Science.gov

Sample records for alkyl side-chain length

  1. Synthesis and Photophysical Properties of Soluble Low-Bandgap Thienothiophene Polymers with Various Alkyl Side-Chain Lengths

    SciTech Connect

    Bae, W. J.; Scilla, C.; Duzhko, V. V.; Jo, Jang; Coughlin, E. B.

    2011-05-27

    We report the facile synthesis and characterization of a class of thienothiophene polymers with various lengths of alkyl side chains. A series of 2-alkylthieno[3,4-b]thiophene monomers (Ttx) have been synthesized in a two-step protocol in an overall yield of 28–37%. Poly(2-alkylthieno[3,4-b]thiophenes) (PTtx, alkyl: pentyl, hexyl, heptyl, octyl, and tridecyl) were synthesized by oxidative polymerization with FeCl₃ or via Grignard metathesis (GRIM) polymerization methods. The polymers are readily soluble in common organic solvents. The polymers synthesized by GRIM polymerization method (PTtx-G) have narrower molecular weight distribution (Ð) with lower molecular weight (Mn) than those synthesized by oxidative polymerization (PTtx-O). The band structures of the polymers with various lengths of alkyl side chains were investigated by UV–vis spectroscopy, cyclic voltammetry, and ultraviolet photoelectron spectroscopy. These low-bandgap polymers are good candidates for organic transistors, organic light-emitting diodes, and organic photovoltaic cells.

  2. Effects of carbon atom parity and alkyl side chain length on the crystallization and morphology of biscarbamates, a set of model compounds for polyurethanes.

    PubMed

    Khan, Mostofa Kamal; Sundararajan, Pudupadi R

    2011-07-14

    Solid state morphology and crystallization behavior of a homologous series of biscarbamate molecules having varying alkyl side chain lengths with different carbon atom parity were investigated. These are model compounds for polyurethanes. We synthesized a set of biscarbamates with double hydrogen bonding motifs separated by a (CH(2))(6) spacer and with alkyl side chains of various lengths ranging from C(3) to C(18) at the ends. Thermal analysis showed an odd-even alternation in their melting temperatures and heats of fusion, with the odd number of carbon atoms in the side chain having higher melting temperatures and heats of fusion than the even numbered ones, in contrast to the case of n-alkanes. The effect of carbon atom parity in the alkyl side chains on the spherulite size, spherulite growth rate, and isothermal crystallization kinetics was studied. Although the spherulite size increases with the alkyl side chain length, the maximum is seen at an intermediate length and not with a short or long alkyl chain for both the odd and even series. Along this series of molecules, a maximum in spherulite size, spherulite growth rate, and rate of crystallization is seen for C(7)C(6) (odd series) and C(8)C(6) (even series) biscarbamates. There is a significant difference in spherulite size with respect to carbon atom parity in the alkyl side chains as well as sample preparation protocol. Hence the length of the alkyl side chain, carbon atom parity in the alkyl side chains, and the sample preparation protocol (i.e., quenching versus slow cooling) play an important role in the morphology of these molecules. We rationalize this behavior with the relative contributions of hydrogen bonding and van der Waals forces as discerned from IR spectroscopy. While the van der Waals interaction increases with the alkyl side chain length in this series, the hydrogen bond contribution remains invariant. The rate of crystallization follows the trend seen with the spherulitic growth. The

  3. Partial Crystallinity in Alkyl Side Chain Polymers.

    NASA Astrophysics Data System (ADS)

    Sahni, Vasav; Prasad, Shishir; Villate, Johanna; Jiang, Zhang; Sinha, Sunil; Dhinojwala, Ali

    2009-03-01

    Surface freezing is the formation of a crystalline monolayer at the free surface of a melt at a temperature Ts, a few degrees above the bulk freezing temperature, Tb. This effect, i.e. Ts> Tb, common to many chain molecules, is in marked contrast with the surface melting effect, i.e. Ts<=Tb, shown by almost all other materials. Various theoretical and experimental studies have been done to characterize the monolayer formed when the surface freezes before the bulk. We have studied the structure of a novel crystalline surface monolayer on top of a disordered melt of the same material (poly(n-alkyl acrylate)s) using grazing incidence x-ray diffraction. The grazing incidence x-ray diffraction, surface tension, and bulk latent heat results show that there is partial side-chain crystallinity. Also, the surface tension results explain the trend of the difference between the surface order-to-disorder transition temperature and the bulk melting temperature (δT) as a function of side chain length. The behavior of the crystal length, crystal spacing and tilt with varying alkyl chain length and temperature was also studied.

  4. Effects of odd-even side chain length of alkyl-substituted diphenylbithiophenes on first monolayer thin film packing structure.

    PubMed

    Akkerman, Hylke B; Mannsfeld, Stefan C B; Kaushik, Ananth P; Verploegen, Eric; Burnier, Luc; Zoombelt, Arjan P; Saathoff, Jonathan D; Hong, Sanghyun; Atahan-Evrenk, Sule; Liu, Xueliang; Aspuru-Guzik, Alán; Toney, Michael F; Clancy, Paulette; Bao, Zhenan

    2013-07-31

    Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5'bis(4-alkylphenyl)-2,2'-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling.

  5. Probing the effects of the ester functional group, alkyl side chain length and anions on the bulk nanostructure of ionic liquids: a computational study.

    PubMed

    Fakhraee, Mostafa; Gholami, Mohammad Reza

    2016-04-14

    The effects of ester addition on nanostructural properties of biodegradable ILs composed of 1-alkoxycarbonyl-3-alkyl-imidazolium cations ([C1COOCnC1im](+), n = 1, 2, 4) combined with [Br](-), [NO3](-), [BF4](-), [PF6](-), [TfO](-), and [Tf2N](-) were explored by using the molecular dynamics (MD) simulations and quantum theory of atoms in molecules (QTAIM) analysis at 400 K. Various thermodynamic properties of these ILs were extensively computed in our earlier work (Ind. Eng. Chem. Res., 2015, 54, 11678-11700). Nano-scale segregation analysis demonstrates the formation of a small spherical island-like hydrocarbon within the continuous ionic domain for ILs with short alkyl side chain ([C1COOC1C1im]), and a sponge-like nanostructure for the compound with long alkyl side chain ([C1COOC4C1im]). Ester-functionalized ILs with ethyl side chain ([C1COOC2C1im]) are the turning point between two different morphologies. Non-polar channels were observed for [C1COOC4C1im] ILs composed of smaller anions such as [Br] and [NO3], whereas clustering organization was found for the other anions. Formation of the spherical micelle-like nanostructure was seen for lengthened cations. Finally, the incorporation of an ester group into the alkyl side chain of the cation leads to stronger segregation between charged and uncharged networks, which consequently increased the possibility of self-assembly and micelle formation.

  6. Characterization of esterified cassava starch with long alkyl side chains and different substitution degrees.

    PubMed

    Barrios, Simón E; Giammanco, Giuseppe; Contreras, Jesús M; Laredo, Estrella; López-Carrasquero, Francisco

    2013-08-01

    The present work describes the characterization and thermal properties of hydrophobic starch obtained by the esterification of cassava starch with acyl imidazoles, acid chlorides and methyl ester derivatives of fatty acids with n-alkyl chains with 12-22 carbon atoms, in order to compare the dependence of their properties as a function of the length of the side chain and the methodology used for their synthesis. The n-acyl starches presented degrees of substitution (DS) between 0.06 and 1.2. Most of the derivatives obtained with acyl imidazoles were found to be stable at temperatures up to 300°C, whereas those synthesized with acid chlorides or methyl ester decomposed below. Finally, when the n-acyl starches were substituted with n-alkyl side chains of 16 or more carbon atoms, they were capable to crystallize in separate paraffinic phases independent of the starch backbone.

  7. Molecular design of boronic acid-functionalized squarylium cyanine dyes for multiple discriminant analysis of sialic acid in biological samples: selectivity toward monosaccharides controlled by different alkyl side chain lengths.

    PubMed

    Ouchi, Kazuki; Colyer, Christa L; Sebaiy, Mahmoud; Zhou, Jin; Maeda, Takeshi; Nakazumi, Hiroyuki; Shibukawa, Masami; Saito, Shingo

    2015-02-03

    We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (H-aggregates and J-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with J-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10(1.7) M(-1)), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity.

  8. Synthesis and evaluation of tamoxifen derivatives with a long alkyl side chain as selective estrogen receptor down-regulators.

    PubMed

    Shoda, Takuji; Kato, Masashi; Harada, Rintaro; Fujisato, Takuma; Okuhira, Keiichiro; Demizu, Yosuke; Inoue, Hideshi; Naito, Mikihiko; Kurihara, Masaaki

    2015-07-01

    Estrogen receptors (ERs) play a major role in the growth of human breast cancer cells. An antagonist that acts as not only an inhibitor of ligand binding but also an inducer of the down-regulation of ER would be useful for the treatment for ER-positive breast cancer. We previously reported the design and synthesis of a selective estrogen receptor down-regulator (SERD), (E/Z)-4-(1-{4-[2-(dodecylamino)ethoxy]phenyl}-2-phenylbut-1-en-1-yl)phenol (C12), which is a tamoxifen derivative having a long alkyl chain on the amine moiety. This compound induced degradation of ERα via a proteasome-dependent pathway and showed an antagonistic effect in MCF-7 cells. With the aim of increasing the potency of SERDs, we designed and synthesized various tamoxifen derivatives that have various lengths and terminal groups of the long alkyl side chain. During the course of our investigation, C10F having a 10-fluorodecyl group on the amine moiety of 4-OHT was shown to be the most potent compound among the tamoxifen derivatives. Moreover, computational docking analysis suggested that the long alkyl chain interacted with the hydrophobic region on the surface of the ER, which is a binding site of helix 12 and coactivator. These results provide useful information to develop promising candidates as SERDs.

  9. Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching

    PubMed Central

    Johnson, Richard J; Smith, Ben E; Sutton, Paul A; McGenity, Terry J; Rowland, Steven J; Whitby, Corinne

    2011-01-01

    Naphthenic acids (NAs) occur naturally in oil sands and enter the environment through natural and anthropogenic processes. NAs comprise toxic carboxylic acids that are difficult to degrade. Information on NA biodegradation mechanisms is limited, and there are no studies on alkyl branched aromatic alkanoic acid biodegradation, despite their contribution to NA toxicity and recalcitrance. Increased alkyl side chain branching has been proposed to explain NA recalcitrance. Using soil enrichments, we examined the biodegradation of four aromatic alkanoic acid isomers that differed in alkyl side chain branching: (4′-n-butylphenyl)-4-butanoic acid (n-BPBA, least branched); (4′-iso-butylphenyl)-4-butanoic acid (iso-BPBA); (4′-sec-butylphenyl)-4-butanoic acid (sec-BPBA) and (4′-tert-butylphenyl)-4-butanoic acid (tert-BPBA, most branched). n-BPBA was completely metabolized within 49 days. Mass spectral analysis confirmed that the more branched isomers iso-, sec- and tert-BPBA were transformed to their butylphenylethanoic acid (BPEA) counterparts at 14 days. The BPEA metabolites were generally less toxic than BPBAs as determined by Microtox assay. n-BPEA was further transformed to a diacid, showing that carboxylation of the alkyl side chain occurred. In each case, biodegradation of the carboxyl side chain proceeded through beta-oxidation, which depended on the degree of alkyl side chain branching, and a BPBA degradation pathway is proposed. Comparison of 16S rRNA gene sequences at days 0 and 49 showed an increase and high abundance at day 49 of Pseudomonas (sec-BPBA), Burkholderia (n-, iso-, tert-BPBA) and Sphingomonas (n-, sec-BPBA). PMID:20962873

  10. Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching.

    PubMed

    Johnson, Richard J; Smith, Ben E; Sutton, Paul A; McGenity, Terry J; Rowland, Steven J; Whitby, Corinne

    2011-03-01

    Naphthenic acids (NAs) occur naturally in oil sands and enter the environment through natural and anthropogenic processes. NAs comprise toxic carboxylic acids that are difficult to degrade. Information on NA biodegradation mechanisms is limited, and there are no studies on alkyl branched aromatic alkanoic acid biodegradation, despite their contribution to NA toxicity and recalcitrance. Increased alkyl side chain branching has been proposed to explain NA recalcitrance. Using soil enrichments, we examined the biodegradation of four aromatic alkanoic acid isomers that differed in alkyl side chain branching: (4'-n-butylphenyl)-4-butanoic acid (n-BPBA, least branched); (4'-iso-butylphenyl)-4-butanoic acid (iso-BPBA); (4'-sec-butylphenyl)-4-butanoic acid (sec-BPBA) and (4'-tert-butylphenyl)-4-butanoic acid (tert-BPBA, most branched). n-BPBA was completely metabolized within 49 days. Mass spectral analysis confirmed that the more branched isomers iso-, sec- and tert-BPBA were transformed to their butylphenylethanoic acid (BPEA) counterparts at 14 days. The BPEA metabolites were generally less toxic than BPBAs as determined by Microtox assay. n-BPEA was further transformed to a diacid, showing that carboxylation of the alkyl side chain occurred. In each case, biodegradation of the carboxyl side chain proceeded through beta-oxidation, which depended on the degree of alkyl side chain branching, and a BPBA degradation pathway is proposed. Comparison of 16S rRNA gene sequences at days 0 and 49 showed an increase and high abundance at day 49 of Pseudomonas (sec-BPBA), Burkholderia (n-, iso-, tert-BPBA) and Sphingomonas (n-, sec-BPBA).

  11. Cholesterol Analogs with Degradation-resistant Alkyl Side Chains Are Effective Mycobacterium tuberculosis Growth Inhibitors.

    PubMed

    Frank, Daniel J; Zhao, Yan; Wong, Siew Hoon; Basudhar, Debashree; De Voss, James J; Ortiz de Montellano, Paul R

    2016-04-01

    Cholest-4-en-3-one, whether added exogenously or generated intracellularly from cholesterol, inhibits the growth ofMycobacterium tuberculosiswhen CYP125A1 and CYP142A1, the cytochrome P450 enzymes that initiate degradation of the sterol side chain, are disabled. Here we demonstrate that a 16-hydroxy derivative of cholesterol, which was previously reported to inhibit growth ofM. tuberculosis, acts by preventing the oxidation of the sterol side chain even in the presence of the relevant cytochrome P450 enzymes. The finding that (25R)-cholest-5-en-3β,16β,26-triol (1) (and its 3-keto metabolite) inhibit growth suggests that cholesterol analogs with non-degradable side chains represent a novel class of anti-mycobacterial agents. In accord with this, two cholesterol analogs with truncated, fluorinated side chains have been synthesized and shown to similarly block the growth in culture ofM. tuberculosis.

  12. Cholesterol Analogs with Degradation-resistant Alkyl Side Chains Are Effective Mycobacterium tuberculosis Growth Inhibitors*

    PubMed Central

    Frank, Daniel J.; Zhao, Yan; Wong, Siew Hoon; Basudhar, Debashree; De Voss, James J.; Ortiz de Montellano, Paul R.

    2016-01-01

    Cholest-4-en-3-one, whether added exogenously or generated intracellularly from cholesterol, inhibits the growth of Mycobacterium tuberculosis when CYP125A1 and CYP142A1, the cytochrome P450 enzymes that initiate degradation of the sterol side chain, are disabled. Here we demonstrate that a 16-hydroxy derivative of cholesterol, which was previously reported to inhibit growth of M. tuberculosis, acts by preventing the oxidation of the sterol side chain even in the presence of the relevant cytochrome P450 enzymes. The finding that (25R)-cholest-5-en-3β,16β,26-triol (1) (and its 3-keto metabolite) inhibit growth suggests that cholesterol analogs with non-degradable side chains represent a novel class of anti-mycobacterial agents. In accord with this, two cholesterol analogs with truncated, fluorinated side chains have been synthesized and shown to similarly block the growth in culture of M. tuberculosis. PMID:26833565

  13. Molecular structure of an alkyl-side-chain polymer-water interface: origins of contact angle hysteresis.

    PubMed

    Rangwalla, Hasnain; Schwab, Alexander D; Yurdumakan, Betül; Yablon, Dalia G; Yeganeh, Mohsen S; Dhinojwala, Ali

    2004-09-28

    A new and direct approach to verify surface heterogeneity as the microscopic origin of contact-angle hysteresis is demonstrated. IR-visible sum-frequency-generation spectroscopy (SFG) was used to selectively probe the molecules at the interface of an alkyl-side-chain polymer [poly(vinyl n-octadecyl carbamate-co-vinyl acetate)] with water. The spectra indicate that in contact with water, the polymer surface is heterogeneous (having areas of differing surface energies). This evidence of surface heterogeneity supports the hysteresis observed in the advancing and receding contact angles of the polymer surface with water. The same measurements made for the chemically and structurally similar surface of an octadecyltrichlorosilane self-assembled monolayer indicates a homogeneous surface at the water interface. In this case, contact-angle hysteresis measurements implicate surface roughness as the cause of hysteresis. Atomic force microscopy measurements of roughness for these surfaces further support our conclusions. The polymer-water interface was probed using SFG at above-ambient temperatures, and an order-to-disorder transition (ODT) of alkyl side chains at the interface was observed, which closely follows the melting of crystalline side chains in the bulk. This transition explains the increased wettability of the polymer, by water, when the temperature is raised above the bulk melting temperature. Furthermore, the irreversibility of this ODT suggests that the disordered polymer-water interface is the thermodynamic equilibrium state, whereas the before-heating structure of this interface is a kinetically hindered metastable state.

  14. Alkyl chain length dependence of the field-effect mobility in novel anthracene derivatives.

    PubMed

    Back, Jang Yeol; An, Tae Kyu; Cheon, Ye Rim; Cha, Hyojung; Jang, Jaeyoung; Kim, Yebyeol; Baek, Yonghwa; Chung, Dae Sung; Kwon, Soon-Ki; Park, Chan Eon; Kim, Yun-Hi

    2015-01-14

    We report six asymmetric alkylated anthracene-based molecules with different alkyl side chain lengths for use in organic field-effect transistors (OFETs). Alkyl side chains can potentially improve the solubility and processability of anthracene derivatives. The crystallinity and charge mobility of the anthracene derivatives may be improved by optimizing the side chain length. The highest field-effect mobility of the devices prepared here was 0.55 cm(2)/(V s), for 2-(p-pentylphenylethynyl)anthracene (PPEA). The moderate side chain length appeared to be optimal for promoting self-organization among asymmetric anthracene derivatives in OFETs, and was certainly better than the short or long alkyl side chain lengths, as confirmed by X-ray diffraction measurements.

  15. Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains for n-channel polymer semiconductors and their effect on the thin-film crystalline structure.

    PubMed

    Kim, Ran; Kang, Boseok; Sin, Dong Hun; Choi, Hyun Ho; Kwon, Soon-Ki; Kim, Yun-Hi; Cho, Kilwon

    2015-01-28

    Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains, serving as solubilizing groups, are designed and introduced into naphthalene-diimide-based n-channel copolymers. The synthesized polymers exhibit unipolar n-type operation with an electron mobility of up to 1.64 cm(2) V(-1) s(-1), which demonstrates the usefulness of the hybrid side chains in polymer electronics applications.

  16. Attenuating HIV Tat/TAR-mediated protein expression by exploring the side chain length of positively charged residues.

    PubMed

    Wu, Cheng-Hsun; Chen, Yi-Ping; Liu, Shing-Lung; Chien, Fan-Ching; Mou, Chung-Yuan; Cheng, Richard P

    2015-12-07

    RNA is a drug target involved in diverse cellular functions and viral processes. Molecules that inhibit the HIV TAR RNA-Tat protein interaction may attenuate Tat/TAR-dependent protein expression and potentially serve as anti-HIV therapeutics. By incorporating positively charged residues with mixed side chain lengths, we designed peptides that bind TAR RNA with enhanced intracellular activity. Tat-derived peptides that were individually substituted with positively charged residues with varying side chain lengths were evaluated for TAR RNA binding. Positively charged residues with different side chain lengths were incorporated at each Arg and Lys position in the Tat-derived peptide to enhance TAR RNA binding. The resulting peptides showed enhanced TAR RNA binding affinity, cellular uptake, nuclear localization, proteolytic resistance, and inhibition of intracellular Tat/TAR-dependent protein expression compared to the parent Tat-derived peptide with no cytotoxicity. Apparently, the enhanced inhibition of protein expression by these peptides was not determined by RNA binding affinity, but by proteolytic resistance. Despite the high TAR binding affinity, a higher binding specificity would be necessary for practical purposes. Importantly, altering the positively charged residue side chain length should be a viable strategy to generate potentially useful RNA-targeting bioactive molecules.

  17. Morphology and electrochemical properties of perfluorosulfonic acid ionomers for vanadium flow battery applications: effect of side-chain length.

    PubMed

    Ding, Cong; Zhang, Huamin; Li, Xianfeng; Zhang, Hongzhang; Yao, Chuan; Shi, Dingqin

    2013-07-01

    Perfluorosulfonic acid ionomers (PFSI) with different side-chain lengths have been investigated with respect to their morphology and electrochemical properties in vanadium flow batteries (VFB). The results indicated that the membrane with the shortest side chains (SSC-M2) displayed small ion clusters and a low degree of hydrophobic-hydrophilic separation, which is favourable to reduce the cross-over of vanadium ions in the VFB. SSC-M2 shows a similar proton conductivity to Nafion, which carries longer ionic side chains but with much lower ion permeability. As a result, the VFB assembled with SSC-M2 exhibited a superior coulombic efficiency and a voltage efficiency close to that of Nafion115. In situ mass transfer revealed that SSC-M2 had a remarkably low degree of vanadium and water transfer across the membrane, which resulted in lower capacity fading than in the case of Nafion115. These results indicate that a membrane with short side chains is an ideal option in the fabrication of high-performance VFBs with low capacity loss.

  18. Bis(thienothiophenyl) diketopyrrolopyrrole-based conjugated polymers with various branched alkyl side chains and their applications in thin-film transistors and polymer solar cells.

    PubMed

    Shin, Jicheol; Park, Gi Eun; Lee, Dae Hee; Um, Hyun Ah; Lee, Tae Wan; Cho, Min Ju; Choi, Dong Hoon

    2015-02-11

    New thienothiophene-flanked diketopyrrolopyrrole and thiophene-containing π-extended conjugated polymers with various branched alkyl side-chains were successfully synthesized. 2-Octyldodecyl, 2-decyltetradecyl, 2-tetradecylhexadecyl, 2-hexadecyloctadecyl, and 2-octadecyldocosyl groups were selected as the side-chain moieties and were anchored to the N-positions of the thienothiophene-flanked diketopyrrolopyrrole unit. All five polymers were found to be soluble owing to the bulkiness of the side chains. The thin-film transistor based on the 2-tetradecylhexadecyl-substituted polymer showed the highest hole mobility of 1.92 cm2 V(-1) s(-1) due to it having the smallest π-π stacking distance between the polymer chains, which was determined by grazing incidence X-ray diffraction. Bulk heterojunction polymer solar cells incorporating [6,6]-phenyl-C71-butyric acid methyl ester as the n-type molecule and the additive 1,8-diiodooctane (1 vol %) were also constructed from the synthesized polymers without thermal annealing; the device containing the 2-octyldodecyl-substituted polymer exhibited the highest power conversion efficiency of 5.8%. Although all the polymers showed similar physical properties, their device performance was clearly influenced by the sizes of the branched alkyl side-chain groups.

  19. Time-Resolved EPR Study of Electron-Hole Dissociations Influenced by Alkyl Side Chains at the Photovoltaic Polyalkylthiophene:PCBM Interface.

    PubMed

    Miura, Taku; Aikawa, Motoko; Kobori, Yasuhiro

    2014-01-02

    Nanosecond time-resolved electron paramagnetic resonance (TREPR) spectroscopy has been utilized at T = 77 K to characterize alkyl side-chain effects on geometries and on the electronic couplings (VCR) of transient charge-separated (CS) states in the photoactive layers fabricated by the spin-coating of mixed solutions of regioregular polyalkylthiophenes (RR-P3AT) and [6,6]-C61-butyric acid methyl ester (PCBM). By increasing the alkyl side-chain number from 6 to 12 in P3AT, a highly distant and long-lived CS state has been obtained. This result is explained by a coupling of the hole dissociation to the polymer librations by the side-chains. From an exponential decay of VCR with respect to the CS distance, the attenuation factor (βe) has been determined to be βe = 0.2 Å(-1). Such a long-range tunneling feature is explained by the generations of the shallowly trapped, delocalized electron-hole pairs by the dissociation of the hole toward π-stacking directions at the organic photovoltaic interface.

  20. Polypropylene non-woven meshes with conformal glycosylated layer for lectin affinity adsorption: the effect of side chain length.

    PubMed

    Ye, Xiang-Yu; Huang, Xiao-Jun; Xu, Zhi-Kang

    2014-03-01

    The unique characteristics of polypropylene non-woven meshes (PPNWMs), like random network of overlapped fibers, multiple connected pores and overall high porosity, make them high potentials for use as separation or adsorption media. Meanwhile, carbohydrates can specifically recognize certain lectin through multivalent interactions. Therefore glycosylated PPNWMs, combing the merits of both, can be regarded as superior affinity membranes for lectin adsorption and purification. Here, we describe a versatile strategy for the glycosylation of PPNWMs. Two hydrophilic polymers with different side chain length, poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(oligo(ethylene glycol) methacrylate) (POEGMA), were first conformally tethered on the polypropylene fiber surface by a modified plasma pretreatment and benzophenone (BP) entrapment UV irradiation process. Then glucose ligands were bound through the reaction between the hydroxyl group and acetyl glucose. Chemical changes of the PPNWMs surface were monitored by FT-IR/ATR. SEM pictures show that conformal glucose ligands can be achieved through the modified process. After deprotection, the glycosylated PPNWMs became superhydrophilic and had high specific recognition capability toward Concanavalin A (Con A). Static Con A adsorption experiments were further performed and the results indicate that fast adsorption kinetics and high binding capacity can be accomplished at the same time. We also found that increasing the side chain length of polymer brushes had positive effect on protein binding capacity due to improved chain mobility. Model studies suggest a multilayer adsorption behavior of Con A.

  1. Solubility of n-butane and 2-methylpropane (isobutane) in 1-alkyl-3-methylimidazolium-based ionic liquids with linear and branched alkyl side-chains.

    PubMed

    Pison, Laure; Shimizu, Karina; Tamas, George; Lopes, José Nuno Canongia; Quitevis, Edward L; Gomes, Margarida F Costa

    2015-11-11

    The solubility of n-butane and 2-methylpropane (isobutane) in three ionic liquids - 1-(2-methylpropyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [(2mC3)C1im][Ntf2], 1-(3-methylbutyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [(3mC4)C1im][Ntf2] and 1-methyl-3-pentylimidazolium bis(trifluoromethylsulfonyl)imide [C5C1im][Ntf2] - has been measured at atmospheric pressure from 303 to 343 K. Isobutane is less soluble than n-butane in all the ionic liquids. Henry's constant values range from 13.8 × 10(5) Pa for n-butane in [C5C1im][Ntf2] at 303 K to 64.5 × 10(5) Pa for isobutane in [(2mC3)C1im][Ntf2] at 343 K. The difference in solubility between the two gases can be explained by a more negative enthalpy of solvation for n-butane. A structural analysis of the pure solvents and of the solutions of the gases, probed by molecular dynamics simulations, could explain the differences found in the systems: (i) the nonpolar domains of the ionic liquids accommodate better the long and more flexible n-butane solute; (ii) the small differences in solubility of each gas in the ionic liquids with the same number of carbon atoms in the alkyl side-chains are explained by the absence of large structural differences in the pure solvents. In all cases, the structural analysis of the four ionic liquids confirms that the studied gases can act as probes of the molecular structure of the ionic liquids, the simulations being always compatible with the experimental solubility data.

  2. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to evaluate the effect of three silane coupling agents with different aliphatic chain lengths on the hydrophobicity of eucalyptus pulp fiber. The three silanes coupling agents used (isobutyltrimethoxysilane, methyltrimethoxysilane, and n-octyltriethoxysilane [OTES]) we...

  3. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions.

    PubMed

    Hoernke, Maria; Schwieger, Christian; Kerth, Andreas; Blume, Alfred

    2012-07-01

    Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.

  4. The Effect of Side-Chain Length on the Solid-State Structure and Optical Properties of F8BT: A DFT Study

    NASA Astrophysics Data System (ADS)

    Javad Eslamibidgoli, Mohammad; Lagowski, Jolanta B.

    2012-02-01

    Using the long-range corrected hybrid density functional theory (DFT/B97D) approach, we have performed bulk solid state calculations to investigate the influence of side-chain length on the molecular packing and optical properties of poly (9,9-di-n-octylfluorene-alt-benzothiadiazole) or F8BT. Two different packing structures, the lamellar and nearly hexagonal, were obtained corresponding to longer and shorter side-chains respectively. This behavior can be attributed to the micro-phase separations between the flexible side-chains and the rigid backbones and is in agreement with previous investigations for other hairy-rod polymers. In addition, as a result of the efficient inter-chain interactions for the lamellar structure, the dihedral angle between the F8 and BT units is reduced providing a more planar configuration for the backbone which leads to the decreased band gap (by 0.2-0.3 eV) in comparison to the hexagonal phase and the gas phase with no side-chain. Time-dependent DFT (TDDFT/B3LYP) was also used to study the excited states of the monomer of F8BT optimized in solid-state structures with different side-chain lengths. It is found that the absorption spectrum is red shifted for the polymers with lamellar structure relative to the polymers in hexagonal and gas phases.

  5. Molecular packing of high-mobility diketo pyrrolo-pyrrole polymer semiconductors with branched alkyl side chains.

    PubMed

    Zhang, Xinran; Richter, Lee J; DeLongchamp, Dean M; Kline, R Joseph; Hammond, Matthew R; McCulloch, Iain; Heeney, Martin; Ashraf, Raja S; Smith, Jeremy N; Anthopoulos, Thomas D; Schroeder, Bob; Geerts, Yves H; Fischer, Daniel A; Toney, Michael F

    2011-09-28

    We describe a series of highly soluble diketo pyrrolo-pyrrole (DPP)-bithiophene copolymers exhibiting field effect hole mobilities up to 0.74 cm(2) V(-1) s(-1), with a common synthetic motif of bulky 2-octyldodecyl side groups on the conjugated backbone. Spectroscopy, diffraction, and microscopy measurements reveal a transition in molecular packing behavior from a preferentially edge-on orientation of the conjugated plane to a preferentially face-on orientation as the attachment density of the side chains increases. Thermal annealing generally reduces both the face-on population and the misoriented edge-on domains. The highest hole mobilities of this series were obtained from edge-on molecular packing and in-plane liquid-crystalline texture, but films with a bimodal orientation distribution and no discernible in-plane texture exhibited surprisingly comparable mobilities. The high hole mobility may therefore arise from the molecular packing feature common to the entire polymer series: backbones that are strictly oriented parallel to the substrate plane and coplanar with other backbones in the same layer.

  6. Effects of hydrophobic helix length and side chain chemistry on biomimicry in peptoid analogues of SP-C.

    PubMed

    Brown, Nathan J; Wu, Cindy W; Seurynck-Servoss, Shannon L; Barron, Annelise E

    2008-02-12

    The hydrophobic proteins of lung surfactant (LS), SP-B and SP-C, are critical constituents of an effective surfactant replacement therapy for the treatment of respiratory distress syndrome. Because of concerns and difficulties associated with animal-derived surfactants, recent investigations have focused on the creation of synthetic analogues of the LS proteins. However, creating an accurate mimic of SP-C that retains its biophysical surface activity is extraordinarily challenging given the lipopeptide's extreme hydrophobicity and propensity to misfold and aggregate. One successful approach that overcomes these difficulties is the use of poly-N-substituted glycines, or peptoids, to mimic SP-C. To develop a non-natural, bioactive mimic of SP-C and to investigate the effects of side chain chemistry and length of the helical hydrophobic region, we synthesized, purified, and performed in vitro testing of two classes of peptoid SP-C mimics: those having a rigid alpha-chiral aromatic helix and those having a biomimetic alpha-chiral aliphatic helix. The length of the two classes of mimics was also systematically altered. Circular dichroism spectroscopy gave evidence that all of the peptoid-based mimics studied here emulated SP-C's secondary structure, forming stable helical structures in solution. Langmuir-Wilhelmy surface balance, fluorescence microscopy, and pulsating bubble surfactometry experiments provide evidence that the aromatic-based SP-C peptoid mimics, in conjunction with a synthetic lipid mixture, have superior surface activity and biomimetic film morphology in comparison to the aliphatic-based mimics and that there is an increase in surface activity corresponding to increasing helical length.

  7. Synthesis, surface characterization, and biointeraction studies of low-surface energy side-chain polyetherurethanes

    NASA Astrophysics Data System (ADS)

    Porter, Stephen Christopher

    1999-10-01

    New segmented polyetherurethanes (PEUs) with low surface energy hydrocarbon and fluorocarbon side-chains attached to the polymer hard segments were synthesized. The surface chemistry of solvent cast polymer films was studied using X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and dynamic contact angle (DCA) measurements. Increases in the overall density and length of the alkyl side-chains within the PEUs resulted in greater side-chain concentrations at the polymer surface. PEUs bearing long alkyl (> C10 ) and perfluorocarbon side-chains were found to posses surfaces with highly enriched side-chain concentrations relative to the bulk polymer. In PEUs with significant side-chain surface enrichment, the relatively polar hard segment blocks were shown to reside in high concentrations just below the side-chain enriched surface layer. Furthermore, DCA measurements demonstrated that the surface of the alkyl side-chain PEUs did not undergo significant rearrangement when placed into an aqueous environment, whereas the surface of a hard segment model polymer bearing C18 sidechains (PEU-C18-HS) did. Hydrogen bonding within the PEUs was examined using FTIR and was shown to be disrupted by the addition of side-chains; an effect dependent on the density but not on the length of the side-chains. Heteropolymer blends comprised of mixtures of high side-chain density and side-chain free PEUs were compared with homopolymers having the same overall side-chain concentration as the blends. Significantly more surface enrichment of side-chains was found in the heteropolymer blends whereas hydrogen bonding nearly the same as in the homopolymers. Adsorption of native and delipidized human serum albumin (HSA) from pure solution and blood plasma; the elutabilty of adsorbed HSA; and static platelet adhesion to plasma preadsorbed surfaces, were all examined on alkyl side-chain PEUs. Several polymers with high C18 side-chain densities displayed increased

  8. Effect of fluorination and size of the alkyl side-chain on the solubility of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids.

    PubMed

    Almantariotis, D; Gefflaut, T; Pádua, A A H; Coxam, J-Y; Costa Gomes, M F

    2010-03-18

    It is proven in this work that it is possible to significantly increase the carbon dioxide uptake by an ionic liquid relying on physical interactions only. The solubility and thermodynamics of solvation of carbon dioxide in the ionic liquids 1-octyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide [C(8)mim][Ntf(2)], 1-decyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide [C(10)mim][Ntf(2)], and 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-3-methylimidazolium bis[trifluoromethylsulfonyl]amide [C(8)H(4)F(13)mim][Ntf(2)] were determined experimentally between 298 and 343 K at pressures close to atmospheric. The solubility of carbon dioxide is significantly higher in the fluorine-substituted ionic liquid with Henry's law constants at 303 K of 33.3 and 30.7 bar for [C(8)mim][Ntf(2)] and [C(10)mim][Ntf(2)], respectively, and of 28.0 bar for [C(8)H(4)F(13)mim][Ntf(2)]. Molecular simulation was used for interpreting the molecular mechanisms of solvation of carbon dioxide in the studied ionic liquids and coherent molecular mechanisms of solvation are proposed in light of the solute-solvent radial distribution functions. It is shown that the increase of the size of the hydrogenated or fluorinated alkyl chain in the imidazolium cation does not lead to a steady augmentation of the gaseous uptake by the liquid probably due to an increase of the nonpolar domains of the ionic liquid, carbon dioxide being solvated preferentially in the charged regions of the solvent.

  9. Control over phase behavior and solution structure of hairy-rod polyfluorene by means of side-chain length and branching.

    PubMed

    Knaapila, M; Stepanyan, R; Torkkeli, M; Garamus, V M; Galbrecht, F; Nehls, B S; Preis, E; Scherf, U; Monkman, A P

    2008-05-01

    We present guidelines on how the solution structure of pi -conjugated hairy-rod polyfluorenes is controlled by the side-chain length and branching. First, the semiquantitative mean-field theory is formulated to predict the phase behavior of the system as a function of side-chain beads (N). The phase transition at N=N{ *} separates a lyotropic phase with solvent coexistence (NN{ *}). The membrane phase transforms into the isotropic phase of dissolved rodlike polymers at the temperature T_{mem}{ *}(N), which decreases both with N and with the degree of side-chain branching. This picture is complemented by polymer demixing with the transition temperature T_{IN}{ *}(N), which decreases with N . For NN{ *}, stable membranes are predicted for T_{IN}{ *}side-chain branching was controlled by (9,9-dioctylfluorene)/(9,9-bis(2-ethylhexyl)fluorene) (F8/F2/6) random copolymers. The proportion of F8 to F2/6 repeat units was 100:0, 95:5, 90:10, 50:50, and 0:100. In accordance with the theory, lyotropic, membrane, and isotropic phases with the corresponding phase transitions were observed. For NN{ *}. T_{mem}{ *}(N) decreases from 340 K to 280 K for N > or = 8 . For copolymers, the membrane phase is found when the fraction of F8 units is at least 90%, T_{mem}{ *} decreasing with this fraction. The membrane phase contains three material types: loose sheets of two polymer layers, a better packed beta phase, and dissolved polymer. For N > or = 7 and T

  10. Influence of the side-chain length on the cellular uptake and the cytotoxicity of rhenium triscarbonyl derivatives: a bimodal infrared and luminescence quantitative study.

    PubMed

    Clède, Sylvain; Lambert, François; Saint-Fort, Rénette; Plamont, Marie-Aude; Bertrand, Hélène; Vessières, Anne; Policar, Clotilde

    2014-07-07

    Rhenium triscarbonyl complexes fac-[Re(CO)3 (N^N)] with appropriate ancillary N^N ligands are relevant for fluorescent bio-imaging. Recently, we have shown that [Re(CO)3 ] cores can also be efficiently mapped inside cells using their IR signature and that they can thus be used in a bimodal approach. To describe them we have coined the term SCoMPIs for single-core multimodal probes for imaging. In the context of the use of these SCoMPIs in bio-imaging, the questions of their cellular uptake and cytotoxicity are critical. We report here a series of compounds derived from the [Re(CO)3 Cl(pyta)] core (pyta=4-(2-pyridyl)-1,2,3-triazole). The pyta ligand is of interest because it can be easily functionalized. Aliphatic side chains (C4 , C8 , and C12 ) were appended to this core. A correlative study involving IR and luminescence was performed to monitor and quantify their cellular internalization. We studied the relationship between lipophilicity (log P(o/w)), cytotoxicity (IC50 ), and cellular uptake, and we showed that both uptake and cytotoxicity increase with the length of the side chain, with a higher uptake for the C12 derivative. This study stresses the distinction that has to be made between apparent toxicity, determined as an incubation concentration IC50 , and intrinsic toxicity. Indeed, the intrinsic toxicity of a compound can remain hidden if it is not cell permeable. Therefore it must be kept in mind that IC50 values are composite values, reflecting both cellular uptake and intrinsic toxicity.

  11. A new approach to the side chain formation of 24-alkyl-22-hydroxy steroids: application to the preparation of early brassinolide biosynthetic precursors.

    PubMed

    Hurski, Alaksiej L; Zhabinskii, Vladimir N; Khripach, Vladimir A

    2012-06-01

    A new synthetic route to 22S-hydroxy-24R-methyl steroids has been developed and applied for the preparation of cathasterone, (22S)-hydroxycampesterol, and 6-deoxocathasterone, which are precursors in the early stages of the biosynthesis of brassinolide. The construction of the steroid side chain with the correct stereochemistry at C-24 is based on the use of Claisen rearrangement. The introduction of the 22-hydroxyl group has been achieved by epoxidation of the Δ(22)-double bond, nucleophilic opening of the intermediate mesyl epoxide with sodium sulfide, and desulfurization of the formed tetrahydrothiophenes with Raney nickel.

  12. Affinity alkylation of the active site of C21 steroid side-chain cleavage cytochrome P-450 from neonatal porcine testis: a unique cysteine residue alkylated by 17-(bromoacetoxy)progesterone.

    PubMed

    Onoda, M; Haniu, M; Yanagibashi, K; Sweet, F; Shively, J E; Hall, P F

    1987-01-27

    The affinity alkylating progesterone analogue 17-(bromoacetoxy)progesterone has been used to label the active site of a microsomal cytochrome P-450 enzyme from neonatal pig testis. The enzyme causes removal of the C20 and C21 side chains from the substrates progesterone and pregnenolone by catalyzing both 17-hydroxylase and C17,20-lyase reactions, which produce the corresponding C19 steroidal precursors of testosterone. The progesterone analogue causes simultaneous inactivation of the two catalytic activities of the enzyme by a first-order kinetic process that obeys saturation kinetics. Progesterone and 17-hydroxyprogesterone each protect the enzyme against inactivation. The progesterone and analogue is a competitive inhibitor of the enzyme with Ki values of 8.4 microM and 7.8 microM for progesterone and 17-hydroxyprogesterone, respectively. The enzyme inactivation and kinetic data are consistent with a theory proposing that the analogue and the two substrates compete for the same active site. The radioactive analogue 17-[( 14C]bromoacetoxy)progesterone causes inactivation of the enzyme with incorporation of 1.5-2.2 mol of the analogue per mole of inactivated enzyme. When this experiment is carried out in the presence of a substrate, then 0.9-1.2 mol of radioactive analogue is incorporated per mole of inactivated enzyme. The data suggest that the analogue can bind to two different sites, one of which is related to the catalytic site. Radiolabeled enzyme samples, from reactions of the 14C-labeled analogue with the enzyme alone or with enzyme in the presence of a substrate, were subjected to amino acid analysis and also to tryptic digestion and peptide mapping.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Affinity alkylation of the active site of C/sub 21/ steroid side-chain cleavage cytochrome P-450 from neonatal porcine testis: a unique cysteine residue alkylated by 17-(bromoacetoxy)progesterone

    SciTech Connect

    Onoda, M.; Haniu, M.; Yanagibashi, K.; Sweet, F.; Shively, J.E.; Hall, P.F.

    1987-01-27

    The affinity alkylating progesterone analogue 17-(bromoacetoxy)progesterone has been used to label the active site of a microsomal cytochrome P-450 enzyme from neonatal pig testis. The enzyme causes removal of the C/sub 20/ and C/sub 21/ side chains from the substrates progesterone and pregnenolone by catalyzing both 17-hydroxylase and C/sub 17,20/-lyase reactions, which produce the corresponding C/sub 1//sup 9/ steroidal precursors of testosterone. The progesterone analogue causes simultaneous inactivation of the two catalytic activities of the enzyme by a first-order kinetic process that obeys saturation kinetics. Progesterone and 17-hydroxyprogesterone each protect the enzyme against inactivation. The progesterone analogue is a competitive inhibitor of the enzyme with K/sub i/ values of 8.4 ..mu..M and 7.8 ..mu..M for progesterone and 17-hydroxyprogesterone, respectively. The enzyme inactivation and kinetic data are consistent with a theory proposing that the analogue and the two substrates compete for the same active site. The radioactive analogue 17-((/sup 14/C)bromoacetoxy)progesterone causes inactivation of the enzyme with incorporation of 1.5-2.2 mol of the analogue per mole of inactivated enzyme. When this experiment is carried out in the presence of a substrate, then 0.9-1.2 mol of radioactive analogue is incorporated per mole of inactivated enzyme. The data suggest that the analogue can bind to two different sites, one of which is related to the catalytic site. Radiolabeled enzyme samples, from reactions of the /sup 14/C-labeled analogue with the enzyme alone or with enzyme in the presence of a substrate, were subjected to amino acid analysis and also in tryptic digestion and peptide mapping.

  14. Low-band-gap conjugated polymers of dithieno[2,3-b:7,6-b]carbazole and diketopyrrolopyrrole: effect of the alkyl side chain on photovoltaic properties.

    PubMed

    Deng, Yunfeng; Chen, Yagang; Liu, Jian; Liu, Lihui; Tian, Hongkun; Xie, Zhiyuan; Geng, Yanhou; Wang, Fosong

    2013-06-26

    Four donor–acceptor (D–A) conjugated polymers of dithieno[2,3-b;7,6-b]carbazole (DTC) and diketopyrrolopyrrole, which have different alkyls on the nitrogen atom in the DTC unit and are named as P-C8C8, P-C5C5, P-C12, and P-C10, respectively, have been synthesized for studying the effect of the alkyl side chains on the optoelectronic properties of the polymers. All polymers are soluble in various organic solvents and exhibit identical optical band gaps (E(g)(opt)) of ~1.3 eV and highest occupied molecular orbital energy levels of ~−5.1 eV. Organic thin-film transistors and bulk heterojunction polymer solar cells (BHJ PSCs) with phenyl-C(71)-butyric acid methyl ester (PC(71)BM) as the electron-accepting material were fabricated via solution spin-casting. Compared to the polymers substituted by branched alkyl chains, the polymers with straight alkyl chains show higher hole mobility. Of these polymers, P-C10 exhibits the highest field effect mobility up to 0.011 cm(2)/V·s. The alkyl chain on the DTC unit has a strong impact on the film morphology of polymer:PC(71)BM blends. Severe phase separation was found for polymers containing branched alkyl chains, and those with straight alkyl chains formed uniform films featuring fine phase separation. An open-circuit voltage (V(oc)) of 0.72 V, a short-circuit current density (J(sc)) of 13.4 mA/cm(2), a fill factor (FF) of 62%, and a power conversion efficiency (PCE) of 5.9% were demonstrated for BHJ PSCs based on the P-C10:PC(71)BM [1:3 (w/w)] blend film.

  15. Thermodynamic and structure investigations of new side-chain liquid crystal polymer

    NASA Astrophysics Data System (ADS)

    Danch, A.; Laggner, Peter; Degovics, G.; Sek, D.; Stelzer, F.

    1998-01-01

    Bis [((omega) -(4'-cyanobiphenyl)-4-yl)oxy-n- alkyl]norborn-5-ene-2,3-dicarboxylate was polymerized via ring opening metathesis polymerization. Two distributed polynorbornene derivatives, both of cis configuration, with different length of side-chain were studied. The influence of thermal history on the smectic phase stabilization, position and shape of the glass transition with temperature and on the relaxation process is shown. Glass transition temperatures enthalpies of isotropization and average layer spacing were calculated. Although, the rather flexible spacer between the mesogenic group and the main chain seems to be sufficient to partially decouple the mobility of the main chain from that of the mesogenic group, the influence of a backbone chain structure is still significant for polymer properties, especially in bulk. The measured layer spacing doe not correspond to double length of the side chain which suggests that either the side chains are not fully extended or some overlapping of CN tails occurs.

  16. Synthesis of Side Chain Liquid Crystal Polymers by Living Ring Opening Metathesis Polymerization. 1. Influence of Molecular Weight, Polydispersity, and Flexible Spacer Length (n=2-8) on the Thermotropic behavior of the Resulting Polymers

    DTIC Science & Technology

    1992-03-31

    Budget. Paperwork peduc t ~O l~oect(0104. 01111). Wasnhinqtol Dic 20oi 4- TITLE AND SUBTITLE Ap.i FUNIN N92_UMBcncaRpotS1 Synthesis of Side Chain...metathesis polymerization of 5-carbo(n-[(4’-methoxy-4- biphenylyl)oxy]alkyl)bicyclo[2.2.1]hept-2-ene (1-n, n=2-8) by Mo(CH- t -Bu)(NAr) (0- t -Bu)2(Ar=2,6...C6H3- t -Pr 2) is described. Polymers with degrees of polymeri- zation from 5 to 100 and narrow molecular weight distributions (Mw/Mnz1.05-1.24) were

  17. Rotational dynamics of coumarin-153 and 4-aminophthalimide in 1-ethyl-3-methylimidazolium alkylsulfate ionic liquids: effect of alkyl chain length on the rotational dynamics.

    PubMed

    Das, Sudhir Kumar; Sarkar, Moloy

    2012-01-12

    Rotational dynamics of two neutral organic solutes, coumarin-153 (C-153) and 4-aminophthalimide (AP), with only the latter having hydrogen-bond-donating ability, has been investigated in a series of 1-ethyl-3-methylimidazolium alkyl sulfate ionic liquids as a function of temperature. The ionic liquids differ only in the length of the linear alkyl side chain (alkyl = ethyl, butyl, hexyl, and octyl) on the anionic moiety. The present study has been undertaken to examine the role of alkyl side chains on the rotational dynamics of the two solutes in these ionic liquids. Analysis of the results using Stokes-Einstein-Debye hydrodynamic theory indicates that the rotational dynamics of C-153 lies between the stick and slip boundary condition in the ethyl analogue and finally reaches subslip condition as in case of the octyl substituent. The observed rotational behavior of C-153 has been explained on the basis of an increase in the size of the solvent, which offers lower friction for solute rotation. On the other hand, AP shows superstick behavior in the ethyl system and exceeds the stick limit in the octyl derivative. Superstick behavior of AP has been attributed to the specific hydrogen-bonding interaction between AP and the sulfate moiety. Proton NMR investigation confirms the hydrogen-bonding interaction between the N-H hydrogen of AP and the ionic liquid. The decrease in rotational coupling constant values for AP with increasing length of alkyl side chains has been attributed to the decrease in the solute-solvent-specific interaction with an increase in the alkyl side chain length on the sulfate moiety.

  18. Molecular and crystalline structures of three (S)-4-alkoxycarbonyl-2-azetidinones containing long alkyl side chains from synchrotron X-ray powder diffraction data.

    PubMed

    Seijas, Luis E; Mora, Asiloé J; Delgado, Gerzon E; López-Carrasquero, Francisco; Báez, María E; Brunelli, Michela; Fitch, Andrew N

    2009-12-01

    The (S)-4-alkoxo-2-azetidinecarboxylic acids are optically active beta-lactam derivatives of aspartic acid, which are used as precursors of carbapenem-type antibiotics and poly-beta-aspartates. The crystal structures of three (S)-4-alkoxo-2-azetidinecarboxylic acids with alkyl chains with 10, 12 and 16 C atoms were solved using parallel tempering and refined against the X-ray powder diffraction data using the Rietveld method. The azetidinone rings in the three compounds display a pattern of asymmetrical bond distances and an almost planar conformation; these characteristics are compared with periodic solid-state, gas-phase density-functional theory (DFT) calculations and MOGUL average bond distances and angles from the CSD. The compounds pack along [001] as corrugated sheets separated by approximately 4.40 A and connected by hydrogen bonds of the type N-H...O.

  19. Protein–Ligand Interactions: Thermodynamic Effects Associated with Increasing the Length of an Alkyl Chain

    PubMed Central

    2013-01-01

    Thermodynamic parameters were determined for complex formation between the Grb2 SH2 domain and tripeptides of the general form Ac-pTyr-Xaa-Asn in which the Xaa residue bears a linear alkyl chain varying in length from 1–5 carbon atoms. Binding affinity increases upon adding a methylene group to the Ala derivative, but further chain extension gives no extra enhancement in potency. The thermodynamic signatures of the ethyl and n-propyl derivatives are virtually identical as are those for the n-butyl and n-pentyl analogues. Crystallographic analysis of the complexes reveals a high degree of similarity in the structure of the domain and the bound ligands with the notable exception that there is a gauche interaction in the side chains in the bound conformations of ligands having n-propyl, n-butyl, and n-pentyl groups. However, eliminating this unfavorable interaction by introducing a Z-double bond into the side chain of the n-propyl analogue does not result in an increase in affinity. Increases in the amount of nonpolar surface that is buried upon ligand binding correlate with favorable changes in ΔH°, but these are usually offset by corresponding unfavorable changes in −TΔS°; there is little correlation of ΔCp with changes in the amount of buried nonpolar surface. PMID:24349642

  20. Side chain variations on a series of dicyanovinyl-terthiophenes: a photoinduced absorption study.

    PubMed

    Ziehlke, Hannah; Fitzner, Roland; Koerner, Christian; Gresser, Roland; Reinold, Egon; Bäuerle, Peter; Leo, Karl; Riede, Moritz K

    2011-08-04

    We characterize a series of dicyanovinyl-terthiophenes with different alkyl side chains. Variations of side chain substitution patterns and length mainly affect the morphology of the evaporated thin films, which in turn sensitively influences properties like absorption, energy levels, and thin film roughness. To investigate changes in transfer processes between electron donor (D) and acceptor (A) molecules due to side chain variations, we use photoinduced absorption spectroscopy (PIA). PIA probes the long-living photoexcited species at the D-A interface: triplet excitons, cations, and anions. For a blend layer of dicyanovinyl-terthiophene and the electron acceptor fullerene C(60), an energy transfer via the singlet and triplet manifold of C(60) occurs. The recombination dynamics of the triplet excitons reveal two components that differ in their lifetime and generation rate by 1 order of magnitude. By comparing the dynamics of triplet excitons in neat and blend layers, we estimate the energy transfer efficiency in dependence of the type of side chain. The compound with methyl side chains shows remarkable properties regarding thin film absorption, surface roughness, and energy transfer efficiency, which we attribute to the specific nanomorphology of the thin film.

  1. Designing greener plasticizers: Effects of alkyl chain length and branching on the biodegradation of maleate based plasticizers.

    PubMed

    Erythropel, Hanno C; Brown, Tobin; Maric, Milan; Nicell, Jim A; Cooper, David G; Leask, Richard L

    2015-09-01

    The ubiquitous presence of the plasticizer di (2-ethylhexyl) phthalate (DEHP) in the environment is of concern due to negative biological effects associated with it and its metabolites. In particular, the metabolite mono (2-ethylhexyl) phthalate (MEHP) is a potential endocrine disruptor. Earlier work had identified the diester di (2-ethylhexyl) maleate (DEHM) as a potential greener candidate plasticizer to replace DEHP, yet its biodegradation rate was reported to be slow. In this study, we modified the side chains of maleate diesters to be linear (i.e., unbranched) alkyl chains that varied in length from ethyl to n-octyl. The plasticization efficiency of these compounds blended into PVC at 29 wt.% increased with the overall length of the molecule, but all compounds performed as well as or better than comparable samples with DEHP. Tests conducted with the equally long DEHM and dihexyl maleate (DHM) showed that branching has no effect on glass transition temperature (Tg) reduction efficiency. Biodegradation experiments with the common soil bacterium Rhodococcus rhodocrous in the presence of the plasticizer showed acceptable hydrolysis rates of maleates with unbranched side chains, while the branched DEHM showed almost no degradation. The addition of hexadecane as auxiliary carbon source improved hydrolysis rates. Temporary buildup of the respective monoester of the compounds were observed, but only in the case of the longest molecule, dioctyl maleate (DOM), did this buildup lead to growth inhibition of the bacteria. Maleates with linear side chains, if designed and tested properly, show promise as potential candidate plasticizers as replacements for DEHP.

  2. Effects of alkyl chain length on properties of 1-alkyl-3-methylimidazolium fluorohydrogenate ionic liquid crystals.

    PubMed

    Xu, Fei; Matsumoto, Kazuhiko; Hagiwara, Rika

    2010-11-15

    A series of 1-alkyl-3-methylimidazolium fluorohydrogenate salts (C(x)MIm(FH)(2)F, x=8, 10, 12, 14, 16, and 18) have been characterized by thermal analysis, polarized optical microscopy, IR spectroscopy, X-ray diffraction, and anisotropic ionic conductivity measurements. Liquid crystalline mesophases with a smectic A interdigitated bilayer structure are observed from C(10) to C(18), showing a fan-like or focal conic texture. The temperature range of the mesophase increases with the increase in the alkyl chain length (from 10.1 °C for C(10)MIm(FH)(2)F to 123.1 °C for C(18)MIm(FH)(2)F). The distance between the two layers in the smectic structure gradually increases with increasing alkyl chain length and decreases with increasing temperature. Conductivity parallel to the smectic layers is around 10 mS cm(-1) regardless of the alkyl chain length, whereas that perpendicular to the smectic layers decreases with increasing alkyl chain length because of the thicker insulating sheet with the longer alkyl chain.

