. The results of this method were compared with the results of two other published methods: isocratic HPLC and GC. The disadvantage of these two methods is that they need extensive treatment of the sample, which takes many hours, and they are able to determine only the sum of esters. The new method is reliable, much faster and able to differentiate esters of almost each higher fatty acid (e.g. linoleic, linolenic, strearic alkyl ester) in the glycerol phase. PMID:20685468

  8. Synthesis and Antioxidant Activity of Alkyl Nitroderivatives of Hydroxytyrosol.

    PubMed

    Gallardo, Elena; Palma-Valdés, Rocío; Sarriá, Beatriz; Gallardo, Irene; de la Cruz, José P; Bravo, Laura; Mateos, Raquel; Espartero, José L

    2016-01-01

    A series of alkyl nitrohydroxytyrosyl ether derivatives has been synthesized from free hydroxytyrosol (HT), the natural olive oil phenol, in order to increase the assortment of compounds with potential neuroprotective activity in Parkinson's disease. In this work, the antioxidant activity of these novel compounds has been evaluated using Ferric Reducing Antioxidant Power (FRAP), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and Oxygen Radical Scavenging Capacity (ORAC) assays compared to that of nitrohydroxytyrosol (NO₂HT) and free HT. New compounds showed variable antioxidant activity depending on the alkyl side chain length; compounds with short chains (2-4 carbon atoms) maintained or even improved the antioxidant activity compared to NO₂HT and/or HT, whereas those with longer side chains (6-8 carbon atoms) showed lower activity than NO₂HT but higher than HT. PMID:27213306

  9. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  10. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  11. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  12. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  13. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  14. INTRAVENOUS ETHER ANESTHESIA

    PubMed Central

    Eger, Edmond I.; Johnson, Edward A.

    1963-01-01

    From a study of intravenous ether anesthesia, it was concluded that ether diluted to a 5 per cent solution in 5 per cent dextrose and water may be used to induce and maintain a smooth and easily controlled anesthetic state similar to that obtained with inhalation ether but without the dependence of the latter technique on ventilation. Cough and laryngospasm were absent. Adequate spontaneous respiration can be maintained with this technique. The technique is particularly useful in endoscopy during which the airway is often not available for anesthetic administration. PMID:14051486

  15. Vinyl ether silicones

    SciTech Connect

    Herzig, C.; Dauth, J.; Deubzer, B.; Weis, J.

    1995-12-01

    Siloxanes with vinyl ether groups are prepared by hydrosilylation reaction of dihydrosiloxanes with divinyl ethers in excess. Different stoichiometry, produces linear copolymers of different viscosities and double bond concentrations always with an active vinyl ether group at each chain end. Polymerisations triggered by UV light were done with mixtures of these compounds and a series of onium salts. Very fast cure is observed even with low doses at 290 nm. V.E. silicones are found to cure essentially quantitative. The comparison with other highly reactive cationic monomers revealed that compounds are among the fastest curing prepolymers in cationic chemistry.

  16. Genotoxicity of glycol ethers.

    PubMed Central

    McGregor, D B

    1984-01-01

    The genetic toxicology of glycol ethers is reviewed. Ethylene glycol monomethyl ether (EGME) and diglyme have been more extensively studied than other members of this series. Most results indicate a lack of genotoxic potential, but certain tests have yielded positive responses with certain compounds. Ethylene glycol monoethyl ether (EGEE) induced sister chromatid exchanges and chromosomal aberrations in cultured cells. Both EGME and diglyme induced mouse sperm head morphological changes, male rat weak dominant lethal mutations and marked, but reversible, loss of male rat fertility. PMID:6541999

  17. Catalytic oxidation of dimethyl ether

    DOEpatents

    Zelenay, Piotr; Wu, Gang; Johnston, Christina M.; Li, Qing

    2016-05-10

    A composition for oxidizing dimethyl ether includes an alloy supported on carbon, the alloy being of platinum, ruthenium, and palladium. A process for oxidizing dimethyl ether involves exposing dimethyl ether to a carbon-supported alloy of platinum, ruthenium, and palladium under conditions sufficient to electrochemically oxidize the dimethyl ether.

  18. Synthesis and Evaluation of Alpha-Hydroxy Ethers as Potential Biodiesel Additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several novel alpha-hydroxy ethers were synthesized by treatment of alkyl 9,10-epoxystearates with a number of alcohols in the presence of acid catalyst in good yield from oleic acid. The low temperature behavior of each material was analyzed through cloud point (CP) and pour point (PP) determinati...

  19. Mathematical modeling of glycerol biotransformation

    NASA Astrophysics Data System (ADS)

    Popova-Krumova, Petya; Yankova, Sofia; Ilieva, Biliana

    2013-12-01

    A method for mathematical modeling of glycerol biotransformation by Klebsiella oxytoca is presented. Glycerol is a renewable resource for it is formed as a by-product during biodiesel production. Because of its large volume production, it seems to be a good idea to develop a technology that converts this waste into products of high value (1, 3-Propanediol; 2, 3-Butanediol). The kinetic model of this process consists of many equations and parameters. The minimization of the least square function will be used for model parameters identification. In cases of parameters identification in multiparameter models the minimization of the least square function is very difficult because it is multiextremal. This is the main problem in the multiextremal function minimization which will be solved on the base a hierarchical approach, using a polynomial approximation of the experimental data.

  20. Polyimides with pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1982-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  1. Use of molecular dynamics to assess the biophysiological role of hydroxyl groups in glycerol dyalkyl glycerol teraethers

    NASA Astrophysics Data System (ADS)

    Huguet, Carme; Costenaro, Lionel; Fietz, Susanne; Daura, Xavier

    2015-04-01

    The cell membrane of some Archaea is constituted by lipids that span the whole membrane width and contain two alkyl chains bound by two glycerol groups (glycerol dyalkyl glycerol teraethers or GDGTs). These lipids confer stability to the membrane in mesophile to extremophile environments. Besides the more frequently studied isoprenoid archaeal lipids, both mono- and dihydroxy-GDGTs (OH-GDGT) have been recently reported to occur in marine sediments (1). OH-GDGTs contain up to two cyclopentane moieties and have been identified in both core and intact forms. In 2013, a correlation between OH-GDGTs and temperature was reported, with higher relative OH-GDGT abundances at high latitudes (2,3). The physiological function of the hydroxyl group in a GDGT is not yet known, but given the field results, it could be linked to an adaptation of the membrane to changes in temperature. For hydroxydiether lipid cores in methanogenic bacteria, it has been postulated that the hydroxyl group may alter the cell membrane properties: either extending the polar head group region or creating a hydrophilic pocket (4). It has also been suggested that the hydroxylation of the biphytany (l) moiety may result in enhanced membrane rigidity (1). To improve our understanding of the effect of the hydroxylation on physical properties of membranes, we performed molecular-dynamics simulations of GDGT membranes presenting and lacking these additional OH groups. This is an approach with a great development potential in the archaea lipid field, especially in relation to proxy validation. Our results indicate that the addition of an OH increases the membrane fluidity, thus providing an advantage in cold environments. We also observe a widening of the polar head group area, which could enhance transport. 1. Liu et al. 2012, GCA 2. Huguet et al. 2013, Org. Geochem 3. Fietz et al. 2013 4. Sprott et al. 1990. J. Biol. Chem. 265, 13735-13740.

  2. Selective glycerol oxidation by electrocatalytic dehydrogenation.

    PubMed

    Kim, Hyung Ju; Lee, Jechan; Green, Sara K; Huber, George W; Kim, Won Bae

    2014-04-01

    This study demonstrates that an electrochemical dehydrogenation process can be used to oxidize glycerol to glyceraldehyde and glyceric acid even without using stoichiometric chemical oxidants. A glyceric acid selectivity of 87.0 % at 91.8 % glycerol conversion was obtained in an electrocatalytic batch reactor. A continuous-flow electrocatalytic reactor had over an 80 % high glyceric acid selectivity at 10 % glycerol conversion, as well as greater reaction rates than either an electrocatalytic or a conventional catalytic batch reactor. PMID:24664518

  3. Glycerol-3-phosphatase of Corynebacterium glutamicum.

    PubMed

    Lindner, Steffen N; Meiswinkel, Tobias M; Panhorst, Maren; Youn, Jung-Won; Wiefel, Lars; Wendisch, Volker F

    2012-06-15

    Formation of glycerol as by-product of amino acid production by Corynebacterium glutamicum has been observed under certain conditions, but the enzyme(s) involved in its synthesis from glycerol-3-phosphate were not known. It was shown here that cg1700 encodes an enzyme active as a glycerol-3-phosphatase (GPP) hydrolyzing glycerol-3-phosphate to inorganic phosphate and glycerol. GPP was found to be active as a homodimer. The enzyme preferred conditions of neutral pH and requires Mg²⁺ or Mn²⁺ for its activity. GPP dephosphorylated both L- and D-glycerol-3-phosphate with a preference for the D-enantiomer. The maximal activity of GPP was estimated to be 31.1 and 1.7 U mg⁻¹ with K(M) values of 3.8 and 2.9 mM for DL- and L-glycerol-3-phosphate, respectively. For physiological analysis a gpp deletion mutant was constructed and shown to lack the ability to produce detectable glycerol concentrations. Vice versa, gpp overexpression increased glycerol accumulation during growth in fructose minimal medium. It has been demonstrated previously that intracellular accumulation of glycerol-3-phosphate is growth inhibitory as shown for a recombinant C. glutamicum strain overproducing glycerokinase and glycerol facilitator genes from E. coli in media containing glycerol. In this strain, overexpression of gpp restored growth in the presence of glycerol as intracellular glycerol-3-phosphate concentrations were reduced to wild-type levels. In C. glutamicum wild type, GPP was shown to be involved in utilization of DL-glycerol-3-phosphate as source of phosphorus, since growth with DL-glycerol-3-phosphate as sole phosphorus source was reduced in the gpp deletion strain whereas it was accelerated upon gpp overexpression. As GPP homologues were found to be encoded in the genomes of many other bacteria, the gpp homologues of Escherichia coli (b2293) and Bacillus subtilis (BSU09240, BSU34970) as well as gpp1 from the plant Arabidosis thaliana were overexpressed in E. coli MG1655 and

  4. Glycerol inhibition of ruminal lipolysis in vitro.

    PubMed

    Edwards, H D; Anderson, R C; Miller, R K; Taylor, T M; Hardin, M D; Smith, S B; Krueger, N A; Nisbet, D J

    2012-09-01

    Supplemental glycerol inhibits rumen lipolysis, a prerequisite for rumen biohydrogenation, which is responsible for the saturation of dietary fatty acids consumed by ruminant animals. Feeding excess glycerol, however, adversely affects dry matter digestibility. To more clearly define the effect of supplemental glycerol on rumen lipolysis, mixed populations of ruminal bacteria were incubated with 6 or 20% glycerol (vol/vol). After 48-h anaerobic incubation of mixed culture rumen fluid, rates of free fatty acid production (nmol/mL per h) for the 6 and 20% glycerol-supplemented samples were decreased by 80 and 86%, respectively, compared with rates from nonsupplemented control cultures (12.4±1.0; mean ± SE). Conversely, assay of the prominent ruminal lipase-producing bacteria Anaerovibrio lipolyticus 5S, Butyrivibrio fibrisolvens 49, and Propionibacterium species avidum and acnes revealed no effect of 2 or 10% (vol/vol) added glycerol on lipolytic activity by these organisms. Supplementing glycerol at 6% on a vol/vol basis, equivalent to supplementing glycerol at approximately 8 to 15% of diet dry matter, effectively reduced lipolysis. However, the mechanism of glycerol inhibition of ruminal lipolysis remains to be demonstrated. PMID:22916923

  5. Calibrating the glycerol dialkyl glycerol tetraether temperature signal in speleothems

    NASA Astrophysics Data System (ADS)

    Blyth, Alison J.; Schouten, Stefan

    2013-05-01

    Palaeotemperature proxies based on glycerol dialkyl glycerol tetraethers (GDGTs) lipids have been established for marine and lacustrine environments, but there has been relatively little study of their application in speleothems. In this study we analyse the GDGT content of 33 speleothem samples from 16 different sites around the globe, and test whether proxies based on isoprenoid tetraethers (TEX86) or branched tetraethers (MBT/CBT) are correlated with measured surface and cave mean annual air temperature (MAT). The results show that the TEX86 has a strong relationship with measured temperature (r2 = 0.78, standard error of the estimate 2.3 °C, when calibrated with surface MAT). Furthermore, the MBT/CBT also showed a significant relationship with temperature (r2 = 0.73, standard error of the estimate 2.7 °C, when calibrated with surface MAT). Some issues remain requiring future work, in particular the development of a larger calibration sample set with measured cave temperature data, and the investigation of controls other than temperature on GDGT distribution, but overall the results indicate that GDGT based proxies derived from speleothems may be highly viable new methods for reconstructing continental palaeotemperatures.

  6. In-depth analysis of switchable glycerol based polymeric coatings for cell sheet engineering.

    PubMed

    Becherer, Tobias; Heinen, Silke; Wei, Qiang; Haag, Rainer; Weinhart, Marie

    2015-10-01

    Scaffold-free cell sheet engineering using thermoresponsive substrates provides a promising alternative to conventional tissue engineering which in general employs biodegradable scaffold materials. We have previously developed a thermoresponsive coating with glycerol based linear copolymers that enables gentle harvesting of entire cell sheets. In this article we present an in-depth analysis of these thermoresponsive linear polyglycidyl ethers and their performance as coating for substrates in cell culture in comparison with commercially available poly(N-isopropylacrylamide) (PNIPAM) coated culture dishes. A series of copolymers of glycidyl methyl ether (GME) and glycidyl ethyl ether (EGE) was prepared in order to study their thermoresponsive properties in solution and on the surface with respect to the comonomer ratio. In both cases, when grafted to planar surfaces or spherical nanoparticles, the applied thermoresponsive polyglycerol coatings render the respective surfaces switchable. Protein adsorption experiments on copolymer coated planar surfaces with surface plasmon resonance (SPR) spectroscopy reveal the ability of the tested thermoresponsive coatings to be switched between highly protein resistant and adsorptive states. Cell culture experiments demonstrate that these thermoresponsive coatings allow for adhesion and proliferation of NIH 3T3 fibroblasts comparable to TCPS and faster than on PNIPAM substrates. Temperature triggered detachment of complete cell sheets from copolymer coated substrates was accomplished within minutes while maintaining high viability of the harvested cells. Thus such glycerol based copolymers present a promising alternative to PNIPAM as a thermoresponsive coating of cell culture substrates. PMID:26143602

  7. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  8. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  9. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  10. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  11. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  12. Alkylation and acylation of cyclotriphosphazenes.

    PubMed

    Benson, Mark A; Zacchini, Stefano; Boomishankar, Ramamoorthy; Chan, Yuri; Steiner, Alexander

    2007-08-20

    Phosphazenes (RNH)6P3N3 (R = n-propyl, isobutyl, isopropyl, cyclohexyl, tert-butyl, benzyl) are readily alkylated at ring N sites by alkyl halides forming N-alkyl phosphazenium cations. Alkylation of two ring N sites occurred after prolonged heating in the presence of methyl iodide or immediately at room temperature with methyl triflate yielding N,N'-dimethyl phosphazenium dications. Geminal dichloro derivatives Cl2(RNH)4P3N3 are methylated by methyl iodide at the ring N site adjacent to both P centers carrying four RNH groups. X-ray crystal structures showed that the alkylation of ring N sites leads to substantial elongation of the associated P-N bonds. Both N-alkyl and N,N'-dialkyl phosphazenium salts form complex supramolecular networks in the solid state via NH...X interactions. Systems carrying less-bulky RNH groups show additional NH...N bonds between N-alkyl phosphazenium ions. N-Alkyl phosphazenium halides form complexes with silver ions upon treatment with silver nitrate. Depending on the steric demand of RNH substituents, either one or both of the vacant ring N sites engage in coordination to silver ions. Treatment of (RNH)6P3N3 (R = isopropyl) with acetyl chloride and benzoyl chloride, respectively, yielded N-acyl phosphazenium ions. X-ray crystal structures revealed that elongation of P-N bonds adjacent to the acylated ring N site is more pronounced than it is in the case of N-alkylated species. Salts containing N-alkyl phosphazenium ions are stable toward water and other mild nucleophiles, while N,N'-dialkyl and N-acyl phosphazenium salts are readily hydrolyzed. The reaction of (RNH)6P3N3 with bromoacetic acid led to N-alkylation at one ring N site in addition to formation of an amide via condensation of an adjacent RNH substituent with the carboxylic acid group. The resulting bromide salt contains mono cations of composition (RNH)5P3N3CH2CONR in which a CH2-C(O) unit is embedded between a ring N and an exocyclic N site of the phosphazene. PMID

  13. RUMINAL FERMENTATION OF PROPYLENE GLYCOL AND GLYCEROL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine rumen fluid was fermented anaerobically with 25 mM R-propylene glycol, S-propylene glycol, or glycerol added. After 24 h all of the propylene glycol enantiomers and approximately 80% of the glycerol were metabolized. Acetate, propionate, butyrate, valerate, and caproate concentrations, in dec...

  14. Glycerol citrate polyesters produced through microwave heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of various heating methods without catalysis to prepare copolyesters from citric acid:glycerol blends were studied. In the presence of short term microwave treatments, i.e., 60 sec at 1200 W, blends of glycerol and citric acid invariably formed solid amorphous copolyesters. Fourier tra...

  15. Thermal and physical characterization of glycerol polyesters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol polyesters were prepared by the condensation of glycerol and adipic acid, azelaic acid, sebacic acid, or suberic acids. After 48 hours at 125 deg C the polymers were clear and flexible. Samples of the reaction mixtures were analyzed by modulated differential scanning calorimetry to identi...

  16. Correlation spectroscopy applied to glycerol polyester spectra

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent development of glycerol polyesters for use as controlled release matrix materials in the nutraceuticals and pharmaceuticals industries presented a unique opportunity to apply correlation spectroscopy. In a typical formulation the glycerol is reacted with a polyfunctional acid such as citr...

  17. Formulation and Applications of Glycerol Polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased production of biodiesel in the U.S. and Europe during the past several years has created an oversupply of glycerol, creating lower domestic profitability. In addition, increased petroleum prices have driven up the cost of synthetic polymers made from petrochemicals. Glycerol can be polym...

  18. Bio-based alternative to the diglycidyl ether of bisphenol A with controlled materials properties.

    PubMed

    Maiorana, Anthony; Spinella, Stephen; Gross, Richard A

    2015-03-01

    A series of biobased epoxy monomers were prepared from diphenolic acid (DPA) by transforming the free acid into n-alkyl esters and the phenolic hydroxyl groups into diglycidyl ethers. NMR experiments confirmed that the diglycidyl ethers of diphenolates (DGEDP) with methyl and ethyl esters have 6 and 3 mol % of glycidyl ester. Increasing the chain length of DGEDP n-alkyl esters from methyl to n-pentyl resulted in large decreases in epoxy resin viscosity (700-to-11 Pa·s). Storage modulus of DPA epoxy resins, cured with isophorone diamine, also varied with n-alkyl ester chain length (e.g., 3300 and 2100 MPa for the methyl and n-pentyl esters). The alpha transition temperature of the cured materials showed a linear decrease from 158 to 86 °C as the ester length increases. The Young's modulus and tensile strengths were about 1150 and 40 MPa, respectively, for all the cured resins tested (including DGEBA) and varied little as a function of ester length. Degree of cure for the different epoxy resins, determined by FTIR and DSC, closely approached the theoretical maximum. The result of this work demonstrates that diglycidyl ethers of n-alkyl diphenolates represent a new family of biobased liquid epoxy resins that, when cured, have similar properties to those from DGEBA. PMID:25633466

  19. Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent.

    PubMed

    Lee, Kyung Hwa; Park, Chang-Ho; Lee, Eun Yeol

    2010-11-01

    Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate. PMID:20502921

  20. Electrophilic Metal Alkyl Chemistry in New Ligand Environments

    SciTech Connect

    Jordan, Richard F.

    2013-06-30

    The goals of this project were to design new electrophilic metal alkyl complexes and to exploit these systems in fundamental studies of olefin polymerization and other important and new catalytic reactions. A key target reaction is insertion copolymerization of olefins and polar CH2=CHX vinyl monomers such as vinyl halides and vinyl ethers. During the period covered by this report we (i) investigated the properties of ortho-alkoxy-arylphosphine ligands in Ni-based olefin polymerization catalysts, (ii) studied the synthesis of double-end-capped polyethylene using group 4 metal catalysts that contain tris-pyrazolylborate ligands, (iii) explored the ethylene insertion reactivity of group 4 metal tris-pyrazolyl-borate complexes, (iv) showed that (α-diimine)PdMe{sup +} species undergo multiple insertion of silyl vinyl ethers, (v) synthesized and explored the reactivity of base-free Ni benzyl complexes that contain ortho-phosphino-arene sulfonate ligands, (vi) established the mechanism of the reaction of vinyl chloride with (α-diimine)PdMe{sup +} catalysts, (vii) explored the role of cationic polymerization and insertion chemistry in the reactions of vinyl ethers with (α-diimine)PdMe{sup +} species, (viii) discovered a new class of self-assembled tetranuclear Pd catalysts that produce high molecular weight linear polyethylene and copolymerize ethylene and vinyl fluoride, and (ix) developed model systems that enabled investigation of cis-trans isomerization of {phosphine-sulfonate}Pd(II) complexes.

  1. Triethylene glycol monoethyl ether

    Integrated Risk Information System (IRIS)

    Triethylene glycol monoethyl ether ; CASRN 112 - 50 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  2. Triethylene glycol monobutyl ether

    Integrated Risk Information System (IRIS)

    Triethylene glycol monobutyl ether ; CASRN 143 - 22 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  3. Propylene glycol monoethyl ether

    Integrated Risk Information System (IRIS)

    Propylene glycol monoethyl ether ; CASRN 52125 - 53 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  4. p-Bromodiphenyl ether

    Integrated Risk Information System (IRIS)

    p - Bromodiphenyl ether ; CASRN 101 - 55 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  5. Chloromethyl methyl ether (CMME)

    Integrated Risk Information System (IRIS)

    Chloromethyl methyl ether ( CMME ) ; CASRN 107 - 30 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  6. Synthesis and biological evaluation of arctigenin ester and ether derivatives as activators of AMPK.

    PubMed

    Shen, Sida; Zhuang, Jingjing; Chen, Yijia; Lei, Min; Chen, Jing; Shen, Xu; Hu, Lihong

    2013-07-01

    A series of new arctigenin and 9-deoxy-arctigenin derivatives bearing different ester and ether side chains at the phenolic hydroxyl positions are designed, synthesized, and evaluated for activating AMPK potency in L6 myoblasts. Initial biological evaluation indicates that some alkyl ester and phenethyl ether arctigenin derivatives display potential activities in AMPK phosphorylation improvement. Further structure-activity relationship analysis shows that arctigenin ester derivatives 3a, 3h and 9-deoxy-arctigenin phenethyl ether derivatives 6a, 6c, 6d activate AMPK more potently than arctigenin. Moreover, the 2-(3,4-dimethoxyphenyl)ethyl ether moiety of 6c has been demonstrated as a potential functional group to improve the effect of AMPK phosphorylation. The structural optimization of arctigenin leads to the identification of 6c as a promising lead compound that exhibits excellent activity in AMPK activation. PMID:23673223

  7. Mild Catalytic methods for Alkyl-Alkyl Bond Formation

    SciTech Connect

    Vicic, David A

    2009-08-10

    Overview of Research Goals and Accomplishments for the Period 07/01/06 – 06/30/07: Our overall research goal is to transform the rapidly emerging synthetic chemistry involving alkyl-alkyl cross-couplings into more of a mechanism-based field so that that new, rationally-designed catalysts can be performed under energy efficient conditions. Our specific objectives for the previous year were 1) to obtain a proper electronic description of an active catalyst for alkyl-alkyl cross-coupling reactions and 2) to determine the effect of ligand structure on the rate, scope, selectivity, and functional group compatibility of C(sp3)-C(sp3) cross-coupling catalysis. We have completed both of these initial objectives and established a firm base for further studies. The specific significant achievements of the current grant period include: 1) we have performed magnetic and computational studies on (terpyridine)NiMe, an active catalyst for alkyl-alkyl cross couplings, and have discovered that the unpaired electron resides heavily on the terpyridine ligand and that the proper electronic description of this nickel complex is a Ni(II)-methyl cation bound to a reduced terpyridine ligand; 2) we have for the first time shown that alkyl halide reduction by terpyridyl nickel catalysts is substantially ligand based; 3) we have shown by isotopic labeling studies that the active catalyst (terpyridine)NiMe is not produced via a mechanism that involves the formation of methyl radicals when (TMEDA)NiMe2 is used as the catalyst precursor; 4) we have performed an extensive ligand survey for the alkyl-alkyl cross-coupling reactions and have found that electronic factors only moderately influence reactivity in the terpyridine-based catalysis and that the most dramatic effects arise from steric and solubility factors; 5) we have found that the use of bis(dialkylphosphino)methanes as ligands for nickel does not produce active catalysts for cross-coupling but rather leads to bridging hydride

  8. Intermolecular Photocatalyzed Heck-like Coupling of Unactivated Alkyl Bromides by a Dinuclear Gold Complex.

    PubMed

    Xie, Jin; Li, Jian; Weingand, Vanessa; Rudolph, Matthias; Hashmi, A Stephen K

    2016-08-26

    A practical protocol for a photocatalyzed alkyl-Heck-like reaction of unactivated alkyl bromides and different alkenes promoted by dinuclear gold photoredox catalysis in the presence of an inorganic base is reported. Primary, secondary, and tertiary unactivated alkyl bromides with β-hydrogen can be applied. Esters, aldehydes, ketones, nitriles, alcohols, heterocycles, alkynes, alkenes, ethers, and halogen moieties are all well tolerated. In addition to 1,1-diarylalkenes, silylenolethers and enamides can also be applied, which further increases the synthetic potential of the reaction. The mild reaction conditions, broad substrate scope, and an excellent functional-group tolerance deliver an ideal tool for synthetic chemists that can even be used for challenging late-stage modifications of complex natural products. PMID:27348503

  9. Propenyl ether monomers for photopolymerization

    DOEpatents

    Crivello, J.V.

    1996-10-22

    Propenyl ether monomers of formula A(OCH{double_bond}CHCH{sub 3}){sub n} wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of the above formula together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  10. Propenyl ether monomers for photopolymerization

    DOEpatents

    Crivello, James V.

    1996-01-01

    Propenyl ether monomers of formula V A(OCH.dbd.CHCH.sub.3).sub.n wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  11. Synthesis and Characterization of bis(Tetrahydrofurfuryl) Ether.

    PubMed

    Stenger-Smith, John D; Baldwin, Lawrence; Chafin, Andrew; Goodman, Paul A

    2016-08-01

    Despite the availability of a large number of alkyl tetrahydrofurfuryl ethers that have a wide range of applications, pure bis(tetrahydrofurfuryl) ether (BTHFE) has not been previously synthesized. Here, we report the synthesis of BTHFE (consisting of the RR, SS, and meso stereoisomers) at greater than 99 % purity from tetrahydrofurfuryl alcohol, using (tetrahydrofuran-2-yl)methyl methanesulfonate as an intermediate. Additionally, we demonstrate that BTHFE can be used as a non-volatile solvent in poly(3,4-propylenedioxythiophene)-based supercapacitors. Supercapacitor devices employing solutions of the ionic liquid 1-ethyl-3-methyl-imidizolium bis(trifluoromethylsulfonyl)imide in BTHFE display similar performances to those prepared by using the neat ionic liquid as an electrolyte, although solution-based devices exhibit a somewhat higher resistance. PMID:27547636

  12. Synthesis and Characterization of bis(Tetrahydrofurfuryl) Ether

    PubMed Central

    Stenger‐Smith, John D.; Baldwin, Lawrence; Chafin, Andrew

    2016-01-01

    Abstract Despite the availability of a large number of alkyl tetrahydrofurfuryl ethers that have a wide range of applications, pure bis(tetrahydrofurfuryl) ether (BTHFE) has not been previously synthesized. Here, we report the synthesis of BTHFE (consisting of the RR, SS, and meso stereoisomers) at greater than 99 % purity from tetrahydrofurfuryl alcohol, using (tetrahydrofuran‐2‐yl)methyl methanesulfonate as an intermediate. Additionally, we demonstrate that BTHFE can be used as a non‐volatile solvent in poly(3,4‐propylenedioxythiophene)‐based supercapacitors. Supercapacitor devices employing solutions of the ionic liquid 1‐ethyl‐3‐methyl‐imidizolium bis(trifluoromethylsulfonyl)imide in BTHFE display similar performances to those prepared by using the neat ionic liquid as an electrolyte, although solution‐based devices exhibit a somewhat higher resistance. PMID:27547636

  13. Catalytic Dealkylation of Ethers to Alcohols on Metal Surfaces.

    PubMed

    Yang, Biao; Lin, Haiping; Miao, Kangjian; Zhu, Pan; Liang, Liangbo; Sun, Kewei; Zhang, Haiming; Fan, Jian; Meunier, Vincent; Li, Youyong; Li, Qing; Chi, Lifeng

    2016-08-16

    On-surface synthesis has prompted much interest in recent years because it provides an alternative strategy for controlling chemical reactions and allows for the direct observation of reaction pathways. Herein, we combined scanning tunneling microscopy and density functional theory to provide extensive evidence for the conversion of alkoxybenzene-containing ethers into alcohols by means of surface synthesis. The reported dealkylation reactions are finely controlled by the annealing parameters, which govern the onset of successive alkyl chains dissociations. Moreover, density functional theory calculations elucidate the details of the reaction pathways, showing that dealkylation reactions are surface-assisted and very different from their homogeneous analogues in solution. PMID:27432690

  14. Glycol Ethers As Groundwater Contaminants

    NASA Astrophysics Data System (ADS)

    Ross, Benjamin; Johannson, Gunnar; Foster, Gregory D.; Eckel, William P.

    1992-01-01

    Ether derivatives of dihydroxy alcohols, which are formed from ethylene or propylene, comprise an important group of groundwater contaminants known as glycol ethers. Compounds in this group are used as solvents, cleaning agents, and emulsifiers in many chemical products and manufacturing operations. Glycol ethers have been associated with a variety of toxic effects, and some compounds in the group are relatively potent teratogens. The limited information available suggests that glycol ethers are contaminants in groundwater, especially in anaerobic plumes emanating from disposal of mixed industrial and household waste. Most methods used to analyze groundwater samples cannot adequately detect μg/? (ppb) concentrations of glycol ethers, and the existing methods perform worst for the most widely used and toxic species. A new method capable of analyzing μg/? concentrations of glycol ethers was recently developed, and its use is recommended for groundwater samples where glycol ethers are likely to be present.

  15. Selective, nickel-catalyzed hydrogenolysis of aryl ethers.

    PubMed

    Sergeev, Alexey G; Hartwig, John F

    2011-04-22

    Selective hydrogenolysis of the aromatic carbon-oxygen (C-O) bonds in aryl ethers is an unsolved synthetic problem important for the generation of fuels and chemical feedstocks from biomass and for the liquefaction of coal. Currently, the hydrogenolysis of aromatic C-O bonds requires heterogeneous catalysts that operate at high temperature and pressure and lead to a mixture of products from competing hydrogenolysis of aliphatic C-O bonds and hydrogenation of the arene. Here, we report hydrogenolyses of aromatic C-O bonds in alkyl aryl and diaryl ethers that form exclusively arenes and alcohols. This process is catalyzed by a soluble nickel carbene complex under just 1 bar of hydrogen at temperatures of 80 to 120°C; the relative reactivity of ether substrates scale as Ar-OAr>Ar-OMe>ArCH(2)-OMe (Ar, Aryl; Me, Methyl). Hydrogenolysis of lignin model compounds highlights the potential of this approach for the conversion of refractory aryl ether biopolymers to hydrocarbons. PMID:21512027

  16. Alkylation of toluene with ethanol

    SciTech Connect

    Walendziewski, J.; Trawczynski, J.

    1996-10-01

    A series of Y and ZSM-5 zeolite based catalysts was prepared. Zeolites were cation exchanged and formed with 50% of aluminum hydroxide as a binder, and the obtained catalysts were finally thermally treated. Activity tests in alkylation of toluene with ethanol were carried out in the temperature range of 325--400 C, in nitrogen or hydrogen stream, and a pressure up to 3 MPa. The feed consisted of toluene and ethanol mixed in a mole ratio 1/1 or 2/1. The obtained results showed that among the studied catalysts the highest activity in the alkylation reaction was attained by ZSM-5 zeolite based catalyst with a moderate acidity and medium silica to alumina ratio, i.e., {approximately}50. Activity and selectivity of the most active catalyst as well as conversion of the feed components were similar to those reported in other papers. The content of p-ethyltoluene in alkylation products attained ca. 60%.

  17. A biological source of oceanic alkyl nitrates

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.; Lewis, C. B.; Velasco, F. L.; Escobar, C.; Kellogg, D.; Velcamp, M.

    2013-12-01

    Alkyl nitrates are an important component of reactive nitrogen in the troposphere. The oceans are a source of alkyl nitrates to the atmosphere, however the source of alkyl nitrates in the oceans is unknown. It has been demonstrated that the reaction of alkyl peroxy radicals (ROO) with nitric oxide (NO) produces alkyl nitrates in the aqueous phase. We hypothesize that alkyl nitrates may be formed by organisms through the same reaction and therefore biological production could be a source of alkyl nitrates to the troposphere. This work focuses on the production of alkyl nitrates by the diatoms Chaetoceros muelleri and Thalassiosira weisfloggi. Using chemostats, we measure alkyl nitrates formed under nitrate limited conditions. We also use triggers and inhibitors of nitric oxide formation to determine if alkyl nitrate formation is affected by changes in NO production. To date, the rates of production of alkyl nitrates in our cultures, lead us to estimate a production rate on the order of femtomolar/day for C1-C3 alkyl nitrates by diatom species in the equatorial Pacific Ocean. This suggests that diatoms may contribute to the overall ocean source of alkyl nitrates; however, it is possible that other types of phytoplankton, such as cyanobacteria, that are more abundant in the open ocean, may contribute to a greater extent.

  18. Ethanolysis of rapeseed oil - distribution of ethyl esters, glycerides and glycerol between ester and glycerol phases.