  3. Influence of the Length and Positioning of the Antiestrogenic Side Chain of Endoxifen and 4-Hydroxytamoxifen on Gene Activation and Growth of Estrogen Receptor Positive Cancer Cells

    PubMed Central

    2015-01-01

    Tamoxifen has biologically active metabolites: 4-hydroxytamoxifen (4OHT) and endoxifen. The E-isomers are not stable in solution as Z-isomerization occurs. We have synthesized fixed ring (FR) analogues of 4OHT and endoxifen as well as FR E and Z isomers with methoxy and ethoxy side chains. Pharmacologic properties were documented in the MCF-7 cell line, and prolactin synthesis was assessed in GH3 rat pituitary tumor cells. The FR Z-isomers of 4OHT and endoxifen were equivalent to 4OHT and endoxifen. Other test compounds used possessed partial estrogenic activity. The E-isomers of FR 4OHT and endoxifen had no estrogenic activity at therapeutic serum concentrations. None of the newly synthesized compounds were able to down-regulate ER levels. Molecular modeling demonstrated that some compounds would each create a best fit with a novel agonist conformation of the ER. The results demonstrate modulation by the ER complex of cell replication or gene transcription in cancer. PMID:24805199

  4. Hyaluronan derivatives: Alkyl chain length boosts viscoelastic behavior to depolymerization.

    PubMed

    Pavan, Mauro; Galesso, Devis; Menon, Giampaolo; Renier, Davide; Guarise, Cristian

    2013-09-12

    Five amide derivatives of Hyaluronic Acid (HA) were synthesized with C8, C12, C15, C16 and C18 linear alkyl-amines. These polymers (Hyadd) were tested against thermal, oxidative and hyaluronidase degradation by means of rheological experiments and SEC analysis and compared to non-modified HA. First of all, no free hexadecylamine was detected in the treated samples, meaning that under these stressing conditions only cleavage of glycosidic bonds occurs. Then, viscoelastic properties were assessed during thermal degradation and their variation as a function of time was expressed by means of a decay constant k(G'): while no significant difference in the decrease rate was observed between Hyadd-C8 and Hyadd-C12, a marked stabilization of viscoelastic properties during thermal treatment was detected for Hyadd-C15, Hyadd-C16 and Hyadd-C18. On the other hand, no difference was observed between the MW decrease rate (kMW decay constant) of HA and Hyadd-C12 to-C18; the depolymerization takes place on the backbone of the polymers independently whether they are derivatized or not, but longer alkyl chains lead to higher viscoelasticity in the depolymerized products. Finally, both oxidative and enzymatic degradation were carried out analyzing the changes in elastic modulus and in dynamic viscosity: once again, the amide side chain came out with similar behavior to chemical cross-linked HA (HBC) and with improved performances respect to linear HA in terms of preservation of viscoelasticity after chain depolymerization.

  5. Determinants of protein side-chain packing.

    PubMed Central

    Tanimura, R.; Kidera, A.; Nakamura, H.

    1994-01-01

    The problem of protein side-chain packing for a given backbone trace is investigated using 3 different prediction models. The first requires an exhaustive search of all possible combinations of side-chain conformers, using the dead-end elimination theorem. The second considers only side-chain-backbone interactions, whereas the third neglects side-chain-backbone interactions and instead keeps side-chain-side-chain interactions. Predictions of side-chain conformations for 11 proteins using all 3 models show that removal of side-chain-side-chain interactions does not cause a large decrease in the prediction accuracy, whereas the model having only side-chain-side-chain interactions still retains a significant level of accuracy. These results suggest that the 2 classes of interactions, side-chain-backbone and side-chain-side-chain, are consistent with each other and work concurrently to stabilize the native conformations. This is confirmed by analyses of energy spectra of the side-chain conformations derived from the fourth prediction model, the Independent model, which gives almost the same quality of the prediction as the dead-end elimination. The analyses indicate that the 2 classes of interactions simultaneously increase the energy difference between the native and nonnative conformations. PMID:7756990

  6. Effect of alkyl chain length and hydroxyl group functionalization on the surface properties of imidazolium ionic liquids.

    PubMed

    Pensado, Alfonso S; Costa Gomes, Margarida F; Canongia Lopes, José N; Malfreyt, Patrice; Pádua, Agílio A H

    2011-08-14

    Properties of the surface of ionic liquids, such as surface tension, ordering, and charge and density profiles, were studied using molecular simulation. Two types of modification in the molecular structure of imidazolium cations were studied: the length of the alkyl side chain and the presence of a polar hydroxyl group at the end of the side chain. Four ionic liquids were considered: 1-ethyl-3-methylimidazolium tetrafluoroborate, [C(2)C(1)im][BF(4)]; 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, [C(2)OHC(1)im][BF(4)]; 1-octyl-3-methylimidazolium tetrafluoroborate, [C(8)C(1)im][BF(4)] and 1-(8-hydroxyoctyl)-3-methylimidazolium tetrafluoroborate, [C(8)OHC(1)im][BF(4)]. The surface tension was calculated using both mechanical and thermodynamic definitions, with consistent treatment of the long-range corrections. The simulations reproduce the available experimental values of surface tension with a maximum deviation of ±10%. This energetic characterization of the interface is completed by microscopic structural analysis of orientational ordering at the interface and density profiles along the direction normal to the interface. The presence of the hydroxyl group modifies the local structure at the interface, leading to a less organized liquid phase. The results allow us to relate the surface tension to the structural ordering at the liquid-vacuum interface.

  7. Designing green plasticizers: influence of alkyl chain length on biodegradation and plasticization properties of succinate based plasticizers.

    PubMed

    Erythropel, Hanno C; Dodd, Patrick; Leask, Richard L; Maric, Milan; Cooper, David G

    2013-04-01

    Phthalate diesters such as di (2-ethylhexyl) phthalate (DEHP) are considered ubiquitous contaminants and are poorly biodegraded in the environment. Moreover, both the parent compound and stable metabolites such as mono (2-ethylhexyl) phthalate (MEHP) are linked to several negative impacts on the environment and human health. Earlier work established that saturated diester compounds, such as succinates, showed better biodegradation characteristics and comparable plasticizer properties compared to DEHP. In this work we examine the effect of alkyl chain length of succinate molecules on plasticizer and biodegradation properties. This included both the side chains (n-ethyl to n-octyl) as well as substituents on the middle part of the succinate molecule. We showed that the common soil bacterium Rhodococcus rhodocrous could rapidly break down all unsubstituted succinates, without the appearance of stable metabolites. Furthermore, the organisms used the plasticizer metabolites as carbon source. The introduction of a large cyclohexyl substituent on the succinate resulted in a poorer degradation rate. Glass Transition Temperature (Tg) measurements were performed to evaluate plasticizer properties and showed that longer side chains reduced the Tg more efficiently, while large cyclohexyl substituents on the succinate decreased this effect. However, all compounds performed better or equal to DEHP at reducing the Tg.

  8. Biodegradable cationic poly(carbonates): Effect of varying side chain hydrophobicity on key aspects of gene transfection.

    PubMed

    Ong, Zhan Yuin; Yang, Chuan; Cheng, Wei; Voo, Zhi Xiang; Chin, Willy; Hedrick, James L; Yang, Yi Yan

    2017-03-18

    The degree of hydrophobicity in cationic polymers plays an important but often underappreciated role in the safety and efficacy of gene delivery processes. In order to further elucidate structure-activity relationships of biodegradable cationic poly(carbonate) gene carriers, we synthesized a series of narrowly dispersed homo-polymers via metal-free organocatalytic living ring-opening polymerization (ROP) of cyclic carbonate monomers bearing either alkyl (propyl, hexyl or nonyl) or 4-methyl benzyl halide side chains. The polymers were then quaternized using bis-tertiary amines to install both quaternary ammoniums and tertiary amines for DNA binding and endosomal escape, respectively. Among the polymers with similar molecular lengths and charge densities, it was found that an increase in side chain alkyl spacer length from 3 to 6 carbons significantly enhanced cellular uptake and luciferase gene expression in HepG2 and HeLa cell lines without causing overt hemolysis and cytotoxicity. A further increase of side chain alkyl length to 9 carbons, however, led to a drastic decline in gene expression due to increased cellular toxicity, which was correlated with an increased disruption and lysis of red blood cell membranes. Interestingly, the incorporation of an aromatic 4-methyl benzyl spacer increased DNA binding strength, reduced particle sizes of resultant DNA complexes, and enhanced cellular uptake, leading to improved luciferase gene expression, albeit with higher levels of hemolysis and cytotoxicity. Taken together, the findings of this study demonstrate that a delicate balance between cationic charge density and hydrophobicity could be achieved by utilizing a hexyl spacer in the side chains of cationic poly(carbonates), hence providing insights on the future development of non-viral cationic polymeric gene delivery systems.

  9. Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering.

    PubMed

    Lee, Junghoon; Han, A-Reum; Yu, Hojeong; Shin, Tae Joo; Yang, Changduk; Oh, Joon Hak

    2013-06-26

    Ambipolar polymer semiconductors are highly suited for use in flexible, printable, and large-area electronics as they exhibit both n-type (electron-transporting) and p-type (hole-transporting) operations within a single layer. This allows for cost-effective fabrication of complementary circuits with high noise immunity and operational stability. Currently, the performance of ambipolar polymer semiconductors lags behind that of their unipolar counterparts. Here, we report on the side-chain engineering of conjugated, alternating electron donor-acceptor (D-A) polymers using diketopyrrolopyrrole-selenophene copolymers with hybrid siloxane-solubilizing groups (PTDPPSe-Si) to enhance ambipolar performance. The alkyl spacer length of the hybrid side chains was systematically tuned to boost ambipolar performance. The optimized three-dimensional (3-D) charge transport of PTDPPSe-Si with pentyl spacers yielded unprecedentedly high hole and electron mobilities of 8.84 and 4.34 cm(2) V(-1) s(-1), respectively. These results provide guidelines for the molecular design of semiconducting polymers with hybrid side chains.

  10. Diketopyrrolopyrrole-based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices.

    PubMed

    Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang

    2016-08-22

    Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness.

  11. The binding of analogs of porphyrins and chlorins with elongated side chains to albumin

    PubMed Central

    Ben Dror, Shimshon; Bronshtein, Irena; Weitman, Hana; Smith, Kevin M.; O’Neal, William G.; Jacobi, Peter A.; Ehrenberg, Benjamin

    2012-01-01

    In previous studies, we demonstrated that elongation of side chains of several sensitizers endowed them with higher affinity for artificial and natural membranes and caused their deeper localization in membranes. In the present study, we employed eight hematoporphyrin and protoporphyrin analogs and four groups containing three chlorin analogs each, all synthesized with variable numbers of methylenes in their alkyl carboxylic chains. We show that these tetrapyrroles’ affinity for bovine serum albumin (BSA) and their localization in the binding site are also modulated by chain lengths. The binding constants of the hematoporphyrins and protoporphyrins to BSA increased as the number of methylenes was increased. The binding of the chlorins depended on the substitution at the meso position opposite to the chains. The quenching of the sensitizers’ florescence by external iodide ions decreased as the side chains became longer, indicating to deeper insertion of the molecules into the BSA binding pocket. To corroborate this conclusion, we studied the efficiency of photodamage caused to tryptophan in BSA upon illumination of the bound sensitizers. The efficiency was found to depend on the side-chain lengths of the photosensitizer. We conclude that the protein site that hosts these sensitizers accommodates different analogs at positions that differ slightly from each other. These differences are manifested in the ease of access of iodide from the external aqueous phase, and in the proximity of the photosensitizers to the tryptophan. In the course of this study, we developed the kinetic equations that have to be employed when the sensitizer itself is being destroyed. PMID:19330323

  12. Synthesis of alkylated deoxynojirimycin and 1,5-dideoxy-1,5-iminoxylitol analogues: polar side-chain modification, sulfonium and selenonium heteroatom variants, conformational analysis, and evaluation as glycosidase inhibitors.

    PubMed

    Szczepina, Monica G; Johnston, Blair D; Yuan, Yue; Svensson, Birte; Pinto, B Mario

    2004-10-06

    The syntheses of N-alkylated deoxynojirimycin and 1,5-dideoxy-1,5-iminoxylitol derivatives having either a D- or an L-erythritol-3-sulfate functionalized N-substituent are reported. The alkylating agent used was a cyclic sulfate derivative, whereby selective attack of the nitrogen atom at the least hindered primary center afforded the desired ammonium salt. In aqueous solution, these salts were configurationally labile at the ammonium center. Sulfonium and/or selenonium analogues of the ammonium salts were prepared by analogous reactions. The chalcogen salts were obtained as mixtures of diastereomers, separable in some cases, differing only in the stereochemistry at the configurationally stable sulfur or selenium atoms. Proof of configuration and conformation of each compound was obtained by detailed NMR experiments. The compounds are six-membered ring analogues of salacinol, a known sulfonium-salt glucosidase inhibitor. Evaluation of the target compounds for enzyme inhibition of the glucosidase enzyme glucoamylase G2 indicated that these compounds were either inactive or, at best, only weak inhibitors of maltose hydrolysis.

  13. Vibrational Spectroscopic Study of Imidazolium Dicationic Ionic Liquids: Effect of Cation Alkyl Chain Length

    NASA Astrophysics Data System (ADS)

    Moumene, T.; Belarbi, E. H.; Haddad, B.; Villemin, D.; Abbas, O.; Khelifa, B.; Bresson, S.

    2016-05-01

    Two new dicationic ionic liquids were synthesized: bis-methyl imidazolium methylidene hexafluorophosphate [M(CH2)IM2 +][2PF 6 - ] and bis-methyl imidazolium propylidene hexafluorophosphate [M(CH2)3IM2 +][2PF 6 - ]. Their structures were identified by H, C, P, F NMR, FTIR/ATR, and FT-Raman spectroscopies in order to study the effect of cation alkyl chain length on vibration behaviors. Several changes were recorded, which were related to alkyl chain length. A frequency shift was observed in some modes while others remained insensitive. A greater number of peaks was found in the FTIR/ATR spectra and the FT-Raman spectra with increasing alkyl chain length, which indicated that chain length influences the N-C connection twisting. More peaks with strong intensity appeared for longer alkyl chain lengths.

  14. Improved packing of protein side chains with parallel ant colonies

    PubMed Central

    2014-01-01

    Introduction The accurate packing of protein side chains is important for many computational biology problems, such as ab initio protein structure prediction, homology modelling, and protein design and ligand docking applications. Many of existing solutions are modelled as a computational optimisation problem. As well as the design of search algorithms, most solutions suffer from an inaccurate energy function for judging whether a prediction is good or bad. Even if the search has found the lowest energy, there is no certainty of obtaining the protein structures with correct side chains. Methods We present a side-chain modelling method, pacoPacker, which uses a parallel ant colony optimisation strategy based on sharing a single pheromone matrix. This parallel approach combines different sources of energy functions and generates protein side-chain conformations with the lowest energies jointly determined by the various energy functions. We further optimised the selected rotamers to construct subrotamer by rotamer minimisation, which reasonably improved the discreteness of the rotamer library. Results We focused on improving the accuracy of side-chain conformation prediction. For a testing set of 442 proteins, 87.19% of X1 and 77.11% of X12 angles were predicted correctly within 40° of the X-ray positions. We compared the accuracy of pacoPacker with state-of-the-art methods, such as CIS-RR and SCWRL4. We analysed the results from different perspectives, in terms of protein chain and individual residues. In this comprehensive benchmark testing, 51.5% of proteins within a length of 400 amino acids predicted by pacoPacker were superior to the results of CIS-RR and SCWRL4 simultaneously. Finally, we also showed the advantage of using the subrotamers strategy. All results confirmed that our parallel approach is competitive to state-of-the-art solutions for packing side chains. Conclusions This parallel approach combines various sources of searching intelligence and energy

  15. Novel Side-Chain Liquid Cyrstalline Polymers

    DTIC Science & Technology

    1989-01-01

    chloride was added, and the mixture was acidified with formic acid . The organic layer ..as separated, dried over anhydrous MgSO4, filtered and the...Polymers and Sequential Copolymers by Phase Transfer Catalysis , 29. Synthesis of Thermotropic Side-Chain Liquid Crystalline Polymers Containing a Poly(2,6...Western Reserve University) 00 6. C. Pugh and V. Percec Functional Polymers and Sequential Copolymers by Phase Transfer Catalysis . 30.-Synthesis of

  16. Influence of alkyl chain length on charge transport in symmetrically substituted poly(2,5-dialkoxy- p -phenylenevinylene) polymers

    NASA Astrophysics Data System (ADS)

    Tuladhar, Sachetan M.; Sims, Marc; Kirkpatrick, James; Maher, Robert C.; Chatten, Amanda J.; Bradley, Donal D. C.; Nelson, Jenny; Etchegoin, Pablo G.; Nielsen, Christian B.; Massiot, Philippe; George, Wayne N.; Steinke, Joachim H. G.

    2009-01-01

    We report on the hole transport characteristics, as measured by time of flight, of a family of symmetrically substituted dialkoxy poly( p -phenylenevinylene) polymers with different side-chain length. As side-chain length is decreased, the magnitude of the hole mobility μh increases while the field dependence of μh becomes more positive and the temperature dependence of μh becomes stronger. For the shortest side-chain derivative studied, μh exceeds 10-4cm2V-1s-1 at electric fields greater than 105Vcm-1 . The trend in magnitude of μh with side-chain length is consistent with the expected increase in electronic wave-function overlap as interchain separation decreases, while the trends in electric-field and temperature dependences of μh are consistent with increasing site energy disorder. We show that the electrostatic contribution to the site energy difference for pairs of oligomers follows the observed trend as a function of interchain separation, although the pairwise contribution is too small to explain the data quantitatively. Nonresonant Raman spectroscopy is used to characterize the microstructure of our films. We construct spatial maps of the Raman ratio I1280/I1581 and confirm an expected decrease in average film density with side-chain extension. The structural heterogeneity in the maps is analyzed but no clear correlation is observed with transport properties, suggesting that the structural variations relevant for charge transport occur on a length scale finer than the resolution of ˜1μm .

  17. Dependence of micelle size and shape on detergent alkyl chain length and head group.

    PubMed

    Oliver, Ryan C; Lipfert, Jan; Fox, Daniel A; Lo, Ryan H; Doniach, Sebastian; Columbus, Linda

    2013-01-01

    Micelle-forming detergents provide an amphipathic environment that can mimic lipid bilayers and are important tools for solubilizing membrane proteins for functional and structural investigations in vitro. However, the formation of a soluble protein-detergent complex (PDC) currently relies on empirical screening of detergents, and a stable and functional PDC is often not obtained. To provide a foundation for systematic comparisons between the properties of the detergent micelle and the resulting PDC, a comprehensive set of detergents commonly used for membrane protein studies are systematically investigated. Using small-angle X-ray scattering (SAXS), micelle shapes and sizes are determined for phosphocholines with 10, 12, and 14 alkyl carbons, glucosides with 8, 9, and 10 alkyl carbons, maltosides with 8, 10, and 12 alkyl carbons, and lysophosphatidyl glycerols with 14 and 16 alkyl carbons. The SAXS profiles are well described by two-component ellipsoid models, with an electron rich outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core composed of the alkyl chains. The minor axis of the elliptical micelle core from these models is constrained by the length of the alkyl chain, and increases by 1.2-1.5 Å per carbon addition to the alkyl chain. The major elliptical axis also increases with chain length; however, the ellipticity remains approximately constant for each detergent series. In addition, the aggregation number of these detergents increases by ∼16 monomers per micelle for each alkyl carbon added. The data provide a comprehensive view of the determinants of micelle shape and size and provide a baseline for correlating micelle properties with protein-detergent interactions.

  18. Quantifying side-chain conformational variations in protein structure

    NASA Astrophysics Data System (ADS)

    Miao, Zhichao; Cao, Yang

    2016-11-01

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.

  19. Quantifying side-chain conformational variations in protein structure.

    PubMed

    Miao, Zhichao; Cao, Yang

    2016-11-15

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.

  20. Photoionization of alkylphenothiazines in vesicles: Effects of the alkyl chain length and the vesicle surface charge

    SciTech Connect

    Sakaguchi, Masato; Hu, Ming; Kevan, L. )

    1990-01-25

    The photoionization of alkylphenothiazine (AP = alkylphenothiazine) in vesicles were observed by electron spin resonance (ESR) and electron spin echo modulation (ESEM) methods. Alkylphenothiazine derivatives including sodium 10-methylphenothiazinesulfonate (C{sub 1}PSO{sub 3}Na), sodium 10-dodecylphenothiazinesulfonate (C{sub 12}PSO{sub 3}Na), sodium 3-(10{prime}-phenothiazinyl)propane-1-sulfonate (PC{sub 3}SO{sub 3}Na), sodium 6-(10{prime}-phenothiazinyl)hexane-1-sulfonate (PC{sub 6}SO{sub 3}Na), and sodium 12-(10{prime}-phenothiazinyl)dodecane-1-sulfonate (PC{sub 12}SO{sub 3} Na) were synthesized and used to study the effects of the alkyl chain length, the position of the sulfonate group, and the vesicle surface charge on the photoionization. A single ESR spectrum due to the alkylphenothiazine cation radicals (AP{sup +}) was observed from rapidly frozen AP in dioctadecyldimethylammonium chloride (DODAC) or dihexadecyl phosphate (DHP) vesicles photoirradiated for 10 min with {lambda} > 300 nm. In DODAC vesicles with a positive surface charge, the photoionization yield of PC{sub 12}SO{sub 3}Na with a sulfonate group at the dodecyl chain end is higher than that of C{sub 12}PSO{sub 3}Na with a sulfonate group on the phenothiazine ring. The photoionization yields of AP having the sulfonate group at the alkyl chain end in DODAC vesicles increase with decreasing alkyl chain length. The highest photoionization yield was obtained from PC{sub 3}SO{sub 3}Na, which has the shortest alkyl chain in this study and has the sulfonate group at the end of the propyl chain. The photoionization yield of AP in DHP vesicles with a negative surface charge was not changed by added alkyl chains or the position of the sulfonate group in AP. The results are discussed in terms of the alkyl chain length, the position of the sulfonate group, and the vesicle surface charge.

  1. Certain Chemical Substances Containing Varying Carbon Chain Lengths (Alkyl Ranges Using the Cx-y Notation) on the TSCA Inventory

    EPA Pesticide Factsheets

    This paper explains the conventions that are applied to certain listings of chemical substances containing ranges of alkyl chain lengths (i.e., carbon chains of varying lengths) for chemical substances on the Toxic Substances Control Act (TSCA)

  2. Spectroscopic study on interaction between three cationic surfactants with different alkyl chain lengths and DNA.

    PubMed

    Guo, Lili; Zhang, Zhaohong; Qiao, Heng; Liu, Miao; Shen, Manli; Yuan, Tianxin; Chen, Jing; Dionysiou, Dionysios D

    2015-01-01

    In this study, the interaction between cationic surfactants with different alkyl chain lengths, such as hexyltrimethyl ammonium bromide (HTAB), dodecyltrimethyl ammonium bromide (DTAB) and cetyltrimethyl ammonium bromide (CTAB), and DNA was investigated by UV-vis spectroscopy, fluorescence spectroscopy and viscosity techniques. The results showed that these three cationic surfactants with different hydrocarbon chain lengths could all interact with DNA. Their binding modes were estimated and their interaction strength was compared. In addition, the effects of the surfactant, NaCl and phosphate ion concentrations on the interaction were reviewed. It is wished that this work would provide some valuable references to investigate the influence of cationic surfactants with different alkyl chain lengths on DNA.

  3. Synthesis of Side Chain Liquid Crystal Polymers by Living Ring Opening Metathesis Polymerization. 2. Influence of Molecular Weight, Polydispersity, and Flexible Spacer Length (n=9-12) on the Thermotropic behavior of the Resulting Plymers

    DTIC Science & Technology

    1992-03-31

    In- CN018952 fluence of Molecular Weight, Polydispersilty and ... 6 AUTHOR(S) Zen Komiya, Coleen Pugh, Richard R. Schrock 7. PERFORMING ORGANIZATION...Zen Komiya, Coleen Pught, and Richard R. Schrock Submitted to A,,tA =z soij For Macromolecules NTIS - - D~iC 1 ,C; tCarnegie Mellon University...Spacer Length (n = 9-12) on the Thermotropic Behavior of the Resulting Polymers by Zen Komiya, Coleen Pught, and Richard R. Schrock* Contribution from

  4. Length dependence of conductance and thermopower of hybrid alkyl-thiophene single molecule junctions

    NASA Astrophysics Data System (ADS)

    Kotiuga, Michele; Chang, William B.; Mai, Cheng-Kang; Pauly, Fabian; Bazan, Guillermo C.; Segalman, Rachel A.; Neaton, Jeffrey B.

    2014-03-01

    Single-molecule junctions are novel, controllable testbeds for understanding mixed electronic and thermal transport at interfaces. Here, we study a set of newly-synthesized molecules containing alkyl and thiophene units of increasing length in order to control junction level alignment and electronic coupling with a combination of theory and experiment. Using a first-principles scattering-state approach, based on self-energy corrected density functional theory, we calculate the conductance and thermopower of thiol-terminated alkyl-thiophene-Au junctions, elucidating the relationship between length and thermopower. We compare our work to statistical measurements with a scanning tunneling microscope-based break junction technique, and discuss the impact of junction geometry on our results. Work supported by ONR/AFOSR BAA 10-026 and computational resources provided by NERSC.

  5. Phenothiazinium photoantimicrobials with basic side chains.

    PubMed

    Wainwright, Mark; Antczak, Joanna; Baca, Martyna; Loughran, Ciara; Meegan, Katie

    2015-09-01

    Derivatives of the standard cationic photosensitiser, methylene blue, were synthesised, having extra amino (basic) functionality in the auxochromic side-chain. The resulting analogues were profiled for photodynamic activity in vitro, and screened against standard Gram-positive and Gram-negative bacteria for photobactericidal activity. The substitution pattern of the derivatives was such that ionisation of the amino groups in situ, via protonation, provided a range of charge distribution and degree of charge across the molecular framework. While most examples exhibited greater activity than the lead compound, in addition to similar activity to the known, but more powerful, phenothiazinium photoantimicrobial, dimethyl methylene blue, this was also associated with relatively high dark toxicity, inferring that these compounds were targeting crucial structures before illumination. One derivative having an asymmetrical structure, with separation between a lipophilic and a hydrophilic region exhibited a combination of very high phototoxicity coupled with very low dark effects, against both the standard screen and an additional one containing further, relevant pathogen species, including Candida albicans. It is suggested that the great activity of this analogue is due to efficient membrane targeting.

  6. Linear rheology and structure of molecular bottlebrushes with short side chains

    SciTech Connect

    López-Barrón, Carlos R. Brant, Patrick; Crowther, Donna J.; Eberle, Aaron P. R.

    2015-05-15

    We investigate the microstructure and linear viscoelasticity of model molecular bottlebrushes (BBs) using rheological and small-angle X-ray and neutron scattering measurements. Our polymers have short atactic polypropylene (aPP) side chains of molecular weight ranging from 119 g/mol to 259 g/mol and narrow molecular weight distribution (M{sub w}/M{sub n} 1.02–1.05). The side chain molecular weights are a small fraction of the entanglement molecular weight of the corresponding linear polymer (M{sub e,aPP}= 7.05 kg/mol), and as such, they are unentangled. The morphology of the aPP BBs is characterized as semiflexible thick chains with small side chain interdigitation. Their dynamic master curves, obtained by time-temperature superposition, reveal two sequential relaxation processes corresponding to the segmental relaxation and the relaxation of the BB backbone. Due to the short length of the side chains, their fast relaxation could not be distinguished from the glassy relaxation. The fractional free volume is an increasing function of the side chain length (N{sub SC}). Therefore, the glassy behavior of these polymers as well as their molecular friction and dynamic properties are influenced by their N{sub SC} values. The apparent flow activation energies are a decreasing function of N{sub SC}, and their values explain the differences in zero-shear viscosity measured at different temperatures.

  7. Microwave-assisted solid-phase synthesis of side-chain to side-chain lactam-bridge cyclic peptides.

    PubMed

    Tala, Srinivasa R; Schnell, Sathya M; Haskell-Luevano, Carrie

    2015-12-15

    Side-chain to side-chain lactam-bridged cyclic peptides have been utilized as therapeutic agents and biochemical tools. Previous synthetic methods of these peptides need special reaction conditions, form side products and take longer reaction times. Herein, an efficient microwave-assisted synthesis of side-chain to side-chain lactam-bridge cyclic peptides SHU9119 and MTII is reported. The synthesis time and efforts are significantly reduced in the present method, without side product formation. The analytical and pharmacological data of the synthesized cyclic peptides are in accordance with the commercially obtained compounds. This new method could be used to synthesize other side-chain to side-chain lactam-bridge peptides and amenable to automation and extensive SAR compound derivatization.

  8. Synthesis of cyclic polyesters: effects of alkoxy side chains in salicylaldiminato tin(II) complexes.

    PubMed

    Wongmahasirikun, Phonpimon; Prom-on, Paweenuch; Sangtrirutnugul, Preeyanuch; Kongsaeree, Palangpon; Phomphrai, Khamphee

    2015-07-21

    A new class of salicylaldiminato tin(II) catalysts having different alkoxy side chains has been developed. The ligands were modified to have different lengths and flexibilities such as –(CH2)2– (2a), –(CH2)3– (2b), –(ortho-C6H4)CH2– (2c) and –(CH2)2–O–(CH2)2– (2d). Complexes 2a, b were characterized crystallographically revealing a more constrained environment around the metal in complex 2a. These catalysts are active for the solvent-free polymerization of L-lactide and ε-caprolactone. Complex 2a having a shorter side chain was shown to better promote intramolecular transesterification affording cyclic polylactides and cyclic poly(ε-caprolactone). Complexes 2b and 2d having longer side chains produced cyclic poly(ε-caprolactone) as a major product but failed to give cyclic polylactides.

  9. Effect of alkyl chain length on the rotational diffusion of nonpolar and ionic solutes in 1-alkyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imides.

    PubMed

    Gangamallaiah, V; Dutt, G B

    2013-10-10

    Rotational diffusion of a nonpolar solute 9-phenylanthracene (9-PA) and a cationic solute rhodamine 110 (R110) has been examined in a series of 1-alkyl-3-methylimidazolium (alkyl = octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl) bis(trifluoromethylsulfonyl)imides to understand the influence of alkyl chain length on solute rotation. In this study, reorientation times (τr) have been measured as a function of viscosity (η) by varying the temperature (T) of the solvents. These results have been analyzed using the Stokes-Einstein-Debye (SED) hydrodynamic theory along with the ones obtained for the same solutes in 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides (Gangamallaiah and Dutt, J. Phys. Chem. B 2012, 116, 12819-12825). It has been noticed that the data for 9-PA and R110 follows the relation τr = A(η/T)(n) with A being the ratio of hydrodynamic volume of the solute to the Boltzmann constant and n = 1 as envisaged by the SED theory. However, upon increasing the alkyl chain length from methyl to octadecyl significant deviations from the SED theory have been observed especially from the octyl derivative onward. From methyl to octadecyl derivatives, the value of A decreases by a factor of 3 for both the solutes and n by a factor of 1.4 and 1.6 for 9-PA and R110, respectively. These observations have been rationalized by taking into consideration the organized structure of the ionic liquids, whose influence appears to be pronounced when the number of carbon atoms in the alkyl chain attached to the imidazolium cation exceeds eight.

  10. Side-chain entropy and packing in proteins.

    PubMed Central

    Bromberg, S.; Dill, K. A.

    1994-01-01

    What role does side-chain packing play in protein stability and structure? To address this question, we compare a lattice model with side chains (SCM) to a linear lattice model without side chains (LCM). Self-avoiding configurations are enumerated in 2 and 3 dimensions exhaustively for short chains and by Monte Carlo sampling for chains up to 50 main-chain monomers long. This comparison shows that (1) side-chain degrees of freedom increase the entropy of open conformations, but side-chain steric exclusion decreases the entropy of compact conformations, thus producing a substantial entropy that opposes folding; (2) there is side-chain "freezing" or ordering, i.e., a sharp decrease in entropy, near maximum compactness; and (3) the different types of contacts among side chains (s) and main-chain elements (m) have different frequencies, and the frequencies have different dependencies on compactness. mm contacts contribute significantly only at high densities, suggesting that main-chain hydrogen bonding in proteins may be promoted by compactness. The distributions of mm, ms, and ss contacts in compact SCM configurations are similar to the distributions in protein structures in the Brookhaven Protein Data Bank. We propose that packing in proteins is more like the packing of nuts and bolts in a jar than like the pairwise matching of jigsaw puzzle pieces. PMID:7920265

  11. Protein-ligand docking with multiple flexible side chains

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Sanner, Michel F.

    2008-09-01

    In this work, we validate and analyze the results of previously published cross docking experiments and classify failed dockings based on the conformational changes observed in the receptors. We show that a majority of failed experiments (i.e. 25 out of 33, involving four different receptors: cAPK, CDK2, Ricin and HIVp) are due to conformational changes in side chains near the active site. For these cases, we identify the side chains to be made flexible during docking calculation by superimposing receptors and analyzing steric overlap between various ligands and receptor side chains. We demonstrate that allowing these side chains to assume rotameric conformations enables the successful cross docking of 19 complexes (ligand all atom RMSD < 2.0 Å) using our docking software FLIPDock. The number of side receptor side chains interacting with a ligand can vary according to the ligand's size and shape. Hence, when starting from a complex with a particular ligand one might have to extend the region of potential interacting side chains beyond the ones interacting with the known ligand. We discuss distance-based methods for selecting additional side chains in the neighborhood of the known active site. We show that while using the molecular surface to grow the neighborhood is more efficient than Euclidian-distance selection, the number of side chains selected by these methods often remains too large and additional methods for reducing their count are needed. Despite these difficulties, using geometric constraints obtained from the network of bonded and non-bonded interactions to rank residues and allowing the top ranked side chains to be flexible during docking makes 22 out of 25 complexes successful.

  12. Influence of Solute Charge and Pyrrolidinium Ionic Liquid Alkyl Chain Length on Probe Rotational Reorientation Dynamics

    SciTech Connect

    Guo, Jianchang; Mahurin, Shannon Mark; Baker, Gary A; Hillesheim, Patrick C; Dai, Sheng; Shaw, Robert W

    2014-01-01

    In recent years, the effect of molecular charge on the rotational dynamics of probe solutes in room temperature ionic liquids (RTILs) has been a subject of growing interest. For the purpose of extending our understanding of charged solute behavior within RTILs, we have studied the rotational dynamics of three illustrative xanthene fluorescent probes within a series of N-alkylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Cnmpyr][Tf2N]) RTILs with different n-alkyl chain lengths (n = 3, 4, 6, 8, or 10) using time-resolved fluorescence anisotropy decay. The rotational dynamics of the neutral probe rhodamine B dye lies between the stick and slip boundary conditions due to the influence of specific hydrogen bonding interactions. The rotation of the negatively-charged sulforhodamine 640 is slower than that of its positively-charged counterpart rhodamine 6G. An analysis based upon Stokes-Einstein-Debye hydrodynamics indicates that SR640 adheres to stick boundary conditions due to specific interactions, whereas the faster rotation of R6G is attributed to weaker electrostatic interactions. No dependence of the rotational dynamics on the solvent alkyl chain length was observed for any of the three dyes, suggesting that the specific interactions between dyes and RTILs are independent of this solvent parameter.

  13. Effect of surfactant alkyl chain length on soil cadmium desorption using surfactant/ligand systems.

    PubMed

    Shin, Mari; Barrington, Suzelle F; Marshall, William D; Kim, Jin-Woo

    2005-02-01

    The effect of surfactant alkyl chain length on soil Cd desorption was studied using nonionic surfactants of polyethylene oxide (PEO) of PEO chain lengths of 7.5 (Triton X-114), 9.5 (Triton X-100), 30 (Triton X-305), or 40 units (Triton X-405) in combination with the I- ligand. Triplicate 1 g soil samples were equilibrated with 15 ml of surfactant-ligand mixture, at concentrations of 0.025, 0.50 or 0.10, and 0.0, 0.168 or 0.336 mol/l, respectively. After shaking the samples for 24 h, the supernatant fraction was analyzed for Cd content to determine the percent of Cd desorbed from the soil. After five successive washings, 53%, 40% and 25% of Cd had been desorbed by 0.025, 0.050 or 0.10 mol/l of Triton X-114, respectively, in the presence of 0.336 mol/l of I-, whereas with the same conditions, Triton X-100 desorbed 61%, 57% and 56% Cd and either Triton X-305 or Triton X-405 desorbed 51, 40 and 14 to 16% Cd. The most efficient Cd desorption was obtained using 0.025 mol/l Triton X-100 in admixture with 0.336 mol/l I-. Increased surfactant concentration was detrimental to Cd desorption consistent with a process that blocked ligand access to the soil particle surface. After 5 washings,the cumulative cadmium desorption decreased with increasing surfactant alkyl chain length, indicating that the metal-ligand complexes are preferably stabilized by the micelles' hydrophobic octyl phenyl (OP) group rather than by the hydrophilic PEO group. In the absence of ligand, the surfactants alone desorbed less than 1% Cd from the contaminated soil, suggesting that the ligand, rather than the surfactant, extracts the metal, to be subsequently stabilized within the surfactant micelles.

  14. Controlling the mode of operation of organic transistors through side-chain engineering

    PubMed Central

    Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika; Nielsen, Christian B.; Bandiello, Enrico; Hanifi, David A.; Sessolo, Michele; Malliaras, George G.; McCulloch, Iain; Rivnay, Jonathan

    2016-01-01

    Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors. PMID:27790983

  15. The adsorption of xyloglucan on cellulose: effects of explicit water and side chain variation.

    PubMed

    Zhang, Qiong; Brumer, Harry; Ågren, Hans; Tu, Yaoquan

    2011-11-29

    The interaction between para-crystalline cellulose and the cross-linking glycan xyloglucan (XG) plays a central role for the strength and extensibility of plant cell walls. The coating of XGs on cellulose surfaces is believed to be one of the most probable interaction patterns. In this work, the effects of explicit water and side chain variation on the adsorption of XGs on cellulose are investigated by means of atomistic molecular dynamics simulations. The adsorption properties are studied in detail for three XGs on cellulose Iβ 1-10 surface in aqueous environment, namely GXXXGXXXG, GXXLGXXXG, and GXXFGXXXG, which differ in the length and composition of one side chain. Our work shows that when water molecules are included in the theoretical model, the total interaction energies between the adsorbed XGs and cellulose are considerably smaller than in vacuo. Furthermore, in water environment the van der Waals interactions prevail over the electrostatic interactions in the adsorption. Variation in one side chain does not have significant influence on the interaction energy and the binding affinity, but does affect the equilibrium structural properties of the adsorbed XGs to facilitate the interaction between both the backbone and the side chain residues with the cellulose surface. Together, this analysis provides new insights into the nature of the XG-cellulose interaction, which helps to further refine current molecular models of the composite plant cell wall.

  16. A protein-dependent side-chain rotamer library

    PubMed Central

    2011-01-01

    Background Protein side-chain packing problem has remained one of the key open problems in bioinformatics. The three main components of protein side-chain prediction methods are a rotamer library, an energy function and a search algorithm. Rotamer libraries summarize the existing knowledge of the experimentally determined structures quantitatively. Depending on how much contextual information is encoded, there are backbone-independent rotamer libraries and backbone-dependent rotamer libraries. Backbone-independent libraries only encode sequential information, whereas backbone-dependent libraries encode both sequential and locally structural information. However, side-chain conformations are determined by spatially local information, rather than sequentially local information. Since in the side-chain prediction problem, the backbone structure is given, spatially local information should ideally be encoded into the rotamer libraries. Methods In this paper, we propose a new type of backbone-dependent rotamer library, which encodes structural information of all the spatially neighboring residues. We call it protein-dependent rotamer libraries. Given any rotamer library and a protein backbone structure, we first model the protein structure as a Markov random field. Then the marginal distributions are estimated by the inference algorithms, without doing global optimization or search. The rotamers from the given library are then re-ranked and associated with the updated probabilities. Results Experimental results demonstrate that the proposed protein-dependent libraries significantly outperform the widely used backbone-dependent libraries in terms of the side-chain prediction accuracy and the rotamer ranking ability. Furthermore, without global optimization/search, the side-chain prediction power of the protein-dependent library is still comparable to the global-search-based side-chain prediction methods. PMID:22373394

  17. Effect of n-alkyl chain length on the complexation of phenanthrene and 9-alkyl-phenanthrene with $beta;-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Rima, J.; Aoun, E.; Hanna, K.

    2004-06-01

    The characteristics of host-guest complexation between β-cyclodextrin (β-CD) and phenanthrene derivatives (phenanthrene, n-propyl, n-butyl and n-hexyl-phenanthrene) were investigated by fluorescence spectrometry. Linear and non-linear regression methods were used to estimate the formation constants ( K1). A 1:1 stoichiometric ratio and an effect of n-alkyl chain length on the formation constant were observed for the binary inclusion complex between guest and β-CD. The formation constant dramatically increases with the length of n-alkyl, it starts from the value of 140 l mol -1 for the phenanthrene to reach the value of 580 l mol -1 for hexyl-phenanthrene. The effect of the temperature on the fluorescence intensity of each complex (guest-host) was also studied; and then the thermodynamic parameters were calculated. The main inclusion site seems to be aromatic moiety for short chain molecules, and it moves toward the alkyl chain part, as the chain becomes longer.

  18. Molecular dynamics simulations of end-grafted centipede-like polymers with stiff charged side chains.

    PubMed

    Cao, Q Q; Zuo, C C; Li, L J

    2010-05-01

    We use molecular dynamics simulations to investigate centipede-like polymers with stiff charged side chains, end-grafted to a planar wall. The effect of the grafting density and the Bjerrum length on the conformational behaviour of the brush is examined in detail. In addition, we make a comparison of centipede-like polyelectrolyte (CPE) brushes with neutral centipede-like polymer (NCP) and linear polyelectrolyte (LPE) brushes. At weak electrostatic interaction, the main chains of the CPE chains adopt a strongly stretched conformation, and the monomer density profiles of side chains exhibit a clear oscillatory behaviour. With increasing Bjerrum length, the CPE brush undergoes a collapse transition. Compared to the CPE brushes, the counterion condensation effect is stronger for the LPE brushes, regardless of whether the electrostatic interaction is weak or strong and of whether the grafting density is low or high. Additionally, it is shown that the architecture of the grafted chains makes a weak contribution to the counterion condensation at strong electrostatic interaction. We also find that the electrostatic repulsion between charged side chains can enhance the stiffness of the main chains and thus limit the range of movement of the free-end monomers.

  19. Biosynthesis of ubiquinone compounds with conjugated prenyl side chains.

    PubMed

    Lee, Pyung Cheon; Salomon, Christine; Mijts, Benjamin; Schmidt-Dannert, Claudia

    2008-11-01

    Enzymatic steps from two different biosynthetic pathways were combined in Escherichia coli, directing the synthesis of a new class of biomolecules--ubiquinones with prenyl side chains containing conjugated double bonds. This was achieved by the activity of a C(30) carotenoid desaturase, CrtN, from Staphylococcus aureus, which exhibited an inherent flexibility in substrate recognition compared to other carotenoid desaturases. By utilizing the known plasticity of E. coli's native ubiquinone biosynthesis pathway and the unusual activity of CrtN, modified ubiquinone structures with prenyl side chains containing conjugated double bonds were generated. The side chains of the new structures were confirmed to have different degrees of desaturation by mass spectrometry and nuclear magnetic resonance analysis. In vivo (14)C labeling and in vitro activity studies showed that CrtN desaturates octaprenyl diphosphates but not the ubiquinone compounds directly. Antioxidant properties of conjugated side chain ubiquinones were analyzed in an in vitro beta-carotene-linoleate model system and were found to be higher than the corresponding unmodified ubiquinones. These results demonstrate that by combining pathway steps from different branches of biosynthetic networks, classes of compounds not observed in nature can be synthesized and structural motifs that are functionally important can be combined or enhanced.

  20. Nanostructure of mixtures of protic ionic liquids and lithium salts: effect of alkyl chain length.

    PubMed

    Méndez-Morales, Trinidad; Carrete, Jesús; Rodríguez, Julio R; Cabeza, Óscar; Gallego, Luis J; Russina, Olga; Varela, Luis M

    2015-02-21

    The bulk structure of mixtures of two protic ionic liquids, propylammonium nitrate and butylammonium nitrate, with a salt with a common anion, is analyzed at room temperature by means of small angle X-ray scattering and classical molecular dynamics simulations. The study of several structural properties, such as density, radial distribution functions, spatial distribution functions, hydrogen bonds, coordination numbers and velocity autocorrelation functions, demonstrates that increasing the alkyl chain length of the alkylammonium cation results in more segregated, better defined polar and apolar domains, the latter having a larger size. This increase, ascribed to the erosion of the H-bond network in the ionic liquid polar regions as salt is added, is confirmed by means of small angle X-ray scattering measurements, which show a clear linear increase of the characteristic spatial sizes of the studied protic ionic liquids with salt concentration, similar to that previously reported for ethylammonium nitrate (J. Phys. Chem. B, 2014, 118, 761-770). In addition, larger ionic liquid cations lead to a lower degree of hydrogen bonding and to more sparsely packed three-dimensional structures, which are more easily perturbed by the addition of lithium salts.

  1. Influence of alkyl chain length on the surface activity of antibacterial polymers derived from ROMP.

    PubMed

    Altay, Esra; Yapaöz, Melda Altıkatoğlu; Keskin, Bahadır; Yucesan, Gundoğ; Eren, Tarik

    2015-03-01

    The purpose of this study is to understand the antibacterial properties of cationic polymers on solid surfaces by investigating the structure-activity relationships. The polymer synthesis was carried via ring opening metathesis polymerization (ROMP) of oxanorbornene derivatives. Modulation of molecular weights and alkyl chain lengths of the polymers were studied to investigate the antibacterial properties on the glass surface. Fluorescein (Na salt) staining contact angle measurements were used to characterize the positive charge density and hydrophobicity on the polymer coated surfaces. Positive charge density for the surface coated polymers with molecular weights of 3000 and 10,000 g mol(-1) is observed to be in the range of 2.3-28.5 nmol cm(-2). The ROMP based cationic pyridinium polymer with hexyl unit exhibited the highest bactericidal efficiency against Escherichia coli on solid surface killing 99% of the bacteria in 5 min. However, phenyl and octyl functionalized quaternary pyridinium groups exhibited lower biocidal properties on the solid surfaces compared to their solution phase biocidal properties. Studying the effect of threshold polymer concentrations on the antibacterial properties indicated that changing the concentrations of polymer coatings on the solid surface dramatically influences antibacterial efficiency.

  2. Imidiazolium based ionic liquids: effects of different anions and alkyl chains lengths on the barley seedlings.

    PubMed

    Cvjetko Bubalo, Marina; Hanousek, Karla; Radošević, Kristina; Gaurina Srček, Višnja; Jakovljević, Tamara; Radojčić Redovniković, Ivana

    2014-03-01

    We studied the effects of five imidiazolium based ionic liquids with different anions and length of alkyl chains linked to imidazolium ring on the early development of barley (Hordeum vulgare). The inhibitory effect depends on the ionic liquids concentration and chemical structure, whereby the most toxic one was [C10mim][Br], followed by [C7mim][Br], [C4mim][Br], [C4mim][CH3CO2] and [C4mim][BF4]. Both anion and cation structures affected the toxicity of ionic liquid indicating that selection of more biocompatible anions such as [CH3CO2] does not necessarily indicate lower toxicity. Alternation in the extent of oxidative stress and antioxidant enzymes activities were found in barley plants due to ionic liquid treatments. When seedlings were exposed to higher concentrations of ionic liquids, antioxidant system could not effectively remove reactive oxidative species, leading to lipid peroxidation and damage of the photosynthetic system. However, overall data indicated that the performance of barley seedling was improved when all measured enzymes involved in scavenging of reactive oxygen species (ROS) were increased with special emphasis on GPX activities. Since there are no studies about ionic liquid (IL) toxicity in plants, that simultaneously evaluates the antioxidative enzyme system in response to different ILs, this work is valuable for gaining knowledge about the protection mechanism of plants from oxidative stress caused by IL exposure.

  3. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    PubMed

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  4. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development.

    PubMed

    Cankar, Katarina; Kortstee, Anne; Toonen, Marcel A J; Wolters-Arts, Mieke; Houbein, Rudolf; Mariani, Celestina; Ulvskov, Peter; Jorgensen, Bodil; Schols, Henk A; Visser, Richard G F; Trindade, Luisa M

    2014-05-01

    Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure-function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pectin composition was analysed. The expression of genes encoding enzymes involved in pectin acetylation, degradation of the rhamnogalacturonan backbone and type and length of neutral side chains, arabinan and galactan in particular, has been altered. Upon crossing of different transgenic lines, some transgenes were not transmitted to the next generation when these lines were used as a pollen donor, suggesting male sterility. Viability of mature pollen was severely decreased in potato lines with reduced pectic arabinan, but not in lines with altered galactan side chains. Anthers and pollen of different developmental stages were microscopically examined to study the phenotype in more detail. Scanning electron microscopy of flowers showed collapsed pollen grains in mature anthers and in earlier stages cytoplasmic protrusions at the site of the of kin pore, eventually leading to bursting of the pollen grain and leaking of the cytoplasm. This phenomenon is only observed after the microspores are released and the tapetum starts to degenerate. Timing of the phenotype indicates a role for pectic arabinan side chains during remodelling of the cell wall when the pollen grain is maturing and dehydrating.

  5. Role of side chains in collagen triple helix stabilization and partner recognition.

    PubMed

    Berisio, Rita; De Simone, Alfonso; Ruggiero, Alessia; Improta, Roberto; Vitagliano, Luigi

    2009-03-01

    Collagen is a widespread protein family involved in a variety of biological processes. The complexity of collagen and its fibrous nature prevent detailed investigations on the full-length protein. Reductionist approaches conducted by dissecting the protein complexity through the use of model peptides have proved to be quite effective. There are, however, several issues regarding structure-stability relationships, aggregation in higher-order assemblies, and partner recognition that are still extensively investigated. In this review, we discuss the role that side chains play in triple helix stabilization and in partner recognition. On the basis of recent literature data, we show that collagen triple helix stability is the result of the interplay of different factors. As a general trend, interactions established by amino/imino acid side chains within the triple helix scaffold effectively modulate the intrinsic residue propensity for this common structural motif. The use of peptide models has also highlighted the role that side chains play in collagen self-association and in its interactions with receptors. Valuable examples in these fields are illustrated. Finally, future actions required to obtain more detailed information on the structure and the function of this complex protein are also delineated.

  6. Dependence of crystallite formation and preferential backbone orientations on the side chain pattern in PBDTTPD polymers.

    PubMed

    El Labban, Abdulrahman; Warnan, Julien; Cabanetos, Clément; Ratel, Olivier; Tassone, Christopher; Toney, Michael F; Beaujuge, Pierre M

    2014-11-26

    Alkyl substituents appended to the π-conjugated main chain account for the solution-processability and film-forming properties of most π-conjugated polymers for organic electronic device applications, including field-effect transistors (FETs) and bulk-heterojunction (BHJ) solar cells. Beyond film-forming properties, recent work has emphasized the determining role that side-chain substituents play on polymer self-assembly and thin-film nanostructural order, and, in turn, on device performance. However, the factors that determine polymer crystallite orientation in thin-films, implying preferential backbone orientation relative to the device substrate, are a matter of some debate, and these structural changes remain difficult to anticipate. In this report, we show how systematic changes in the side-chain pattern of poly(benzo[1,2-b:4,5-b']dithiophene-alt-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers can (i) influence the propensity of the polymer to order in the π-stacking direction, and (ii) direct the preferential orientation of the polymer crystallites in thin films (e.g., "face-on" vs "edge-on"). Oriented crystallites, specifically crystallites that are well-ordered in the π-stacking direction, are believed to be a key contributor to improved thin-film device performance in both FETs and BHJ solar cells.

  7. Systematic investigation of zinc aminoalkylphosphonates: influence of the alkyl chain lengths on the structure formation.

    PubMed

    Schmidt, Corinna; Stock, Norbert

    2012-03-05

    With the high-throughput (HT) methodology, the bifunctional aminoalkylphosphonic acids (AAPA) linker molecules 2-aminoethyl- (AEPA), 3-aminopropyl- (APPA), and 4-aminobutylphosphonic acid (ABPA) [HO(3)P-C(n)H(2n)-NH(2) (n = 2-4)] and zinc nitrate were used to synthesize new metal phosphonates in order to investigate the influence of the alkyl chain length on the structure formation. The systematic investigations led to one known (ZnO(3)PC(2)H(4)NH(2)) and six new compounds: one using AEPA, three using APPA, and two using ABPA. The crystal structures of five compounds were determined by single crystal X-ray diffraction, using X-ray powder diffraction (XRPD) data as well as structure modeling employing force field methods. For compound 1, Zn(O(3)P-C(2)H(4)-NH(3))(NO(3))(H(2)O) (monoclinic, Cc, a = 4.799(1) Å, b = 29.342(6) Å, c = 5.631(1) Å, β = 91.59(3)°, V = 792.7(3) Å(3), Z = 4), and compound 2, Zn(2)(OH)(O(3)P-C(3)H(6)-NH(3))(NO(3)) (monoclinic, P2/c, a = 12.158(2) Å, b = 5.0315(10) Å, c = 13.952(3) Å, β = 113.23(3)°, V = 784.3(3) Å(3), Z = 2), the structures were determined using single crystal X-ray diffraction data. The crystal structures of [Zn(O(3)P-C(3)H(6)-NH(2))]·H(2)O (3) (monoclinic, P2(1)/c, a = 9.094(2) Å, b = 5.0118(7) Å, c = 16.067(4) Å, β = 90.38(2)°, V = 732.3(2) Å(3), Z = 4) and Zn(O(3)P-C(4)H(8)-NH(2)) (5) (monoclinic, P2(1)/c, a = 8.570(7) Å, b = 8.378(4) Å, c = 9.902(6) Å, β = 90.94(5)°, V = 710.9(8) Å(3), Z = 4) were determined using XRPD data. The structural model for compound 6, Zn(O(3)P-C(4)H(8)-NH(3))(NO(3))(H(2)O), was established using lattice parameters from XRPD data and following crystal structure modeling employing force field methods. The structures depend strongly on the alkyl chain length n. For n = 2 and 4 isoreticular compounds are observed, while n = 3 leads to new structures. Larger amounts of all compounds were obtained employing scale-up syntheses in a conventional oven as well as in a microwave

  8. Vapor pressures of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with long alkyl chains.

    PubMed

    Rocha, Marisa A A; Coutinho, João A P; Santos, Luís M N B F

    2014-10-07

    This work presents the vapor pressure at several temperatures for the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide series, [CN/2CN/2im][NTf2] (N = 14, 16, 18, and 20), measured by a Knudsen effusion method combined with a quartz crystal microbalance. The thermodynamic properties of vaporization of the ionic liquids under study are analysed together with the results obtained previously for the shorter alkyl chain length [CN/2CN/2im][NTf2] (N = 2, 4, 6, 8, 10, and 12), in order to evaluate the effect of the alkyl side chains of the cation and to get additional insights concerning the nanostructuration of ionic liquids. The symmetry effect is explored, based on the comparison with the asymmetric imidazolium based ionic liquids, [CN-1C1im][NTf2]. A trend shift on the thermodynamic properties of vaporization along the alkyl side chains of the extended symmetric ionic liquids, around [C6C6im][NTf2], was detected. An intensification of the odd-even effect was observed starting from [C6C6im][NTf2], with higher enthalpies and entropies of vaporization for the odd numbered ionic liquids, [C7C7im][NTf2] and [C9C9im][NTf2]. Similar, but less pronounced, odd-even effect was found for the symmetric ionic liquids with lower alkyl side chains length, [CN/2CN/2im][NTf2] (with N = 4, 6, 8, 10, and 12). This effect is related with the predominant orientation of the terminal methyl group of the alkyl chain to the imidazolium ring and their influence in the cation-anion interaction. The same Critical Alkyl length at the hexyl, (C6C1and C6C6) was found for both asymmetric and symmetric series indicating that the nanostructuration of the ionic liquids is related with alkyl chain length.