    PubMed

    Cernoch, Michal; Hájek, Martin; Skopal, Frantisek

    2010-04-01

    The distribution of ethyl esters, triglycerides, diglycerides, monoglycerides, and glycerol between the ester and glycerol phase was investigated after the ethanolysis of rapeseed oil at various reaction conditions. The determination of these substances in the ester and glycerol phases was carried out by the GC method. The amount of ethyl esters in the glycerol phase was unexpectedly high and therefore the possibility of the reduction of this amount was investigated. The distribution coefficients and the weight distributions of each investigated substance were calculated and compared mutually. The distribution coefficients between the ester and glycerol phase increase in this sequence: glycerol, monoglycerides, diglycerides, ethyl esters, and triglycerides. Soaps and monoglycerides in the reaction mixture cause a worse separation of ethyl esters from the reaction mixture. The existence of a non-separable reaction mixture was observed also, and its composition was determined. PMID:20005094

  19. Phosphine-alkene ligand-mediated alkyl-alkyl and alkyl-halide elimination processes from palladium(II).

    PubMed

    Tuxworth, Luke; Baiget, Lise; Phanopoulos, Andreas; Metters, Owen J; Batsanov, Andrei S; Fox, Mark A; Howard, Judith A K; Dyer, Philip W

    2012-10-28

    N-Diphenylphosphino-7-aza-benzobicyclo[2.2.1]hept-2-ene (2) behaves as a chelating phosphine-alkene ligand for Pd(0) and Pd(II), promoting direct alkyl-alkyl and indirect alkyl-halide reductive elimination reactions due to the stabilisation of the resulting bis(phosphine-alkene)Pd(0) complex. PMID:22986447

  20. Efficient green methanol synthesis from glycerol

    NASA Astrophysics Data System (ADS)

    Haider, Muhammad H.; Dummer, Nicholas F.; Knight, David W.; Jenkins, Robert L.; Howard, Mark; Moulijn, Jacob; Taylor, Stuart H.; Hutchings, Graham J.

    2015-12-01

    The production of biodiesel from the transesterification of plant-derived triglycerides with methanol has been commercialized extensively. Impure glycerol is obtained as a by-product at roughly one-tenth the mass of the biodiesel. Utilization of this crude glycerol is important in improving the viability of the overall process. Here we show that crude glycerol can be reacted with water over very simple basic or redox oxide catalysts to produce methanol in high yields, together with other useful chemicals, in a one-step low-pressure process. Our discovery opens up the possibility of recycling the crude glycerol produced during biodiesel manufacture. Furthermore, we show that molecules containing at least two hydroxyl groups can be converted into methanol, which demonstrates some aspects of the generality of this new chemistry.

  1. Production of 3-Hydroxypropionaldehyde from Glycerol

    PubMed Central

    Slininger, Patricia J.; Bothast, Rodney J.; Smiley, Karl L.

    1983-01-01

    3-Hydroxypropionaldehyde is a precursor to acrolein, which can be used as an intermediate for making acrylic acid and a variety of other useful industrial chemicals. Conversion of glycerol, a renewable resource, to 3-hydroxypropionaldehyde was attempted via action of glycerol dehydrase isolated from Lactobacillus sp. strain NRRL B-1720. This method, however, was unsatisfactory because enzyme activity was lost within 60 to 90 min after the reaction initiation. Fermentation of glycerol by whole cells of Klebsiella pneumoniae NRRL B-199 in the presence of optimal semicarbazide hydrochloride proved more effective. Using this technique, glycerol solutions of 30 g/liter yielded 3-hydroxypropionaldehyde solutions of 13.1 g/liter. Thus, a conversion efficiency equal to 55% of the theoretical maximum was realized. PMID:16346353

  2. Bacterial degradation of glycol ethers.

    PubMed

    Kawai, F

    1995-12-01

    Assimilation of ethyleneglycol (EG) ethers by polyethyleneglycol-utilizing bacteria was examined. Ethyleneglycol ether-utilizing bacteria were also isolated from soil and activated sludge samples by enrichment-culture techniques. Three strains (4-5-3, EC 1-2-1 and MC 2-2-1) were selected and characterized as Pseudomonas sp. 4-5-3, Xanthobacter autotrophicus, and an unidentified gram-negative, non-spore-forming rod respectively. Their growth characteristics were examined: Pseudomonas sp. 4-5-3 assimilated EG (diethyleneglycol, DEG) monomethyl, monoethyl and monobutyl ethers, DEG, propanol and butanol. X. autotrophicus EC 1-2-1 grew well on EG monoethyl and monobutyl ethers, EG and primary alcohols (C1-C4), and slightly on EG monomethyl ether. The strain MC 2-2-1 grew on EG monomethyl ether, EG, primary alcohols (C1-C4), and 1,2-propyleneglycol (PG). The mixed culture of Pseudomonas sp. 4-5-3 and X. autotrophicus EC 1-2-1 showed better growth and improved degradation than respective single cultures towards EG monomethyl, monoethyl or monobutyl ethers. Intact cells of Pseudomonas sp. 4-5-3 degraded various kinds of monoalkyl ethers, which cannot be assimilated by the strain. Metabolic products were characterized from reaction supernatants of intact cells of Pseudomonas sp. 4-5-3 with EG or DEG monoethyl ethers: they were analyzed by thin-layer chromatography and GC-MS and found to be ethoxyacetic acid and ethoxyglycoxyacetic acid. Also, PG monoalkyl ethers (C1-C4), dipropyleneglycol monoethyl and monomethyl ethers and tripropyleneglycol monomethyl ether were assimilated by polypropyleneglycol-utilizing Corynebacterium sp. 7. PMID:8597556

  3. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  4. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  5. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  6. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  7. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  8. Macrocyclic polyenynes: a stereoselective route to vinyl-ether-containing skipped diene systems.

    PubMed

    Ronson, Thomas O; Voelkel, Martin H H; Taylor, Richard J K; Fairlamb, Ian J S

    2015-05-11

    The stereoselective synthesis of a challenging macrocyclic polyene scaffold, containing a sensitive vinyl ether motif, has been accomplished using O,C-dilithiation/selective C-alkylation, Pd-catalysed etherification and Wittig reactions as key steps. An end-game macrocyclisation strategy employed a regio- and stereoselective Stille cross-coupling using Pd(Br)(N-Succ)(AsPh3)2 (AsCat) as the precatalyst. PMID:25891970

  9. Preparation of glycerol carbonate esters by using hybrid Nafion-silica catalyst.

    PubMed

    Climent, María J; Corma, Avelino; Iborra, Sara; Martínez-Silvestre, Sergio; Velty, Alexandra

    2013-07-01

    Glycerol carbonate esters (GCEs), which are valuable biomass-derivative compounds, have been prepared through the direct esterification of glycerol carbonate and long organic acids with different chain lengths, in the absence of solvent, and with heterogeneous catalysts, including acidic-organic resins, zeolites, and hybrid organic-inorganic acids. The best results, in terms of activity and selectivity towards GCEs, were obtained using a Nafion-silica composite. A full reaction scheme has been established, and it has been demonstrated that an undesired competing reaction results in the generation of glycerol and esters derived from a secondary hydrolysis of the endocyclic ester group, which is attributed to water formed during the esterification reaction. The influence of temperature, substrate ratio, catalyst-to-substrate ratio, and the use of solvent has been studied and, under optimized reaction conditions and with the adequate catalyst, it was possible to achieve 95% selectivity for the desired product at 98% conversion. It was demonstrated that the reaction rate decreased as the number of carbon atoms in the linear alkyl chain of the carboxylic acid increased for both p-toluenesulfonic acid and Nafion-silica nanocomposite (Nafion SAC-13) catalysts. After fitting the experimental data to a mechanistically based kinetic model, the reaction kinetic parameters for Nafion SAC-13 catalysis were determined and compared for reactions involving different carboxylic acids. A kinetic study showed that the reduced reactivity of carboxylic acids with increasing chain lengths could be explained by inductive as well as steric effects. PMID:23754795

  10. Poly(arylene ether)s That Resist Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul; Smith, Joseph G., Jr.

    1994-01-01

    Novel poly(arylene ether)s containing phosphine oxide (PAEPO's) made via aromatic nucleophilic displacement reactions of activated aromatic dihalides (or, in some cases, activated aromatic dinitro compounds) with new bisphenol monomers containing phosphine oxide. Exhibited favorable combination of physical and mechanical properties and resistance to monatomic oxygen in oxygen plasma environment. Useful as adhesives, coatings, films, membranes, moldings, and composite matrices.

  11. Glycerol monooleate-blood interactions.

    PubMed

    Ericsson, Emma M; Faxälv, Lars; Weissenrieder, Anna; Askendal, Agneta; Lindahl, Tomas L; Tengvall, Pentti

    2009-01-01

    In the present study the initial blood compatibility of glycerol monooleate (GMO)-coated surfaces was evaluated after deposition to surfaces and in bulk. The model surface was silica onto which multiple layers of fibrinogen or human serum albumin (HSA) was immobilized. The protein-coated surfaces were subsequently dip-coated in GMO in ethanol and used for blood plasma and whole blood experiments. The characterization methods included null ellipsometry, scanning electron microscopy, imaging of coagulation, hemolysis test and whole blood coagulation time by free oscillation rheometry. The results showed a GMO film thickness of approximately 350 A (approximately 4 microg/cm(2)) upon dip-coating in ethanolic solution. A major part of the deposited layer detached in aqueous solutions, especially during shear conditions. The coagulation time on GMO was significantly prolonged compared to that on HSA coated silica. Whole blood tests showed that GMO is a very weak hemolytic agent. Deposited GMO detached easily from surfaces upon rinsing or shearing, although a stable layer with undefined phase structure and a thickness of 50-70 A remained on HSA and fibrinogen precoated surfaces. This indicates that GMO has stronger adhesive forces to its substrate compared to the cohesive forces acting within the bulk GMO. The ability of GMO to detach from itself and tentatively form micelles or lipid bilayers when subjected to flowing blood may be of use in extravascular applications. It is concluded that GMO results in weak blood activation, and the material may in spite of this be suitable in selected biomaterial applications, especially as a biosealant and in colloidal dispersions. PMID:18996684

  12. Ether and Relativity

    NASA Astrophysics Data System (ADS)

    Farhoudi, Mehrdad; Yousefian, Maysam

    2016-05-01

    We consider one of the fundamental debates in performing the relativity theory, namely, the ether and the relativity points of view, in a way to aid the learning of the subjects. In addition, we present our views and prospects while describing the issues that being accessible to many physicists and allowing broader views. Also, we very briefly review the two almost recent observations of the Webb redshift and the ultra high energy cosmic rays, and the modified relativity models that have been presented to justify them, wherein we express that these justifications have not been performed via a single model with a single mechanism.

  13. Synthesis of Glycerol Carbonate by Transesterification of Glycerol with Urea Over Zn/Al Mixed Oxide.

    PubMed

    Ryu, Young Bok; Baek, Jae Ho; Kim, Yangdo; Lee, Man Sig

    2015-01-01

    Reactions of glycerol carbonate using glycerol and urea have been carried out previously using ZnSO4 and ZnO catalysts, and high yields have been reported using ZnSO4 as catalyst. However, this salt is soluble in glycerol, and recycling of catalyst is difficult after the reaction. In this study, we prepared a mixed metal oxide catalyst using Zn and Al, and this catalyst consisted of a mixture of ZnO and ZnAl2O4. We confirmed the conversion of glycerol and the yield of glycerol carbonate of the amount of Al. As a result, we obtained a yield of 82.3% and a conversion of 82.7%. In addition we obtained high yield in recycling of catalyst. The yield of the glycerol carbonate increases with an increase of acid and base site of catalysts and the highest catalytic activity was obtained when acid/base ratio was approx. 1. From this result, we may conclude that the acid and base site density and ratio of catalysts were very important parameters in the synthesis of glycerol carbonate from urea and glycerol. PMID:26328352

  14. Radiometric assays for glycerol, glucose, and glycogen.

    PubMed

    Bradley, D C; Kaslow, H R

    1989-07-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus (1971, J. Biol. Chem. 246, 3885-3894) for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays. PMID:2817333

  15. Radiometric assays for glycerol, glucose, and glycogen

    SciTech Connect

    Bradley, D.C.; Kaslow, H.R. )

    1989-07-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with (32P)ATP and glycerokinase, residual (32P)ATP is hydrolyzed by heating in acid, and free (32P)phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays.

  16. Allene ether Nazarov cyclization.

    PubMed

    Tius, Marcus A

    2014-05-01

    The ease of synthesis and the exceptional reactivity of alkoxyallenes has led to their use in a large number of highly diverse applications. This Report describes their use in various versions of the allene ether Nazarov cyclization. Following a brief introduction to the Nazarov cyclization (Section 1), the oxidative cyclization of vinyl alkoxyallenes is discussed first (Section 2). Nazarov cyclizations of α-alkoxyallenyl vinyl ketones and of α-alkoxyallenyl vinyl tertiary carbinols are covered (Section 3). The discovery and the subsequent rational design of acetals that serve as chiral auxiliaries on the allene in highly enantioselective Nazarov cyclizations is explained (Section 4). Interrupted Nazarov cyclizations of alkoxyallenes that are generated in situ from the isomerization of propargyl ethers on solid supports are discussed, including the evolution of a highly diastereoselective, chiral auxiliary controlled version of the reaction. Some applications of the methodology to natural products total synthesis have been included so as to provide the reader with benchmarks with which to judge the utility of the methodology. PMID:24196585

  17. Catalytic glycerol steam reforming for hydrogen production

    NASA Astrophysics Data System (ADS)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-12-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H2. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al2O3. The catalyst was prepared by wet impregnation method and characterized through different methods: N2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H2, CH4, CO, CO2. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H2O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  18. Catalytic glycerol steam reforming for hydrogen production

    SciTech Connect

    Dan, Monica Mihet, Maria Lazar, Mihaela D.

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  19. Methods of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-08-03

    A method comprising contacting an alcohol, a feed comprising one or more glycerides and equal to or greater than 2 wt % of one or more free fatty acids, and a solid acid catalyst, a nanostructured polymer catalyst, or a sulfated zirconia catalyst in one or more reactors, and recovering from the one or more reactors an effluent comprising equal to or greater than about 75 wt % alkyl ester and equal to or less than about 5 wt % glyceride.

  20. PREPARATION OF ALKYL PYROPHOSPHATE EXTRACTANTS

    DOEpatents

    Levine, C.A.; Skiens, W.E.; Moore, G.R.

    1960-08-01

    A process for providing superior solvent extractants for metal recovery processes is given wherein the extractant comprises an alkyl pyrophosphoric acid ester dissolved in an organic solvent diluent. Finely divided solid P/sub 2/O/ sub 5/ is slurried in an organic solvent-diluent selected from organic solvents such as kerosene, benzene, chlorobenzene, toluene, etc. An alcohol selected from the higher alcohols having 4 to 17 carbon atoms. e.g.. hexanol-1. heptanol-3, octanol-1. 2.6-dimethyl-heptanol-4, and decanol-1, is rapidly added to the P/sub 2/O/sub 5/ slurry in the amount of about 2 moles of alcohol to 1 mole of P/sub 2/ O/sub 5/. The temperature is maintained below about 110 deg C during the course of the P/sub 2/O/sub 5/-alcohol reaction. An alkyl pyrophosphate extractant compound is formed as a consequence of the reaction process. The alkyl pyrophosphate solvent-diluent extractant phase is useful in solvent extraction metal recovery processes.

  1. The millimeter and submillimeter wave spectrum of cis-methyl vinyl ether

    NASA Astrophysics Data System (ADS)

    Daly, A. M.; Kolesniková, L.; Mata, S.; Alonso, J. L.

    2014-12-01

    Among the species of potential interstellar relevance, methyl vinyl ether (CH3OCHdbnd CH2) is the simplest ether compound containing both alkyl and alkene functional groups. In order to facilitate its detection in the ISM, we have measured the millimeter and submillimeter wave spectra from 50 to 650 GHz. We present the analysis of pure rotational spectrum of the cis-methyl vinyl ether in the vibrational ground state and in the first excited states of in-plane bending mode (ν16) and methyl (ν23) and skeletal (ν24) torsional modes. Coriolis and Fermi type interactions between the v24 = 1 and v23 = 1 states have been explicitly treated using an effective two-state Hamiltonian.

  2. Precursor of ether phospholipids is synthesized by a flavoenzyme through covalent catalysis

    PubMed Central

    Nenci, Simone; Piano, Valentina; Rosati, Sara; Aliverti, Alessandro; Pandini, Vittorio; Fraaije, Marco W.; Heck, Albert J. R.; Edmondson, Dale E.; Mattevi, Andrea

    2012-01-01

    The precursor of the essential ether phospholipids is synthesized by a peroxisomal enzyme that uses a flavin cofactor to catalyze a reaction that does not alter the redox state of the substrates. The enzyme crystal structure reveals a V-shaped active site with a narrow constriction in front of the prosthetic group. Mutations causing inborn ether phospholipid deficiency, a very severe genetic disease, target residues that are part of the catalytic center. Biochemical analysis using substrate and flavin analogs, absorbance spectroscopy, mutagenesis, and mass spectrometry provide compelling evidence supporting an unusual mechanism of covalent catalysis. The flavin functions as a chemical trap that promotes exchange of an acyl with an alkyl group, generating the characteristic ether bond. Structural comparisons show that the covalent versus noncovalent mechanistic distinction in flavoenzyme catalysis and evolution relies on subtle factors rather than on gross modifications of the cofactor environment. PMID:23112191

  3. 75 FR 50926 - 2-propenoic acid, 2-methyl-, C12-16-alkyl esters, telomers with 1-dodecanethiol, polyethylene...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ...This regulation establishes an exemption from the requirement of a tolerance for residues of 2-propenoic acid, 2-methyl-, C12-16- alkyl esters, telomers with 1-dodecanethiol, polyethylene-polypropylene glycol ether with propylene glycol monomethacrylate (1:1), and styrene 2,2'-(1,2-diazenediyl)bis[2-methylbutanenitrile]-initiated, number average molecular weight (in AMU) 4000; when used as an......

  4. Gasoline range ether synthesis from light naphtha products of fluid catalytic cracking of Fischer-Tropsch wax

    SciTech Connect

    Reagan, W.J.

    1994-12-31

    The Fluid Catalytic Cracking of Fischer-Tropsch wax (C{sub 20}{sup +} paraffins) produces two to four time the concentration of reactive iso-olefins (isobutylene, isoamylenes, isohexenes) than observed from conventional gas oil feedstocks. Methanol reacts with these olefins to form the corresponding tertiary alkyl ethyl ethers: MTBE, TAME and MTHE`s. These etherification reactions are mildly exothermic and equilibrium limited. The reaction temperature and the olefin molecular structure are important variables for maximum ether yields. The base naphtha research octane number increases by 2-4 numbers after the etherification reaction. The presence of hydrogen has a detrimental affect on ether yields because of hydrogenation of reactive olefins to paraffins. The catalytic cracking of Fischer-Tropsch wax provides a non-conventional source of olefins for ether synthesis that can supplement existing and dwindling petroleum supplies.

  5. Bioconversion of glycerol to ethanol by a mutant Enterobacter aerogenes

    PubMed Central

    2012-01-01

    The main objective of this research is to develop, by adaptive evolution, mutant strains of Enterobacter aerogenes ATCC 13048 that are capable of withstanding high glycerol concentration as well as resisting ethanol-inhibition. The mutant will be used for high ethanol fermentation from glycerol feedstock. Ethanol production from pure (P-) and recovered (R-) glycerol using the stock was evaluated. A six-tube-subculture-generations method was used for developing the mutant. This involved subculturing the organism six consecutive times in tubes containing the same glycerol and ethanol concentrations at the same culture conditions. Then, the glycerol and/or ethanol concentration was increased and the six subculture generations were repeated. A strain capable of growing in 200 g/L glycerol and 30 g/L ethanol was obtained. The ability of this mutant, vis-à-vis the original strain, in utilizing glycerol in a high glycerol containing medium, with the concomitant ethanol yield, was assessed. Tryptic soy broth without dextrose (TSB) was used as the fermentation medium. Fermentation products were analyzed using HPLC. In a 20 g/L glycerol TSB, E. aerogenes ATCC 13048 converted 18.5 g/L P-glycerol and 17.8 g/L R-glycerol into 12 and 12.8 g/L ethanol, respectively. In a 50 g/L P-glycerol TSB, it utilized only 15.6 g/L glycerol; but the new strain used up 39 g/L, yielding 20 g/L ethanol after 120 h, an equivalence of 1.02 mol ethanol/mol-glycerol. This is the highest ethanol yield reported from glycerol bioconversion. The result of this P-glycerol fermentation can be duplicated using the R-glycerol from biodiesel production. PMID:22455837

  6. Biorefinery for Glycerol Rich Biodiesel Industry Waste.

    PubMed

    Kalia, Vipin Chandra; Prakash, Jyotsana; Koul, Shikha

    2016-06-01

    The biodiesel industry has the potential to meet the fuel requirements in the future. A few inherent lacunae of this bioprocess are the effluent, which is 10 % of the actual product, and the fact that it is 85 % glycerol along with a few impurities. Biological treatments of wastes have been known as a dependable and economical direction of overseeing them and bring some value added products as well. A novel eco-biotechnological strategy employs metabolically diverse bacteria, which ensures higher reproducibility and economics. In this article, we have opined, which organisms and what bioproducts should be the focus, while exploiting glycerol as feed. PMID:27570302

  7. Tandem transformation of glycerol to esters.

    PubMed

    Sotenko, Maria V; Rebroš, Martin; Sans, Victor S; Loponov, Konstantin N; Davidson, Matthew G; Stephens, Gill; Lapkin, Alexei A

    2012-12-31

    Tandem transformation of glycerol via microbial fermentation and enzymatic esterification is presented. The reaction can be performed with purified waste glycerol from biodiesel production in a continuous mode, combining continuous fermentation with membrane-supported enzymatic esterification. Continuous anaerobic fermentation was optimized resulting in the productivity of 2.4 g L⁻¹ h⁻¹ of 1,3-propanediol. Biphasic esterification of 1,3-propanediol was optimized to achieve ester yield of up to 75%. A hollow fibre membrane contactor with immobilized Rhizomucor miehei lipase was demonstrated for the continuous tandem fermentation-esterification process. PMID:22796408

  8. Effects of intravenous infusion of glycerol on blood parameters and urinary glycerol concentrations.

    PubMed

    Okano, Masato; Nishitani, Yasunori; Dohi, Michiko; Kageyama, Shinji

    2016-05-01

    In sports, the oral intake and intravenous administration of glycerol as a potential masking agent have been prohibited. The effect of glycerol on blood parameters was investigated by comparing the intravenous administration of glycerol (20g/200mL) with that of an electrolyte (8g glucose/200mL) as a comparator (n=7, fixed-dose-rate i.v. infusion, 200mL in 1h). This study was also designed to evaluate whether the urinary concentrations reached the positivity threshold after the intravenous infusion of glycerol. Significant decreases of the haemoglobin (HGB, g/dL), haematocrit (HCT, %) and OFF-h Score (OFF-score) values were observed after the infusion of glycerol (P<0.05 at 1-6h). The differences in the HGB, HCT and OFF-score between pre- and post-administration were -0.49±0.23g/dL (2h), -1.54±0.73% (2h) and -3.89±3.66 (2h), respectively. Glycerol infusion significantly increased the plasma volume by 12.1% (1h), 6.3% (2h) and 5.7% (3h) compared with the initial values. The infusion of the comparator also increased the plasma volume by 9.6% (1h), 5.8% (2h) and 4.9% (3h) compared with the values before infusion. There were no significant differences in the change of the plasma volume between the intravenous infusions of glycerol and the glucose-based electrolyte (as the comparator) (P≥0.05). This finding might indicate that glycerol itself only exhibited limited effects on the expansion of plasma. After administration of glycerol, the urinary glycerol concentrations increased from 0.0013±0.0004mg/mL to 6.86±2.86mg/mL at 1h and 6.45±3.08mg/mL at 2h. The intravenous infusion of glycerol can most likely be detected using the current urine analysis; however, the dependence of the concentration of urinary glycerol on the urine volume should be considered. PMID:26986972

  9. Genetic construction of recombinant Pseudomonas chlororaphis for improved glycerol utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to improve by genetic engineering the glycerol metabolic capability of Pseudomonas chlororaphis which is capable of producing commercially valuable biodegradable poly(hydroxyalkanoate) (PHA) and biosurfactant rhamnolipids (RLs). In the study, glycerol uptake facilitat...

  10. Sorption behavior of mixtures of glycerol and starch.

    PubMed

    Enrione, Javier I; Hill, Sandra E; Mitchell, John R

    2007-04-18

    Glycerol is often added to starches to plasticize the product, but the presence of glycerol may also affect the water content of the samples. To evaluate the effect of glycerol on the sorption properties of starches, waxy maize, rice, and wheat starch were thermomechanically extruded in the presence of glycerol. Sorption isotherms of these extruded samples were ascertained using dynamic vapor sorption (DVS). BET and GAB modeling showed a monolayer (mo) significantly higher for waxy maize than for rice and wheat. Glycerol inclusion changed the model values, indicating reduction in sorption energy at the monolayer and restructuring of the multilayer. An interaction factor (xi) based on weight fraction models was calculated. Differences in xi were obtained when glycerol was added, varying from approximately 0.9 for 5% glycerol to approximately 0.8 for 20% glycerol, supporting the hypothesis of interactions between starch and this polyol. PMID:17362027

  11. Functionalization of poly(aryl ether ether ketone)

    SciTech Connect

    Wang, Fei; Roovers, J.

    1993-12-31

    Bromomethyl and dibromomethyl substituted poly(aryl ether ether ketone) have been prepared from methyl poly(aryl ether ether ketone) by bromination with bromine. These brominated polymers are intermediates that can be further functionalized by: hydrolysis, oxidation, substitution etc. A series of new functionalized PEEK polymers has been prepared. The functional group includes -CH{sub 2}OH, -CH{sub 2}OCH{sub 3}, -CHO, -COOH, -COOCH{sub 3}, -CH{sub 2}CN, -CH{sub 2}COOH, -CH{sub 2}OCOCH{sub 3}, -CH{sub 2}N{sup +}H(CH{sub 2}CH{sub 3}){sub 2}Br{sup {minus}}, -CH{sub 2}N(CH{sub 2}CH{sub 3}){sub 2}, -CH{sub 2}N{sup +}H(CH{sub 2}CH{sub 3}){sub 3}Br{sup {minus}}.

  12. Polyarylene Ethers with Improved Properties

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M. (Inventor); Jensen, B. J. (Inventor); Havens, S. J. (Inventor)

    1986-01-01

    This invention relates to novel polyarylene ethers which possess the combination of high strength, toughness, and high use temperature with ease of extrusion and formation into complex objects. These polyarylene ethers are suitable for use in adhesives, coatings, films, membranes, and composite matrices. The polyarylene ethers of this invention are the polycondensation products from the reaction of either 1,3-bis (4-chloro or fluorobenzoyl) benzene with any one of the following bisphenolic compounds: bis (3-hydroxyphenyl) methane; bis (4-hydroxyphenyl) methane; 1,1-dimethyl-bis (4-hydroxyphenyl)methane, or 9,9-bis (4-hydroxyphenyl) fluorene. Random and block copolymers are also comprehended.

  13. Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    New imide/arylene ether copolymers prepared by reacting anhydride-terminated poly(amic acids) with amine-terminated poly(arylene ethers) in polar aprotic solvents. Each resulting copolymer may have one glass-transition temperature or two, depending on chemical structure and/or compatibility of block units. Most of copolymers form tough, solvent-resistant films with high tensile properties. Films cast from solution tough and flexible, and exhibit useful thermal and mechanical properties. Potentially useful as moldings, adhesives, or composite matrices. Because of flexible arylene ether blocks, these copolymers easier to process than polyimides.

  14. Effect of additives on the performance and morphology of sulfonated copoly (phthalazinone biphenyl ether sulfone) composite nanofiltration membranes☆

    NASA Astrophysics Data System (ADS)

    Guan, Shanshan; Zhang, Shouhai; Liu, Peng; Zhang, Guozhen; Jian, Xigao

    2014-03-01

    Sulfonated copoly (phthalazinone biphenyl ether sulfone) (SPPBES) composite nanofiltration membranes were fabricated by adding low molecular weight additives into SPPBES coating solutions during a dip coating process. Three selected additives: glycol, glycerol and hydroquinone were used in this work. The effect of additives on the membrane performance was studied and discussed in terms of rejection and permeation flux. Among all the composite membranes, the membrane prepared with glycol as an additive achieved the highest Na2SO4 rejection, and the membrane fabricated with glycerol as an additive exhibited the highest flux. The salts rejection of SPPBES composite membranes increased in the following order MgCl2 < NaCl ≤ MgSO4 < Na2SO4. The morphologies of the SPPBES composite membranes were characterized by SEM, it was found that the membrane prepared with hydroquinone showed a rough membrane surface. Composite membrane fabricated with glycol or glycerol as the additive showed very good chemical stability.

  15. Determining Atmospheric Pressure with a Eudiometer and Glycerol

    ERIC Educational Resources Information Center

    Brody, Jed; Rohald, Kate; Sutton, Atasha

    2010-01-01

    We consider a volume of air trapped over a glycerol column in a eudiometer. We demonstrate that there is an approximately linear relationship between the volume of trapped air and the height of the glycerol column. Simply by moving the eudiometer up and down, we cause the glycerol-column height and trapped-air volume to vary. The plot of volume…

  16. Digestable and Metabolizable Energy of Crude Glycerol in Growing Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apparent DE and ME value of crude glycerol for growing pigs was determined in a series of 5 experiments using crude glycerol (86.95% glycerol) from a biodiesel production facility with soybean oil used as the initial feedstock (AG Processing Inc., Sergeant Bluff, IA). Dietary treatments were 0, ...

  17. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glycerol ester of rosin. 172.735 Section 172.735 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... CONSUMPTION Other Specific Usage Additives § 172.735 Glycerol ester of rosin. Glycerol ester of wood...

  18. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glycerol ester of rosin. 172.735 Section 172.735 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... CONSUMPTION Other Specific Usage Additives § 172.735 Glycerol ester of rosin. Glycerol ester of wood...

  19. 1,2-Isopropylidene glycerol carbonate: preparation, characterization, and hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utilization of excess glycerol supplies derived from the burgeoning biodiesel industry is of major importance to the oleochemical industry as the economic viability of the biodiesel and oleochemical industries are closely linked to glycerol prices. Carbonate compounds based on glycerol, such as...

  20. An ether-functionalised cyclic sulfonium based ionic liquid as an electrolyte for electrochemical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Neale, Alex R.; Murphy, Sinead; Goodrich, Peter; Schütter, Christoph; Hardacre, Christopher; Passerini, Stefano; Balducci, Andrea; Jacquemin, Johan

    2016-09-01

    A novel cyclic sulfonium cation-based ionic liquid (IL) with an ether-group appendage and the bis{(trifluoromethyl)sulfonyl}imide anion was synthesised and developed for electrochemical double layer capacitor (EDLC) testing. The synthesis and chemical-physical characterisation of the ether-group containing IL is reported in parallel with a similarly sized alkyl-functionalised sulfonium IL. Results of the chemical-physical measurements demonstrate how important transport properties, i.e. viscosity and conductivity, can be promoted through the introduction of the ether-functionality without impeding thermal, chemical or electrochemical stability of the IL. Although the apparent transport properties are improved relative to the alkyl-functionalised analogue, the ether-functionalised sulfonium cation-based IL exhibits moderately high viscosity, and poorer conductivity, when compared to traditional EDLC electrolytes based on organic solvents (propylene carbonate and acetonitrile). Electrochemical testing of the ether-functionalised sulfonium IL was conducted using activated carbon composite electrodes to inspect the performance of the IL as a solvent-free electrolyte for EDLC application. Good cycling stability was achieved over the studied range and the performance was comparable to other solvent-free, IL-based EDLC systems. Nevertheless, limitations of the attainable performance are primarily the result of sluggish transport properties and a restricted operative voltage of the IL, thus highlighting key aspects of this field which require further attention.

  1. Tetrabutylammonium decatungstate-photosensitized alkylation of electrophilic alkenes: Convenient functionalization of aliphatic C-H bonds.

    PubMed

    Dondi, Daniele; Fagnoni, Maurizio; Albini, Angelo

    2006-05-15

    Tetrabutylammonium decatungstate (TBADT, 2 x 10(-3) m) is an effective photocatalyst for the alkylation of electrophilic alkenes (0.1 m, alpha,beta-unsaturated nitriles, esters, ketones) by alkanes, alcohols, and ethers. The products are in most cases obtained in >70 % isolated yields, through an experimentally very simple procedure. The kinetics of the radical processes following initial hydrogen abstraction by excited TBADT in deoxygenated MeCN have been studied. In the absence of a trap, back hydrogen transfer from reduced tungstate is the main pathway for alkyl radicals, while alpha-hydroxyalkyl radicals are oxidized to ketones by ground-state TBADT. With both radical types the reaction ceases at a few percent conversion. However, trapping by electrophilic alkenes is followed by reduction of the radical adduct and regeneration of the catalyst, which allows the alkylation to proceed up to complete alkene conversion with the mentioned good yields of products. With a nucleophilic (alpha-hydroxyalkyl) radical, alkylation is efficient (Phi = 0.58) and can also be carried out when degassing is omitted, the only difference being a short induction period. With a less reactive (cyclohexyl) radical, the quantum yield is lower (Phi = 0.06) and the reaction is considerably slowed in aerated solutions, but the chemical yield remains good. PMID:16521134

  2. Masked N-Heterocyclic Carbene-Catalyzed Alkylation of Phenols with Organic Carbonates.

    PubMed

    Lui, Matthew Y; Yuen, Alexander K L; Masters, Anthony F; Maschmeyer, Thomas

    2016-09-01

    An easily prepared masked N-heterocyclic carbene, 1,3-dimethylimidazolium-2-carboxylate (DMI-CO2 ), was investigated as a "green" and inexpensive organocatalyst for the alkylation of phenols. The process made use of various low-toxicity and renewable alkylating agents, such as dimethyl- and diethyl carbonate, in a focused microwave reactor. DMI-CO2 was found to be a very active catalyst and excellent yields of a range of aryl alkyl ethers were obtained under relatively benign conditions. The observed difference in the conversion behavior of phenol methylation, in the presence of either the carbene or 1,8-diazabicycloundec-7-ene (DBU) catalyst, was rationalized on the basis of mechanistic investigations. The primary mode of action for the N-heterocyclic carbene is nucleophilic catalysis. Activation of the dialkyl carbonate electrophile results in concomitant evolution of an organo-soluble alkoxide, which deprotonates the phenolic starting material. In contrast, DBU is initially protonated by the phenol and thus consumed. Subsequent regeneration and participation in nucleophilic catalysis only becomes significant after some phenolate alkylation occurs. PMID:27528488

  3. Glycerol oxidation using gold-containing catalysts.

    PubMed

    Villa, Alberto; Dimitratos, Nikolaos; Chan-Thaw, Carine E; Hammond, Ceri; Prati, Laura; Hutchings, Graham J

    2015-05-19

    Glycerol is an important byproduct of biodiesel production, and it is produced in significant amounts by transesterification of triglycerides with methanol. Due to the highly functionalized nature of glycerol, it is an important biochemical that can be utilized as a platform chemical for the production of high-added-value products. At present, research groups in academia and industry are exploring potential direct processes for the synthesis of useful potential chemicals using catalytic processes. Over the last 10 years, there has been huge development of potential catalytic processes using glycerol as the platform chemical. One of the most common processes investigated so far is the catalytic oxidation of glycerol at mild conditions for the formation of valuable oxygenated compounds used in the chemical and pharmaceutical industry. The major challenges associated with the selective oxidation of glycerol are (i) the control of selectivity to the desired products, (ii) high activity and resistance to poisoning, and (iii) minimizing the usage of alkaline conditions. To address these challenges, the most common catalysts used for the oxidation of glycerol are based on supported metal nanoparticles. The first significant breakthrough was the successful utilization of supported gold nanoparticles for improving the selectivity to specific products, and the second was the utilization of supported bimetallic nanoparticles based on gold, palladium, and platinum for improving activity and controlling the selectivity to the desired products. Moreover, the utilization of base-free reaction conditions for the catalytic oxidation of glycerol has unlocked new pathways for the production of free-base products, which facilitates potential industrial application. The advantages of using gold-based catalysts are the improvement of the catalyst lifetime, stability, and reusability, which are key factors for potential commercialization. In this Account, we discuss the advantages of the

  4. Phytanyl-glycerol ethers and squalenes in the archaebacterium Methanobacterium thermoautotrophicum

    NASA Technical Reports Server (NTRS)

    Tornabene, T. G.; Wolfe, R. S.; Balch, W. E.; Holzer, G.; Fox, G. E.; Oro, J.

    1978-01-01

    Gas chromatographic and mass- and infrared-spectrometric techniques are used to assay the lipids of a thermophilic chemolithotroph, Methanobacterium thermoautotrophicum. Of the chloroform-soluble lipids, 79% are polar and 21% non-polar. Attention is given to the detection of squalene and hydrosqualene derivatives, which, coupled with 16S r-RNA sequence homologies, indicate that the extreme halophiles and the methanogens share a common ancestor.

  5. Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts.

    PubMed

    Hammond, Ceri; Lopez-Sanchez, Jose A; Ab Rahim, Mohd Hasbi; Dimitratos, Nikolaos; Jenkins, Robert L; Carley, Albert F; He, Qian; Kiely, Christopher J; Knight, David W; Hutchings, Graham J

    2011-04-21

    The reaction of glycerol with urea to form glycerol carbonate is mostly reported in the patent literature and to date there have been very few fundamental studies of the reaction mechanism. Furthermore, most previous studies have involved homogeneous catalysts whereas the identification of heterogeneous catalysts for this reaction would be highly beneficial. This is a very attractive reaction that utilises two inexpensive and readily available raw materials in a chemical cycle that overall, results in the chemical fixation of CO(2). This reaction also provides a route to up-grade waste glycerol produced in large quantities during the production of biodiesel. Previous reports are largely based on the utilisation of high concentrations of metal sulfates or oxides, which suffer from low intrinsic activity and selectivity. We have identified heterogeneous catalysts based on gallium, zinc, and gold supported on a range of oxides and the zeolite ZSM-5, which facilitate this reaction. The addition of each component to ZSM-5 leads to an increase in the reaction yield towards glycerol carbonate, but supported gold catalysts display the highest activity. For gold-based catalysts, MgO is the support of choice. Catalysts have been characterised by XRD, TEM, STEM and XPS, and the reaction has been studied with time-on-line analysis of products via a combination of FT-IR spectroscopy, HPLC, (13)C NMR and GC-MS analysis to evaluate the reaction pathway. Our proposed mechanism suggests that glycerol carbonate forms via the cyclization of a 2,3-dihydroxypropyl carbamate and that a subsequent reaction of glycerol carbonate with urea yields the carbamate of glycerol carbonate. Stability and reactivity studies indicate that consecutive reactions of glycerol carbonate can limit the selectivity achieved and reaction conditions can be selected to avoid this. The effect of the catalyst in the proposed mechanism is discussed. PMID:21258674

  6. Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure.

    PubMed

    Nuchdang, Sasikarn; Phalakornkule, Chantaraporn

    2012-06-30

    The potential of glycerol obtained from transesterification of waste cooking oil as a main carbon source for biogas production was investigated. The glycerol was highly contaminated with oils and fats and was pretreated with sulfuric acid. Using a carbon source of glucose as a control, we compared biogas production from the acid-treated glycerol in a synthetic medium and the acid-treated glycerol mixed with pig manure. The anaerobic digestion of acid-treated glycerol with supplement in a synthetic medium was found to be satisfactory at organic loading rates (OLR) between 1.3, 1.6 and 2.6 g chemical oxygen demand (COD) L(-1) d(-1). The maximum methane yield of 0.32 L at Standard temperature and pressure (STP) g(-1) COD removal was achieved at an OLR of 1.6 g COD L(-1) d(-1) and the methane content was 54% on an average. At a higher organic loading rate of 5.4 g COD L(-1) d(-1), the propionic acid to acetic acid ratio was higher than the critical threshold limit for metabolic imbalance. Anaerobic digestion of acid-treated glycerol with pig manure was also investigated at the COD ratio of 80:20 (glycerol:pig manure). The anaerobic digestion of acid-treated glycerol with pig manure was found to be satisfactory at organic loading rates between 1.3, 1.7, 2.9 and 5.0 g COD L(-1) d(-1) in terms of COD reduction (>80%) and methane content of (62% on an average). However, the biogas production rate was found to significantly decrease at the highest load. The maximum methane yield of 0.24 L STP g(-1) COD removal was achieved at an OLR of 1.3 g COD L(-1) d(-1). PMID:22417895

  7. 40 CFR 721.8673 - [(Disubstituted phenyl)]azo dihydro hydroxy alkyl oxo alkyl-substituted-pyridines (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false azo dihydro hydroxy alkyl oxo alkyl... Significant New Uses for Specific Chemical Substances § 721.8673 azo dihydro hydroxy alkyl oxo alkyl...) The chemical substances identified generically as azo dihydro hydroxy alkyl oxo...

  8. 40 CFR 721.8673 - [(Disubstituted phenyl)]azo dihydro hydroxy alkyl oxo alkyl-substituted-pyridines (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false azo dihydro hydroxy alkyl oxo alkyl... Significant New Uses for Specific Chemical Substances § 721.8673 azo dihydro hydroxy alkyl oxo alkyl...) The chemical substances identified generically as azo dihydro hydroxy alkyl oxo...

  9. 40 CFR 721.8673 - [(Disubstituted phenyl)]azo dihydro hydroxy alkyl oxo alkyl-substituted-pyridines (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false azo dihydro hydroxy alkyl oxo alkyl... Significant New Uses for Specific Chemical Substances § 721.8673 azo dihydro hydroxy alkyl oxo alkyl...) The chemical substances identified generically as azo dihydro hydroxy alkyl oxo...

  10. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  11. Semi-empirical method for calculating the activation energies of the unimolecular thermal decomposition of vinyl ethers

    NASA Astrophysics Data System (ADS)

    Sargsyan, G. N.; Shakhrokh, B.; Harutyunyan, A. B.

    2015-02-01

    A semi-empirical method is proposed for calculating the activation energy of the unimolecular decomposition of complex compounds using the example of vinyl (ethyl, propyl, and butyl) ethers. The method is based on the concept of the formation of intramolecular hydrogen bonds and the possibility of calculating the energy of deformation of ether molecules upon activation, resulting in the potential surface of the transition state undergoing distortion and the transfer of a hydrogen atom from an alkyl group to a vinyl group. The energy of deformation is calculated using the Mathcad 2001i and MM2 computer programs.

  12. Antioxidant behavior of 1-feruloyl-sn-glycerol and 1,3-diferuloyl-sn-glycerol in phospholipid liposomes 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1-Feruloyl-sn-glycerol (FG) and 1,3-diferuloyl-sn-glycerol (DFG) are two natural plant compounds that may be useful in cosmeceutical, food, and skin care applications because of excellent antioxidant properties. FG and DFG enzymatically synthesized through esterification of glycerol and soybean oil...

  13. Yeast Fps1 glycerol facilitator functions as a homotetramer.

    PubMed

    Beese-Sims, Sara E; Lee, Jongmin; Levin, David E

    2011-12-01

    The Saccharomyces cerevisiae Fps1 glycerol channel is a member of the major intrinsic protein (MIP) family of plasma membrane channel proteins that functions in osmoregulatory pathways to transport glycerol passively out of the cell. The MIP family is subdivided into members that are selectively permeable to water (aquaporins) and those permeated by glycerol (aquaglyceroporins or glycerol facilitators). Although aquaporins function as homo-tetramers with each monomer possessing its own channel, previous studies have suggested that aquaglyceroporins may function as monomers. Here we provide both genetic and biochemical evidence that Fps1 functions as a homotetramer to regulate glycerol transport in yeast. PMID:22030956

  14. Space, Time, Ether, and Kant

    NASA Astrophysics Data System (ADS)

    Wong, Wing-Chun Godwin

    This dissertation focused on Kant's conception of physical matter in the Opus postumum. In this work, Kant postulates the existence of an ether which fills the whole of space and time with its moving forces. Kant's arguments for the existence of an ether in the so-called Ubergang have been acutely criticized by commentators. Guyer, for instance, thinks that Kant pushes the technique of transcendental deduction too far in trying to deduce the empirical ether. In defense of Kant, I held that it is not the actual existence of the empirical ether, but the concept of the ether as a space-time filler that is subject to a transcendental deduction. I suggested that Kant is doing three things in the Ubergang: First, he deduces the pure concept of a space-time filler as a conceptual hybrid of the transcendental object and permanent substance to replace the category of substance in the Critique. Then he tries to prove the existence of such a space-time filler as a reworking of the First Analogy. Finally, he takes into consideration the empirical determinations of the ether by adding the concept of moving forces to the space -time filler. In reconstructing Kant's proofs, I pointed out that Kant is absolutely committed to the impossibility of action-at-a-distance. If we add this new principle of no-action-at-a-distance to the Third Analogy, the existence of a space-time filler follows. I argued with textual evidence that Kant's conception of ether satisfies the basic structure of a field: (1) the ether is a material continuum; (2) a physical quantity is definable on each point in the continuum; and (3) the ether provides a medium to support the continuous transmission of action. The thrust of Kant's conception of ether is to provide a holistic ontology for the transition to physics, which can best be understood from a field-theoretical point of view. This is the main thesis I attempted to establish in this dissertation.

  15. Occupational asthma due to alkyl cyanoacrylate

    SciTech Connect

    Nakazawa, T. )

    1990-08-01

    A case of bronchial asthma induced by occupational exposure to alkyl cyanoacrylate, an adhesive, occurred in an assembly operation. Provocative exposure testing induced immediate and delayed asthmatic responses. Alkyl cyanoacrylate seemed to act as an allergen or as an irritant, resulting in the development of asthma.

  16. Stabilized dialkyl aluminum complexes as alkylating agents

    SciTech Connect

    Blum, J.; Baidossi, W.; Rosenfeld, A.

    1995-12-31

    Although trialkylaluminum derivatives are widely used as Ziegler-Natta polymerization co-catalysts, their application as routine alkylating agents is limited owing to their pyrophoric nature. The authors have now found that substitution of one of the alkyl moieties by a chelating group reduces the sensitivity of the organoaluminum compounds to air, and enables one to utilize them under normal laboratory conditions.

  17. Sulfonimide-containing poly(arylene ether)s and poly(arylene ether sulfone)s, methods for producing the same, and uses thereof

    DOEpatents

    Hofmann, Michael A.

    2006-11-14

    The present invention is directed to sulfonimide-containing polymers, specifically sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, and processes for making the sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, for use conductive membranes and fuel cells.

  18. Discovery of Inhibitors for the Ether Lipid-Generating Enzyme AGPS as Anti-Cancer Agents

    PubMed Central

    Piano, Valentina; Benjamin, Daniel I; Valente, Sergio; Nenci, Simone; Mai, Antonello; Aliverti, Alessandro; Nomura, Daniel K; Mattevi, Andrea

    2015-01-01

    Dysregulated ether lipid metabolism is an important hallmark of cancer cells. Previous studies have reported that lowering ether lipid levels by genetic ablation of the ether lipid-generating enzyme alkyl-glycerone phosphate synthase (AGPS) lowers key structural and oncogenic ether lipid levels and alters fatty acid, glycerophospholipid, and eicosanoid metabolism to impair cancer pathogenicity, indicating that AGPS may be a potential therapeutic target for cancer. In this study, we have performed a small-molecule screen to identify candidate AGPS inhibitors. We have identified several lead AGPS inhibitors and have structurally characterized their interactions with the enzyme and show that these inhibitors bind to distinct portions of the active site. We further show that the lead AGPS inhibitor 1a selectively lowers ether lipid levels in several types of human cancer cells and impairs their cellular survival and migration. We provide here the first report of in situ-effective pharmacological tools for inhibiting AGPS, which may provide chemical scaffolds for future AGPS inhibitor development for cancer therapy. PMID:26322624

  19. Redesign of coenzyme B(12) dependent diol dehydratase to be resistant to the mechanism-based inactivation by glycerol and act on longer chain 1,2-diols.

    PubMed

    Yamanishi, Mamoru; Kinoshita, Koichiro; Fukuoka, Masaki; Saito, Takuya; Tanokuchi, Aya; Ikeda, Yuuki; Obayashi, Hirokazu; Mori, Koichi; Shibata, Naoki; Tobimatsu, Takamasa; Toraya, Tetsuo

    2012-03-01

    Coenzyme B(12) dependent diol dehydratase undergoes mechanism-based inactivation by glycerol, accompanying the irreversible cleavage of the coenzyme Co-C bond. Bachovchin et al. [Biochemistry16, 1082-1092 (1977)] reported that glycerol bound in the G(S) conformation, in which the pro-S-CH(2) OH group is oriented to the hydrogen-abstracting site, primarily contributes to the inactivation reaction. To understand the mechanism of inactivation by glycerol, we analyzed the X-ray structure of diol dehydratase complexed with cyanocobalamin and glycerol. Glycerol is bound to the active site preferentially in the same conformation as that of (S)-1,2-propanediol, i.e. in the G(S) conformation, with its 3-OH group hydrogen bonded to Serα301, but not to nearby Glnα336. k(inact) of the Sα301A, Qα336A and Sα301A/Qα336A mutants with glycerol was much smaller than that of the wild-type enzyme. k(cat) /k(inact) showed that the Sα301A and Qα336A mutants are substantially more resistant to glycerol inactivation than the wild-type enzyme, suggesting that Serα301 and Glnα336 are directly or indirectly involved in the inactivation. The degree of preference for (S)-1,2-propanediol decreased on these mutations. The substrate activities towards longer chain 1,2-diols significantly increased on the Sα301A/Qα336A double mutation, probably because these amino acid substitutions yield more space for accommodating a longer alkyl group on C3 of 1,2-diols. Database Structural data are available in the Protein Data Bank under the accession number 3AUJ. Structured digital abstract • Diol dehydrase gamma subunit, Diol dehydrase beta subunit and Diol dehydrase alpha subunit physically interact by X-ray crystallography (View interaction). PMID:22221669

  20. Alkylating reactivity and herbicidal activity of chloroacetamides.

    PubMed

    Jablonkai, Istvan

    2003-04-01

    The relationship between S- and N-alkylating reactivity and herbicidal activity within a series of chloroacetamides, including several commercial herbicides and newly synthesised analogues was studied. The S-alkylating reactivity of selected chloroacetamides, as well as those of atrazine and chlorfenprop-methyl, was determined by in vitro GSH conjugation at a ratio of GSH to alkylating agent of 25:1. A spectrophotometric reaction using 4-(4-nitrobenzyl)pyridine was used to characterise the N-alkylating reactivity of the chemicals. Our results indicate that a reduced level of N-alkylating reactivity correlates with an improved herbicidal efficacy at a practical rate. However, the phytoxicity of the molecules is not simply dependent on chemical reactivities, but strictly related to the molecular structure, indicating that lipophilicity, uptake, mobility and induction of detoxifying enzymes may also be decisive factors in the mode of action. PMID:12701706

  1. C-Alkylation by Hydrogen Autotransfer Reactions.

    PubMed

    Obora, Yasushi

    2016-04-01

    The development of practical, efficient, and atom-economical methods for the formation of carbon-carbon bonds remains a topic of considerable interest in current synthetic organic chemistry. In this review, we have summarized selected topics from the recent literature with particular emphasis on C-alkylation processes involving hydrogen transfer using alcohols as alkylation reagents. This review includes selected highlights concerning recent progress towards the modification of catalytic systems for the α-alkylation of ketones, nitriles, and esters. Furthermore, we have devoted a significant portion of this review to the methylation of ketones, alcohols, and indoles using methanol. Lastly, we have also documented recent advances in β-alkylation methods involving the dimerization of alcohols (Guerbet reaction), as well as new developments in C-alkylation methods based on sp (3) C-H activation. PMID:27573136

  2. Theory Of Alkyl Terminated Silicon Quantum Dots

    SciTech Connect

    Reboredo, F; Galli, G

    2004-08-19

    We have carried out a series of ab-initio calculations to investigate changes in the optical properties of Si quantum dots as a function of surface passivation. In particular, we have compared hydrogen passivated dots with those having alkyl groups at the surface. We find that, while on clusters with reconstructed surfaces a complete alkyl passivation is possible, steric repulsion prevents full passivation of Si dots with unreconstructed surfaces. In addition, our calculations show that steric repulsion may have a dominant effect in determining the surface structure, and eventually the stability of alkyl passivated clusters, with results dependent on the length of the carbon chain. Alkyl passivation weakly affects optical gaps of silicon quantum dots, while it substantially decreases ionization potentials and electron affinities and affect their excited state properties. On the basis of our results we propose that alkyl terminated quantum dots may be size selected taking advantage of the change in ionization potential as a function of the cluster size.

  3. Revisiting ether-derivatized imidazolium-based ionic liquids.

    PubMed

    Fei, Zhaofu; Ang, Wee Han; Zhao, Dongbin; Scopelliti, Rosario; Zvereva, Elena E; Katsyuba, Sergey A; Dyson, Paul J

    2007-08-30

    A series of ether-derivatized imidazolium halides have been prepared and characterized. Contrary to literature reports, they are all crystalline solids and have melting points well above room temperature (50-100 degrees C). Single crystals of the imidazolium salts, obtained in situ by slow cooling from their molten state to room temperature, were analyzed by X-ray crystallography, revealing various anion-cation interactions in the solid state. Exchange of the halides with [Tf(2)N]- yielded room temperature ionic liquids with viscosities that are comparable to related 1-alkyl-3-methylimidazolium ionic liquids. Density functional theory combined with IR spectroscopy has been used to analyze the role of functionalization of the imidazolium side chain on the formation of the molecular and supramolecular structure of the compounds and its possible impact on their physical properties. PMID:17676796

  4. γ-Radiolysis of N 2O-saturated aqueous glycerol solutions: Product yields and free radical mechanism

    NASA Astrophysics Data System (ADS)

    Baugh, Peter J.; Moore, John S.; Norris, Alan F.; von Sonntag, Clemens

    The yields of products, glyceraldehyde (I), dihydroxyacetone (II), 3-hydroxypropanal (III), hydroxyacetone (IV), 2,3-bis(hydroxymethyl)-1,4-butandial (V), 1,2-bis(glycolyl)ethane (VI), 3-(glycolyl)-2-(hydroxymethyl)-propanal (VII), 2-(hydroxymethyl)-3, 4, 5-trihydroxy pentanal (VIII), 3-deoxyhexulose (IX), hexitol (X), 2-(hydroxymethyl)-pentitol (XI) and trimer (XII) formed during the γ-radiolysis of N 2O-saturated aqueous solutions containing glycerol have been quantitatively determined by gas liquid chromatography. It is evident that four radicals generated from the initial substrate participate in disproportionation, dimerisation and hydrogen abstraction reactions leading to these products. These radicals comprise two hydroxyalkyl radicals and their corresponding carbonyl-conjugated product radicals formed after water elimination. The initial radicals lead directly to products I, II, X and XI and the water-eliminated radicals to products III, IV, VI and VII. Products VIII and IX result from combination of the hydroxy-alkyl and carbonyl-conjugated radicals. Dimerisation and disproportionation of the hydroxy-alkyl radicals are favoured at higher dose rates while there is a reduction in water elemination and the products resulting. Hydrogen abstraction from glycerol by carbonyl-conjugated radicals in a chain mechanism is responsible for the large increase in yields of products III and IV when the initial substrate concentration is increased.

  5. Method for determination of methyl tert-butyl ether and its degradation products in water

    USGS Publications Warehouse

    Church, C.D.; Isabelle, L.M.; Pankow, J.F.; Rose, D.L.; Tratnyek, P.G.

    1997-01-01

    An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method

  6. Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning

    NASA Astrophysics Data System (ADS)

    Cengiz, Ugur; Avci, Merih Z.; Erbil, H. Yildirim; Sarac, A. Sezai

    2012-05-01

    A new statistical terpolymer containing perfluoroethyl alkyl methacrylate (Zonyl-TM), methyl methacrylate and butyl acrylate, poly(Zonyl-TM-ran-MMA-ran-BA) was synthesized in supercritical carbon dioxide at 200 bar and 80 °C using AIBN as an initiator by heterogeneous free radical copolymerization. Nanofibers of this terpolymer were produced by electrospinning from its DMF solution. The structural and thermal properties of terpolymers and electrospun poly(Zonyl-TM-MMA-BA) nanofibers were analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and differential scanning calorimetry. Nanofiber morphology was investigated by scanning electron microscopy. Electrospun nanofiber layer was found to be superhydrophobic with a water contact angle of 172 ± 1° and highly oleophobic with hexadecane, glycerol and ethylene glycol contact angles of 70 ± 1°, 167 ± 1° and 163 ± 1° respectively. The change of the contact angle results on the electrospun fiber layer and flat terpolymer surfaces by varying feed monomer composition were compared and discussed in the text.

  7. Diarmed (adamantyl/alkyl) surfactants from nitrilotriacetic acid.

    PubMed

    Trillo, Juan V; Vázquez Tato, José; Jover, Aida; de Frutos, Santiago; Soto, Victor H; Galantini, Luciano; Meijide, Francisco

    2014-11-01

    The compounds presented here constitute a clear example of molecular biomimetics as their design is inspired on the structure and properties of natural phospholipids. Thus novel double-armed surfactants have been obtained in which nitrilotriacetic acid plays the role of glycerol in phospholipids. The hydrophobic arms are linked to the head group through amide bonds (which is also the case of sphingomyelin): (R1NHCOCH2)(R2NHCOCH2)NCH2CO2H (R1 being CH3(CH2)11, CH3(CH2)17, CH3(CH2)7CHCH(CH2)8, and adamantyl, and R2=adamantyl). The dependence of the surface tension with concentration shows the typical profile of surfactants since a breaking point, which corresponds to the critical aggregation concentration (cac), is observed in all cases. The cac of these diarmed derivatives are about 1-3 orders of magnitude lower than those of classical monoalkyl derivatives used as reference compounds. In contrast to conventional surfactants, reversed trends in cac values and molecular areas at the solution-air interface have been observed. This anomalous behavior is tied to the structure of the surfactants and suggests that long and flexible alkyl chains should self-coil previous to the aggregation or adsorption phenomena. Above cac all compounds form large aggregates, globular in shape, which tend to associate forming giant aggregates. PMID:25465758

  8. Role of alkyl alcohol on viscosity of silica-based chemical gels for decontamination of highly radioactive nuclear facilities

    SciTech Connect

    Choi, B. S.; Yoon, S. B.; Jung, C. H.; Lee, K. W.; Moon, J. K.

    2012-07-01

    Silica-based chemical gel for the decontamination of nuclear facilities was prepared by using fumed silica as a viscosifier, a 0.5 M Ce (IV) solution dissolved in concentrated nitric acid as a chemical decontamination agent, and tripropylene glycol butyl ether (TPGBE) as a co-viscosifier. A new effective strategy for the preparation of the chemical gel was investigated by introducing the alkyl alcohols as organic solvents to effectively dissolve the co-viscosifier. The mixture solution of the co-viscosifier and alkyl alcohols was more effective in the control of viscosity than that of the co-viscosifier only in gel. Here, the alkyl alcohols played a key role as an effective dissolution solvent for the co-viscosifier in the preparation of the chemical gel, resulting in a reducing of the amount of the co-viscosifier and gel time compared with that of the chemical gel prepared without the alkyl alcohols. It was considered that the alkyl alcohols contributed to the effective dissolution of the co-viscosifier as well as the homogeneous mixing in the formation of the gel, while the co-viscosifier in an aqueous media of the chemical decontamination agent solution showed a lower solubility. The decontamination efficiency of the chemical gels prepared in this work using a multi-channel analyzer (MCA) showed a high decontamination efficiency of over ca. 94% and ca. 92% for Co-60 and Cs-137 contaminated on surface of the stainless steel 304, respectively. (authors)

  9. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-01-05

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  10. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  11. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  12. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  13. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  14. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  15. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  16. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  17. Ultrasound assisted enzyme catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate.

    PubMed

    Waghmare, Govind V; Vetal, Mangesh D; Rathod, Virendra K

    2015-01-01

    The present work illustrates the transesterification of glycerol to glycerol carbonate (GlyC) from dimethyl carbonate (DMC) using commercial immobilized lipase (Novozym 435) under ultrasonic irradiation. The experiments were performed in a batch reactor placed in an ultrasonic water bath using a sequence of experimental protocol to evaluate the effects of temperature, molar ratios of substrates, enzyme loading, duty cycle and ultrasound power on the conversion of glycerol to GlyC. It has been found that ultrasound-assisted lipase-catalyzed transesterification of glycerol would be a potential alternative to conventional alkali-catalyzed method, as high conversion (99.75%) was obtained at mild operating conditions: molar ratio of DMC to glycerol 3:1, catalyst amount of 13% (w/w), lower power input (100W), duty cycle 50% and temperature (60°C) in a relatively short reaction time (4h) using Novozym 435 as catalyst. Ultrasound reduces the reaction time up to 4h as compared to conventional stirring method (14h) catalyzed by Novozym 435. The repeated use of the catalyst under the optimum experimental condition resulted in decay in both enzyme activity and product conversion. PMID:25069889

  18. Isolation of a Bacterial Culture That Degrades Methyl t-Butyl Ether

    PubMed Central

    Salanitro, J. P.; Diaz, L. A.; Williams, M. P.; Wisniewski, H. L.

    1994-01-01

    We have isolated a mixed bacterial culture (BC-1) which is capable of degrading the gasoline oxygenate methyl t-butyl ether (MTBE). BC-1 was developed from seed microorganisms present in a chemical plant biotreater sludge. This enrichment culture has been maintained in continuous culture treating high concentrations of MTBE (120 to 200 mg/liter) as the sole carbon source in a simple feed containing NH4+, PO43-, Mg2+, and Ca2+ nutrients. The unit had a stable MTBE removal rate when maintained with a long cell retention time (ca. 80 to 90 days); however, when operated at a ≤50-day cell waste rate, loss of MTBE-degrading activity was observed. The following three noteworthy experimental data show that MTBE is biodegraded extensively by BC-1: (i) the continuous (oxygen-sparged) culture was able to sustain a population of autotrophic ammonia-oxidizing bacteria which could nitrify influent NH4+ concentrations at high rates and obtain CO2 (sole carbon source for growth) from the metabolism of the alkyl ether, (ii) BC-1 metabolized radiolabeled either (14CH3O-MTBE) to 14CO2 (40%) and 14C-labeled cells (40%), and (iii) cell suspensions of the culture were capable of degrading (substrate depletion experiments) MTBE to t-butyl alcohol, a primary metabolite of MTBE. BC-1 is a mixed culture containing several bacterial species and is the first culture of its kind which can completely degrade an alkyl ether. PMID:16349335

  19. Biological Conversion of Glycerol to Ethanol by Enterobacter aerogenes

    NASA Astrophysics Data System (ADS)

    Nwachukwu, Raymond E. S.

    In a search to turn the economically and environmentally non-valuable "waste" streams of biodiesel production into a profitable byproduct, a mutant strain of Enterobacter aerogenes ATCC 13048 was developed by six-tube subculturing technique. This technique is based on the principle of adaptive evolution, and involved subculturing the bacterium in a tryptic soy broth without dextrose (TSB) containing specific glycerol and ethanol concentration for six consecutive times. Then, the six consecutive subculturing was repeated in a fresh TSB of higher glycerol and ethanol concentrations. A new mutant strain, E. aerogenes S012, which could withstand a combination of 200 g/l glycerol and 30 g/l ethanol concentrations, was developed. The wild and mutant strains were used for the fermentation of pure (P-) and recovered (R-) glycerol. Taguchi and full factorial methods of design of experiments were used to screen and optimize the important process factors that influence the microbial production of ethanol. A statistically sound regression model was used to establish the mathematical relationship between the process variables and ethanol production. Temperature of 38°C, agitation speed of 200 rpm, pH of 6.3-6.6, and microaerobic condition were the optimum process conditions. Different pretreatment methods to recover glycerol from the crude glycerol and the subsequent fermentation method showed that direct acidification using 85% H3PO4 was the best. The R-glycerol contained 51% pure glycerol and 21% methanol. The wild strain, E. aerogenes ATCC 13048, produced only 12 g/l and 12.8 g/l ethanol from 20 g/l P- and R-glycerol respectively, and could not utilize higher glycerol concentrations. The mutant, E. aerogenes S012, produced ethanol amount and yield of 43 g/l and 1.12 mol/mol-glycerol from P-glycerol, respectively within 96 h. It also produced ethanol amount and yield of 26.8 g/l and 1.07 mol/mol-glycerol, respectively, from R-glycerol within the same duration. In a

  20. Structure and Evolution of the Archaeal Lipid Synthesis Enzyme sn-Glycerol-1-phosphate Dehydrogenase*

    PubMed Central

    Carbone, Vincenzo; Schofield, Linley R.; Zhang, Yanli; Sang, Carrie; Dey, Debjit; Hannus, Ingegerd M.; Martin, William F.; Sutherland-Smith, Andrew J.; Ronimus, Ron S.

    2015-01-01

    One of the most critical events in the origins of cellular life was the development of lipid membranes. Archaea use isoprenoid chains linked via ether bonds to sn-glycerol 1-phosphate (G1P), whereas bacteria and eukaryotes use fatty acids attached via ester bonds to enantiomeric sn-glycerol 3-phosphate. NAD(P)H-dependent G1P dehydrogenase (G1PDH) forms G1P and has been proposed to have played a crucial role in the speciation of the Archaea. We present here, to our knowledge, the first structures of archaeal G1PDH from the hyperthermophilic methanogen Methanocaldococcus jannaschii with bound substrate dihydroxyacetone phosphate, product G1P, NADPH, and Zn2+ cofactor. We also biochemically characterized the enzyme with respect to pH optimum, cation specificity, and kinetic parameters for dihydroxyacetone phosphate and NAD(P)H. The structures provide key evidence for the reaction mechanism in the stereospecific addition for the NAD(P)H-based pro-R hydrogen transfer and the coordination of the Zn2+ cofactor during catalysis. Structure-based phylogenetic analyses also provide insight into the origins of G1PDH. PMID:26175150

  1. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Scoffield, Jessica; Silo-Suh, Laura

    2016-08-01

    Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation. PMID:27392247

  2. Measuring glycerol turnover, gluconeogenesis from glycerol, and total gluconeogenesis with [2-13C] glycerol: role of the infusion-sampling mode.

    PubMed

    Peroni, O; Large, V; Odeon, M; Beylot, M

    1996-07-01

    Mass isotopomer distribution analysis (MIDA) of glucose during infusion of [2-13C]glycerol is a new method for measuring total gluconeogenesis (GNG). Since this method relies on calculation of the isotopic enrichment (IE) of hepatic triose phosphates (TP), the results should be independent of the sites of tracer infusion and blood sampling. Postabsorptive and starved rats were infused with [2-13C]glycerol and sampled either in the arterial-venous (A-V) or venous-arterial (V-A) modes. Blood was also sampled from the portal vein. In both postabsorptive and starved rats, glycerol turnover rate (Rt) and the percent contribution of glycerol to total glucose production were higher in the A-V mode than in the V-A mode (P < .05). Glycerol IE in portal venous blood was intermediate between IE values observed in peripheral arterial and venous blood. Its use for calculating the contribution of glycerol to glucose production reconciled the results obtained with the two infusion-sampling modes in both postabsorptive and starved rats; this contribution was increased by starvation (P < .01). In postabsorptive rats, total GNG calculated from MIDA of glucose accounted for approximately 50% of glucose production whatever the infusion-sampling mode (A-V, 48.8% +/- 4.7%; V-A, 52.2% +/- 3.9%). This contribution increased to 90% in starved rats, again, with no difference between A-V (95.2% +/- 1.8%) and V-A (89.2% +/- 1.3%) modes. In conclusion, during infusion of [2-13C]glycerol, total GNG measured from MIDA of glucose is independent of the infusion-sampling mode, contrary to calculations of Rt and GNG from glycerol. Measurement of glycerol IE in portal venous blood reconciles the results obtained with the two modes with respect to the contribution of glycerol to GNG. PMID:8692028

  3. 40 CFR 721.3380 - Anilino ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Anilino ether. 721.3380 Section 721... Anilino ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as anilino ether (P-83-910) is subject to reporting under this section...

  4. 40 CFR 721.3364 - Aliphatic ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic ether. 721.3364 Section 721... Aliphatic ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aliphatic ether (PMN P-93-1381) is subject to reporting under...

  5. 40 CFR 721.3364 - Aliphatic ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic ether. 721.3364 Section 721... Aliphatic ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aliphatic ether (PMN P-93-1381) is subject to reporting under...

  6. 40 CFR 721.3374 - Alkylenediolalkyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylenediolalkyl ether. 721.3374... Substances § 721.3374 Alkylenediolalkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an alkylenediolalkyl ether (PMN P-93-362) is subject...

  7. 40 CFR 721.3437 - Dialkyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dialkyl ether. 721.3437 Section 721... Dialkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as dialkyl ether (PMN P-93-1308) is subject to reporting under this...

  8. 40 CFR 721.3374 - Alkylenediolalkyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylenediolalkyl ether. 721.3374... Substances § 721.3374 Alkylenediolalkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an alkylenediolalkyl ether (PMN P-93-362) is subject...

  9. 40 CFR 721.3437 - Dialkyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dialkyl ether. 721.3437 Section 721... Dialkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as dialkyl ether (PMN P-93-1308) is subject to reporting under this...

  10. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  11. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  12. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  13. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  14. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  15. Ether- and Ester-Bound iso-Diabolic Acid and Other Lipids in Members of Acidobacteria Subdivision 4

    PubMed Central

    Rijpstra, W. Irene C.; Hopmans, Ellen C.; Foesel, Bärbel U.; Wüst, Pia K.; Overmann, Jörg; Tank, Marcus; Bryant, Donald A.; Dunfield, Peter F.; Houghton, Karen; Stott, Matthew B.