  9. "Bicontinuous cubic" liquid crystalline materials from discotic molecules: a special effect of paraffinic side chains with ionic liquid pendants.

    PubMed

    Alam, Md Akhtarul; Motoyanagi, Jin; Yamamoto, Yohei; Fukushima, Takanori; Kim, Jungeun; Kato, Kenichi; Takata, Masaki; Saeki, Akinori; Seki, Shu; Tagawa, Seiichi; Aida, Takuzo

    2009-12-16

    Triphenylene (TP) derivatives bearing appropriate paraffinic side chains with imidazolium ion-based ionic liquid (IL) pendants were unveiled to display a phase diagram with liquid crystalline (LC) mesophases of bicontinuous cubic (Cub(bi)) and hexagonal columnar (Col(h)) geometries. While their phase transition behaviors are highly dependent on the length of the side chains and the size of the ionic liquid pendants, TPs with hexadecyl side chains exclusively form a Cub(bi) LC assembly over an extremely wide temperature range of approximately 200 degrees C from room temperature when the anions of the IL pendants are relatively small. Wide-angle X-ray diffraction analysis suggested that the Cub(bi) LC mesophase contains pi-stacked columnar TP arrays with a plane-to-plane separation of approximately 3.5 A. Consistently, upon laser flash photolysis, it showed a transient microwave conductivity comparable to that of a Col(h) LC reference.

  10. Microbial Degradation and Assimilation of n-Alkyl-Substituted Cycloparaffins1

    PubMed Central

    Beam, H. W.; Perry, J. J.

    1974-01-01

    Studies were conducted on the oxidation and assimilation of n-alkyl-substituted cycloalkane substrates by several hydrocarbon-utilizing microorganisms. These microorganisms utilized heptadecylcyclohexane and dodecylcyclohexane as the sole source of carbon and energy. Neither methylcyclohexane nor ethylcyclohexane was utilized as a growth substrate by any organisms tested. Gas-liquid chromatographic analyses of fatty acids present in cells after growth on dodecylcyclohexane confirm direct incorporation of both alpha- and beta-oxidation products. Growth patterns of these organisms on n-alkyl-substituted cyclohexane fatty acids of varying chain lengths suggest a greater probability of ring cleavage when the side chain contains an odd number of carbons. PMID:4597441

  11. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and

  12. Characteristics of Biodegradable Poly(Ester-Urethanes) with Side Chains

    NASA Astrophysics Data System (ADS)

    Stirna, U.; Yakushin, V.; Dzene, A.; Tupureina, V.; Shits, I.

    2000-09-01

    Two series of segmented poly(ester-urethanes) (SPEU) have been studied. The flexible segment of SPEU was formed from polycaprolactonediols (PCL diols) with a molecular mass of 600 to 10000 and the rigid one — from a blend of 2.4 and 2.6-toluene diisocyanates (TDI) and a chain extender. The first series of SPEU contained no side branches, whereas in the second series, side branches in the form of long chains of aliphatic structure were present at the rigid segment. The tensile strength of SPEU decreased when the molecular mass of the flexible segment increased from 600 to 2000; in this case, the specimens were of amorphous structure. An increase in the molecular mass of the flexible segment from 2000 to 10000 led to an increase in its degree of crystallinity and in the melting point, fusion enthalpy, tensile strength, yield stress in tension, and packing coefficient of SPEU. The side chains at the rigid segment affected the degree of phase separation insignificantly, but decreased the order of the structure, the glass transition temperature, and strength properties of SPEU, whereas the side chains at the flexible segment reduced its crystallinity.

  13. Applying Side-chain Flexibility in Motifs for Protein Docking

    PubMed Central

    Liu, Hui; Lin, Feng; Yang, Jian-Li; Wang, Hong-Rui; Liu, Xiu-Ling

    2015-01-01

    Conventional rigid docking algorithms have been unsatisfactory in their computational results, largely due to the fact that protein structures are flexible in live environments. In response, we propose to introduce the side-chain flexibility in protein motif into the docking. First, the Morse theory is applied to curvature labeling and surface region growing, for segmentation of the protein surface into smaller patches. Then, the protein is described by an ensemble of conformations that incorporate the flexibility of interface side chains and are sampled using rotamers. Next, a 3D rotation invariant shape descriptor is proposed to deal with the flexible motifs and surface patches; thus, pairwise complementarity matching is needed only between the convex patches of ligand and the concave patches of receptor. The iterative closest point (ICP) algorithm is implemented for geometric alignment of the two 3D protein surface patches. Compared with the fast Fourier transform-based global geometric matching algorithm and other methods, our FlexDock system generates much less false-positive docking results, which benefits identification of the complementary candidates. Our computational experiments show the advantages of the proposed flexible docking algorithm over its counterparts. PMID:26508871

  14. Strengths of hydrogen bonds involving phosphorylated amino acid side chains.

    PubMed

    Mandell, Daniel J; Chorny, Ilya; Groban, Eli S; Wong, Sergio E; Levine, Elisheva; Rapp, Chaya S; Jacobson, Matthew P

    2007-01-31

    Post-translational phosphorylation plays a key role in regulating protein function. Here, we provide a quantitative assessment of the relative strengths of hydrogen bonds involving phosphorylated amino acid side chains (pSer, pAsp) with several common donors (Arg, Lys, and backbone amide groups). We utilize multiple levels of theory, consisting of explicit solvent molecular dynamics, implicit solvent molecular mechanics, and quantum mechanics with a self-consistent reaction field treatment of solvent. Because the approximately 6 pKa of phosphate suggests that -1 and -2 charged species may coexist at physiological pH, hydrogen bonds involving both protonated and deprotonated phosphates for all donor-acceptor pairs are considered. Multiple bonding geometries for the charged-charged interactions are also considered. Arg is shown to be capable of substantially stronger salt bridges with phosphorylated side chains than Lys. A pSer hydrogen-bond acceptor tends to form more stable interactions than a pAsp acceptor. The effect of phosphate protonation state on the strengths of the hydrogen bonds is remarkably subtle, with a more pronounced effect on pAsp than on pSer.

  15. Purification and characterization of corticosteroid side chain isomerase

    SciTech Connect

    Marandici, A.; Monder, C. )

    1990-02-06

    Corticosteroid side chain isomerase of rat liver catalyzes the interconversion of the ketol (20-oxo-21-ol) and (20-hydroxy-21-al) forms of the corticosteroid side chain. The enzyme has now been purified to apparent homogeneity from rat liver cytosol by sequential chromatography on anionic, hydroxylapatite, and gel filtration columns. Ketol-aldol isomerization is followed by measuring the exchange of tritium from 21-tritiated steroids with water. The native enzyme is a dimer of MW 44,000. The isoelectric point is 4.8 {plus minus} 0.1 pH units. The purified enzyme is stimulated by Co{sup 3+} or Ni{sup 2+}. The enzyme utilizes 11-deoxycorticosterone, corticosterone, and 17-deoxycortisol as substrate but not cortisol, tetrahydrocortisol, and prednisolone. Tritium-water exchange of (21S)-(21-{sup 3}H)DOC is a pseudo-first-order reaction; 21-{sup 3}H exchange from the 21R isomer proceeds with first-order kinetics only after a lag associated with its epimerization to the 21S form.

  16. Discovering side-chain correlation in {alpha}-Helices

    SciTech Connect

    Klinger, T.M.; Brutlag, D.L.

    1994-12-31

    Using a new representation for interactions in protein sequences based on correlations between pairs of amino acids, we have examined {alpha}-helical segments from known protein structures for important interactions. Traditional techniques for representing protein sequences usually make an explicit assumption of conditional independence of residues in the sequences. Protein structure analyses, however, have repeatedly demonstrated the importance of amino acid interactions for structural stability. We have developed an automated program for discovering sequence correlations in sets of aligned protein sequences using standard statistical tests and for representing them with Bayesian networks. In this paper, we demonstrate the power of our discovery program and representation by analyzing pairs of residues from {alpha}-helices. The sequence correlations we find represent physical and chemical interactions among amino-acid side chains in helical structures. Furthermore, these local interactions are likely to be important for stabilizing and packing {alpha}-helices. Lastly, we have also detect correlations in side-chain conformations that indicate important structural interactions but which don`t appear as sequence correlations.

  17. The transfection efficiency of calix[4]arene-based lipids: the role of the alkyl chain length.

    PubMed

    Mochizuki, Shinichi; Nishina, Koichi; Fujii, Shota; Sakurai, Kazuo

    2015-02-01

    The size, surface charge, and microstructure of lipoplexes comprising cationic lipids and nucleic acids are important factors for transfection efficiency. As these properties are largely determined by the cationic lipids used, a number of studies on the relationship between cationic lipids and the transfection efficiency have been reported. Among the many cationic lipids, lipids with multivalent cationic head groups are expected to be potent transfection reagents. Here, we prepared calix[4]arene-based lipids with different alkyl chain lengths from C3 to C15 and evaluated the relationship between the alkyl chain length and the transfection efficiency. C6 lipoplexes exhibited the highest transfection efficiency among all lipoplexes. The gene expression with C9 and C12 lipoplexes was slightly lower than that with C6 lipoplexes. C3 lipoplexes hardly induced gene expression, while C15 lipoplexes exhibited no complexation with plasmid DNA. Although all lipoplexes exhibited nearly identical characteristics, they exhibited different behaviours in terms of the interactions between the lipoplexes and anionic micelles comprising phosphatidylserine, a model of endosomal vehicle. After mixing with phosphatidylserine micelles, C6 lipoplexes released the bound plasmid DNA at pH 5 but not at pH 7, indicating that they can interact with the late endosomal membrane after being incorporated into cells. No plasmid DNA was released from C9 or C12 lipoplexes at either pH values. Thus, the alkyl chain length of cationic lipids is related to their interaction with the endosomal compartment and can provide a basis for the design of novel transfection reagents.

  18. Alkyl chain length-dependent surface reaction of dodecahydro-N-alkylcarbazoles on Pt model catalysts

    SciTech Connect

    Gleichweit, Christoph; Amende, Max; Bauer, Udo; Schernich, Stefan; Höfert, Oliver; Lorenz, Michael P. A.; Zhao, Wei; Bachmann, Philipp; Papp, Christian; Müller, Michael; Koch, Marcus; Wasserscheid, Peter; Libuda, Jörg; Steinrück, Hans-Peter

    2014-05-28

    The concept of liquid organic hydrogen carriers (LOHC) holds the potential for large scale chemical storage of hydrogen at ambient conditions. Herein, we compare the dehydrogenation and decomposition of three alkylated carbazole-based LOHCs, dodecahydro-N-ethylcarbazole (H{sub 12}-NEC), dodecahydro-N-propylcarbazole (H{sub 12}-NPC), and dodecahydro-N-butylcarbazole (H{sub 12}-NBC), on Pt(111) and on Al{sub 2}O{sub 3}-supported Pt nanoparticles. We follow the thermal evolution of these systems quantitatively by in situ high-resolution X-ray photoelectron spectroscopy. We show that on Pt(111) the relevant reaction steps are not affected by the different alkyl substituents: for all LOHCs, stepwise dehydrogenation to NEC, NPC, and NBC is followed by cleavage of the C–N bond of the alkyl chain starting at 380–390 K. On Pt/Al{sub 2}O{sub 3}, we discern dealkylation on defect sites already at 350 K, and on ordered, (111)-like facets at 390 K. The dealkylation process at the defects is most pronounced for NEC and least pronounced for NBC.

  19. Microemulsion breakdown by pervaporation technique: effect of the alkyl chain length of n-alkanol, a cosurfactant of the microemulsion.

    PubMed

    Moulay, Saâd; Hadj-Ziane, Amel Zafour; Canselier, Jean-Paul

    2007-07-15

    Two sets of microemulsions, cyclohexane- and water-rich ones, were prepared with the following n-alkanols as cosurfactants: n-propanol, n-butanol, n-pentanol, and n-hexanol. The results showed the influence of the alkyl chain length of the n-alkanol on the permselectivity properties of the pervaporation technique in the breakdown of the microemulsions. The variations of the total flux rate J and the enrichment factor beta were in parallel with the effect of the cosurfactant on the swelling extent of the PDMS membrane.

  20. Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes

    PubMed Central

    Król, Ewa; de Sousa Borges, Anabela; da Silva, Isabel; Polaquini, Carlos R.; Regasini, Luis O.; Ferreira, Henrique; Scheffers, Dirk-Jan

    2015-01-01

    Alkyl gallates are compounds with reported antibacterial activity. One of the modes of action is binding of the alkyl gallates to the bacterial membrane and interference with membrane integrity. However, alkyl gallates also cause cell elongation and disruption of cell division in the important plant pathogen Xanthomonas citri subsp. citri, suggesting that cell division proteins may be targeted by alkyl gallates. Here, we use Bacillus subtilis and purified B. subtilis FtsZ to demonstrate that FtsZ is a direct target of alkyl gallates. Alkyl gallates disrupt the FtsZ-ring in vivo, and cause cell elongation. In vitro, alkyl gallates bind with high affinity to FtsZ, causing it to cluster and lose its capacity to polymerize. The activities of a homologous series of alkyl gallates with alkyl side chain lengths ranging from five to eight carbons (C5–C8) were compared and heptyl gallate was found to be the most potent FtsZ inhibitor. Next to the direct effect on FtsZ, alkyl gallates also target B. subtilis membrane integrity—however the observed anti-FtsZ activity is not a secondary effect of the disruption of membrane integrity. We propose that both modes of action, membrane disruption and anti-FtsZ activity, contribute to the antibacterial activity of the alkyl gallates. We propose that heptyl gallate is a promising hit for the further development of antibacterials that specifically target FtsZ. PMID:25972861

  1. Alkyl Chain Length and Temperature Effects on Structural Properties of Pyrrolidinium-Based Ionic Liquids: A Combined Atomistic Simulation and Small-Angle X-ray Scattering Study

    SciTech Connect

    Li, Song; Bañuelos, José Leobardo; Guo, Jianchang; Anovitz, Lawrence; Rother, Gernot; Shaw, Robert W.; Hillesheim, Patrick C.; Dai, Sheng; Baker, Gary A.; Cummings, Peter T.

    2011-12-21

    Molecular dynamics (MD) simulations of 1-alkyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([CnMPy][Tf₂N], n = 3, 4, 6, 8, 10) were conducted using an all-atom model. Radial distribution functions (RDF) were computed and structure functions were generated to compare with new X-ray scattering experimental results, reported herein. The scattering peaks in the structure functions generally shift to lower Q values with increased temperature for all the liquids in this series. However, the first sharp diffraction peak (FSDP) in the longer alkyl chain liquids displays a marked shift to higher Q values with increasing temperature. Alkyl chain-dependent ordering of the polar groups and increased tail aggregation with increasing alkyl chain length were observed in the partial pair correlation functions and the structure functions. The reasons for the observed alkyl chain-dependent phenomena and temperature effects were explored.

  2. Alkyl Chain Length and Temperature Effects on Structural Properties of Pyrrolidinium-Based Ionic Liquids: A Combined Atomistic Simulation and Small-Angle X-ray Scattering Study.

    SciTech Connect

    Li, Song; Banuelos, Jose Leo; Guo, Jianchang; Anovitz, Lawrence {Larry} M; Rother, Gernot; Shaw, Robert W; Hillesheim, Patrick C; Dai, Sheng; Baker, Gary A; Cummings, Peter T

    2011-01-01

    Molecular dynamics (MD) simulations of 1-alkyl-1-methylpyrrolidinium 12 bis(trifluoromethanesulfonyl)imide ([CnMPy][Tf2N], n = 3, 4, 6, 8, 10) were conducted 13 using an all-atom model. Radial distribution functions (RDF) were computed and structure 14 functions were generated to compare with new X-ray scattering experimental results, 15 reported herein. The scattering peaks in the structure functions generally shift to lower Q 16 values with increased temperature for all the liquids in this series. However, the first sharp 17 diffraction peak (FSDP) in the longer alkyl chain liquids displays a marked shift to higher Q 18 values with increasing temperature. Alkyl chain-dependent ordering of the polar groups and 19 increased tail aggregation with increasing alkyl chain length were observed in the partial pair 20 correlation functions and the structure functions. The reasons for the observed alkyl chain- 21 dependent phenomena and temperature effects were explored.

  3. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines.

    PubMed

    Wratil, Paul R; Horstkorte, Rüdiger; Reutter, Werner

    2016-08-08

    In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).

  4. Photoactivation Reduces Side-Chain Dynamics of a LOV Photoreceptor

    PubMed Central

    Stadler, Andreas M.; Knieps-Grünhagen, Esther; Bocola, Marco; Lohstroh, Wiebke; Zamponi, Michaela; Krauss, Ulrich

    2016-01-01

    We used neutron-scattering experiments to probe the conformational dynamics of the light, oxygen, voltage (LOV) photoreceptor PpSB1-LOV from Pseudomonas putida in both the dark and light states. Global protein diffusion and internal macromolecular dynamics were measured using incoherent neutron time-of-flight and backscattering spectroscopy on the picosecond to nanosecond timescales. Global protein diffusion of PpSB1-LOV is not influenced by photoactivation. Observation-time-dependent global diffusion coefficients were found, which converge on the nanosecond timescale toward diffusion coefficients determined by dynamic light scattering. Mean-square displacements of localized internal motions and effective force constants, , describing the resilience of the proteins were determined on the respective timescales. Photoactivation significantly modifies the flexibility and the resilience of PpSB1-LOV. On the fast, picosecond timescale, small changes in the mean-square displacement and are observed, which are enhanced on the slower, nanosecond timescale. Photoactivation results in a slightly larger resilience of the photoreceptor on the fast, picosecond timescale, whereas in the nanosecond range, a significantly less resilient structure of the light-state protein is observed. For a residue-resolved interpretation of the experimental neutron-scattering data, we analyzed molecular dynamics simulations of the PpSB1-LOV X-ray structure. Based on these data, it is tempting to speculate that light-induced changes in the protein result in altered side-chain mobility mostly for residues on the protruding Jα helix and on the LOV-LOV dimer interface. Our results provide strong experimental evidence that side-chain dynamics play a crucial role in photoactivation and signaling of PpSB1-LOV via modulation of conformational entropy. PMID:26958884

  5. Molecular structure and rheological properties of short-side-chain heavily glycosylated porcine stomach mucin.

    PubMed

    Yakubov, Gleb E; Papagiannopoulos, Aristeidis; Rat, Elodie; Easton, Richard L; Waigh, Thomas A

    2007-11-01

    The current accepted model for high-molecular-weight gastric mucins of the MUC family is that they adopt a polydisperse coil conformation in bulk solutions. We develop this model using well-characterized highly purified porcine gastric mucin Orthana that is genetically close to the human MUC6 type. It has short side chains and low levels of sialic acid residues and includes minute amounts of cysteine residues that, if abundant, can be responsible for the self-polymerization of mucin. We have established that the mucin structure in bulk solutions corresponds to a daisy-chain random coil. Dynamic light scattering experiments probe the internal dynamics of globular subunits (individual daisies) at the approximately 9 nm length scale, whereas viscosity and light scattering measurements indicate that the size of the whole mucin chains is much larger, approximately 50 nm. The bulk viscosity (eta) scales with mucin concentration (c) in a manner similar to that found for short-side-chain synthetic comb polyelectrolytes and is characterized by a transition between semidilute (eta approximately c1/2) and entangled (eta approximately c3/2) regimes.

  6. Changes in conformational dynamics of basic side chains upon protein–DNA association

    PubMed Central

    Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B. Montgometry; Iwahara, Junji

    2016-01-01

    Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein–DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1–DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. PMID:27288446

  7. Glutamine and Asparagine Side Chain Hyperconjugation-Induced Structurally Sensitive Vibrations.

    PubMed

    Punihaole, David; Hong, Zhenmin; Jakubek, Ryan S; Dahlburg, Elizabeth M; Geib, Steven; Asher, Sanford A

    2015-10-15

    We identified vibrational spectral marker bands that sensitively report on the side chain structures of glutamine (Gln) and asparagine (Asn). Density functional theory (DFT) calculations indicate that the Amide III(P) (AmIII(P)) vibrations of Gln and Asn depend cosinusoidally on their side chain OCCC dihedral angles (the χ3 and χ2 angles of Gln and Asn, respectively). We use UV resonance Raman (UVRR) and visible Raman spectroscopy to experimentally correlate the AmIII(P) Raman band frequency to the primary amide OCCC dihedral angle. The AmIII(P) structural sensitivity derives from the Gln (Asn) Cβ-Cγ (Cα-Cβ) stretching component of the vibration. The Cβ-Cγ (Cα-Cβ) bond length inversely correlates with the AmIII(P) band frequency. As the Cβ-Cγ (Cα-Cβ) bond length decreases, its stretching force constant increases, which results in an upshift in the AmIII(P) frequency. The Cβ-Cγ (Cα-Cβ) bond length dependence on the χ3 (χ2) dihedral angle results from hyperconjugation between the Cδ═Oϵ (Cγ═Oδ) π* and Cβ-Cγ (Cα-Cβ) σ orbitals. Using a Protein Data Bank library, we show that the χ3 and χ2 dihedral angles of Gln and Asn depend on the peptide backbone Ramachandran angles. We demonstrate that the inhomogeneously broadened AmIII(P) band line shapes can be used to calculate the χ3 and χ2 angle distributions of peptides. The spectral correlations determined in this study enable important new insights into protein structure in solution, and in Gln- and Asn-rich amyloid-like fibrils and prions.

  8. Graphene oxide derivatives with variable alkyl chain length and terminal functional groups as supports for stabilization of cytochrome c.

    PubMed

    Patila, Michaela; Pavlidis, Ioannis V; Kouloumpis, Antonios; Dimos, Konstantinos; Spyrou, Konstantinos; Katapodis, Petros; Gournis, Dimitrios; Stamatis, Haralambos

    2016-03-01

    In this study we report the ability of reduced and non-reduced graphene oxide-based nanomaterials (GONs), modified with variable alkyl chain length and terminal functional groups, to act as effective scaffolds for the immobilization of cytochrome c (cyt c) using different immobilization procedures. The GONs/cyt c conjugates are characterized by a combination of techniques, namely atomic force microscopy, X-ray photoelectron and FT-IR spectroscopies as well as thermo-gravimetric and differential thermal analysis. The effect of the structure of functional groups and the surface chemistry of GONs on the immobilization efficiency, the peroxidase activity and the stability of the cyt c was investigated and correlated with conformational changes on the protein molecule upon immobilization. The enhanced thermal stability (up to 2-fold) and increased tolerance (up to 25-fold) against denaturing agents observed for immobilized cyt c, indicates that these functionalized GONs are suitable as nanoscaffolds for the development of robust nanobiocatalysts.

  9. Effects of Alkylthio and Alkoxy Side Chains in Polymer Donor Materials for Organic Solar Cells.

    PubMed

    Cui, Chaohua; Wong, Wai-Yeung

    2016-02-01

    Side chains play a considerable role not only in improving the solubility of polymers for solution-processed device fabrication, but also in affecting the molecular packing, electron affinity and thus the device performance. In particular, electron-donating side chains show unique properties when employed to tune the electronic character of conjugated polymers in many cases. Therefore, rational electron-donating side chain engineering can improve the photovoltaic properties of the resulting polymer donors to some extent. Here, a survey of some representative examples which use electron-donating alkylthio and alkoxy side chains in conjugated organic polymers for polymer solar cell applications will be presented. It is envisioned that an analysis of the effect of such electron-donating side chains in polymer donors would contribute to a better understanding of this kind of side chain behavior in solution-processed conjugated organic polymers for polymer solar cells.

  10. Side chain and backbone contributions of Phe508 to CFTR folding

    SciTech Connect

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa; Thomas, Philip J.

    2010-12-07

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

  11. Tuning structural and mechanical properties of two-dimensional molecular crystals: the roles of carbon side chains.

    PubMed

    Cun, Huanyao; Wang, Yeliang; Du, Shixuan; Zhang, Lei; Zhang, Lizhi; Yang, Bing; He, Xiaobo; Wang, Yue; Zhu, Xueyan; Yuan, Quanzi; Zhao, Ya-Pu; Ouyang, Min; Hofer, Werner A; Pennycook, Stephen J; Gao, Hong-jun

    2012-03-14

    A key requirement for the future applicability of molecular electronics devices is a resilience of their properties to mechanical deformation. At present, however, there is no fundamental understanding of the origins of mechanical properties of molecular films. Here we use quinacridone, which possesses flexible carbon side chains, as a model molecular system to address this issue. Eight molecular configurations with different molecular coverage are identified by scanning tunneling microscopy. Theoretical calculations reveal quantitatively the roles of different molecule-molecule and molecule-substrate interactions and predict the observed sequence of configurations. Remarkably, we find that a single Young's modulus applies for all configurations, the magnitude of which is controlled by side chain length, suggesting a versatile avenue for tuning not only the physical and chemical properties of molecular films but also their elastic properties.

  12. Synthesis of Side Chain Liquid Crystal Polymers by Living Ring Opening Metathesis Polymerization. 4. Synthesis of Amorphous and Side Chain Liquid Crystal AB Block Copolymers

    DTIC Science & Technology

    1992-05-01

    Metathesis Polymerization. 4. Synthesis of C N00014-89-JI542 Amorphous and Side Chain Liquid Crystal AB Block Copolym rs 6. AUTHOR(S) Zen Komiya, Coleen ...Liquid Crystal AB Block Copolymers by Zen Komiya, Coleen Pugh: and Richard R. Schrock* Submitted to Macromolecules F r fCarnegie Mellon University...Amorphous and Side Chain Liquid Crystal AB Block Copolymers by Zen Komiya, Coleen Pught, and Richard R. Schrock* Contribution from Department of Chemistry 6

  13. Water and side-chain embedded π-turns.

    PubMed

    Dasgupta, Bhaskar; Dey, Sucharita; Chakrabarti, Pinak

    2014-05-01

    Elucidating protein function from its structure is central to the understanding of cellular mechanisms. This involves deciphering the dependence of local structural motifs on sequence. These structural motifs may be stabilized by direct or water-mediated hydrogen bonding among the constituent residues. π-Turns, defined by interactions between (i) and (i + 5) positions, are large enough to contain a central space that can embed a water molecule (or a protein moiety) to form a stable structure. This work is an analysis of such embedded π-turns using a nonredundant dataset of protein structures. A total of 2965 embedded π-turns have been identified, as also 281 embedded Schellman motif, a type of π-turn which occurs at the C-termini of α-helices. Embedded π-turns and Schellman motifs have been classified on the basis of the protein atoms of the terminal turn residues that are linked by the embedded moiety, conformation, residue composition, and compared with the turns that have terminal residues connected by direct hydrogen bonds. Geometrically, the turns have been fitted to a circle and the position of the linker relative to its center analyzed. The hydroxyl group of Ser and Thr, located at (i + 3) position, is the most prominent linker for the side-chain mediated π-turns. Consideration of residue conservation among homologous sequences indicates the terminal and the linker positions to be the most conserved. The embedded π-turn as a binding site (for the linker) is discussed in the context of "nest," a concave depression that is formed in protein structures with adjacent residues having enantiomeric main-chain conformations.

  14. Fluorescence properties of a novel side-chain polymer based on polyamic acid

    NASA Astrophysics Data System (ADS)

    Lu, Jianmei; Yao, Shechun; Tang, Xiubo; Sun, Ming; Zhu, Xiulin

    2004-05-01

    The p-π conjugated polyamic acid (PAA) had been synthesized through 1,4-diaminoanthraquinone (DAAQ) and pyromellitic dianhydride (PMDA) under microwave irradiation. The graft PAAs were obtained by toluene-2,4-diisocyanate (TDI) derivatives having different straight-chain alkyl. The resulted graft polymers had good dissolution capabilities, film-forming capabilities and strong fluorescence. We investigated some factors influencing fluorescence performance on graft PAA and found that with increasing chain length of the straight-chain alkyl or increasing graft degree, the fluorescence intensity and quantum efficiency will be enhanced markedly.

  15. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    SciTech Connect

    Hajari, Timir; Vegt, Nico F. A. van der

    2015-04-14

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side

  16. DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes

    PubMed Central

    Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.

    2009-01-01

    The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each

  17. Molecular dynamics study of the effect of alkyl chain length on melting points of [CnMIM][PF6] ionic liquids

    SciTech Connect

    Zhang, Y; Maginn, EJ

    2014-01-01

    Based on molecular dynamics simulations, the melting points T-m of a series of 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids [CnMIM][PF6] with n = 2, 4, 10, 12, and 14 were studied using the free energy-based pseudosupercritical path (PSCP) method. The experimental trend that the Tm decreases with increasing alkyl chain length for ILs with short alkyl chains and increases for the ones with long alkyl chains was correctly captured. Further analysis revealed that the different trends are the results of the balance between fusion enthalpy and fusion entropy. For the ILs with short alkyl chains (ethyl and butyl groups), fusion entropy plays the dominant role so that [C4MIM][PF6], which has a larger fusion entropy due to its higher liquid phase entropy has the lower melting temperature. As for the ILs with long alkyl chains, due to the enhanced van der Waals interactions brought about by the long non-polar alkyl chains, enthalpy becomes the deciding factor and the melting points increase when the alkyl chain goes from C10 to C14. While the melting points for [C2MIM][PF6] and [C4MIM][PF6] were quantitatively predicted and the trends for the long chain ILs were captured correctly, the absolute melting points for [C10MIM][PF6], [C12MIM][PF6] and [C14MIM][PF6] were systematically overestimated in the simulations. Three possible reasons for the overestimation were studied but all ruled out. Further simulation or experimental studies are needed to explain the difference.

  18. Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network.

    PubMed

    Luo, Xiaoyan; Holdcroft, Steven; Mani, Ana; Zhang, Yongming; Shi, Zhiqing

    2011-10-28

    The effect of ion exchange capacity (IEC) on the water sorption properties of high IEC, short side chain (SSC) PFSA ionomer membranes, and the relationships between water content, proton conductivity, proton mobility, water permeation, oxygen diffusion, and oxygen permeation are investigated. SSC PFSA ionomer membranes possessing 1.3, 1.4, and 1.5 mmol g(-1) IEC are compared to a series of long side chain (LSC) PFSA ionomer membranes ranging in IEC from 0.9 to 1.13 mmol g(-1). At 25 °C, fully-hydrated SSC ionomer membranes are characterized as possessing higher water contents (56-75 vol%), moderate λ values (15-18), high analytical acid concentrations (2-2.8 M), and moderate conductivity (88-115 mS/cm); but lower than anticipated effective proton mobility. Complementary measurements of water permeability, oxygen diffusion, and oxygen permeability also yield lower than expected values given their much higher water contents. Potential benefits afforded by reducing the side chain length of PFSA ionomer membranes, such as increased crystallinity, higher IEC, and high hydrated acid concentration are offset by a less-developed, frustrated hydrophilic percolation network, which provides a motivation for future improvements of transport properties for this class of material.

  19. The role of alkyl chain length of monothiol-terminated alkyl carboxylic acid in the synthesis, characterization, and application of gelatin-g-poly(N-isopropylacrylamide) carriers for antiglaucoma drug delivery.

    PubMed

    Luo, Li-Jyuan; Lai, Jui-Yang

    2017-02-01

    To improve ocular bioavailability and extend pharmacological response, this study aims to investigate the role of alkyl chain length of monothiol-terminated alkyl carboxylic acids in the synthesis, characterization, and application of gelatin-g-poly(N-isopropylacrylamide) (GN) biodegradable in situ gelling carriers for antiglaucoma drug delivery. In the presence of mercaptoacetic acid (MAA), mercaptopropionic acid (MPA), mercaptobutyric acid (MBA), or mercaptohexanoic acid (MHA) as a chain transfer agent, the carboxylic end-capped poly(N-isopropylacrylamide) samples were prepared by free radical polymerization technique. Our results showed that with increasing alkyl chain length, the hydrophobicity of thermo-responsive polymer segments significantly increased, mainly due to an increase in CH stretching frequencies. In addition, the greater hydrophobic association favored the decrease in both phase transition temperature and weight loss of GN copolymers, thereby accelerating their temperature-triggered gelation process and retarding the degradation progress under physiological conditions. The benefits from these features allowed the pilocarpine carriers to increase drug payload and extend drug release. Irrespective of carbon number of monothiol-terminated alkyl carboxylic acid, the synthesized GN materials exhibited high tolerance to corneal endothelial cells without any evidence of inhibited proliferation, viability loss, inflammatory stimulation, and functional abnormality, indicating good biocompatibility. Results of clinical observations and histological examinations demonstrated that the therapeutic efficacies in treating glaucomatous damage are in response to in vivo drug release profiles from various intracamerally injected GN carriers. The research findings suggest the influence of alkyl chain length of chain transfer agent-mediated polymer hydrophobicity and degradability on pharmacological bioavailability and action of pilocarpine in a glaucomatous rabbit

  20. Impact of chain length on antibacterial activity and hemocompatibility of quaternary N-alkyl and n,n-dialkyl chitosan derivatives.

    PubMed

    Sahariah, Priyanka; Benediktssdóttir, Berglind E; Hjálmarsdóttir, Martha Á; Sigurjonsson, Olafur E; Sørensen, Kasper K; Thygesen, Mikkel B; Jensen, Knud J; Másson, Már

    2015-05-11

    A highly efficient method for chemical modification of chitosan biopolymers by reductive amination to yield N,N-dialkyl chitosan derivatives was developed. The use of 3,6-O-di-tert-butyldimethylsilylchitosan as a precursor enabled the first 100% disubstitution of the amino groups with long alkyl chains. The corresponding mono N-alkyl derivatives were also synthesized, and all the alkyl compounds were then quaternized using an optimized procedure. These well-defined derivatives were studied for antibacterial activity against Gram positive S. aureus, E. faecalis, and Gram negative E. coli, P. aeruginosa, which could be correlated to the length of the alkyl chain, but the order was dependent on the bacterial strain. Toxicity against human red blood cells and human epithelial Caco-2 cells was found to be proportional to the length of the alkyl chain. The most active chitosan derivatives were found to be more selective for killing bacteria than the quaternary ammonium disinfectants cetylpyridinium chloride and benzalkonium chloride, as well as the antimicrobial peptides melittin and LL-37.

  1. Biosynthesis of the lipophilic side chain in the cyclic hexadepsipeptide antibiotic IC101.

    PubMed

    Umezawa, Kazuo; Ikeda, Yoko; Naganawa, Hiroshi; Kondo, Shinichi

    2002-12-01

    Antibiotic IC101 is a cyclic hexadepsipeptide having a C(15) lipophilic side chain. The side chain was shown to be synthesized in Streptomyces from acetate, propionate, and 3-methylbutyrate derived from leucine. Thus, the terminal isopentyl structure came from leucine and not from the mevalonate pathway.

  2. Modification of the side chain of micromolide, an anti-tuberculosis natural product.

    PubMed

    Yuan, Hai; He, Rong; Wan, Baojie; Wang, Yuehong; Pauli, Guido F; Franzblau, Scott G; Kozikowski, Alan P

    2008-10-01

    This paper describes a series of modifications of the side chain of micromolide, an anti-tuberculosis natural product. Most of the synthesized compounds showed significantly decreased activities, which suggests that the long aliphatic side chain of micromolide and its double bond are essential to its activity.

  3. The softer and more hydrophobic the better: influence of the side chain of polymethacrylate nanoparticles for cellular uptake.

    PubMed

    Lorenz, Steffen; Hauser, Christoph P; Autenrieth, Benjamin; Weiss, Clemens K; Landfester, Katharina; Mailänder, Volker

    2010-09-09

    Intracellular uptake of nanoparticles is highly interesting for labeling of cells, drug delivery, or non-viral gene delivery. In this study we have synthesized a wide variety of poly(alkyl methacrylate) nanoparticles with the same size and investigated their uptake into cells. The nanoparticles were prepared from alkylmethacrylates with different linear and branched ester chains as well as from benzylmethacrylate using the miniemulsion polymerizaiton technique. By adding a fluorescent dye as a marker, the internalization of the nanoparticles could be investigated quantitatively with flow cytometry and qualitatively with confocal laser scanning microscopy. With increasing side chain of the ester and therefore increasing hydrophobicity and at glass transition temperature (T(g)), below the incubation temperature of 37 degrees C the uptake of the nanoparticles into cells is favored.

  4. The effects of side-chain-induced disorder on the emission spectra and quantum yields of oligothiophene nano-aggregates. A combined experimental and MD-TDDFT study

    SciTech Connect

    Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.; Devi, Diane; Chacon-Madrid, Kelly; Lee, Wynee; Koo, Seung Moh; Wildeman, Jurjen; Sfeir, Matthew Y.; Peteanu, Linda A.; Wen, Jin; Ma, Jing

    2014-07-24

    Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changes and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.

  5. Specific Conformational Change in Giant DNA Caused by Anticancer Tetrazolato-Bridged Dinuclear Platinum(II) Complexes: Middle-Length Alkyl Substituents Exhibit Minimum Effect.

    PubMed

    Komeda, Seiji; Yoneyama, Hiroki; Uemura, Masako; Muramatsu, Akira; Okamoto, Naoto; Konishi, Hiroaki; Takahashi, Hiroyuki; Takagi, Akimitsu; Fukuda, Wakao; Imanaka, Tadayuki; Kanbe, Toshio; Harusawa, Shinya; Yoshikawa, Yuko; Yoshikawa, Kenichi

    2017-01-17

    Derivatives of the highly antitumor-active compound [{cis-Pt(NH3)2}2(μ-OH)(μ-tetrazolato-N2,N3)](2+) (5-H-Y), which is a tetrazolato-bridged dinuclear platinum(II) complex, were prepared by substituting a linear alkyl chain moiety at C5 of the tetrazolate ring. The general formula for the derivatives is [{cis-Pt(NH3)2}2(μ-OH)(μ-5-R-tetrazolato-N2,N3)](2+), where R is (CH2)nCH3 and n = 0 to 8 (complexes 1-9). The cytotoxicity of complexes 1-4 in NCI-H460 human non-small-cell lung cancer cells decreased with increasing alkyl chain length, and those of complexes 5-9 increased with increasing alkyl chain length. That is, the in vitro cytotoxicity of complexes 1-9 was found to have a U-shaped association with alkyl chain length. This U-shaped association is attributable to the degree of intracellular accumulation. Although circular dichroism spectroscopic measurement indicated that complexes 1-9 induced comparable conformational changes in the secondary structure of DNA, the tetrazolato-bridged complexes induced different degrees of DNA compaction as revealed by a single DNA measurement with fluorescence microsopy, which also had a U-shaped association with alkyl chain length that matched the association observed for cytotoxicity. Complexes 7-9, which had alkyl chains long enough to confer surfactant-like properties to the complex, induced DNA compaction 20 or 1000 times more efficiently than 5-H-Y or spermidine. A single DNA measurement with transmission electron microscopy revealed that complex 8 formed large spherical self-assembled structures that induced DNA compaction with extremely high efficiency. This result suggests that these structures may play a role in the DNA compaction that was induced by the complexes with the longer alkyl chains. The derivatization with a linear alkyl chain produced a series of complexes with unique cellular accumulation and DNA conformational change profiles and a potentially useful means of developing next-generation platinum

  6. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    NASA Astrophysics Data System (ADS)

    Huo, Lixia; Du, Pengcheng; Zhou, Hui; Zhang, Kaifeng; Liu, Peng

    2017-02-01

    It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C6, C12, or C18) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (Ra) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al2O3 ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C12 alkyl chain (C12-SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C12-SAM with desirable alkyl chain length.

  7. Structure-activity relationships of nonisomerizable derivatives of tamoxifen: importance of hydroxyl group and side chain positioning for biological activity.

    PubMed

    Murphy, C S; Parker, C J; McCague, R; Jordan, V C

    1991-03-01

    The antiestrogen tamoxifen [(Z)-1(p-beta-dimethylaminoethoxy-phenyl)-1,2-diphenylbut-1-ene] is an effective anticancer agent against estrogen receptor (ER)-positive breast cancer. The alkylaminoethane side chain is essential for antiestrogenic activity, but the potency of the antiestrogen can be increased by para hydroxylation of the phenyl ring on carbon 1 of but-1-ene. This compound, 4-hydroxytamoxifen, is a metabolite of tamoxifen and has a very high binding affinity for ER [J. Endocrinol. 75:305-316 (1977)] because the hydroxyl is located in the equivalent position as the 3-phenolic hydroxyl of 17 beta-estradiol. In this study, we have examined the relationship between the relative positions of the hydroxyl and the alkyl-aminoethane side chain and the pharmacological activity of the ligand. A fixed seven-membered ring derivative of the triphenylethylene was used to prevent isomerization. All compounds were tested, with and without 17 beta-estradiol, for their effects on the growth of estrogen-responsive T47D and MCF-7 human breast cancer cells in vitro. The growth of MDA-MB-231 ER-negative breast cancer cells was not affected by any of the compounds tested, at a concentration (1 microM) that had a profound estrogenic or antiestrogenic action in ER-positive cell lines. The relative binding affinity of the compounds was determined using rat uterine ER and was found to be consistent with the observed potencies in vitro. The compounds found to be antiestrogens in vitro were antiestrogenic against estradiol (0.08 micrograms daily) in the 3-day immature rat uterine weight test. All compounds were partial agonists in vivo. In general, the estrogenic and antiestrogenic results obtained in vivo were consistent with the potency estimates obtained with the breast cancer cells in vitro. The results of this extensive structure-activity relationship study demonstrate that the substitution for 4-hydroxytamoxifen appears to be optimal to produce a potent antiestrogen; all

  8. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: dependence on alkyl chain-length, temperature, and anion identity.

    PubMed

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit

    2014-03-14

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH2 + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH2) considered are acetamide (CH3CONH2), propionamide (CH3CH2CONH2), and butyramide (CH3CH2CH2CONH2); the electrolytes (LiX) are lithium perchlorate (LiClO4), lithium bromide (LiBr), and lithium nitrate (LiNO3). Differential scanning calorimetric measurements reveal glass transition temperatures (T(g)) of these DEs are ~195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ~100-150 K above their individual T(g)s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH3CONH2 + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in terms of temporal heterogeneity and amide clustering in these multi-component melts.

  9. A simple model of backbone flexibility improves modeling of side-chain conformational variability.

    PubMed

    Friedland, Gregory D; Linares, Anthony J; Smith, Colin A; Kortemme, Tanja

    2008-07-18

    The considerable flexibility of side-chains in folded proteins is important for protein stability and function, and may have a role in mediating allosteric interactions. While sampling side-chain degrees of freedom has been an integral part of several successful computational protein design methods, the predictions of these approaches have not been directly compared to experimental measurements of side-chain motional amplitudes. In addition, protein design methods frequently keep the backbone fixed, an approximation that may substantially limit the ability to accurately model side-chain flexibility. Here, we describe a Monte Carlo approach to modeling side-chain conformational variability and validate our method against a large dataset of methyl relaxation order parameters derived from nuclear magnetic resonance (NMR) experiments (17 proteins and a total of 530 data points). We also evaluate a model of backbone flexibility based on Backrub motions, a type of conformational change frequently observed in ultra-high-resolution X-ray structures that accounts for correlated side-chain backbone movements. The fixed-backbone model performs reasonably well with an overall rmsd between computed and predicted side-chain order parameters of 0.26. Notably, including backbone flexibility leads to significant improvements in modeling side-chain order parameters for ten of the 17 proteins in the set. Greater accuracy of the flexible backbone model results from both increases and decreases in side-chain flexibility relative to the fixed-backbone model. This simple flexible-backbone model should be useful for a variety of protein design applications, including improved modeling of protein-protein interactions, design of proteins with desired flexibility or rigidity, and prediction of correlated motions within proteins.

  10. Ultrafast charge-transfer reactions of indoline dyes with anchoring alkyl chains of varying length in mesoporous ZnO solar cells.

    PubMed

    Rohwer, Egmont; Minda, Iulia; Tauscher, Gabriele; Richter, Christoph; Miura, Hidetoshi; Schlettwein, Derck; Schwoerer, Heinrich

    2015-04-07

    Dye-sensitized solar cells based on a mesoporous ZnO substrate were sensitized with the indoline derivatives DN91, DN216 and DN285. The chromophore is the same for each of these dyes. They differ from each other in the length of an alkyl chain, which provides a second anchor to the ZnO surface and prolongs cell lifetime. Ultrafast transient absorption measurements reveal a correlation between the length of the alkyl chain and the fastest electron-injection process. The depopulation of the excited state and the associated emergence of the oxidized molecules are dominant spectral features in the transient absorption of the dyes with shorter alkyl chains. A slower picosecond-scale decay proceeds at constant rate for all three derivatives and is assigned to electron transfer into the trap states of ZnO. All assignments are in good agreement with a higher quantum efficiency of charge injection leading to higher short-circuit currents J(sc) for dyes with shorter alkyl chains.

  11. Theoretical investigation on the kinetics and mechanisms of hydroxyl radical-induced transformation of parabens and its consequences for toxicity: Influence of alkyl-chain length.

    PubMed

    Gao, Yanpeng; Ji, Yuemeng; Li, Guiying; An, Taicheng

    2016-03-15

    As emerging organic contaminants (EOCs), the ubiquitous presence of preservative parabens in water causes a serious environmental concern. Hydroxyl radical ((•)OH) is a strong oxidant that can degrade EOCs through photochemistry in surface water environments as well as in advanced oxidation processes (AOPs). To better understand the degradation mechanisms, kinetics, and products toxicity of the preservative parabens in aquatic environments and AOPs, the (•)OH-initiated degradation reactions of the four parabens were investigated systematically using a computational approach. The four studied parabens with increase of alkyl-chain length were methylparaben (MPB), ethylparaben (EPB), propylparaben (PPB), and dibutylparaben (BPB). Results showed that the four parabens can be initially attacked by (•)OH through (•)OH-addition and H-abstraction routes. The (•)OH-addition route was more important for the degradation of shorter alkyl-chain parabens like MPB and EPB, while the H-abstraction route was predominant for the degradation of parabens with longer alkyl-chain for example PPB and BPB. In assessing the aquatic toxicity of parabens and their degradation products using the model calculations, the products of the (•)OH-addition route were found to be more toxic to green algae than original parabens. Although all degradation products were less toxic to daphnia and fish than corresponding parental parabens, they could be still harmful to these aquatic organisms. Furthermore, as alkyl-chain length increased, the ecotoxicity of parabens and their degradation products was found to be also increased.

  12. Impact of Alkyl Chain Length on the Transition of Hexagonal Liquid Crystal-Wormlike Micelle-Gel in Ionic Liquid-Type Surfactant Aqueous Solutions without Any Additive.

    PubMed

    Hu, Yimin; Han, Jie; Ge, Lingling; Guo, Rong

    2015-11-24

    The search for functional supramolecular aggregations with different structure has attracted interest of chemists because they have the potential in industrial and technological application. Hydrophobic interaction has great influence on the formation of these aggregations, such as hexagonal liquid crystals, wormlike micelles, hydrogels, etc. So a systematical investigation was done to investigate the influence of alkyl chain length of surfactants on the aggregation behavior in water. The aggregation behavior of 1-hexadecyl-3-alkyl imidazolium bromide and water has been systematically investigated. These ionic liquid surfactants are denoted as C16-Cn (n = 2, 3, 4, 6, 8, 9, 10, 12, 14, 16). The rheological behavior and microstructure were characterized via a combination of rheology, cryo-etch scanning electron microscopy, polarization optical microscopy, and X-ray crystallography. The alkyl chain has great influence on the formation of surfactant aggregates in water at the molecular level. With increasing alkyl chain length, different aggregates, such as hexagonal liquid crystals, wormlike micelles, and hydrogels can be fabricated: C16-C2 aqueous solution only forms hexagonal liquid crystal; C16-C3 aqueous solution forms wormlike micelle and hexagonal liquid crystal; C16-C4, C16-C6 and C16-C8 aqueous solutions only form wormlike micelle; C16-C9 aqueous solution experiences a transition between wormlike micelle and hydrogel; C16-C10, C16-C12, C16-C14 and C16-C16 only form hydrogel. The mechanism of the transition of different aggregation with increasing alkyl chain length was also proposed.

  13. Effect of cation type, alkyl chain length, adsorbate size on adsorption kinetics and isotherms of bromide ionic liquids from aqueous solutions onto microporous fabric and granulated activated carbons.

    PubMed

    Hassan, Safia; Duclaux, Laurent; Lévêque, Jean-Marc; Reinert, Laurence; Farooq, Amjad; Yasin, Tariq

    2014-11-01

    The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures.

  14. Surface characterization of biocidal polyurethane modifiers having poly(3,3-substituted)oxetane soft blocks with alkylammonium side chains.

    PubMed

    Kurt, Pinar; Gamble, Lara J; Wynne, Kenneth J

    2008-06-03

    This paper focuses on surface characterization of P[ AB] copolyoxetane soft block polyurethanes having either fluorous (3FOx, -CH2OCH 2CF3) or PEG-like (ME2Ox, -CH2(OCH2CH2) 2OCH3), A side chains and alkylammonium, B side chains. Physical surface characterization data were analyzed in light of the previously observed order of antimicrobial effectiveness for a set of four surface modifiers. Ample physical evidence for surface concentration of fluorous 2 wt % P[ AB]-polyurethane modifiers was obtained from XPS, contact angles, ATR-IR spectroscopy, and TM-AFM. In TM-AFM phase imaging, the most effective biocidal surface modifier, 2 wt % HMDI-BD(30)/P[(3FOx)(C12)-0.89:0.11]-PU, showed a nanoscale phase-separated structure consisting of 200 nm domains with background features about 10 times smaller. Despite similar surface characterization data, the 2 wt % fluorous C6 analog ranked third in contact biocidal effectiveness. Physical evidence for surface concentration of 2 wt % P[(ME2Ox)(C12)-0.86:0.14]-PU was modest, considering that antimicrobial effectiveness was second only to 2 wt % HMDI-BD(30)/P[(3FOx)(C12)-0.89:0.11]-PU. In this set of surface modifiers, nanoscale morphology is largely driven by the fluorous component, whereas antimicrobial effectiveness is more strongly influenced by alkylammonium chain length. The effect of alkylammonium side chain length on surface concentration and antimicrobial behavior is more pronounced for ME2Ox polyurethanes compared to the 3FOx analogs.

  15. Infrared Spectroscopy of Ionic Liquids Consisting of Imidazolium Cations with Different Alkyl Chain Lengths and Various Halogen or Molecular Anions with and Without a Small Amount of Water.

    PubMed

    Yamada, Toshiki; Tominari, Yukihiro; Tanaka, Shukichi; Mizuno, Maya

    2017-03-27

    Infrared spectroscopy was performed on ionic liquids (ILs) that had imidazolium cations with different alkyl chain lengths and various halogen or molecular anions with and without a small amount of water. The molar concentration normalized absorbance due to +C-H vibrational modes in the range of 3000 to 3200 cm-1 was nearly identical for ILs that had imidazolium cations with different alkyl chain lengths and the same anions. A close correlation was found between the red-shifted +C-H vibrational modes, the chemical shift of +C(2)-H proton, and the energy stabilization of hydrogen-bonding interaction. The vibrational modes of the water molecules interacting with anions in the range between 3300 and 3800 cm-1 was examined. The correlation between the vibrational frequencies of water, the frequencies of +C-H vibrational modes, and the center frequency of intermolecular vibrational modes due to ion pairs was discussed.

  16. Vapor pressures of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with long alkyl chains

    SciTech Connect

    Rocha, Marisa A. A. E-mail: marisa.alexandra.rocha@gmail.com; Coutinho, João A. P.; Santos, Luís M. N. B. F. E-mail: marisa.alexandra.rocha@gmail.com

    2014-10-07

    This work presents the vapor pressure at several temperatures for the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide series, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 14, 16, 18, and 20), measured by a Knudsen effusion method combined with a quartz crystal microbalance. The thermodynamic properties of vaporization of the ionic liquids under study are analysed together with the results obtained previously for the shorter alkyl chain length [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 2, 4, 6, 8, 10, and 12), in order to evaluate the effect of the alkyl side chains of the cation and to get additional insights concerning the nanostructuration of ionic liquids. The symmetry effect is explored, based on the comparison with the asymmetric imidazolium based ionic liquids, [C{sub N-1}C{sub 1}im][NTf{sub 2}]. A trend shift on the thermodynamic properties of vaporization along the alkyl side chains of the extended symmetric ionic liquids, around [C{sub 6}C{sub 6}im][NTf{sub 2}], was detected. An intensification of the odd-even effect was observed starting from [C{sub 6}C{sub 6}im][NTf{sub 2}], with higher enthalpies and entropies of vaporization for the odd numbered ionic liquids, [C{sub 7}C{sub 7}im][NTf{sub 2}] and [C{sub 9}C{sub 9}im][NTf{sub 2}]. Similar, but less pronounced, odd-even effect was found for the symmetric ionic liquids with lower alkyl side chains length, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (with N = 4, 6, 8, 10, and 12). This effect is related with the predominant orientation of the terminal methyl group of the alkyl chain to the imidazolium ring and their influence in the cation-anion interaction. The same Critical Alkyl length at the hexyl, (C{sub 6}C{sub 1}and C{sub 6}C{sub 6}) was found for both asymmetric and symmetric series indicating that the nanostructuration of the ionic liquids is related with alkyl chain length.

  17. Measurement of Aerodynamic Shear Stress Using Side Chain Liquid Crystal Polymers

    DTIC Science & Technology

    1992-01-01

    A novel concept was proposed exploiting the optical property response of liquid crystalline materials to various external effects. This study determined the feasibility of using side chain liquid crystal polymers as aerodynamic shear sensors. A method was developed to

  18. Electronic properties of amino acid side chains: quantum mechanics calculation of substituent effects

    PubMed Central

    Dwyer, Donard S

    2005-01-01

    Background Electronic properties of amino acid side chains such as inductive and field effects have not been characterized in any detail. Quantum mechanics (QM) calculations and fundamental equations that account for substituent effects may provide insight into these important properties. PM3 analysis of electron distribution and polarizability was used to derive quantitative scales that describe steric factors, inductive effects, resonance effects, and field effects of amino acid side chains. Results These studies revealed that: (1) different semiempirical QM methods yield similar results for the electronic effects of side chain groups, (2) polarizability, which reflects molecular deformability, represents steric factors in electronic terms, and (3) inductive effects contribute to the propensity of an amino acid for α-helices. Conclusion The data provide initial characterization of the substituent effects of amino acid side chains and suggest that these properties affect electron density along the peptide backbone. PMID:16078995

  19. From labdanes to drimanes. Degradation of the side chain of dihydrozamoranic acid.

    PubMed

    Rodilla, Jesús M L; Díez, D; Urones, J G; Rocha, Pedro M

    2004-04-30

    A new route for the degradation of the saturated side chain of dihydrozamoranic acid has been devised, giving an advanced intermediate, compound 14, useful for the synthesis of insect antifeedants such as warburganal and polygodial.