    2014-01-01

    Recently, iso-diabolic acid (13,16-dimethyl octacosanedioic acid) has been identified as a major membrane-spanning lipid of subdivisions 1 and 3 of the Acidobacteria, a highly diverse phylum within the Bacteria. This finding pointed to the Acidobacteria as a potential source for the bacterial glycerol dialkyl glycerol tetraethers that occur ubiquitously in peat, soil, lakes, and hot springs. Here, we examined the lipid composition of seven phylogenetically divergent strains of subdivision 4 of the Acidobacteria, a bacterial group that is commonly encountered in soil. Acid hydrolysis of total cell material released iso-diabolic acid derivatives in substantial quantities (11 to 48% of all fatty acids). In contrast to subdivisions 1 and 3 of the Acidobacteria, 6 out of the 7 species of subdivision 4 (excepting “Candidatus Chloracidobacterium thermophilum”) contained iso-diabolic acid ether bound to a glycerol in larger fractional abundance than iso-diabolic acid itself. This is in agreement with the analysis of intact polar lipids (IPLs) by high-performance liquid chromatography-mass spectrometry (HPLC-MS), which showed the dominance of mixed ether-ester glycerides. iso-Diabolic acid-containing IPLs were not identified, because these IPLs are not released with a Bligh-Dyer extraction, as observed before when studying lipid compositions of subdivisions 1 and 3 of the Acidobacteria. The presence of ether bonds in the membrane lipids does not seem to be an adaptation to temperature, because the five mesophilic isolates contained a larger amount of ether lipids than the thermophile “Ca. Chloracidobacterium thermophilum.” Furthermore, experiments with Pyrinomonas methylaliphatogenes did not reveal a major influence of growth temperature over the 50 to 69°C range. PMID:24928878

  16. The Glycerol-3-Phosphate Acyltransferase TbGAT is Dispensable for Viability and the Synthesis of Glycerolipids in Trypanosoma brucei.

    PubMed

    Patel, Nipul; Pirani, Karim A; Zhu, Tongtong; Cheung-See-Kit, Melanie; Lee, Sungsu; Chen, Daniel G; Zufferey, Rachel

    2016-09-01

    Glycerolipids are the main constituents of biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans. Importantly, they occur as a structural component of the glycosylphosphatidylinositol lipid anchor of the abundant cell surface glycoproteins procyclin in procyclic forms and variant surface glycoprotein in bloodstream form, that play crucial roles for the development of the parasite in the insect vector and the mammalian host, respectively. The present work reports the characterization of the glycerol-3-phosphate acyltransferase TbGAT that initiates the biosynthesis of ester glycerolipids. TbGAT restored glycerol-3-phosphate acyltransferase activity when expressed in a Leishmania major deletion strain lacking this activity and exhibited preference for medium length, unsaturated fatty acyl-CoAs. TbGAT localized to the endoplasmic reticulum membrane with its N-terminal domain facing the cytosol. Despite that a TbGAT null mutant in T. brucei procyclic forms lacked glycerol-3-phosphate acyltransferase activity, it remained viable and exhibited similar growth rate as the wild type. TbGAT was dispensable for the biosynthesis of phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and GPI-anchored protein procyclin. However, the null mutant exhibited a slight decrease in phosphatidylethanolamine biosynthesis that was compensated with a modest increase in production of ether phosphatidylcholine. Our data suggest that an alternative initial acyltransferase takes over TbGAT's function in its absence. PMID:26909872

  17. Lacinilene C 7-methyl ether

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lacinilene C 7-methyl ether is an antimicrobial compound produced by the cotton plant in response to attack by pathogens. For the first time, we now report the crystal structure of this compound. This may prove useful in studies on the interaction of the compound with pathogenic fungal cells....

  18. Desoxyhemigossypol-6-methyl-ether

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desoxyhemigossypol-6-methyl ether is an antimicrobial compound produced by the cotton plant in response to attack by pathogens. For the first time, we now report the crystal structure of this compound. This may prove useful in studies on the interaction of the compound with pathogenic fungal cells...

  19. Bis(chloromethyl)ether (BCME)

    Integrated Risk Information System (IRIS)

    Bis ( chloromethyl ) ether ( BCME ) ; CASRN 542 - 88 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  20. Propylene glycol monomethyl ether (PGME)

    Integrated Risk Information System (IRIS)

    Propylene glycol monomethyl ether ( PGME ) ; CASRN 107 - 98 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assess

  1. Bis(chloroethyl)ether (BCEE)

    Integrated Risk Information System (IRIS)

    Bis ( chloroethyl ) ether ( BCEE ) ; CASRN 111 - 44 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  2. p,p\\'-Dibromodiphenyl ether

    Integrated Risk Information System (IRIS)

    p , p ' - Dibromodiphenyl ether ; CASRN 2050 - 47 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  3. Aza-crown ether complex cation ionic liquids: preparation and applications in organic reactions.

    PubMed

    Song, Yingying; Cheng, Chen; Jing, Huanwang

    2014-09-26

    Aza-crown ether complex cation ionic liquids (aCECILs) were devised, fabricated, and characterized by using NMR spectroscopy, MS, thermogravimetric differential thermal analysis (TG-DTA), elemental analysis and physical properties. These new and room-temperature ILs were utilized as catalysts in various organic reactions, such as the cycloaddition reaction of CO2 to epoxides, esterification of acetic acid and alcohols, the condensation reaction of aniline and propylene carbonate, and Friedel-Crafts alkylation of indole with aldehydes were investigated carefully. In these reactions, the ionic liquid exhibited cooperative catalytic activity between the anion and cation. In addition, the aza-[18-C-6HK][HSO4]2 was the best acidic catalyst in the reactions of esterification and Friedel-Crafts alkylation under mild reaction conditions. PMID:25154312

  4. Fermentation of xylose to glycerol by Rhizopus javanicus

    SciTech Connect

    Lu, Z.; Yang, C.W.; Tsao, G.T.

    1995-12-31

    Glycerol production from xylose fermentation using Rhizopus javanicus (ATCC 22581) has been investigated in shake flasks. The medium composition (xylose concentration, nitrogen sources), aeration rate, and temperature have been found to affect the accumulation and yield of glycerol. Some of these effects are explained in terms of the critical parameters, osmotic pressure, and dissolved oxygen levels in the medium. Relatively high glycerol yields and concentrations have been obtained at high sugar concentration with high level of aeration at room temperature. The addition of polyethylene glycol or sulfite can improve the yield and accumulation of glycerol.

  5. Thermally induced alkylation of diamond.

    PubMed

    Hoeb, Marco; Auernhammer, Marianne; Schoell, Sebastian J; Brandt, Martin S; Garrido, Jose A; Stutzmann, Martin; Sharp, Ian D

    2010-12-21

    We present an approach for the thermally activated formation of alkene-derived self-assembled monolayers on oxygen-terminated single and polycrystalline diamond surfaces. Chemical modification of the oxygen and hydrogen plasma-treated samples was achieved by heating in 1-octadecene. The resulting layers were characterized using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. This investigation reveals that alkenes selectively attach to the oxygen-terminated sites via covalent C-O-C bonds. The hydrophilic oxygen-terminated diamond is rendered strongly hydrophobic following this reaction. The nature of the process limits the organic layer growth to a single monolayer, and FTIR measurements reveal that such monolayers are dense and well ordered. In contrast, hydrogen-terminated diamond sites remain unaffected by this process. This method is thus complementary to the UV-initiated reaction of alkenes with diamond, which exhibits the opposite reactivity contrast. Thermal alkylation increases the range of available diamond functionalization strategies and provides a means of straightforwardly forming single organic layers in order to engineer the surface properties of diamond. PMID:21090790

  6. N-Alkylation by Hydrogen Autotransfer Reactions.

    PubMed

    Ma, Xiantao; Su, Chenliang; Xu, Qing

    2016-06-01

    Owing to the importance of amine/amide derivatives in all fields of chemistry, and also the green and environmentally benign features of using alcohols as alkylating reagents, the relatively high atom economic dehydrative N-alkylation reactions of amines/amides with alcohols through hydrogen autotransfer processes have received much attention and have developed rapidly in recent decades. Various efficient homogeneous and heterogeneous transition metal catalysts, nano materials, electrochemical methods, biomimetic methods, asymmetric N-alkylation reactions, aerobic oxidative methods, and even certain transition metal-free, catalyst-free, or autocatalyzed methods, have also been developed in recent years. With a brief introduction to the background and developments in this area of research, this chapter focuses mainly on recent progress and technical and conceptual advances contributing to the development of this research in the last decade. In addition to mainstream research on homogeneous and heterogeneous transition metal-catalyzed reactions, possible mechanistic routes for hydrogen transfer and alcohol activation, which are key processes in N-alkylation reactions but seldom discussed in the past, the recent reports on computational mechanistic studies of the N-alkylation reactions, and the newly emerged N-alkylation methods based on novel alcohol activation protocols such as air-promoted reactions and transition metal-free methods, are also reviewed in this chapter. Problems and bottlenecks that remained to be solved in the field, and promising new research that deserves greater future attention and effort, are also reviewed and discussed. PMID:27573267

  7. Mechanism of action of adenosylcobalamin: glycerol and other substrate analogues as substrates and inactivators for propanediol dehydratase--kinetics, stereospecificity, and mechanism.

    PubMed

    Bachovchin, W W; Eagar, R G; Moore, K W; Richards, J H

    1977-03-22

    A number of vicinal diols were found to react with propanediol dehydratase, typically resulting in the conversion of enzyme-bound adenosylcobalamin to cob(II)alamin and formation of aldehyde or ketone derives from substrate. Moreover, all are capable of effecting the irreversible inactivation of the enzyme. The kinetics and mechanism of product formation and inactivation were investigated. Glycerol, found to be a very good substrate for diol dehydratase as well as a potent inactivator, atypically, did not induce cob(II)alamin formation to any detectable extent. With glycerol, the inactivation process was accompanied by conversion of enzyme-bound adenosylcobalamin to an alkyl or thiol cobalamin, probably by substitution of an amino acid chain near the active site for the 5'-deoxy-5'-adenosyl ligand on the cobalamin. The inactivation reaction with glycerol as the inactivator exhibits a deuterium isotope effect of 14, strongly implicating hydrogen transfer as an important step in the mechanism of inactivation. The isotope effect on the rate of product formation was found to be 8.0. Experiments with isotopically substituted glycerols indicate that diol dehydrase distinguishes between "R" and "S" binding conformations, the enzyme-(R)-glycerol complex being predominately responsible for the product-forming reaction, while the enzyme-(S)-glycerol complex results primarily in the activation reaction. Mechanistic implications are discussed. A method for removing enzyme-bound hydroxycobalamin that is nondestructive to the enzyme and a technique for measuring the binding constants of (R)- and (S)-1,2-propanediols are presented. PMID:321014

  8. Rotation of ultrasonically levitated glycerol drops

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Leung, E. W.; Trinh, E. H.

    1991-01-01

    Ultrasonic levitation is used to suspend single millimeter-size glycerol drops in a rectangular chamber. Audio-frequency laterally standing waves set up in the chamber are used to torque the suspended drops. The shape evolution of the drop under the combined effect of centrifugal forces and the acoustic radiation stress, along with its angular velocity are monitored, using video imaging and light scattering techniques. The results show good qualitative agreement with the theoretically predicted shape evolution as a function of angular velocity.

  9. Light induced controlled release of fragrances by Norrish type II photofragmentation of alkyl phenyl ketones.

    PubMed

    Levrand, Barbara; Herrmann, Andreas

    2002-11-01

    The use of alkyl phenyl ketones as delivery systems for the controlled release of fragrances was investigated by photoirradiation of undegassed solutions with a xenon lamp as well as natural sunlight. A large variety of precursor compounds was prepared efficiently in a few reaction steps from commercially available starting materials. The Norrish type II photofragmentation was found to be the predominant reaction pathway to yield the desired perfumery alkenes and acetophenones in polar and apolar solution. Systematic GC-MS analysis of the irradiated solutions allowed identification of a series of side products that are due to the presence of oxygen. A detailed analysis of the product distribution after irradiation was carried out for a series of 4-alkoxy-1-phenylbutanone derivatives. Besides the expected acetophenones, vinyl ethers and phenylcyclobutanols, the formation of alkyl formates, alcohols and 4-oxo-4-phenylbutanoates was observed. The product distribution as influenced by solvent polarity, precursor concentration and substituent effects was investigated. The utility of alkyl phenyl ketones as precursors for the light induced controlled release of fragrances under natural daylight conditions was also demonstrated. PMID:12659532

  10. Degradation kinetics of poly(ether-urethane) Estane® induced by electron irradiation

    NASA Astrophysics Data System (ADS)

    Dannoux, A.; Esnouf, S.; Begue, J.; Amekraz, B.; Moulin, C.

    2005-07-01

    Radiation effects on a segmented aromatic poly(ether-urethane) induced by electron beam irradiation under oxygen atmosphere were investigated using Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) in order to determine the degradation mechanisms. Thin films have been irradiated under a dose rate of 1 MGy/h with absorbed doses varying from 25 to 1000 kGy under O2. FTIR spectra have shown the formation of hydroperoxides, carboxylic acids, primary amines, alcohols, esters and formates. Moreover, the decrease of urethane and ether absorbances revealed the degradation of both soft and hard segments. Spin-trapping technique was used to monitor the evolution of short-lived peroxy and alkyl radicals at room temperature. Finally, a mechanism of degradation for electron irradiated polyurethane is proposed.

  11. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOEpatents

    Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.

    1996-04-02

    A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.

  12. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOEpatents

    Diebold, James P.; Scahill, John W.; Chum, Helena L.; Evans, Robert J.; Rejai, Bahman; Bain, Richard L.; Overend, Ralph P.

    1996-01-01

    A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.

  13. Ether analogues of DPA-714 with subnanomolar affinity for the translocator protein (TSPO).

    PubMed

    Banister, Samuel D; Beinat, Corinne; Wilkinson, Shane M; Shen, Bin; Bartoli, Cecilia; Selleri, Silvia; Da Pozzo, Eleonora; Martini, Claudia; Chin, Frederick T; Kassiou, Michael

    2015-03-26

    Sixteen new phenyl alkyl ether derivatives (12, 14-28) of the 5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-ylacetamide (DPA) class were synthesized and evaluated in a competition binding assay against [(3)H]PK11195 using 18 kDa translocator protein (TSPO) derived from rat kidney mitochondrial fractions. All analogues showed superior binding affinities for TSPO compared to DPA-713 (5) and DPA-714 (6). Picomolar affinities were observed for this class of TSPO ligands in this assay for the first time, with phenethyl ether 28 showing the greatest affinity (Ki = 0.13 nM). Additionally, all analogues increased pregnenolone biosynthesis (134-331% above baseline) in a rat C6 glioma cell steroidogenesis assay. PMID:25725375

  14. Liquid exfoliation of alkyl-ether functionalised layered metal-organic frameworks to nanosheets.

    PubMed

    Foster, Jonathan A; Henke, Sebastian; Schneemann, Andreas; Fischer, Roland A; Cheetham, Anthony K

    2016-08-18

    We report the synthesis of a 2D-layered metal-organic framework incorporating weakly interacting chains designed to aid exfoliation of the layers into nanosheets. Dispersion of the nanosheets exposes labile metal-sites which are shown to exchange solvent molecules allowing the nanosheets to act as sensors in suspension. PMID:27452790

  15. Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes.

    PubMed

    Kim, Jinsoo; Lim, Hee-Dae; Gwon, Hyeokjo; Kang, Kisuk

    2013-03-14

    Recently, metal-air batteries, such as lithium-air and zinc-air systems, have been studied extensively as potential candidates for ultra-high energy density storage devices because of their exceptionally high capacities. Here, we report such an electrochemical system based on sodium, which is abundant and inexpensive. Two types of sodium-oxygen batteries were introduced and studied, i.e. with carbonate and non-carbonate electrolytes. Both types could deliver specific capacities (2800 and 6000 mA h g(-1)) comparable to that of lithium-oxygen batteries but with slightly lower discharge voltages (2.3 V and 2.0 V). The reaction mechanisms of sodium-oxygen batteries in carbonate and non-carbonate electrolytes were investigated and compared with those of lithium-oxygen batteries. PMID:23386220

  16. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    SciTech Connect

    Ishibashi, Yohei; Nagamatsu, Yusuke; Miyamoto, Tomofumi; Matsunaga, Naoyuki; Okino, Nozomu; Yamaguchi, Kuniko; Ito, Makoto

    2014-10-03

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria.

  17. Ruminal fermentation of propylene glycol and glycerol.

    PubMed

    Trabue, Steven; Scoggin, Kenwood; Tjandrakusuma, Siska; Rasmussen, Mark A; Reilly, Peter J

    2007-08-22

    Bovine rumen fluid was fermented anaerobically with 25 mM R-propylene glycol, S-propylene glycol, or glycerol added. After 24 h, all of the propylene glycol enantiomers and approximately 80% of the glycerol were metabolized. Acetate, propionate, butyrate, valerate, and caproate concentrations, in decreasing order, all increased with incubation time. Addition of any of the three substrates somewhat decreased acetate formation, while addition of either propylene glycol increased propionate formation but decreased that of butyrate. R- and S-propylene glycol did not differ significantly in either their rates of disappearance or the products formed when they were added to the fermentation medium. Fermentations of rumen fluid containing propylene glycol emitted the sulfur-containing gases 1-propanethiol, 1-(methylthio)propane, methylthiirane, 2,4-dimethylthiophene, 1-(methylthio)-1-propanethiol, dipropyl disulfide, 1-(propylthio)-1-propanethiol, dipropyl trisulfide, 3,5-diethyl-1,2,4-trithiolane, 2-ethyl-1,3-dithiane, and 2,4,6-triethyl-1,3,5-trithiane. Metabolic pathways that yield each of these gases are proposed. The sulfur-containing gases produced during propylene glycol fermentation in the rumen may contribute to the toxic effects seen in cattle when high doses are administered for therapeutic purposes. PMID:17655323

  18. Competition between reaction and intramolecular energy redistribution in solution: observation and nature of nonstatistical dynamics in the ozonolysis of vinyl ethers.

    PubMed

    Quijano, Larisa Mae M; Singleton, Daniel A

    2011-09-01

    Experimental product ratios in ozonolyses of alkyl vinyl ethers in solution do not fit with expectations based on statistical rate theories. The selectivity among cleavage pathways increases with the size of the alkyl group but to an extent that is far less than RRKM theory would predict. Trajectory studies account for the observed selectivities and support a mechanism involving a competition between cleavage of the primary ozonide and intramolecular vibrational energy redistribution. A statistical model is presented that assumes that RRKM theory holds for a molecular subset of the primary ozonides, allowing the rates of energy loss from the ozonides to be estimated from the observed product ratios. PMID:21812422

  19. Competition between Reaction and Intramolecular Energy Redistribution in Solution. Observation and Nature of Nonstatistical Dynamics in the Ozonolysis of Vinyl Ethers

    PubMed Central

    Quijano, Larisa Mae M.; Singleton, Daniel A.

    2011-01-01

    Experimental product ratios in ozonolyses of alkyl vinyl ethers in solution do not fit with expectations from statistical rate theories. The selectivity among cleavage pathways increases with the size of the alkyl group but to an extent that is far less than RRKM theory would predict. Trajectory studies account for the observed selectivities and support a mechanism involving a competition between cleavage of the primary ozonide and intramolecular vibrational energy redistribution. An approximate statistical model is presented that assumes that RRKM theory holds for a molecular subset of the primary ozonides, allowing estimates of the rates of energy loss from the primary ozonides based on the observed product ratios. PMID:21812422

  20. Alkyl rearrangement processes in organozirconium complexes. Observation of internal alkyl complexes during hydrozirconation

    SciTech Connect

    Chirik, P.J.; Day, M.W.; Labinger, J.A.; Bercaw, J.E.

    1999-11-10

    Isotopically labeled alkyl zirconocene complexes of the form (CpR{sub n}){sub 2}Zr(CH{sub 2}CDR{sub 2}{prime})(X) (CpR{sub n} = alkyl-substituted cyclopentadienyl; R{prime} = H, alkyl group; X = H, D, Me) undergo isomerization of the alkyl ligand as well as exchange with free olefin in solution under ambient conditions. Increasing the substitution on the Cp ring results in slower isomerization reactions, but these steric effects are small. In contrast, changing X has a very large effect on the rate of isomerization. Pure {sigma}-bonding ligands such as methyl and hydride promote rapid isomerization, whereas {pi}-donor ligands inhibit {beta}-H elimination and hence alkyl isomerization. For ({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}Zr(R)(Cl), internal alkyl complexes have been observed for the first time. The rate of isomerization depends on the length of the alkyl group: longer alkyl chains (heptyl, hexyl) isomerize faster than shorter chains (butyl). The transient intermediate species have been identified by a combination of isotopic labeling and {sup 1}H, {sup 2}H, and {sup 13}C NMR experiments. The solid-state structure of the zirconocene cyclopentyl chloride complex, Cp{sub 2}Zr(cyclo-C{sub 5}H{sub 9})(Cl), has been determined by X-ray diffraction.

  1. Blend of alkyl phenol ethoxylates and alkyl phenol glycoxylates and their use as surfactants

    SciTech Connect

    Grolitzer, M. A.

    1985-11-12

    Nonionic surfactant compositions useful in forming stable emulsions with oil in saline solutions comprising a blend of: at least one alkyl phenol ethoxylate and at least one alkyl phenol glycoxylate. These surfactant compositions may be employed in enhanced oil recovery processes and other applications where good emulsification and high salinity tolerances are required such as textiles, leather, dairy, concrete grinding aids and drilling muds.

  2. A new alternative to expandable pedicle screws: Expandable poly-ether-ether-ketone shell.

    PubMed

    Demir, Teyfik

    2015-05-01

    Screw pullout is a very common problem in the fixation of sacrum with pedicle screws. The principal cause of this problem is that the cyclic micro motions in the fixation of sacrum are higher than the other regions of the vertebrae that limit the osteo-integration between bone and screw. In addition to that, the bone quality is very poor at sacrum region. This study investigated a possible solution to the pullout problem without the expandable screws' handicaps. Newly designed poly-ether-ether-ketone expandable shell and classical pedicle screws were biomechanically compared. Torsion test, pullout tests, fatigue tests, flexion/extension moment test, axial gripping capacity tests and torsional gripping capacity tests were conducted in accordance with ASTM F543, F1798 and F1717. Standard polyurethane foam and calf vertebrae were used as embedding medium for pullout tests. Classical pedicle screw pullout load on polyurethane foam was 564.8 N compared to the failure load for calf vertebrae's 1264 N. Under the same test conditions, expandable poly-ether-ether-ketone shell system's pullout loads from polyurethane foam and calf vertebrae were 1196.3 and 1890 N, respectively. The pullout values for expandable poly-ether-ether-ketone shell were 33% and 53% higher than classical pedicle screw on polyurethane foam and calf vertebrae, respectively. The expandable poly-ether-ether-ketone shell exhibited endurance on its 90% of yield load. Contrary to poly-ether-ether-ketone shell, classical pedicle screw exhibited endurance on 70% of its yield load. Expandable poly-ether-ether-ketone shell exhibited much higher pullout performance than classical pedicle screw. Fatigue performance of expandable poly-ether-ether-ketone shell is also higher than classical pedicle screw due to damping the micro motion capacity of the poly-ether-ether-ketone. Expandable poly-ether-ether-ketone shell is a safe alternative to all other expandable pedicle screw systems on mechanical perspective

  3. Functional characterization of Yersinia pestis aerobic glycerol metabolism.

    PubMed

    Willias, Stephan P; Chauhan, Sadhana; Motin, Vladimir L

    2014-11-01

    Yersinia pestis biovar Orientalis isolates have lost the capacity to ferment glycerol. Herein we provide experimental validation that a 93 bp in-frame deletion within the glpD gene encoding the glycerol-3-phosphate dehydrogenase present in all biovar Orientalis strains is sufficient to disrupt aerobic glycerol fermentation. Furthermore, the inability to ferment glycerol is often insured by a variety of additional mutations within the glpFKX operon which prevents glycerol internalization and conversion to glycerol-3-phosphate. The physiological impact of functional glpFKX in the presence of dysfunctional glpD was assessed. Results demonstrate no change in growth kinetics at 26 °C and 37 °C. Mutants deficient in glpD displayed decreased intracellular accumulation of glycerol-3-phosphate, a characterized inhibitor of cAMP receptor protein (CRP) activation. Since CRP is rigorously involved in global regulation Y. pestis virulence, we tested a possible influence of a single glpD mutation on virulence. Nonetheless, subcutaneous and intranasal murine challenge was not impacted by glycerol metabolism. As quantified by crystal violet assay, biofilm formation of the glpD-deficient KIM6+ mutant was mildly repressed; whereas, chromosomal restoration of glpD in CO92 resulted in a significant increase in biofilm formation. PMID:25220241

  4. Synthesis and applications of {sup 13}C glycerol

    SciTech Connect

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  5. Degradation rates of glycerol polyesters at acidic and basic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyesters prepared from glycerol with mixtures of adipic and citric acids were evaluated in the laboratory to estimate degradation rates over a range of pH conditions. These renewable polymers provide a market for glycerol that is generated during biodiesel production. The polyesters were prepared...

  6. The Acrylation of Glycerol: a Precursor to Functionalized Lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Didecanoylacryloylglycerol was synthesized from decanoic and acrylic acids and glycerol using K2O as catalyst. This reaction was carried out in hexane in a closed stainless steel reactor at 200°C for 5h. The reactants were added in a 1:3:4 glycerol:decanoic acid:acrylic acid molar ratio. The resu...

  7. Biodegradation of Glycerol Trinitrate and Pentaerythritol Tetranitrate by Agrobacterium radiobacter

    PubMed Central

    White, G. F.; Snape, J. R.; Nicklin, S.

    1996-01-01

    Bacteria capable of metabolizing highly explosive and vasodilatory glycerol trinitrate (GTN) were isolated under aerobic and nitrogen-limiting conditions from soil, river water, and activated sewage sludge. One of these strains (from sewage sludge) chosen for further study was identified as Agrobacterium radiobacter subgroup B. A combination of high-pressure liquid chromatography and nuclear magnetic resonance analyses of the culture medium during the growth of A. radiobacter on basal salts-glycerol-GTN medium showed the sequential conversion of GTN to glycerol dinitrates and glycerol mononitrates. Isomeric glycerol 1,2-dinitrate and glycerol 1,3-dinitrate were produced simultaneously and concomitantly with the disappearance of GTN, with significant regioselectivity for the production of the 1,3-dinitrate. Dinitrates were further degraded to glycerol 1- and 2-mononitrates, but mononitrates were not biodegraded. Cells were also capable of metabolizing pentaerythritol tetranitrate, probably to its trinitrate and dinitrate analogs. Extracts of broth-grown cells contained an enzyme which in the presence of added NADH converted GTN stoichiometrically to nitrite and the mixture of glycerol dinitrates. The specific activity of this enzyme was increased 160-fold by growth on GTN as the sole source of nitrogen. PMID:16535244

  8. Fabrication of a glycerol from CO2 reaction system, supplement

    NASA Technical Reports Server (NTRS)

    Weiss, A. H.

    1973-01-01

    The fabrication, installation, and testing of a glycerol hydrogenation and a CO2 hydrogenation - CH4 partial oxidation units are reported. The glycerol system proved to be operational while the CO2 system was installed but not bought on operational steam.

  9. Transketolase activity modulates glycerol-3-phosphate levels in Escherichia coli.

    PubMed

    Vimala, A; Harinarayanan, R

    2016-04-01

    Transketolase activity provides an important link between the metabolic pathways of glycolysis and pentose phosphate shunt and catalyzes inter-conversions between pentose phosphates and glycolytic intermediates. It is widely conserved in life forms. A genetic screen for suppression of the growth defect of Escherichia coli tktA tktB mutant in LB medium revealed two mutations, one that rendered the glpK expression constitutive and another that inactivated deoB. Characterizing these mutations aided in uncovering the role of ribose-5-P (a transketolase substrate) as an inhibitor of glycerol assimilation and de novo glycerol-3-P synthesis. Using lacZ fusions, we show that ribose-5-P enhances GlpR-mediated repression of the glpFKX operon and inhibits glycerol assimilation. Electrophoretic Mobility Shift Assay (EMSA) showed ribose-5-P made the DNA-GlpR complex less sensitive to the inducer glycerol-3-P. In addition to inhibition of glycerol assimilation, obstruction of ribose-5-P metabolism retards growth from glycerol-3-P limitation. Glucose helps to overcome this limitation through a mechanism involving catabolite repression. To our knowledge, this report is the first to show ribose-5-P can modulate glycerol-3-P concentration in the cell by regulation of glycerol assimilation as well as its de novo synthesis. This regulation could be prevalent in other organisms. PMID:26691989

  10. THERMOPLASTIC STARCH-KRAFT LIGNIN-GLYCEROL BLENDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-kraft lignin-glycerol blends were extruded in a twin-screw extruder to produce non-brittle films. One week after extrusion, films with a mid-range composition of 52% starch, 20% lignin, and 28% glycerol showed a tensile strength at break of 2.8 MPa, Young's modulus of 48 MPa, and elongation ...

  11. Comparative fatty acid selectivity of lipases in esterification reactions with glycerol and diol analogues in organic media.

    PubMed

    Lee, C H; Parkin, K L

    2000-01-01

    Reaction selectivity of Pseudomonas cepacia, Rhizomucor miehei, and Candida antarctica B lipases was assessed in multicompetitive esterification reaction mixtures containing an homologous series of n-chain even carbon number fatty acid (FA; C4-C18) substrates and a single alcohol cosubstrate (glycerol, 1,2-propanediol (1,2-PD), or 1, 3-propanediol (1,3-PD)) in tert-butyl methyl ether at water activity of 0.69 or 0.90 and a reaction temperature of 35 degrees C. For P. cepacia lipase, the ordinal patterns of FA selectivities observed were, with glycerol, C8 > C10, C6, C16 > other FA; with 1,2-PD and 1, 3-PD, C16 > C8 > C14 > other FA. For R. miehei lipase, the ordinal patterns of FA selectivities observed were, with glycerol, C8 > C12 > C10, C14 > other FA; with 1,2-PD and 1,3-PD, C8 > C12 > other FA. For C. antarctica B lipase, the ordinal patterns of FA selectivities observed were, with glycerol, C8 > C10, C6, C12 > other FA; with 1, 2-PD, C8 > C10, C6 > other FA; and with 1,3-PD, C8 > C10 > C6 > other FA. The differences in selectivity among FA ranged up to 16-fold, depending upon the lipase and alcohol cosubstrate used. These findings represent intrinsic and substrate-modulated features of FA selectivities that are of particular relevance to the use of lipases for acylglycerol synthesis reactions. PMID:10835238

  12. Alkylation of isobutane with light olefins: Yields of alkylates for different olefins

    SciTech Connect

    Albright, L.F.; Kranz, K.E.; Masters, K.R.

    1993-12-01

    For alkylation of isobutane with C{sub 3}-C{sub 5} olefins using sulfuric acid as the catalyst, the yields of alkylates with different olefins are compared as the operating conditions are changed. The results of recent pilot plant experiments with propylene, C{sub 4} olefins, and C{sub 5} olefins permit such comparisons. The yields expressed as weight of alkylate produced per 100 wt of olefin consumed varied from about 201:100 to 220:100. Weight ratios of the isobutane consumed per olefin consumed vary from about 101:100 to 120:100. differences of yield values are explained by the changes in the overall chemistry. The procedure employed to calculate yields with good accuracy is based on the analysis of the alkylate and the amount of conjunct polymers produced. Based on literature data, yields are also reported for alkylations using HF as the catalyst.

  13. Leishmania Dihydroxyacetonephosphate Acyltransferase LmDAT is Important for Ether Lipid Biosynthesis but not for the Integrity of Detergent Resistant Membranes

    PubMed Central

    Zufferey, Rachel; Al-Ani, Gada K.; Dunlap, Kara

    2009-01-01

    Glycerolipid biosynthesis in Leishmania initiates with the acylation of glycerol-3-phosphate by a single glycerol-3-phosphate acyltransferase, LmGAT, or of dihydroxyacetonephosphate by a dihydroxyacetonephosphate acyltransferase, LmDAT. We previously reported that acylation of the precursor dihydroxyacetonephosphate rather than glycerol-3-phosphate is the physiologically relevant pathway for Leishmania parasites. We demonstrated that LmDAT is important for normal growth, survival during the stationary phase, and for virulence. Here, we assessed the role of LmDAT in glycerolipid metabolism and metacyclogenesis. LmDAT was found to be implicated in the biosynthesis of ether glycerolipids, including the ether-lipid derived virulence factor lipophosphoglycan and glycosylphosphatidylinositol-anchored proteins. The null mutant produced longer lipophosphoglycan molecules that were not released in the medium, and augmented levels of glycosylphosphatidylinositol-anchored proteins. In addition, the integrity of detergent resistant membranes was not affected by the absence of the LmDAT gene. Further, our genetic analyses strongly suggest that LmDAT was colethal with the glycerol-3-phosphate acyltransferase encoding gene LmGAT, implying that Leishmania expresses only two acyltransferases that initiate the biosynthesis of its cellular glycerolipids. Last, despite the fact that LmDAT is important for virulence the null mutant still exhibited the typical characteristics of metacyclics. PMID:19720088

  14. Guanidinium-Rich, Glycerol-Derived Oligocarbonates: A New Class of Cell-Penetrating Molecular Transporters That Complex, Deliver, and Release siRNA

    PubMed Central

    Wender, Paul A.; Huttner, Melanie A.; Staveness, Daryl; Vargas, Jessica R.; Xu, Adele F.

    2015-01-01

    A highly versatile and step-economical route to a new class of guanidinium-rich molecular transporters and evaluation of their ability to complex, deliver, and release siRNA are described. These new drug/probe delivery systems are prepared in only two steps, irrespective of length or composition, using an organocatalytic ring-opening co-oligomerization of glycerol-derived cyclic carbonate monomers incorporating either protected guanidine or lipid side chains. The resultant amphipathic co-oligomers are highly effective vehicles for siRNA delivery, providing an excellent level of target protein suppression (>85%). These new oligocarbonates are nontoxic at levels required for cell penetration and can be tuned for particle size. Relative to the previously reported methyl(trimethylene)carbonate (MTC) scaffold, the ether linkage at C2 in the new transporters markedly enhances the stability of the siRNA/co-oligomer complexes. Both hybrid co-oligomers, containing a mixture of glycerol- and MTC-derived monomers, and co-oligomers containing only glycerol monomers are found to provide tunable control over siRNA complex stability. On the basis of a glycerol and CO2 backbone, these new co-oligomers represent a rapidly tunable and biocompatible siRNA delivery system that is highly effective in suppressing target protein synthesis. PMID:25588140

  15. Guanidinium-rich, glycerol-derived oligocarbonates: a new class of cell-penetrating molecular transporters that complex, deliver, and release siRNA.