  20. Optimization of van der Waals Energy for Protein Side-Chain Placement and Design

    PubMed Central

    Fahmy, Amr; Wagner, Gerhard

    2011-01-01

    Computational determination of optimal side-chain conformations in protein structures has been a long-standing and challenging problem. Solving this problem is important for many applications including homology modeling, protein docking, and for placing small molecule ligands on protein-binding sites. Programs available as of this writing are very fast and reasonably accurate, as measured by deviations of side-chain dihedral angles; however, often due to multiple atomic clashes, they produce structures with high positive energies. This is problematic in applications where the energy values are important, for example when placing small molecules in docking applications; the relatively small binding energy of the small molecule is drowned by the large energy due to atomic clashes that hampers finding the lowest energy state of the docked ligand. To address this we have developed an algorithm for generating a set of side-chain conformations that is dense enough that at least one of its members would have a root mean-square deviation of no more than R Å from any possible side-chain conformation of the amino acid. We call such a set a side-chain cover set of order R for the amino acid. The size of the set is constrained by the energy of the interaction of the side chain to the backbone atoms. Then, side-chain cover sets are used to optimize the conformation of the side chains given the coordinates of the backbone of a protein. The method we use is based on a variety of dead-end elimination methods and the recently discovered dynamic programming algorithm for this problem. This was implemented in a computer program called Octopus where we use side-chain cover sets with very small values for R, such as 0.1 Å, which ensures that for each amino-acid side chain the set contains a conformation with a root mean-square deviation of, at most, R from the optimal conformation. The side-chain dihedral-angle accuracy of the program is comparable to other implementations; however

  1. Synthesis and biological evaluation of (+)-neopeltolide analogues: importance of the oxazole-containing side chain.

    PubMed

    Fuwa, Haruhiko; Noguchi, Takuma; Kawakami, Masato; Sasaki, Makoto

    2014-06-01

    We describe the synthesis and biological evaluation of (+)-neopeltolide analogues with structural modifications in the oxazole-containing side chain. Evaluation of the antiproliferative activity of newly synthesized analogues against A549 human lung adenocarcinoma cells and PANC-1 human pancreatic carcinoma cells have shown that the C19-C20 and C26-C27 double bonds within the oxazole-containing side chain and the terminal methyl carbamate group are essential for potent activity.

  2. In Vitro Enzymatic Synthesis of New Penicillins Containing Keto Acids as Side Chains

    PubMed Central

    Ferrero, Miguel A.; Reglero, Angel; Martínez-Blanco, Honorina; Fernández-Valverde, Martiniano; Luengo, Jose M.

    1991-01-01

    Seven different penicillins containing α-ketobutyric, β-ketobutyric, γ-ketovaleric, α-ketohexanoic, δ-ketohexanoic, ε-ketoheptanoic, and α-ketooctanoic acids as side chains have been synthesized in vitro by incubating the enzymes phenylacetyl coenzyme A (CoA) ligase from Pseudomonas putida and acyl-CoA:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum with CoA, ATP, Mg2+, dithiothreitol, 6-aminopenicillanic acid, and the corresponding side chain precursor. PMID:1952871

  3. Microbial degradation of n-alkyl tetrahydrothiophenes found in petroleum.

    PubMed Central

    Fedorak, P M; Payzant, J D; Montgomery, D S; Westlake, D W

    1988-01-01

    Although n-alkyl-substituted tetrahydrothiophenes are found in nonbiodegraded petroleums, they are not found in petroleums which have undergone biodegradation in their reservoirs. These observations suggested that this group of compounds with alkyl chain lengths from approximately C10 to at least C30 is biodegradable. Two of these sulfides, 2-n-dodecyltetrahydrothiophene (DTHT) and 2-n-undecyltetrahydrothiophene, were synthesized, and their biodegradabilities were tested by using five gram-positive, n-alkane-degrading bacterial isolates. The alkyl side chains of these compounds were oxidized, and the major intermediates found in 2-n-undecyltetrahydrothiophene- and DTHT-metabolizing cultures were 2-tetrahydrothiophenecarboxylic acid (THTC) and 2-tetrahydrothiopheneacetic acid (THTA), respectively. Four n-alkane-degrading fungi were also shown to degrade DTHT, yielding both THTA and THTC. Quantitation of tetrahydrothiophene ring-containing products in 28-day-old bacterial and fungal cultures suggested that THTC and THTA were metabolized further to unidentified products. In addition, two of the bacterial isolates were shown to degrade a mixture of n-alkyl tetrahydrothiophenes isolated from Bellshill Lake crude oil. PMID:3389816

  4. Physicochemical and tribophysical properties of trioctylalkylammonium bis(salicylato)borate (N888n-BScB) ionic liquids: effect of alkyl chain length.

    PubMed

    Gusain, Rashi; Bakshi, Paramjeet S; Panda, Somenath; Sharma, Om P; Gardas, Ramesh; Khatri, Om P

    2017-03-01

    The alkyl chain length of trioctylalkylammonium bis(salicylato)borates (N888n-BScB; n = 6, 8, 10 and 12) was varied to prepare a series of room-temperature ionic liquids, and then their viscosity and rheological properties were investigated. Besides the omnipresent Coulombic interactions, other interactive forces such as van der Waals interactions, hydrogen bonding, inductive forces, dipole-dipole interactions, etc., collectively determine the physicochemical properties of N888n-BScB ionic liquids. The van der Waals interactions and structural geometry of the ammonium cation (N888n) primarily organized the packing orientation of N888n-BScB ionic liquids and controlled their viscosity and rheological properties as a function of the alkyl chain length. The symmetric cation (N8888) increased the viscosity owing to closer packing driven by van der Waals interactions. The N888n-BScB ionic liquids exhibited non-Newtonian shear thinning behaviour. Furthermore, the decrease in viscosity at higher shear rates indicated that interactive forces in the N888n-BScB ionic liquids were disrupted. These ionic liquids, as lubricants, exhibited significantly lower friction (40-50%) and wear (45-69%) in comparison to PEG 300 synthetic lubricating oil. The degrees of reduction in friction and wear were largely influenced by the chain length of the alkyl group. The N888n-BScB ionic liquids with longer alkyl chains were strongly adsorbed on sliding surfaces and provided better lubrication properties than those with shorter alkyl chains. As a result, the coefficients of friction and wear were decreased by increasing the chain length in N888n-BScB ionic liquids. The tribologically induced adsorption of the BScB anion on metal surfaces, electrostatic interactions between ions, the compact and rigid structure of the BScB anion and van der Waals interactions provided by longer alkyl chains in the N888n cation collectively formed a tribochemical thin film of low shear strength, which resulted

  5. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    SciTech Connect

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit

    2014-03-14

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH{sub 2} + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH{sub 2}) considered are acetamide (CH{sub 3}CONH{sub 2}), propionamide (CH{sub 3}CH{sub 2}CONH{sub 2}), and butyramide (CH{sub 3}CH{sub 2}CH{sub 2}CONH{sub 2}); the electrolytes (LiX) are lithium perchlorate (LiClO{sub 4}), lithium bromide (LiBr), and lithium nitrate (LiNO{sub 3}). Differential scanning calorimetric measurements reveal glass transition temperatures (T{sub g}) of these DEs are ∼195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ∼100–150 K above their individual T{sub g}s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH{sub 3}CONH{sub 2} + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in

  6. DNA-directed alkylating agents. 3. Structure-activity relationships for acridine-linked aniline mustards: consequences of varying the length of the linker chain.

    PubMed

    Valu, K K; Gourdie, T A; Boritzki, T J; Gravatt, G L; Baguley, B C; Wilson, W R; Wakelin, L P; Woodgate, P D; Denny, W A

    1990-11-01

    Four series of acridine-linked aniline mustards have been prepared and evaluated for in vitro cytotoxicity, in vivo antitumor activity, and DNA cross-linking ability. The anilines were attached to the DNA-intercalating acridine chromophores by link groups (-O-, -CH2-, -S-, and -SO2-) of widely varying electronic properties, providing four series of widely differing mustard reactivity where the alkyl chain linking the acridine and mustard moieties was varied from two to five carbons. Relationships were sought between chain length and biological properties. Within each series, increasing the chain length did not alter the reactivity of the alkylating moiety but did appear to position it differently on the DNA, since cross-linking ability (measured by agarose gel assay) altered with chain length, being maximal with the C4 analogue. The in vivo antitumor activities of the compounds depended to some extent on the reactivity of the mustard, with the least reactive SO2 compounds being inactive. However, DNA-targeting did appear to allow the use of less reactive mustards, since the S-linked acridine mustards showed significant activity whereas the parent S-mustard did not. Within each active series, the most active compound was the C4 homologue, suggesting some relationship between activity and extent of DNA alkylation.

  7. Investigation of double bond conversion, mechanical properties, and antibacterial activity of dental resins with different alkyl chain length quaternary ammonium methacrylate monomers (QAM).

    PubMed

    He, Jingwei; Söderling, Eva; Vallittu, Pekka K; Lassila, Lippo V J

    2013-01-01

    In order to endow dental resin with antibacterial activity, a series of antibacterial quaternary ammonium methacrylate monomers (QAM) with different substituted alkyl chain length (from 10 to 18) were incorporated into commonly used 2,2-bis[4-(2'-hydroxy-3'-methacryloyloxy-propoxy)-phenyl]propane (Bis-GMA)/triethyleneglycol dimethacrylate (TEGDMA) (50 wt/50 wt) dental resin as immobilized antibacterial agents. Double bond conversion (DC), flexural strength (FS) and modulus (FM), and young and mature biofilms inhibition effectiveness of prepared dental resins were studied and Bis-GMA/TEGDMA without QAM was used as reference. Results showed that there was no significant difference on DC, FS, and FM between copolymer with and without 5 wt% QAM. Substituted alkyl chain length of QAM had no influence on DC, FS, and FM of copolymer, but had influence on antibacterial activity of copolymer. Antibacterial activity of copolymer increased with increasing of substituted alkyl chain length of QAM, and the sequence followed as 5%C10 < 5%C11 ≈ 5%C12 < 5%C16 ≈ 5%C18. Copolymers containing C18 and C16 had the best inhibition effectiveness on both young biofilm and mature biofilm, copolymers containing C12 and C11 only had inhibition effectiveness on young biofilm and copolymer containing C10 had none inhibition effectiveness on neither young biofilm nor mature biofilm.

  8. Superiority of branched side chains in spontaneous nanowire formation: exemplified by poly(3-2-methylbutylthiophene) for high-performance solar cells.

    PubMed

    Chen, Hsieh-Chih; Wu, I-Che; Hung, Jui-Hsiang; Chen, Fu-Je; Chen, I-Wen P; Peng, Yung-Kang; Lin, Chao-Sung; Chen, Chun-Hsien; Sheng, Yu-Jane; Tsao, Heng-Kwong; Chou, Pi-Tai

    2011-04-18

    One-dimensional nanostructures containing heterojunctions by conjugated polymers, such as nanowires, are expected to greatly facilitate efficient charge transfer in bulk-heterojunction (BHJ) solar cells. Thus, a combined theoretical and experimental approach is pursued to explore spontaneous nanowire formation. A dissipative particle dynamics simulation is first performed to study the morphologies formed by rodlike polymers with various side-chain structures. The results surprisingly predict that conjugated polymers with branched side chains are well suited to form thermodynamically stable nanowires. Proof of this concept is provided via the design and synthesis of a branched polymer of regioregular poly(3-2-methylbutylthiophene) (P3MBT), which successfully demonstrates highly dense nanowire formation free from any stringent conditions and stratagies. In BHJ solar cells fabricated using a blend of P3MBT and [6,6]-phenyl-C71-butyric acid methyl ester (PC(71) BM), P3MBT polymers are self-organized into highly crystalline nanowires with a d(100) spacing of 13.30 Å. The hole mobility of the P3MBT:PC(71) BM (1:0.5 by weight) blend film reaches 3.83 × 10(-4) cm(2) V(-1) s(-1) , and the maximum incident photon-to-current efficiency reaches 68%. The results unambiguously prove the spontaneous formation of nanowires using solution-processable conjugated polymers with branched alkyl side chains in BHJ solar cells.

  9. Temperature dependence of amino acid side chain IR absorptions in the amide I' region.

    PubMed

    Anderson, Benjamin A; Literati, Alex; Ball, Borden; Kubelka, Jan

    2014-05-01

    Amide I' IR spectra are widely used for studies of structural changes in peptides and proteins as a function of temperature. Temperature dependent absorptions of amino acid side-chains that overlap the amide I' may significantly complicate the structural analyses. While the side-chain IR spectra have been investigated previously, thus far their dependence on temperature has not been reported. Here we present the study of the changes in the IR spectra with temperature for side-chain groups of aspartate, glutamate, asparagine, glutamine, arginine, and tyrosine in the amide I' region (in D2O). Band fitting analysis was employed to extract the temperature dependence of the individual spectral parameters, such as peak frequency, integrated intensity, band width, and shape. As expected, the side-chain IR bands exhibit significant changes with temperature. The majority of the spectral parameters, particularly the frequency and intensity, show linear dependence on temperature, but the direction and magnitude vary depending on the particular side-chain group. The exception is arginine, which exhibits a distinctly nonlinear frequency shift with temperature for its asymmetric CN3H5(+) bending signal, although a linear fit can account for this change to within ~1/3 cm(-1). The applicability of the determined spectral parameters for estimations of temperature-dependent side-chain absorptions in peptides and proteins are discussed.

  10. A Semiautomated Assignment Protocol for Methyl Group Side Chains in Large Proteins.

    PubMed

    Kim, Jonggul; Wang, Yingjie; Li, Geoffrey; Veglia, Gianluigi

    2016-01-01

    The developments of biosynthetic specific labeling strategies for side-chain methyl groups have allowed structural and dynamic characterization of very large proteins and protein complexes. However, the assignment of the methyl-group resonances remains an Achilles' heel for NMR, as the experiments designed to correlate side chains to the protein backbone become rather insensitive with the increase of the transverse relaxation rates. In this chapter, we outline a semiempirical approach to assign the resonances of methyl-group side chains in large proteins. This method requires a crystal structure or an NMR ensemble of conformers as an input, together with NMR data sets such as nuclear Overhauser effects (NOEs) and paramagnetic relaxation enhancements (PREs), to be implemented in a computational protocol that provides a probabilistic assignment of methyl-group resonances. As an example, we report the protocol used in our laboratory to assign the side chains of the 42-kDa catalytic subunit of the cAMP-dependent protein kinase A. Although we emphasize the labeling of isoleucine, leucine, and valine residues, this method is applicable to other methyl group side chains such as those of alanine, methionine, and threonine, as well as reductively methylated cysteine side chains.

  11. Effect of Polymer Side Chains on Charge Generation and Disorder in PBDTTPD Solar Cells.

    PubMed

    Constantinou, Iordania; Lai, Tzung-Han; Klump, Erik D; Goswami, Subhadip; Schanze, Kirk S; So, Franky

    2015-12-09

    The effect of polymer side chains on device performance was investigated for PBDT(EtHex)-TPD(Oct):PC70BM and PBDT(EtHex)-TPD(EtHex):PC70BM BHJ solar cells. Going from a linear side chain on the polymer's acceptor moiety to a branched side chain was determined to have a negative impact on the overall device efficiency, because of significantly reduced short-circuit current (J(sc)) and fill factor (FF) values. Sub-bandgap external quantum efficiency (EQE) and transient photoluminescence (PL) measurements showed more-efficient carrier generation for the polymer with linear side chains, because of a higher degree of charge-transfer (CT) state delocalization, leading to more-efficient exciton dissociation. Furthermore, the increase in π-π stacking distance and disorder for the bulkier ethylhexyl side chain were shown to result in a lower hole mobility, a higher bimolecular recombination, and a higher energetic disorder. The use of linear side chains on the polymer's acceptor moiety was shown to promote photogeneration, because of more-effective CT states and favorable carrier transport resulting in improved solar cell performance.

  12. Phase biaxiality in nematic liquid crystalline side-chain polymers of various chemical constitutions.

    PubMed

    Severing, Kirsten; Stibal-Fischer, Elke; Hasenhindl, Alfred; Finkelmann, Heino; Saalwächter, Kay

    2006-08-17

    In a previous deuterium NMR study conducted on a liquid crystalline (LC) polymer with laterally attached book-shaped molecules as the mesogenic moiety, we have revealed a biaxial nematic phase below the conventional uniaxial nematic phase (Phys. Rev. Lett. 2004, 92, 125501). To elucidate details of its formation, we here report on deuterium NMR experiments that have been conducted on different types of LC side-chain polymers as well as on mixtures with low-molar-mass mesogens. Different parameters that affect the formation of a biaxial nematic phase, such as the geometry of the attachment, the spacer length between the polymer backbone and the mesogenic unit, as well as the polymer dynamics, were investigated. Surprisingly, also polymers with terminally attached mesogens (end-on polymers) are capable of forming biaxial nematic phases if the flexible spacer is short and thus retains a coupling between the polymer backbone and the LC phase. Furthermore, the most important parameter for the formation of a biaxial nematic phase is the dynamics of the polymer backbone, as the addition of a small percentage of low molar mass LC to the biaxial nematic polymer from the original study served to shift both the glass transition and the appearance of detectable biaxiality in a very similar fashion. Plotting different parameters for the investigated systems as a function of T/Tg also reveals the crucial role of the dynamics of the polymer backbone and hence the glass transition.

  13. Absolute Side-chain Structure at Position 13 Is Required for the Inhibitory Activity of Bromein*

    PubMed Central

    Sawano, Yoriko; Hatano, Ken-ichi; Miyakawa, Takuya; Tanokura, Masaru

    2008-01-01

    Bromelain isoinhibitor (bromein), a cysteine proteinase inhibitor from pineapple stem, has a unique double-chain structure. The bromein precursor protein includes three homologous inhibitor domains, each containing an interchain peptide between the light and heavy chains. The interchain peptide in the single-chain precursor is immediately processed by bromelain, a target proteinase. In the present study, to clarify the essential inhibitory site of bromein, we constructed 44 kinds of site-directed and deletion mutants and investigated the inhibitory activity of each toward bromelain. As a result, the complete chemical structure of Leu13 in the light chain was revealed to be essential for inhibition. Pro12 prior to the leucine residue was also involved in the inhibitory activity and would control the location of the leucine side chain by the fixed φ dihedral angle of proline. Furthermore, the five-residue length of the interchain peptide was strictly required for the inhibitory activity. On the other hand, no inhibitory activity against bromelain was observed by the substitution of proline for the N terminus residue Thr15 of the interchain peptide. In summary, these mutational analyses of bromein demonstrated that the appropriate position and conformation of Leu13 are absolutely crucial for bromelain inhibition. PMID:18948264

  14. Synthesis and Antioxidant Activity of Hydroxytyrosol Alkyl-Carbonate Derivatives.

    PubMed

    Fernandez-Pastor, Ignacio; Fernandez-Hernandez, Antonia; Rivas, Francisco; Martinez, Antonio; Garcia-Granados, Andres; Parra, Andres

    2016-07-22

    Three procedures have been investigated for the isolation of tyrosol (1) and hydroxytyrosol (2) from a phenolic extract obtained from the solid residue of olive milling. These three methods, which facilitated the recovery of these phenols, were chemical or enzymatic acetylation, benzylation, and carbomethoxylation, and subsequent carbonylation or acetonation reactions. Several new lipophilic alkyl-carbonate derivatives of hydroxytyrosol have been synthesized, coupling the primary hydroxy group of this phenol, through a carbonate linker, using alcohols with different chain lengths. The antioxidant properties of these lipophilic derivatives have been evaluated by different methods and compared with free hydroxytyrosol (2) and also with the well-known antioxidants BHT and α-tocopherol. Three methods were used for the determination of this antioxidant activity: FRAP and ABTS assays, to test the antioxidant power in hydrophilic media, and the Rancimat test, to evaluate the antioxidant capacity in a lipophilic matrix. These new alkyl-carbonate derivatives of hydroxytyrosol enhanced the antioxidant activity of this natural phenol, with their antioxidant properties also being higher than those of the commercial antioxidants BHT and α-tocopherol. There was no clear influence of the side-chain length on the antioxidant properties of the alkyl-carbonate derivatives of 2, although the best results were achieved mainly by the compounds with a longer chain on the primary hydroxy group of this natural phenolic substance.

  15. The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio).

    PubMed

    Zhang, Cheng; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Zhou, Tongtong; Xu, Yaqi; Cheng, Chao

    2017-06-01

    With the increasing applications of ionic liquids (ILs), the toxicity of ILs has drawn increasing attention in recent years, especially the influences of different anions and alkyl-chain lengths on the acute toxicity to aquatic organisms. We performed a study on the acute toxicity of 1-alkyl-3-methylimidazolium nitrate ([Cnmim]NO3 (n=2, 4, 6, 8, 10, 12)), 1-hexyl-3-methylimidazolium ILs ([C6mim]R (R=Cl(-), Br(-), BF4(-), PF6(-))) to zebrafish (Danio rerio). We also evaluated the sensibility of the investigated animals and the stability of ILs in water via high performance liquid chromatography (HPLC, Agilent 1260, Agilent Technologies Inc., USA) to prove the reliability of the present study. The results illustrated that the test zebrafish (Danio rerio) were sensitive to the reference toxicant and that the investigated ILs in water were stable. The 50% lethal concentration (LC50) was used to represent the acute toxicity to zebrafish (Danio rerio). The present study showed that the highest toxic IL is [C12mim]NO3 and the lowest toxic IL is [C2mim]NO3 on Danio rerio. The LC50s for ILs with different anions had similar values. Accordingly, we believe that ILs with different alkyl-chain lengths cause greater effects than other anions on acute toxicity to aquatic organisms. Furthermore, the present study can also provide scientific methods for future studies to select and assess ILs.

  16. Low resistance, large dimension entrance to the inner cavity of BK channels determined by changing side-chain volume

    PubMed Central

    Niu, Xiaowei

    2011-01-01

    Large-conductance Ca2+- and voltage-activated K+ (BK) channels have the largest conductance (250–300 pS) of all K+-selective channels. Yet, the contributions of the various parts of the ion conduction pathway to the conductance are not known. Here, we examine the contribution of the entrance to the inner cavity to the large conductance. Residues at E321/E324 on each of the four α subunits encircle the entrance to the inner cavity. To determine if 321/324 is accessible from the inner conduction pathway, we measured single-channel current amplitudes before and after exposure and wash of thiol reagents to the intracellular side of E321C and E324C channels. MPA− increased currents and MTSET+ decreased currents, with no difference between positions 321 and 324, indicating that side chains at 321/324 are accessible from the inner conduction pathway and have equivalent effects on conductance. For neutral amino acids, decreasing the size of the entrance to the inner cavity by substituting large side-chain amino acids at 321/324 decreased outward single-channel conductance, whereas increasing the size of the entrance with smaller side-chain substitutions had little effect. Reductions in outward conductance were negated by high [K+]i. Substitutions had little effect on inward conductance. Fitting plots of conductance versus side-chain volume with a model consisting of one variable and one fixed resistor in series indicated an effective diameter and length of the entrance to the inner cavity for wild-type channels of 17.7 and 5.6 Å, respectively, with the resistance of the entrance ∼7% of the total resistance of the conduction pathway. The estimated dimensions are consistent with the structure of MthK, an archaeal homologue to BK channels. Our observations suggest that BK channels have a low resistance, large entrance to the inner cavity, with the entrance being as large as necessary to not limit current, but not much larger. PMID:21576375

  17. Low half-wave voltage Y-branch electro-optic polymer modulator based on side-chain polyurethane-imide

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Wang, Long-De; Li, Ruo-Zhou; Zhang, Qiang; Zhang, Tong

    2016-06-01

    A Y-branch electro-optic (EO) polymer modulator has been designed and fabricated. High performance side-chain polyurethane-imide (PUI) with a high EO coefficient of larger than 50 pm/V and a moderate glass-transition temperature (Tg) of 206∘C is used as EO polymer core layer of the modulator. The fabricated phase modulator exhibits a low half-wave voltage of 1.94 V at 1550 nm in single arm modulation with 1 cm EO interaction length and 2 cm total length. The results show that the modulator fabricated by side-chain PUI EO materials possesses potential applications in low driving voltage and low cost optical systems.

  18. Dynamical view of the positions of key side chains in protein-protein recognition.

    PubMed Central

    Kimura, S R; Brower, R C; Vajda, S; Camacho, C J

    2001-01-01

    When a complex is constructed from the separately determined rigid structures of a receptor and its ligand, some key side chains are usually in wrong positions. These distortions of the interface yield an apparent loss in affinity and would unfavorably affect the kinetics of association. It is generally assumed that the interacting proteins should drive the appropriate conformational changes, leading to their complementarity, but this hypothesis does not explain their fast association rates. However, nanosecond explicit solvent molecular dynamics simulations of misfolded surface side chains from the independently solved structures of barstar, bovine pancreatic trypsin inhibitor, and lysozyme show that even before any receptor-ligand interaction, key side chains frequently visit the rotamer conformations seen in the complex. We show that these simple structural motifs can reconcile most of the binding affinity required for a rapid and highly specific association process. Side chains amenable to induced fit are also identified. These results corroborate that solvent-side chain interactions play a critical role in the recognition process. Our findings are also supported by crystallographic data. PMID:11159432

  19. Importance of chirality and reduced flexibility of protein side chains: A study with square and tetrahedral lattice models

    NASA Astrophysics Data System (ADS)

    Zhang, Jinfeng; Chen, Yu; Chen, Rong; Liang, Jie

    2004-07-01

    Side chains of amino acid residues are the determining factor that distinguishes proteins from other unstable chain polymers. In simple models they are often represented implicitly (e.g., by spin states) or simplified as one atom. Here we study side chain effects using two-dimensional square lattice and three-dimensional tetrahedral lattice models, with explicitly constructed side chains formed by two atoms of different chirality and flexibility. We distinguish effects due to chirality and effects due to side chain flexibilities, since residues in proteins are L residues, and their side chains adopt different rotameric states. For short chains, we enumerate exhaustively all possible conformations. For long chains, we sample effectively rare events such as compact conformations and obtain complete pictures of ensemble properties of conformations of these models at all compactness region. This is made possible by using sequential Monte Carlo techniques based on chain growth method. Our results show that both chirality and reduced side chain flexibility lower the folding entropy significantly for globally compact conformations, suggesting that they are important properties of residues to ensure fast folding and stable native structure. This corresponds well with our finding that natural amino acid residues have reduced effective flexibility, as evidenced by statistical analysis of rotamer libraries and side chain rotatable bonds. We further develop a method calculating the exact side chain entropy for a given backbone structure. We show that simple rotamer counting underestimates side chain entropy significantly for both extended and near maximally compact conformations. We find that side chain entropy does not always correlate well with main chain packing. With explicit side chains, extended backbones do not have the largest side chain entropy. Among compact backbones with maximum side chain entropy, helical structures emerge as the dominating configurations. Our

  20. Ultrafast energy transfer from rigid, branched side-chains into a conjugated, alternating copolymer

    PubMed Central

    Griffin, Graham B.; Lundin, Pamela M.; Rolczynski, Brian S.; Linkin, Alexander; McGillicuddy, Ryan D.; Bao, Zhenan; Engel, Gregory S.

    2014-01-01

    We present the synthesis and characterization of a benzodithiophene/thiophene alternating copolymer decorated with rigid, singly branched pendant side chains. We characterize exciton migration and recombination dynamics in these molecules in tetrahydrofuran solution, using a combination of static and time-resolved spectroscopies. As control experiments, we also measure electronic relaxation dynamics in isolated molecular analogues of both the side chain and polymer moieties. We employ semi-empirical and time-dependent density functional theory calculations to show that photoexcitation of the decorated copolymer using 395 nm laser pulses results in excited states primarily localized on the pendant side chains. We use ultrafast transient absorption spectroscopy to show that excitations are transferred to the polymer backbone faster than the instrumental response function, ∼250 fs. PMID:25669410

  1. Ultrafast energy transfer from rigid, branched side-chains into a conjugated, alternating copolymer

    SciTech Connect

    Griffin, Graham B.; Rolczynski, Brian S.; Linkin, Alexander; McGillicuddy, Ryan D.; Engel, Gregory S.; Lundin, Pamela M.; Bao, Zhenan

    2014-01-21

    We present the synthesis and characterization of a benzodithiophene/thiophene alternating copolymer decorated with rigid, singly branched pendant side chains. We characterize exciton migration and recombination dynamics in these molecules in tetrahydrofuran solution, using a combination of static and time-resolved spectroscopies. As control experiments, we also measure electronic relaxation dynamics in isolated molecular analogues of both the side chain and polymer moieties. We employ semi-empirical and time-dependent density functional theory calculations to show that photoexcitation of the decorated copolymer using 395 nm laser pulses results in excited states primarily localized on the pendant side chains. We use ultrafast transient absorption spectroscopy to show that excitations are transferred to the polymer backbone faster than the instrumental response function, ∼250 fs.

  2. Ultrafast energy transfer from rigid, branched side-chains into a conjugated, alternating copolymer.

    PubMed

    Griffin, Graham B; Lundin, Pamela M; Rolczynski, Brian S; Linkin, Alexander; McGillicuddy, Ryan D; Bao, Zhenan; Engel, Gregory S

    2014-01-21

    We present the synthesis and characterization of a benzodithiophene/thiophene alternating copolymer decorated with rigid, singly branched pendant side chains. We characterize exciton migration and recombination dynamics in these molecules in tetrahydrofuran solution, using a combination of static and time-resolved spectroscopies. As control experiments, we also measure electronic relaxation dynamics in isolated molecular analogues of both the side chain and polymer moieties. We employ semi-empirical and time-dependent density functional theory calculations to show that photoexcitation of the decorated copolymer using 395 nm laser pulses results in excited states primarily localized on the pendant side chains. We use ultrafast transient absorption spectroscopy to show that excitations are transferred to the polymer backbone faster than the instrumental response function, ∼250 fs.

  3. Biophysical Characterization of the Strong Stabilization of the RNA Triplex poly(U)•poly(A)*poly(U) by 9-O-(ω-amino) Alkyl Ether Berberine Analogs

    PubMed Central

    Hossain, Maidul; Haq, Lucy; Suresh Kumar, Gopinatha

    2012-01-01

    Background Binding of two 9-O-(ω-amino) alkyl ether berberine analogs BC1 and BC2 to the RNA triplex poly(U)•poly(A)*poly(U) was studied by various biophysical techniques. Methodology/Principal Findings Berberine analogs bind to the RNA triplex non-cooperatively. The affinity of binding was remarkably high by about 5 and 15 times, respectively, for BC1 and BC2 compared to berberine. The site size for the binding was around 4.3 for all. Based on ferrocyanide quenching, fluorescence polarization, quantum yield values and viscosity results a strong intercalative binding of BC1 and BC2 to the RNA triplex has been demonstrated. BC1 and BC2 stabilized the Hoogsteen base paired third strand by about 18.1 and 20.5°C compared to a 17.5°C stabilization by berberine. The binding was entropy driven compared to the enthalpy driven binding of berbeine, most likely due to additional contacts within the grooves of the triplex and disruption of the water structure by the alkyl side chain. Conclusions/Significance Remarkably higher binding affinity and stabilization effect of the RNA triplex by the amino alkyl berberine analogs was achieved compared to berberine. The length of the alkyl side chain influence in the triplex stabilization phenomena. PMID:22666416

  4. Polymer gels with associating side chains and their interaction with surfactants

    NASA Astrophysics Data System (ADS)

    Gordievskaya, Yulia D.; Rumyantsev, Artem M.; Kramarenko, Elena Yu.

    2016-05-01

    Conformational behaviour of hydrophobically modified (HM) polymer gels in solutions of nonionic surfactants is studied theoretically. A HM gel contains hydrophobic side chains (stickers) grafted to its subchains. Hydrophobic stickers are capable to aggregate into joint micelles with surfactant molecules. Micelles containing more than one sticker serve as additional physical cross-links of the network, and their formation causes gel shrinking. In the proposed theoretical model, the interior of the gel/surfactant complex is treated as an array of densely packed spherical polymer brushes consisting of gel subchains tethered to the surface of the spherical sticker/surfactant micelles. Effect of stickers length and grafting density, surfactant concentration and hydrophobicity on gel swelling as well as on hydrophobic association inside it is analyzed. It is shown that increasing surfactant concentration can result in a gel collapse, which is caused by surfactant-induced hydrophobic aggregation of stickers, and a successive gel reswelling. The latter should be attributed to a growing fraction of surfactants in joint aggregates and, hence, increasing number of micelles containing only one sticker and not participating in gel physical cross-linking. In polyelectrolyte (PE) gels hydrophobic aggregation is opposed by osmotic pressure of mobile counterions, so that at some critical ionization degree hydrophobic association is completely suppressed. Hydrophobic modification of polymers is shown to open new ways for controlling gel responsiveness. In particular, it is discussed that incorporation of photosensitive groups into gel subchains and/or surfactant tail could give a possibility to vary the gel volume by light. Since hydrophobic aggregation regularities in gels and solutions are common, we hope our findings will be useful for design of polymer based self-healing materials as well.

  5. Diacyltransferase Activity and Chain Length Specificity of Mycobacterium tuberculosis PapA5 in the Synthesis of Alkyl β-Diol Lipids

    SciTech Connect

    Touchette, Megan H.; Bommineni, Gopal R.; Delle Bovi, Richard J.; Gadbery, John; Nicora, Carrie D.; Shukla, Anil K.; Kyle, Jennifer E.; Metz, Thomas O.; Martin, Dwight W.; Sampson, Nicole S.; Miller, W. T.; Tonge, Peter J.; Seeliger, Jessica C.

    2015-09-08

    Although classified as Gram-positive bacteria, Corynebacterineae possess an asymmetric outer membrane that imparts structural and thereby physiological similarity to more distantly related Gram-negative bacteria. Like lipopolysaccharide in Gram-negative bacteria, lipids in the outer membrane of Corynebacterineae have been associated with the virulence of pathogenic species such as Mycobacterium tuberculosis (Mtb). For example, Mtb strains that lack long, branched-chain alkyl esters known as dimycocerosates (DIMs) are significantly attenuated in model infections. The resultant interest in the biosynthetic pathway of these unusual virulence factors has led to the elucidation of many of the steps leading to the final esterification of the alkyl beta-diol, phthiocerol, with branched-chain fatty acids know as mycocerosates. PapA5 is an acyltransferase implicated in these final reactions. We here show that PapA5 is indeed the terminal enzyme in DIM biosynthesis by demonstrating its dual esterification activity and chain-length preference using synthetic alkyl beta-diol substrate analogues. Applying these analogues to a series of PapA5 mutants, we also revise a model for the substrate binding within PapA5. Finally, we demonstrate that the Mtb Ser/Thr kinase PknB modifies PapA5 on three Thr residues, including two (T196, T198) located on an unresolved loop. These results clarify the DIM biosynthetic pathway and suggest possible mechanisms by which DIM biosynthesis may be regulated by the post-translational modification of PapA5.

  6. Frustration-induced quantum phases in mixed spin chain with frustrated side chains

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo; Takano, Ken'Ichi

    2008-08-01

    A mixed Heisenberg spin chain with frustrated side chains is investigated by numerical and perturbational calculations. A frustration-induced quantum partially polarized ferrimagnetic phase and a nonmagnetic spin quadrupolar phase are found adjacent to the conventional Lieb-Mattis-type ferrimagnetic phase or the nonmagnetic singlet cluster solid phases. The partially polarized ferrimagnetic phase has an incommensurate spin structure. Similar structures are commonly found in other frustration-induced partially polarized ferrimagnetic phases. Numerical results also suggest a series of almost critical nonmagnetic ground states in a highly frustrated regime if the side chain spins weakly couple to the main chain.

  7. The use of side-chain packing methods in modeling bacteriophage repressor and cro proteins.

    PubMed Central

    Chung, S. Y.; Subbiah, S.

    1995-01-01

    In recent years, it has been repeatedly demonstrated that the coordinates of the main-chain atoms alone are sufficient to determine the side-chain conformations of buried residues of compact proteins. Given a perfect backbone, the side-chain packing method can predict the side-chain conformations to an accuracy as high as 1.2 A RMS deviation (RMSD) with greater than 80% of the chi angles correct. However, similarly rigorous studies have not been conducted to determine how well these apply, if at all, to the more important problem of homology modeling per se. Specifically, if the available backbone is imperfect, as expected for practical application of homology modeling, can packing constraints alone achieve sufficiently accurate predictions to be useful? Here, by systematically applying such methods to the pairwise modeling of two repressor and two cro proteins from the closely related bacteriophages 434 and P22, we find that when the backbone RMSD is 0.8 A, the prediction on buried side chain is accurate with an RMS error of 1.8 A and approximately 70% of the chi angles correctly predicted. When the backbone RMSD is larger, in the range of 1.6-1.8 A, the prediction quality is still significantly better than random, with RMS error at 2.2 A on the buried side chains and 60% accuracy on chi angles. Together these results suggest the following rules-of-thumb for homology modeling of buried side chains. When the sequence identity between the modeled sequence and the template sequence is > 50% (or, equivalently, the expected backbone RMSD is < 1 A), side-chain packing methods work well. When sequence identity is between 30-50%, reflecting a backbone RMS error of 1-2 A, it is still valid to use side-chain packing methods to predict the buried residues, albeit with care. When sequence identity is below 30% (or backbone RMS error greater than 2 A), the backbone constraint alone is unlikely to produce useful models. Other methods, such as those involving the use of database

  8. Molecular dynamics simulations of alkyl substituted nanographene crystals

    NASA Astrophysics Data System (ADS)

    Ziogos, Orestis George; Theodorou, Doros Nicolas

    2015-09-01

    Discotic polyaromatic molecules, similar to nanometric graphene flakes, constitute an interesting class of materials for organic electronic applications. Grafting flexible side chains around the periphery of such molecules enhances their processability and gives rise to diverse behaviours, such as the manifestation of liquid-crystalline character and anisotropic mechanical response. In this work, we examine by means of molecular dynamics simulations the properties of molecular crystals comprised of alkyl-substituted hexa-peri-hexabenzocoronene mesogens. Pristine and mono-substituted systems by hydrogen or iodine atoms are modelled, with variable side chain length. A general structural and mechanical robustness to peripheral substitution is reported, with the mesogens forming tightly packed molecular wires even at elevated temperature and pressure. In their discotic ordering, the molecules present relatively low translational mobility, a beneficial phenomenon for charge transport. A thermotropic dependence of the mechanical response is identified, with the systems behaving differently in their room-temperature crystalline phase and in their liquid-crystalline phase at elevated temperatures. The melting process is also examined, elucidating an initial negative expansion along a high symmetry direction and the existence of a metastable state, before falling into the final liquid-crystalline state. Dedicated to Professor Jean-Pierre Hansen, with deepest appreciation of his outstanding contributions to liquid and soft matter theory.

  9. Supramolecular control of self-assembling terthiophene-peptide conjugates through the amino acid side chain

    SciTech Connect

    Lehrman, Jessica A.; Cui, Honggang; Tsai, Wei-Wen; Moyer, Tyson J.; Stupp, Samuel I.

    2013-07-30

    The self-assembly of oligothiophene–peptide conjugates can be directed through the systematic variation of the peptide sequence into different nanostructures, including flat spicules, nanotubes, spiral sheets, and giant, flat sheets. Furthermore, the assembly of these molecules is not controlled by steric interactions between the amino acid side chains.

  10. SPRITE and ASSAM: web servers for side chain 3D-motif searching in protein structures

    PubMed Central

    Nadzirin, Nurul; Gardiner, Eleanor J.; Willett, Peter; Artymiuk, Peter J.; Firdaus-Raih, Mohd

    2012-01-01

    Similarities in the 3D patterns of amino acid side chains can provide insights into their function despite the absence of any detectable sequence or fold similarities. Search for protein sites (SPRITE) and amino acid pattern search for substructures and motifs (ASSAM) are graph theoretical programs that can search for 3D amino side chain matches in protein structures, by representing the amino acid side chains as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. Both programs require the input file to be in the PDB format. The objective of using SPRITE is to identify matches of side chains in a query structure to patterns with characterized function. In contrast, a 3D pattern of interest can be searched for existing occurrences in available PDB structures using ASSAM. Both programs are freely accessible without any login requirement. SPRITE is available at http://mfrlab.org/grafss/sprite/ while ASSAM can be accessed at http://mfrlab.org/grafss/assam/. PMID:22573174

  11. A Concise Access to C2-Symmetric Chiral 4-Pyrrolidinopyridine Catalysts with Dual Functional Side Chains.

    PubMed

    Mishiro, Kenji; Takeuchi, Hironori; Furuta, Takumi; Kawabata, Takeo

    2016-07-01

    A practical method was developed for the preparation of a diastereomeric library of C2-symmetric chiral 4-pyrrolidinopyridine catalysts with dual amide side chains. Use of a racemic precursor is the key to the concise production of catalysts with diverse stereochemisty.

  12. Arabidopsis GUX Proteins Are Glucuronyltransferases Responsible for the Addition of Glucuronic Acid Side Chains onto Xylan

    EPA Science Inventory

    Xylan, the second most abundant cell wall polysaccharide, is composed of a linear backbone of β-(1,4)-linked xylosyl residues that are often substituted with sugar side chains, such as glucuronic acid (GlcA) and methylglucuronic acid (MeGlcA). It has recently been shown that muta...

  13. Energetic, Structural, and Antimicrobial Analyses of [beta]-Lactam Side Chain Recognition by [beta]-Lactamases

    SciTech Connect

    Caselli, E.; Powers, R.A.; Blaszczak, L.C.; Wu, C.Y.E.; Prati, F.; Shoichet, B.K.

    2010-03-05

    Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these {beta}-lactams, most often through bacterial expression of {beta}-lactamases, threatens public health. To understand how {beta}-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because {beta}-lactams form covalent adducts with {beta}-lactamases. This has complicated functional analyses and inhibitor design. To investigate the contribution to interaction energy of the key amide (R1) side chain of {beta}-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well as four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine {beta}-lactamases. Therefore, binding energies can be calculated directly from K{sub i} values. The K{sub i} values measured span four orders of magnitude against the Group I {beta}-lactamase AmpC and three orders of magnitude against the Group II {beta}-lactamase TEM-1. The acylglycineboronic acids have K{sub i} values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of {beta}-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of {beta}-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to {beta}-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 {angstrom} and 1.75 {angstrom} resolution; these structures suggest interactions that are important to the affinity of the inhibitors. Acylglycineboronic acids allow us to begin to dissect interaction energies between {beta}-lactam side chains and {beta}-lactamases. Surprisingly

  14. Backbone dependency further improves side chain prediction efficiency in the Energy-based Conformer Library (bEBL).

    PubMed

    Subramaniam, Sabareesh; Senes, Alessandro

    2014-11-01

    Side chain optimization is an integral component of many protein modeling applications. In these applications, the conformational freedom of the side chains is often explored using libraries of discrete, frequently occurring conformations. Because side chain optimization can pose a computationally intensive combinatorial problem, the nature of these conformer libraries is important for ensuring efficiency and accuracy in side chain prediction. We have previously developed an innovative method to create a conformer library with enhanced performance. The Energy-based Library (EBL) was obtained by analyzing the energetic interactions between conformers and a large number of natural protein environments from crystal structures. This process guided the selection of conformers with the highest propensity to fit into spaces that should accommodate a side chain. Because the method requires a large crystallographic data-set, the EBL was created in a backbone-independent fashion. However, it is well established that side chain conformation is strongly dependent on the local backbone geometry, and that backbone-dependent libraries are more efficient in side chain optimization. Here we present the backbone-dependent EBL (bEBL), whose conformers are independently sorted for each populated region of Ramachandran space. The resulting library closely mirrors the local backbone-dependent distribution of side chain conformation. Compared to the EBL, we demonstrate that the bEBL uses fewer conformers to produce similar side chain prediction outcomes, thus further improving performance with respect to the already efficient backbone-independent version of the library.

  15. Methoxymethyl (MOM) group nitrogen protection of pyrimidines bearing C-6 acyclic side-chains.

    PubMed

    Kraljević, Tatjana Gazivoda; Petrović, Martina; Krištafor, Svjetlana; Makuc, Damjan; Plavec, Janez; Ross, Tobias L; Ametamey, Simon M; Raić-Malić, Silvana

    2011-06-20

    Novel N-methoxymethylated (MOM) pyrimidine (4-13) and pyrimidine-2,4-diones (15-17) nucleoside mimetics in which an isobutyl side-chain is attached at the C-6 position of the pyrimidine moiety were synthesized. Synthetic methods via O-persilylated or N-anionic uracil derivatives have been evaluated for the synthesis of N-1- and/or N-3-MOM pyrimidine derivatives with C-6 acyclic side-chains. A synthetic approach using an activated N-anionic pyrimidine derivative afforded the desired N,N-1,3-diMOM and N-1-MOM pyrimidines 4 and 5 in good yield. Introduction of fluorine into the side-chain was performed with DAST as the fluorinating reagent to give a N,N-1,3-diMOM pyrimidine 13 with a 1-fluoro-3-hydroxyisobutyl moiety at C-6. Conformational study of the monotritylated N-1-MOM pyrimidine 12 by the use of the NOE experiments revealed the predominant conformation of the compound to be one where the hydroxymethyl group in the C-6 side-chain is close to the N-1-MOM moiety, while the OMTr is in proximity to the CH(3)-5 group. Contrary to this no NOE enhancements between the N-1-MOM group and hydroxymethyl or fluoromethyl protons in 13 were observed, which suggested a nonrestricted rotation along the C-6 side-chain. Fluorinated N,N-1,3-diMOM pyrimidine 13 emerged as a model compound for development of tracer molecules for non-invasive imaging of gene expression using positron emission tomography (PET).

  16. Effects of side-chain orientation on the 13C chemical shifts of antiparallel beta-sheet model peptides.

    PubMed

    Villegas, Myriam E; Vila, Jorge A; Scheraga, Harold A

    2007-02-01

    The dependence of the (13)C chemical shift on side-chain orientation was investigated at the density functional level for a two-strand antiparallel beta-sheet model peptide represented by the amino acid sequence Ac-(Ala)(3)-X-(Ala)(12)-NH(2) where X represents any of the 17 naturally occurring amino acids, i.e., not including alanine, glycine and proline. The dihedral angles adopted for the backbone were taken from, and fixed at, observed experimental values of an antiparallel beta-sheet. We carried out a cluster analysis of the ensembles of conformations generated by considering the side-chain dihedral angles for each residue X as variables, and use them to compute the (13)C chemical shifts at the density functional theory level. It is shown that the adoption of the locally-dense basis set approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 17 naturally occurring amino acids in an antiparallel beta-sheet, there is (i) good agreement between computed and observed (13)C(alpha) and (13)C(beta) chemical shifts, with correlation coefficients of 0.95 and 0.99, respectively; (ii) significant variability of the computed (13)C(alpha) and (13)C(beta) chemical shifts as a function of chi(1) for all amino acid residues except Ser; and (iii) a smaller, although significant, dependence of the computed (13)C(alpha) chemical shifts on chi(xi) (with xi > or = 2) compared to chi(1) for eleven out of seventeen residues. Our results suggest that predicted (13)C(alpha) and (13)C(beta) chemical shifts, based only on backbone (phi,psi) dihedral angles from high-resolution X-ray structure data or from NMR-derived models, may differ significantly from those observed in solution if the dihedral-angle preferences for the side chains are not taken into account.

  17. Precise Side-Chain Engineering of Thienylenevinylene-Benzotriazole-Based Conjugated Polymers with Coplanar Backbone for Organic Field Effect Transistors and CMOS-like Inverters.

    PubMed

    Lee, Min-Hye; Kim, Juhwan; Kang, Minji; Kim, Jihong; Kang, Boseok; Hwang, Hansu; Cho, Kilwon; Kim, Dong-Yu

    2017-01-25

    Two donor-acceptor (D-A) alternating conjugated polymers based on thienylenevinylene-benzotriazole (TV-BTz), PTV6B with a linear side chain and PTVEhB with a branched side chain, were synthesized and characterized for organic field effect transistors (OFETs) and complementary metal-oxide-semiconductor (CMOS)-like inverters. According to density functional theory (DFT), polymers based on TV-BTz exhibit a coplanar and rigid structure with no significant twists, which could cause to an increase in charge-carrier mobility in OFETs. Alternating alkyl side chains of the polymers impacted neither the band gap nor the energy level. However, it significantly affected the morphology and crystallinity when the polymer films were thermally annealed. To investigate the effect of thermal annealing on the morphology and crystallinity, we characterized the polymer films using atomic force microscopy (AFM) and 2D-grazing incidence X-ray diffraction (2D-GIWAXD). Fibrillary morphologies with larger domains and increased crystallinity were observed in the polymer films after thermal annealing. These polymers exhibited improved charge-carrier mobilities in annealed films at 200 °C and demonstrated optimal OFET device performance with p-type transport characteristics with charge-carrier mobilities of 1.51 cm(2)/(V s) (PTV6B) and 2.58 cm(2)/(V s) (PTVEhB). Furthermore, CMOS-like inorganic (ZnO)-organic (PTVEhB) hybrid bilayer inverter showed that the inverting voltage (Vinv) was positioned near the ideal switching point at half (1/2) of supplied voltage (VDD) due to fairly balanced p- and n-channels.

  18. GC-MS, MS/MS and GC-IR Analysis of a Series of Methylenedioxyphenyl-Aminoketones: Precursors, Ring Regioisomers and Side-Chain Homologs of 3,4-Methylenedioxypyrovalerone.

    PubMed

    Abiedalla, Younis F Hamad; Abdel-Hay, Karim; DeRuiter, Jack; Clark, C Randall

    2017-02-01

    A combination of GC-MS, MS/MS and GC-IR techniques were used to characterize the ring substitution pattern, the alkyl side-chain and the cyclic tertiary amine portions of a series of six homologous and regioisomeric methylenedioxyphenyl-aminoketones related to the designer drug, 3,4-methylenedioxypyrovalerone (MDPV). Chromatographic retention increases with the hydrocarbon content of the alkyl side-chain and the 3,4-methylenedioxy substitution pattern shows higher retention than the corresponding 2,3-methylenedioxy isomer. The aminoketones show major peaks in their mass spectra corresponding to the homologous series of iminium cation fragments from the loss of the regioisomeric methylenedioxybenzoyl radical species. Deuterium labeling experiments confirm the iminium cation base peaks to undergo the loss of a hydrocarbon molecular fragment to yield product ions characteristic of the side-chain and pyrrolidine ring portion of the parent cathinone derivative. The mass spectra for the designer drug MDPV and its regioisomeric 2,3-methylenedioxy isomer show equivalent fragments including the base peak at m/z 126 and major product ion fragments at m/z 84. The ring substitution pattern for these two isomers was differentiated by characteristic absorption bands in the 1,500 -1,200 cm(-1) range in their vapor phase IR. These characteristic bands can also be used to identify the aromatic ring substitution pattern in the regioisomeric precursor ketones.

  19. Diacyltransferase Activity and Chain Length Specificity of Mycobacterium tuberculosis PapA5 in the Synthesis of Alkyl Beta-Diol Lipids

    PubMed Central

    Touchette, Megan H.; Bommineni, Gopal R.; Delle Bovi, Richard J.; Gadbery, John E.; Nicora, Carrie D.; Shukla, Anil K.; Kyle, Jennifer E.; Metz, Thomas O.; Martin, Dwight W.; Sampson, Nicole S.; Miller, W. Todd; Tonge, Peter J.; Seeliger, Jessica C.

    2015-01-01

    Although classified as Gram-positive bacteria, Corynebacterineae possess an asymmetric outer membrane that imparts structural and thereby physiological similarity to more distantly related Gram-negative bacteria. Like lipopolysaccharide in Gram-negative bacteria, lipids in the outer membrane of Corynebacterineae have been associated with the virulence of pathogenic species such as Mycobacterium tuberculosis (Mtb). For example, Mtb strains that lack long, branched-chain alkyl esters known as dimycocerosates (DIMs) are significantly attenuated in model infections. The resultant interest in the biosynthetic pathway of these unusual virulence factors has led to the elucidation of many of the steps leading to the final esterification of the alkyl beta-diol, phthiocerol, with branched-chain fatty acids known as mycocerosates. PapA5 is an acyltransferase implicated in these final reactions. We here show that PapA5 is indeed the terminal enzyme in DIM biosynthesis by demonstrating its dual esterification activity and chain-length preference using synthetic alkyl beta-diol substrate analogues. Applying these analogues to a series of PapA5 mutants, we also revise a model for the substrate binding within PapA5. Finally, we demonstrate that the Mtb Ser/Thr kinases PknB and PknE modify PapA5 on three overlapping Thr residues and a fourth Thr is unique to PknE phosphorylation. These results clarify the DIM biosynthetic pathway and indicate post-translational modifications that warrant further elucidation for their roles in regulation DIM biosynthesis. PMID:26271001

  20. Diacyltransferase Activity and Chain Length Specificity of Mycobacterium tuberculosis PapA5 in the Synthesis of Alkyl β-Diol Lipids.

    PubMed

    Touchette, Megan H; Bommineni, Gopal R; Delle Bovi, Richard J; Gadbery, John E; Nicora, Carrie D; Shukla, Anil K; Kyle, Jennifer E; Metz, Thomas O; Martin, Dwight W; Sampson, Nicole S; Miller, W Todd; Tonge, Peter J; Seeliger, Jessica C

    2015-09-08

    Although they are classified as Gram-positive bacteria, Corynebacterineae possess an asymmetric outer membrane that imparts structural and thereby physiological similarity to more distantly related Gram-negative bacteria. Like lipopolysaccharide in Gram-negative bacteria, lipids in the outer membrane of Corynebacterineae have been associated with the virulence of pathogenic species such as Mycobacterium tuberculosis (Mtb). For example, Mtb strains that lack long, branched-chain alkyl esters known as dimycocerosates (DIMs) are significantly attenuated in model infections. The resultant interest in the biosynthetic pathway of these unusual virulence factors has led to the elucidation of many of the steps leading to the final esterification of the alkyl β-diol, phthiocerol, with branched-chain fatty acids known as mycocerosates. PapA5 is an acyltransferase implicated in these final reactions. Here, we show that PapA5 is indeed the terminal enzyme in DIM biosynthesis by demonstrating its dual esterification activity and chain-length preference using synthetic alkyl β-diol substrate analogues. By applying these analogues to a series of PapA5 mutants, we also revise a model for the substrate binding within PapA5. Finally, we demonstrate that the Mtb Ser/Thr kinases PknB and PknE modify PapA5 on three overlapping Thr residues and that a fourth Thr is unique to PknE phosphorylation. These results clarify the DIM biosynthetic pathway and indicate post-translational modifications that warrant further elucidation for their roles in the regulation of DIM biosynthesis.

  1. Hydrogen-bonded side chain liquid crystalline block copolymer: Molecular design, synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Chao, Chi-Yang

    Block copolymers can self-assemble into highly regular, microphase-separated morphologies with dimensions at nanometer length scales. Potential applications such as optical wavelength photonic crystals, templates for nanolithographic patterning, or nanochannels for biomacromolecular separation take advantage of the well-ordered, controlled size microdomains of block copolymers. Side-chain liquid crystalline block copolymers (SCLCBCPs) are drawing increasing attention since the incorporation of liquid crystallinity turns their well-organized microstructures into dynamic functional materials. As a special type of block copolymer, hydrogen-bonded SCLCBCPs are unique, compositionally tunable materials with multiple dynamic functionalities that can readily respond to thermal, electrical and mechanical fields. Hydrogen-bonded SCLCBCPs were synthesized and assembled from host poly(styrene- b-acrylic acid) diblock copolymers with narrow molecular weight distributions as proton donors and guest imidazole functionalized mesogenic moieties as proton acceptors. In these studies non-covalent hydrogen bonding is employed to connect mesogenic side groups to a block copolymer backbone, both for its dynamic character as well as for facile materials preparation. The homogeneity and configuration of the hydrogen-bonded complexes were determined by both the molecular architecture of imidazolyl side groups and the process conditions. A one-dimensional photonic crystal composed of high molecular weight hydrogen-bonded SCLCBCP, with temperature dependent optical wavelength stop bands was successfully produced. The microstructures of hydrogen-bonded complexes could be rapidly aligned in an AC electric field at temperatures below the order-disorder transition but above their glass transitions. Remarkable dipolar properties of the mesogenic groups and thermal dissociation of hydrogen bonds are key elements to fast orientation switching. Studies of a wide range of mesogen and polymer

  2. The effects of side-chain-induced disorder on the emission spectra and quantum yields of oligothiophene nano-aggregates. A combined experimental and MD-TDDFT study

    DOE PAGES

    Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.; ...

    2014-07-24

    Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changesmore » and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.« less

  3. Molecular structures and antiproliferative activity of side-chain saturated and homologated analogs of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone

    NASA Astrophysics Data System (ADS)

    Pal, Sanjima; Jadhav, Mahesh; Weyhermüller, Thomas; Patil, Yogesh; Nethaji, M.; Kasabe, Umesh; Kathawate, Laxmi; Konkimalla, V. Badireenath; Salunke-Gawali, Sunita

    2013-10-01

    Side chain homologated derivatives of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone {n-alkyl: pentyl; L-5, hexyl; L-6, heptyl; L-7 and octyl; L-8} have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR, UV-visible spectroscopy and LC-MS. Compounds, L-4, {n-alkyl: butyl; L-4}, L-6 and L-8 have been characterized by single crystal X-ray diffraction studies. The single crystal X-ray structures reveal that L-4 and L-8 crystallizes in P21 space group, while L-6 in P21/c space group. Molecules of L-4 and L-8 from polymeric chains through Csbnd H⋯O and Nsbnd H⋯O close contacts. L-6 is a dimer formed by Nsbnd H⋯O interaction. Slipped π-π stacking interactions are observed between quinonoid and benzenoid rings of L-4 and L-8. Orientations of alkyl group in L-4 and L-8 is on same side of the chain and polymeric chains run opposite to one another to form zip like structure to the alkyl groups. Antiproliferative activities of L-1 to L-8{n-alkyl: methyl; L-1, ethyl; L-2, propyl; L-3 and butyl; L-4} were studied in cancer cells of colon (COLO205), brain (U87MG) and pancreas (MIAPaCa2) where L-1, L-2 and L-3 were active in MIAPaCa2 (L-1 = L-2 > L-3) and COLO205 (L-2 = L-3 > L-1) and inactive in U87MG. From antiproliferative studies with compounds L-1 to L-8 it can be concluded that homologation of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone with saturated methyl groups yielded tissue specific compounds such as L-2 (for MIAPaCa2) and L-3 (for COLO205) with optimal activity.

  4. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  5. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  6. Disordered ground states in a quantum frustrated spin chain with side chains

    NASA Astrophysics Data System (ADS)

    Takano, Ken'Ichi; Hida, Kazuo

    2008-04-01

    We study a frustrated mixed spin chain with side chains, where the spin species and the exchange interactions are spatially varied. A nonlinear σ model method is formulated for this model, and a phase diagram with two disordered spin-gap phases is obtained for typical cases. Among them, we examine the case with a main chain, which consists of an alternating array of spin-1 and spin- (1)/(2) sites, and side chains, each of which consists of a single spin- (1)/(2) site, in great detail. Based on numerical, perturbational, and variational approaches, we propose a singlet cluster solid picture for each phase, where the ground state is expressed as a tensor product of local singlet states.

  7. Snorkeling of lysine side chains in transmembrane helices: how easy can it get?

    PubMed

    Strandberg, Erik; Killian, J Antoinette

    2003-06-05

    Transmembrane segments of proteins are often flanked by lysine residues. The side chains of these residues may snorkel, i.e. they may bury themselves with their aliphatic part in the hydrophobic region of the lipid bilayer, while positioning the charged amino group in the more polar interface. Here we estimate the free energy cost of snorkeling from thermodynamical calculations based on studies with synthetic transmembrane peptides [Strandberg et al. (2002) Biochemistry 41, 7190-7198]. The value is estimated to be between 0.07 and 0.7 kcal mol(-1) for a lysine side chain. This very low value indicates that snorkeling may be a common process, which should be taken into consideration both in experimental and in theoretical studies on protein-lipid interactions.

  8. Characteristic Features of Molecular Structure and Packing of Organopolysilanes with Asymmetric Side Chains

    NASA Astrophysics Data System (ADS)

    Furukawa, Shoji; Ohta, Hidetaka

    2005-01-01

    The molecular structure and packing of poly(methyl ethyl silane), [(CH3)Si(C2H5)]n, and poly(methyl n-propyl silane), [(CH3)Si(C3H7)]n, have been examined by the X-ray diffraction method. For poly(methyl ethyl silane), several configurations are possible for the arrangement of the C2H5 group, whereas the C3H7 groups stretch along one equivalent direction for poly(methyl n-propyl silane). In both cases, the molecular structure and packing are mostly determined by the intramolecular steric hindrance and van der Waals interaction between side chains, which is the same as that of polysilanes with symmetric side chains.

  9. Keto-Functionalized Polymer Scaffolds As Versatile Precursors to Polymer Side Chain Conjugates.

    PubMed

    Liu, Jingquan; Li, Ronald C; Sand, Gregory J; Bulmus, Volga; Davis, Thomas P; Maynard, Heather D

    2013-01-01

    A new methacrylate monomer with a reactive ketone side-chain, 2-(4-oxo-pentanoate) ethyl methacrylate (PAEMA), was synthesized and subsequently polymerized by reversible addition-fragmentation chain transfer (RAFT) polymerization to give a polymer with a narrow molecular weight distribution (PDI = 1.25). The polymer was chain extended with poly(ethylene glycol methyl ether acrylate) (PEGMA) to yield a block copolymer. Aminooxy containing small molecules and oligoethylene glycol were conjugated to the ketone functionality of the side chain in high yields. Cytotoxicity of the oxime-linked tetra(ethylene glycol) polymer to mouse fibroblast cells was investigated; the polymer was found to be non-cytotoxic up to 1 mg/mL. The ease with which this polymer is functionalized, suggests that it may be useful in forming tailored polymeric medicines.

  10. Communication: Accurate determination of side-chain torsion angle χ1 in proteins: Phenylalanine residues

    NASA Astrophysics Data System (ADS)

    Suardíaz, R.; Crespo-Otero, R.; Pérez, C.; Fabián, J. San; de la Vega, J. M. García

    2011-02-01

    Quantitative side-chain torsion angle χ1 determinations of phenylalanine residues in Desulfovibrio vulgaris flavodoxin are carried out using exclusively the correlation between the experimental vicinal coupling constants and theoretically determined Karplus equations. Karplus coefficients for nine vicinal coupling related with the torsion angle χ1 were calculated using the B3LYP functional and basis sets of different size. Optimized χ1 angles are in outstanding agreement with those previously reported by employing x ray and NMR measurements.

  11. Quantitative Profiling of Feruloylated Arabinoxylan Side-Chains from Graminaceous Cell Walls

    PubMed Central

    Schendel, Rachel R.; Meyer, Marleen R.; Bunzel, Mirko

    2016-01-01

    Graminaceous arabinoxylans are distinguished by decoration with feruloylated monosaccharidic and oligosaccharidic side-chains. Although it is hypothesized that structural complexity and abundance of these feruloylated arabinoxylan side-chains may contribute, among other factors, to resistance of plant cell walls to enzymatic degradation, quantitative profiling approaches for these structural units in plant cell wall materials have not been described yet. Here we report the development and application of a rapid and robust method enabling the quantitative comparison of feruloylated side-chain profiles in cell wall materials following mildly acidic hydrolysis, C18-solid phase extraction (SPE), reduction under aprotic conditions, and liquid chromatography with diode-array detection/mass spectrometry (LC-DAD/MS) separation and detection. The method was applied to the insoluble fiber/cell wall materials isolated from 12 whole grains: wild rice (Zizania aquatica L.), long-grain brown rice (Oryza sativa L.), rye (Secale cereale L.), kamut (Triticum turanicum Jakubz.), wheat (Triticum aestivum L.), spelt (Triticum spelta L.), intermediate wheatgrass (Thinopyrum intermedium), maize (Zea mays L.), popcorn (Zea mays L. var. everta), oat (Avena sativa L.) (dehulled), barley (Hordeum vulgare L.) (dehulled), and proso millet (Panicum miliaceum L.). Between 51 and 96% of the total esterified monomeric ferulates were represented in the quantified compounds captured in the feruloylated side-chain profiles, which confirms the significance of these structures to the global arabinoxylan structure in terms of quantity. The method provided new structural insights into cereal grain arabinoxylans, in particular, that the structural moiety α-l-galactopyranosyl-(1→2)-β-d-xylopyranosyl-(1→2)-5-O-trans-feruloyl-l-arabinofuranose (FAXG), which had previously only been described in maize, is ubiquitous to cereal grains. PMID:26834763

  12. Improved prediction of protein side-chain conformations with SCWRL4

    PubMed Central

    Krivov, Georgii G.; Shapovalov, Maxim V.; Dunbrack, Roland L.

    2010-01-01

    Determination of side-chain conformations is an important step in protein structure prediction and protein design. Many such methods have been presented, although only a small number are in widespread use. SCWRL is one such method, and the SCWRL3 program (2003) has remained popular due to its speed, accuracy, and ease-of-use for the purpose of homology modeling. However, higher accuracy at comparable speed is desirable. This has been achieved through: 1) a new backbone-dependent rotamer library based on kernel density estimates; 2) averaging over samples of conformations about the positions in the rotamer library; 3) a fast anisotropic hydrogen bonding function; 4) a short-range, soft van der Waals atom-atom interaction potential; 5) fast collision detection using k-discrete oriented polytopes; 6) a tree decomposition algorithm to solve the combinatorial problem; and 7) optimization of all parameters by determining the interaction graph within the crystal environment using symmetry operators of the crystallographic space group. Accuracies as a function of electron density of the side chains demonstrate that side chains with higher electron density are easier to predict than those with low electron density and presumed conformational disorder. For a testing set of 379 proteins, 86% of χ1 angles and 75% of χ1+2 are predicted correctly within 40° of the X-ray positions. Among side chains with higher electron density (25th–100th percentile), these numbers rise to 89% and 80%. The new program maintains its simple command-line interface, designed for homology modeling, and is now available as a dynamic-linked library for incorporation into other software programs. PMID:19603484

  13. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating.

    PubMed

    Cui, Liying; Aleksandrov, Luba; Hou, Yue-Xian; Gentzsch, Martina; Chen, Jey-Hsin; Riordan, John R; Aleksandrov, Andrei A

    2006-04-15

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel employing the ABC transporter structural motif. Deletion of a single residue (Phe508) in the first nucleotide-binding domain (NBD1), which occurs in most patients with cystic fibrosis, impairs both maturation and function of the protein. However, substitution of the Phe508 with small uncharged amino acids, including cysteine, is permissive for maturation. To explore the possible role of the phenylalanine aromatic side chain in channel gating we introduced a cysteine at this position in cysless CFTR, enabling its selective chemical modification by sulfhydryl reagents. Both cysless and wild-type CFTR ion channels have identical mean open times when activated by different nucleotide ligands. Moreover, both channels could be locked in an open state by introducing an ATPase inhibiting mutation (E1371S). However, the introduction of a single cysteine (F508C) prevented the cysless E1371S channel from maintaining the permanently open state, allowing closing to occur. Chemical modification of cysless E1371S/F508C by sulfhydryl reagents was used to probe the role of the side chain in ion channel function. Specifically, benzyl-methanethiosulphonate modification of this variant restored the gating behaviour to that of cysless E1371S containing the wild-type phenylalanine at position 508. This provides the first direct evidence that a specific interaction of the Phe508 aromatic side chain plays a role in determining the residency time in the closed state. Thus, despite the fact that this aromatic side chain is not essential for CFTR folding, it is important in the ion channel function.

  14. Topological side-chain classification of β-turns: Ideal motifs for peptidomimetic development

    NASA Astrophysics Data System (ADS)

    Tran, Tran Trung; McKie, Jim; Meutermans, Wim D. F.; Bourne, Gregory T.; Andrews, Peter R.; Smythe, Mark L.

    2005-08-01

    β-turns are important topological motifs for biological recognition of proteins and peptides. Organic molecules that sample the side chain positions of β-turns have shown broad binding capacity to multiple different receptors, for example benzodiazepines. β-turns have traditionally been classified into various types based on the backbone dihedral angles (φ2, ψ2, φ3 and ψ3). Indeed, 57-68% of β-turns are currently classified into 8 different backbone families (Type I, Type II, Type I', Type II', Type VIII, Type VIa1, Type VIa2 and Type VIb and Type IV which represents unclassified β-turns). Although this classification of β-turns has been useful, the resulting β-turn types are not ideal for the design of β-turn mimetics as they do not reflect topological features of the recognition elements, the side chains. To overcome this, we have extracted β-turns from a data set of non-homologous and high-resolution protein crystal structures. The side chain positions, as defined by Cα-Cβ vectors, of these turns have been clustered using the kth nearest neighbor clustering and filtered nearest centroid sorting algorithms. Nine clusters were obtained that cluster 90% of the data, and the average intra-cluster RMSD of the four Cα-Cβ vectors is 0.36. The nine clusters therefore represent the topology of the side chain scaffold architecture of the vast majority of β-turns. The mean structures of the nine clusters are useful for the development of β-turn mimetics and as biological descriptors for focusing combinatorial chemistry towards biologically relevant topological space.

  15. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.

    PubMed

    Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek

    2016-02-01

    Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/.

  16. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations

    PubMed Central

    Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek

    2016-01-01

    Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-‘one-click’ experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/. PMID:26894674

  17. Binding of amino acid side chains to preformed cavities: interaction of serine proteinases with turkey ovomucoid third domains with coded and noncoded P1 residues.

    PubMed Central

    Bigler, T. L.; Lu, W.; Park, S. J.; Tashiro, M.; Wieczorek, M.; Wynn, R.; Laskowski, M.

    1993-01-01

    In the association of serine proteinases with their cognate substrates and inhibitors an important interaction is the fitting of the P1 side chain of the substrate or inhibitor into a preformed cavity of the enzyme called the S1 pocket. In turkey ovomucoid third domain, which is a canonical protein proteinase inhibitor, the P1 residue is Leu18. Here we report the values of equilibrium constants, Ka, for turkey ovomucoid third domain and 13 additional Leu18X variants with six serine proteinases: bovine alpha chymotrypsin A, porcine pancreatic elastase, subtilisin Carlsberg, Streptomyces griseus proteinases A and B, and human leukocyte elastase. Eight of the Xs are coded amino acids: Ala, Ser, Val, Met, Gln, Glu, Lys, and Phe, and five are noncoded: Abu, Ape, Ahx, Ahp, and Hse. They were chosen to simplify the interamino acid comparisons. In the homologous series of straight-chain side chains Ala, Abu, Ape, Ahx, Ahp, free energy of binding decreases monotonically with the side-chain length for chymotrypsin with large binding pocket, but even for this enzyme shows curvature. For the two S. griseus enzymes a minimum appears to be reached at Ahp. A minimum is clearly evident for the two elastases, where increasing the side-chain length from Ahx to Ahp greatly weakens binding, but much more so for the apparently more rigid pancreatic enzyme than for the more flexible leukocyte enzyme. beta-Branching (Ape/Val) is very deleterious for five of the six enzymes; it is only slightly deleterious for the more flexible human leukocyte elastase. The effect of gamma-branching (Ahx/Leu), of introduction of heteroatoms (Abu/Ser), (Ape/Hse), and (Ahx/Met), and of introduction of charge (Gln/Glu) and (Ahp/Lys) are tabulated and discussed. An important component of the free energy of interaction is the distortion of the binding pocket by bulky or branched side chains. Most of the variants studied were obtained by enzymatic semisynthesis. X18 variants of the 6-18 peptide GlyNH2 were

  18. BK channel opening involves side-chain reorientation of multiple deep-pore residues

    PubMed Central

    Chen, Xixi; Yan, Jiusheng; Aldrich, Richard W.

    2014-01-01

    Three deep-pore locations, L312, A313, and A316, were identified in a scanning mutagenesis study of the BK (Ca2+-activated, large-conductance K+) channel S6 pore, where single aspartate substitutions led to constitutively open mutant channels (L312D, A313D, and A316D). To understand the mechanisms of the constitutive openness of these mutant channels, we individually mutated these three sites into the other 18 amino acids. We found that charged or polar side-chain substitutions at each of the sites resulted in constitutively open mutant BK channels, with high open probability at negative voltages, as well as a loss of voltage and Ca2+ dependence. Given the fact that multiple pore residues in BK displayed side-chain hydrophilicity-dependent constitutive openness, we propose that BK channel opening involves structural rearrangement of the deep-pore region, where multiple residues undergo conformational changes that may increase the exposure of their side chains to the polar environment of the pore. PMID:24367115

  19. Predicting side-chain conformations of methionine using a hard-sphere model with stereochemical constraints

    NASA Astrophysics Data System (ADS)

    Virrueta, A.; Gaines, J.; O'Hern, C. S.; Regan, L.

    2015-03-01

    Current research in the O'Hern and Regan laboratories focuses on the development of hard-sphere models with stereochemical constraints for protein structure prediction as an alternative to molecular dynamics methods that utilize knowledge-based corrections in their force-fields. Beginning with simple hydrophobic dipeptides like valine, leucine, and isoleucine, we have shown that our model is able to reproduce the side-chain dihedral angle distributions derived from sets of high-resolution protein crystal structures. However, methionine remains an exception - our model yields a chi-3 side-chain dihedral angle distribution that is relatively uniform from 60 to 300 degrees, while the observed distribution displays peaks at 60, 180, and 300 degrees. Our goal is to resolve this discrepancy by considering clashes with neighboring residues, and averaging the reduced distribution of allowable methionine structures taken from a set of crystallized proteins. We will also re-evaluate the electron density maps from which these protein structures are derived to ensure that the methionines and their local environments are correctly modeled. This work will ultimately serve as a tool for computing side-chain entropy and protein stability. A. V. is supported by an NSF Graduate Research Fellowship and a Ford Foundation Fellowship. J. G. is supported by NIH training Grant NIH-5T15LM007056-28.

  20. Arginine side chains as a dispersant for individual single-wall carbon nanotubes.

    PubMed

    Hirano, Atsushi; Tanaka, Takeshi; Kataura, Hiromichi; Kameda, Tomoshi

    2014-04-22

    Charged peptides and proteins disperse single-wall carbon nanotubes (SWCNTs) in aqueous solutions. However, little is known about the role of their side chains in their interactions with SWCNTs. Homopolypeptide-SWCNT systems are ideal for investigating the mechanisms of such interactions. In this study, we demonstrate that SWCNTs are individually dispersed by poly-L-arginine (PLA). The debundled SWCNTs exhibited a distinct fluorescence. The dispersibility of SWCNTs with PLA was greater than that of SWCNTs with poly-L-lysine (PLL). Molecular dynamics simulations suggest that the side chains of PLA have stronger interactions with the sidewalls of SWCNTs compared with those of PLL. The guanidinium group at the end of the side chain of an arginine residue plays an important role in the interaction with SWCNTs, likely through hydrophobic, van der Waals, and π-π interactions. PLA can be useful as a tool for the dispersion of SWCNTs and can be used to non-covalently anchor materials to SWCNTs with strong binding.

  1. Protein side-chain packing problem: a maximum edge-weight clique algorithmic approach.

    PubMed

    Dukka Bahadur, K C; Tomita, Etsuji; Suzuki, Jun'ichi; Akutsu, Tatsuya

    2005-02-01

    "Protein Side-chain Packing" has an ever-increasing application in the field of bio-informatics, dating from the early methods of homology modeling to protein design and to the protein docking. However, this problem is computationally known to be NP-hard. In this regard, we have developed a novel approach to solve this problem using the notion of a maximum edge-weight clique. Our approach is based on efficient reduction of protein side-chain packing problem to a graph and then solving the reduced graph to find the maximum clique by applying an efficient clique finding algorithm developed by our co-authors. Since our approach is based on deterministic algorithms in contrast to the various existing algorithms based on heuristic approaches, our algorithm guarantees of finding an optimal solution. We have tested this approach to predict the side-chain conformations of a set of proteins and have compared the results with other existing methods. We have found that our results are favorably comparable or better than the results produced by the existing methods. As our test set contains a protein of 494 residues, we have obtained considerable improvement in terms of size of the proteins and in terms of the efficiency and the accuracy of prediction.

  2. Entropy and enthalpy of interaction between amino acid side chains in nanopores

    SciTech Connect

    Vaitheeswaran, S.; Thirumalai, D.

    2014-12-14

    Understanding the stabilities of proteins in nanopores requires a quantitative description of confinement induced interactions between amino acid side chains. We use molecular dynamics simulations to study the nature of interactions between the side chain pairs ALA-PHE, SER-ASN, and LYS-GLU in bulk water and in water-filled nanopores. The temperature dependence of the bulk solvent potentials of mean force and the interaction free energies in cylindrical and spherical nanopores is used to identify the corresponding entropic and enthalpic components. The entropically stabilized hydrophobic interaction between ALA and PHE in bulk water is enthalpically dominated upon confinement depending on the relative orientations between the side chains. In the case of SER-ASN, hydrogen bonded configurations that are similar in bulk water are thermodynamically distinct in a cylindrical pore, thus making rotamer distributions different from those in the bulk. Remarkably, salt bridge formation between LYS-GLU is stabilized by entropy in contrast to the bulk. Implications of our findings for confinement-induced alterations in protein stability are briefly outlined.

  3. Side Chain Hydrophobicity Modulates Therapeutic Activity and Membrane Selectivity of Antimicrobial Peptide Mastoparan-X

    PubMed Central

    Gjetting, Torben; Andresen, Thomas L.

    2014-01-01

    The discovery of new anti-infective compounds is stagnating and multi-resistant bacteria continue to emerge, threatening to end the “antibiotic era”. Antimicrobial peptides (AMPs) and lipo-peptides such as daptomycin offer themselves as a new potential class of antibiotics; however, further optimization is needed if AMPs are to find broad use as antibiotics. In the present work, eight analogues of mastoparan-X (MPX) were investigated, having side chain modifications in position 1, 8 and 14 to modulate peptide hydrophobicity. The self-association properties of the peptides were characterized, and the peptide-membrane interactions in model membranes were compared with the bactericidal and haemolytic properties. Alanine substitution at position 1 and 14 resulted in higher target selectivity (red blood cells versus bacteria), but also decreased bactericidal potency. For these analogues, the gain in target selectivity correlated to biophysical parameters showing an increased effective charge and reduction in the partitioning coefficient for membrane insertion. Introduction of an unnatural amino acid, with an octyl side chain by amino acid substitution, at positions 1, 8 and 14 resulted in increased bactericidal potency at the expense of radically reduced membrane target selectivity. Overall, optimized membrane selectivity or bactericidal potency was achieved by changes in side chain hydrophobicity of MPX. However, enhanced potency was achieved at the expense of selectivity and vice versa in all cases. PMID:24621994

  4. Novel Fluorinated Polymers Containing Short Perfluorobutyl Side Chains and Their Super Wetting Performance on Diverse Substrates.

    PubMed

    Jiang, Jingxian; Zhang, Guangfa; Wang, Qiongyan; Zhang, Qinghua; Zhan, Xiaoli; Chen, Fengqiu

    2016-04-27

    Because the emission of perfluorooctanoic acid (PFOA) was completely prohibited in 2015, the widely used poly- and perfluoroalkyl substances with long perfluoroalkyl groups must be substituted by environmentally friendly alternatives. In this study, one kind of potential alternative (i.e., fluorinated polymers with short perfluorobutyl side chains) has been synthesized from the prepared monomers {i.e., (perfluorobutyl)ethyl acrylate (C4A), (perfluorobutyl)ethyl methacrylate (C4MA), 2-[[[[2-(perfluorobutyl)]sulfonyl]methyl]amino]ethyl acrylate (C4SA), and methacrylate (C4SMA)}, and the microstructure, super wetting performance, and applications of the synthesized fluorinated polymers were systematically investigated. The thermal and crystallization behaviors of the fluoropolymer films were characterized by differential scanning calorimetry and wide-angle X-ray diffraction analysis, respectively. Dynamic water-repellent models were constructed. The stable low surface energy and dynamic water- and oil-repellent properties of these synthesized fluorinated polymers with short perfluorobutyl side chains were attributed to the synergetic effect of amorphous fluorinated side chains in perfluoroalkyl acrylate and crystalline hydrocarbon pendant groups in stearyl acrylate. Outstanding water- and oil-repellent properties of fabrics and any other substrates could be achieved by a facile dip-coating treatment using a fluorinated copolymer dispersion. As a result, we believe that our prepared fluorinated copolymers are potential candidates to replace the fluoroalkylated polymers with long perfluorinated chains in nonstick and self-cleaning applications in our daily life.

  5. Side-chain to backbone interactions dictate the conformational preferences of a cyclopentane arginine analogue

    PubMed Central

    Revilla-López, Guillem; Torras, Juan; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos

    2009-01-01

    The intrinsic conformational preferences of the non-proteinogenic amino acids constructed by incorporating the arginine side chain in the β position of 1-aminocyclopentane-1-carboxylic acid (either in a cis or a trans orientation relative to the amino group) have been investigated using computational methods. These compounds may be considered as constrained analogues of arginine (denoted as c5Arg) in which the orientation of the side chain is fixed by the cyclopentane moiety. Specifically, the N-acetyl-N′-methylamide derivatives of cis and trans-c5Arg have been examined in the gas phase and in solution using B3LYP/6-311+G(d,p) calculations and Molecular Dynamics simulations. Results indicate that the conformational space available to these compounds is highly restricted, their conformational preferences being dictated by the ability of the guanidinium group in the side chain to establish hydrogen-bond interactions with the backbone. A comparison with the behavior previously described for the analogous phenylalanine derivatives is presented. PMID:19236034

  6. Side-Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High Efficiency Polymer Solar Cells.

    PubMed

    Yang, Yankang; Zhang, Zhi-Guo; Bin, Haijun; Chen, Shanshan; Gao, Liang; Xue, Lingwei; Yang, Changduk; Li, Yongfang

    2016-11-16

    Low bandgap n-type organic semiconductor (n-OS) ITIC has attracted great attention for the application as an acceptor with medium bandgap p-type conjugated polymer as donor in nonfullerene polymer solar cells (PSCs) because of its attractive photovoltaic performance. Here we report a modification on the molecular structure of ITIC by side-chain isomerization with meta-alkyl-phenyl substitution, m-ITIC, to further improve its photovoltaic performance. In a comparison with its isomeric counterpart ITIC with para-alkyl-phenyl substitution, m-ITIC shows a higher film absorption coefficient, a larger crystalline coherence, and higher electron mobility. These inherent advantages of m-ITIC resulted in a higher power conversion efficiency (PCE) of 11.77% for the nonfullerene PSCs with m-ITIC as acceptor and a medium bandgap polymer J61 as donor, which is significantly improved over that (10.57%) of the corresponding devices with ITIC as acceptor. To the best of our knowledge, the PCE of 11.77% is one of the highest values reported in the literature to date for nonfullerene PSCs. More importantly, the m-ITIC-based device shows less thickness-dependent photovoltaic behavior than ITIC-based devices in the active-layer thickness range of 80-360 nm, which is beneficial for large area device fabrication. These results indicate that m-ITIC is a promising low bandgap n-OS for the application as an acceptor in PSCs, and the side-chain isomerization could be an easy and convenient way to further improve the photovoltaic performance of the donor and acceptor materials for high efficiency PSCs.

  7. In vitro analysis of the effect of alkyl-chain length of anionic surfactants on the skin by using a reconstructed human epidermal model.

    PubMed

    Yamaguchi, Fumiko; Watanabe, Shin-Ichi; Harada, Fusae; Miyake, Miyuki; Yoshida, Masaki; Okano, Tomomichi

    2014-01-01

    We investigated the effect of the alkyl-chain length of anionic surfactants on the skin using an in vitro model. The evaluated anionic surfactants were sodium alkyl sulfate (AS) and sodium fatty acid methyl ester sulfonate (MES), which had different alkyl-chain lengths (C8-C14). Skin tissue damage and permeability were examined using a reconstructed human epidermal model, LabCyte EPI-MODEL24. Skin tissue damage was examined by measuring cytotoxicity with an MTT assay. Liquid chromatography/tandem mass spectrometry (LC/MS-MS) and liquid chromatography/mass spectrometry (LC/MS) were used to detect surfactants that permeated into the assay medium through an epidermal model. To assess the permeation mechanism and cell damage caused by the surfactants through the epidermis, we evaluated the structural changes of Bovine Serum Albumin (BSA), used as a simple model protein, and the fluidity of 1,2-dipalmitoyl-sn-glycero-3-phosphpcholine (DPPC) liposome, which serves as one of the most abundant phospholipid models of living cell membranes in the epidermis. The effects of the surfactants on the proteins were measured using Circular Dichroism (CD) spectroscopy, while the effects on membrane fluidity were investigated by electron spin resonance (ESR) spectroscopy. ET50 (the 50% median effective time) increased as follows: C10 < C12 < C8 < C14 in AS and C8, C10 < C12 < C14 in MES. The order of permeation through the LabCyte EPI-MODEL24 was C10 > C12 > C14, for both AS and MES. For both AS and MES, the order parameter, which is the criteria for the microscopic viscosity of lipid bilayers, increased as follows: C10 < C12 < C14, which means the membrane fluidity is C10 > C12 > C14. It was determined that the difference in skin tissue damage in the LabCyte EPI-MODEL24 with C10 to C14 AS and MES was caused by the difference in permeation and cell membrane fluidity through the lipid bilayer path in the epidermis.

  8. Effect on insulin release of compounds structurally related to the potassium-channel opener 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide (BPDZ 73): introduction of heteroatoms on the 3-alkylamino side chain of the benzothiadiazine 1,1-dioxide ring.

    PubMed

    Boverie, S; Antoine, M H; de Tullio, P; Somers, F; Becker, B; Sebille, S; Lebrun, P; Pirotte, B

    2001-07-01

    7-Chloro-3-pyridyl(alkyl)amino-4H-1,2,4-benzothiadiazine 1,1-dioxides and 3-alkylamino-7-chloro-4H-1,2,4-benzothiadiazine 1,1-dioxides containing one or more heteroatoms on the side chain in the 3 position have been synthesized in an attempt to discover new potent KATP-channel openers. The compounds were tested as putative pancreatic B-cells KATP channel openers by measuring their inhibitory activity on the insulin releasing process. The influence on the biological activity of the nature of the side chain in the 3 position is discussed.

  9. Simple Physics-Based Analytical Formulas for the Potentials of Mean Force of the Interaction of Amino Acid Side Chains in Water. VII. Charged-Hydrophobic/Polar and Polar-Hydrophobic/Polar Side Chains.

    PubMed

    Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A

    2017-01-19

    The physics-based potentials of side-chain-side-chain interactions corresponding to pairs composed of charged and polar, polar and polar, charged and hydrophobic, and hydrophobic and hydrophobic side chains have been determined. A total of 144 four-dimensional potentials of mean force (PMFs) of all possible pairs of molecules modeling these pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expressions were then fitted to the PMFs. Depending on the type of interacting sites, the analytical approximation to the PMF is a sum of terms corresponding to van der Waals interactions and cavity-creation involving the nonpolar sections of the side chains and van der Waals, cavity-creation, and electrostatic (charge-dipole or dipole-dipole) interaction energies and polarization energies involving the charged or polar sections of the side chains. The model used in this work reproduces all features of the interacting pairs. The UNited RESidue force field with the new side-chain-side-chain interaction potentials was preliminarily tested with the N-terminal part of the B-domain of staphylococcal protein A (PDBL 1BDD ; a three-α-helix bundle) and UPF0291 protein YnzC from Bacillus subtilis (PDB: 2HEP ; an α-helical hairpin).

  10. Oil-in-water microemulsions stabilized by 3-(N,N- dimethylalkylammonio)propanesulfonate surfactants of varying alkyl chain length: solubilisation of testos-terone propionate.

    PubMed

    Hsieh, Chien-Ming; Warisnoicharoen, Warangkana; Patel, Raju K; Kianfar, Farnoosh; Lawrence, M Jayne

    2017-03-28

    Solubilisation of the poorly-water soluble drug, testosterone propionate, in co-surfactant-free, dilutable, oil-in-water microemulsions stabilized by zwitterionic surfactants of varying alkyl chain length, namely 3-(N,N-dimethyloctylammonio)propanesulfonate and 3-(N,N-dimethyldodecylammonio)propanesulfonate and containing one of four ethyl ester oils, has been investigated. Both 3-(N,N-dimethyloctylammonio)propanesulfonate and 3-(N,N-dimethyldodecylammonio)propanesulfonate-stabilized microemulsions containing two short chain length oils, ethyl butyrate and ethyl caprylate, while only 3-(N,N-dimethyldodecylammonio)propanesulfonate formed microemulsions incorporating the longer chain length oils, ethyl palmitate and ethyl oleate, albeit to a very much reduced extent. Significantly the microemulsions containing the short chain length oils, ethyl butyrate and ethyl caprylate solubilised more testosterone propionate than the corresponding micelles. However, an inverse correlation existed between testosterone propionate solubility in the bulk oil and solubilisation in the microemulsions, in that ethyl caprylate containing microemulsions solubilised more testosterone propionate than those containing an equivalent amount of ethyl butyrate, despite the drug being more soluble in ethyl butyrate. These results suggest that drug solubility in bulk oil is a poor indicator of drug solubility in microemulsions containing that oil, and whether or not the addition of oil improves drug solubility is dependent upon on how it is incorporated within the microemulsion. The longer the chain length of the oil, the more likely the oil is to form a core in the microemulsion droplet, resulting in an additional locus of drug solubilisation and the possibility of an enhanced solubilisation capacity.

  11. Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder.

    PubMed

    van der Walle, G A; Buisman, G J; Weusthuis, R A; Eggink, G

    1999-01-01

    Unsaturated medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) produced by Pseudomonas putida from linseed oil fatty acids (LOFA) and tall oil fatty acids (TOFA), were used as the polymer binder in the formulation of high solid alkyd-like paints. The relatively high concentration of unsaturated alkyl side chains incorporated into the PHA resins resulted in oxidative drying PHA paints having excellent coating properties. The homogeneously pigmented PHA coatings yielded high-gloss, smooth and strong films upon curing and showed an excellent flexibility, a good adhesion to different substrates, cohesive film properties and resistance to chipping.

  12. Too packed to change: side-chain packing and site-specific substitution rates in protein evolution.

    PubMed

    Marcos, María Laura; Echave, Julian

    2015-01-01

    In protein evolution, due to functional and biophysical constraints, the rates of amino acid substitution differ from site to site. Among the best predictors of site-specific rates are solvent accessibility and packing density. The packing density measure that best correlates with rates is the weighted contact number (WCN), the sum of inverse square distances between a site's C α and the C α of the other sites. According to a mechanistic stress model proposed recently, rates are determined by packing because mutating packed sites stresses and destabilizes the protein's active conformation. While WCN is a measure of C α packing, mutations replace side chains. Here, we consider whether a site's evolutionary divergence is constrained by main-chain packing or side-chain packing. To address this issue, we extended the stress theory to model side chains explicitly. The theory predicts that rates should depend solely on side-chain contact density. We tested this prediction on a data set of structurally and functionally diverse monomeric enzymes. We compared side-chain contact density with main-chain contact density measures and with relative solvent accessibility (RSA). We found that side-chain contact density is the best predictor of rate variation among sites (it explains 39.2% of the variation). Moreover, the independent contribution of main-chain contact density measures and RSA are negligible. Thus, as predicted by the stress theory, site-specific evolutionary rates are determined by side-chain packing.

  13. Lattice and off-lattice side chain models of protein folding: linear time structure prediction better than 86% of optimal.

    PubMed

    Hart, W E; Istrail, S

    1997-01-01

    This paper considers the protein energy minimization problem for lattice and off-lattice protein folding models that explicitly represent side chains. Lattice models of proteins have proven useful tools for reasoning about protein folding in unrestricted continuous space through analogy. This paper provides the first illustration of how rigorous algorithmic analyses of lattice models can lead to rigorous algorithmic analyses of off-lattice models. We consider two side chain models: a lattice model that generalizes the HP model (Dill, 1985) to explicitly represent side chains on the cubic lattice and a new off-lattice model, the HP Tangent Spheres Side Chain model (HP-TSSC), that generalizes this model further by representing the backbone and side chains of proteins with tangent spheres. We describe algorithms with mathematically guaranteed error bounds for both of these models. In particular, we describe a linear time performance guaranteed approximation algorithm for the HP side chain model that constructs conformations whose energy is better than 86% of optimal in a face-centered cubic lattice, and we demonstrate how this provides a better than 70% performance guarantee for the HP-TSSC model. Our analysis provides a mathematical methodology for transferring performance guarantees on lattices to off-lattice models. These results partially answer the open question of Ngo et al. (1994) concerning the complexity of protein folding models that include side chains.

  14. Proton nuclear magnetic resonance identification and discrimination of side chain isomers of phytosterols using a lanthanide shift reagent.

    PubMed

    Iida, T; Tamura, T; Matsumoto, T

    1980-03-01

    Proton nuclear magnetic resonance (1H-NMR) spectra at 90 MHz were measured for a number of side chain isomers of phytosterols (sterols with a C8H17 side chain, and delta 24-, 24-methylene, delta 22-, 24-ethylidene, 24-methly, 24-ethyl, 24-methyl-delta 22-, 24-ethyl delta 22-, and 24-ethyl-delta 22,25(27)-sterols) with or without a lanthanide shift reagent, tris[1,1,1,2,2,3,3 - heptafluoro - 7,7 - dimethyloctane - 4,6 - dionato]ytterbium, Yb(fod)3, and the effect of Yb(fod)3 on the side chain methyl protons is discussed. The change of the chemical shifts induced Yb(fod)3 for the side chain methyls was expressed in terms of the induced shift ratios (ISR values), i.e., the ratios of the induced chemical shifts of the respective side chain methyls to that of the fastest moving side chain methyl. The ISR values were sentitive to minor structural and stereochemical differences, but almost independent of ring structures and of substrate concentrations, thus providing confirmatory evidence for the side chain structures. Also, the Yb(fod)3-induced spectral patterns observed in the high-field methyl region bore the fingerprints of the side chain structures. Several isomeric pairs of sterols, which differ only in the geometry of double bonds or the absolute configuration at C-24 in the side chain, i.e., cis- and trans-isomers of delta 22-and 24-ethylidene sterols, 24R/alpha- and 24S/beta-methyl sterols, 24R/alpha- and 24S/beta-ethyl sterols, and 24S/alpha- and 24R/beta-ethyl-delta 22-sterols, could be differentiated from each other under the influence of Yb(fod)3, even though they were measured at 90 MHz.

  15. Structure-activity relationship of novel menaquinone-4 analogues: modification of the side chain affects their biological activities.

    PubMed

    Suhara, Yoshitomo; Hanada, Norika; Okitsu, Takashi; Sakai, Miho; Watanabe, Masato; Nakagawa, Kimie; Wada, Akimori; Takeda, Kazuyoshi; Takahashi, Kazuhiko; Tokiwa, Hiroaki; Okano, Toshio

    2012-02-23

    We synthesized new vitamin K analogues with demethylation or reduction of the double bonds of the side chain of menaquinone-4 (MK-4) and evaluated their SXR-mediated transcriptional activity as well as the extent of their conversion to MK-4. The results indicated that the analogue with the methyl group deleted at the 7' site of the side chain part affected conversion activity to MK-4. In contrast, a decrease in the number of the double bonds in the side chain moiety appeared to decrease the SXR-mediated transcriptional activity.

  16. N-acetyl-L-aspartic acid-N'-methylamide with side-chain orientation capable of external hydrogen bonding . Backbone and side-chain folding, studied at the DFT level of quantum theory

    NASA Astrophysics Data System (ADS)

    Koo, J. C. P.; Chass, G. A.; Perczel, A.; Farkas, Ö.; Varro, A.; Torday, L. L.; Papp, J. Gy.; Csizmadia, I. G.

    2002-09-01

    In this study, we generated and analyzed the side-chain conformational potential energy hypersurfaces for each of the nine possible backbone conformers for N-acetyl-L-aspartic acid-N' methylamide. We found a total of 27 out of the 81 possible conformers optimized at the B3LYP/6-31G(d) level of theory. The relative energies, as well as the stabilization energies exerted by the side-chain on the backbone, have been calculated for each of the 27 optimized conformers at this level of theory. Various backbone-backbone (N H{\\cdot}{\\cdot}{\\cdot}O=C) and backbone-side-chain (N H{\\cdot}{\\cdot}{\\cdot}O=C; N H{\\cdot}{\\cdot}{\\cdot}OH) hydrogen bonds were analyzed. The appearance of the notoriously absent \\varepsilon_L backbone conformer may be attributed to such side-chain-backbone (SC/BB) and backbone-backbone (BB/BB) hydrogen bonds.

  17. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.

    PubMed

    Nicolas, A; Egmond, M; Verrips, C T; de Vlieg, J; Longhi, S; Cambillau, C; Martinez, C

    1996-01-16

    Cutinase from the fungus Fusarium solani pisi is a lipolytic enzyme able to hydrolyze both aggregated and soluble substrates. It therefore provides a powerful tool for probing the mechanisms underlying lipid hydrolysis. Lipolytic enzymes have a catalytic machinery similar to those present in serine proteinases. It is characterized by the triad Ser, His, and Asp (Glu) residues, by an oxyanion binding site that stabilizes the transition state via hydrogen bonds with two main chain amide groups, and possibly by other determinants. It has been suggested on the basis of a covalently bond inhibitor that the cutinase oxyanion hole may consist not only of two main chain amide groups but also of the Ser42 O gamma side chain. Among the esterases and the serine and the cysteine proteases, only Streptomyces scabies esterase, subtilisin, and papain, respectively, have a side chain residue which is involved in the oxyanion hole formation. The position of the cutinase Ser42 side chain is structurally conserved in Rhizomucor miehei lipase with Ser82 O gamma, in Rhizopus delemar lipase with Thr83 O gamma 1, and in Candida antartica B lipase with Thr40 O gamma 1. To evaluate the increase in the tetrahedral intermediate stability provided by Ser42 O gamma, we mutated Ser42 into Ala. Furthermore, since the proper orientation of Ser42 O gamma is directed by Asn84, we mutated Asn84 into Ala, Leu, Asp, and Trp, respectively, to investigate the contribution of this indirect interaction to the stabilization of the oxyanion hole. The S42A mutation resulted in a drastic decrease in the activity (450-fold) without significantly perturbing the three-dimensional structure. The N84A and N84L mutations had milder kinetic effects and did not disrupt the structure of the active site, whereas the N84W and N84D mutations abolished the enzymatic activity due to drastic steric and electrostatic effects, respectively.

  18. A Bayesian Approach for Determining Protein Side-Chain Rotamer Conformations Using Unassigned NOE Data

    NASA Astrophysics Data System (ADS)

    Zeng, Jianyang; Roberts, Kyle E.; Zhou, Pei; Donald, Bruce R.

    A major bottleneck in protein structure determination via nuclear magnetic resonance (NMR) is the lengthy and laborious process of assigning resonances and nuclear Overhauser effect (NOE) cross peaks. Recent studies have shown that accurate backbone folds can be determined using sparse NMR data, such as residual dipolar couplings (RDCs) or backbone chemical shifts. This opens a question of whether we can also determine the accurate protein side-chain conformations using sparse or unassigned NMR data. We attack this question by using unassigned nuclear Overhauser effect spectroscopy (NOESY) data, which record the through-space dipolar interactions between protons nearby in 3D space. We propose a Bayesian approach with a Markov random field (MRF) model to integrate the likelihood function derived from observed experimental data, with prior information (i.e., empirical molecular mechanics energies) about the protein structures. We unify the side-chain structure prediction problem with the side-chain structure determination problem using unassigned NMR data, and apply the deterministic dead-end elimination (DEE) and A* search algorithms to provably find the global optimum solution that maximizes the posterior probability. We employ a Hausdorff-based measure to derive the likelihood of a rotamer or a pairwise rotamer interaction from unassigned NOESY data. In addition, we apply a systematic and rigorous approach to estimate the experimental noise in NMR data, which also determines the weighting factor of the data term in the scoring function that is derived from the Bayesian framework. We tested our approach on real NMR data of three proteins, including the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), and human ubiquitin. The promising results indicate that our approach can be applied in high-resolution protein structure determination. Since our approach does not require any NOE assignment, it can accelerate the NMR

  19. A Bayesian Approach for Determining Protein Side-Chain Rotamer Conformations Using Unassigned NOE Data

    PubMed Central

    Zeng, Jianyang; Roberts, Kyle E.; Zhou, Pei

    2011-01-01

    Abstract A major bottleneck in protein structure determination via nuclear magnetic resonance (NMR) is the lengthy and laborious process of assigning resonances and nuclear Overhauser effect (NOE) cross peaks. Recent studies have shown that accurate backbone folds can be determined using sparse NMR data, such as residual dipolar couplings (RDCs) or backbone chemical shifts. This opens a question of whether we can also determine the accurate protein side-chain conformations using sparse or unassigned NMR data. We attack this question by using unassigned nuclear Overhauser effect spectroscopy (NOESY) data, which records the through-space dipolar interactions between protons nearby in three-dimensional (3D) space. We propose a Bayesian approach with a Markov random field (MRF) model to integrate the likelihood function derived from observed experimental data, with prior information (i.e., empirical molecular mechanics energies) about the protein structures. We unify the side-chain structure prediction problem with the side-chain structure determination problem using unassigned NMR data, and apply the deterministic dead-end elimination (DEE) and A* search algorithms to provably find the global optimum solution that maximizes the posterior probability. We employ a Hausdorff-based measure to derive the likelihood of a rotamer or a pairwise rotamer interaction from unassigned NOESY data. In addition, we apply a systematic and rigorous approach to estimate the experimental noise in NMR data, which also determines the weighting factor of the data term in the scoring function derived from the Bayesian framework. We tested our approach on real NMR data of three proteins: the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), and human ubiquitin. The promising results indicate that our algorithm can be applied in high-resolution protein structure determination. Since our approach does not require any NOE assignment, it can

  20. Synthesis of enones, pyrazolines and pyrrolines with gem-difluoroalkyl side chains

    PubMed Central

    El Dine, Assaad Nasr; Khalaf, Ali; Grée, Danielle; Tasseau, Olivier; Fares, Fares; Jaber, Nada; Lesot, Philippe

    2013-01-01

    Summary Starting from easily accessible gem-difluoropropargylic derivatives, a DBU-mediated isomerisation affords enones in fair yields with a gem-difluoroalkyl chain. These derivatives were used to prepare pyrazolines and pyrrolines with the desired gem-difluoroalkyl side chain by cyclocondensations in good yields and with excellent stereoselectivity. A one-pot process was also successfully developed for these sequential reactions. By carrying out various types of Pd-catalyzed coupling reactions for compounds with a p-bromophenyl substituent a route to focused chemical libraries was demonstrated. PMID:24204405

  1. An all-optical poling investigation of low absorbing azobenzene side-chain polymer films

    NASA Astrophysics Data System (ADS)

    Jia, Yajie; Wang, Gongming; Guo, Bin; Su, Wei; Zhang, Qijin

    2004-09-01

    All optical poling (AOP) processes of both the typical AOP material disperse red 1 (DR1) copolymer and a low absorbing side-chain poly(2-[4-(4-cyanophenylazo)phenoxy] hexyl methacrylate), called PCN6, were examined and compared. The trade-off between the optical seeding efficiency and the transparency of the nonlinear polymer was considered. Quasi-phase matched (QPM) second harmonic generation (SHG) in PCN6 films was demonstrated. A relaxation retardation effect of the photo-induced khgr(2) was also observed in thick PCN6 films.

  2. Recent advances in metathesis-derived polymers containing transition metals in the side chain

    PubMed Central

    Demonceau, Albert; Fischer, Helmut

    2015-01-01

    Summary This account critically surveys the field of side-chain transition metal-containing polymers as prepared by controlled living ring-opening metathesis polymerization (ROMP) of the respective metal-incorporating monomers. Ferrocene- and other metallocene-modified polymers, macromolecules including metal-carbonyl complexes, polymers tethering early or late transition metal complexes, etc. are herein discussed. Recent advances in the design and syntheses reported mainly during the last three years are highlighted, with special emphasis on new trends for superior applications of these hybrid materials. PMID:26877797

  3. Side chain engineering of poly-thiophene and its impact on crystalline silicon based hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Zellmeier, M.; Rappich, J.; Klaus, M.; Genzel, Ch.; Janietz, S.; Frisch, J.; Koch, N.; Nickel, N. H.

    2015-11-01

    The influence of ether groups in the side chain of spin coated regioregular polythiophene derivatives on the polymer layer formation and the hybrid solar cell properties was investigated using electrical, optical, and X-ray diffraction experiments. The polymer layers are of high crystallinity but the polymer with 3 ether groups in the side chain (P3TOT) did not show any vibrational fine structure in the UV-Vis spectrum. The presence of ether groups in the side chains leads to better adhesion resulting in thinner and more homogeneous polymer layers. This, in turn, enhances the electronic properties of the planar c-Si/poly-thiophene hybrid solar cell. We find that the power conversion efficiency increases with the number of ether groups in the side chains, and a maximum power conversion efficiency of η = 9.6% is achieved even in simple planar structures.

  4. Directing the self-assembly of semiconducting copolymers: the consequences of grafting linear or hyperbranched polyether side chains.

    PubMed

    zur Borg, Lisa; Schüll, Christoph; Frey, Holger; Zentel, Rudolf

    2013-08-01

    The synthesis and self-assembly of novel semiconducting rod-coil type graft block copolymers based on poly(para-phenylene vinylene) (PPV) copolymers is presented, focusing on the ordering effect of linear versus hyperbranched side chains. Using an additional reactive ester block, highly polar, linear poly(ethylene glycol), and hyperbranched polyglycerol side chains are attached in a grafting-to approach. Remarkably, the resulting novel semiconducting graft copolymers with polyether side chains show different solubility and side-chain directed self-assembly behavior in various solvents, e.g., cylindrical or spherical superstructures in the size range of 10 to 120 nm, as shown by TEM. By adjusting the molecular weight and the topology of the polyether segments, self-assembly into defined superstructures can be achieved, which is important for the efficient charge transport in potential electronic applications.

  5. Side chain engineering of poly-thiophene and its impact on crystalline silicon based hybrid solar cells

    SciTech Connect

    Zellmeier, M.; Rappich, J.; Nickel, N. H.; Klaus, M.; Genzel, Ch.; Janietz, S.; Frisch, J.; Koch, N.

    2015-11-16

    The influence of ether groups in the side chain of spin coated regioregular polythiophene derivatives on the polymer layer formation and the hybrid solar cell properties was investigated using electrical, optical, and X-ray diffraction experiments. The polymer layers are of high crystallinity but the polymer with 3 ether groups in the side chain (P3TOT) did not show any vibrational fine structure in the UV-Vis spectrum. The presence of ether groups in the side chains leads to better adhesion resulting in thinner and more homogeneous polymer layers. This, in turn, enhances the electronic properties of the planar c-Si/poly-thiophene hybrid solar cell. We find that the power conversion efficiency increases with the number of ether groups in the side chains, and a maximum power conversion efficiency of η = 9.6% is achieved even in simple planar structures.

  6. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm² V(-1) s(-1).

    PubMed

    Zhang, Fengjiao; Hu, Yunbin; Schuettfort, Torben; Di, Chong-an; Gao, Xike; McNeill, Christopher R; Thomsen, Lars; Mannsfeld, Stefan C B; Yuan, Wei; Sirringhaus, Henning; Zhu, Daoben

    2013-02-13

    Substituted side chains are fundamental units in solution processable organic semiconductors in order to achieve a balance of close intermolecular stacking, high crystallinity, and good compatibility with different wet techniques. Based on four air-stable solution-processed naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile groups (NDI-DTYM2) that bear branched alkyl chains with varied side-chain length and different branching position, we have carried out systematic studies on the relationship between film microstructure and charge transport in their organic thin-film transistors (OTFTs). In particular synchrotron measurements (grazing incidence X-ray diffraction and near-edge X-ray absorption fine structure) are combined with device optimization studies to probe the interplay between molecular structure, molecular packing, and OTFT mobility. It is found that the side-chain length has a moderate influence on thin-film microstructure but leads to only limited changes in OTFT performance. In contrast, the position of branching point results in subtle, yet critical changes in molecular packing and leads to dramatic differences in electron mobility ranging from ~0.001 to >3.0 cm(2) V(-1) s(-1). Incorporating a NDI-DTYM2 core with three-branched N-alkyl substituents of C(11,6) results in a dense in-plane molecular packing with an unit cell area of 127 Å(2), larger domain sizes of up to 1000 × 3000 nm(2), and an electron mobility of up to 3.50 cm(2) V(-1) s(-1), which is an unprecedented value for ambient stable n-channel solution-processed OTFTs reported to date. These results demonstrate that variation of the alkyl chain branching point is a powerful strategy for tuning of molecular packing to enable high charge transport mobilities.

  7. Molecular dynamics studies of side chain effect on the beta-1,3-D-glucan triple helix in aqueous solution.

    PubMed

    Okobira, Tadashi; Miyoshi, Kentaro; Uezu, Kazuya; Sakurai, Kazuo; Shinkai, Seiji

    2008-03-01

    beta-1,3-D-glucans have been isolated from fungi as right-handed 6(1) triple helices. They are categorized by the side chains bound to the main triple helix through beta-(1-->6)-D-glycosyl linkage. Indeed, since a glucose-based side chain is water soluble, the presence and frequency of glucose-based side chains give rise to significant variation in the physical properties of the glucan family. Curdlan has no side chains and self-assembles to form an water-insoluble triple helical structure, while schizophyllan, which has a 1,6-D-glucose side chain on every third glucose unit along the main chain, is completely water soluble. A thermal fluctuation in the optical rotatory dispersion is observed for the side chain, indicating probable co-operative interaction between the side chains and water molecules. This paper documents molecular dynamics simulations in aqueous solution for three models of the beta-1,3-D-glucan series: curdlan (no side chain), schizophyllan (a beta-(1-->6)-D-glycosyl side-chain at every third position), and a hypothetical triple helix with a side chain at every sixth main-chain glucose unit. A decrease was observed in the helical pitch as the population of the side chain increased. Two types of hydrogen bonding via water molecules, the side chain/main chain and the side chain/side chain hydrogen bonding, play an important role in determination of the triple helix conformation. The formation of a one-dimensional cavity of diameter about 3.5 A was observed in the schizophyllan triple helix, while curdlan showed no such cavity. The side chain/side chain hydrogen bonding in schizophyllan and the hypothetical beta-1,3-D-glucan triple helix could cause the tilt of the main-chain glucose residues to the helix.

  8. A New Distributed Algorithm for Side-Chain Positioning in the Process of Protein Docking*

    PubMed Central

    Moghadasi, Mohammad; Kozakov, Dima; Vakili, Pirooz; Vajda, Sandor; Paschalidis, Ioannis Ch.