    PubMed

    Wender, Paul A; Huttner, Melanie A; Staveness, Daryl; Vargas, Jessica R; Xu, Adele F

    2015-03-01

    A highly versatile and step-economical route to a new class of guanidinium-rich molecular transporters and evaluation of their ability to complex, deliver, and release siRNA are described. These new drug/probe delivery systems are prepared in only two steps, irrespective of length or composition, using an organocatalytic ring-opening co-oligomerization of glycerol-derived cyclic carbonate monomers incorporating either protected guanidine or lipid side chains. The resultant amphipathic co-oligomers are highly effective vehicles for siRNA delivery, providing an excellent level of target protein suppression (>85%). These new oligocarbonates are nontoxic at levels required for cell penetration and can be tuned for particle size. Relative to the previously reported methyl(trimethylene)carbonate (MTC) scaffold, the ether linkage at C2 in the new transporters markedly enhances the stability of the siRNA/co-oligomer complexes. Both hybrid co-oligomers, containing a mixture of glycerol- and MTC-derived monomers, and co-oligomers containing only glycerol monomers are found to provide tunable control over siRNA complex stability. On the basis of a glycerol and CO2 backbone, these new co-oligomers represent a rapidly tunable and biocompatible siRNA delivery system that is highly effective in suppressing target protein synthesis. PMID:25588140

  16. Liquid Densities of Fluorinated Ethers

    NASA Astrophysics Data System (ADS)

    Nakazawa, Noriaki; Sako, Takeshi; Nakane, Takashi; Sekiya, Akira; Kawamura, Mitsutaka; Sato, Masahito; Mochizuki, Yuji; Takada, Naoto; Yasumoto, Masahiko

    The liquid densities of thirteen fluorinated ethers which are expected as promising candidates of CFC alternatives were measured at temperatures from 278 K to 323 K and atmospheric pressure. The fluorinated ethers used in this study are 1-difluoromethoxy-1,1, 2- trifluoroethane, 1-methoxy-1, 1,2,2-tetrafluoroethane, 1-methoxy-2,2 ,3 ,3- tetrafluoropropane, 1-methoxy-1-trifluoromethy1-2,2 ,2- trifluoroethane, 1-methoxy-1,1,2,2, 3-hexafluoropropane,1-difluoromethoxy-2,2, 3, 3 -tetrafluoropropane, 1-methoxy-heptafluoropropane,1-difluoromethoxy-2, 2, 3, 3, 3-pentafluoropropane, 1- (2, 2, 2-trifruoroethoxy) -1, 1, 2,2-tetrafluoroethane, 1-pentafluoroethoxy-1, 1, 2, 2-tetrafluoroethane,2-trifluoromethoxy-1, 1, 1,2-tetrafluorobutane, 1-proxynonafluorobutane, and 1-ethoxy-undecafluoropentane. The liquid density has been measured by the vibrating tube densitometer (ANTON PARR, DMA 602) within an error of 0.07%. The liquid densities decrease monotonically with increase of temperature.

  17. Glycerol, an underestimated flavor precursor in the Maillard reaction.

    PubMed

    Smarrito-Menozzi, Candice; Matthey-Doret, Walter; Devaud-Goumoens, Stéphanie; Viton, Florian

    2013-10-30

    The objective of the present work was to investigate in depth the role of glycerol in Maillard reactions and its potential to act as an active flavor precursor. Reactions using isotopically labeled compounds (various reducing sugars, proline, and glycerol) unambiguously demonstrated that, in addition to its role of solvent, glycerol actively contributes to the formation of proline-specific compounds in Maillard model systems. Additionally, rhamnose and fucose/proline/glycerol systems generated the 2-propionyl-1(3),4,5,6-tetrahydropyridines, known for their roasty, popcorn aroma. Their formation from such systems is unprecedented. The results presented here have direct implications for flavor generation during thermal processing of foods containing glycerol, which is a ubiquitous food ingredient and an underestimated flavor precursor. PMID:23373461

  18. Microbial conversion of glycerol to 1,3-propanediol

    SciTech Connect

    Zeng, A.P.; Biebl, H.; Deckwer, W.D.

    1996-10-01

    Glycerol is a byproduct from the soap and detergent industry and possibly from future biodiesel plants. The conversion of glycerol to 1,3-propanediol (PD) is of industrial interest due to the potential use of PD for the synthesis of polyesters. We have been studying the microbial conversion of glycerol to PD with work ranging from strain isolation, medium optimization, pathway analysis, product formation kinetics and growth modeling, downstream processing and reactor scale-up (up to 2000 1). PD yields of nearly 100% of the theoretical maximum (0.72 mol/mol glycerol) and final product concentrations of about 65 g/l were achieved with both Klebsiella pneumoniae and Clostridium butyricum. In addition to summarizing our experimental results the advances of bioconversion of glycerol will be reviewed in this presentation, with emphasis on discussing further research and development needs in this area. Results of process engineering and cost analysis will also be presented.

  19. 3-O-Alkyl-2,3-dehydrosilibinins: Two synthetic approaches and in vitro effects toward prostate cancer cells.

    PubMed

    Zhang, Sheng; Vue, Bao; Huang, Michael; Zhang, Xiaojie; Lee, Timmy; Chen, Guanglin; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong

    2016-07-15

    Eight 3-O-alkyl-2,3-dehydrosilibinins have been synthesized from commercially available silibinin through two synthetic approaches. A one-pot reaction, starting with aerobic oxidation of silibinin followed by direct alkylation of the phenolic hydroxyl group in the subsequent 2,3-dehydrosilibinin, furnishes the desired derivatives in 11-16% yields. The three-step procedure employing benzyl ether to protect 7-OH in silibinin generates the desired derivatives in 30-46% overall yields. The antiproliferative activity of the 2,3-dehydrosilibinin derivatives against both androgen-sensitive and androgen-insensitive prostate cancer cells have been assessed using a WST-1 cell proliferation assay. All derivatives exhibited greater antiproliferative potency than silibinin, with 2,3-dehydrosilibinins each possessing a three- to five-carbon linear alkyl group to 3-OH (IC50 values in a range of 1.71-3.06μM against PC-3 and LNCaP cells) as the optimal derivatives. The optimal potency was reached with three- to five-carbon alkyl groups. Our findings suggest that 3-O-propyl-2,3-dehydrosilibinin effectively inhibits the growth of PC-3 prostate cancer cells by arresting cell cycle in the G0/G1 phase, but not by activating PC-3 cell apoptosis. PMID:27261177

  20. Production of alkyl-aromatics from light oxygenates over zeolite catalysts for bio-oil refining

    NASA Astrophysics Data System (ADS)

    Hoang, Trung Q.

    Upgrading of light oxygenates derived from biomass conversion, such as propanal and glycerol, to more valuable aromatics for biofuels has been demonstrated on zeolite catalysts. Aromatics with a high ratio of C 9/(C8+C7) and little benzene are produced at much higher yield from oxygenates than from olefins at mild conditions over HZSM-5. It is proposed that C9 aromatics are predominantly produced via acid-catalyzed aldol condensation. This reaction pathway is different from the pathway of propylene and other hydrocarbon aromatization that occurs via a hydrocarbon pool at more severe conditions with major aromatic products C6 and C7. In fact, investigation on the effect of crystallite size HZSM-5 has shown a higher ratio of C9/(C8+C 7) aromatics on small crystallite. This is due to faster removal of products from the shorter diffusion path length. As a result, a longer catalyst lifetime, less isomerization, and less cracking were observed on small crystallites. Beside crystallite size, pore geometry of zeolites was also found to significantly affect aromatic production for both conversion of propanal and glycerol. It is shown that the structure of the HZSM-22, with a one-dimensional and narrower channel system, restricts the formation of aromatics. In contrast, a higher yield of aromatic products is observed over HZSM-5 with its three-dimensional channel system. By increasing channel dimension and connectivity of the channels, increasing catalyst activity was also observed due to more accessible acid sites. It was also found that glycerol is highly active for dehydration on zeolites to produce high yields of acrolein (propenal), a high value chemical. To maximize aromatics from glycerol conversion, HZSM-5 and HY were found to be effective. A two-bed reactor of Pd/ZnO and HZSM-5 was used to first deoxygenate/hydrogenate glycerol over Pd/ZnO to intermediate oxygenates that can further aromatize on HZSM-5. The end results are very promising with significant improvement

  1. Measuring exposures to glycol ethers.

    PubMed

    Clapp, D E; Zaebst, D D; Herrick, R F

    1984-08-01

    In 1981, NIOSH began investigating the potential reproductive health effects resulting from exposures to a class of organic solvents known generically as glycol ethers (GE). This research was begun as a result of the NIOSH criteria document development program which revealed little data available on the health effects of glycol ether exposure. Toxicologic research was begun by NIOSH and other researchers which suggested substantial reproductive effects in animals. These animal data motivated a study of human exposures in the occupational setting. In 1981 and 1982 NIOSH conducted several walk-through surveys which included preliminary measurements of exposures in a variety of industries including painting trades, coal mining, production blending and distribution facilities, aircraft fueling, and communications equipment repair facilities. The human exposure data from these surveys is summarized in this paper with most results well below 1 parts per million (ppm) and only a few values approaching 10 ppm. Blood samples were collected at one site resulting in GE concentrations below the limit of detection. Exposures to airborne glycol ethers, in the industries investigated during the collection of this data, revealed several problems in reliably sampling GE at low concentrations. It became apparent, from the data and observations of work practices, that air monitoring alone provided an inadequate index of GE exposure. Further field studies of exposure to GE are anticipated, pending location of additional groups of exposed workers and development of more reliable methods for characterizing exposure, especially biological monitoring. PMID:6499824

  2. Toxic and osmotic effects of glycerol on human granulocytes

    SciTech Connect

    Armitage, W.J.; Mazur, P.

    1984-11-01

    Human granulocytes are damaged by exposure to concentrations of glycerol as low as 0.5 M. We therefore investigated the addition of glycerol to granulocytes and its subsequent dilution under various conditions to try to distinguish between toxic and harmful osmotic effects of glycerol. The lesion caused by glycerol at 0/sup 0/C was expressed as a loss of plasma membrane integrity (as visualized by fluorescein diacetate) only after incubation (greater than or equal to1 h) at 37/sup 0/C. This damage was not ameliorated when osmotic stress was lessened by reducing the rates of addition and dilution of glycerol to keep the computed cell volume within 80-170% of isotonic cell volume. However, when osmotic stress was reduced further by increasing the temperature of addition and dilution of glycerol from 0/sup 0/ to 22/sup 0/C, the tolerance of the cells to 1 M glycerol increased somewhat. Reducing exposure to glycerol to 3 min or less at 0/sup 0/C greatly increased survival, but this time was too short to allow glycerol to equilibrate intracellularly. Finally, the presence of extra impermeant solute (NaCl or sucrose) in the medium to reduce the equilibrium cell volume to 60% of isotonic cell volume enabled granulocytes to survive 30-min exposure to 1 M glycerol at 0/sup 0/C, but cells had to remain shrunken during the 37/sup 0/C incubation to prevent the loss of membrane integrity. Suspensions that contained damaged granulocytes formed aggregates when incubated at 37/sup 0/C, and these aggregates were responsible for a major fraction of the observed loss in viability.

  3. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  4. Formation of secondary organic aerosol and oligomers from the ozonolysis of enol ethers

    NASA Astrophysics Data System (ADS)

    Sadezky, A.; Chaimbault, P.; Mellouki, A.; Römpp, A.; Winterhalter, R.; Le Bras, G.; Moortgat, G. K.

    2006-06-01

    Formation of secondary organic aerosol has been observed in the gas phase ozonolysis of a series of enol ethers, among them several alkyl vinyl ethers (AVE, ROCH=CH2), such as ethyl, propyl, n-butyl, iso-butyl, t-butyl vinyl ether, and ethyl propenyl ether (EPE, C2H5OCH=CHCH3). The ozonolysis has been studied in a 570 l spherical glass reactor at atmospheric pressure (730 Torr) and temperature (296 K). Gas phase reaction products were investigated by in-situ FTIR spectroscopy, and secondary organic aerosol (SOA) formation was monitored by a scanning mobility particle sizer (SMPS). The chemical composition of the formed SOA was analysed by a hybrid mass spectrometer using electrospray ionization (ESI). The main stable gas phase reaction product is the respective alkyl formate ROC(O)H, formed with yields of 60 to 80%, implying that similar yields of the corresponding Criegee Intermediates (CI) CH2O2 for the AVE and CH3CHO2 for EPE are generated. Measured SOA yields are between 2 to 4% for all enol ethers. Furthermore, SOA formation is strongly reduced or suppressed by the presence of an excess of formic acid, which acts as an efficient CI scavenger. Chemical analysis of the formed SOA by ESI(+)/MS-TOF allows to identify oligomeric compounds in the mass range 200 to 800 u as its major constituents. Repetitive chain units are identified as CH2O2 (mass 46) for the AVE and C2H4O2 (mass 60) for EPE and thus have the same chemical compositions as the respective major Criegee Intermediates formed during ozonolysis of these ethers. The oligomeric structure and chain unit identity are confirmed by HPLC/ESI(+)/MS-TOF and ESI(+)/MS/MS-TOF experiments, whereby successive and systematic loss of a fragment with mass 46 for the AVE (and mass 60 for EPE) is observed. It is proposed that the oligomer has the following basic structure of an oligoperoxide, -[CH(R)-O-O]n-, where R=H for the AVE and R=CH3 for the EPE. Oligoperoxide formation is thus suggested to be another, so far

  5. Formation of secondary organic aerosol and oligomers from the ozonolysis of enol ethers

    NASA Astrophysics Data System (ADS)

    Sadezky, A.; Chaimbault, P.; Mellouki, A.; Römpp, A.; Winterhalter, R.; Le Bras, G.; Moortgat, G. K.

    2006-10-01

    Formation of secondary organic aerosol has been observed in the gas phase ozonolysis of a series of enol ethers, among them several alkyl vinyl ethers (AVE, ROCH=CH2), such as ethyl, propyl, n-butyl, iso-butyl, t-butyl vinyl ether, and ethyl propenyl ether (EPE, C2H5OCH=CHCH3). The ozonolysis has been studied in a 570 l spherical glass reactor at ambient pressure (730 Torr) and room temperature (296 K). Gas phase reaction products were investigated by in-situ FTIR spectroscopy, and secondary organic aerosol (SOA) formation was monitored by a scanning mobility particle sizer (SMPS). The chemical composition of the formed SOA was analysed by a hybrid mass spectrometer using electrospray ionization (ESI). The main stable gas phase reaction product is the respective alkyl formate ROC(O)H, formed with yields of 60 to 80%, implying that similar yields of the corresponding excited Criegee Intermediates (CI) CH2O2 for the AVE and CH3CHO2 for EPE are generated. Measured SOA yields are between 2 to 4% for all enol ethers. Furthermore, SOA formation is strongly reduced or suppressed by the presence of an excess of formic acid, which acts as an efficient CI scavenger. Chemical analysis of the formed SOA by ESI(+)/MS-TOF allows to identify oligomeric compounds in the mass range 200 to 800 u as its major constituents. Repetitive chain units are identified as CH2O2 (mass 46) for the AVE and C2H4O2 (mass 60) for EPE and thus have the same chemical compositions as the respective major Criegee Intermediates formed during ozonolysis of these ethers. The oligomeric structure and chain unit identity are confirmed by HPLC/ESI(+)/MS-TOF and ESI(+)/MS/MS-TOF experiments, whereby successive and systematic loss of a fragment with mass 46 for the AVE (and mass 60 for EPE) is observed. It is proposed that the oligomer has the following basic structure of an oligoperoxide, -[CH(R)-O-O]n-, where R=H for the AVE and R=CH3 for the EPE. Oligoperoxide formation is thus suggested to be another, so

  6. Feruloyl glycerol and 1,3-diferuloyl glycerol antioxidant behavior in phospholipid vesicles.

    PubMed

    Evans, Kervin O; Compton, David L; Laszlo, Joseph A; Appell, Michael

    2016-02-01

    Feruloyl-sn-glycerol (FG) and 1,3-diferuloyl-sn-glycerol (F2G), the by-product of biocatalytic transesterification soybean oil and ethyl ferulate, were examined for their behavior in phospholipid vesicles. Based on absorbance and fluorescence methods, FG and F2G both were found to partition into vesicles and incorporate well into 1,2-dioleoylphosphocholine (DOPC) vesicles. FG and F2G incorporation resulted in vesicles that were as or slightly more stable than the unloaded vesicles. FG and F2G both demonstrated the ability to maintain antioxidant properties within the lipid bilayer. Bilayer depth analysis was conducted using the parallax method and molecular modeling. PMID:26561732

  7. Renewable chemicals: dehydroxylation of glycerol and polyols.

    PubMed

    ten Dam, Jeroen; Hanefeld, Ulf

    2011-08-22

    The production of renewable chemicals is gaining attention over the past few years. The natural resources from which they can be derived in a sustainable way are most abundant in sugars, cellulose and hemicellulose. These highly functionalized molecules need to be de-functionalized in order to be feedstocks for the chemical industry. A fundamentally different approach to chemistry thus becomes necessary, since the traditionally employed oil-based chemicals normally lack functionality. This new chemical toolbox needs to be designed to guarantee the demands of future generations at a reasonable price. The surplus of functionality in sugars and glycerol consists of alcohol groups. To yield suitable renewable chemicals these natural products need to be defunctionalized by means of dehydroxylation. Here we review the possible approaches and evaluate them from a fundamental chemical aspect. PMID:21887771

  8. Renewable Chemicals: Dehydroxylation of Glycerol and Polyols

    PubMed Central

    ten Dam, Jeroen; Hanefeld, Ulf

    2011-01-01

    The production of renewable chemicals is gaining attention over the past few years. The natural resources from which they can be derived in a sustainable way are most abundant in sugars, cellulose and hemicellulose. These highly functionalized molecules need to be de-functionalized in order to be feedstocks for the chemical industry. A fundamentally different approach to chemistry thus becomes necessary, since the traditionally employed oil-based chemicals normally lack functionality. This new chemical toolbox needs to be designed to guarantee the demands of future generations at a reasonable price. The surplus of functionality in sugars and glycerol consists of alcohol groups. To yield suitable renewable chemicals these natural products need to be defunctionalized by means of dehydroxylation. Here we review the possible approaches and evaluate them from a fundamental chemical aspect. PMID:21887771

  9. Design and analysis of biorefineries based on raw glycerol: addressing the glycerol problem.

    PubMed

    Posada, John A; Rincón, Luis E; Cardona, Carlos A

    2012-05-01

    Glycerol as a low-cost by-product of the biodiesel industry can be considered a renewable building block for biorefineries. In this work, the conversion of raw glycerol to nine added-value products obtained by chemical (syn-gas, acrolein, and 1,2-propanediol) or bio-chemical (ethanol, 1,3-propanediol, d-lactic acid, succinic acid, propionic acid, and poly-3-hydroxybutyrate) routes were considered. The technological schemes for these synthesis routes were designed, simulated, and economically assessed using Aspen Plus and Aspen Icarus Process Evaluator, respectively. The techno-economic potential of a glycerol-based biorefinery system for the production of fuels, chemicals, and plastics was analyzed using the commercial Commercial Sale Price/Production Cost ratio criteria, under different production scenarios. More income can be earned from 1,3-propanediol and 1,2-propanediol production, while less income would be obtained from hydrogen and succinic acid. This analysis may be useful mainly for biodiesel producers since several profitable alternatives are presented and discussed. PMID:22349197

  10. A Base-Catalyzed, Domino Aldol/hetero-Diels-Alder Synthesis of Tricyclic Pyrano[3,4-c]chromenes in Glycerol.

    PubMed

    Parmar, Bhagyashri D; Sutariya, Tushar R; Brahmbhatt, Gaurangkumar C; Parmar, Narsidas J; Kant, Rajni; Gupta, Vivek K

    2016-06-17

    The domino aldol/hetero-Diels-Alder synthesis of some new tricyclic pyrano[3,4-c]chromene derivatives has been achieved successfully after assembling a variety of acyclic or cyclic monoketones with prenyl ether-tethered aldehydes in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene in glycerol at 120 °C. The hitherto unreported stereochemical outcome of this synthetic sequence was studied and established on the basis of single-crystal X-ray diffraction data and 2D NMR NOESY spectroscopy along with the isolation and characterization of the intermediate Aldol condensation product. PMID:27171909

  11. Crystalline Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    Series of imide/arylene ether block copolymers prepared by using arylene ether blocks to impart low melt viscosity, and imide blocks to provide high strength and other desirable mechanical properties. Work represents extension of LAR-14159 on imide/arylene ether copolymers in form of films, moldings, adhesives, and composite matrices. Copolymers potentially useful in variety of high-temperature aerospace and microelectronic applications.

  12. Aza crown ether compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Oing; McBreen, James

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.

  13. Aza crown ether compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.O.; McBreen, J.

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI{sup +} ion in alkali metal batteries. 3 figs.

  14. LaRC-ITPI/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Working, Dennis C.

    1991-01-01

    As part of an effort to develop high performance structural resins for aerospace applications, work has continued on block copolymers containing imide and arylene ether segments. The arylene ether block used in this study contains a bulky fluorene group in the polymer backbone while the imide block contains an arylene ketone segment similar to that in the arylene ether block and has been named LaRC-ITPI. A series of imide/arylene ether block and segmented copolymers were prepared and characterized. Films were prepared from these copolymers and mechanical properties were measured.

  15. Palladium-Catalyzed, Ring-Forming Aromatic C–H Alkylations with Unactivated Alkyl Halides

    PubMed Central

    Venning, Alexander R. O.; Bohan, Patrick T.; Alexanian, Erik J.

    2015-01-01

    A catalytic C–H alkylation using unactivated alkyl halides and a variety of arenes and heteroarenes is described. This ring-forming process is successful with a variety of unactivated primary and secondary alkyl halides, including those with β-hydrogens. In contrast to standard polar or radical cyclizations of aromatic systems, electronic activation of the substrate is not required. The mild, catalytic reaction conditions are highly functional group tolerant and facilitate access to a diverse range of synthetically and medicinally important carbocyclic and heterocyclic systems. PMID:25746442

  16. Glycerol dynamics in weight-losing cancer patients.

    PubMed

    Edén, E; Edström, S; Bennegárd, K; Lindmark, L; Lundholm, K

    1985-02-01

    This study was designed to show whether weight-losing cancer patients have an elevated glycerol turnover. Four groups of patients were examined: weight-losing cancer patients, weight-losing patients without cancer, cancer patients without weight loss, and weight-stable and well-nourished hospitalized control patients. Glycerol was infused intravenously at three different rates (200, 400, and 800 mumol/hr/kg body weight) after an overnight fast. This allowed measurement of clearance and plasma glycerol turnover. Weight-losing cancer patients (group 1) had an almost threefold higher glycerol turnover per kilogram of body weight compared with malnourished and well-nourished noncancer patients. However, both malnourished cancer and noncancer patients had an elevated glycerol turnover compared with well-nourished patients when glycerol turnover was related to whole body lipids. The results how that progressive clinical cancer is associated with an elevated plasma glycerol turnover, probably indicating an increased whole body lipolysis. This may explain the loss of body fat during the development of cancer cachexia. PMID:4038560

  17. Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases

    SciTech Connect

    He, Jiayue; Lu, Lu; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-03-01

    Catalytic pathways for the cleavage of ether bonds in benzyl phenyl ether (BPE) in liquid phase using Ni- and zeolite-based catalysts are explored. In the absence of catalysts, the C-O bond is selectively cleaved in water by hydrolysis, forming phenol and benzyl alcohol as intermediates, followed by alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at 523 K. Upon addition of HZSM-5, rates of hydrolysis and alkylation are markedly increased in relation to proton concentrations. In the presence of Ni/SiO2, the selective hydrogenolysis dominates for cleaving the Caliphatic-O bond. Catalyzed by the dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor route). In apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in the presence of Ni/SiO2 or Ni/HZSM-5, almost completely suppressing radical reactions. Density functional theory (DFT) calculations strongly support the proposed C-O bond cleavage mechanisms on BPE in aqueous and apolar phases. These calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. Finally, DFT calculations suggest that the radical reactions in non-polar solvents lead to primary benzyl and phenoxy radicals in undecane, which leads to heavier condensation products as long as metals are absent for providing dissociated hydrogen.

  18. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  19. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  20. Organocatalytic Aerobic Oxidation of Benzylic sp(3) C-H Bonds of Ethers and Alkylarenes Promoted by a Recyclable TEMPO Catalyst.

    PubMed

    Zhang, Zhiguang; Gao, Yuan; Liu, Yuan; Li, Jianjun; Xie, Hexin; Li, Hao; Wang, Wei

    2015-11-01

    An entirely metal-free catalyst system consisting of an easily prepared recyclable new TEMPO derived sulfonic salt catalyst, and mineral acids (NaNO2 and HCl) has been developed for selective aerobic oxidation of structurally diverse benzylic sp(3) C-H bonds of ethers and alkylarenes. The mild reaction conditions allow for the generation of synthetically and biologically valued isochromanones and xanthones from readily accessible alkyl aromatic precursors in good yields. PMID:26513695

  1. Ether-linked diglycerides inhibit vascular smooth muscle cell growth via decreased MAPK and PI3K/Akt signaling.

    PubMed

    Houck, Kristy L; Fox, Todd E; Sandirasegarane, Lakshman; Kester, Mark

    2008-10-01

    Diglycerides (DGs) are phospholipid-derived second messengers that regulate PKC-dependent signaling pathways. Distinct species of DGs are generated from inflammatory cytokines and growth factors. Growth factors increase diacyl- but not ether-linked DG species, whereas inflammatory cytokines predominately generate alkyl, acyl- and alkenyl, acyl-linked DG species in rat mesenchymal cells. These DG species have been shown to differentially regulate protein kinase C (PKC) isotypes. Ester-linked diacylglycerols activate PKC-epsilon and cellular proliferation in contrast to ether-linked DGs, which lead to growth arrest through the inactivation of PKC-epsilon. It is now hypothesized that ether-linked DGs inhibit mitogenesis through the inactivation of ERK and/or Akt signaling cascades. We demonstrate that cell-permeable ether-linked DGs reduce vascular smooth muscle cell growth by inhibiting platelet-derived growth factor-stimulated ERK in a PKC-epsilon-dependent manner. This inhibition is specific to the ERK pathway, since ether-linked DGs do not affect growth factor-induced activation of other family members of the MAPKs, including p38 MAPK and c-Jun NH(2)-terminal kinases. We also demonstrate that ether-linked DGs reduce prosurvival phosphatidylinositol 3-kinase (PI3K)/Akt signaling, independent of PKC-epsilon, by diminishing an interaction between the subunits of PI3K and not by affecting protein phosphatase 2A or lipid (phosphatase and tensin homologue deleted in chromosome 10) phosphatases. Taken together, our studies identify ether-linked DGs as potential adjuvant therapies to limit vascular smooth muscle migration and mitogenesis in atherosclerotic and restenotic models. PMID:18723771

  2. Glycerol uptake is by passive diffusion in the heart but by facilitated transport in RBCs at high glycerol levels in cold acclimated rainbow smelt (Osmerus mordax).

    PubMed

    Clow, Kathy A; Driedzic, William R

    2012-04-15

    Rainbow smelt (Osmerus mordax) is a small fish that accumulates glycerol at low winter seawater temperatures. In laboratory-held fish, glycerol concentration typically reaches 225 mM in plasma and in all cells. Glycerol uptake by the heart and red blood cells (RBCs) was assessed by tracking [(14)C(U)]glycerol into the acid-soluble pool. In fish acclimated to 9-10°C a decrease in perfusion/incubation temperature from 8 to 1°C resulted in a decrease in glycerol uptake with a Q(10) of 3.2 in heart and 2.4 in RBCs. Acclimation to ∼1.5°C did not result in an adaptive enhancement of glycerol uptake as rates were unchanged in heart and RBCs. Glycerol uptake at 1°C was by passive diffusion in heart as evidenced by a linear relationship between glycerol uptake and extracellular glycerol concentration and a lack of inhibition by phloretin. In contrast, in RBCs, glycerol uptake with respect to glycerol concentration showed two linear relationships with a transition point around 50 mM extracellular glycerol. The slope of the second phase was much steeper and eliminated with the inclusion of phloretin. In RBCs from Atlantic salmon (Salmo salar), a related species that does not accumulate glycerol, glycerol uptake showed only a single linear curve and was not inhibited by phloretin. The data imply a strong facilitated component to glycerol uptake in rainbow smelt RBCs at high glycerol concentrations. We propose this is related to cyclic changes in RBC glycerol content involving a loss of glycerol at the gill and a reaccumulation during passage through the liver. PMID:22319051

  3. Flow-Induced Crystallization of Poly(ether ether ketone)

    NASA Astrophysics Data System (ADS)

    Nazari, Behzad; Rhoades, Alicyn; Colby, Ralph

    The effects of an interval of shear above the melting temperature Tm on subsequent isothermal crystallization below Tm is reported for the premier engineering thermoplastic, poly(ether ether ketone) (PEEK). The effect of shear on the crystallization rate of PEEK is investigated by means of rheological techniques and differential scanning calorimetry (DSC) under a protocol of imposing shear in a rotational cone and plate rheometer and monitoring crystallization after quenching. The rate of crystallization at 320 °C was not affected by shear for shear rates <7 s-1 at 350 °C, whereas intervals of adequate shear at higher shear rates prior to the quench to 320 °C accelerated crystallization significantly. As the duration of the interval of shear above 7 s-1 is increased, the crystallization time decreases but at each shear rate eventually saturates once the applied specific work exceeds ~120 MPa. The annealing of the flow-induced precursors was also investigated. The nuclei were fairly persistent at temperatures close to 350 °C, however very unstable at temperatures above 375 °C. This suggests that the nanostructures formed under shear might be akin to crystalline lamellae of greater thickness, compared to quiescently crystallized lamellae.

  4. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  5. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  6. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  7. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  8. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  9. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  10. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  11. 40 CFR 721.555 - Alkyl amino nitriles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Substances § 721.555 Alkyl amino nitriles (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl amino nitriles (PMNs P-96... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino nitriles (generic)....

  12. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  13. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  14. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  15. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  16. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  17. 40 CFR 721.555 - Alkyl amino nitriles (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Substances § 721.555 Alkyl amino nitriles (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl amino nitriles (PMNs P-96... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl amino nitriles (generic)....

  18. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    EPA Science Inventory

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  19. 40 CFR 721.1852 - Di-alkyl borane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Di-alkyl borane (generic). 721.1852... Substances § 721.1852 Di-alkyl borane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as di-alkyl borane (PMN P-00-1087) is...

  20. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  1. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  2. 40 CFR 721.9720 - Disubstituted alkyl triazines (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted alkyl triazines (generic... Specific Chemical Substances § 721.9720 Disubstituted alkyl triazines (generic name). (a) Chemical... as disubstituted alkyl triazines (PMNs P-85-932 and P-85-933) are subject to reporting under...

  3. 40 CFR 721.10506 - Alkylated phenols (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkylated phenols (generic). 721.10506... Substances § 721.10506 Alkylated phenols (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkylated phenols (PMNs...

  4. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  5. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  6. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  7. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  8. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  9. 40 CFR 721.10506 - Alkylated phenols (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkylated phenols (generic). 721.10506... Substances § 721.10506 Alkylated phenols (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkylated phenols (PMNs...

  10. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  11. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  12. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  13. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  14. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  15. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  16. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  17. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  18. 40 CFR 721.2825 - Alkyl ester (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  19. 40 CFR 721.2825 - Alkyl ester (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  20. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  1. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  2. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  3. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  4. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  5. Synthesis and characterization of chitosan alkyl urea.

    PubMed

    Wang, Jing; Jiang, Ji-Zhou; Chen, Wei; Bai, Zheng-Wu

    2016-07-10

    Chitosan is a versatile material employed for various purposes in many fields including the development of chiral stationary phases for enantioseparation. Chitosan alkyl urea is a kind of intermediate used to prepare enantioseparation materials. In order to synthesize the intermediates, in the present work, a new way to prepare chitosan alkyl urea has been established: chitosan was first reacted with methyl chloroformate yielding N-methoxyformylated chitosan, which was then converted to chitosan alkyl urea through amine-ester exchange reaction. With a large excess of methyl chloroformate and primary amine of low stereohindrance, the amino group in chitosan could be almost completely converted to ureido group. The as-prepared chitosan alkyl urea derivatives were characterized by IR, (1)H NMR, (13)C NMR,(1)H-(1)H COSY and (1)H-(13)C HSQC NMR spectra. The chemical shifts of hydrogen and carbon atoms of glucose unit were assigned. It was found that the degree of substitution was obviously lower if cyclopropyl amine, aniline, tert-butyl amine and diethyl amine were used as reactants for the amine-ester exchange reaction. The reason was explained with the aid of theoretical calculations. PMID:27106154

  6. Poly(ethyleneoxide) functionalization through alkylation

    SciTech Connect

    Sivanandan, Kulandaivelu; Eitouni, Hany Basam; Li, Yan; Pratt, Russell Clayton

    2015-04-21

    A new and efficient method of functionalizing high molecular weight polymers through alkylation using a metal amide base is described. This novel procedure can also be used to synthesize polymer-based macro-initiators containing radical initiating groups at the chain-ends for synthesis of block copolymers.

  7. Separate olefin processing in sulfuric acid alkylation

    SciTech Connect

    Imhoff, S.A.; Graves, D.C.

    1995-09-01

    This paper will discuss the effects of alkylating propylene, butylenes and amylenes together and suggest alternative processing schemes which will minimize the negative synergies, improve octane and/or minimize acid consumption. The first option will show the impact of segregating the propylene and amylenes. In the second option, the benefit of alkylating the individual olefins at their optimal acid strengths will be presented. Additionally, each olefin`s optimal reaction conditions will be examined. Unfortunately, many refiners may not have the existing flexibility to take advantage of separate olefin processing. First, the majority of the propylene, butylenes and amylenes must be separate upon entry to the alkylation unit. If the olefins cannot be segregated upstream, separate olefin processing will not be as beneficial. If this is the case, then the benefits of separate olefin processing will have to be weighed versus the capital and energy costs required to separate them. In addition, small units may not have sufficient numbers of Contactors and settlers to achieve adequate segregation. Later in this paper, the modifications required in the alkylation unit for separate olefin processing will be discussed.

  8. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions

    PubMed Central

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source. PMID:25880041

  9. Glycerol administration before endurance exercise: metabolism, urinary glycerol excretion and effects on doping-relevant blood parameters.

    PubMed

    Koehler, Karsten; Braun, Hans; de Marees, Markus; Geyer, Hans; Thevis, Mario; Mester, Joachim; Schaenzer, Wilhelm

    2014-03-01

    Glycerol is prohibited as a masking agent by the World Anti-Doping Agency and a urinary threshold has recently been recommended. However, little is known about urinary glycerol excretion after exercise, when (1) exogenous glycerol is metabolized increasingly and (2) endogenous glycerol levels are elevated. The purpose of the placebo-controlled cross-over study was to determine the effects of pre-exercise glycerol administration on glycerol metabolism, urinary excretion, and selected blood parameters. After administration of glycerol (G; 1.0 g/kg body weight (BW) + 25 ml fluid/kg BW) or placebo (P; 25 ml fluid/kg), 14 cyclists exercised 90 min at 60% VO2max . Samples were taken at 0 h (before administration), 2.5 h (before exercise), 4 h (after exercise) and 6.5 h and additional urine samples were collected until 24 h. Exercise increased endogenous plasma glycerol (0.51 ± 0.21 mmol/l) but peak concentrations were much higher in G (2.5 h: 15.6 ± 7.8 mmol/l). Urinary glycerol increased rapidly (58,428 ± 71,084 µg/ml after 2.5 h) and was significantly higher than in P until 13.6 ± 0.9 h (p < 0.01). In comparison with placebo administration, G caused significantly greater changes in plasma volume and haemoglobin concentrations after 2.5 h. BW and urine production were significantly different between P and G after 2.5 h and post-exercise. Despite exercise-induced increases in endogenous glycerol in the control group, urinary excretion remained well below the previously recommended threshold. In addition, exercise-related glycerol degradation did not appear to negatively affect the detection of exogenously administered glycerol. PMID:23359436

  10. N-Alkylated dinitrones from isosorbide as cross-linkers for unsaturated bio-based polyesters.

    PubMed

    Goerz, Oliver; Ritter, Helmut

    2014-01-01

    Isosorbide was esterified with acryloyl chloride and crotonic acid yielding isosorbide diacrylate (9a) and isosorbide dicrotonate (9b), which were reacted with benzaldehyde oxime in the presence of zinc(II) iodide and boron triflouride etherate as catalysts to obtain N-alkylated dinitrones 10a/b. Poly(isosorbide itaconite -co- succinate) 13 as a bio-based unsaturated polyester was cross-linked by a 1,3-dipolar cycloaddition with the received dinitrones 10a/b. The 1,3-dipolar cycloaddition led to a strong change of the mechanical properties which were investigated by rheological measurements. Nitrones derived from methyl acrylate (3a) and methyl crotonate (3b) were used as model systems and reacted with dimethyl itaconate to further characterize the 1,3-dipolaric cycloaddition. PMID:24991239

  11. N-Alkylated dinitrones from isosorbide as cross-linkers for unsaturated bio-based polyesters

    PubMed Central

    Goerz, Oliver

    2014-01-01

    Summary Isosorbide was esterified with acryloyl chloride and crotonic acid yielding isosorbide diacrylate (9a) and isosorbide dicrotonate (9b), which were reacted with benzaldehyde oxime in the presence of zinc(II) iodide and boron triflouride etherate as catalysts to obtain N-alkylated dinitrones 10a/b. Poly(isosorbide itaconite -co- succinate) 13 as a bio-based unsaturated polyester was cross-linked by a 1,3-dipolar cycloaddition with the received dinitrones 10a/b. The 1,3-dipolar cycloaddition led to a strong change of the mechanical properties which were investigated by rheological measurements. Nitrones derived from methyl acrylate (3a) and methyl crotonate (3b) were used as model systems and reacted with dimethyl itaconate to further characterize the 1,3-dipolaric cycloaddition. PMID:24991239

  12. Recent Advances in Glycerol Polymers: Chemistry and Biomedical Applications

    PubMed Central

    Zhang, Heng

    2015-01-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, we describe the underlying chemistry of glycerol, which provides access to a range of monomers for subsequent polymerizations. We then review the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth. Next, we describe several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity. Fourth, we describe the growing market opportunity for the use of polymers in medicine. Finally we conclude and summarize the findings, as well as discuss potential opportunities for continued research efforts. PMID:25308354

  13. Diffusion-viscosity decoupling in supercooled glycerol aqueous solutions.

    PubMed

    Trejo González, José A; Longinotti, M Paula; Corti, Horacio R

    2015-01-01

    The diffusion of ferrocene methanol in supercooled glycerol-water mixtures has been measured over a wide viscosity range, which allowed analyzing the composition dependence of the Stokes-Einstein breakdown (diffusion-viscosity decoupling). The observed decoupling exhibits a common behavior for all studied compositions (glycerol mass fractions between 0.7 and 0.9), determined by the reduced temperature (T/Tg) of the mixtures. This result differs from that reported previously for the diffusion of glycerol in its aqueous solutions, where the reduced temperature for the decoupling decreases with increasing water content. We conclude that the contradictory results are only apparent, and they can be explained by the use of inconsistent extrapolated values of the viscosity of the glycerol-water mixtures in the supercooled region. PMID:25478790

  14. Dehydration of glycerol over niobia-supported silicotungstic acid catalysts.

    PubMed

    Lee, Young Yi; Ok, Hye Jeong; Moon, Dong Ju; Kim, Jong Ho; Park, Nam Cook; Kim, Young Chul

    2013-01-01

    Liquid-phase dehydration of glycerol to acrolein over nanosized niobia-supported silicotungstic acid catalysts was performed to investigate the effect of the silicotungstic acid loading on the catalytic performance of the catalysts. The catalysts were prepared by following an impregnation method with different HSiW loadings in the range of 10-50 wt%. The prepared catalysts were characterized by N2 physisorption, XRD, FT-IR, TPD of ammonia, and TGA. Dehydration of glycerol was conducted in an autoclave reactor under the conditions of controlled reaction temperatures under corresponding pressure. Increasing HSiW loading rapidly increased the acidity of HSiW/Nb205 catalyst and rate of glycerol conversion, but acrolein selectivity decreased due to enhanced deactivation of the catalyst by carbon deposit. Consequently, it was confirmed that catalytic activity for the dehydration of glycerol to acrolein was dependant on the acidity of catalyst and can be controlled by HSiW loading. PMID:23646735

  15. Renewable hydrogen and carbon nanotubes from biodiesel waste glycerol

    PubMed Central

    Wu, Chunfei; Wang, Zichun; Williams, Paul T.; Huang, Jun

    2013-01-01

    In this report, we introduce a novel and commercially viable method to recover renewable hydrogen and carbon nanotubes from waste glycerol produced in the biodiesel process. Gas-phase catalytic reforming converts glycerol to clean hydrogen fuel and by replacing the problematical coke formed on the catalyst with high value carbon nanotubes, added value can be realised. Additional benefits of around 2.8 kg CNTs from the reforming of 1 tonne of glycerol and the production of 500 Nm3 H2 could have a considerable impact on the economics of glycerol utilization. Thereby, the contribution of this research will be a significant step forward in solving a current major technical and economic challenge faced by the biofuels industry. PMID:24067754

  16. Renewable hydrogen and carbon nanotubes from biodiesel waste glycerol.

    PubMed

    Wu, Chunfei; Wang, Zichun; Williams, Paul T; Huang, Jun

    2013-01-01

    In this report, we introduce a novel and commercially viable method to recover renewable hydrogen and carbon nanotubes from waste glycerol produced in the biodiesel process. Gas-phase catalytic reforming converts glycerol to clean hydrogen fuel and by replacing the problematical coke formed on the catalyst with high value carbon nanotubes, added value can be realised. Additional benefits of around 2.8 kg CNTs from the reforming of 1 tonne of glycerol and the production of 500 Nm(3) H2 could have a considerable impact on the economics of glycerol utilization. Thereby, the contribution of this research will be a significant step forward in solving a current major technical and economic challenge faced by the biofuels industry. PMID:24067754

  17. Plasma reforming of glycerol for synthesis gas production.

    PubMed

    Zhu, Xinli; Hoang, Trung; Lobban, Lance L; Mallinson, Richard G

    2009-05-28

    Glycerol can be effectively converted to synthesis gas (selectivity higher than 80%) with small amounts of water or no water using plasmas at low temperature and atmospheric pressure, without external heating. PMID:19436906

  18. Physicochemical characterization of oil palm mesocarp fibre treated with glycerol

    NASA Astrophysics Data System (ADS)

    Nor Hamizah M., A.; Roila, A.; Rahimi M., Y.

    2015-09-01

    Lignocellulose has been identified as another source for conversion into value added products. In the present work, physicochemical features from the oil palm mesocarp fibre treated by using pure glycerol with 2% (w/w) NaOH catalyst and crude glycerol have been studied. Treatment was conducted at temperatures 150 °C for 60 min. Fibre treated by crude glycerol resulted in high percentages of holocellulose and lower content of insoluble lignin. These results suggest that crude glycerol can be used as an alternative solvent for pretreatment process. The characterization treated fibre by means of FTIR and TGA has shown significant differences compared to untreated fibre. It was revealed that treated fibre successful eliminated hemicellulose and reduce of lignin content.

  19. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.108 Ethyl ether. (a) Odor. Characteristic odor....

  20. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT....108 Ethyl ether. (a) Odor. Characteristic odor. (b) Specific gravity at 15.56 °/15.56 °C. Not...

  1. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.108 Ethyl ether. (a) Odor. Characteristic odor....

  2. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.108 Ethyl ether. (a) Odor. Characteristic odor....

  3. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.108 Ethyl ether. (a) Odor. Characteristic odor....

  4. Purification of aqueous cellulose ethers

    SciTech Connect

    Bartscherer, K.A.; de Pablo, J.J.; Bonnin, M.C.; Prausnitz, J.M.

    1990-07-01

    Manufacture of cellulose ethers usually involves high amounts of salt by-products. For application of the product, salt must be removed. In this work, we have studied the injection of high-pressure CO{sub 2} into an aqueous polymer-salt solution; we find that upon addition of isopropanol in addition to CO{sub 2}, the solution separates into two phases. One phase is rich in polymer and water, and the other phase contains mostly isopropanol, water and CO{sub 2}. The salt distributes between the two phases, thereby offering interesting possibilities for development of a new purification process for water-soluble polymers. This work presents experimental phase-equilibrium data for hydroxyethyl cellulose and sodium carboxymethyl cellulose with sodium acetate and potassium sulfate, respectively, in the region 40{degree}C and 30 to 80 bar. Based on these data, we suggest a process for the manufacture and purification of water-soluble cellulose ethers. 15 refs., 14 figs., 9 tabs.

  5. Bacterial Utilization of Ether Glycols

    PubMed Central

    Fincher, Edward L.; Payne, W. J.

    1962-01-01

    A soil bacterium capable of using oligo- and polyethylene glycols and ether alcohols as sole sources of carbon for aerobic growth was isolated. The effects of substituent groups added to the ether bonds on the acceptability of the compounds as substrates were studied. Mechanisms for the incorporation of two-carbon compounds were demonstrated by the observation that acetate, glyoxylate, ethylene glycol, and a number of the tricarboxylic acid cycle intermediates served as growth substrates in minimal media. The rate of oxidation of the short-chained ethylene glycols by adapted resting cells varied directly with increasing numbers of two-carbon units in the chains from one to four. The amount of oxygen consumed per carbon atom of oligo- and polyethylene glycols was 100% of theoretical, but only 67% of theoretical for ethylene glycol. Resting cells oxidized oligo- and polyethylene glycols with 2 to 600 two-carbon units in the chains. Longer chained polyethylene glycols (up to 6,000) were oxidized at a very slow rate by these cells. Dehydrogenation of triethylene glycol by adapted cells was observed, coupling the reaction with methylene blue reduction. PMID:13945208

  6. How Does the Ionic Liquid Organizational Landscape Change when Nonpolar Cationic Alkyl Groups Are Replaced by Polar Isoelectronic Diethers?

    SciTech Connect

    Kashyap, Hemant K.; Santos, Cherry S.; Daly, Ryan P.; Hettige, Jeevapani J.; Murthy, N. Sanjeeva; Shirota, Hideaki; Edward W. Castner Jr.; Margulis, Claudio J.

    2012-12-21

    The X-ray scattering experiments and molecular dynamics simulations have been performed to investigate the structure of four room temperature ionic liquids (ILs) comprising the bis(trifluoromethylsulfonyl)amide (NTf2) anion paired with the triethyloctylammonium (N2228+) and triethyloctylphosphonium (P2228+) cations and their isoelectronic diether analogs, the (2-ethoxyethoxy)ethyltriethylammonium (N222(2O2O2)+) and (2-ethoxyethoxy)ethyltriethylphosphonium (P222(2O2O2)+) cations. Agreement between simulations and experiments is good and permits a clear interpretation of the important topological differences between these systems. The first sharp diffraction peak (or prepeak) in the structure function S(q) that is present in the case of the liquids containing the alkyl-substituted cations is absent in the case of the diether substituted analogs. Using different theoretical partitioning schemes for the X-ray structure function, we show that the prepeak present in the alkyl-substituted ILs arises from polarity alternations between charged groups and nonpolar alkyl tails. In the case of the diether substituted ILs, we find considerable curling of tails. Anions can be found with high probability in two different environments: close to the cationic nitrogen (phosphorus) and also close to the two ether groups. Moreover, for the two diether systems, anions are found in locations from which they are excluded in the alkyl-substituted systems. This removes the longer range (polar/nonpolar) pattern of alternation that gives rise to the prepeak in alkyl-substituted systems.

  7. A comparison of absorption of glycerol tristearate and glycerol trioleate by rat small intestine

    SciTech Connect

    Bergstedt, S.E.; Hayashi, H.; Kritchevsky, D.; Tso, P. )

    1990-09-01

    Generally, fats rich in saturated fatty acids raise serum cholesterol, whereas fats rich in polyunsaturated fatty acids lower it. There appear to be exceptions; e.g., stearic acid (18:0)-rich fats have little or no effect on serum cholesterol concentrations. This apparent lack of cholesterolemic effect of stearic acid-rich fat could be because intestinal absorption of fat is poor or subsequent plasma and/or tissue metabolism of fat is different. To investigate mechanisms involved, we compared intestinal digestion, uptake, and lymphatic transport of glycerol tristearate (TS) and glycerol trioleate (TO, 18:1). Two groups of rats bearing intestinal lymph fistulas were used. TO rats were fed intraduodenally for 8 h at a constant rate a lipid emulsion of 25 mumols/h of TO (labeled with glycerol tri(9,10 (n)-3H)oleate), 7.8 mumols of egg phosphatidylcholine, and 57 mumols of sodium taurocholate in 3 ml of phosphate-buffered saline. TS rats were fed the same lipid emulsion except that TS replaced TO and the emulsion was labeled with glyceryl (1,3-14C)tristearate. The lymph triglyceride and radioactivity were determined. After infusion, the luminal and mucosal radioactive lipid content was analyzed. The results showed that there was significantly less lipid transported in the lymph of TS rats compared with TO rats. The results also showed a significant decrease in the absorption of TS as compared with TO. This was due in part to poor lipolysis. In addition, the lipid absorbed by the intestine of the TS rats was transported into lymph less efficiently than in TO rats.

  8. Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols

    SciTech Connect

    Nagy, M.; Alleman, T. L.; Dyer, T.; Ragauskas, A. J.

    2009-01-01

    Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by 31P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique 31P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel.

  9. Optimizing aerobic conversion of glycerol to 3-hydroxypropionaldehyde

    SciTech Connect

    Slininger, P.J.; Bothast, R.J.

    1985-12-01

    Chemical oxidation of 3-hydroxypropionaldehyde (3-HPA) leads to acrylic acid, an industrially important polymerizable monomer currently derived from petroleum. As the availability of petroleum declines, 3-HPA may become attractive as a product to be obtained through fermentation of glycerol, a renewable resource. When cells of Klebsiella pneumoniae NRRL B-199 (ATCC 8724) were grown aerobically on a rich glycerol medium and then suspended in buffer supplemented with semicarbazide and glycerol, aerobic conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA) ensued. Depending on conditions, 0.38 to 0.67 g of 3-HPA were formed per gram of glycerol consumed. This means that up to 83.8% of the carbon invested as glycerol could potentially be recovered as the target product, 3-HPA. Production of 3-HPA was sensitive to the age of cells harvested for resuspension and was nonexistent if cells were cultivated on glucose instead of glycerol as the sole carbon source. Compared with 24- and 72-h cells, 48-h cells produced 3-HPA at the highest rate and with the greatest yield. The cell biomass concentration present during the fermentation was never particularly critical to the 3-HPA yield, but initial fermentation rates and 3-HPA accumulation displayed a linear dependence on biomass concentration that faded when biomass exceeded 3 g/liter. Fermentation performance was a function of temperature, and an optimum initial specific 3-HPA productivity occurred at 32/sup 0/C, although the overall 3-HPA yield increased continuously within the 25 to 37/sup 0/C range studied. The pH optimum based on fermentation rate was different from that based on overall yield; 8 versus 7, respectively. Initial glycerol concentrations in the 20 to 50 g/liter range optimized initial 3-HPA productivity and yield.

  10. Cross-Couplings Using Aryl Ethers via C-O Bond Activation Enabled by Nickel Catalysts.

    PubMed

    Tobisu, Mamoru; Chatani, Naoto

    2015-06-16

    Arene synthesis has been revolutionized by the invention of catalytic cross-coupling reactions, wherein aryl halides can be coupled with organometallic and organic nucleophiles. Although the replacement of aryl halides with phenol derivatives would lead to more economical and ecological methods, success has been primarily limited to activated phenol derivatives such as triflates. Aryl ethers arguably represent one of the most ideal substrates in terms of availability, cost, safety, and atom efficiency. However, the robust nature of the C(aryl)-O bonds of aryl ethers renders it extremely difficult to use them in catalytic reactions among the phenol derivatives. In 1979, Wenkert reported a seminal work on the nickel-catalyzed cross-coupling of aryl ethers with Grignard reagents. However, it was not until 2004 that the unique ability of a low-valent nickel species to activate otherwise unreactive C(aryl)-O bonds was appreciated with Dankwardt's identification of the Ni(0)/PCy3 system, which significantly expanded the efficiency of the Wenkert reaction. Application of the nickel catalyst to cross-couplings with other nucleophiles was first accomplished in 2008 by our group using organoboron reagents. Later on, several other nucleophiles, including organozinc reagents, amines, hydrosilane, and hydrogen were shown to be coupled with aryl ethers under nickel catalysis. Despite these advances, progress in this field is relatively slow because of the low reactivity of benzene derivatives (e.g., anisole) compared with polyaromatic substrates (e.g., methoxynaphthalene), particularly when less reactive and synthetically useful nucleophiles are used. The "naphthalene problem" has been overcome by the use of N-heterocyclic carbene (NHC) ligands bearing bulky N-alkyl substituents, which enables a wide range of aryl ethers to be coupled with organoboron nucleophiles. Moreover, the use of N-alkyl-substituted NHC ligands allows the use of alkynylmagnesium reagents, thereby realizing

  11. Processes and systems for the production of propylene glycol from glycerol

    DOEpatents

    Frye, John G; Oberg, Aaron A; Zacher, Alan H

    2015-01-20

    Processes and systems for converting glycerol to propylene glycol are disclosed. The glycerol feed is diluted with propylene glycol as the primary solvent, rather than water which is typically used. The diluted glycerol feed is sent to a reactor where the glycerol is converted to propylene glycol (as well as other byproducts) in the presence of a catalyst. The propylene glycol-containing product from the reactor is recycled as a solvent for the glycerol feed.

  12. Value-added uses for crude glycerol--a byproduct of biodiesel production

    PubMed Central

    2012-01-01

    Biodiesel is a promising alternative, and renewable, fuel. As its production increases, so does production of the principle co-product, crude glycerol. The effective utilization of crude glycerol will contribute to the viability of biodiesel. In this review, composition and quality factors of crude glycerol are discussed. The value-added utilization opportunities of crude glycerol are reviewed. The majority of crude glycerol is used as feedstock for production of other value-added chemicals, followed by animal feeds. PMID:22413907

  13. Efficient synthetic protocols in glycerol under heterogeneous catalysis.

    PubMed

    Cravotto, Giancarlo; Orio, Laura; Gaudino, Emanuela Calcio; Martina, Katia; Tavor, Dorith; Wolfson, Adi

    2011-08-22

    The massive increase in glycerol production from the transesterification of vegetable oils has stimulated a large effort to find novel uses for this compound. Hence, the use of glycerol as a solvent for organic synthesis has drawn particular interest. Drawbacks of this green and renewable solvent are a low solubility of highly hydrophobic molecules and a high viscosity, which often requires the use of a fluidifying co-solvent. These limitations can be easily overcome by performing reactions under high-intensity ultrasound and microwaves in a stand-alone or combined manner. These non-conventional techniques facilitate and widen the use of glycerol as a solvent in organic synthesis. Glycerol allows excellent acoustic cavitation even at high temperatures (70-100 °C), which is otherwise negligible in water. Herein, we describe three different types of applications: 1) the catalytic transfer hydrogenation of benzaldehyde to benzyl alcohol in which glycerol plays the dual role of the solvent and hydrogen donor; 2) the palladium-catalyzed Suzuki cross-coupling; and (3) the Barbier reaction. In all cases glycerol proved to be a greener, less expensive, and safer alternative to the classic volatile organic solvents. PMID:21853535

  14. Key enzymes catalyzing glycerol to 1,3-propanediol.

    PubMed

    Jiang, Wei; Wang, Shizhen; Wang, Yuanpeng; Fang, Baishan

    2016-01-01

    Biodiesel can replace petroleum diesel as it is produced from animal fats and vegetable oils, and it produces about 10 % (w/w) glycerol, which is a promising new industrial microbial carbon, as a major by-product. One of the most potential applications of glycerol is its biotransformation to high value chemicals such as 1,3-propanediol (1,3-PD), dihydroxyacetone (DHA), succinic acid, etc., through microbial fermentation. Glycerol dehydratase, 1,3-propanediol dehydrogenase (1,3-propanediol-oxydoreductase), and glycerol dehydrogenase, which were encoded, respectively, by dhaB, dhaT, and dhaD and with DHA kinase are encompassed by the dha regulon, are the three key enzymes in glycerol bioconversion into 1,3-PD and DHA, and these are discussed in this review article. The summary of the main research direction of these three key enzyme and methods of glycerol bioconversion into 1,3-PD and DHA indicates their potential application in future enzymatic research and industrial production, especially in biodiesel industry. PMID:26966462

  15. Occurrence of glycerol uptake in Dunaliella tertiolecta under hyperosmotic stress.

    PubMed

    Lin, Huixin; Fang, Lei; Low, Chin Seng; Chow, Yvonne; Lee, Yuan Kun

    2013-02-01

    The unicellular halotolerant green alga species Dunaliella are able to proliferate in extremely varied salinities by synthesizing intracellular glycerol and adjusting the cell shape and volume. However, some marine Dunaliella species such as Dunaliella tertiolecta are not able to regulate cell volume as an immediate response to counter external osmotic shock. Here we report that a rapid shock-response mechanism is present in Dunaliella tertiolecta, involving uptake of exogenous glycerol in response to hyperosmotic shock without changing cell volume, and this glycerol uptake activity is associated with the Dunaliella tertiolecta glycerol uptake protein 1 (DtGUP1) gene, which belongs to the membrane-bound O-acyltransferase. The mutant DtGUP1-E, in which the DtGUP1 gene is silenced, displayed an inability to take up glycerol from the medium and showed cell death under hyperosmotic shock. To our knowledge, this is the first time a gene product has been reported in Dunaliella tertiolecta that is involved in glycerol uptake activity under hyperosmotic stress. PMID:23279806

  16. Microaerobic Conversion of Glycerol to Ethanol in Escherichia coli

    PubMed Central

    Wong, Matthew S.; Li, Mai; Black, Ryan W.; Le, Thao Q.; Puthli, Sharon; Campbell, Paul

    2014-01-01

    Glycerol has become a desirable feedstock for the production of fuels and chemicals due to its availability and low price, but many barriers to commercialization remain. Previous investigators have made significant improvements in the yield of ethanol from glycerol. We have developed a fermentation process for the efficient microaerobic conversion of glycerol to ethanol by Escherichia coli that presents solutions to several other barriers to commercialization: rate, titer, specific productivity, use of inducers, use of antibiotics, and safety. To increase the rate, titer, and specific productivity to commercially relevant levels, we constructed a plasmid that overexpressed glycerol uptake genes dhaKLM, gldA, and glpK, as well as the ethanol pathway gene adhE. To eliminate the cost of inducers and antibiotics from the fermentation, we used the adhE and icd promoters from E. coli in our plasmid, and we implemented glycerol addiction to retain the plasmid. To address the safety issue of off-gas flammability, we optimized the fermentation process with reduced-oxygen sparge gas to ensure that the off-gas remained nonflammable. These advances represent significant progress toward the commercialization of an E. coli-based glycerol-to-ethanol process. PMID:24584248

  17. Hydration and endocrine responses to intravenous fluid and oral glycerol.

    PubMed

    van Rosendal, S P; Strobel, N A; Osborne, M A; Fassett, R G; Coombes, J S

    2015-06-01

    Athletes use intravenous (IV) saline in an attempt to maximize rehydration. The diuresis from IV rehydration may be circumvented through the concomitant use of oral glycerol. We examined the effects of rehydrating with differing regimes of oral and IV fluid, with or without oral glycerol, on hydration, urine, and endocrine indices. Nine endurance-trained men were dehydrated by 4% bodyweight, then rehydrated with 150% of the fluid lost via four protocols: (a) oral = oral fluid only; (b) oral glycerol = oral fluid with added glycerol (1.5 g/kg); (c) IV = 50% IV fluid, 50% oral fluid; and (d) IV with oral glycerol = 50% IV fluid, 50% oral fluid with added glycerol (1.5 g/kg), using a randomized, crossover design. They then completed a cycling performance test. Plasma volume restoration was highest in IV with oral glycerol > IV > oral glycerol  > oral. Urine volume was reduced in both IV trials compared with oral. IV and IV with oral glycerol resulted in lower aldosterone levels during rehydration and performance, and lower cortisol levels during rehydration. IV with oral glycerol resulted in the greatest fluid retention. In summary, the IV conditions resulted in greater fluid retention compared with oral and lower levels of fluid regulatory and stress hormones compared with both oral conditions. PMID:25943662

  18. Antiproliferative activity against human non-small cell lung cancer of two O-alkyl-diglycosylglycerols from the marine sponges Myrmekioderma dendyi and Trikentrion laeve.

    PubMed

    Farokhi, Fereshteh; Wielgosz-Collin, Gaëtane; Robic, Audrey; Debitus, Cécile; Malleter, Marine; Roussakis, Christos; Kornprobst, Jean-Michel; Barnathan, Gilles

    2012-03-01

    Glycolipids of Myrmekioderma sponges contain Myrmekiosides, a new family of glycolipids with a unique structure of mono-O-alkyl-diglycosylglycerols. This report deals with the identification and biological activity of the new Myrmekioside E from Myrmekioderma dendyi. Its structure has been elucidated from spectroscopic data and chemical degradation studies. It contained a glycerol backbone linked to xylose and N-acetylglucosamine, and an alkyl long-chain with a terminal alcohol group. A related glycolipid, Trikentroside, known in the sponge Trikentrion laeve, was subjected to a comparative biological evaluation. Both glycolipids inhibit proliferation of two human non-small cell lung cancer cell lines (NSCLC-N6 and A549). PMID:22309916

  19. Cross-dehydrogenative coupling of α-C(sp(3))-H of ethers/alkanes with C(sp(2))-H of heteroarenes under metal-free conditions.

    PubMed

    Ambala, Srinivas; Thatikonda, Thanusha; Sharma, Shweta; Munagala, Gurunadham; Yempalla, Kushalava Reddy; Vishwakarma, Ram A; Singh, Parvinder Pal

    2015-12-14

    Here we have developed an effective metal-free dehydrogenative coupling method wherein α-oxyalkyl and alkyl radicals were generated from various ethers and alkanes to undergo coupling with a variety of electron-deficient heteroarenes such as un/substituted iso-quinolones, quinolines, pyridines, pyrazines and pyrimidines. The persulfate-acetone-water system was optimized for the dehydrogenative coupling with cyclic ethers which gave moderate to excellent yields of α-oxyalkyl containing heteroarenes. We have also optimized the conditions for coupling with cyclic alkanes and alicyclic ethers and demonstrated by conducting the reactions with a variety of electron-deficient heteroarenes. Further, the present method is also applicable to electron deficient arenes like naphthoquinones and moreover, it didn't require any external acid. PMID:26419479

  20. Semifluorinated polymers via cycloaddition and nucleophilic addition reactions of aromatic trifluorovinyl ethers

    NASA Astrophysics Data System (ADS)

    Iacono, Scott Thomas

    This dissertation encompasses the synthesis, characterization, and properties of semifluorinated polymers derived from thermal polymerization of aryl trifluorovinyl ether (TFVE) monomers. This work is divided into two parts based on the methodology of thermal polymerization using aryl TFVE monomers. The first part of this work involves the thermal [2 + 2] cyclodimerization of aryl TFVE monomers affording perfluorocyclobutyl (PFCB) aryl ether polymers. Chapter 1 provides an overview of PFCB aryl ether polymers as a next-generation class of high performance fluoropolymers that have been successfully employed for a myriad of technologies. PFCB aryl ether polymers are highly desired because of their high thermal stability, processability, and tailorability for specific material applications. Chapter 2 introduces a general perspective of polyhedral oligomeric silsesquioxanes (POSS) that were modified with PFCB aryl ether polymer for property enhancement, specifically for low surface energy materials. Chapter 3 and 4 show the synthesis, characterization, and properties of POSS modified PFCB aryl ether polymers as blends and a variety of copolymer architectures, respectively. The second portion of this dissertation focuses on the development of a new, facile step-growth polymerization of diols/bisphenols and aryl TFVEs to afford fluoroethylene/vinylene alkyl/aryl ether (FAE) polymers. Chapter 5 is a prelude to the development of FAE polymers which entails optimizing the methodology and mechanistic rationale of nucleophile addition to aryl TFVEs. Chapter 6 details the FAE polymerization kinetics, physical properties, and strategy for functionalization. Chapter 7 illustrates the modular modification of FAE polymers for the development of tunable light emissive materials for potential use as transport layer material for organic light emitting diodes (OLEDs) and also chemical sensors. Chapter 8 introduces postfunctionaliztion of FAE polymers resulting with sulfonated biaryl

  1. Ultra-bright alkylated graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Feng, Lan; Tang, Xing-Yan; Zhong, Yun-Xin; Liu, Yue-Wen; Song, Xue-Huan; Deng, Shun-Liu; Xie, Su-Yuan; Yan, Jia-Wei; Zheng, Lan-Sun

    2014-10-01

    Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy.Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The

  2. Synthesis and Characterization of Poly (Arylene Ether Benzimidazole) Oligomers

    NASA Technical Reports Server (NTRS)

    Leonard, Michael J.

    1995-01-01

    Several poly(arylene ether benzimidazole) oligomers were prepared by the nucleophilic aromatic substitution reaction of a bisphenol benzimidazole and various alkyl-substituted aromatic bisphenols with an activated aromatic dihalide in N, N-dimethylacetarnide. Moderate to high molecular weight terpolymers were obtained in all cases, as shown by their inherent viscosities, which ranged from 0.50 to 0.87 dL g(sup -1). Glass transition temperatures (T(sub g)s) of polymer powders ranged from 267-280 C. Air-dried unoriented thin film T(sub g)s were markedly lower than those of the powders, whereas T(sub g)s of films dried in a nitrogen atmosphere were identical to those of the corresponding powders. In addition, air-dried films were dark amber and brittle, whereas nitrogen-dried films were yellow and creasable. Nitrogen-dried films showed slightly higher thin-film tensile properties than the air-dried films, as well.

  3. Gold-Catalyzed Oxidation of Propargylic Ethers with Internal C-C Triple Bonds: Impressive Regioselectivity Enabled by Inductive Effect

    PubMed Central

    Ji, Kegong; D’Souza, Brendan; Nelson, Jon; Zhang, Liming

    2014-01-01

    Inductive perturbations of C-C triple bonds are shown to dictate the regiochemistry of gold-catalyzed oxidation of internal C-C triple bonds in the cases of propargylic ethers, resulting in highly regioselective formation of β-alkoxy-α,β-unsaturated ketones (up to >50/1 selectivity) via α-oxo gold carbene intermediates. Ethers derived from primary propargylic alcohols can be reliably transformed in good yields, and various functional groups are tolerated. With substrates derived from secondary propargylic alcohols, the development of a new P,N-bidentate ligand enables the minimization of competing alkyl group migration to the gold carbene center over the desired hydride migration; the preferred migration of a phenyl group, however, results in efficient formation of a α-phenyl-β-alkoxy-α,β-unsaturated ketone. These results further advance the surrogacy of a propargyl moiety to synthetically versatile enone function with reliable and readily predictable regioselectivity. PMID:25284890

  4. ALKYL PYROPHOSPHATE METAL SOLVENT EXTRACTANTS AND PROCESS

    DOEpatents

    Long, R.L.

    1958-09-30

    A process is presented for the recovery of uranium from aqueous mineral acidic solutions by solvent extraction. The extractant is a synmmetrical dialkyl pyrophosphate in which the alkyl substituents have a chain length of from 4 to 17 carbon atoms. Mentioned as a preferred extractant is dioctyl pyrophosphate. The uranium is precipitated irom the organic extractant phase with an agent such as HF, fluoride salts. alcohol, or ammonia.

  5. In pursuit of homoleptic actinide alkyl complexes.

    PubMed

    Seaman, Lani A; Walensky, Justin R; Wu, Guang; Hayton, Trevor W

    2013-04-01

    This Forum Article describes the pursuit of isolable homoleptic actinide alkyl complexes, starting with the pioneering work of Gilman during the Manhattan project. The initial reports in this area suggested that homoleptic uranium alkyls were too unstable to be isolated, but Wilkinson demonstrated that tractable uranium alkyls could be generated by purposeful "ate" complex formation, which serves to saturate the uranium coordination sphere and provide the complexes with greater kinetic stability. More recently, we reported the solid-state molecular structures of several homoleptic uranium alkyl complexes, including [Li(THF)4][U(CH2(t)Bu)5], [Li(TMEDA)]2[UMe6], [K(THF)]3[K(THF)2][U(CH2Ph)6]2, and [Li(THF)4][U(CH2SiMe3)6], by employing Wilkinson's strategy. Herein, we describe our attempts to extend this chemistry to thorium. The treatment of ThCl4(DME)2 with 5 equiv of LiCH2(t)Bu or LiCH2SiMe3 at -25 °C in THF affords [Th(CH2(t)Bu)5] (1) and [Li(DME)2][Th(CH2SiMe3)5 (2), respectively, in moderate yields. Similarly, the treatment of ThCl4(DME)2 with 6 equiv of K(CH2Ph) produces [K(THF)]2[Th(CH2Ph)6] (3), in good yield. Complexes 1-3 have been fully characterized, while the structures of 1 and 3 were confirmed by X-ray crystallography. Additionally, the electronic properties of 1 and 3 were explored by density functional theory. PMID:22716022

  6. Ultra-bright alkylated graphene quantum dots.

    PubMed

    Feng, Lan; Tang, Xing-Yan; Zhong, Yun-Xin; Liu, Yue-Wen; Song, Xue-Huan; Deng, Shun-Liu; Xie, Su-Yuan; Yan, Jia-Wei; Zheng, Lan-Sun

    2014-11-01

    Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy. PMID:25192187

  7. Tartaric Acid-based Amphiphilic Macromolecules with Ether Linkages Exhibit Enhanced Repression of Oxidized Low Density Lipoprotein Uptake

    PubMed Central

    Abdelhamid, Dalia; Zhang, Yingue; Lewis, Daniel R.; Moghe, Prabhas V.; Welsh, William J.; Uhrich, Kathryn E.