    2014-01-01

    Side-chain positioning (SCP) is an important component of computational protein docking methods. Existing SCP methods and available software have been designed for protein folding applications where side-chain positioning is also important. As a result they do not take into account significant special structure that SCP for docking exhibits. We propose a new algorithm which poses SCP as a Maximum Weighted Independent Set (MWIS) problem on an appropriately constructed graph. We develop an approximate algorithm which solves a relaxation of the MWIS and then rounds the solution to obtain a high-quality feasible solution to the problem. The algorithm is fully distributed and can be executed on a large network of processing nodes requiring only local information and message-passing between neighboring nodes. Motivated by the special structure in docking, we establish optimality guarantees for a certain class of graphs. Our results on a benchmark set of enzyme-inhibitor protein complexes show that our predictions are close to the native structure and are comparable to the ones obtained by a state-of-the-art method. The results are substantially improved if rotamers from unbound protein structures are included in the search. We also establish that the use of our SCP algorithm substantially improves docking results. PMID:24844567

  9. A new classification of the amino acid side chains based on doublet acceptor energy levels.

    PubMed Central

    Sneddon, S F; Morgan, R S; Brooks, C L

    1988-01-01

    We describe a new classification of the amino acid side chains based on the potential energy level at which each will accept an extra (doublet) electron. The doublet acceptor energy level, and the doublet acceptor orbital were calculated using semiempirical INDO/2-UHF molecular orbital theory. The results of these calculations show that the side chains fall into four groups. We have termed these groups repulsive, insulating, semiconducting, and attractive in accordance with where each lies on the relative energy scale. We use this classification to examine the role of residues between the donor and acceptor in modulating the rate and mechanism of electron transfer in proteins. With the calculated acceptor levels, we construct a potential barrier for those residues between the donor and acceptor. It is the area beneath this barrier that determines the decay of electronic coupling between donor and acceptor, and thus the transfer rate. We have used this schematic approach to characterize the four electron transfer pathways in myoglobin recently studied by Mayo et al. (Mayo, S.L., W.R. Ellis, R.J. Crutchley, and H.B. Gray. 1986. Science [Wash. DC]. 233:948-952). PMID:3342271

  10. Cyclic side-chain-linked opioid analogs utilizing cis- and trans-4-aminocyclohexyl-D-alanine.

    PubMed

    Piekielna, Justyna; Gentilucci, Luca; De Marco, Rossella; Perlikowska, Renata; Adamska, Anna; Olczak, Jacek; Mazur, Marzena; Artali, Roberto; Modranka, Jakub; Janecki, Tomasz; Tömböly, Csaba; Janecka, Anna

    2014-12-01

    Cyclization of linear sequences is a well recognized tool in opioid peptide chemistry for generating analogs with improved bioactivities. Cyclization can be achieved through various bridging bonds between peptide ends or side-chains. In our earlier paper we have reported the synthesis and biological activity of a cyclic peptide, Tyr-c[D-Lys-Phe-Phe-Asp]NH2 (1), which can be viewed as an analog of endomorphin-2 (EM-2, Tyr-Pro-Phe-Phe-NH2). Cyclization was achieved through an amide bond between side-chains of D-Lys and Asp residues. Here, to increase rigidity of the cyclic structure, we replaced d-Lys with cis- or trans-4-aminocyclohexyl-D-alanine (D-ACAla). Two sets of analogs incorporating either Tyr or Dmt (2',6'-dimethyltyrosine) residues in position 1 were synthesized. In the binding studies the analog incorporating Dmt and trans-D-ACAla showed high affinity for both, μ- and δ-opioid receptors (MOR and DOR, respectively) and moderate affinity for the κ-opioid receptor (KOR), while analog with Dmt and cis-D-ACAla was exceptionally MOR-selective. Conformational analyses by NMR and molecular docking studies have been performed to investigate the molecular structural features responsible for the noteworthy MOR selectivity.

  11. Role of side-chain interactions on the formation of α -helices in model peptides

    NASA Astrophysics Data System (ADS)

    Mahmoudinobar, Farbod; Dias, Cristiano L.; Zangi, Ronen

    2015-03-01

    The role played by side-chain interactions on the formation of α -helices is studied using extensive all-atom molecular dynamics simulations of polyalanine-like peptides in explicit TIP4P water. The peptide is described by the OPLS-AA force field except for the Lennard-Jones interaction between Cβ-Cβ atoms, which is modified systematically. We identify values of the Lennard-Jones parameter that promote α -helix formation. To rationalize these results, potentials of mean force (PMF) between methane-like molecules that mimic side chains in our polyalanine-like peptides are computed. These PMF exhibit a complex distance dependence where global and local minima are separated by an energy barrier. We show that α -helix propensity correlates with values of these PMF at distances corresponding to Cβ-Cβ of i -i +3 and other nearest neighbors in the α -helix. In particular, the set of Lennard-Jones parameters that promote α -helices is characterized by PMF that exhibit a global minimum at distances corresponding to i -i +3 neighbors in α -helices. Implications of these results are discussed.

  12. Proton exchange membranes based on the short-side-chain perfluorinated ionomer

    NASA Astrophysics Data System (ADS)

    Ghielmi, A.; Vaccarono, P.; Troglia, C.; Arcella, V.

    Due to the renovated availability of the base monomer for the synthesis of the short-side-chain (SSC) perfluorinated ionomer, fuel cell membrane development is being pursued using this well known ionomer structure, which was originally developed by Dow in the 1980s. The new membranes under development have the trade name Hyflon Ion. After briefly reviewing the literature on the Dow ionomer, new characterization data are reported on extruded Hyflon Ion membranes. The data are compared to those available in the literature on the Dow SSC ionomer and membranes. Comparison is made also with data obtained in this work or available in the literature on the long-side-chain (LSC) perfluorinated ionomer (Nafion). Thermal, visco-elastic, water absorption and mechanical properties of Hyflon Ion are studied. While the general behavior is similar to that shown in the past by the Dow membranes, slight differences are evident in the hydration behavior at equivalent weight (EW) < 900, probably due to different EW distributions. Measurements on dry membranes confirm that Hyflon Ion has a higher glass transition temperature compared to Nafion, which makes it a more promising material for high temperature proton exchange membrane (PEM) fuel cell operation ( T > 100 °C). Beginning of life fuel cell performance has also been confirmed to be higher than that given by a Nafion membrane of equal thickness.

  13. Structure-activity relationship study of vitamin D analogs with oxolane group in their side chain.

    PubMed

    Belorusova, Anna Y; Martínez, Andrea; Gándara, Zoila; Gómez, Generosa; Fall, Yagamare; Rochel, Natacha

    2017-04-02

    Synthetic analogs of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) have been developed with the goal of improving the biological profile of the natural hormone for therapeutic applications. Derivatives of 1,25(OH)2D3 with the oxolane moiety branched in the side chain at carbon C20, act as Vitamin D nuclear Receptor (VDR) superagonists being several orders of magnitude more active than the natural ligand. Here, we describe the synthesis and biological evaluation of three diastereoisomers of (1S, 3R)-Dihydroxy-(20S)-[(2″-hydroxy-2″-propyl)-tetrahydrofuryl]-22,23,24,25,26,27-hexanor-1α-hydroxyvitamin D3, with different stereochemistry at positions C2 and C5 of the oxolane ring branched at carbon C22 (1, C2RC5S; 2, C2SC5R; 3, C2SC5S). These compounds act as weak VDR agonist in transcriptional assays with compound 3 being the most active. X-ray crystallographic analysis of the VDR ligand-binding domain accommodating the three compounds indicates that the oxolane group branched at carbon C22 is not constrained as in case of compound with oxolane group branched at C20 leading to the loss of interactions of the triene group and increased flexibility of the C/D-rings and of the side chain.

  14. Side chain effects in reactions of the potassium-tyrosine charge transfer complex

    NASA Astrophysics Data System (ADS)

    da Silva, F. Ferreira; Meneses, G.; Ingólfsson, O.; Limão-Vieira, P.

    2016-10-01

    Fragmentation of transient negative ions of tyrosine formed through electron transfer in collisions with neutral potassium atoms is presented in the collision energy range from 30 to 75 eV. At low collision energies the dominating side chain channel observed corresponds to the cleavage of the bond from the para-position of the phenyl ring to the β-C of the remaining moiety, but cleavage of the Cαsbnd Cβ bond is also observed. Further fragments are formed through cleavage of the Cα bond to the carbonyl group, through decomposition of the carboxyl group or through significant decomposition of the backbone. The dehydrogenated molecular anion is also observed with appreciable intensity. These results are discussed in the context of earlier studies on dissociative electron attachment to tyrosine and other amino acids, as well as within the role of the side chain in electron induced decomposition of this aromatic amino acid. Stabilization of the temporary molecular anion in the transient collision complex is discussed and we argue that this may have significant influence on the branching ratios observed.

  15. Role of side-chain interactions on the formation of α-helices in model peptides.

    PubMed

    Mahmoudinobar, Farbod; Dias, Cristiano L; Zangi, Ronen

    2015-03-01

    The role played by side-chain interactions on the formation of α-helices is studied using extensive all-atom molecular dynamics simulations of polyalanine-like peptides in explicit TIP4P water. The peptide is described by the OPLS-AA force field except for the Lennard-Jones interaction between Cβ-Cβ atoms, which is modified systematically. We identify values of the Lennard-Jones parameter that promote α-helix formation. To rationalize these results, potentials of mean force (PMF) between methane-like molecules that mimic side chains in our polyalanine-like peptides are computed. These PMF exhibit a complex distance dependence where global and local minima are separated by an energy barrier. We show that α-helix propensity correlates with values of these PMF at distances corresponding to Cβ-Cβ of i-i+3 and other nearest neighbors in the α-helix. In particular, the set of Lennard-Jones parameters that promote α-helices is characterized by PMF that exhibit a global minimum at distances corresponding to i-i+3 neighbors in α-helices. Implications of these results are discussed.

  16. Free Energy Perturbation Calculations of the Thermodynamics of Protein Side-Chain Mutations.

    PubMed

    Steinbrecher, Thomas; Abel, Robert; Clark, Anthony; Friesner, Richard

    2017-04-07

    Protein side-chain mutation is fundamental both to natural evolutionary processes and to the engineering of protein therapeutics, which constitute an increasing fraction of important medications. Molecular simulation enables the prediction of the effects of mutation on properties such as binding affinity, secondary and tertiary structure, conformational dynamics, and thermal stability. A number of widely differing approaches have been applied to these predictions, including sequence-based algorithms, knowledge-based potential functions, and all-atom molecular mechanics calculations. Free energy perturbation theory, employing all-atom and explicit-solvent molecular dynamics simulations, is a rigorous physics-based approach for calculating thermodynamic effects of, for example, protein side-chain mutations. Over the past several years, we have initiated an investigation of the ability of our most recent free energy perturbation methodology to model the thermodynamics of protein mutation for two specific problems: protein-protein binding affinities and protein thermal stability. We highlight recent advances in the field and outline current and future challenges.

  17. Theoretical Studies of Interactions between O-Phosphorylated and Standard Amino-Acid Side-Chain Models in Water

    PubMed Central

    Wiśniewska, Marta; Sobolewski, Emil; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.; Makowski, Mariusz

    2015-01-01

    Phosphorylation is a common post-translational modification of the amino-acid side chains (serine, tyrosine, and threonine) that contain hydroxyl groups. The transfer of the negatively charged phosphate group from an ATP molecule to such amino-acid side chains leads to changes in the local conformations of proteins and the pattern of interactions with other amino-acid side-chains. A convenient characteristic of the side chain–side chain interactions in the context of an aqueous environment is the potential of mean force (PMF) in water. A series of umbrella-sampling molecular dynamic (MD) simulations with the AMBER force field were carried out for pairs of O-phosphorylated serine (pSer), threonine (pThr), and tyrosine, (pTyr) with natural amino acids in a TIP3P water model as a solvent at 298 K. The weighted-histogram analysis method was used to calculate the four-dimensional potentials of mean force. The results demonstrate that the positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the relative orientation depend on the character of the interacting pairs. More distinct minima are observed for oppositely charged pairs such as, e.g., O-phosphorylated side-chains and positively charged ones, such as the side-chains of lysine and arginine. PMID:26100791

  18. Self-Assembly of Amphiphilic Dendrimers: The Role of Generation and Alkyl Chain Length in siRNA Interaction.

    PubMed

    Márquez-Miranda, Valeria; Araya-Durán, Ingrid; Camarada, María Belén; Comer, Jeffrey; Valencia-Gallegos, Jesús A; González-Nilo, Fernando Danilo

    2016-07-05

    An ideal nucleic-acid transfection system should combine the physical and chemical characteristics of cationic lipids and linear polymers to decrease cytotoxicity and uptake limitations. Previous research described new types of carriers termed amphiphilic dendrimers (ADs), which are based on polyamidoamine dendrimers (PAMAM). These ADs display the cell membrane affinity advantage of lipids and preserve the high affinity for DNA possessed by cationic dendrimers. These lipid/dendrimer hybrids consist of a low-generation, hydrophilic dendron (G2, G1, or G0) bonded to a hydrophobic tail. The G2-18C AD was reported to be an efficient siRNA vector with significant gene silencing. However, shorter tail ADs (G2-15C and G2-13C) and lower generation (G0 and G1) dendrimers failed as transfection carriers. To date, the self-assembly phenomenon of this class of amphiphilic dendrimers has not been molecularly explored using molecular simulation methods. To gain insight into these systems, the present study used coarse-grained molecular dynamics simulations to describe how ADs are able to self-assemble into an aggregate, and, specifically, how tail length and generation play a key role in this event. Finally, explanations are given for the better efficiency of G2/18-C as gene carrier in terms of binding of siRNA. This knowledge could be relevant for the design of novel, safer ADs with well-optimized affinity for siRNA.

  19. Self-Assembly of Amphiphilic Dendrimers: The Role of Generation and Alkyl Chain Length in siRNA Interaction

    PubMed Central

    Márquez-Miranda, Valeria; Araya-Durán, Ingrid; Camarada, María Belén; Comer, Jeffrey; Valencia-Gallegos, Jesús A.; González-Nilo, Fernando Danilo

    2016-01-01

    An ideal nucleic-acid transfection system should combine the physical and chemical characteristics of cationic lipids and linear polymers to decrease cytotoxicity and uptake limitations. Previous research described new types of carriers termed amphiphilic dendrimers (ADs), which are based on polyamidoamine dendrimers (PAMAM). These ADs display the cell membrane affinity advantage of lipids and preserve the high affinity for DNA possessed by cationic dendrimers. These lipid/dendrimer hybrids consist of a low-generation, hydrophilic dendron (G2, G1, or G0) bonded to a hydrophobic tail. The G2-18C AD was reported to be an efficient siRNA vector with significant gene silencing. However, shorter tail ADs (G2-15C and G2-13C) and lower generation (G0 and G1) dendrimers failed as transfection carriers. To date, the self-assembly phenomenon of this class of amphiphilic dendrimers has not been molecularly explored using molecular simulation methods. To gain insight into these systems, the present study used coarse-grained molecular dynamics simulations to describe how ADs are able to self-assemble into an aggregate, and, specifically, how tail length and generation play a key role in this event. Finally, explanations are given for the better efficiency of G2/18-C as gene carrier in terms of binding of siRNA. This knowledge could be relevant for the design of novel, safer ADs with well-optimized affinity for siRNA. PMID:27377641

  20. Microbial degradation of steroid alkaloids. Effect of nitrogen atom in the side-chain on the microbial degradation of steroid alkaloids.

    PubMed

    Belic, I; Socic, H

    1975-01-01

    The microbial dehydrogenation of steroid alkaloids follows the dehydrogenation pattern of steroids until the 3-keto-1,4-diene stage. No side-chain cleavage or degradation of the steroid nucleus is observed. Side-chain cleavage of tomatidine is achieved only by previous induction of side-chain splitting enzymes.

  1. Significant Improvement of Semiconducting Performance of the Diketopyrrolopyrrole-Quaterthiophene Conjugated Polymer through Side-Chain Engineering via Hydrogen-Bonding.

    PubMed

    Yao, Jingjing; Yu, Chenmin; Liu, Zitong; Luo, Hewei; Yang, Yang; Zhang, Guanxin; Zhang, Deqing

    2016-01-13

    Three diketopyrrolopyrrole (DPP)-quaterthiophene conjugated polymers, pDPP4T-1, pDPP4T-2, and pDPP4T-3, in which the molar ratios of the urea-containing alkyl chains vs branching alkyl chains are 1:30, 1:20, and 1:10, respectively, were prepared and investigated. In comparison with pDPP4T without urea groups in the alkyl side chains and pDPP4T-A, pDPP4T-B, and pDPP4T-C containing both linear and branched alkyl chains, thin films of pDPP4T-1, pDPP4T-2, and pDPP4T-3 exhibit higher hole mobilities; thin-film mobility increases in the order pDPP4T-1 < pDPP4T-2 < pDPP4T-3, and hole mobility of a thin film of pDPP4T-3 can reach 13.1 cm(2) V(-1) s(-1) after thermal annealing at just 100 °C. The incorporation of urea groups in the alkyl side chains also has an interesting effect on the photovoltaic performances of DPP-quaterthiophene conjugated polymers after blending with PC71BM. Blended thin films of pDPP4T-1:PC71BM, pDPP4T-2:PC71BM, and pDPP4T-3:PC71BM exhibit higher power conversion efficiencies (PCEs) than pDPP4T:PC71BM, pDPP4T-A:PC71BM, pDPP4T-B:PC71BM, and pDPP4T-C:PC71BM. The PCE of pDPP4T-1:PC71BM reaches 6.8%. Thin films of pDPP4T-1, pDPP4T-2, and pDPP4T-3 and corresponding thin films with PC71BM were characterized with AFM, GIXRD, and STEM. The results reveal that the lamellar packing order of the alkyl chains is obviously enhanced for thin films of pDPP4T-1, pDPP4T-2, and pDPP4T-3; after thermal annealing, slight inter-chain π-π stacking emerges for pDPP4T-2 and pDPP4T-3. Blends of pDPP4T-1, pDPP4T-2, and pDPP4T-3 with PC71BM show a more pronounced micro-phase separation. These observations suggest that the presence of urea groups may further facilitate the assemblies of these conjugated polymers into nanofibers and ordered aggregation of PC71BM.

  2. Growth mechanisms of 2D organic assemblies generated from dialkylated melaminium derivatives: the length difference of the two alkyl chains that matters.

    PubMed

    Xu, Jun; Wu, Guanglu; Wang, Zhiqiang; Zhang, Xi

    2013-08-27

    This research is aimed to understand the growth mechanisms for self-assembly of dialkylated melamine derivatives. The dialkylated melamine derivatives with different alkyl chains (Mela-m-n) are able to self-assemble with hydrochloric acid in dichloromethane to form 2D organic assemblies, exhibiting similar lamellar structures as Mela-n·HCl with identical alkyl chains. The most interesting finding is that the growth mechanism of Mela-n·HCl with identical alkyl chains is revealed to be layer growth, while Mela-m-n·HCl with asymmetric alkyl chains adopts a spiral growth mechanism. The asymmetric alkyl chains in Mela-m-n may lead to the formation of dislocation, which is responsible for the spiral growth mechanism.

  3. Lattice and off-lattice side chain models of protein folding: Linear time structure prediction better than 86% of optimal

    SciTech Connect

    Hart, W.E.; Istrail, S.

    1996-08-09

    This paper considers the protein structure prediction problem for lattice and off-lattice protein folding models that explicitly represent side chains. Lattice models of proteins have proven extremely useful tools for reasoning about protein folding in unrestricted continuous space through analogy. This paper provides the first illustration of how rigorous algorithmic analyses of lattice models can lead to rigorous algorithmic analyses of off-lattice models. The authors consider two side chain models: a lattice model that generalizes the HP model (Dill 85) to explicitly represent side chains on the cubic lattice, and a new off-lattice model, the HP Tangent Spheres Side Chain model (HP-TSSC), that generalizes this model further by representing the backbone and side chains of proteins with tangent spheres. They describe algorithms for both of these models with mathematically guaranteed error bounds. In particular, the authors describe a linear time performance guaranteed approximation algorithm for the HP side chain model that constructs conformations whose energy is better than 865 of optimal in a face centered cubic lattice, and they demonstrate how this provides a 70% performance guarantee for the HP-TSSC model. This is the first algorithm in the literature for off-lattice protein structure prediction that has a rigorous performance guarantee. The analysis of the HP-TSSC model builds off of the work of Dancik and Hannenhalli who have developed a 16/30 approximation algorithm for the HP model on the hexagonal close packed lattice. Further, the analysis provides a mathematical methodology for transferring performance guarantees on lattices to off-lattice models. These results partially answer the open question of Karplus et al. concerning the complexity of protein folding models that include side chains.

  4. Side-chain rotamer changes upon ligand binding: common, crucial, correlate with entropy and rearrange hydrogen bonding

    PubMed Central

    Gaudreault, Francis; Chartier, Matthieu; Najmanovich, Rafael

    2012-01-01

    Motivation: Protein movements form a continuum from large domain rearrangements (including folding and restructuring) to side-chain rotamer changes and small rearrangements. Understanding side-chain flexibility upon binding is important to understand molecular recognition events and predict ligand binding. Methods: In the present work, we developed a well-curated non-redundant dataset of 188 proteins in pairs of structures in the Apo (unbound) and Holo (bound) forms to study the extent and the factors that guide side-chain rotamer changes upon binding. Results: Our analysis shows that side-chain rotamer changes are widespread with only 10% of binding sites displaying no conformational changes. Overall, at most five rotamer changes account for the observed movements in 90% of the cases. Furthermore, rotamer changes are essential in 32% of flexible binding sites. The different amino acids have a 11-fold difference in their probability to undergo changes. Side-chain flexibility represents an intrinsic property of amino acids as it correlates well with configurational entropy differences. Furthermore, on average b-factors and solvent accessible surface areas can discriminate flexible side-chains in the Apo form. Finally, there is a rearrangement of the hydrogen-bonding network upon binding primarily with a loss of H-bonds with water molecules and a gain of H-bonds with protein residues for flexible residues. Interestingly, only 25% of side chains capable of forming H-bonds do so with the ligand upon binding. In terms of drug design, this last result shows that there is a large number of potential interactions that may be exploited to modulate the specificity and sensitivity of inhibitors. Contact: rafael.najmanovich@usherbrooke.ca PMID:22962462

  5. Effect of side-chain amide thionation on turnover of beta-lactam substrates by beta-lactamases. Further evidence on the question of side-chain hydrogen-bonding in catalysis.

    PubMed Central

    Pratt, R F; Krishnaraj, R; Xu, H

    1992-01-01

    Two side-chain-thionated beta-lactams, a penicillin and a cephalosporin, have been prepared and found to be not significantly poorer as substrates of typical serine (classes A and C) beta-lactamases than are their oxo analogues. This result is interpreted to mean that any hydrogen-bonding site on these enzymes for the beta-lactam side-chain amide carbonyl group must be flexible and is more likely to be a passive rather than active or essential feature of the active site. Previously, data from crystal structures and site-directed mutagenesis had suggested that the side chain of Asn-132 of class-A beta-lactamases, a component of the conserved SDN loop, forms a hydrogen bond with the side-chain carbonyl of the beta-lactam substrate and may provide significant transition-state stabilization during catalysis. The thionocephalosporin was also equally as good as its oxo analogue as a substrate of the class-B beta-lactamase II of Bacillus cereus and not significantly less effective as an inhibitor of the Streptomyces R61 DD-peptidase; a tight hydrogen-bond donor site for the beta-lactam side-chain amide is apparently not present in these enzymes either. PMID:1417747

  6. Effect of side-chain amide thionation on turnover of beta-lactam substrates by beta-lactamases. Further evidence on the question of side-chain hydrogen-bonding in catalysis.

    PubMed

    Pratt, R F; Krishnaraj, R; Xu, H

    1992-09-15

    Two side-chain-thionated beta-lactams, a penicillin and a cephalosporin, have been prepared and found to be not significantly poorer as substrates of typical serine (classes A and C) beta-lactamases than are their oxo analogues. This result is interpreted to mean that any hydrogen-bonding site on these enzymes for the beta-lactam side-chain amide carbonyl group must be flexible and is more likely to be a passive rather than active or essential feature of the active site. Previously, data from crystal structures and site-directed mutagenesis had suggested that the side chain of Asn-132 of class-A beta-lactamases, a component of the conserved SDN loop, forms a hydrogen bond with the side-chain carbonyl of the beta-lactam substrate and may provide significant transition-state stabilization during catalysis. The thionocephalosporin was also equally as good as its oxo analogue as a substrate of the class-B beta-lactamase II of Bacillus cereus and not significantly less effective as an inhibitor of the Streptomyces R61 DD-peptidase; a tight hydrogen-bond donor site for the beta-lactam side-chain amide is apparently not present in these enzymes either.

  7. Backbone and side chain chemical shift assignments of apolipophorin III from Galleria mellonella.

    PubMed

    Crowhurst, Karin A; Horn, James V C; Weers, Paul M M

    2016-04-01

    Apolipophorin III, a 163 residue monomeric protein from the greater wax moth Galleria mellonella (abbreviated as apoLp-IIIGM), has roles in upregulating expression of antimicrobial proteins as well as binding and deforming bacterial membranes. Due to its similarity to vertebrate apolipoproteins there is interest in performing atomic resolution analysis of apoLp-IIIGM as part of an effort to better understand its mechanism of action in innate immunity. In the first step towards structural characterization of apoLp-IIIGM, 99 % of backbone and 88 % of side chain (1)H, (13)C and (15)N chemical shifts were assigned. TALOS+ analysis of the backbone resonances has predicted that the protein is composed of five long helices, which is consistent with the reported structures of apolipophorins from other insect species. The next stage in the characterization of apoLp-III from G. mellonella will be to utilize these resonance assignments in solving the solution structure of this protein.

  8. Revealing the Supramolecular Nature of Side-Chain Terpyridine-Functionalized Polymer Networks

    PubMed Central

    Brassinne, Jérémy; Jochum, Florian D.; Fustin, Charles-André; Gohy, Jean-François

    2015-01-01

    Nowadays, finely controlling the mechanical properties of polymeric materials is possible by incorporating supramolecular motifs into their architecture. In this context, the synthesis of a side-chain terpyridine-functionalized poly(2-(dimethylamino)ethyl methacrylate) is reported via reversible addition-fragmentation chain transfer polymerization. By addition of transition metal ions, concentrated aqueous solutions of this polymer turn into metallo-supramolecular hydrogels whose dynamic mechanical properties are investigated by rotational rheometry. Hence, the possibility for the material to relax mechanical constrains via dissociation of transient cross-links is brought into light. In addition, the complex phenomena occurring under large oscillatory shear are interpreted in the context of transient networks. PMID:25569082

  9. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain.

    PubMed

    Akçay, Gizem; Belmonte, Matthew A; Aquila, Brian; Chuaqui, Claudio; Hird, Alexander W; Lamb, Michelle L; Rawlins, Philip B; Su, Nancy; Tentarelli, Sharon; Grimster, Neil P; Su, Qibin

    2016-11-01

    Targeted covalent inhibition of disease-associated proteins has become a powerful methodology in the field of drug discovery, leading to the approval of new therapeutics. Nevertheless, current approaches are often limited owing to their reliance on a cysteine residue to generate the covalent linkage. Here we used aryl boronic acid carbonyl warheads to covalently target a noncatalytic lysine side chain, and generated to our knowledge the first reversible covalent inhibitors for Mcl-1, a protein-protein interaction (PPI) target that has proven difficult to inhibit via traditional medicinal chemistry strategies. These covalent binders exhibited improved potency in comparison to noncovalent congeners, as demonstrated in biochemical and cell-based assays. We identified Lys234 as the residue involved in covalent modification, via point mutation. The covalent binders discovered in this study will serve as useful starting points for the development of Mcl-1 therapeutics and probes to interrogate Mcl-1-dependent biological phenomena.

  10. Arginyltransferase ATE1 catalyzes mid-chain arginylation of proteins at side chain carboxylates in vivo

    PubMed Central

    Wang, Junling; Han, Xuemei; Wong, Catherine C.L.; Cheng, Hong; Aslanian, Aaron; Xu, Tao; Leavis, Paul; Roder, Heinrich; Hedstrom, Lizbeth; Yates, John R.; Kashina, Anna

    2014-01-01

    Summary Arginylation is an emerging posttranslational modification mediated by Arg-tRNA-protein-transferase (ATE1). It is believed that ATE1 links Arg solely to the N-terminus of proteins, requiring prior proteolysis or action by Met-aminopeptidases to expose the arginylated site. Here, we tested the possibility of Arg linkage to mid-chain sites within intact protein targets and found that many proteins in vivo are modified on the side chains of Asp and Glu by a novel chemistry that targets the carboxy rather than the amino groups at the target sites. Such arginylation appears to be functionally regulated, and it can be directly mediated by ATE1, in addition to the more conventional Ate1-mediated linkage of Arg to the N-terminal alpha amino group. This new type of arginylation implies an unconventional mechanism of ATE1 action that likely facilitates its major biological role. PMID:24529990

  11. Arginyltransferase ATE1 catalyzes midchain arginylation of proteins at side chain carboxylates in vivo.

    PubMed

    Wang, Junling; Han, Xuemei; Wong, Catherine C L; Cheng, Hong; Aslanian, Aaron; Xu, Tao; Leavis, Paul; Roder, Heinrich; Hedstrom, Lizbeth; Yates, John R; Kashina, Anna

    2014-03-20

    Arginylation is an emerging posttranslational modification mediated by Arg-tRNA-protein-transferase (ATE1). It is believed that ATE1 links Arg solely to the N terminus of proteins, requiring prior proteolysis or action by Met-aminopeptidases to expose the arginylated site. Here, we tested the possibility of Arg linkage to midchain sites within intact protein targets and found that many proteins in vivo are modified on the side chains of Asp and Glu by unconventional chemistry that targets the carboxy rather than the amino groups at the target sites. Such arginylation appears to be functionally regulated, and it can be directly mediated by ATE1, in addition to the more conventional ATE1-mediated linkage of Arg to the N-terminal alpha amino group. This midchain arginylation implies an unconventional mechanism of ATE1 action that likely facilitates its major biological role.

  12. Shape-Selectivity with Liquid Crystal and Side-Chain Liquid Crystalline Polymer SAW Sensor Interfaces

    SciTech Connect

    FRYE-MASON,GREGORY CHARLES; OBORNY,MICHAEL C.; PUGH,COLEEN; RICCO,ANTONIO; THOMAS,ROSS C.; ZELLERS,EDWARD T.; ZHANG,GUO-ZHENG

    1999-09-23

    A liquid crystal (LC) and a side-chain liquid crystalline polymer (SCLCP) were tested as surface acoustic wave (SAW) vapor sensor coatings for discriminating between pairs of isomeric organic vapors. Both exhibit room temperature smectic mesophases. Temperature, electric-field, and pretreatment with self-assembled monolayers comprising either a methyl-terminated or carboxylic acid-terminated alkane thiol anchored to a gold layer in the delay path of the sensor were explored as means of affecting the alignment and selectivity of the LC and SCLCP films. Results for the LC were mixed, while those for the SCLCP showed a consistent preference for the more rod-like isomer of each isomer pair examined.

  13. Poly-dimethylsiloxane derivates side chains effect on syntan functionalized Polyamide fabric

    NASA Astrophysics Data System (ADS)

    Migani, V.; Weiss, H.; Massafra, M. R.; Merlo, A.; Colleoni, C.; Rosace, G.

    2011-02-01

    Poly-dimethylsiloxane (PDMS) polymers finishing of Polyamide-6,6 (PA66) fabrics involves ionic interactions between reactive groups on the PDMS polymers and the ones of the textile fabric. Such interactions could be strengthened by a pretreatment with a fixing agent to promote either ion-ion and H-bonding and ion-dipole forces. These forces could contribute towards the building of substantial PDMS-PA66 systems and the achieving of better adhesion properties to fabrics. Four different silicone polymers based on PDMS were applied on a synthetic tanning agent (syntan) finished Polyamide-6,6 fabric under acid conditions. Soxhlet extraction method and ATR FT-IR technique were used to investigate the application conditions. The finishing parameters such as pH and temperature together with fastness, mechanical and performance properties of the treated samples were studied and related to PDMS side chains effect on syntan functionalized Polyamide fabric.

  14. The phase dependent photophysics and photochemistry of side-chain substituted liquid crystalline polyaryl cinnamates

    SciTech Connect

    Singh, S.; Creed, D.; Hoyle, C.E.

    1993-12-31

    The photochemical behavior of a polymethacrylate polymer with a side-chain cinnamate ester mesogen has been investigated. Photolysis at 313 nm of the polymer film in the smectic A or smectic B phase results in only a 2+2 cycloaddition reaction at low photolysis times. In contrast, photolysis (313 nm) of the polymer film in the nematic phase yields both 2+2 cycloaddition and photo-Fries products at short photolysis times. The preference for 2+2 cyloaddition product formation in the smectic phases is attributed to preferential reaction of cinnamate ester aggregates. Accordingly, photolysis at 366 nm where only aggregates absorb yields exclusively cycloadducts even after exhaustive photolysis for long time periods.

  15. Amphiphilic polybetaines: the effect of side-chain hydrophobicity on protein adsorption.

    PubMed

    Colak, Semra; Tew, Gregory N

    2012-05-14

    Novel amphiphilic polybetaines were synthesized and used as the base material for nonfouling coatings. The amphiphilicity of these polybetaines was systematically tuned by coupling chains of increasing hydrophobicity to the zwitterionic functionality side at the repeat unit level. An oligoethylene glycol (OEG) moiety was selected to yield the most hydrophilic coating, while octyl (C(8)) and fluorinated (F) groups were used to impart lipophilicity and lipophobicity to the coatings, respectively. This unique design allowed us to investigate the effect of the lipophilicity/lipophobicity of the side chain on the nonfouling properties of these zwitterionic systems. Adsorption studies, performed using six different proteins, showed that the fluorinated polybetaine, Poly[NFZI-co-NSi], resisted nonspecific adsorption as effectively as, and in some cases even better than, the most hydrophilic Poly[NOEGZI-co-NSi] coating. The comparison of Poly[NFZI-co-NSi] to its noncharged analog demonstrated the essential nature of the zwitterionic functionality in imparting nonfouling character to the coating.

  16. Protein Crosslinking by Genetically Encoded Noncanonical Amino Acids with Reactive Aryl Carbamate Side Chains.

    PubMed

    Xuan, Weimin; Shao, Sida; Schultz, Peter G

    2017-04-03

    The use of genetically encoded noncanonical amino acids (ncAAs) to construct crosslinks within or between proteins has emerged as a useful method to enhance protein stability, investigate protein-protein interactions, and improve the pharmacological properties of proteins. We report ncAAs with aryl carbamate side chains (PheK and FPheK) that can react with proximal nucleophilic residues to form intra- or intermolecular protein crosslinks. We evolved a pyrrolysyl-tRNA synthetase that incorporates site-specifically PheK and FPheK into proteins in both E. coli and mammalian cells. PheK and FPheK when incorporated into proteins showed good stability during protein expression and purification. FPheK reacted with adjacent Lys, Cys, and Tyr residues in thioredoxin in high yields. In addition, crosslinks could be formed between FPheK and Lys residue of two interacting proteins, including the heavy chain and light chain of an antibody Fab.

  17. Non-innocent side-chains with dipole moments in organic solar cells improve charge separation.

    PubMed

    de Gier, Hilde D; Broer, Ria; Havenith, Remco W A

    2014-06-28

    Providing sustainable energy is one of the biggest challenges nowadays. An attractive answer is the use of organic solar cells to capture solar energy. Recently a promising route to increase their efficiency has been suggested: developing new organic materials with a high dielectric constant. This solution focuses on lowering the coulomb attraction between electrons and holes, thereby increasing the yield of free charges. In here, we demonstrate from a theoretical point of view that incorporation of dipole moments in organic materials indeed lowers the coulomb attraction. A combination of molecular dynamics simulations for modelling the blend and ab initio quantum chemical calculations to study specific regions was performed. This approach gives predictive insight in the suitability of new materials for application in organic solar cells. In addition to all requirements that make conjugated polymers suitable for application in organic solar cells, this study demonstrates the importance of large dipole moments in polymer side-chains.

  18. Ozonolysis of surface adsorbed methoxyphenols: kinetics of aromatic ring cleavage vs. alkene side-chain oxidation

    NASA Astrophysics Data System (ADS)

    O'Neill, E. M.; Kawam, A. Z.; Van Ry, D. A.; Hinrichs, R. Z.

    2013-07-01

    Lignin pyrolysis products, which include a variety of substituted methoxyphenols, constitute a major component of organics released by biomass combustion and may play a central role in the formation of atmospheric brown carbon. Understanding the atmospheric fate of these compounds upon exposure to trace gases is therefore critical to predicting the chemical and physical properties of biomass burning aerosol. We used diffuse reflectance infrared spectroscopy to monitor the heterogeneous ozonolysis of 4-propylguaiacol, eugenol, and isoeugenol adsorbed on NaCl and α-Al2O3 substrates. Adsorption of gaseous methoxyphenols onto these substrates produced near monolayer surface concentrations of 3 × 1018 molecules m-2. The subsequent dark heterogeneous ozonolysis of adsorbed 4-propylguaiacol cleaved the aromatic ring between the methoxy and phenol groups with the product conclusively identified by GC-MS and 1H-NMR. Kinetic analysis of eugenol and isoeugenol dark ozonolysis also suggested the formation of ring-cleaved products, although ozonolysis of the unsaturated substituent groups forming carboxylic acids and aldehydes was an order of magnitude faster. Average uptake coefficients for NaCl-adsorbed methoxyphenols were γ = 2.3 (±0.8) × 10-7 and 2 (±1) × 10-6 for ozonolysis of the aromatic ring and the unsaturated side chain, respectively, and reactions on α-Al2O3 were approximately two times slower. UV-visible radiation (λ>300 nm) enhanced eugenol ozonolysis of the aromatic ring by a factor of 4(±1) but had no effect on ozonolysis of the alkene side-chain.

  19. Engineering the residual side chains of HAP phytases to improve their pepsin resistance and catalytic efficiency

    PubMed Central

    Niu, Canfang; Yang, Peilong; Luo, Huiying; Huang, Huoqing; Wang, Yaru; Yao, Bin

    2017-01-01

    Strong resistance to proteolytic attack is important for feed enzymes. Here, we selected three predicted pepsin cleavage sites, L99, L162, and E230 (numbering from the initiator M of premature proteins), in pepsin-sensitive HAP phytases YkAPPA from Yersinia kristensenii and YeAPPA from Y. enterocolitica, which corresponded to L99, V162, and D230 in pepsin-resistant YrAPPA from Y. rohdei. We constructed mutants with different side chain structures at these sites using site-directed mutagenesis and produced all enzymes in Escherichia coli for catalytic and biochemical characterization. The substitutions E230G/A/P/R/S/T/D, L162G/A/V, L99A, L99A/L162G, and L99A/L162G/E230G improved the pepsin resistance. Moreover, E230G/A and L162G/V conferred enhanced pepsin resistance on YkAPPA and YeAPPA, increased their catalytic efficiency 1.3–2.4-fold, improved their stability at 60 °C and pH 1.0–2.0 and alleviated inhibition by metal ions. In addition, E230G increased the ability of YkAPPA and YeAPPA to hydrolyze phytate from corn meal at a high pepsin concentration and low pH, which indicated that optimization of the pepsin cleavage site side chains may enhance the pepsin resistance, improve the stability at acidic pH, and increase the catalytic activity. This study proposes an efficient approach to improve enzyme performance in monogastric animals fed feed with a high phytate content. PMID:28186144

  20. Mycobacterium tuberculosis utilizes a unique heterotetrameric structure for dehydrogenation of the cholesterol side chain

    PubMed Central

    Thomas, Suzanne T.; Sampson, Nicole S.

    2013-01-01

    Compounding evidence supports the important role in pathogenesis that the metabolism of cholesterol by Mycobacterium tuberculosis (M. tuberculosis) plays. Elucidating the pathway by which cholesterol is catabolized is necessary to understand the molecular mechanism by which this pathway contributes to infection. Based on early metabolite identification studies in multiple actinomycetes, it has been proposed that cholesterol side chain metabolism requires one or more acyl-CoA dehydrogenases (ACADs). There are 35 genes annotated as encoding ACADs in the M. tuberculosis genome. Here we characterize a heteromeric ACAD encoded by Rv3544c and Rv3543c, formerly named fadE28 and fadE29, respectively. We now refer to genes Rv3544c and Rv3543c as chsE1 and chsE2 in recognition of their validated activity in cholesterol side chain dehydrogenation. Analytical ultracentrifugation and LC/UV experiments establish that ChsE1-ChsE2 forms an α2β2 heterotetramer, a new architecture for an ACAD. Our bioinformatic analysis and mutagenesis studies reveal that heterotetrameric ChsE1-ChsE2 has only two active sites. E241 in ChsE2 is required for catalysis of dehydrogenation by ChsE1-ChsE2. Steady state kinetic analysis establishes the enzyme is specific for an intact steroid ring system compared to hexahydroindanone substrates with specificity constants (kcat/KM) of 2.5 × 105 ± 0.5 s-1 M-1 vs 9.8 × 102 ± s-1 M-1 respectively, at pH 8.5. The characterization of a unique ACAD quaternary structure involved in sterol metabolism that is encoded by two distinct cistronic ACAD genes opens the way to identification of additional sterol metabolizing ACADs in M. tuberculosis and other actinomycetes through bioinformatic analysis. PMID:23560677

  1. Mycobacterium tuberculosis utilizes a unique heterotetrameric structure for dehydrogenation of the cholesterol side chain.

    PubMed

    Thomas, Suzanne T; Sampson, Nicole S

    2013-04-30

    Compounding evidence supports the important role in pathogenesis that the metabolism of cholesterol by Mycobacterium tuberculosis plays. Elucidating the pathway by which cholesterol is catabolized is necessary to understand the molecular mechanism by which this pathway contributes to infection. On the basis of early metabolite identification studies in multiple actinomycetes, it has been proposed that cholesterol side chain metabolism requires one or more acyl-CoA dehydrogenases (ACADs). There are 35 genes annotated as encoding ACADs in the M. tuberculosis genome. Here we characterize a heteromeric ACAD encoded by Rv3544c and Rv3543c, formerly named fadE28 and fadE29, respectively. We now refer to genes Rv3544c and Rv3543c as chsE1 and chsE2, respectively, in recognition of their validated activity in cholesterol side chain dehydrogenation. Analytical ultracentrifugation and liquid chromatography-ultraviolet experiments establish that ChsE1-ChsE2 forms an α(2)β(2) heterotetramer, a new architecture for an ACAD. Our bioinformatic analysis and mutagenesis studies reveal that heterotetrameric ChsE1-ChsE2 has only two active sites. E241 in ChsE2 is required for catalysis of dehydrogenation by ChsE1-ChsE2. Steady state kinetic analysis establishes the enzyme is specific for an intact steroid ring system versus hexahydroindanone substrates with specificity constants (k(cat)/K(M)) of (2.5 ± 0.5) × 10(5) s(-1) M(-1) versus 9.8 × 10(2) s(-1) M(-1), respectively, at pH 8.5. The characterization of a unique ACAD quaternary structure involved in sterol metabolism that is encoded by two distinct cistronic ACAD genes opens the way to identification of additional sterol-metabolizing ACADs in M. tuberculosis and other actinomycetes through bioinformatic analysis.

  2. Energetically unfavorable amide conformations for N6-acetyllysine side chains in refined protein structures.

    PubMed

    Genshaft, Alexander; Moser, Joe-Ann S; D'Antonio, Edward L; Bowman, Christine M; Christianson, David W

    2013-06-01

    The reversible acetylation of lysine to form N6-acetyllysine in the regulation of protein function is a hallmark of epigenetics. Acetylation of the positively charged amino group of the lysine side chain generates a neutral N-alkylacetamide moiety that serves as a molecular "switch" for the modulation of protein function and protein-protein interactions. We now report the analysis of 381 N6-acetyllysine side chain amide conformations as found in 79 protein crystal structures and 11 protein NMR structures deposited in the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics. We find that only 74.3% of N6-acetyllysine residues in protein crystal structures and 46.5% in protein NMR structures contain amide groups with energetically preferred trans or generously trans conformations. Surprisingly, 17.6% of N6-acetyllysine residues in protein crystal structures and 5.3% in protein NMR structures contain amide groups with energetically unfavorable cis or generously cis conformations. Even more surprisingly, 8.1% of N6-acetyllysine residues in protein crystal structures and 48.2% in NMR structures contain amide groups with energetically prohibitive twisted conformations that approach the transition state structure for cis-trans isomerization. In contrast, 109 unique N-alkylacetamide groups contained in 84 highly accurate small molecule crystal structures retrieved from the Cambridge Structural Database exclusively adopt energetically preferred trans conformations. Therefore, we conclude that cis and twisted N6-acetyllysine amides in protein structures deposited in the PDB are erroneously modeled due to their energetically unfavorable or prohibitive conformations.

  3. Protein resistant surfaces: comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains.

    PubMed

    Feng, Wei; Zhu, Shiping; Ishihara, Kazuhiko; Brash, John L

    2006-03-01

    The objective of this work was to compare poly(ethylene glycol) (PEG) and phosphorylcholine (PC) moieties as surface modifiers with respect to their ability to inhibit protein adsorption. Surfaces were prepared by graft polymerization of the methacrylate monomers oligo(ethylene glycol) methyl ether methacrylate (OEGMA, MW 300, PEG side chains of length n=4.5) and 2-methacryloyloxyethyl phosphorylcholine (MPC, MW 295). The grafted polymers thus contained short PEG chains and PC, respectively, as side groups. Grafting on silicon was carried out using surface-initiated atom transfer radical polymerization (ATRP). Graft density was controlled via the surface density of the ATRP initiator, and chain length of the grafts was controlled via the ratio of monomer to sacrificial initiator. The grafted surfaces were characterized by water contact angle, x-ray photoelectron spectroscopy, and atomic force microscopy. The effect of graft density and chain length on fibrinogen adsorption from buffer was investigated using radio labeling methods. Adsorption to both MPC- and OEGMA-grafted surfaces was found to decrease with increasing graft density and chain length. Adsorption on the MPC and OEGMA surfaces for a given chain length and density was essentially the same. Very low adsorption levels of the order of 7 ngcm(2) were seen on the most resistant surfaces. The effect of protein size on resistance to adsorption was studied using binary solutions of lysozyme (MW 14 600) and fibrinogen (MW 340 000). Adsorption levels in these experiments were also greatly reduced on the grafted surfaces compared to the control surfaces. It was concluded that at the lowest graft density, both proteins had unrestricted access to the substrate, and the relative affinities of the proteins for the substrate (higher affinity of fibrinogen) determined the composition of the layer. At the highest graft density also, where the adsorption of both proteins was very low, no preference for one or the other

  4. The effect of junction modes between backbones and side chains of polyimides on the stability of liquid crystal vertical alignment.

    PubMed

    Che, Xinyuan; Gong, Shiming; Zhang, Heng; Liu, Bin; Wang, Yinghan

    2016-02-07

    Polyimides (PI-N9 and PI-N12) were synthesized from two kinds of functional diamines, whose junction modes between backbones and side chains were different. Side chains of PI-N9 were linked to the backbones with an ether bond spacer; and side chains of PI-N12 were directly linked to the backbones without any spacer. The PI alignment layer surfaces were investigated by atomic force microscopy, surface free energy measurements, X-ray photo-electron spectroscopy and polarized attenuated total reflection Fourier transformed infrared spectroscopy. It was found that PI-N9 lost the vertical alignment capability after high-strength rubbing, while PI-N12 could still induce liquid crystals (LCs) to align vertically under the same condition. The mechanism of the macroscopic molecular orientation of the PI surface is proposed. During the high-strength rubbing process, the side chain could rotate around the flexible ether bond which existed between the side chain and the main chain of PI-N9 and then fell over. Therefore, PI-N9 could not induce the vertical alignment of LCs anymore. But PI-N12 could keep LCs aligning vertically all the time, which proved that the stability of LC alignment induced by PI-N12 was better.

  5. Protein, cell and bacterial fouling resistance of polypeptoid-modified surfaces: effect of side-chain chemistry†

    PubMed Central

    Statz, Andrea R.; Barron, Annelise E.; Messersmith, Phillip B.

    2011-01-01

    Peptidomimetic polymers consisting of poly-N-substituted glycine oligomers (polypeptoids) conjugated to biomimetic adhesive polypeptides were investigated as antifouling surface coatings. The polymers were immobilized onto TiO2 surfaces via an anchoring peptide consisting of alternating residues of 3,4-dihydroxyphenylalanine (DOPA) and lysine. Three polypeptoid side-chain compositions were investigated for antifouling performance and stability toward enzymatic degradation. Ellipsometry and XPS analysis confirmed that purified polymers adsorbed strongly to TiO2 surfaces, and the immobilized polymers were resistant to enzymatic degradation as demonstrated by mass spectrometry. All polypeptoid-modified surfaces exhibited significant reductions in adsorption of lysozyme, fibrinogen and serum proteins, and were resistant to 3T3 fibroblast cell attachment for up to seven days. Long-term in vitro cell attachment studies conducted for six weeks revealed the importance of polypeptoid side-chain composition, with a methoxyethyl side chain providing superior long-term fouling resistance compared to hydroxyethyl and hydroxypropyl side chains. Finally, attachment of both gram-positive and gram-negative bacteria for up to four days under continuous-flow conditions was significantly reduced on the polypeptoid-modified surfaces compared to unmodified TiO2 surfaces. The results reveal the influence of polypeptoid side-chain chemistry on short-term and long-term protein, cell and bacterial fouling resistance. PMID:21472038

  6. NMR Scalar Couplings across Intermolecular Hydrogen Bonds between Zinc-Finger Histidine Side Chains and DNA Phosphate Groups.

    PubMed

    Chattopadhyay, Abhijnan; Esadze, Alexandre; Roy, Sourav; Iwahara, Junji

    2016-10-10

    NMR scalar couplings across hydrogen bonds represent direct evidence for the partial covalent nature of hydrogen bonds and provide structural and dynamic information on hydrogen bonding. In this article, we report heteronuclear (15)N-(31)P and (1)H-(31)P scalar couplings across the intermolecular hydrogen bonds between protein histidine (His) imidazole and DNA phosphate groups. These hydrogen-bond scalar couplings were observed for the Egr-1 zinc-finger-DNA complex. Although His side-chain NH protons are typically undetectable in heteronuclear (1)H-(15)N correlation spectra due to rapid hydrogen exchange, this complex exhibited two His side-chain NH signals around (1)H 14.3 ppm and (15)N 178 ppm at 35 °C. Through various heteronuclear multidimensional NMR experiments, these signals were assigned to two zinc-coordinating His side chains in contact with DNA phosphate groups. The data show that the Nδ1 atoms of these His side chains are protonated and exhibit the (1)H-(15)N cross-peaks. Using heteronuclear (1)H, (15)N, and (31)P NMR experiments, we observed the hydrogen-bond scalar couplings between the His (15)Nδ1/(1)Hδ1 and DNA phosphate (31)P nuclei. These results demonstrate the direct involvement of the zinc-coordinating His side chains in the recognition of DNA by the Cys2His2-class zinc fingers in solution.

  7. Quantum state-resolved molecular scattering of NO (2Π1 /2) at the gas-[Cnmim][Tf2N] room temperature ionic liquid interface: Dependence on alkyl chain length, collision energy, and temperature

    NASA Astrophysics Data System (ADS)

    Zutz, Amelia; Nesbitt, David J.

    2016-10-01

    Room temperature ionic liquids (RTILs) represent a promising class of chemically tunable, low vapor pressure solvents with myriad kinetic applications that depend sensitively on the nature of gas-molecule interactions at the liquid surface. This paper reports on rovibronically inelastic dynamics at the gas-RTIL interface, colliding supersonically cooled hyperthermal molecular beams of NO (1/2 2Π, N = 0) from 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (or [Cnmim][Tf2N]) and probing the scattered NO molecules via laser induced fluorescence (LIF) from the A(2Σ ) state. Specifically, inelastic energy transfer into NO rovibrational and electronic degrees of freedom is explored as a function of RTIL alkyl chain length (n), incident collision energy (Einc) and surface temperature (Ts). At low collision energies (Einc = 2.7(9) kcal/mol), the scattered NO molecules exhibit a rotational temperature (Trot) systematically colder than Ts for all chain lengths, which signals the presence of non-equilibrium dynamics in the desorption channel. At high collision energies (Einc = 20(2) kcal/mol), microscopic branching into trapping/desorption (TD) and impulsive scattering (IS) pathways is clearly evident, with the TD fraction (α ) exhibiting a step-like increase between short (n = 2, 4) and long (n = 8, 12, 16) alkyl chains consistent with theoretical predictions. For all hydrocarbon chain lengths and RTIL temperature conditions, NO rotational excitation in the IS channel yields hyperthermal albeit Boltzmann-like distributions well described by a "temperature" (TIS = 900 -1200 K) that decreases systematically with increasing n. Non-adiabatic, collision induced hopping between ground and excited spin-orbit states is found to be independent of RTIL alkyl chain length and yet increase with collision energy. The scattering data confirm previous experimental reports of an enhanced presence of the alkyl tail at the gas-RTIL interface with increasing n, as well as

  8. Stabilization Effect of Amino Acid Side Chains in Peptide Assemblies on Graphite Studied by Scanning Tunneling Microscopy.

    PubMed

    Guo, Yuanyuan; Hou, Jingfei; Zhang, Xuemei; Yang, Yanlian; Wang, Chen

    2017-02-03

    An analysis is presented of the effects of amino acid side chains on peptide assemblies in ambient conditions on a graphite surface. The molecularly resolved assemblies of binary peptides are examined with scanning tunneling microscopy. A comparative analysis of the assembly structures reveals that the lamellae width has an appreciable dependence on the peptide sequence, which could be considered as a manifestation of a stabilizing effect of side-chain moieties of amino acids with high (phenylalanine) and low (alanine, asparagine, histidine and aspartic acid) propensities for aggregation. These amino acids are representative for the chemical structures involving the side chains of charged (histidine and aspartic acid), aromatic (phenylalanine), hydrophobic (alanine), and hydrophilic (asparagine) amino acids. These results might provide useful insight for understanding the effects of sequence on the assembly of surface-bound peptides.

  9. Polyimides with pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1982-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  10. Straight-Chain Alkyl Isocyanides Open the Distal Histidine Gate in Crystal Structures of Myoglobin†

    PubMed Central

    Smith, Rober D.; Blouin, George C.; Johnson, Kenneth A.; Phillips, George N.; Olson, John S.

    2014-01-01

    Crystal structures of methyl, ethyl, propyl and butyl isocyanide bound to sperm whale myoglobin (Mb) reveal two major conformations. In the in conformer, His(E7) is in a “closed” position, forcing the ligand alkyl chain to point inward. In the out conformer, His(E7) is in an “open” position, allowing the ligand side chain to point outward. A progressive increase in the population of the out conformer is observed with increasing ligand length in P21 crystals of native Mb at pH 7.0. This switch from in to out with increasing ligand size also occurs in solution as measured by the decrease in the relative intensity of the low (~2075 cm 1) versus high frequency (~2125 cm 1) isocyano bands. In contrast, all four isocyanides in P6 crystals of wild type recombinant Mb occupy the in conformation. However, mutating either His64 to Ala, creating a “hole” to solvent, or Phe46 to Val, freeing rotation of His64, causes bound butyl isocyanide to point completely outward in P6 crystals. Thus, the unfavorable hindrance caused with crowding a large alkyl side chain into the distal pocket appears to be roughly equal to that for pushing open the His(E7) gate and is easily affected by crystal packing. This structural conclusion supports the “side path” kinetic mechanism for O2 release, in which the dissociated ligand first moves toward the protein interior and then encounters steric resistance, which is roughly equal to that for escaping to solvent through the His(E7) channel. PMID:20481504

  11. Monoquaternary pyridinium salts with modified side chain-synthesis and evaluation on model of tabun- and paraoxon-inhibited acetylcholinesterase.

    PubMed

    Musilek, Kamil; Kucera, Jiri; Jun, Daniel; Dohnal, Vlastimil; Opletalova, Veronika; Kuca, Kamil

    2008-09-01

    Acetylcholinesterase reactivators are crucial antidotes for the treatment of organophosphate intoxication. Eighteen monoquaternary reactivators of acetylcholinesterase with modified side chain were developed in an effort to extend the properties of pralidoxime. The known reactivators (pralidoxime, HI-6, obidoxime, trimedoxime, methoxime) and the prepared compounds were tested in vitro on a model of tabun- and paraoxon-inhibited AChE. Monoquaternary reactivators were not able to exceed the best known compounds for tabun poisoning, but some of them did show reactivation better or comparable with pralidoxime for paraoxon poisoning. However, extensive differences were found by a SAR study for various side chains on the non-oxime part of the reactivator molecule.

  12. Perylene diimides with different side chains are selective in inducing different G-quadruplex DNA structures and in inhibiting telomerase.

    PubMed

    Rossetti, Luigi; Franceschin, Marco; Bianco, Armandodoriano; Ortaggi, Giancarlo; Savino, Maria

    2002-09-16

    Four N,N'-disubstituted perylene diimides, having different side chains, have been studied for their ability in inducing G-quadruplex DNA structures. We found that electrostatic interactions between ligands side chains and DNA grooves play a main role not only in the amount of G-quadruplex formed, but also in selecting its topology. Moreover, such compounds show also a different ability to inhibit telomerase. The correlation of these findings suggests the intriguing possibility that different G-quadruplex structures could differently inhibit the enzyme.

  13. Genes Involved in Cell Wall Localization and Side Chain Formation of Rhamnose-Glucose Polysaccharide in Streptococcus mutans

    PubMed Central

    Yamashita, Yoshihisa; Tsukioka, Yuichi; Tomihisa, Kiyotaka; Nakano, Yoshio; Koga, Toshihiko

    1998-01-01

    We identified in Streptococcus mutans six new genes (rgpA through rgpF), whose disruption results in a loss of serotype-specific antigenicity, specified by the glucose side chains of rhamnose-glucose polysaccharide from the cell wall. Rhamnose and glucose content of the cell wall decreased drastically in all these disruption mutants, except that in the rgpE mutant only the glucose content decreased. RgpC and RgpD are homologous to ATP-binding cassette transporter components and may be involved in polysaccharide export, whereas RgpE may be a transferase of side chain glucose. PMID:9791140

  14. Genes involved in cell wall localization and side chain formation of rhamnose-glucose polysaccharide in Streptococcus mutans.

    PubMed

    Yamashita, Y; Tsukioka, Y; Tomihisa, K; Nakano, Y; Koga, T

    1998-11-01

    We identified in Streptococcus mutans six new genes (rgpA through rgpF), whose disruption results in a loss of serotype-specific antigenicity, specified by the glucose side chains of rhamnose-glucose polysaccharide from the cell wall. Rhamnose and glucose content of the cell wall decreased drastically in all these disruption mutants, except that in the rgpE mutant only the glucose content decreased. RgpC and RgpD are homologous to ATP-binding cassette transporter components and may be involved in polysaccharide export, whereas RgpE may be a transferase of side chain glucose.

  15. Thermochemistry of alkali metal cation interactions with histidine: influence of the side chain.

    PubMed

    Armentrout, P B; Citir, Murat; Chen, Yu; Rodgers, M T

    2012-12-06

    The interactions of alkali metal cations (M(+) = Na(+), K(+), Rb(+), Cs(+)) with the amino acid histidine (His) are examined in detail. Experimentally, bond energies are determined using threshold collision-induced dissociation of the M(+)(His) complexes with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy dependent cross sections provide 0 K bond energies of 2.31 ± 0.11, 1.70 ± 0.08, 1.42 ± 0.06, and 1.22 ± 0.06 eV for complexes of His with Na(+), K(+), Rb(+), and Cs(+), respectively. All bond dissociation energy (BDE) determinations include consideration of unimolecular decay rates, internal energy of reactant ions, and multiple ion-neutral collisions. These experimental results are compared to values obtained from quantum chemical calculations conducted previously at the MP2(full)/6-311+G(2d,2p), B3LYP/6-311+G(2d,2p), and B3P86/6-311+G(2d,2p) levels with geometries and zero point energies calculated at the B3LYP/6-311+G(d,p) level where Rb and Cs use the Hay-Wadt effective core potential and basis set augmented with additional polarization functions (HW*). Additional calculations using the def2-TZVPPD basis set with B3LYP geometries were conducted here at all three levels of theory. Either basis set yields similar results for Na(+)(His) and K(+)(His), which are in reasonable agreement with the experimental BDEs. For Rb(+)(His) and Cs(+)(His), the HW* basis set and ECP underestimate the experimental BDEs, whereas the def2-TZVPPD basis set yields results in good agreement. The effect of the imidazole side chain on the BDEs is examined by comparing the present results with previous thermochemistry for other amino acids. Both polarizability and the local dipole moment of the side chain are influential in the energetics.

  16. Structural Origins of Nitroxide Side Chain Dynamics on Membrane Protein [alpha]-Helical Sites

    SciTech Connect

    Kroncke, Brett M.; Horanyi, Peter S.; Columbus, Linda

    2010-12-07

    Understanding the structure and dynamics of membrane proteins in their native, hydrophobic environment is important to understanding how these proteins function. EPR spectroscopy in combination with site-directed spin labeling (SDSL) can measure dynamics and structure of membrane proteins in their native lipid environment; however, until now the dynamics measured have been qualitative due to limited knowledge of the nitroxide spin label's intramolecular motion in the hydrophobic environment. Although several studies have elucidated the structural origins of EPR line shapes of water-soluble proteins, EPR spectra of nitroxide spin-labeled proteins in detergents or lipids have characteristic differences from their water-soluble counterparts, suggesting significant differences in the underlying molecular motion of the spin label between the two environments. To elucidate these differences, membrane-exposed {alpha}-helical sites of the leucine transporter, LeuT, from Aquifex aeolicus, were investigated using X-ray crystallography, mutational analysis, nitroxide side chain derivatives, and spectral simulations in order to obtain a motional model of the nitroxide. For each crystal structure, the nitroxide ring of a disulfide-linked spin label side chain (R1) is resolved and makes contacts with hydrophobic residues on the protein surface. The spin label at site I204 on LeuT makes a nontraditional hydrogen bond with the ortho-hydrogen on its nearest neighbor F208, whereas the spin label at site F177 makes multiple van der Waals contacts with a hydrophobic pocket formed with an adjacent helix. These results coupled with the spectral effect of mutating the i {+-} 3, 4 residues suggest that the spin label has a greater affinity for its local protein environment in the low dielectric than on a water-soluble protein surface. The simulations of the EPR spectra presented here suggest the spin label oscillates about the terminal bond nearest the ring while maintaining weak contact

  17. Side-Chain Liquid Crystalline Poly(meth)acrylates with Bent-Core Mesogens

    SciTech Connect

    Chen,X.; Tenneti, K.; Li, C.; Bai, Y.; Wan, X.; Fan, X.; Zhou, Q.; Rong, L.; Hsiao, B.

    2007-01-01

    We report the design, synthesis, and characterization of side-chain liquid crystalline (LC) poly(meth)acrylates with end-on bent-core liquid crystalline (BCLC) mesogens. Both conventional free radical polymerization and atom transfer radical polymerization have been used to synthesize these liquid crystalline polymers (LCP). The resulting polymers exhibit thermotropic LC behavior. Differential scanning calorimetry, thermopolarized light microscopy, wide-angle X-ray diffraction, and small-angle X-ray scattering were used to characterize the LC structure of both monomers and polymers. The electro-optic (EO) measurement was carried out by applying a triangular wave and measuring the LC EO response. SmCP (Smectic C indicates the LC molecules are tilted with respect to the layer normal; P denotes polar ordering) phases were observed for both monomers and polymers. In LC monomers, typical antiferroelectric switching was observed. In the ground state, SmCP{sub A} (A denotes antiferroelectric) was observed which switched to SmCP{sub F} (F denotes ferroelectric) upon applying an electric field. In the corresponding LCP, a unique bilayer structure was observed, which is different from the reported BCLC bilayer SmCG (G denotes generated) phase. Most of the LCPs did not switch upon applying electric field while weak AF switching was observed in a low molecular weight poly{l_brace}3'-[4-(4-n-dodecyloxybenzoyloxy)benzoyloxy]-4-(12-acryloyloxydodecyloxy)benzoyloxybiphenyl{r_brace} sample.

  18. Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting.

    PubMed

    Zakeri, Bijan; Howarth, Mark

    2010-04-07

    Peptides and synthetic peptide-like molecules are powerful tools for analysis and control of biological function. One major limitation of peptides is the instability of their interactions with biomolecules, because of the limited accessible surface area for noncovalent interactions and the intrinsic flexibility of peptides. Peptide tags are nonetheless fundamental for protein detection and purification, because their small size minimizes the perturbation to protein function. Here we have designed a 16 amino acid peptide that spontaneously forms an amide bond to a protein partner, via reaction between lysine and asparagine side chains. This depended upon splitting a pilin subunit from a human pathogen, Streptococcus pyogenes, which usually undergoes intramolecular amide bond formation to impart mechanical and proteolytic stability to pili. Reaction of the protein partner was able to proceed to 98% conversion. The amide bond formation was independent of redox state and occurred at pH 5-8. The reaction was efficient in phosphate buffered saline and a wide range of biological buffers. Surprisingly, amide bond formation occurred at a similar rate at 4 and 37 degrees C. Both peptide and protein partners are composed of the regular 20 amino acids and reconstituted efficiently inside living E. coli. Labeling also showed high specificity on the surface of mammalian cells. Irreversible targeting of a peptide tag may have application in bioassembly, in cellular imaging, and to lock together proteins subject to high biological forces.

  19. Formation of catechols via removal of acid side chains from ibuprofen and related aromatic acids.

    PubMed

    Murdoch, Robert W; Hay, Anthony G

    2005-10-01

    Although ibuprofen [2-(4-isobutylphenyl)-propionic acid] is one of the most widely consumed drugs in the world, little is known regarding its degradation by environmental bacteria. Sphingomonas sp. strain Ibu-2 was isolated from a wastewater treatment plant based on its ability to use ibuprofen as a sole carbon and energy source. A slight preference toward the R enantiomer was observed, though both ibuprofen enantiomers were metabolized. A yellow color, indicative of meta-cleavage, accumulated transiently in the culture supernatant when Ibu-2 was grown on ibuprofen. When and only when 3-flurocatechol was used to poison the meta-cleavage system, isobutylcatechol was identified in the culture supernatant via gas chromatography-mass spectrometry analysis. Ibuprofen-induced washed-cell suspensions also metabolized phenylacetic acid and 2-phenylpropionic acid to catechol, while 3- and 4-tolylacetic acids and 2-(4-tolyl)-propionic acid were metabolized to the corresponding methyl catechols before ring cleavage. These data suggest that, in contrast to the widely distributed coenzyme A ligase, homogentisate, or homoprotocatechuate pathway for metabolism of phenylacetic acid and similar compounds, Ibu-2 removes the acidic side chain of ibuprofen and related compounds prior to ring cleavage.

  20. UV resonance Raman finds peptide bond-Arg side chain electronic interactions.

    PubMed

    Sharma, Bhavya; Asher, Sanford A

    2011-05-12

    We measured the UV resonance Raman excitation profiles and Raman depolarization ratios of the arginine (Arg) vibrations of the amino acid monomer as well as Arg in the 21-residue predominantly alanine peptide AAAAA(AAARA)(3)A (AP) between 194 and 218 nm. Excitation within the π → π* peptide bond electronic transitions result in UVRR spectra dominated by amide peptide bond vibrations. The Raman cross sections and excitation profiles indicate that the Arg side chain electronic transitions mix with the AP peptide bond electronic transitions. The Arg Raman bands in AP exhibit Raman excitation profiles similar to those of the amide bands in AP which are conformation specific. These Arg excitation profiles distinctly differ from the Arg monomer. The Raman depolarization ratios of Arg in monomeric solution are quite simple with ρ = 0.33 indicating enhancement by a single electronic transition. In contrast, we see very complex depolarization ratios of Arg in AP that indicate that the Arg residues are resonance enhanced by multiple electronic transitions.

  1. Nucleic acid chemistry in the organic phase: from functionalized oligonucleotides to DNA side chain polymers.

    PubMed

    Liu, Kai; Zheng, Lifei; Liu, Qing; de Vries, Jan Willem; Gerasimov, Jennifer Y; Herrmann, Andreas

    2014-10-08

    DNA-incorporating hydrophobic moieties can be synthesized by either solid-phase or solution-phase coupling. On a solid support the DNA is protected, and hydrophobic units are usually attached employing phosphoramidite chemistry involving a DNA synthesizer. On the other hand, solution coupling in aqueous medium results in low yields due to the solvent incompatibility of DNA and hydrophobic compounds. Hence, the development of a general coupling method for producing amphiphilic DNA conjugates with high yield in solution remains a major challenge. Here, we report an organic-phase coupling strategy for nucleic acid modification and polymerization by introducing a hydrophobic DNA-surfactant complex as a reactive scaffold. A remarkable range of amphiphile-DNA structures (DNA-pyrene, DNA-triphenylphosphine, DNA-hydrocarbon, and DNA block copolymers) and a series of new brush-type DNA side-chain homopolymers with high DNA grafting density are produced efficiently. We believe that this method is an important breakthrough in developing a generalized approach to synthesizing functional DNA molecules for self-assembly and related technological applications.

  2. Testicular microsomal cytochrome P-450 for C21 steroid side chain cleavage. Spectral and binding studies.

    PubMed

    Nakajin, S; Hall, P F; Onoda, M

    1981-06-25

    Kinetic and binding studies were performed with a purified microsomal cytochrome P-450 from neonatal pig testis, the C21 side chain cleavage system (17 alpha-hydroxylase/C17,20-lyase). Binding of substrates and inhibitors was measured by spectral methods and by equilibrium dialysis. Kinetic data revealed that pregnenolone inhibits lyase activity with 17 alpha-hydroxypregnenolone as substrate (Ki, 0.3 microM) and that progesterone inhibits lyase activity with 17 alpha-hydroxyprogesterone (Ki, 1.5 microM); inhibition is competitive in both cases. Binding and kinetic studies revealed that Km, Ks, and Kd (Michaelis constant and dissociation constants determined by spectral and dialysis methods, respectively) are all considerably lower for the delta 5 substrates than for the corresponding delta 4 compounds. Equilibrium dialysis shows that there is a single binding site for the substrates of both activities (hydroxylase and lyase). Spectral studies revealed a lag in the development of the spectral shift produced by the addition of steroids and gave results compatible with a single active site, although this spectral evidence is not conclusive by itself. It is concluded that (i) the powerful forward competitive inhibition by pregnenolone and progesterone may be important in regulating synthesis of androgens in vivo; (ii) the porcine enzyme uses delta 5 substrates in preference to delta 4 substrates, thereby accounting for extensive use of the delta 5 pathway by pig testis in vivo; (iii) the evidence presented suggests one active site for both hydroxylase and lyase activities.

  3. Backbone, side chain and heme resonance assignments of cytochrome OmcF from Geobacter sulfurreducens.

    PubMed

    Dantas, Joana M; Silva E Sousa, Marta; Salgueiro, Carlos A; Bruix, Marta

    2015-10-01

    Gene knockout studies on Geobacter sulfurreducens (Gs) cells showed that the outer membrane cytochrome OmcF is involved in respiratory pathways leading to the extracellular reduction of Fe(III) citrate and U(VI) oxide. In addition, microarray analysis of OmcF-deficient mutant versus the wild-type strain revealed that many of the genes with decreased transcript level were those whose expression is upregulated in cells grown with a graphite electrode as electron acceptor. This suggests that OmcF also regulates the electron transfer to electrode surfaces and the concomitant electrical current production by Gs in microbial fuel cells. Extracellular electron transfer processes (EET) constitute nowadays the foundations to develop biotechnological applications in biofuel production, bioremediation and bioenergy. Therefore, the structural characterization of OmcF is a fundamental step to understand the mechanisms underlying EET. Here, we report the complete assignment of the heme proton signals together with (1)H, (13)C and (15)N backbone and side chain assignments of the OmcF, excluding the hydrophobic residues of the N-terminal predicted lipid anchor.

  4. Differentiating amino acid residues and side chain orientations in peptides using scanning tunneling microscopy.

    PubMed

    Claridge, Shelley A; Thomas, John C; Silverman, Miles A; Schwartz, Jeffrey J; Yang, Yanlian; Wang, Chen; Weiss, Paul S

    2013-12-11

    Single-molecule measurements of complex biological structures such as proteins are an attractive route for determining structures of the large number of important biomolecules that have proved refractory to analysis through standard techniques such as X-ray crystallography and nuclear magnetic resonance. We use a custom-built low-current scanning tunneling microscope to image peptide structures at the single-molecule scale in a model peptide that forms β sheets, a structural motif common in protein misfolding diseases. We successfully differentiate between histidine and alanine amino acid residues, and further differentiate side chain orientations in individual histidine residues, by correlating features in scanning tunneling microscope images with those in energy-optimized models. Beta sheets containing histidine residues are used as a model system due to the role histidine plays in transition metal binding associated with amyloid oligomerization in Alzheimer's and other diseases. Such measurements are a first step toward analyzing peptide and protein structures at the single-molecule level.

  5. Evaluations of Mesogen Orientation in Thin Films of Polyacrylate with Cyanobiphenyl Side Chain.

    PubMed

    Tanaka, Daisuke; Mizuno, Tasuku; Hara, Mitsuo; Nagano, Shusaku; Saito, Itsuki; Yamamoto, Katsuhiro; Seki, Takahiro

    2016-04-19

    The orientation behavior of mesogens in a polyacrylate with cyanobiphenyl (CB) side chain in thin films was investigated in detail by UV-vis absorption spectroscopy and grazing incidence small-angle X-ray scattering (GI-SAXS) measurements using both high-energy X-rays of Cu Kα line (λ = 0.154 nm) and low-energy synchrotron X-rays (λ = 0.539 nm). By changing the film thickness ranging 7-200 nm, it is concluded that the planar orientation is predominant for thin films with thickness below 10-15 nm. This planar mesogen orientation near the substrate surface coexists with the homeotropically aligned CB mesogens in films thicker than 30 nm. For the thinnest 7 nm film, the planar orientation is unexpectedly lost, which is in consort with a disordering of smectic layer structure. Peculiar orienting characteristics of CB mesogen are suggested, which probably stem from the tendency to form an antiparallel arrangement of mesogens due to the strong dipole moment of the terminal cyano group.

  6. Synthesis, characterisation and drug release properties of microspheres of polystyrene with aliphatic polyester side-chains.

    PubMed

    Kukut, Manolya; Karal-Yilmaz, Oksan; Yagci, Yusuf

    2014-01-01

    A series of graft copolymers consisting of polystyrene backbone with biocompatible side chains based on (co)polymers of l-lactic acid and glycolic acid were synthesised by combination two controlled polymerisations, namely, nitroxide mediated radical polymerisation (NMRP) and ring opening polymerisation (ROP) with "Click" chemistry. The main goal of this work was to design new biodegradable microspheres using obtained graft copolymers for long-term sustained release of imatinib mesylate (IMM) as a model drug. The IMM loaded microspheres of the graft copolymers, polystyrene-g-poly(lactide-co-glycolide) (PS-g-PLLGA), polystyrene-g-poly(lactic acid) (PS-g-PLLA) and poly(lactic-coglycolic acid) (PLLGA) were then prepared by a modified water-in-oil-in-water (w1/o/w2) double emulsion/solvent evaporation technique. The optimised microspheres were characterised by particle size, encapsulation efficiency, and surface morphology also; their degradation and release properties were studied in vitro. The degradation studies of three different types of microspheres showed that the PS backbone of the graft copolymers slows down the degradation rate compared to PLLGA.

  7. Kerr effect in the isotropic phase of a side-chain polymeric liquid crystal

    NASA Astrophysics Data System (ADS)

    Reys, V.; Dormoy, Y.; Collin, D.; Keller, P.; Martinoty, P.

    1992-02-01

    The birefringence induced by a pulsed electrical field was used to study the pretransitional effects associated with the isotropic phase of a side-chain polysiloxane. The results obtained show that these effects are characterised by a conventional value of the static exponent and an abnormal value of the dynamic exponent, which shows that the dynamic theory of low molecular weight liquid crystals does not apply. The results also reveal competition between the dipolar moments induced by the electrical field and the permanent moments of the mesogenic molecules. La biréfringence induite par un champ électrique impulsionnel a été utilisée pour étudier les effets prétransitionnels associés à la phase isotrope d'un polysiloxane à chaînes latérales. Les résultats obtenus montrent que ces effets sont caractérisés par une valeur classique de l'exposant statique et une valeur anormale de l'exposant dynamique. Ce dernier résultat montre que la théorie dynamique des cristaux liquides de bas poids moléculaire n'est pas applicable au cas présent. Les expériences mettent également en évidence une compétition entre les moments dipolaires induits par le champ électrique et les moments permanents des molécules mésogènes.

  8. Characterization of novel perylene diimides containing aromatic amino acid side chains

    PubMed Central

    Farooqi, Mohammed J.; Penick, Mark A.; Burch, Jessica; Negrete, George R.; Brancaleon, Lorenzo

    2015-01-01

    Perylene diimide derivatives have attracted initial interest as industrial dyes. Recently, much attention has been focused on their strong π–π stacks resulting from the large PDI aromatic core. These PDI stacks have distinct optical properties, and provide informative models that could mimic light-harvesting systems and initial charge transfer typical of photosynthetic systems. The absorption property of PDI derivatives may be tuned from visible to near-infrared region by peripheral substitution. We have studied a new class of PDI derivatives with aryl substituents derived from the side chains of aromatic aminoacids (Tyrosine, Tryptophan and Phenylalanine). We have investigated their absorption and the fluorescence properties in a set of organic solvents and established their different tendencies to aggregate in solution despite their solubility. Most aggregation appears to be unordered. One PDI analogue (the one formed from Tyr) in Methanol, however, appears to form J-type aggregates. Based on our results the compounds appear to be promising for future investigations regarding the interaction of these dyes with biomolecules. PMID:26298679

  9. Structure-activity study on the Phe side chain arrangement of endomorphins using conformationally constrained analogues.

    PubMed

    Tömböly, Csaba; Kövér, Katalin E; Péter, Antal; Tourwé, Dirk; Biyashev, Dauren; Benyhe, Sándor; Borsodi, Anna; Al-Khrasani, Mahmoud; Rónai, András Z; Tóth, Géza

    2004-01-29

    Endomorphins-1 and -2 were substituted with all the beta-MePhe stereoisomers in their Phe residues to generate a conformationally constrained peptide set. This series of molecules was subjected to biological assays, and for beta-MePhe(4)-endomorphins-2, a conformational analysis was performed. Incorporation of (2S,3S)-beta-MePhe(4) resulted in the most potent analogues of both endomorphins with enhanced enzymatic stability. Their micro opioid affinities were 4-times higher than the parent peptides, they stimulated [(35)S]GTPgammaS binding, and they were found to be full agonists. NMR experiments revealed that C-terminal (2S,3S)-beta-MePhe in endomorphin-2 strongly favored the gauche (-) spatial orientation which implies the presence of the chi(1) = -60 degrees rotamer of Phe(4) in the binding conformer of endomorphins. Our results emphasize that the appropriate orientation of the C-terminal aromatic side chain of endomorphins is substantial for binding to the micro opioid receptor.

  10. A roundabout approach to control morphological orientation and solar-cell performance by modulating side-chain branching position in benzodithiophene-based polymers.

    PubMed

    Lee, Kyu Cheol; Song, Seyeong; Lee, Junghoon; Kim, Dong Suk; Kim, Jin Young; Yang, Changduk

    2015-04-27

    To be meaningful to guide the rational design of novel high-performance conjugated semiconductors, we prepared three benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers by systematically moving the branching point of the alkyl chain. The effect of side-chain engineering was thoroughly investigated by a range of techniques. We demonstrate that a subtle change in the branching position in the BDT core can have a critical impact on polymer packing and preferential backbone orientation in thin films; copolymers made from BDT and thieno[3,4-c]pyrrole-4,6-dione units (TPD) adopt more of a face-on orientation as the branching point is shifted closer to the backbone, which can be correlated with a dramatic difference in solar-cells performance. The high short-circuit current density (11.6 mA cm(-2) ) for the copolymer with one carbon atom between the alkoxylated oxygen atom and the branching point results from its predominantly face-on orientation and smoother surface in thin films, which results in power conversion efficiencies as high as 4.56 %.

  11. Evidence of a Structural Defect in Ice VII and the Side Chain Dependent Response of Small Model Peptides to Increased Pressure

    PubMed Central

    Scott, J. Nathan; Vanderkooi, Jane M.

    2014-01-01

    The effect of high pressure on the OH stretch of dilute HOD in D2O was examined using high pressure FTIR. It was found that at pressures directly above the ice VI to ice VII transition, ice VII displays a splitting in the OH absorption indicative of differing hydrogen bonding environments. This result is contrary to published structures of ice VII in which each OH oscillator should experience an identical electronic environment. The anomalous band was found to decrease in absorbance and finally disappear at ~43.0 kbar. In addition, the pressure response of the amide I′ and II′ bands of three small model peptides was examined. Analysis of these bands’ response to increased pressure indicates significant side chain dependence of their structural rearrangement, which may play a role in the composition of full length proteins of barophilic organisms. PMID:21740637

  12. Synthesis of a Homologous Series of Side Chain Extended Orthogonally-Protected Aminooxy-Containing Amino Acids

    PubMed Central

    Liu, Fa; Thomas, Joshua; Burke, Terrence R.

    2008-01-01

    Practical methodology is reported for the synthesis of a homologous series of side chain extended amino acids containing aminooxy functionality bearing orthogonal protection suitable for Fmoc peptide synthesis. These reagents may be useful for the preparation of libraries containing fragments joined by peptide linkers. PMID:19122755

  13. Oxidative processes in the Australian marine sponge Plakinastrella clathrata: isolation of plakortolides with oxidatively modified side chains.

    PubMed

    Yong, Ken W L; Lambert, Lynette K; Hayes, Patricia Y; De Voss, James J; Garson, Mary J

    2012-03-23

    Sixteen new cyclic peroxides (1-16) with a plakortolide skeleton and the methyl ester derivative of a didehydroplakinic acid (17) were isolated from the Australian sponge Plakinastrella clathrata Kirkpatrick, 1900. Structural elucidation and configurational assignments were based on spectroscopic analysis and comparison with data for previously isolated plakortolides and revealed both phenyl- and methyl-terminating side chains attached to the plakortolide core. Plakortoperoxides A-D (5-8) each contained a second 1,2-dioxine ring; a cis configuration for the side chain endoperoxide ring was determined by a low-temperature NMR study and by comparison of chemical shift values with those of reported compounds. An enantioselective HPLC study compared natural plakortoperoxide A with a synthetic sample prepared by cyclization of plakortolide P with singlet oxygen and revealed that the natural sample was a mixture of cis diastereomers at C-15/C18. Four other cyclic peroxides (9-12) possessed a C(9)-truncated side chain terminating in a formyl or carboxylic acid functionality, suggesting that these metabolites may have been formed by oxidative cleavage of the Δ(9,10) bond of diene-functionalized plakortolides. A final group of four metabolites (13-16) with hydroxy or the rare hydroperoxy functionality unexpectedly revealed a C(8) side chain, while the ester (17) represents further structural variation within the growing family of cyclic peroxy sponge metabolites.

  14. Unique Contributions of an Arginine Side Chain to Ligand Recognition in a Glutamate-gated Chloride Channel*

    PubMed Central

    Lynagh, Timothy; Komnatnyy, Vitaly V.

    2017-01-01

    Glutamate recognition by neurotransmitter receptors often relies on Arg residues in the binding site, leading to the assumption that charge-charge interactions underlie ligand recognition. However, assessing the precise chemical contribution of Arg side chains to protein function and pharmacology has proven to be exceedingly difficult in such large and complex proteins. Using the in vivo nonsense suppression approach, we report the first successful incorporation of the isosteric, titratable Arg analog, canavanine, into a neurotransmitter receptor in a living cell, utilizing a glutamate-gated chloride channel from the nematode Haemonchus contortus. Our data unveil a surprisingly small contribution of charge at a conserved arginine side chain previously suggested to form a salt bridge with the ligand, glutamate. Instead, our data show that Arg contributes crucially to ligand sensitivity via a hydrogen bond network, where Arg interacts both with agonist and with a conserved Thr side chain within the receptor. Together, the data provide a new explanation for the reliance of neurotransmitter receptors on Arg side chains and highlight the exceptional capacity of unnatural amino acid incorporation for increasing our understanding of ligand recognition. PMID:28096462

  15. Indol-3-ylcycloalkyl ketones: effects of N1 substituted indole side chain variations on CB(2) cannabinoid receptor activity.

    PubMed

    Frost, Jennifer M; Dart, Michael J; Tietje, Karin R; Garrison, Tiffany R; Grayson, George K; Daza, Anthony V; El-Kouhen, Odile F; Yao, Betty B; Hsieh, Gin C; Pai, Madhavi; Zhu, Chang Z; Chandran, Prasant; Meyer, Michael D

    2010-01-14

    Several 3-acylindoles with high affinity for the CB(2) cannabinoid receptor and selectivity over the CB(1) receptor have been prepared. A variety of 3-acyl substituents were investigated, and the tetramethylcyclopropyl group was found to lead to high affinity CB(2) agonists (5, 16). Substitution at the N1-indole position was then examined. A series of aminoalkylindoles was prepared and several substituted aminoethyl derivatives were active (23-27, 5) at the CB(2) receptor. A study of N1 nonaromatic side chain variants provided potent agonists at the CB(2) receptor (16, 35-41, 44-47, 49-54, and 57-58). Several polar side chains (alcohols, oxazolidinone) were well-tolerated for CB(2) receptor activity (41, 50), while others (amide, acid) led to weaker or inactive compounds (55 and 56). N1 aromatic side chains also afforded several high affinity CB(2) receptor agonists (61, 63, 65, and 69) but were generally less potent in an in vitro CB(2) functional assay than were nonaromatic side chain analogues.

  16. Synthesis and cytotoxic evaluation of 1-carboxamide and 1-amino side chain substituted β-carbolines.

    PubMed

    Ma, Chunming; Cao, Rihui; Shi, Buxi; Zhou, Xiantai; Ma, Qin; Sun, Jie; Guo, Liang; Yi, Wei; Chen, Zhiyong; Song, Huacan

    2010-11-01

    The condensation of alkylenediamine with ethyl β-carboline-1-carboxylate and 1-bromo-β-carboline gave β-carboline-1-carboxamides and 1-amino-β-carbolines, respectively. Some of these β-carbolines were active against a panel of human tumor cell lines, and 1-amino derivatives were more potent than their 1-carboxamide congeners. In particular, among the 1-amino-β-carbolines, the N(9)-arylated alkyl substituted β-carbolines exhibited the most interesting cytotoxic activities with IC(50) value of lower than 20 μM. The preliminary structure-activity relationships (SARs) analysis suggested that (1) 1-amino substituents were the advisable pharmacophoric group for enhanced cytotoxic activities; (2) the introduction of appropriate arylated alkyl groups into position-9 of β-carboline facilitated their cytotoxic potencies.

  17. Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets.

    PubMed

    Feng, Wei; Gao, Xiang; McClung, Glenn; Zhu, Shiping; Ishihara, Kazuhiko; Brash, John L

    2011-10-01

    Two methacrylate monomers, oligo(ethylene glycol) methyl ether methacrylate (OEGMA; MW=300 g mol(-1), poly(ethylene glycol) (PEG) side chains of average length n=4.5) and 2-methacryloyloxyethyl phosphorylcholine (MPC; MW=295 g mol(-1)), were grafted from silicon wafer surfaces via surface-initiated atom transfer radical polymerization. The grafted surfaces were used as model PEG and phosphorylcholine surface systems to allow comparison of the effectiveness of these two motifs in the prevention of plasma protein adsorption and platelet adhesion. It was found that at high graft density fibrinogen adsorption from plasma on the poly(MPC) and poly(OEGMA) surfaces for a given graft chain length was comparable and extremely low. At low graft density, poly(OEGMA) was slightly more effective than poly(MPC) in resisting fibrinogen adsorption from plasma. Flowing whole blood experiments showed that at low graft density the poly(OEGMA) surfaces were more resistant to fibrinogen adsorption and platelet adhesion than the poly(MPC) surfaces. At high graft density, both the poly(MPC) and poly(OEGMA) surfaces were highly resistant to fibrinogen and platelets. Immunoblots of proteins eluted from the surfaces after contact with human plasma were probed with antibodies against a range of proteins, including the contact phase clotting factors, fibrinogen, albumin, complement C3, IgG, vitronectin and apolipoprotein A-I. The blot responses were weak on the poly(MPC) and poly(OEGMA) surfaces at low graft density and zero at high graft density, again indicating strongly protein resistant properties for these surfaces. Since the side chains of the poly(OEGMA) are about 50% greater in size than those of poly(MPC), the difference in protein resistance between the poly(MPC) and poly(OEGMA) surfaces at low graft density may be due to the difference in surface coverage of the two graft types.

  18. Side-chain engineering of benzodithiophene-fluorinated quinoxaline low-band-gap co-polymers for high-performance polymer solar cells.

    PubMed

    Xu, Xiaopeng; Wu, Yulei; Fang, Junfeng; Li, Zuojia; Wang, Zhenguo; Li, Ying; Peng, Qiang

    2014-10-06

    A new series of donor-acceptor co-polymers based on benzodithiophene and quinoxaline with various side chains have been developed for polymer solar cells. The effect of the degree of branching and dimensionality of the side chains were systematically investigated on the thermal stability, optical absorption, energy levels, molecular packing, and photovoltaic performance of the resulting co-polymers. The results indicated that the linear and 2D conjugated side chains improved the thermal stabilities and optical absorptions. The introduction of alkylthienyl side chains could efficiently lower the energy levels compared with the alkoxyl-substituted analogues, and the branched alkoxyl side chains could deepen the HOMO levels relative to the linear alkoxyl chains. The branched alkoxyl groups induced better lamellar-like ordering, but poorer face-to-face packing behavior. The 2D conjugated side chains had a negative influence on the crystalline properties of the co-polymers. The performance of the devices indicated that the branched alkoxyl side chains improved the Voc, but decreased the Jsc and fill factor (FF). However, the 2D conjugated side chains would increase the Voc, Jsc, and FF simultaneously. For the first time, our work provides insight into molecular design strategies through side-chain engineering to achieve efficient polymer solar cells by considering both the degree of branching and dimensionality.

  19. Amphiphilic surface active triblock copolymers with mixed hydrophobic and hydrophilic side chains for tuned marine fouling-release properties.

    PubMed

    Park, Daewon; Weinman, Craig J; Finlay, John A; Fletcher, Benjamin R; Paik, Marvin Y; Sundaram, Harihara S; Dimitriou, Michael D; Sohn, Karen E; Callow, Maureen E; Callow, James A; Handlin, Dale L; Willis, Carl L; Fischer, Daniel A; Kramer, Edward J; Ober, Christopher K

    2010-06-15

    Two series of amphiphilic triblock surface active block copolymers (SABCs) were prepared through chemical modification of two polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene ABC triblock copolymer precursors. The methyl ether of poly(ethylene glycol) [M(n) approximately 550 g/mol (PEG550)] and a semifluorinated alcohol (CF(3)(CF(2))(9)(CH(2))(10)OH) [F10H10] were attached at different molar ratios to impart both hydrophobic and hydrophilic groups to the isoprene segment. Coatings on glass slides consisting of a thin layer of the amphiphilic SABC deposited on a thicker layer of an ABA polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene thermoplastic elastomer were prepared for biofouling assays with algae. Dynamic water contact angle analysis, X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) measurements were utilized to characterize the surfaces. Clear differences in surface structure were realized as the composition of attached side chains was varied. In biofouling assays, the settlement (attachment) of zoospores of the green alga Ulva was higher for surfaces incorporating a large proportion of the hydrophobic F10H10 side chains, while surfaces with a large proportion of the PEG550 side chains inhibited settlement. The trend in attachment strength of sporelings (young plants) of Ulva did not show such an obvious pattern. However, amphiphilic SABCs incorporating a mixture of PEG550 and F10H10 side chains performed the best. The number of cells of the diatom Navicula attached after exposure to flow decreased as the content of PEG550 to F10H10 side chains increased.

  20. Adapting Poisson-Boltzmann to the self-consistent mean field theory: Application to protein side-chain modeling

    NASA Astrophysics Data System (ADS)

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2011-08-01

    We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.

  1. Adapting Poisson-Boltzmann to the self-consistent mean field theory: application to protein side-chain modeling.

    PubMed

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2011-08-07

    We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ(1) for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.

  2. Adapting Poisson-Boltzmann to the self-consistent mean field theory: Application to protein side-chain modeling

    PubMed Central

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2011-01-01

    We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains. PMID:21823735

  3. The isotridecanyl side chain of plusbacin-A3 is essential for the transglycosylase inhibition of peptidoglycan biosynthesis.

    PubMed

    Kim, Sung Joon; Singh, Manmilan; Wohlrab, Aaron; Yu, Tsyr-Yan; Patti, Gary J; O'Connor, Robert D; VanNieuwenhze, Michael; Schaefer, Jacob

    2013-03-19

    Plusbacin-A3 (pb-A3) is a cyclic lipodepsipeptide that exhibits antibacterial activity against multidrug-resistant Gram-positive pathogens. Plusbacin-A3 is thought not to enter the cell cytoplasm, and its lipophilic isotridecanyl side chain is presumed to insert into the membrane bilayer, thereby facilitating either lipid II binding or some form of membrane disruption. Analogues of pb-A3, [(2)H]pb-A3 and deslipo-pb-A3, were synthesized to test membrane insertion as a key to the mode of action. [(2)H]pb-A3 has an isotopically (2)H-labeled isopropyl subunit of the lipid side chain, and deslipo-pb-A3 is missing the isotridecanyl side chain. Both analogues have the pb-A3 core structure. The loss of antimicrobial activity in deslipo-pb-A3 showed that the isotridecanyl side chain is crucial for the mode of action of the drug. However, rotational-echo double-resonance nuclear magnetic resonance characterization of [(2)H]pb-A3 bound to [1-(13)C]glycine-labeled whole cells of Staphylococcus aureus showed that the isotridecanyl side chain does not insert into the lipid membrane but instead is found in the staphylococcal cell wall, positioned near the pentaglycyl cross-bridge of the cell-wall peptidoglycan. Addition of [(2)H]pb-A3 during the growth of S. aureus resulted in the accumulation of Park's nucleotide, consistent with the inhibition of the transglycosylation step of peptidoglycan biosynthesis.

  4. Amphiphilic Surface Active Triblock Copolymers with Mixed Hydrophobic and Hydrophilic Side Chains for Tuned Marine Fouling-Release Properties

    SciTech Connect

    Park, D.; Weinman, C; Finlay, J; Fletcher, B; Paik, M; Sundaram, H; Dimitriou, M; Sohn, K; Callow, M; et al.

    2010-01-01

    Two series of amphiphilic triblock surface active block copolymers (SABCs) were prepared through chemical modification of two polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene ABC triblock copolymer precursors. The methyl ether of poly(ethylene glycol) [M{sub n} {approx} 550 g/mol (PEG550)] and a semifluorinated alcohol (CF{sub 3}(CF{sub 2}){sub 9}(CH{sub 2}){sub 10}OH) [F10H10] were attached at different molar ratios to impart both hydrophobic and hydrophilic groups to the isoprene segment. Coatings on glass slides consisting of a thin layer of the amphiphilic SABC deposited on a thicker layer of an ABA polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene thermoplastic elastomer were prepared for biofouling assays with algae. Dynamic water contact angle analysis, X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) measurements were utilized to characterize the surfaces. Clear differences in surface structure were realized as the composition of attached side chains was varied. In biofouling assays, the settlement (attachment) of zoospores of the green alga Ulva was higher for surfaces incorporating a large proportion of the hydrophobic F10H10 side chains, while surfaces with a large proportion of the PEG550 side chains inhibited settlement. The trend in attachment strength of sporelings (young plants) of Ulva did not show such an obvious pattern. However, amphiphilic SABCs incorporating a mixture of PEG550 and F10H10 side chains performed the best. The number of cells of the diatom Navicula attached after exposure to flow decreased as the content of PEG550 to F10H10 side chains increased.

  5. Hydrogen bonding motifs of protein side chains: descriptions of binding of arginine and amide groups.

    PubMed Central

    Shimoni, L.; Glusker, J. P.

    1995-01-01

    The modes of hydrogen bonding of arginine, asparagine, and glutamine side chains and of urea have been examined in small-molecule crystal structures in the Cambridge Structural Database and in crystal structures of protein-nucleic acid and protein-protein complexes. Analysis of the hydrogen bonding patterns of each by graph-set theory shows three patterns of rings (R) with one or two hydrogen bond acceptors and two donors and with eight, nine, or six atoms in the ring, designated R2(2)(8), R2(2)(9), and R1(2)(6). These three patterns are found for arginine-like groups and for urea, whereas only the first two patterns R2(2)(8) and R2(2)(9) are found for asparagine- and glutamine-like groups. In each case, the entire system is planar within 0.7 A or less. On the other hand, in macromolecular crystal structures, the hydrogen bonding patterns in protein-nucleic acid complexes between the nucleic acid base and the protein are all R2(2)(9), whereas hydrogen bonding between Watson-Crick-like pairs of nucleic acid bases is R2(2)(8). These two hydrogen bonding arrangements [R2(2)(9)] and R2(2)(8)] are predetermined by the nature of the groups available for hydrogen bonding. The third motif identified, R1(2)(6), involves hydrogen bonds that are less linear than in the other two motifs and is found in proteins. PMID:7773178

  6. Block copolymer micelles with acid-labile ortho ester side-chains: Synthesis, characterization, and enhanced drug delivery to human glioma cells.

    PubMed

    Tang, Rupei; Ji, Weihang; Panus, David; Palumbo, R Noelle; Wang, Chun

    2011-04-10

    A new type of block copolymer micelles for pH-triggered delivery of poorly water-soluble anticancer drugs has been synthesized and characterized. The micelles were formed by the self-assembly of an amphiphilic diblock copolymer consisting of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic polymethacrylate block (PEYM) bearing acid-labile ortho ester side-chains. The diblock copolymer was synthesized by atom transfer radical polymerization (ATRP) from a PEG macro-initiator to obtain well-defined polymer chain-length. The PEG-b-PEYM micelles assumed a stable core-shell structure in aqueous buffer at physiological pH with a low critical micelle concentration as determined by proton NMR and pyrene fluorescence spectroscopy. The hydrolysis of the ortho ester side-chain at physiological pH was minimal yet much accelerated at mildly acidic pHs. Doxorubicin (Dox) was successfully loaded into the micelles at pH 7.4 and was released at a much higher rate in response to slight acidification to pH 5. Interestingly, the release of Dox at pH 5 followed apparently a biphasic profile, consisting of an initial fast phase of several hours followed by a sustained release period of several days. Dox loaded in the micelles was rapidly taken up by human glioma (T98G) cells in vitro, accumulating in the endolysosome and subsequently in the nucleus in a few hours, in contrast to the very low uptake of free drug at the same dose. The dose-dependent cytotoxicity of the Dox-loaded micelles was determined by the MTT assay and compared with that of the free Dox. While the empty micelles themselves were not toxic, the IC(50) values of the Dox-loaded micelles were approximately ten-times (by 24h) and three-times (by 48h) lower than the free drug. The much enhanced potency in killing the multi-drug-resistant human glioma cells by Dox loaded in the micelles could be attributed to high intracellular drug concentration and the subsequent pH-triggered drug release. These results

  7. Effect of surface freezing on meniscus relaxation in side chain comb polymers.

    PubMed

    Prasad, Shishir; Jiang, Zhang; Sprung, Michael; Sinha, Sunil K; Dhinojwala, Ali

    2010-04-02

    We have observed a sharp slowing down of the relaxation of the liquid meniscus for poly(n-alkyl acrylate) at temperatures where there are no abrupt changes in bulk viscosity or surface tension. This slowing down is due to the formation of a surface-ordered monolayer above the bulk melting temperatures. X-ray photon correlation spectroscopy measurements reveal that the surface capillary fluctuations are also significantly slower due to the formation of the ordered monolayer for film thicknesses comparable to that of the precursor films. The slowing down of the precursor film dynamics is responsible for slower meniscus relaxation below the surface ordering transition temperature.

  8. Preparation of poly(cyclooctene)-g-poly(ethylene glycol) (PCOE-g-PEG) graft copolymers with tunable PEG side chains via ROMP and its protein adsorption and platelet adhesion properties.

    PubMed

    Yang, Ying; Shi, Dean; Wang, Xueli; Shi, Hengchong; Jiang, Tao; Yang, Yingkui; Luan, Shifang; Yin, Jinghua; Li, Robert K Y

    2014-12-01

    In our previous work [H. Shi, D. Shi et al., Polymer Chemistry 2(2011)679-684], polycyclooctene-g-PEG (PCOE-g-PEG) copolymers were synthesized via ring opening metathesis polymerization (ROMP) from PEG functionalized cyclic olefin macromonomers and cyclooctene. The grafting degree and the grafting site were easily controlled through the "grafting through" approach. The PCOE-g-PEG film surface was imparted excellent anti-protein adsorption properties. In that work, the molecular weight of PEG side chain was fixed at 750 g/mol and the neat PEG content in the copolymer was lower than 50 wt.%. In this work, both the effects of PEG side chain lengths (350 to 1000 g/mol) at a fixed PEG content (50 wt.%) and the neat PEG content (30 wt.% to 70 wt.%) at a fixed PEG molecular weight (750 g/mol) on the anti-protein adsorption and anti-platelet adhesion properties are studied. It is shown that the copolymer with 60 wt.% PEG side chains of 750 g/mol, where both PEG and PCOE form continuous morphology, is optimal to reduce the adsorption of both the bovine serum albumin (BSA) and platelet. When the PEG content reaches 70 wt.%, phase inversion happens. PEG is the continuous phase but PCOE becomes the dispersed phase. The surface roughness of the casting PCOE-g-PEG film increases. In this case, both BSA adsorption and platelet adhesion will slightly increase comparing to the sample with 60 wt.% PEG.

  9. Synthesis of Peptides Containing C-Terminal Esters Using Trityl Side-Chain Anchoring: Applications to the Synthesis of C-Terminal Ester Analogs of the Saccharomyces cerevisiae Mating Pheromone a-Factor.

    PubMed

    Diaz-Rodriguez, Veronica; Ganusova, Elena; Rappe, Todd M; Becker, Jeffrey M; Distefano, Mark D

    2015-11-20

    Peptides containing C-terminal esters are an important class of bioactive molecules that includes a-factor, a farnesylated dodecapeptide, involved in the mating of Saccharomyces cerevisiae. Here, results that expand the scope of solid-phase peptide synthetic methodology that uses trityl side-chain anchoring for the preparation of peptides with C-terminal cysteine alkyl esters are described. In this method, Fmoc-protected C-terminal cysteine esters are anchored to trityl chloride resin and extended by standard solid-phase procedures followed by acidolytic cleavage and HPLC purification. Analysis using a Gly-Phe-Cys-OMe model tripeptide revealed minimal epimerization of the C-terminal cysteine residue under basic conditions used for Fmoc deprotection. (1)H NMR analysis of the unfarnesylated a-factor precursor peptide confirmed the absence of epimerization. The side-chain anchoring method was used to produce wild-type a-factor that contains a C-terminal methyl ester along with ethyl-, isopropyl-, and benzyl-ester analogs in good yield. Activity assays using a yeast-mating assay demonstrate that while the ethyl and isopropyl esters manifest near-wild-type activity, the benzyl ester-containing analog is ca. 100-fold less active. This simple method opens the door to the synthesis of a variety of C-terminal ester-modified peptides that should be useful in studies of protein prenylation and other structurally related biological processes.

  10. Structure-Antibacterial Activity Relationships of Imidazolium-Type Ionic Liquid Monomers, Poly(ionic liquids) and Poly(ionic liquid) Membranes: Effect of Alkyl Chain Length and Cations.

    PubMed

    Zheng, Zhiqiang; Xu, Qiming; Guo, Jiangna; Qin, Jing; Mao, Hailei; Wang, Bin; Yan, Feng

    2016-05-25

    The structure-antibacterial activity relationship between the small molecular compounds and polymers are still elusive. Here, imidazolium-type ionic liquid (IL) monomers and their corresponding poly(ionic liquids) (PILs) and poly(ionic liquid) membranes were synthesized. The effect of chemical structure, including carbon chain length of substitution at the N3 position and charge density of cations (mono- or bis-imidazolium) on the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by determination of minimum inhibitory concentration (MIC). The antibacterial activities of both ILs and PILs were improved with the increase of the alkyl chain length and higher charge density (bis-cations) of imidazolium cations. Moreover, PILs exhibited lower MIC values relative to the IL monomers. However, the antibacterial activities of PIL membranes showed no correlation to those of their analogous small molecule IL monomers and PILs, which increased with the charge density (bis-cations) while decreasing with the increase of alkyl chain length. The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.

  11. Structure control for fine tuning fluorescence emission from side-chain azobenzene polymers.

    PubMed

    Smitha, P; Asha, S K

    2007-06-14

    New fluorescent azobenzene dyes and side-chain polymers have been synthesized and characterized and their photophysical properties studied. A series of azobenzene dyes having different fluorophores such as phenol (S1), phenylphenol (S2) and naphthol (S3) incorporated in them were synthesized. S2 had unusually high fluorescence with a quantum yield of phi f = 0.2 recorded in dichloromethane (DCM), whereas S1 and S3 were found to be weakly fluorescent. The azobenzene dyes were converted into methacrylate monomers having short ethyleneoxy spacers and then free radically polymerized. Phenylphenol-based azobenzene polymer (P2) continued to show fluorescence, whereas fluorescence was completely quenched in the case of phenol (P1)- and naphthol (P3)-based polymers. Phenylphenol, though twisted in the ground state is known to have a more planar geometry in the excited state--a factor that enables it to retain its fluorescence behavior even when it is incorporated as part of an azobenzene unit. In contrast, naphthol, which is a better fluorophore compared to phenylphenol, loses much of its emissive behavior upon coupling to the azobenzene unit. The extent of trans to cis photoisomerization in solution was very low (approximately 17%) for P2 after 30 min of continuous irradiation using 365 nm light, in contrast to approximately 40% for P1 under identical conditions. This is attributed to the steric repulsion brought about by the bulky phenylphenol units that restrict rotation. A 2-fold enhancement in fluorescence emission was observed for P2 upon irradiation by UV light at 360 nm, which relaxed to the original intensity in about 7 day's time. The higher emission of the cis azobenzenes is generally attributed to an inhibition of photoinduced electron transfer (PET) mechanism. The emission of P2 showed a concentration dependence which increased initially and then decreased in intensity with the formation of a new red-shifted peak at higher concentration due to aggregation

  12. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models

    NASA Astrophysics Data System (ADS)

    Shirts, Michael R.; Pande, Vijay S.

    2005-04-01

    Quantitative free energy computation involves both using a model that is sufficiently faithful to the experimental system under study (accuracy) and establishing statistically meaningful measures of the uncertainties resulting from finite sampling (precision). In order to examine the accuracy of a range of common water models used for protein simulation for their solute/solvent properties, we calculate the free energy of hydration of 15 amino acid side chain analogs derived from the OPLS-AA parameter set with the TIP3P, TIP4P, SPC, SPC/E, TIP3P-MOD, and TIP4P-Ew water models. We achieve a high degree of statistical precision in our simulations, obtaining uncertainties for the free energy of hydration of 0.02-0.06kcal/mol, equivalent to that obtained in experimental hydration free energy measurements of the same molecules. We find that TIP3P-MOD, a model designed to give improved free energy of hydration for methane, gives uniformly the closest match to experiment; we also find that the ability to accurately model pure water properties does not necessarily predict ability to predict solute/solvent behavior. We also evaluate the free energies of a number of novel modifications of TIP3P designed as a proof of concept that it is possible to obtain much better solute/solvent free energetic behavior without substantially negatively affecting pure water properties. We decrease the average error to zero while reducing the root mean square error below that of any of the published water models, with measured liquid water properties remaining almost constant with respect to our perturbations. This demonstrates there is still both room for improvement within current fixed-charge biomolecular force fields and significant parameter flexibility to make these improvements. Recent research in computational efficiency of free energy methods allows us to perform simulations on a local cluster that previously required large scale distributed computing, performing four times as much

  13. Fourier transform microwave spectroscopy of Ac-Ser-NH2: the role of side chain interactions in peptide folding.

    PubMed

    Cabezas, Carlos; Robben, Martinus A T; Rijs, Anouk M; Peña, Isabel; Alonso, J L

    2015-08-21

    Serine capped dipeptide N-acetyl-l-serinamide (Ac-Ser-NH2) has been investigated using Fourier transform microwave spectroscopic techniques combined with laser ablation sources. Spectral signatures originating from one dominant species have been detected in the supersonic expansion. Rotational and nuclear quadrupole coupling constants of the two (14)N nuclei have been used in the characterization of a C/γ-turn structure, which is stabilized by a CO∙∙∙HN intramolecular hydrogen bond closing a seven-membered ring. Two extra hydrogen bonds involving the polar side chain (-CH2OH) further stabilize the structure. The non-observation of C5 species, attributed to the presence of the polar side chain, is in contrast with the previous gas phase observation of the related dipeptides containing glycine or alanine residues. The A-E splitting pattern arising from the internal rotation of the methyl group has been analyzed and the internal rotation barrier has been determined.

  14. Photoinduced changes of surface order in coumarin side-chain polymer films used for liquid crystal photoalignment

    SciTech Connect

    Bergmann, G.; Jackson, P.O.; Hogg, J.H.C.; Stirner, T.; O'Neill, M.; Duffy, W.L.; Kelly, S.M.; Clark, G.F.

    2005-08-08

    Specular x-ray reflectivity probes morphological changes in a crosslinkable coumarin photoalignment polymer film resulting from ultraviolet irradiation. An ordered surface layer with density oscillations compatible with planar side-chain alignment is obtained before irradiation. The ordering is enhanced in the early stages of crosslinking. This is attributed to the photoinduced increase of mobility of the side-chains resulting from the creation of free volume by the crosslinking process. The expansion of the thin film confirms that free volume is created. The surface ordering decreases with prolonged ultraviolet irradiation because of increased material viscosity resulting from a high crosslinked density. The implications of surface ordering on liquid crystal photoalignment are discussed.

  15. Glycosyl-Templated Chiral Helix Stapling of Ethynylpyridine Oligomers by Alkene Metathesis between Inter-Pitch Side Chains.

    PubMed

    Abe, Hajime; Kayamori, Fumihiro; Inouye, Masahiko

    2015-06-22

    Ethynylpyridine polymers and oligomers consisting of 4-substituted pyridine rings linked by acetylene bonds at the 2- and 6-positions have been investigated. Ethynylpyridine oligomers covalently linked with a glycosyl chiral template form chiral helical complexes by intramolecular hydrogen bonding, in which the chirality of the template is translated to the helix. With a view to fixation of the chiral architecture, D/L-galactosyl- and D/L-mannosyl-linked ethynylpyridine oligomers have been developed with 4-(3-butenyloxy)pyridine units having alkene side chains. The helical structures are successfully stapled by alkene metathesis of the side chains. Subsequent removal of the chiral templates by acidolysis produces template-free stapled oligomers. The chiral, template-free, stapled oligomers show chiral helicity, which is resistant to polar solvents and heating.

  16. Triazine-Based Sequence-Defined Polymers with Side-Chain Diversity and Backbone-Backbone Interaction Motifs.

    PubMed

    Grate, Jay W; Mo, Kai-For; Daily, Michael D

    2016-03-14

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions.

  17. Determination of isoleucine side-chain conformations in ground and excited states of proteins from chemical shifts.

    PubMed

    Hansen, D Flemming; Neudecker, Philipp; Kay, Lewis E

    2010-06-09

    A simple method is presented for quantifying Ile chi(2) rotamer distributions in proteins based on the measurement of Ile (13)C(delta1) chemical shifts. The methodology is well suited for applications involving very high molecular weight protein complexes, where other NMR parameters such as side-chain scalar coupling constants that report on dihedral angles cannot be measured or for studies of invisible, excited protein states, where chemical shifts are obtained from analysis of CPMG relaxation dispersion profiles. The utility of the approach is demonstrated by an application to the folding reaction of a mutant Fyn SH3 domain, where Ile side-chain structure and dynamics of an on-folding pathway intermediate state are studied.

  18. Specific Interactions of Neutral Side Chains of an Adsorbed Protein with the Surface of α-Quartz and Silica Gel.

    PubMed

    Odinokov, Alexey V; Bagaturyants, Alexander A

    2015-07-16

    Many key features of the protein adsorption on the silica surfaces still remain unraveled. One of the open questions is the interaction of nonpolar side chains with siloxane cavities. Here, we use nonequilibrium molecular dynamics simulations for the detailed investigation of the binding of several hydrophobic and amphiphilic protein side chains with silica surface. These interactions were found to be a possible driving force for protein adsorption. The free energy gain was larger for the disordered surface of amorphous silica gel as compared to α-quartz, but the impact depended on the type of amino acid. The dependence was analyzed from the structural point of view. For every amino acid an enthalpy-entropy compensation behavior was observed. These results confirm a hypothesis of an essential role of hydrophobic interactions in protein unfolding and irreversible adsorption on the silica surface.