    2015-01-01

    Cardiovascular disease initiates with the atherogenic cascade of scavenger receptor- (SR-) mediated oxidized low-density lipoprotein (oxLDL) uptake. Resulting foam cell formation leads to lipid-rich lesions within arteries. We designed amphiphilic macromolecules (AMs) to inhibit these processes by competitively blocking oxLDL uptake via SRs, potentially arresting atherosclerotic development. In this study, we investigated the impact of replacing ester linkages with ether linkages in the AM hydrophobic domain. We hypothesized that ether linkages would impart flexibility for orientation to improve binding to SR binding pockets, enhancing anti-atherogenic activity. A series of tartaric acid-based AMs with varying hydrophobic chain lengths and conjugation chemistries were synthesized, characterized, and evaluated for bioactivity. 3-D conformations of AMs in aqueous conditions may have significant effects on anti-atherogenic potency and were simulated by molecular modeling. Notably, ether-linked AMs exhibited significantly higher levels of inhibition of oxLDL uptake than their corresponding ester analogues, indicating a dominant effect of linkage flexibility on pharmacological activity. The degradation stability was also enhanced for ether-linked AMs. These studies further suggested that alkyl chain length (i.e., relative hydrophobicity), conformation (i.e., orientation), and chemical stability play a critical role in modulating oxLDL uptake, and guide the design of innovative cardiovascular therapies. PMID:25890704

  8. Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.

    PubMed

    Meiswinkel, Tobias M; Rittmann, Doris; Lindner, Steffen N; Wendisch, Volker F

    2013-10-01

    Corynebacterium glutamicum possesses genes for glycerol kinase and glycerol-3-phosphate dehydrogenase that were shown to support slow growth with glycerol only when overexpressed from a plasmid. Pure glycerol and crude glycerol from biodiesel factories were tested for growth of recombinant strains expressing glpF, glpK and glpD from Escherichia coli. Some, but not all crude glycerol lots served as good carbon sources. Although the inhibitory compound(s) present in these crude glycerol lots remained unknown, the addition of substoichiometric glucose concentrations (below 10% by weight) enabled the utilization of some of the inhibitory crude glycerol lots. Besides growth, production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine as well as of the diamine putrescine based on crude glycerol qualities from biodiesel factories was demonstrated. PMID:23562176

  9. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.

    PubMed

    Rittmann, Doris; Lindner, Steffen N; Wendisch, Volker F

    2008-10-01

    The amino acid-producing organism Corynebacterium glutamicum cannot utilize glycerol, a stoichiometric by-product of biodiesel production. By heterologous expression of Escherichia coli glycerol utilization genes, C. glutamicum was engineered to grow on glycerol. While expression of the E. coli genes for glycerol kinase (glpK) and glycerol 3-phosphate dehydrogenase (glpD) was sufficient for growth on glycerol as the sole carbon and energy source, additional expression of the aquaglyceroporin gene glpF from E. coli increased growth rate and biomass formation. Glutamate production from glycerol was enabled by plasmid-borne expression of E. coli glpF, glpK, and glpD in C. glutamicum wild type. In addition, a lysine-producing C. glutamicum strain expressing E. coli glpF, glpK, and glpD was able to produce lysine from glycerol as the sole carbon substrate as well as from glycerol-glucose mixtures. PMID:18757581

  10. Coal anion structure and chemistry of coal alkylation. Final report, March 1, 1979-February 29, 1980

    SciTech Connect

    Stock, L.M.

    1980-01-01

    In accord with Task 1, some ether cleavage reactions were carried out in two different media - potassium/naphthalene/tetrahydrofuran and potassium/ ammonia - so that the merits and demerits of the two methods could be compared. Preliminary results suggest that both systems yield the same products, and that the ammonia medium is more convenient to work with, because of the absence of by-products such as reduced naphthalenes and tetralin. Dialkyl ethers were found to be least reactive compounds while the benzyl and phenyl ethers were found to be most reactive, as would be expected. The reductive alkylation of coal was carried out in ammonia at 25/sup 0/C. The tetrahydrofuran solubility of the reaction product was surprisingly low. We have obtained additional /sup 13/C)/sup 1/H) nmr data for tetrahydrofuran-soluble butylated coal and some model compounds; obtained additional Styragel(R) chromatography data of tetrahydrofuran-soluble coal labelled with 98%-enriched butyl-1,1-d/sub 2/ iodide; and obtained /sup 2/D nmr spectra of all the deuterium-labelled, tetrahydrofuran-soluble coal products. In accord with Task 4, we have undertaken a review of the information now available concerning the nature of Illinois No. 6 coal. Also, the effects of organic additives on the exchange reactions between tetralin-d/sub 12/ and diphenyl-methane and on the thermal cleavage reactions of several model compounds in tetralin were investigated to probe the relationship between structure and reactivity. The exchange reaction can be accelerated by coal, asphaltene-preasphaltene fractions derived from coal, compounds with labile bonds, or compounds which can be reduced readily. The pyridine-insoluble coal product, acids, and bases are inactive toward the exchange reaction.

  11. Solvent-induced crystallization of poly(ether ether ketone)

    NASA Astrophysics Data System (ADS)

    McPeak, Jennifer Lynne

    The purpose of this study was learn how the diffusion, swelling, and crystallization processes are coupled during solvent-induced crystallization of poly(ether ether ketone) (PEEK). Unoriented amorphous PEEK films were immersed in aprotic organic liquids at ambient temperature and bulk properties or characteristics were monitored as a function of immersion time. The sorption behavior, T g and Tm° suppression, crystallinity, and dynamic mechanical response were correlated as a function of solvent chemistry and immersion time. The saturation time of methylene chloride, 1,3-dichloropropane, tetrahydrofuran, cyclopentanone, chlorobenzene, toluene, diethyl ketone, and ethylbenzene in amorphous PEEK films were found to range from hours to days depending on the level of polymer-solvent interactions. In-situ isochronal DMA spectra show that the Tg of PEEK was suppressed from 150°C to below ambient temperature such that crystallization was kinetically feasible during ambient immersion. In addition, an increase in viscoelastic dispersion was attributed to the presence of crystallinity. From dynamic mass uptake and wide-angle x-ray diffraction (WAXD) results, it was found that the bulk sorption rate was equal to the bulk crystallization rate for all solvent systems that promoted SINC and PEEK exhibited diffusion-limited crystallization, irrespective of the nature of the transport mechanism. In addition, the solvent-induced crystals exhibit preferred orientation as supported by photographic WAXD. A distinct sorption front, observed with scanning electron microscopy, further supports the scenario of diffusion-controlled crystallization and one-dimensional diffusion. Isothermal DMA spectra for THF, cyclopentanone, and chlorobenzene, indicate that, as the solvent diffuses into the films, the stiffness of the polymer decreases at short times, begins to increase, and then reaches a relatively time-independent value. It was determined that the initial decrease in the storage

  12. Glycerol dehydrates oedematous as well as normal brain in dogs.

    PubMed

    Wang, J Y; Chen, J L

    1994-04-01

    1. Although the effect of glycerol on reducing intracranial pressure has been widely investigated, only a few studies have reported its dehydrating effect on brain oedema caused by infarction, ischaemia, microembolism and cold injury, but none on traumatic oedema. In this study the effects of glycerol (1 g/kg, i.v. bolus infusion at a rate of 0.04 g/kg per min) on traumatic and cryogenic cerebral oedema and on normal brain were compared in the anaesthetized dog. The tissue water content was measured with the gravimetric method. 2. Oedema resulting from mechanical trauma was initiated 4 h prior to treatment with glycerol (8 dogs) or vehicle (5 dogs) by closed head contusion with fixed force under general anaesthesia. Tissue samples underneath the region of contusion were taken, before and 1 h after infusion of glycerol or vehicle, for the measurement of water content. 3. Glycerol infusion decreased the water content in white matter of the traumatic brain model from 76.54 +/- 1.70% to 70.73 +/- 1.54% (P < 0.001). In normal brain the reduction was from 68.42 +/- 0.48% to 65.36 +/- 0.39% (P < 0.001). Neither vehicle nor glycerol infusion resulted in significant changes in specific gravity of the gray matter. 4. Cryogenic oedema was initiated 3 h prior to the infusion of glycerol or vehicle by applying unilaterally a brass conical cup (bottom diameter 1 cm) filled with dry ice-acetone (-65 degrees C) to the exposed dura for 1 min. The contralateral hemisphere, which was not subjected to cold injury, was used for determination of water content of normal gray and white matter. 5. Glycerol infusion decreased the water content in the white matter of the cold-injured region from 75.38 +/- 0.69% to 72.57 +/- 0.58% (P < 0.001). In the normal white matter the reduction was from 68.63 +/- 0.34% to 65.48 +/- 0.49% (P < 0.001). 6. Our data indicate that glycerol decreases water content of the white matter in traumatic and cold-injured oedematous brain as well as in normal brain

  13. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis.

    PubMed

    Dong, Yifan; Mosquera-Giraldo, Laura I; Taylor, Lynne S; Edgar, Kevin J

    2016-02-01

    The design of cellulose ether-based amphiphiles has been difficult and limited because of the harsh conditions typically required for appending ether moieties to cellulose. Olefin cross-metathesis recently has been shown to be a valuable approach for appending a variety of functional groups to cellulose ethers and esters, provided that an olefin handle for metathesis can be attached. This synthetic pathway gives access to these functional derivatives under very mild conditions and at high efficiency. Modification of ethyl cellulose by metathesis to prepare useful derivatives, for example, for solubility and bioavailability enhancement of drugs by amorphous solid dispersion (ASD), has been limited by the low DS(OH) of commercial ethyl cellulose derivatives. This is problematic because ethyl cellulose is otherwise a very attractive substrate for synthesis of amphiphilic derivatives by olefin metathesis. Herein we explore two methods for opening up this design space for ether-based amphiphiles, for example, permitting synthesis of more hydrophilic derivatives. One approach is to start with the more hydrophilic commercial methyl cellulose, which contains much higher DS(OH) and therefore is better suited for introduction of high DS of olefin metathesis "handles". In another approach, we explored a homogeneous one-pot synthesis methodology from cellulose, where controlled DS of ethyl groups was introduced at the same time as the ω-unsaturated alkyl groups, thereby permitting complete control of DS(OH), DS(Et), and ultimately DS of the functional group added by metathesis. We describe the functionalized derivatives available by these successful approaches. In addition, we explore new methods for reduction of the unsaturation in initial metathesis products to provide robust methods for enhancing product stability against further radical-catalyzed reactions. We demonstrate initial evidence that the products show strong promise as amphiphilic matrix polymers for amorphous

  14. Dysferlin and Myoferlin Regulate Transverse Tubule Formation and Glycerol Sensitivity

    PubMed Central

    Demonbreun, Alexis R.; Rossi, Ann E.; Alvarez, Manuel G.; Swanson, Kaitlin E.; Deveaux, H. Kieran; Earley, Judy U.; Hadhazy, Michele; Vohra, Ravneet; Walter, Glenn A.; Pytel, Peter; McNally, Elizabeth M.

    2015-01-01

    Dysferlin is a membrane-associated protein implicated in muscular dystrophy and vesicle movement and function in muscles. The precise role of dysferlin has been debated, partly because of the mild phenotype in dysferlin-null mice (Dysf). We bred Dysf mice to mice lacking myoferlin (MKO) to generate mice lacking both myoferlin and dysferlin (FER). FER animals displayed progressive muscle damage with myofiber necrosis, internalized nuclei, and, at older ages, chronic remodeling and increasing creatine kinase levels. These changes were most prominent in proximal limb and trunk muscles and were more severe than in Dysf mice. Consistently, FER animals had reduced ad libitum activity. Ultrastructural studies uncovered progressive dilation of the sarcoplasmic reticulum and ectopic and misaligned transverse tubules in FER skeletal muscle. FER muscle, and Dysf- and MKO-null muscle, exuded lipid, and serum glycerol levels were elevated in FER and Dysf mice. Glycerol injection into muscle is known to induce myopathy, and glycerol exposure promotes detachment of transverse tubules from the sarcoplasmic reticulum. Dysf, MKO, and FER muscles were highly susceptible to glycerol exposure in vitro, demonstrating a dysfunctional sarcotubule system, and in vivo glycerol exposure induced severe muscular dystrophy, especially in FER muscle. Together, these findings demonstrate the importance of dysferlin and myoferlin for transverse tubule function and in the genesis of muscular dystrophy. PMID:24177035

  15. Glycerol use in hyperhydration and rehydration: scientific update.

    PubMed

    van Rosendal, S P; Coombes, J S

    2012-01-01

    Glycerol ingestion creates an osmotic drive that enhances fluid retention. The major practical applications for athletes are to either (i) hyperhydrate before exercise so that they have more fluid to be lost as sweat during subsequent performance, thereby delaying the progression of dehydration from becoming physiologically significant, or (ii) improve both the rate of rehydration and total fluid retention following exercise. Recently we showed that rehydration may be improved further by combining glycerol with intravenous fluids. Improvements in endurance time, time trial performance and total power and work output have been seen during exercise following glycerol-induced hyperhydration or rehydration. Another recent trial showed that the increased body weight associated with the extra fluid does not inadvertently affect running economy. Concerns that the haemodilution associated with the fluid retention in the vascular space may be sufficient to mask illegal doping practices by athletes led the World Anti-Doping Agency (WADA) to add glycerol to its list of prohibited substances in 2010. Recent evidence suggests that doses of > 0.032 ± 0.010 g/kg lean body mass (much lower than those required for rehydration) will result in urinary excretion that may be detectable, so athletes under the WADA jurisdiction should be cautious to limit their inadvertent glycerol intake. PMID:23075560

  16. Treatment of glycerol phase formed by biodiesel production.

    PubMed

    Hájek, Martin; Skopal, Frantisek

    2010-05-01

    Glycerol is a by-product of biodiesel produced by transesterification and is contained in the glycerol phase together with many other materials such as soaps, remaining catalyst, water, and esters formed during the process. The content of glycerol is approximately 30-60 wt.%. In this paper, treatments of the glycerol phase to obtain glycerol with a purity of 86 wt.% (without distillation) and a mixture of fatty acids with esters (1:1) or only a mixture of fatty acids with a purity of 99 wt.% are presented. The treatment was carried out by removing of alkaline substances and esters. Fatty acids were produced by saponification of the remaining esters and subsequent neutralization of alkaline substances by phosphoric, sulfuric, hydrochloric, or acetic acids. Salts are by-products and, in the case of phosphoric acid can be used as potash-phosphate fertilizer. The process of treatment is easy and environmentally friendly, because no special chemicals or equipment are required and all products are utilizable. PMID:20074939

  17. Thermodynamics of interdigitated phases of phosphatidylcholine in glycerol.

    PubMed Central

    Swamy, M J; Marsh, D

    1995-01-01

    Comparison of the electron spin resonance spectra of phosphatidylcholines spin-labeled in the sn-2 chain at a position close to the polar region and close to the methyl terminus indicate that symmetrical saturated diacyl phosphatidylcholines with odd and even chain lengths from 13 to 20 C-atoms (and probably also 12 C-atoms) have gel phases in which the chains are interdigitated when dispersed in glycerol. The chain-length dependences of the chain-melting transition enthalpies and entropies are similar for phosphatidylcholines dispersed in glycerol and in water, but the negative end contributions are smaller for phosphatidylcholines dispersed in glycerol than for those dispersed in water: d delta Ht/dCH2 = 1.48 (1.43) kcal.mol-1, d delta St/dCH2 = 3.9 (4.0) cal.mol-1K-1, and delta H o = -12.9 (-15.0) kcal.mol-1, delta S o = -29 (-40) cal.mol-1K-1, respectively, for dispersions in glycerol (water). These differences reflect the interfacial energetics in glycerol and in water, and the different structure of the interdigitated gel phase. PMID:8534810

  18. Determination of optimal glycerol concentration for optical tissue clearing

    NASA Astrophysics Data System (ADS)

    Youn, Eungjun; Son, Taeyoon; Kim, Han-Sung; Jung, Byungjo

    2012-02-01

    The laser scattering in tissue is significant in diagnostic and therapeutic purposes of laser. Many studies have been conducted to minimize laser scattering in tissue and therefore, to maximize the clinical efficacy by enhancing photon density. Optical clearing agents (OCAs) have been employed for optical tissue clearing (OTC). This study was aimed to investigate the optimal concentration of an OCA, glycerol, in topical application,, so that it can be utilized for clinical diagnosis and therapy in dermatology. Glycerol was topically applied to avoid possible edema caused by dermal injection. The effect of OTC was quantitatively evaluated as a function of the concentration of glycerol with various methods. Optical methods such as optical coherence tomography (OCT) and an integrating sphere were used to assess the enhancement of light penetration depth and refractive index matching. In addition, a non-optical method, ultrasound scanner, was utilized to evaluate quantitatively collagen dissociation. The results revealed that 70 % glycerol was the optimal concentration of OTC for topical application. This study may provide a guideline regarding to the use of glycerol for optimal diagnostic and therapeutic effects in dermatology.

  19. The structure of GlpF, a glycerol conducting channel.

    PubMed

    Fu, Dax; Libson, Andrew; Stroud, Robert

    2002-01-01

    The passage of water or small neutral solutes across the cell membrane in animals, plants and bacteria is facilitated by a family of homologous membrane channels, variously known as aquaporins though perhaps more correctly as aquaglyceroporins. The glycerol facilitator (GlpF) is a 28 kDa aquaglyceroporin that catalyses transmembrane diffusion of glycerol and certain linear polyhydric alcohols in Escherichia coli. X-ray crystallographic analysis of GlpF to 2.2 A resolution revealed an alpha-barrel structure, surrounded by six full-length transmembrane helices and two half-spanning helices that are joined head-to-head in the middle of the membrane. These helices are arranged to a quasi twofold manner relative to the central membrane plane, where highly conserved residues make helix-to-helix contacts that stabilize the relative position and orientation of the helices in the structure. This sequence-structure correlation suggests that the evolutionary divergence of aquaporins and aquaglyceroporins is constrained by a conserved structural framework within which specialized function may be developed. Three glycerol molecules were resolved in the central channel through the GlpF monomer, thereby defining a transmembrane channel for glycerol permeation. The structure of glycerol GlpF complex provides insight into the chemical basis for transmembrane selective permeability. PMID:12027015

  20. Effect of NaCl on the accumulation of glycerol by three Aspergillus species.

    PubMed

    Zidan, M A; Abdel-Mallek, A Y

    1987-01-01

    The accumulation of glycerol was investigated in three Aspergillus species, A. niger, A. ochraceus and A. tamarii after being grown in media containing different NaCl concentrations. Intra-extracellular as well as total glycerol were markedly accumulated by the three organisms in response to increased salinity. However, at salinity levels of 10-14% NaCl, extracellular glycerol was somewhat lowered. In addition, it was found that the maximum accumulation of glycerol in A. niger and A. tamarii was reached within the first 10 hours after salinization. However, after desalinization, the extracellular glycerol was continuously increased within the first 6 hours at the expense of intracellular glycerol. PMID:3449615

  1. Water availability determines branched glycerol dialkyl glycerol tetraether distributions in soils of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Menges, J.; Huguet, C.; Alcañiz, J. M.; Fietz, S.; Sachse, D.; Rosell-Melé, A.

    2013-06-01

    The MBT/CBT has recently gained significant attention as a novel paleotemperature proxy. It is based on the distribution of branched glycerol dialkyl glycerol tetraethers (GDGTs) in soils. The CBT quantifies the degree of cyclisation and relates to soil pH. The MBT' quantifies the degree of methylation and relates to mean annual temperature and soil pH. Combining these two indices allows estimation of mean annual temperature (MAT). However other factors such as soil water availability or moisture conditions have been suggested to influence the MBT'. To assess the effect of moisture conditions on the MBT'/CBT a set of 23 Iberian Peninsula soil samples covering a temperature range from 10-18 °C and a wide range of soil moisture regimes (405 mm to 1455 mm mean annual precipitation per year), was analyzed. We find that CBT is significantly correlated to soil pH confirming it as a robust proxy. In contrast the MBT' index was not correlated to MAT and was weakly correlated to annual mean precipitation (MAP). Instead we found a significant correlation between MBT' and the Aridity Index (AI), a parameter related to water availability in soils. The AI can explain 70% of the residuals of MAT estimation and 50% of the actual variation of the MBT'. This suggests that in dry environments or under moisture shortage the degree of methylation of branched GDGTs is not controlled by temperature but rather by the degree of water available. Our results suggest that the MBT/CBT index is not applicable as a paleotemperature proxy in dry subhumid to hyperarid environments.

  2. In situ production of branched glycerol dialkyl glycerol tetraethers in a great basin hot spring (USA)

    PubMed Central

    Zhang, Chuanlun L.; Wang, Jinxiang; Dodsworth, Jeremy A.; Williams, Amanda J.; Zhu, Chun; Hinrichs, Kai-Uwe; Zheng, Fengfeng; Hedlund, Brian P.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are predominantly found in soils and peat bogs. In this study, we analyzed core (C)-bGDGTs after hydrolysis of polar fractions using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry and analyzed intact P-bGDGTs using total lipid extract (TLE) without hydrolysis by liquid chromatography-electrospray ionization-multiple stage mass spectrometry. Our results show multiple lines of evidence for the production of bGDGTs in sediments and cellulolytic enrichments in a hot spring (62–86°C) in the Great Basin (USA). First, in situ cellulolytic enrichment led to an increase in the relative abundance of hydrolysis-derived P-bGDGTs over their C-bGDGT counterparts. Second, the hydrolysis-derived P- and C-bGDGT profiles in the hot spring were different from those of the surrounding soil samples; in particular, a monoglycosidic bGDGT Ib containing 13,16-dimethyloctacosane and one cyclopentane moiety was detected in the TLE but it was undetectable in surrounding soil samples even after sample enrichments. Third, previously published 16S rRNA gene pyrotag analysis from the same lignocellulose samples demonstrated the enrichment of thermophiles, rather than mesophiles, and total bGDGT abundance in cellulolytic enrichments correlated with the relative abundance of 16S rRNA gene pyrotags from thermophilic bacteria in the phyla Bacteroidetes, Dictyoglomi, EM3, and OP9 (“Atribacteria”). These observations conclusively demonstrate the production of bGDGTs in this hot spring; however, the identity of organisms that produce bGDGTs in the geothermal environment remains unclear. PMID:23847605

  3. Phenylethynl-terminated poly(arylene ethers)

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Bryant, Robert G. (Inventor); Hergenrother, Paul M. (Inventor)

    1993-01-01

    Phenylethynyl-terminated poly(arylene ethers) are prepared in a wide range of molecular weights by adjusting monomer ratio and adding an appropriate amount of 4-fluoro- 4'-phenylethynyl benzophenone during polymer synthesis. The resulting phenylethynyl-terminated poly(arylene ethers) react and crosslink upon curing for one hour at 350 C to provide materials with improved solvent resistance, higher modulus, and better high temperature properties than the linear, uncrosslinked polymers.

  4. Imide/arylene ether copolymers. I

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    The preparation of a series of novel imide/arylene ether copolymers is described together with the results of viscosity and DSC Tg(Tm) measurements. The copolymers were synthesized from an arylene ether block and either an amorphous or semicrystalline imide block. One block copolymer was end-capped, and the molecular weight was controlled to improve compression moldability. The paper also presents results of mechanical properties tests on copolymer samples.

  5. Accelerated dynamics of supercooled glycerol in soft confinement

    NASA Astrophysics Data System (ADS)

    Blochowicz, T.; Gouirand, E.; Fricke, A.; Spehr, T.; Stühn, B.; Frick, B.

    2009-06-01

    We investigate the dynamics of supercooled glycerol in a soft confinement within microemulsion droplets. The structure of the system is characterized by small-angle neutron scattering. We show that temperature-stable droplets establish a confinement, which may be varied in size from about 1 to 10 nm. Subsequently we focus on the dynamics of glass-forming glycerol confined within nanodroplets of different sizes. By combining neutron backscattering and time-of-flight for a broad dynamic range we obtain the incoherent intermediate scattering function S(q,t), which reveals increasingly accelerated dynamics as glycerol is confined to smaller droplets and for the relaxation times a crossover from Vogel-Fulcher behavior in the bulk to an Arrhenius law in confinement.

  6. Ru/FTO: Heterogeneous catalyst for glycerol hydrogenolysis

    NASA Astrophysics Data System (ADS)

    Samad, Wan Zurina; Isahak, Wan Nor Roslam Wan; Liew, Kin Hong; Nordin, Norazzizi; Yarmo, Mohd Ambar; Yusop, Muhammad Rahimi

    2014-09-01

    An introduction of Fluorine-doped tin oxide (FTO) as new catalyst support with Ru metal had enhanced the conversion and selectivity for glycerol hydrogenolysis. A small cluster of Ru were highly dispersed and intercalated over FTO via simple chemical mixture and reduction method. In comparison with various metal (Pd, Os, Cu), Ru/FTO catalyst showed the highest conversion (100%) and highly selectivity of 1,2-propanediol (94%) in the hydrogenolysis of glycerol. The reaction was optimally conducted at 150 °C, 20 bar of H2 pressure and at 8 hours. Ru/FTO catalyst was ascribed as active catalyst due to the amphoteric sites of FTO and small size of Ru metal. This provides high surface concentration of reduction process that involves the chemical bond dissociation in the glycerol hydrogenolysis.

  7. Lithium perchlorate-nitromethane-promoted alkylation of anilines with arylmethanols.

    PubMed

    Zhou, Jun; Mao, Hai-Feng; Wang, Lu; Zou, Jian-Ping; Zhang, Wei

    2011-11-01

    A new application of lithium perchlorate-nitromethane (LPNM) for the formation of aromatic C-N and C-C bonds is introduced. LPNM-promoted reactions of anilines with diarylmethanols selectively generate N-alkylated anilines or mono and double Friedel-Crafts alkylation products under different conditions by changing the reaction time, reaction temperature, and the ratio of the reactants. This method does not require the use of transition metal catalysts to prepare alkylated aniline derivatives. PMID:21547437

  8. Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli.

    PubMed

    Kim, Kwangwook; Kim, Sun-Ki; Park, Yong-Cheol; Seo, Jin-Ho

    2014-03-01

    3-Hydroxypropionic acid (3-HP) is a valuable biochemical with high potential for bioplastic manufacturing. The endogenous glycerol metabolism and by-product formation pathway in Escherichia coli were modulated to enhance 3-HP production from glycerol. Double deletion of glpK and yqhD directed the glycerol flux to 3-HP biosynthesis and reduced the formation of 1,3-propanediol. Since 3-hydroxypropionaldehyde (3-HPA), a precursor of 3-HP, is toxic to cell growth, the gene encoding Pseudomonas aeruginosa semialdehyde dehydrogenase (PSALDH) highly active on 3-HPA was expressed in E. coli. Finally, fed-batch culture of recombinant E. coli BL21star(DE3) without glpK and yqhD, and expressing Lactobacillus brevis DhaB-DhaR, and P. aeruginosa PSALDH resulted in 57.3g/L 3-HP concentration, 1.59g/L-h productivity and 0.88g/g yield. In conclusion, modulation of the glycerol metabolism in combination with enhanced activity of 3-HPA dehydrogenation improved the production of 3-HP from glycerol. PMID:24502915

  9. Effect of biodiesel-derived raw glycerol on 1,3-propanediol production by different microorganisms.

    PubMed

    Moon, Chuloo; Ahn, Jae-Hyeong; Kim, Seung W; Sang, Byoung-In; Um, Youngsoon

    2010-05-01

    The microbial production of 1,3-propanediol (1,3-PD) from raw glycerol, a byproduct of biodiesel production, is economically and environmentally advantageous. Although direct use of raw glycerol without any pretreatment is desirable, previous studies have reported that this could cause inhibition of microbial growth. In this study, we investigated the effects of raw glycerol type, different microorganisms, and pretreatment of raw glycerol on the production of 1,3-PD. Raw glycerol from waste vegetable-oil-based biodiesel production generally caused more inhibition of 1,3-PD production and microbial growth compared to raw glycerol from soybean-oil-based biodiesel production. In addition, two raw glycerol types produced from two biodiesel manufacturers using waste vegetable oil exhibited different 1,3-PD production behavior, partially due to different amounts of methanol included in the raw glycerol from the two biodiesel manufacturers. Klebsiella strains were generally resistant to all types of raw glycerol while the growth of Clostridium strains was variably inhibited depending on the type of raw glycerol. The 1,3-PD production of the Clostridium strains using acid-pretreated raw glycerol was significantly enhanced compared to that with raw glycerol, demonstrating the feasibility of using raw glycerol for 1,3-PD production by various microorganisms. PMID:19937397

  10. Anaerobic biodegradation of ether compounds by ether bond-cleaving bacteria and methanogenic consortia

    SciTech Connect

    Dwyer, D.F.

    1989-01-01

    Ether compounds are manufactured for use in nonionic detergents, plastics, pesticides and other products and occur as toxic organic compounds, the most famous being tetrachlorodibenzo-p-dioxin. Ether compounds were considered recalcitrant to anaerobic biodegradation due to the lack of an appropriate oxidant for ether bond-cleavage in reducing environments. Many of these compounds reside in anaerobic environments or are exposed to anaerobic waste treatment processes. Thus, it is of interest to identify: (i) whether ether compounds are anaerobically biodegradable, (ii) the anaerobic microorganisms able to degrade these compounds, and (iii) the mechanism(s) of anaerobic ether bond-cleavage. The ether bonds of polyethylene glycol (PEG; HO-(CH{sub 2}CH{sub 2}-O-){sub n}H), phenyl ether ((C{sub 6}H{sub 5}){sub 2}O), and dibenzo-p-dioxin ((C{sub 6}H{sub 4}){sub 2}O{sub 2}) were shown to be degraded in methanogenic consortia enriched with these compounds and polyethoxylate (nonionic) surfactants as substrates. Two anaerobic microorganisms which used PEGs as sole substrates were isolated and characterized. Desulfovibrio desulfuricans strain DG2 degraded the monomer ethylene glycol and oligomers up to tetraethylene glycol (HO-(CH{sub 2}CH{sub 2}-O-){sub 4}H) in length. Bacteroides sp. strain PG1 degraded diethylene glycol and all other polymer lengths of PEG. PEGs were degraded by Bacteroides sp. strain PG1 via an external depolymerization which was either a hydrolytic or a reductive cleavage of the ether bond. The ether bond of diaryl ethers was apparently cleaved by a reductive mechanism which produced benzene and phenol as products from phenyl ether degradation and benzene and, by indirect analysis, catechol from dibenzo-dioxin.

  11. Efficient cross-coupling of aryl Grignard reagents with alkyl halides by recyclable ionic iron(III) complexes bearing a bis(phenol)-functionalized benzimidazolium cation.

    PubMed

    Xia, Chong-Liang; Xie, Cun-Fei; Wu, Yu-Feng; Sun, Hong-Mei; Shen, Qi; Zhang, Yong

    2013-12-14

    A novel bis(phenol)-functionalized benzimidazolium salt, 1,3-bis(3,5-di-tert-butyl-2-hydroxybenzyl)benzimidazolium chloride (H3LCl, 1), was designed and used to prepare ionic iron(III) complexes of the type [H3L][FeX4] (X = Cl, 2; X = Br, 3). Both 2 and 3 were characterized by elemental analysis, Raman spectroscopy, electrospray ionization mass spectrometry and X-ray crystallography. The catalytic performances of 2 and 3 in cross-coupling reactions using aryl Grignard reagents with primary and secondary alkyl halides bearing β-hydrogens were studied. This analysis shows that complex 2 has good potential for alkyl chloride-mediated coupling. In comparison, complex 3 showed slightly lower catalytic activity. After decanting the product contained in the ethereal layer, complex 2 could be recycled at least eight times without significant loss of catalytic activity. PMID:24145602

  12. Pulse loading of glycerol by electric explosion of wire

    NASA Astrophysics Data System (ADS)

    Uvarov, S. V.; Bannikova, I. A.; Naimark, O. B.

    2015-11-01

    A series of experiments was carried out to investigate the relaxation properties of glycerol under shock-wave loading. The strain rates at the compression wave front were in the range of 105-107 s-1. A modified version of the wire explosion set-up was used. Free surface velocity profiles were recorded by VISAR with fiber-optic sensor. We found that the glycerol exhibits the non-Newtonian liquid behavior: viscosity is higher at the high strain rate. Strain rate at the compressive wave front is found to be dependent on the wave amplitude in power of 1.3.

  13. Propylene from renewable resources: catalytic conversion of glycerol into propylene.

    PubMed

    Yu, Lei; Yuan, Jing; Zhang, Qi; Liu, Yong-Mei; He, He-Yong; Fan, Kang-Nian; Cao, Yong

    2014-03-01

    Propylene, one of the most demanded commodity chemicals, is obtained overwhelmingly from fossil resources. In view of the diminishing fossil resources and the ongoing climate change, the identification of new efficient and alternative routes for the large-scale production of propylene from biorenewable resources has become essential. Herein, a new selective route for the synthesis of propylene from bio-derived glycerol is demonstrated. The route consists of the formation of 1-propanol (a versatile bulk chemical) as intermediate through hydrogenolysis of glycerol at a high selectivity. A subsequent dehydration produces propylene. PMID:24578188

  14. Cryoprotective effect of different glycerol concentrations on domestic cat spermatozoa.

    PubMed

    Villaverde, Ana Izabel S Balbin; Fioratti, Eduardo G; Penitenti, Marcimara; Ikoma, Maura R V; Tsunemi, Miriam H; Papa, Frederico O; Lopes, Maria D

    2013-10-15

    Cryopreservation of spermatozoa is a pivotal tool in assisted reproduction, and studies aiming to establish optimal freezing/thawing protocols are essential to enhance sperm survival. The objectives of the present study were to (1) compare the cryoprotective efficiency of three different glycerol concentrations (3%, 5%, and 7%) on the basis of post-thaw sperm quality and (2) investigate whether the incidence of morphologically abnormal sperm in fresh samples is related to cryodamage sensitivity. Semen was collected from six tomcats using an artificial vagina (total 18 ejaculates). Each ejaculate was diluted using Tris-egg yolk-based extender (TEY), evaluated, equally divided into three aliquots, and rediluted using TEY with and without glycerol to achieve final concentrations of 3%, 5%, and 7%. Samples were loaded into 0.25 mL straws, equilibrated for 60 minutes at 5 °C, frozen, and then thawed at 46 °C for 12 seconds. Fresh and frozen-thawed samples were evaluated for sperm motion parameters (computer-assisted sperm analysis), plasma membrane integrity (PMI; propidium iodide and carboxyfluorescein diacetate), and DNA integrity (acridine orange). Plasma and acrosomal membrane integrity were assessed by flow cytometry (propidium iodide and fluorescein isothiocyanate-conjugated pea (Pisum sativum) agglutinin) immediately after thawing. Sperm motion parameters were also evaluated at 30 and 60 minutes of postincubation. For all treatment groups, cryopreservation significantly impaired the PMI and sperm motion parameters, except for straightness and amplitude of lateral head displacement. DNA integrity showed a slight reduction (P < 0.05) when 3% glycerol was used. The percentage of total motility, progressive motility, and rapid spermatozoa were significantly lower immediately after thawing and up to 60 minutes of incubation for the 3% glycerol group when compared with 5% and 7%. No difference (P > 0.05) was found for PMI, acrosome integrity, and DNA integrity among

  15. Dielectric and specific heat relaxations in vapor deposited glycerol.

    PubMed

    Kasina, A; Putzeys, T; Wübbenhorst, M

    2015-12-28

    Recently [S. Capponi, S. Napolitano, and M. Wübbenhorst, Nat. Commun. 3, 1233 (2012)], vapor deposited glasses of glycerol have been found to recover their super-cooled liquid state via a metastable, ordered liquid (MROL) state characterized by a tremendously enhanced dielectric strength along with a slow-down of the relaxation rate of the structural relaxation. To study the calorimetric signature of this phenomenon, we have implemented a chip-based, differential AC calorimeter in an organic molecular beam deposition setup, which allows the simultaneous measurement of dielectric relaxations via interdigitated comb electrodes and specific heat relaxation spectra during deposition and as function of the temperature. Heating of the as-deposited glass just above the bulk Tg and subsequent cooling/reheating revealed a step-wise increase in cp by in total 9%, indicating unambiguously that glycerol, through slow vapour deposition, forms a thermodynamically stable glass, which has a specific heat as low as that of crystalline glycerol. Moreover, these glasses were found to show excellent kinetic stability as well as evidenced by both a high onset-temperature and quasi-isothermal recovery measurements at -75 °C. The second goal of the study was to elucidate the impact of the MROL state on the specific heat and its relaxation to the super-cooled state. Conversion of "MROL glycerol" to its "normal" (ordinary liquid, OL) state revealed a second, small (∼2%) increase of the glassy cp, a little gain (<10%) in the relaxed specific heat, and no signs of deviations of τcal from that of normal "bulk" glycerol. These findings altogether suggest that the MROL state in glycerol comprises largely bulk-type glycerol that coexist with a minor volume fraction (<10%) of PVD-induced structural anomalies with a crystal-like calorimetric signature. Based on the new calorimetric findings, we have proposed a new physical picture that assumes the existence of rigid polar clusters (RPCs

  16. Determining cysteine oxidation status using differential alkylation

    NASA Astrophysics Data System (ADS)

    Schilling, Birgit; Yoo, Chris B.; Collins, Christopher J.; Gibson, Bradford W.

    2004-08-01

    Oxidative damage to proteins plays a major role in aging and in the pathology of many degenerative diseases. Under conditions of oxidative stress, reactive oxygen and nitrogen species can modify key redox sensitive amino acid side chains leading to altered biological activities or structures of the targeted proteins. This in turn can affect signaling or regulatory control pathways as well as protein turnover and degradation efficiency in the proteasome. Cysteine residues are particularly susceptible to oxidation, primarily through reversible modifications (e.g., thiolation and nitrosylation), although irreversible oxidation can lead to products that cannot be repaired in vivo such as sulfonic acid. This report describes a strategy to determine the overall level of reversible cysteine oxidation using a stable isotope differential alkylation approach in combination with mass spectrometric analysis. This method employs 13C-labeled alkylating reagents, such as N-ethyl-[1,4-13C2]-maleimide, bromo-[1,2-13C2]-acetic acid and their non-labeled counterparts to quantitatively assess the level of cysteine oxidation at specific sites in oxidized proteins. The differential alkylation protocol was evaluated using standard peptides and proteins, and then applied to monitor and determine the level of oxidative damage induced by diamide, a mild oxidant. The formation and mass spectrometric analysis of irreversible cysteine acid modification will also be discussed as several such modifications have been identified in subunits of the mitochondrial electron transport chain complexes. This strategy will hopefully contribute to our understanding of the role that cysteine oxidation plays in such chronic diseases such as Parkinson's disease, where studies in animal and cell models have shown oxidative damage to mitochondrial Complex I to be a specific and early target.

  17. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect

    Nadas, Janos I; Vukovic, Sinisa; Hay, Benjamin

    2012-01-01

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  18. New example of spontaneous resolution among aryl glycerol ethers: 3-(2,6-dichlorophenoxy)propane-1,2-diol

    NASA Astrophysics Data System (ADS)

    Bredikhina, Zemfira A.; Kurenkov, Alexey V.; Zakharychev, Dmitry V.; Krivolapov, Dmitry B.; Bredikhin, Alexander A.

    2016-08-01

    Using a set of simple tests, based on the properties of ideal conglomerate phase diagrams, it has been suggested to the conglomerate-formative nature of 3-(2,6-dichlorophenoxy)-propane-1,2-diol 1. Additional arguments have been drawn during the study of a single crystal X-ray diffraction study of the compound. The crystal packing details have been evaluated and discussed. Racemic 1 have been resolved into individual (S)- and (R)-components by a preferential crystallization procedure.

  19. O–H hydrogen bonding promotes H-atom transfer from a C–H bonds for C-alkylation of alcohols

    PubMed Central

    Jeffrey, Jenna L.; Terrett, Jack A.; MacMillan, David W. C.

    2015-01-01

    The efficiency and selectivity of hydrogen atom transfer from organic molecules are often difficult to control in the presence of multiple potential hydrogen atom donors and acceptors. Here, we describe the mechanistic evaluation of a mode of catalytic activation that accomplishes the highly selective photoredox α-alkylation/lactonization of alcohols with methyl acrylate via a hydrogen atom transfer mechanism. Our studies indicate a particular role of tetra-n-butylammonium phosphate in enhancing the selectivity for α C–H bonds in alcohols in the presence of allylic, benzylic, α-C=O, and α-ether C–H bonds. PMID:26316601

  20. Conformations and Barriers to Methyl Group Internal Rotation in Two Asymmetric Ethers: Propyl Methyl Ether and Butyl Methyl Ether

    NASA Astrophysics Data System (ADS)

    Long, B. E.; Dechirico, F.; Cooke, S. A.

    2012-06-01

    The conformational preferences of the O-C-C-C unit are important in many biological systems with the unit generally preferring a gauche configuration compared to an anti configuration. Butyl methyl ether and propyl methyl ether provide very simple systems for this phenomenom to manifest. Pure rotational spectra of the title molecules have been recorded using chirped pulse Fourier transform microwave spectroscopy (CP-FTMW). In the case of butyl methyl ether, only one conformer has been observed. This conformer has torsional angles of COCC = 180°, OCCC = 62° and CCCC = 180° (anti-gauche-anti) and rotational constants of A = 10259.4591(33) MHz, B = 1445.6470(13) MHz, and C = 1356.2944(14) MHz. The rotational spectrum was doubled and has been analyzed to produce an effective barrier to methyl group internal rotation of 780(35) cm-1. A prior rotational spectroscopic study on propyl methyl ether had focused only on the high energy anti-anti conformer. We have analyzed spectra from the lowest energy anti-gauche conformer and the spectroscopic constants will be presented. A summary of the differences in conformational energies and methyl group internal rotation barriers for the class of aliphatic asymmetric ethers will be presented. K. N. Houk, J. E. Eksterowicz, Y.-D. Wu, C. D. Fuglesang, D. B. Mitchell. J. Am. Chem. Soc. 115 (4170), 1993. Hiroshi Kato, Jun Nakagawa, Michiro Hayashi. J. Mol. Spectrosc. 80 (272), 1980.

  1. Process for the production of ethylidene diacetate from dimethyl ether using a heterogeneous catalyst

    DOEpatents

    Ramprasad, Dorai; Waller, Francis Joseph

    1998-01-01

    This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.

  2. Reactivity of hydroxy- and aquo(hydroxy)-λ3-iodane-crown ether complexes.

    PubMed

    Miyamoto, Kazunori; Yokota, Yukie; Suefuji, Takashi; Yamaguchi, Kentaro; Ozawa, Tomoyuki; Ochiai, Masahito

    2014-04-25

    We have designed a series of hydroxy(aryl)-λ(3)-iodane-[18]crown-6 complexes, prepared from the corresponding iodosylbenzene derivatives and superacids in the presence of [18]crown-6, and have investigated their reactivities in aqueous media. These activated iodosylbenzene monomers are all non-hygroscopic shelf-storable reagents, but they maintain high oxidizing ability in water. The complexes are effective for the oxidation of phenols, sulfides, olefins, silyl enol ethers, and alkyl(trifluoro)borates under mild conditions. Furthermore, hydroxy-λ(3)-iodane-[18]crown-6 complexes serve as efficient progenitors for the synthesis of diaryl-, vinyl-, and alkynyl-λ(3)-iodanes in water. Other less polar organic solvents, such as methanol, acetonitrile, and dichloromethane, are also usable in some cases. PMID:24644216

  3. Process for the production of ethylidene diacetate from dimethyl ether using a heterogeneous catalyst

    DOEpatents

    Ramprasad, D.; Waller, F.J.

    1998-04-28

    This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.

  4. Determination of surfactant sodium lauryl ether sulfate by ion pairing chromatography with suppressed conductivity detection

    SciTech Connect

    Ye, M.Y.; Walkup, R.G.; Hill, K.D. )

    1994-01-01

    A method for the determination of the anionic Steol CS-330 surfactant is described. CS-330 is a complex mixture of oligomers due to the various sizes of fatty alcohols and the number of moles of the ethoxylation. The main component of CS-330 is sodium lauryl ether sulfate (SLES). Since a SLES molecule has a hydrophilic sulfate head and a hydrophobic alkyl ethoxyl tail, it is very difficult to separate these molecules with conventional reverse phase chromatography or ion exchange chromatography. This work uses ion pairing chromatography with suppressed conductivity detection. The separation of oligomers in CS-330 is achieved. SLES does not have UV-absorbing chromophores, therefore an optical detector is not very sensitive. Suppressed conductivity detection technique significantly increases sensitivity and a quantitation limit of 56.60 ppm is achieved.

  5. Freeze resistance in rainbow smelt (Osmerus mordax): seasonal pattern of glycerol and antifreeze protein levels and liver enzyme activity associated with glycerol production.

    PubMed

    Lewis, Johanne M; Ewart, K Vanya; Driedzic, William R

    2004-01-01

    Rainbow smelt (Osmerus mordax) inhabit inshore waters along the North American Atlantic coast. During the winter, these waters are frequently ice covered and can reach temperatures as low as -1.9 degrees C. To prevent freezing, smelt accumulate high levels of glycerol, which lower the freezing point via colligative means, and antifreeze proteins (AFP). The up-regulation of the antifreeze response (both glycerol and AFP) occurs in early fall, when water temperatures are 5 degrees -6 degrees C. The accumulation of glycerol appears to be the main mechanism of freeze resistance in smelt because it contributes more to the lowering of the body's freezing point than the activity of the AFP (0.5 degrees C vs. 0.25 degrees C for glycerol and AFP, respectively) at a water temperature of -1.5 degrees C. Moreover, AFP in smelt appears to be a safeguard mechanism to prevent freezing when glycerol levels are low. Significant increases in activities of the liver enzymes glycerol 3-phosphate dehydrogenase (GPDH), alanine aminotransferase (AlaAT), and phosphoenolpyruvate carboxykinase (PEPCK) during the initiation of glycerol production and significant correlations between enzyme activities and plasma glycerol levels suggest that these enzymes are closely associated with the synthesis and maintenance of elevated glycerol levels for use as an antifreeze. These findings add further support to the concept that carbon for glycerol is derived from amino acids. PMID:15286915

  6. Four 3-cyanodifurazanyl ethers: potential propellants.

    PubMed

    Averkiev, Boris B; Antipin, Mikhail Yu; Sheremetev, Aleksey B; Timofeeva, Tatiana V

    2003-07-01

    In earlier papers, we described the synthesis and structures of bis(3-nitrofurazan-4-yl) ether, C(4)N(6)O(7), (I), bis[3-(nitro-N,N,O-azoxy)furazan-4-yl] ether, C(4)N(10)O(9), (II), and bis[3-(5H-[1,2,3]triazolo[4,5-c]furazan-5-yl)furazan-4-yl] ether, C(8)N(14)O(5), (III). Here we compare the structures of (I)-(III) with those of four 3-cyanodifurazanyl ethers, namely bis(3-cyanofurazan-4-yl) ether, C(6)N(6)O(3), (IV), 3-cyanofurazanyl 3-nitrofurazanyl ether, C(5)N(6)O(5), (V), 3,4-bis(3-cyanofurazan-4-yloxy)furazan, C(8)N(8)O(5), (VI), and bis[3-(3-cyanofurazan-4-yloxy)furazan-4-yl]diazene, C(10)N(12)O(6), (VII). It was found that the geometric parameters of the difurazanyl ether fragments are similar in these structures and therefore not influenced by substituent effects; however, the conformation of this fragment is different, viz. structures (I), (III), (V) and (VI) have approximate C(2) symmetry, and structures (II), (IV) and (VII) have C(s) symmetry. Dense crystal packing (1.626-1.898 Mg m(-3)) is characteristic for all these hydrogen-free compounds. A linear correlation is also determined between crystal density and 'molecular density' (M/V), where M is the mass of a molecule and V is the molecular volume. PMID:12855864

  7. A single amino acid change in Escherichia coli glycerol kinase abolishes glucose control of glycerol utilization in vivo.

    PubMed

    Pettigrew, D W; Liu, W Z; Holmes, C; Meadow, N D; Roseman, S

    1996-05-01

    Escherichia coli glycerol kinase (EC 2.7.1.30; ATP:glycerol 3-phosphotransferase) is a key element in glucose control of glycerol metabolism. Its catalytic activity is inhibited allosterically by the glycolytic intermediate, fructose 1,6-biphosphate, and by the phosphotransferase system phosphocarrier protein, IIIGlc (also known as IIAGlc). These inhibitors provide mechanisms by which glucose blocks glycerol utilization in vivo. We report here the cloning and sequencing of the glpK22 gene isolated from E. C. C. Lin strain 43, a strain that shows the loss of glucose control of glycerol utilization. DNA sequencing shows a single missense mutation that translates to the amino acid change Gly-304 to Ser (G-304-S) in glycerol kinase. The effects of this substitution on the functional and physical properties of the purified mutant enzyme were determined. Neither of the allosteric ligands inhibits it under conditions that produce strong inhibition of the wild-type enzyme, which is sufficient to explain the phenotype of strain 43. However, IIIGlc activates the mutant enzyme, which could not be predicted from the phenotype. In the wild-type enzyme, G-304 is located 1.3 nm from the active site and 2.5 nm from the IIIGlc binding site (M. Feese, D. W. Pettigrew, N. D. Meadow, S. Roseman, and S. J. Remington, Proc. Natl. Acad. Sci. USA 91:3544-3548, 1994). It is located in the same region as amino acid substitutions in the related protein DnaK which alter its catalytic and regulatory properties and which are postulated to interfere with a domain closure motion (A. S. Kamath-Loeb, C. Z. Lu, W.-C. Suh, M. A. Lonetto, and C. A. Gross, J. Biol. Chem. 270:30051-30059, 1995). The global effect of the G-304-S substitution on the conformation and catalytic and regulatory properties of glycerol kinase is consistent with a role for the domain closure motion in the molecular mechanism for glucose control of glycerol utilization. PMID:8631672

  8. Excess wing in glass-forming glycerol and LiCl-glycerol mixtures detected by neutron scattering

    SciTech Connect

    Gupta, S.; Arend, N.; Lunkenheimer, P.; Loidl, A.; Stingaciu, L.; Jalarvo, N.; Mamontov, E.; Ohl, M.

    2015-01-22

    The relaxational dynamics in glass-forming glycerol and glycerol mixed with LiCl is investigated using different neutron scattering techniques. The performed neutron spin echo experiments, which extend up to relatively long relaxation time scales of the order of 10 ns, should allow for the detection of contributions from the so-called excess wing. This phenomenon, whose microscopic origin is controversially discussed, arises in a variety of glass formers and, until now, was almost exclusively investigated by dielectric spectroscopy and light scattering. In conclusion, we show here that the relaxational process causing the excess wing can also be detected by neutron scattering, which directly couples to density fluctuations.

  9. Characterizing PUF disk passive air samplers for alkyl-substituted PAHs: Measured and modelled PUF-AIR partition coefficients with COSMO-RS.

    PubMed

    Parnis, J Mark; Eng, Anita; Mackay, Donald; Harner, Tom

    2016-02-01

    Isomers of alkyl-substituted polycyclic aromatic hydrocarbons (PAHs) and dibenzothiophenes are modelled with COSMO-RS theory to determine the effectiveness and accuracy of this approach for estimation of isomer-specific partition coefficients between air and polyurethane foam (PUF), i.e., KPUF-AIR. Isomer-specific equilibrium partitioning coefficients for a series of 23 unsubstituted and isomeric alkyl-substituted PAHs and dibenzothiophenes were measured at 22 °C. This data was used to determine the accuracy of estimated values using COSMO-RS, which is isomer specific, and the Global Atmospheric Passive Sampling (GAPS) template approach, which treats all alkyl-substitutions as a single species of a given side-chain carbon number. A recently developed oligomer-based model for PUF was employed, which consisted of a 1:1 condensed pair of 2,4-toluene-diisocyanide and glycerol. The COSMO-RS approach resulted in a significant reduction in the RMS error associated with simple PAHs and dibenzothiophene compared with the GAPS template approach. When used with alkylated PAHs and dibenzothiophenes grouped into carbon-number categories, the GAPS template approach gave lower RMS error (0.72) compared to the COSMO-RS result (0.87) when the latter estimates were averaged within the carbon-number-based categories. When the isomer-specific experimental results were used, the COSMO-RS approach resulted in a 21% reduction in RMS error with respect to the GAPS template approach, with a 0.57 RMS error for all alkylated PAHs and dibenzothiophenes studied. The results demonstrate that COSMO-RS theory is effective in generating isomer-specific PUF-air partition coefficients, supporting the application of PUF-based passive samplers for monitoring and research studies of polycyclic aromatic compounds (PACs) in air. PMID:26692513

  10. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218...-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated...

  11. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218...-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated...

  12. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218...-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated...

  13. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218...-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated...

  14. Synthesis of isotopically labeled R- or S-[.sup.13C, .sup.2H] glycerols

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2008-01-22

    The present invention is directed to asymmetric chiral labeled glycerols including at least one chiral atom, from one to two .sup.13C atoms and from zero to four deuterium atoms bonded directly to a carbon atom, e.g., (2S) [1,2-.sup.13C.sub.2]glycerol and (2R) [1,2-.sup.13C.sub.2]glycerol, and to the use of such chiral glycerols in the preparation of labeled amino acids.

  15. Stereospecific nickel-catalyzed cross-coupling reactions of benzylic ethers and esters.

    PubMed

    Tollefson, Emily J; Hanna, Luke E; Jarvo, Elizabeth R

    2015-08-18

    This Account presents the development of a suite of stereospecific alkyl-alkyl cross-coupling reactions employing nickel catalysts. Our reactions complement related nickel-catalyzed stereoconvergent cross-coupling reactions from a stereochemical and mechanistic perspective. Most reactions of alkyl electrophiles with low-valent nickel complexes proceed through alkyl radicals and thus are stereoablative; the correct enantioselective catalyst can favor the formation of one enantiomer. Our reactions, in contrast, are stereospecific. Enantioenriched ethers and esters are cleanly converted to cross-coupled products with high stereochemical fidelity. While mechanistic details are still to be refined, our results are consistent with a polar, two-electron oxidative addition that avoids the formation of radical intermediates. This reactivity is unusual for a first-row transition metal. The cross-coupling reactions engage a range of benzylic ethers and esters, including methyl ethers, tetrahydropyrans, tetrahydrofurans, esters, and lactones. Coordination of the arene substituent to the nickel catalyst accelerates the reactions. Arenes with low aromatic stabilization energies, such as naphthalene, benzothiophene, and furan, serve as the best ligands and provide the highest reactivity. Traceless directing groups that accelerate reactions of sluggish substrates are described, providing partial compensation for arene coordination. Kumada, Negishi, and Suzuki reactions provide incorporation of a broad range of transmetalating agents. In Kumada coupling reactions, a full complement of Grigard reagents, including methyl, n-alkyl, and aryl Grignard reagents, are employed. In reactions employing methylmagnesium iodide, ligation of the nickel catalyst by rac-BINAP or DPEphos provides the highest yield and stereospecificity. For all other Grignard reagents, Ni(dppe)Cl2 has emerged as the best catalyst. Negishi cross-coupling reactions employing dimethylzinc are reported as a strategy to

  16. ESCHERICHIA COLI Gene Induction by Alkylation Treatment

    PubMed Central

    Volkert, Michael R.; Nguyen, Dinh C.; Beard, K. Christopher

    1986-01-01

    Searches for alkylation-inducible (aid) genes of Escherichia coli have been conducted by screening random fusions of the Mu-dl(ApR lac) phage for fusions showing increased β-galactosidase activity after treatment with methylating agents, but not after treatments with UV-irradiation. In this report we describe gene fusions that are specifically induced by alkylation treatments. Nine new mutants are described, and their properties are compared with the five mutants described previously. The total of 14 fusion mutants map at five distinct genetic loci. They can be further subdivided on the basis of their induction by methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). alkA, aidB and aidD are induced by both agents and appear to be regulated by ada. Neither aidC nor aidI is regulated by ada. Moreover, since aidC is induced only by MNNG and aidI is induced only by MMS, these two genes are likely to be individually regulated. Thus, there appear to be at least three different regulatory mechanisms controlling aid genes. PMID:3080354

  17. The photodissociation dynamics of alkyl radicals

    NASA Astrophysics Data System (ADS)

    Giegerich, Jens; Fischer, Ingo

    2015-01-01

    The photodisscociation dynamics of the alkyl radicals i-propyl (CH(CH3)2) and t-butyl (C(CH3)3) are investigated by H-atom photofragment imaging. While i-propyl is excited at 250 nm, the photodynamics of t-butyl are explored over a large energy range using excitation wavelengths between 347 nm and 233 nm. The results are compared to those obtained previously for ethyl, CH3CH2, and to those reported for t-butyl using 248 nm excitation. The translational energy (ET) distribution of the H-atom photofragments is bimodal and appears rather similar for all three radicals. The low ET part of the distribution shows an isotropic photofragment angular distribution, while the high ET part is associated with a considerable anisotropy. Thus, for t-butyl, two H-atom loss channels of roughly equal importance have been identified in addition to the CH3-loss channel reported previously. A mechanism for the photodissociation of alkyl radicals is suggested that is based on interactions between Rydberg- and valence states.

  18. The photodissociation dynamics of alkyl radicals

    SciTech Connect

    Giegerich, Jens; Fischer, Ingo

    2015-01-28

    The photodisscociation dynamics of the alkyl radicals i-propyl (CH(CH{sub 3}){sub 2}) and t-butyl (C(CH{sub 3}){sub 3}) are investigated by H-atom photofragment imaging. While i-propyl is excited at 250 nm, the photodynamics of t-butyl are explored over a large energy range using excitation wavelengths between 347 nm and 233 nm. The results are compared to those obtained previously for ethyl, CH{sub 3}CH{sub 2}, and to those reported for t-butyl using 248 nm excitation. The translational energy (E{sub T}) distribution of the H-atom photofragments is bimodal and appears rather similar for all three radicals. The low E{sub T} part of the distribution shows an isotropic photofragment angular distribution, while the high E{sub T} part is associated with a considerable anisotropy. Thus, for t-butyl, two H-atom loss channels of roughly equal importance have been identified in addition to the CH{sub 3}-loss channel reported previously. A mechanism for the photodissociation of alkyl radicals is suggested that is based on interactions between Rydberg- and valence states.

  19. Seasonal variability of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in a temperate lake system

    NASA Astrophysics Data System (ADS)

    Loomis, Shannon E.; Russell, James M.; Heureux, Ana M.; D'Andrea, William J.; Sinninghe Damsté, Jaap S.

    2014-11-01

    Quantitative climate reconstructions are crucial for understanding the magnitude of and mechanisms behind natural and anthropogenic climate change, yet there are few proxies that can reliably reconstruct terrestrial temperature. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that are increasingly used to reconstruct paleotemperature from lake sediments, but despite their potential, we have a poor understanding of (1) autochthonous vs. allochthonous sources of brGDGTs in lakes and (2) the seasonality of and environmental controls on brGDGT production within lakes. To investigate these factors, we examined water column suspended particulate matter (SPM) and settling particles from a sediment trap collected on a biweekly to monthly basis over a period of three years at Lower King Pond, a small kettle lake in northern Vermont, USA. We also compared the concentration and fractional abundances of brGDGTs in SPM and settling particles with those of catchment soils, river sediments, and lake surface sediments to constrain the relative importance of brGDGTs derived from the landscape versus brGDGTs produced within the lake itself. We find significant differences in concentrations and fractional abundances of brGDGTs between soil and river sediment samples from the catchment and lake sediments, indicating a mostly autochthonous source for lacustrine brGDGTs. BrGDGT concentrations, fluxes, and fractional abundances in SPM vary over the annual cycle, indicating that brGDGTs are produced throughout the year and respond to changes within the water column. The total annual flux of brGDGTs settling through the water column is comparable to the brGDGT accumulation rates in surface sediments, indicating that in this lake brGDGTs are mostly produced within the water column, not in the sediment itself. While brGDGTs are produced in all seasons within the water column, the flux to the sediments is highest during periods of spring and fall

  20. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  1. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  2. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  3. Synthesis, characterization and nanocomposite formation of poly(glycerol succinate-co-maleate) with cellulose nanowhiskers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with cellulose nanowhiskers. This glycerol-based polymer is thermally stable as...

  4. Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One refined and 2 crude glycerol samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. Fermentation conditions were determined to efficiently utilize glycerol while maintaining PHB yields. A batch culture protocol including 1% glycerol and an aerati...

  5. Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice.

    PubMed

    Hara, Mariko; Verkman, A S

    2003-06-10

    Mice deficient in the epidermal water/glycerol transporter aquaporin-3 (AQP3) have reduced stratum corneum (SC) hydration and skin elasticity, and impaired barrier recovery after SC removal. SC glycerol content is reduced 3-fold in AQP3 null mice, whereas SC structure, protein/lipid composition, and ion/osmolyte content are not changed. We show here that glycerol replacement corrects each of the defects in AQP3 null mice. SC water content, measured by skin conductance and 3H2O accumulation, was 3-fold lower in AQP3 null vs. wild-type mice, but became similar after topical or systemic administration of glycerol in quantities that normalized SC glycerol content. SC water content was not corrected by glycerol-like osmolytes such as xylitol, erythritol, and propanediol. Orally administered glycerol fully corrected the reduced skin elasticity in AQP3 null mice as measured by the kinetics of skin displacement after suction, and the delayed barrier recovery as measured by transepidermal water loss after tape-stripping. Analysis of [14C]glycerol kinetics indicated reduced blood-to-SC transport of glycerol in AQP3 null mice, resulting in slowed lipid biosynthesis. These data provide functional evidence for a physiological role of glycerol transport by an aquaglyceroporin, and indicate that glycerol is a major determinant of SC water retention, and mechanical and biosynthetic functions. Our findings establish a scientific basis for the >200-yr-old empirical practice of including glycerol in cosmetic and medicinal skin formulations. PMID:12771381

  6. Production of arabitol from glycerol: strain screening and study of factors affecting production yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol is a major byproduct from biodiesel production, and developing new uses for glycerol is imperative to overall economics and sustainability of the biodiesel industry. With the aim of producing xylitol and/or arabitol as the value-added products from glycerol, 214 yeast strains, many osmotole...

  7. The Effect of Glycerol Ingestion on Performance during Simulated Multisport Activity

    ERIC Educational Resources Information Center

    Knight, Christopher; Braakhuis, Andrea; Paton, Carl

    2010-01-01

    Glycerol-induced hyperhydration has been applied to endurance sport with limited success as a performance enhancement strategy. Glycerol has been used as a hyperhydrating agent, because it has been shown to be rapidly absorbed and osmotically active; therefore, the fluid intake with glycerol is distributed throughout the body. Hyperhydration with…

  8. Nitrogen-Corrected Apparent Metabolizable Energy Value of Crude Glycerol for Laying Hens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experiment was conducted with laying hens to determine the AMEn value of crude glycerol, a co-product of biodiesel production. Crude glycerol (87% glycerol, 9% water, 0.03% methanol, 1.26% Na, and 3,625 kcal/kg gross energy) was obtained from a commercial biodiesel production facility (Ag Process...

  9. Thermal and mechanical properties of glycerol-based polymer films infused with plant cell wall polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(glutaric acid-co-glycerol) films were produced by first synthesizing polymer gels from uncatalyzed polyesterification of glutaric acid to glycerol in toluene. Residual amounts of starting materials in the gel matrices were determined by gas chromatography (GC) to contain 15 percent glycerol and...

  10. Toxicity of palmitoyl glycerol to mice: depression of thyroid function

    SciTech Connect

    Trumbo, P.R.; Meuten, D.J.; King, M.W.; Tove, S.B.

    1987-10-01

    Mice given propylthiouracil, a thyroid inhibitor, and fed a diet containing a nontoxic level of rac-1(3)-palmitoyl glycerol showed the hypothermia and mortality expected for a toxic dose, but did not show these signs when linoleate or oleate was added to the diet. Loss of radioiodine from the whole animal and thyroid gland was slower when mice were fed the toxic palmitoyl glycerol diet than when fed the same diet containing 4% safflower oil. However, mice fed the two diets did not differ in the extent of the incorporation of radioiodine, and essentially all was bound to protein in each case. Follicular thyroid cells from mice fed the potentially toxic diet that contained unsaturated fat were normal in appearance. Conversely, cells from mice fed the toxic diet were smaller and more densely stained, showing evidence of glycoprotein inside the cell. These findings show that the thyroid gland is affected by the palmitoyl glycerol diet. However, the thyroid is not the only organ affected, because giving either thyroxine or triiodothyronine had no effect on the toxicity of palmitoyl glycerol.

  11. Adaptation to physical training in rats orally supplemented with glycerol.

    PubMed

    Andrade, Eric Francelino; Lobato, Raquel Vieira; de Araújo, Ticiana Vasques; Orlando, Débora Ribeiro; Vicente da Costa, Diego; de Oliveira Silva, Víviam; Rogatto, Gustavo Puggina; Zangeronimo, Márcio Gilberto; Rosa, Priscila Vieira; Pereira, Luciano José

    2015-01-01

    We evaluated training adaptation and physical performance parameters in rats orally supplemented with glycerol, glucose, or saline, and submitted to moderate aerobic exercise. Thirty male rats were trained for 6 weeks and administered the supplements during the last 4 weeks of the experiment. Animals were distributed in a completely randomized factorial 2 × 3 design (with or without exercise and 3 substrates). Data were subjected to analysis of variance (ANOVA) and means were compared using the Student-Newmann-Keuls test at 5%. Among the trained animals, none of the substances caused differences in the percentages of protein, fat, or water content in the carcass. Compared with the sedentary animals, the trained animals supplemented with saline and glucose showed a higher protein percentage in the carcass. The relative mass of the heart and adrenal glands was higher in the trained animals. Glycerol improved the protein content in non-trained animals and increased the relative adrenal mass in both groups. Glycerol reduced the variation in levels of lactate and aspartate aminotransferase (AST) during the last exercise session. There was no difference between groups regarding the relative mass of the thymus and gastrocnemius or with the diameter of muscle fibers or the neutrophil-lymphocyte ratio. Supplementation with glycerol was efficient at attenuating variation in AST and lactate levels during exercise. PMID:25474597

  12. Crude glycerol combustion: particulate, acrolein, and other volatile organic emissions

    EPA Science Inventory

    Crude glycerol is an abundant by-product of biodiesel production. As volumes of this potential waste grow, there is increasing interest in developing new value added uses. One possible use, as a boiler fuel for process heating, offers added advantages of energy integration and ...

  13. Conversion of Phosphatidylcholine to PPosphatidylglycerol with phospholipase D and Glycerol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatidylglycerol (PtdGly) is a relatively rare phospholipid that is useful in lubricant applications. Recently glycerol has become available in large quantities as a byproduct of biodiesel production, allowing for the economical synthesis of PtdGly. The conversion of readily available phosphat...

  14. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycerol ester of rosin. 172.735 Section 172.735 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives §...

  15. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glycerol ester of rosin. 172.735 Section 172.735 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR...

  16. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Glycerol ester of rosin. 172.735 Section 172.735 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives §...

  17. Biocomposites Prepared from Fiber Processing Wastes and Glycerol Polyesters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biocomposites were prepared by the addition of flax fiber processing waste to glycerol and adipic acid mixtures. The processing waste consisted of fiber, cuticle, and shive fragments generated during the commercial cleaning of retted flax bast fibers. These waste materials were added at 1, 3, or 5 w...

  18. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis.

    PubMed

    Kumar, Prasun; Sharma, Rishi; Ray, Subhasree; Mehariya, Sanjeet; Patel, Sanjay K S; Lee, Jung-Kul; Kalia, Vipin C

    2015-04-01

    Biodiesel manufacturing units discharge effluents rich in glycerol. The need is to convert crude glycerol (CG) into useful products such as hydrogen (H2). Under batch culture, Bacillusthuringiensis EGU45 adapted on pure glycerol (PG, 2% v/v) resulted in an H2 yield of 0.646 mol/mol glycerol consumed on minimal media (250 mL) supplemented with 1% ammonium nitrate at 37°C over 4 days. Here, H2 constituted 67% of the total biogas. Under continuous culture, at 2 days of hydraulic retention time, B. thuringiensis immobilized on ligno-cellulosic materials (banana leaves - BL, 10% v/v) resulted in a H2 yield of 0.386 mol/mol PG consumed. On CG, the maximal H2 yield of 0.393 mol/mol feed consumed was recorded. In brief, B. thuringiensis could transform CG, on limited resources - minimal medium with sodium nitrate, by immobilizing them on cheap and easily available biowaste, which makes it a suitable candidate for H2 production on a large scale. PMID:25686722

  19. Genetically engineered rhamnolipid-producing organism for glycerol utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhamnolipid (RL) is a microbial glycolipid currently developed for industrial use as a biobased surfactant. It also possesses antimicrobial activity that is attractive for applications in sanitizing washes. Glycerol byproduct stream from biodiesel production is a promising low-cost substrate for m...

  20. Optimization process of tribenzoine production as a glycerol derived product

    NASA Astrophysics Data System (ADS)

    Widayat, Abdurrakhman, Rifianto, Y.; Abdullah, Hadiyanto, Samsudin, Asep M.; Annisa, A. N.

    2015-12-01

    Tribenzoin is a derived product from glycerol that can produce from glycerol conversion via esterification process. The product can be used in the food industry, cosmetics industry, polymer industry and also can be used to improve the properties of adhesive materials and water resistance in the ink printer.In the other hand, it advantages is environmentally friendly andrenewable because it is not derived from petroleum. This paper discusses the effect of temperature and catalyst concentration for tribenzoin production. For the responses, yield and product composition were observed. Results showed that the highest yield achieved at optimal variable data processed using Central Composite Design (CCD) which is 63.64 temperature (°C), mole ratio of benzoic acidto glycerol is 3.644:1, and catalyst concentration 6.25% (wt% glycerol). Yield products produced 58.71%. FTIR analysis results showed that the samples contained the results of IR spectra wavelength 1761 cm-1 in the fingerprint region and 3165 cm-1 frequency region group. The existence of these two adjustments that fixed in the area is strong evidence that the compound is tribenzoin.