  19. Amino Acid Side Chains Buried along Intersubunit Interfaces in a Viral Capsid Preserve Low Mechanical Stiffness Associated with Virus Infectivity.

    PubMed

    Carrillo, Pablo José P; Medrano, María; Valbuena, Alejandro; Rodríguez-Huete, Alicia; Castellanos, Milagros; Pérez, Rebeca; Mateu, Mauricio G

    2017-02-28

    Single-molecule experimental techniques and theoretical approaches reveal that important aspects of virus biology can be understood in biomechanical terms at the nanoscale. A detailed knowledge of the relationship in virus capsids between small structural changes caused by single-point mutations and changes in mechanical properties may provide further physics-based insights into virus function; it may also facilitate the engineering of viral nanoparticles with improved mechanical behavior. Here, we used the minute virus of mice to undertake a systematic experimental study on the contribution to capsid stiffness of amino acid side chains at interprotein interfaces and the specific noncovalent interactions they establish. Selected side chains were individually truncated by introducing point mutations to alanine, and the effects on local and global capsid stiffness were determined using atomic force microscopy. The results revealed that, in the natural virus capsid, multiple, mostly hydrophobic, side chains buried along the interfaces between subunits preserve a comparatively low stiffness of most (S2 and S3) regions. Virtually no point mutation tested substantially reduced stiffness, whereas most mutations increased stiffness of the S2/S3 regions. This stiffening was invariably associated with reduced virus yields during cell infection. The experimental evidence suggests that a comparatively low stiffness at S3/S2 capsid regions may have been biologically selected because it facilitates capsid assembly, increasing infectious virus yields. This study demonstrated also that knowledge of individual amino acid side chains and biological pressures that determine the physical behavior of a protein nanoparticle may be used for engineering its mechanical properties.

  20. Independent Metrics for Protein Backbone and Side-Chain Flexibility: Time Scales and Effects of Ligand Binding.

    PubMed

    Fuchs, Julian E; Waldner, Birgit J; Huber, Roland G; von Grafenstein, Susanne; Kramer, Christian; Liedl, Klaus R

    2015-03-10

    Conformational dynamics are central for understanding biomolecular structure and function, since biological macromolecules are inherently flexible at room temperature and in solution. Computational methods are nowadays capable of providing valuable information on the conformational ensembles of biomolecules. However, analysis tools and intuitive metrics that capture dynamic information from in silico generated structural ensembles are limited. In standard work-flows, flexibility in a conformational ensemble is represented through residue-wise root-mean-square fluctuations or B-factors following a global alignment. Consequently, these approaches relying on global alignments discard valuable information on local dynamics. Results inherently depend on global flexibility, residue size, and connectivity. In this study we present a novel approach for capturing positional fluctuations based on multiple local alignments instead of one single global alignment. The method captures local dynamics within a structural ensemble independent of residue type by splitting individual local and global degrees of freedom of protein backbone and side-chains. Dependence on residue type and size in the side-chains is removed via normalization with the B-factors of the isolated residue. As a test case, we demonstrate its application to a molecular dynamics simulation of bovine pancreatic trypsin inhibitor (BPTI) on the millisecond time scale. This allows for illustrating different time scales of backbone and side-chain flexibility. Additionally, we demonstrate the effects of ligand binding on side-chain flexibility of three serine proteases. We expect our new methodology for quantifying local flexibility to be helpful in unraveling local changes in biomolecular dynamics.

  1. Complete backbone and DENQ side chain NMR assignments in proteins from a single experiment: implications to structure-function studies.

    PubMed

    Reddy, Jithender G; Hosur, Ramakrishna V

    2014-03-01

    Resonance assignment is the first and the most crucial step in all nuclear magnetic resonance (NMR) investigations on structure-function relationships in biological macromolecules. Often, the assignment exercise has to be repeated several times when specific interactions with ligands, substrates etc., have to be elucidated for understanding the functional mechanisms. While the protein backbone serves to provide a scaffold, the side chains interact directly with the ligands. Such investigations will be greatly facilitated, if there are rapid methods for obtaining exhaustive information with minimum of NMR experimentation. In this context, we present here a pulse sequence which exploits the recently introduced technique of parallel detection of multiple nuclei, e.g. (1)H and (13)C, and results in two 3D-data sets simultaneously. These yield complete backbone resonance assignment ((1)H(N), (15)N, (13)CO, (1)Hα/(13)Cα, and (1)Hβ/(13)Cβ chemical shifts) and side chain assignment of D, E, N and Q residues. Such an exhaustive assignment has the potential of yielding accurate 3D structures using one or more of several algorithms which calculate structures of the molecules very reliably on the basis of NMR chemical shifts alone. The side chain assignments of D, E, N, and Q will be extremely valuable for interaction studies with different ligands; D and E side chains are known to be involved in majority of catalytic activities. Utility of this experiment has been demonstrated with Ca(2+) bound M-crystallin, which contains largely D, E, N and Q residues at the metal binding sites.

  2. Separation of anti-angiogenic and cytotoxic activities of borrelidin by modification at the C17 side chain.

    PubMed

    Wilkinson, Barrie; Gregory, Matthew A; Moss, Steven J; Carletti, Isabelle; Sheridan, Rose M; Kaja, Andrew; Ward, Michael; Olano, Carlos; Mendez, Carmen; Salas, José A; Leadlay, Peter F; vanGinckel, Rob; Zhang, Ming-Qiang

    2006-11-15

    A set of novel borrelidin analogues have been prepared by precursor-directed biosynthesis. Structure-activity relationship analysis suggests that steric structural arrangement within the C17 side chain is important for differentiating cytotoxic and anti-angiogenic activities. A C17-cyclobutyl analogue 3 was found to have markedly increased selectivity for in vitro angiogenesis inhibition over cytotoxicity and is therefore potentially useful as an anticancer agent.

  3. A constraint-based assignment system for automating long side chain assignments in protein 2D NMR spectra

    SciTech Connect

    Leishman, S.; Gray, P.; Fothergill, J.E.

    1995-12-31

    The sequential assignment of protein 2D NMR data has been tackled by many automated and semi-automated systems. One area that these systems have not tackled is the searching of the TOCSY spectrum looking for cross peaks and chemical shift values for hydrogen nuclei that are at the end of long side chains. This paper describes our system for solving this problem using constraint logic programming and compares our constraint satisfaction algorithm to a standard backtracking version.

  4. Combination of an aromatic core and aromatic side chains which constitutes discotic liquid crystal and organogel supramolecular assemblies.

    PubMed

    Ishi-i, Tsutomu; Hirayama, Tomoyuki; Murakami, Ko-ichi; Tashiro, Hiroshi; Thiemann, Thies; Kubo, Kanji; Mori, Akira; Yamasaki, Sumio; Akao, Tetsuyuki; Tsuboyama, Akira; Mukaide, Taihei; Ueno, Kazunori; Mataka, Shuntaro

    2005-02-15

    This paper reports unique and unusual formations of columnar liquid crystals and organogels by self-assembling discotic molecules, which are composed of an aromatic hexaazatriphenylene (HAT) core and six flexible aromatic side chains. In HAT derivatives 3a, with 4'-(N,N-diphenylamino)biphenyl-4-yl chains, 3b, with 4'-[N-(2-naphthyl)-N-phenylamino]biphenyl-4-yl chains, and 3c, with 4'-phenoxybiphenyl-4-yl chains, the two-dimensional hexagonal packings can be created by their self-assembling in the liquid crystalline phase, which were characterized by polarizing optical microscopy, differential scanning calorimetry, and X-ray diffraction analysis. In certain solvents, HAT molecules 3a-c can form the viscoelastic fluid organogels, in which one-dimensional aggregates composed of the HAT molecules are self-assembled and entangled into three-dimensional network structures. The organogel structures were analyzed by scanning electron microscopy observation, (1)H NMR, UV-vis, and circular dichroism spectroscopy. In contrast to 3a-c, none of the liquid crystalline and organogel phases could be formed from 3d and 3e with short aromatic side chains including a phenylene spacer, and 3f (except a few specific solutions) and 3g without terminal diarylamino and phenoxy groups. In 3a-c, the aromatic side chains with terminal flexible groups make up soft regions that cooperatively stabilize the liquid crystalline and organogel supramolecular structures together with the hard regions of the hexaazatriphenylene core.

  5. The influence of poly(phenyleneethynylene) side chain structure on single-walled carbon nanotubes hybrid photovoltaic cells.

    PubMed

    Mao, Jie; Liu, Qian; Wang, Shujing; Lv, Xin; Huang, Yi; Ma, Yanfeng; Chen, Yongsheng; Yin, Shougen

    2008-07-01

    A novel poly(phenyleneethynylene)/single walled carbon nanotubes (SWNTs) donor-acceptor nanohybrid system was constructed based on the bulk heterojunction concept, and their photovoltaic (PV) properties were studied. Comparing with that of the pristine polymer poly(phenyleneethynylene) (PPE) device, the PV performance of the SWNTs/PPE hybrid is dramatically improved. The origin of open-circuit voltage (V(oc)) of the pristine polymer PPE device and SWNTs/PPE device was explained by metal-insulator-metal (MIM) diode model and pinning mechanism, respectively. Furthermore, incorporation of sensitizing groups to the side chain of PPE has great effect on the photovoltaic cell performance based on these hybrid materials and both the short-circuit current density (I(sc)) and power conversion efficiency are significantly enhanced. It is proposed that the main reason for the increase of short circuit current is due to efficient transfer of holes by sensitizer to PPE backbone and the transfer of electrons to the SWNTs. The power conversion efficiency is enhanced by approximately 1 order magnitude to 0.031% for the device based on the PPE3 with anthracene sensitizer group on the side chain compared with that (4.2 x 10(-3)% for SWNTs/PPE1 and 6.2 x 10(-3)% for SWNTs/PPE2) of the device without anthracene sensitizer on the side chain.

  6. Cephalosporins. II. 7-(O-Aminomethyl-phnylacetamido) cephalosporanic acids with six membered heterocycles in the C-3 side chain.

    PubMed

    Naito, T; Okumura, J; Kasai K-I; Masuko, K; Hoshi, H

    1977-09-01

    7-(o-Aminomethylphenylacetamido)cephalosporanic acids with six-membered heterocycles in the C-3 side chain were prepared by nucleophillic substitution of 7-ACA at the C-3 acetoxy group followed by N-acylation of the 7-amino group. The 7-side chain acid, o-aminomethylphenylacetic acid (5), was prepared by two new convenient routes, which involved Schmidt reaction of indanone (2) followed by cleavage of the lactam ring or reduction of o-cyanophenylacetic acid (10) starting from o-nitrotoluene. The antibacterial activity of the cephalosporins in this series depends on the heterocycle in the C-3 side chain. In general pyridazines gave cephalosporin derivatives possessing better activity than those with a pyridine or pyrimidine ring. The most active member of the new cephalosporins was 7-(o-aminomethylphenylacetamido)-3-(6-hydroxypyridazin-3-ylthilmethyl)-3-cephem-4-carboxylic acid (BB-S 150) (1g) which has in vitro antibacterial activity superior to cephalothin and cefazolin against both gram-negative and gram-positive organisms. The in vitro activity of BB-S 150 determined in mice was superior to cephalothin and comparable to cefazolin.

  7. The Inherent Conformational Preferences of Glutamine-Containing Peptides: the Role for Side-Chain Backbone Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.

    2015-06-01

    Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.

  8. Two Novel Norwithasteroids with Unusual Six- and Seven-Membered Ether Rings in Side Chain from Flos Daturae

    PubMed Central

    Yang, Bing-You; Xia, Yong-Gang; Wang, Yan-Yan; Wang, Qiu-Hong; Kuang, Hai-Xue

    2013-01-01

    Chemical investigation of 50% ethanol eluate fraction of macroporous resin for the flower of Datura metel L. collected in Jiangsu province of China resulted in the isolation of two novel naturally occurring norwithasteroids, baimantuoluoline I (1) and baimantuoluoside J (2). Their structures were elucidated as 5α, 6β, 12β-trihydroxy-1-oxo-2-en-ergosta-21,24;22,29-diepoxy-26-carboxylic acid (1) and 5α, 6β, 12β, 25-tetrahydroxy-1-oxo-2-en-ergosta-21,24;22,29-diepoxy-26-carboxylic acid (2) on the basis of extensive spectroscopic analysis, including 1D, 2D-NMR, and HR-ESI-MS. According to the literatures, this study represents the first report of the norwithasteroids in the side chain with unusual six- and seven-membered ether rings instead of those with an unmodified skeleton (δ-lactone or δ-lactol side chain) and a modified skeleton (γ-lactone or γ-lactol side chain) in the family of withanolides. Meanwhile, compounds 1 and 2 were evaluated for their immunosuppressive activity against mice splenocyte proliferation in vitro. PMID:23606878

  9. Solid Polymer Electrolytes with Excellent High-Temperature Properties Based on Brush Block Copolymers Having Rigid Side Chains.

    PubMed

    Ping, Jing; Pan, Hongbing; Hou, Ping Ping; Zhang, Meng-Yao; Wang, Xing; Wang, Chao; Chen, Jitao; Wu, Decheng; Shen, Zhihao; Fan, Xing-He

    2017-02-22

    A series of brush block copolymers (BBCPs) with polynorbornene backbones containing poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene} (PMPCS, which is a rigid chain) and poly(ethylene oxide) (PEO) side chains were synthesized by tandem ring-opening metathesis polymerizations. The weight fractions of PEO in BBCPs are similar, and the degrees of polymerization (DPs) of PEO side chains are the same while the DPs of PMPCS are different. The bulk self-assembling behaviors were studied by small-angle X-ray scattering (SAXS). The neat BBCPs cannot form ordered nanostructures. However, after the doping of lithium salt, the BBCPs self-assemble into lamellar (LAM) structures. When the DPs of the PEO and PMPCS side chains are similar, the LAM structure is more ordered, which is attributed to the more flat interface between PMPCS and PEO phases. The ionic conductivity (σ) values of the BBCP/lithium salt complex with the most ordered LAM structure at different temperatures were measured. The σ value increases with increasing temperature in the range of 40-200 °C, and the relationship between σ and T fits the Vogel-Tamman-Fulcher (VTF) equation. The σ value at 200 °C is 1.58 × 10(-3) S/cm, which is one of the highest values for PEO-based polymer electrolytes. These materials with high σ values at high temperatures may be used in high-temperature lithium ion batteries.

  10. Influence of the side chain and substrate on polythiophene thin film surface, bulk, and buried interfacial structures.

    PubMed

    Xiao, Minyu; Jasensky, Joshua; Zhang, Xiaoxian; Li, Yaoxin; Pichan, Cayla; Lu, Xiaolin; Chen, Zhan

    2016-08-10

    The molecular structures of organic semiconducting thin films mediate the performance of various devices composed of such materials. To fully understand how the structures of organic semiconductors alter on substrates due to different polymer side chains and different interfacial interactions, thin films of two kinds of polythiophene derivatives with different side-chains, poly(3-hexylthiophene) (P3HT) and poly(3-potassium-6-hexanoate thiophene) (P3KHT), were deposited and compared on various surfaces. A combination of analytical tools was applied in this research: contact angle goniometry and X-ray photoelectron spectroscopy (XPS) were used to characterize substrate dielectric surfaces with varied hydrophobicity for polymer film deposition; X-ray diffraction and UV-vis spectroscopy were used to examine the polythiophene film bulk structure; sum frequency generation (SFG) vibrational spectroscopy was utilized to probe the molecular structures of polymer film surfaces in air and buried solid/solid interfaces. Both side-chain hydrophobicity and substrate hydrophobicity were found to mediate the crystallinity of the polythiophene film, as well as the orientation of the thiophene ring within the polymer backbone at the buried polymer/substrate interface and the polymer thin film surface in air. For the same type of polythiophene film deposited on different substrates, a more hydrophobic substrate surface induced thiophene ring alignment with the surface normal at both the buried interface and on the surface in air. For different films (P3HT vs. P3KHT) deposited on the same dielectric substrate, a more hydrophobic polythiophene side chain caused the thiophene ring to align more towards the surface at the buried polymer/substrate interface and on the surface in air. We believe that the polythiophene surface, bulk, and buried interfacial molecular structures all influence the hole mobility within the polythiophene film. Successful characterization of an organic conducting

  11. Effect of the Crystal Environment on Side-Chain Conformational Dynamics in Cyanovirin-N Investigated through Crystal and Solution Molecular Dynamics Simulations

    PubMed Central

    Ahlstrom, Logan S.; Vorontsov, Ivan I.; Shi, Jun; Miyashita, Osamu

    2017-01-01

    Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations. PMID:28107510

  12. Inversion of the stereochemistry around the sulfur atom of the axial methionine side chain through alteration of amino acid side chain packing in Hydrogenobacter thermophilus cytochrome C552 and its functional consequences.

    PubMed

    Tai, Hulin; Tonegawa, Ken; Shibata, Tomokazu; Hemmi, Hikaru; Kobayashi, Nagao; Yamamoto, Yasuhiko

    2013-07-16

    In cytochrome c, the coordination of the axial Met Sδ atom to the heme Fe atom occurs in one of two distinctly different stereochemical manners, i.e., R and S configurations, depending upon which of the two lone pairs of the Sδ atom is involved in the bond; hence, the Fe-coordinated Sδ atom becomes a chiral center. In this study, we demonstrated that an alteration of amino acid side chain packing induced by the mutation of a single amino acid residue, i.e., the A73V mutation, in Hydrogenobacter thermophilus cytochrome c552 (HT) forces the inversion of the stereochemistry around the Sδ atom from the R configuration [Travaglini-Allocatelli, C., et al. (2005) J. Biol. Chem. 280, 25729-25734] to the S configuration. Functional comparison between the wild-type HT and the A73V mutant possessing the R and S configurations as to the stereochemistry around the Sδ atom, respectively, demonstrated that the redox potential (Em) of the mutant at pH 6.00 and 25 °C exhibited a positive shift of ∼20 mV relative to that of the wild-type HT, i.e., 245 mV, in an entropic manner. Because these two proteins have similar enthalpically stabilizing interactions, the difference in the entropic contribution to the Em value between them is likely to be due to the effect of the conformational alteration of the axial Met side chain associated with the inversion of the stereochemistry around the Sδ atom due to the effect of mutation on the internal mobility of the loop bearing the axial Met. Thus, the present study demonstrated that the internal mobility of the loop bearing the axial Met, relevant to entropic control of the redox function of the protein, is affected quite sensitively by the contextual stereochemical packing of amino acid side chains in the proximity of the axial Met.

  13. Probing the Carboxyester Side Chain in Controlled Deactivation (−)-Δ8-Tetrahydrocannabinols

    PubMed Central

    2015-01-01

    We recently reported on a controlled deactivation/detoxification approach for obtaining cannabinoids with improved druggability. Our design incorporates a metabolically labile ester group at strategic positions within the THC structure. We have now synthesized a series of (−)-Δ8-THC analogues encompassing a carboxyester group within the 3-alkyl chain in an effort to explore this novel cannabinergic chemotype for CB receptor binding affinity, in vitro and in vivo potency and efficacy, as well as controlled deactivation by plasma esterases. We have also probed the chain’s polar characteristics with regard to fast onset and short duration of action. Our lead molecule, namely 2-[(6aR,10aR)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-3-yl]-2-methyl-propanoic acid 3-cyano-propyl ester (AM7438), showed picomolar affinity for CB receptors and is deactivated by plasma esterases while the respective acid metabolite is inactive. In further in vitro and in vivo experiments, the compound was found to be a remarkably potent and efficacious CB1 receptor agonist with relatively fast onset/offset of action. PMID:25470070

  14. Radiation crosslinking of a bacterial medium-chain-length poly(hydroxyalkanoate) elastomer from tallow.

    PubMed

    Ashby, R D; Cromwick, A M; Foglia, T A

    1998-07-01

    Pseudomonas resinovorans produces a medium-chain-length poly(hydroxyalkanoate) (MCL-PHA) copolymer when grown on tallow (PHA-tal). This polymer had a repeat unit composition ranging from C4 to C14 with some mono-unsaturation in the C12 and C14 alkyl side chains. Thermal analysis indicated that the polymer was semi-crystalline with a melting temperature (T(m)) of 43.5 +/- 0.2 degrees C and a glass transition temperature (Tg) of -43.4 +/- 2.0 degrees C. The presence of unsaturated side chains allowed crosslinking by gamma-irradiation. Irradiated polymer films had decreased solubility in organic solvents that indicated an increase in the crosslinking density within the film matrix. The addition of linseed oil to the gamma-irradiated film matrix enhanced polymer recovery while minimizing chain scission. Linseed oil also caused a decrease in the enthalpy of fusion (delta Hm) of the films (by an average of 60%) as well as enhanced mineralization. The effects of crosslinking on the mechanical properties and biodegradability of the polymer were determined. Radiation had no effect on the storage modulus (E') of the polymer. However, radiation doses of 25 and 50 kGy did increase the Young modulus of the polymer by 129 and 114%, and the tensile strength of the polymer by 76 and 35%, respectively. Finally, the formation of a higher crosslink density within the polymer matrix decreased the biodegradability of the PHA films.

  15. Improving Cellulose Dissolution in Ionic Liquids by Tuning the Size of the Ions: Impact of the Length of the Alkyl Chains in Tetraalkylammonium Carboxylate.

    PubMed

    Meng, Xiangqian; Devemy, Julien; Verney, Vincent; Gautier, Arnaud; Husson, Pascale; Andanson, Jean-Michel

    2017-01-30

    Twenty ionic liquids based on tetraalkylammonium cations and carboxylate anions have been synthesized, characterized, and tested for cellulose dissolution. The amount of cellulose dissolved in these ionic liquids depends strongly on the size of the ions: from 0 to 22 wt % cellulose can be dissolved at 90 °C. The best ionic liquids are less viscous and ammonium carboxylate based ionic liquids can dissolve as much as imidazolium-based ones. The viscosity of an ionic liquid can be decreased by the addition of DMSO as a cosolvent. After the addition of cosolvent, similar amounts of cellulose per ions are reached for most ionic liquids. As observed by rheology, ionic liquids with the longest alkyl chains form a gel when a high amount of cellulose is dissolved; this drastically limits their potential. Molecular simulations and IR spectroscopy have also been used with the aim of understanding how molecular interactions differ between efficient and inefficient ionic liquids.

  16. Naphthalenetetracarboxylic diimide layer-based transistors with nanometer oxide and side chain dielectrics operating below one volt.

    PubMed

    Jung, Byung Jun; Martinez Hardigree, Josue F; Dhar, Bal Mukund; Dawidczyk, Thomas J; Sun, Jia; See, Kevin Cua; Katz, Howard E

    2011-04-26

    We designed a new naphthalenetetracarboxylic diimide (NTCDI) semiconductor molecule with long fluoroalkylbenzyl side chains. The side chains, 1.2 nm long, not only aid in self-assembly and kinetically stabilize injected electrons but also act as part of the gate dielectric in field-effect transistors. On Si substrates coated only with the 2 nm thick native oxide, NTCDI semiconductor films were deposited with thicknesses from 17 to 120 nm. Top contact Au electrodes were deposited as sources and drains. The devices showed good transistor characteristics in air with 0.1-1 μA of drain current at 0.5 V of V(G) and V(DS) and W/L of 10-20, even though channel width (250 μm) is over 1000 times the distance (20 nm) between gate and drain electrodes. The extracted capacitance-times-mobility product, an expression of the sheet transconductance, can exceed 100 nS V(-1), 2 orders of magnitude higher than typical organic transistors. The vertical low-frequency capacitance with gate voltage applied in the accumulation regime reached as high as 650 nF/cm(2), matching the harmonic sum of capacitances of the native oxide and one side chain and indicating that some gate-induced carriers in such devices are distributed among all of the NTCDI core layers, although the preponderance of the carriers are still near the gate electrode. Besides demonstrating and analyzing thickness-dependent NTCDI-based transistor behavior, we also showed <1 V detection of dinitrotoluene vapor by such transistors.

  17. Effect of cationic side-chains on intracellular delivery and cytotoxicity of pH sensitive polymer-doxorubicin nanocarriers

    NASA Astrophysics Data System (ADS)

    Fang, Chen; Kievit, Forrest M.; Cho, Yong-Chan; Mok, Hyejung; Press, Oliver W.; Zhang, Miqin

    2012-10-01

    Fine-tuning the design of polymer-doxorubicin conjugates permits optimization of an efficient nanocarrier to greatly increase intracellular uptake and cytotoxicity. Here, we report synthesis of a family of self-assembled polymer-doxorubicin nanoparticles and an evaluation of the effects of various types of side-chains on intracellular uptake and cytotoxicity of the nanocarriers for lymphoma cells. Monomers with three different cationic side-chains (CA) and pKa's, i.e., a guanidinium group (Ag), an imidazole group (Im), and a tertiary amine group (Dm), were comparatively investigated. The cationic monomer, poly(ethylene glycol) (PEG), and doxorubicin (Dox) were reacted with 1,4-(butanediol) diacrylate (BUDA) to prepare a poly(β-amino ester) (PBAE) polymer via Michael addition. All three polymer-Dox conjugates spontaneously formed nanoparticles (NP) through hydrophobic interactions between doxorubicin in aqueous solution, resulting in NP-Im/Dox, NP-Ag/Dox, and NP-Dm/Dox, with hydrodynamic sizes below 80 nm. Doxorubicin was linked to all 3 types of NPs with a hydrazone bond to assure selective release of doxorubicin only at acidic pH, as it occurs in the tumor microenvironment. Both NP-Im/Dox and NP-Ag/Dox exhibited much higher intracellular uptake by Ramos cells (Burkitt's lymphoma) than NP-Dm/Dox, suggesting that the type of side chain in the NPs determines the extent of intracellular uptake. As a result, NP-Im/Dox and NP-Ag/Dox showed cytotoxicity that was comparable to free Dox in vitro. Our findings suggest that the nature of surface cationic group on nanocarriers may profoundly influence their intracellular trafficking and resulting therapeutic efficacy. Thus, it is a crucial factor to be considered in the design of novel carriers for intracellular drug delivery.

  18. Protein loops, solitons, and side-chain visualization with applications to the left-handed helix region

    NASA Astrophysics Data System (ADS)

    Lundgren, Martin; Niemi, Antti J.; Sha, Fan

    2012-06-01

    Folded proteins have a modular assembly. They are constructed from regular secondary structures like α helices and β strands that are joined together by loops. Here we develop a visualization technique that is adapted to describe this modular structure. In complement to the widely employed Ramachandran plot that is based on toroidal geometry, our approach utilizes the geometry of a two sphere. Unlike the more conventional approaches that describe only a given peptide unit, ours is capable of describing the entire backbone environment including the neighboring peptide units. It maps the positions of each atom to the surface of the two-sphere exactly how these atoms are seen by an observer who is located at the position of the central Cα atom. At each level of side-chain atoms we observe a strong correlation between the positioning of the atom and the underlying local secondary structure with very little if any variation between the different amino acids. As a concrete example we analyze the left-handed helix region of nonglycyl amino acids. This region corresponds to an isolated and highly localized residue independent sector in the direction of the Cβ carbons on the two-sphere. We show that the residue independent localization extends to Cγ and Cδ carbons and to side-chain oxygen and nitrogen atoms in the case of asparagine and aspartic acid. When we extend the analysis to the side-chain atoms of the neighboring residues, we observe that left-handed β turns display a regular and largely amino acid independent structure that can extend to seven consecutive residues. This collective pattern is due to the presence of a backbone soliton. We show how one can use our visualization techniques to analyze and classify the different solitons in terms of selection rules that we describe in detail.

  19. Assessing side-chain perturbations of the protein backbone: a knowledge-based classification of residue Ramachandran space.

    PubMed

    Dahl, David B; Bohannan, Zach; Mo, Qianxing; Vannucci, Marina; Tsai, Jerry

    2008-05-02

    Grouping the 20 residues is a classic strategy to discover ordered patterns and insights about the fundamental nature of proteins, their structure, and how they fold. Usually, this categorization is based on the biophysical and/or structural properties of a residue's side-chain group. We extend this approach to understand the effects of side chains on backbone conformation and to perform a knowledge-based classification of amino acids by comparing their backbone phi, psi distributions in different types of secondary structure. At this finer, more specific resolution, torsion angle data are often sparse and discontinuous (especially for nonhelical classes) even though a comprehensive set of protein structures is used. To ensure the precision of Ramachandran plot comparisons, we applied a rigorous Bayesian density estimation method that produces continuous estimates of the backbone phi, psi distributions. Based on this statistical modeling, a robust hierarchical clustering was performed using a divergence score to measure the similarity between plots. There were seven general groups based on the clusters from the complete Ramachandran data: nonpolar/beta-branched (Ile and Val), AsX (Asn and Asp), long (Met, Gln, Arg, Glu, Lys, and Leu), aromatic (Phe, Tyr, His, and Cys), small (Ala and Ser), bulky (Thr and Trp), and, lastly, the singletons of Gly and Pro. At the level of secondary structure (helix, sheet, turn, and coil), these groups remain somewhat consistent, although there are a few significant variations. Besides the expected uniqueness of the Gly and Pro distributions, the nonpolar/beta-branched and AsX clusters were very consistent across all types of secondary structure. Effectively, this consistency across the secondary structure classes implies that side-chain steric effects strongly influence a residue's backbone torsion angle conformation. These results help to explain the plasticity of amino acid substitutions on protein structure and should help in

  20. All-acrylic multigraft copolymers: Effect of side chain molecular weight and volume fraction on mechanical behavior

    SciTech Connect

    Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo; Wang, Yangyang; Hong, Kunlun; Mays, Jimmy

    2015-08-21

    We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weight of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.

  1. All-acrylic multigraft copolymers: Effect of side chain molecular weight and volume fraction on mechanical behavior

    DOE PAGES

    Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo; ...

    2015-08-21

    We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weightmore » of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.« less

  2. Proton clouds to measure long-range contacts between nonexchangeable side chain protons in solid-state NMR.

    PubMed

    Sinnige, Tessa; Daniëls, Mark; Baldus, Marc; Weingarth, Markus

    2014-03-26

    We show that selective labeling of proteins with protonated amino acids embedded in a perdeuterated matrix, dubbed 'proton clouds', provides general access to long-range contacts between nonexchangeable side chain protons in proton-detected solid-state NMR, which is important to study protein tertiary structure. Proton-cloud labeling significantly improves spectral resolution by simultaneously reducing proton line width and spectral crowding despite a high local proton density in clouds. The approach is amenable to almost all canonical amino acids. Our method is demonstrated on ubiquitin and the β-barrel membrane protein BamA.

  3. Rearrangement of side-chains in a Zif268 mutant highlights the complexities of zinc finger-DNA recognition.

    PubMed

    Miller, J C; Pabo, C O

    2001-10-19

    Structural and biochemical studies of Cys(2)His(2) zinc finger proteins initially led several groups to propose a "recognition code" involving a simple set of rules relating key amino acid residues in the zinc finger protein to bases in its DNA site. One recent study from our group, involving geometric analysis of protein-DNA interactions, has discussed limitations of this idea and has shown how the spatial relationship between the polypeptide backbone and the DNA helps to determine what contacts are possible at any given position in a protein-DNA complex. Here we report a study of a zinc finger variant that highlights yet another source of complexity inherent in protein-DNA recognition. In particular, we find that mutations can cause key side-chains to rearrange at the protein-DNA interface without fundamental changes in the spatial relationship between the polypeptide backbone and the DNA. This is clear from a simple analysis of the binding site preferences and co-crystal structures for the Asp20-->Ala point mutant of Zif268. This point mutation in finger one changes the specificity of the protein from GCG TGG GCG to GCG TGG GC(G/T), and we have solved crystal structures of the D20A mutant bound to both types of sites. The structure of the D20A mutant bound to the GCG site reveals that contacts from key residues in the recognition helix are coupled in complex ways. The structure of the complex with the GCT site also shows an important new water molecule at the protein-DNA interface. These side-chain/side-chain interactions, and resultant changes in hydration at the interface, affect binding specificity in ways that cannot be predicted either from a simple recognition code or from analysis of spatial relationships at the protein-DNA interface. Accurate computer modeling of protein-DNA interfaces remains a challenging problem and will require systematic strategies for modeling side-chain rearrangements and change in hydration.

  4. In vitro and in vivo antimalarial activity of amphiphilic naphthothiazolium salts with amine-bearing side chains.

    PubMed

    Ulrich, Peter; Gipson, Gregory R; Clark, Martha A; Tripathi, Abhai; Sullivan, David J; Cerami, Carla

    2014-10-01

    Because of emerging resistance to existing drugs, new chemical classes of antimalarial drugs are urgently needed. We have rationally designed a library of compounds that were predicted to accumulate in the digestive vacuole and then decrystallize hemozoin by breaking the iron carboxylate bond in hemozoin. We report the synthesis of 16 naphthothiazolium salts with amine-bearing side chains and their activities against the erythrocytic stage of Plasmodium falciparum in vitro. KSWI-855, the compound with the highest efficacy against the asexual stages of P. falciparum in vitro, also had in vitro activity against P. falciparum gametocytes and in vivo activity against P. berghei in a murine malaria model.

  5. α-Ketoheterocycle Inhibitors of Fatty Acid Amide Hydrolase: Exploration of Conformational Constraints in the Acyl Side Chain

    PubMed Central

    Duncan, Katharine K.; Otrubova, Katerina; Boger, Dale L.

    2014-01-01

    A series of α-ketooxazoles containing heteroatoms embedded within conformational constraints in the C2 acyl side chain of 2 (OL-135) were synthesized and evaluated as inhibitors of fatty acid amide hydrolase (FAAH). The studies reveal that the installation of a heteroatom (O) in the conformational constraint is achievable, although the potency of these novel derivatives is reduced slightly relative to 2 and the analogous 1,2,3,4-tetrahydronaphthalene series. Interestingly, both enantiomers (R and S) of the candidate inhibitors bearing a chiral center adjacent to the electrophilic carbonyl were found to effectively inhibit FAAH. PMID:24690529

  6. Influence of the side chain next to C-terminal benzimidazole in opioid pseudopeptides containing the Dmt-Tic pharmacophore.

    PubMed

    Balboni, Gianfranco; Trapella, Claudio; Sasaki, Yusuke; Ambo, Akihiro; Marczak, Ewa D; Lazarus, Lawrence H; Salvadori, Severo

    2009-09-10

    To improve the structure-activity studies of the lead delta opioid agonist H-Dmt-Tic-Asp*-Bid, we synthesized and pharmacologically characterized a series of analogues in which the side chain next to 1H-benzimidazole-2-yl (Bid) was substituted by those endowed with different chemical properties. Interesting results were obtained: (1) only Gly, Ala, and Asp resulted in delta agonism, (2) Phe yielded delta antagonism, (3) and all other residues except Glu (devoid of any activity) gave mu agonism.

  7. Point matching under non-uniform distortions and protein side chain packing based on an efficient maximum clique algorithm.

    PubMed

    Dukka, Bahadur K C; Akutsu, Tatsuya; Tomita, Etsuji; Seki, Tomokazu; Fujiyama, Asao

    2002-01-01

    We developed maximum clique-based algorithms for spot matching for two-dimensional gel electrophoresis images, protein structure alignment and protein side-chain packing, where these problems are known to be NP-hard. Algorithms based on direct reductions to the maximum clique can find optimal solutions for instances of size (the number of points or residues) up to 50-150 using a standard PC. We also developed pre-processing techniques to reduce the sizes of graphs. Combined with some heuristics, many realistic instances can be solved approximately.

  8. Structure-property optimizations in donor polymers via electronics, substituents, and side chains toward high efficiency solar cells.

    PubMed

    Uy, Rycel L; Price, Samuel C; You, Wei

    2012-07-26

    Many advances in organic photovoltaic efficiency are not yet fully understood and new insight into structure-property relationships is required to push this technology into broad commercial use. The aim of this article is not to comprehensively review recent work, but to provide commentary on recent successes and forecast where researchers should look to enhance the efficiency of photovoltaics. By lowering the LUMO level, utilizing electron-withdrawing substituents advantageously, and employing appropriate side chains on donor polymers, researchers can elucidate further aspects of polymer-PCBM interactions while ultimately developing materials that will push past 10% efficiency.

  9. Structure-Based Design of Novel Tetrahydro-Beta-Carboline Derivatives with a Hydrophilic Side Chain as Potential Phosphodiesterase Inhibitors

    PubMed Central

    Elhady, Ahmed K.; Sigler, Sara C.; Noureldin, Nazih; Canzoneri, Joshua C.; Ahmed, Nermin S.; Piazza, Gary A.; Abadi, Ashraf H.

    2015-01-01

    Tadalafil is a clinically approved phosphodiesterase-5 inhibitor for the treatment of erectile dysfunction and pulmonary arterial hypertension. It contains two chiral carbons, and the marketed isomer is the 6R, 12aR isomer with a methyl substituent on the terminal nitrogen of the piperazinedione ring. In this report, tadalafil analogues with an extended hydrophilic side chain on the piperazine nitrogen were designed to interact with particular hydrophilic residues in the binding pocket. This leads to analogues with moderate inhibitory activity on phosphodiesterase-5, even for isomers in which chiral carbons are of the S configuration. PMID:28117310

  10. Copolymers of acrylonitrile with quaternizable thiazole and triazole side-chain methacrylates as potent antimicrobial and hemocompatible systems.

    PubMed

    Tejero, Rubén; Gutiérrez, Beatriz; López, Daniel; López-Fabal, Fátima; Gómez-Garcés, José L; Fernández-García, Marta

    2015-10-01

    A series of six copolymeric families, P(AN-co-MTAs) with various molar fractions of acrylonitrile (fAN) and methacrylates (fMTA) based on 1,3-thiazole and 1,2,3-triazole pendant groups with several spacers of different length and nature (alkyl or succinic), have been synthesized by conventional radical polymerization. The molar fraction of acrylonitrile in the copolymers (FAN) was determined by CHNS elemental analysis. The copolymers were also characterized by ATR-FTIR and molecular weights were determined by size exclusion chromatography (SEC). Due to the nucleophilic nature of the azole heterocycles the copolymers have been easily modified by N-alkylation reaction with butyl iodide leading to polyelectrolytes of diverse amphiphilic balance, P(AN-co-MTAs-BuI). The degree of quaternization (DQ) was quantitative in all instances and was determined by (1)H NMR spectroscopy. Dynamic light scattering (DLS) measurements were performed in order to determine the particle size and the charge density of the systems. The antimicrobial activity of the copolymers was studied in terms of minimal inhibitory concentration (MIC) against the Gram-positive bacteria Staphylococcus aureus, the Gram-negative Pseudomonas aeruginosa and the yeast Candida parapsilosis, as well as the cytotoxic activity toward human red blood cells (RBCs). These types of amphiphilic copolycations presented high selectivity (>300) maintaining moderate to good antimicrobial activity (MIC=4-64 μg/mL) and being non-hemolytic even at high molar fractions of AN in the copolymers compared to PMTAs-BuI homopolymers. Moreover, two examples of acrylonitrile-enriched copolymers (FAN=0.6) presented an excellent time-killing efficiency against microorganisms with 99.9% of killing ranging from 5 to 30 min. Besides, important changes in the morphology of the cell envelop of the microorganisms after treatment with P(AN-co-MTAs) were observed by Field Emission Scanning Electron Microscopy (FE-SEM) compared to untreated

  11. Effect of Side Chains on Molecular Conformation of Anthracene-Ethynylene-Phenylene-Vinylene Oligomers: A Comparative Density Functional Study With and Without Dispersion Interaction.

    PubMed

    Dong, Chuanding; Hoppe, Harald; Beenken, Wichard J D

    2016-06-02

    Using density functional calculations with and without dispersion interaction, we studied the effects of linear octyl and branched 2-ethylhexyl side chains on the oligomer conformation of the conjugated copolymer poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene). With dispersion included, the branched side chains can cause significant bending of the oligomer backbone, while without dispersion they induce mainly torsional disorder. The oligomers with mainly linear side chains keep good planarity when optimized with and without dispersion. Despite their dramatically different conformations, the calculated absorption spectra of the oligomers with various side chain combinations are very similar, indicating that the conformation of the copolymer is not the main reason for the experimentally observed different spectra of ordered and disordered phases.

  12. Side chain dependence of intensity and wavenumber position of amide I' in IR and visible Raman spectra of XA and AX dipeptides.

    PubMed

    Measey, Thomas; Hagarman, Andrew; Eker, Fatma; Griebenow, Kai; Schweitzer-Stenner, Reinhard

    2005-04-28

    A series of AX and XA dipeptides in D2O have been investigated by FTIR, isotropic, and anisotropic Raman spectroscopy at acidic, neutral, and alkaline pD, to probe the influence of amino acid side chains on the amide I' band. We obtained a set of spectral parameters for each peptide, including intensities, wavenumbers, half-widths, and dipole moments, and found that these amide I' parameters are indeed dependent on the side chain. Side chains with similar characteristic properties were found to have similar effects on the amide I'. For example, dipeptides with aliphatic side chains were found to exhibit a downshift of the amide I' wavenumber, while those containing polar side chains experienced an increase in wavenumber. The N-terminal charge causes a substantial upshift of amide I', whereas the C-terminal charge causes a moderate decrease of the transition dipole moment. Density functional theory (DFT) calculations on the investigated dipeptides in vacuo yielded different correlations between theoretically and experimentally obtained wavenumbers for aliphatic/aromatic and polar/charged side chains, respectively. This might be indicative of a role of the hydration shell in transferring side chain-backbone interactions. For Raman bands, we found a correlation between amide I' depolarization ratio and wavenumber which reflects that some side chains (valine, histidine) have a significant influence on the Raman tensor. Altogether, the obtained data are of utmost importance for utilizing amide I as a tool for secondary structure analysis of polypeptides and proteins and providing an experimental basis for theoretical modeling of this important backbone mode. This is demonstrated by a rather accurate modeling for the amide I' band profiles of the IR, isotropic Raman, and anisotropic Raman spectra of the beta-amyloid fragment Abeta(1-82).

  13. Cholesterol side-chain cleavage in the rat adrenal cortex: isolation of a cycloheximide-sensitive activator peptide.

    PubMed Central

    Pedersen, R C; Brownie, A C

    1983-01-01

    A cytosolic peptide activator (Mr approximately equal to 2,200) of cholesterol side-chain cleavage in the adrenal cortex has been isolated from normal corticotropin-treated rats and from rats implanted with the MtT/F4 corticotropin-secreting pituitary tumor. The isolation techniques were those common to peptide hormone purification, including tissue extraction into a highly acidic medium, gel filtration, and reverse-phase HPLC. The amino acid composition has been determined on acid hydrolysates. The activity of this adrenal peptide is acutely increased in hypophysectomized animals treated with corticotropin, and this increase is blocked by cycloheximide. The addition of activator peptide to adrenal mitochondrial preparations results in a rapid stimulation of pregnenolone formation that is dependent on activator concentration and a source of NADPH. In the absence of NADPH, addition of activator peptide to adrenal mitochondria increases the rate of cholesterol association with side-chain cleavage cytochrome P-450. The peptide therefore exhibits properties that are believed to characterize the hypothetical corticotropin-dependent labile activator of adrenal steroidogenesis. PMID:6300876

  14. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity.

    PubMed

    Ollikainen, Noah; de Jong, René M; Kortemme, Tanja

    2015-01-01

    Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein-ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art "fixed backbone" design methods perform poorly on these tests, we develop a new "coupled moves" design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein-ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution.

  15. Crystallographic studies of V44 mutants of Clostridium pasteurianum rubredoxin: Effects of side-chain size on reduction potential

    SciTech Connect

    Park, Il Yeong; Eidsness, Marly K.; Lin, I-Jin; Gebel, Erika B.; Youn, Buhyun; Harley, Jill L.; Machonkin, Timothy E.; Frederick, Ronnie O.; Markley, John L.; Smith, Eugene T.; Ichiye, Toshiko; Kang, ChulHee

    2010-11-16

    Understanding the structural origins of differences in reduction potentials is crucial to understanding how various electron transfer proteins modulate their reduction potentials and how they evolve for diverse functional roles. Here, the high-resolution structures of several Clostridium pasteurianum rubredoxin (Cp Rd) variants with changes in the vicinity of the redox site are reported in order to increase this understanding. Our crystal structures of [V44L] (at 1.8 {angstrom} resolution), [V44A] (1.6 {angstrom}), [V44G] (2.0 {angstrom}) and [V44A, G45P] (1.5 {angstrom}) Rd (all in their oxidized states) show that there is a gradual decrease in the distance between Fe and the amide nitrogen of residue 44 upon reduction in the size of the side chain of residue 44; the decrease occurs from leucine to valine, alanine or glycine and is accompanied by a gradual increase in their reduction potentials. Mutation of Cp Rd at position 44 also changes the hydrogen-bond distance between the amide nitrogen of residue 44 and the sulfur of cysteine 42 in a size-dependent manner. Our results suggest that residue 44 is an important determinant of Rd reduction potential in a manner dictated by side-chain size. Along with the electric dipole moment of the 43-44 peptide bond and the 44-42 NHS type hydrogen bond, a modulation mechanism for solvent accessibility through residue 41 might regulate the redox reaction of the Rds. Proteins 2004.

  16. Role of polar side chains in Li(+) coordination and transport properties of polyoxetane-based polymer electrolytes.

    PubMed

    Sai, Ryansu; Ueno, Kazuhide; Fujii, Kenta; Nakano, Yohei; Shigaki, Naho; Tsutsumi, Hiromori

    2017-02-15

    Lithium ion conducting polymer electrolytes (PEs) have been the subject of intense research for lithium metal battery applications. Here, we investigate the effects of polar side chains on Li(+) coordination and ionic transport properties to gain insights for improving the insufficient conductivity of traditional ether-based solid PEs. Poly(trimethyleneoxide)-based (or polyoxetane-based) polymers with ether or nitrile groups were synthesized by ring-opening polymerization. The thermal, ionic transport, and electrochemical properties and the local structure of Li(+) coordination were studied in the presence of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA). The glass transition temperature (Tg) of the PEs with ether side chains increased with increasing LiTFSA content, whereas the PEs with the nitrile functionality showed the opposite trend at higher salt concentrations. In addition to the unique trend for the Tg values of the PEs in the presence of LiTFSA, the nitrile groups played pivotal roles as coordination sites for Li(+) ions in the first coordination shell and as a polar medium to increase the permittivity of the PEs. These characteristics of the nitrile groups can endow PEs with improved ionic transport properties.

  17. Variation of the net charge, lipophilicity, and side chain flexibility in Dmt(1)-DALDA: Effect on Opioid Activity and Biodistribution.

    PubMed

    Novoa, Alexandre; Van Dorpe, Sylvia; Wynendaele, Evelien; Spetea, Mariana; Bracke, Nathalie; Stalmans, Sofie; Betti, Cecilia; Chung, Nga N; Lemieux, Carole; Zuegg, Johannes; Cooper, Matthew A; Tourwé, Dirk; De Spiegeleer, Bart; Schiller, Peter W; Ballet, Steven

    2012-11-26

    The influence of the side chain charges of the second and fourth amino acid residues in the peptidic μ opioid lead agonist Dmt-d-Arg-Phe-Lys-NH(2) ([Dmt(1)]-DALDA) was examined. Additionally, to increase the overall lipophilicity of [Dmt(1)]-DALDA and to investigate the Phe(3) side chain flexibility, the final amide bond was N-methylated and Phe(3) was replaced by a constrained aminobenzazepine analogue. The in vitro receptor binding and activity of the peptides, as well as their in vivo transport (brain in- and efflux and tissue biodistribution) and antinociceptive properties after peripheral administration (ip and sc) in mice were determined. The structural modifications result in significant shifts of receptor binding, activity, and transport properties. Strikingly, while [Dmt(1)]-DALDA and its N-methyl analogue, Dmt-d-Arg-Phe-NMeLys-NH(2), showed a long-lasting antinociceptive effect (>7 h), the peptides with d-Cit(2) generate potent antinociception more rapidly (maximal effect at 1h postinjection) but also lose their analgesic activity faster when compared to [Dmt(1)]-DALDA and [Dmt(1),NMeLys(4)]-DALDA.

  18. Charge Transfer Dissociation (CTD) Mass Spectrometry of Peptide Cations: Study of Charge State Effects and Side-Chain Losses

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Jackson, Glen P.

    2017-01-01

    1+, 2+, and 3+ precursors of substance P and bradykinin were subjected to helium cation irradiation in a 3D ion trap mass spectrometer. Charge exchange with the helium cations produces a variety of fragment ions, the number and type of which are dependent on the charge state of the precursor ions. For 1+ peptide precursors, fragmentation is generally restricted to C-CO backbone bonds (a and x ions), whereas for 2+ and 3+ peptide precursors, all three backbone bonds (C-CO, C-N, and N-Cα) are cleaved. The type of backbone bond cleavage is indicative of possible dissociation channels involved in CTD process, including high-energy, kinetic-based, and ETD-like pathways. In addition to backbone cleavages, amino acid side-chain cleavages are observed in CTD, which are consistent with other high-energy and radical-mediated techniques. The unique dissociation pattern and supplementary information available from side-chain cleavages make CTD a potentially useful activation method for the structural study of gas-phase biomolecules.

  19. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity

    PubMed Central

    Ollikainen, Noah; de Jong, René M.; Kortemme, Tanja

    2015-01-01

    Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein–ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art “fixed backbone” design methods perform poorly on these tests, we develop a new “coupled moves” design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein – ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution. PMID:26397464

  20. Variation of the net charge, lipophilicity and side chain flexibility in Dmt1-DALDA: effect on opioid activity and biodistribution

    PubMed Central

    Novoa, Alexandre; Van Dorpe, Sylvia; Wynendaele, Evelien; Spetea, Mariana; Bracke, Nathalie; Stalmans, Sofie; Betti, Cecilia; Chung, Nga N.; Lemieux, Carole; Zuegg, Johannes; Cooper, Matthew A.; Tourwé, Dirk; De Spiegeleer, Bart; Schiller, Peter W.; Ballet, Steven

    2012-01-01

    The influence of the side chain charges of the second and fourth amino acid residues in the peptidic μ opioid lead agonist Dmt-D-Arg-Phe-Lys-NH2 ([Dmt1]-DALDA) was examined. Additionally, to increase the overall lipophilicity of [Dmt1]-DALDA and to investigate the Phe3 side chain flexibility, the final amide bond was N-methylated and Phe3 was replaced by a constrained aminobenzazepine analogue. The in vitro receptor binding and activity of the peptides, as well as their in vivo transport (brain in- and efflux and tissue biodistribution) and antinociceptive properties after peripheral administration (i.p. and s.c.) in mice were determined. The structural modifications result in significant shifts of receptor binding, activity and transport properties. Strikingly, while [Dmt1]-DALDA and its N-methyl analogue, Dmt-D-Arg-Phe-NMeLys-NH2, showed a long-lasting antinociceptive effect (>7h), the peptides with D-Cit2 generate potent antinociception more rapidly (maximal effect at 1h post-injection) but also lose their analgesic activity faster, when compared to [Dmt1]-DALDA and [Dmt1,NMeLys4]-DALDA. PMID:23102273

  1. Local softness, softness dipole, and polarizabilities of functional groups: Application to the side chains of the 20 amino acids

    NASA Astrophysics Data System (ADS)

    Krishtal, Alisa; Senet, Patrick; Van Alsenoy, Christian

    2009-07-01

    The values of molecular polarizabilities and softnesses of the 20 amino acids were computed ab initio (MP2). By using the iterative Hirshfeld scheme to partition the molecular electronic properties, we demonstrate that the values of the softness of the side chain of the 20 amino acids are clustered in groups reflecting their biochemical classification, namely: aliphatic, basic, acidic, sulfur containing, and aromatic amino acids. The present findings are in agreement with previous results using different approximations and partitioning schemes [P. Senet and F. Aparicio, J. Chem. Phys. 126, 145105 (2007)]. In addition, we show that the polarizability of the side chain of an amino acid depends mainly on its number of electrons (reflecting its size) and consequently cannot be used to cluster the amino acids in different biochemical groups, in contrast to the local softness. Our results also demonstrate that the global softness is not simply proportional to the global polarizability in disagreement with the intuition that "a softer moiety is also more polarizable." Amino acids with the same softness may have a polarizability differing by a factor as large as 1.7. This discrepancy can be understood from first principles as we show that the molecular polarizability depends on a "softness dipole vector" and not simply on the global softness.

  2. Heterogeneous side chain conformation highlights a network of interactions implicated in hysteresis of the knotted protein, minimal tied trefoil

    NASA Astrophysics Data System (ADS)

    Burban, David J.; Haglund, Ellinor; Capraro, Dominique T.; Jennings, Patricia A.

    2015-09-01

    Hysteresis is a signature for a bistability in the native landscape of a protein with significant transition state barriers for the interconversion of stable species. Large global stability, as in GFP, contributes to the observation of this rare hysteretic phenomenon in folding. The signature for such behavior is non-coincidence in the unfolding and refolding transitions, despite waiting significantly longer than the time necessary for complete denaturation. Our work indicates that hysteresis in the knotted protein, the minimal tied trefoil from Thermotoga maritma (MTTTm), is mediated by a network of side chain interactions within a tightly packed core. These initially identified interactions include proline 62 from a tight β-like turn, phenylalanine 65 at the beginning of the knotting loop, and histidine 114 that initiates the threading element. It is this tightly packed region and the knotting element that we propose is disrupted with prolonged incubation in the denatured state, and is involved in the observed hysteresis. Interestingly, the disruption is not linked to backbone interactions, but rather to the packing of side chains in this critical region.

  3. Toward an ab initio potential energy surface for paclitaxel: A C-13 isoserine side chain conformational study.

    PubMed

    Janicki, Maciej; Lozynski, Marek

    2017-05-01

    (S)-3-Methyl-3-butenyl-(2R,3S)-N-benzoyl-3-phenylisoserinate is used as a model of the C-13 side chain, an essential subunit for the cytotoxicity of the diterpenoid paclitaxel, a chemotherapeutic drug used in the treatment of cancer. The potential energy surface (PES), calculated using a density functional theory method (DFT) and refined with MP2 single-point energy calculations, based on B3LYP geometries, was evaluated. Twelve intramolecular hydrogen bond patterns were identified for 103 in vacuo conformers. The most stable subset of these structures was found to have cooperative NH ⋯ OH ⋯ OC(O) motifs and six minima of importance that lie within 1.2kcal/mol of each other. The oxygen atoms of the ester groups effectively compete with the 2'-oxygen as a proton acceptor of NH to form stable internal hydrogen bonded structures. Additionally, the conventional OH ⋯ OC(N) hydrogen bond, which is represented by almost one third of the located minima, donates a number of stable conformers. However, the PES of the conformationally flexible model is highly dependent on the polarity of the environment. For example, the OH ⋯ OC(N) feature dominates over the cooperative motif in water. The side chain of the experimental T-taxol shaped structure agrees nicely with the respective theoretical lowest energy minimum. The π-π interactions of the phenyl rings and ethylene moiety of this structure are also discussed.

  4. Z-Selective Olefin Metathesis on Peptides: Investigation of Side-Chain Influence, Preorganization, and Guidelines in Substrate Selection

    PubMed Central

    2015-01-01

    Olefin metathesis has emerged as a promising strategy for modulating the stability and activity of biologically relevant compounds; however, the ability to control olefin geometry in the product remains a challenge. Recent advances in the design of cyclometalated ruthenium catalysts has led to new strategies for achieving such control with high fidelity and Z selectivity, but the scope and limitations of these catalysts on substrates bearing multiple functionalities, including peptides, remained unexplored. Herein, we report an assessment of various factors that contribute to both productive and nonproductive Z-selective metathesis on peptides. The influence of sterics, side-chain identity, and preorganization through peptide secondary structure are explored by homodimerization, cross metathesis, and ring-closing metathesis. Our results indicate that the amino acid side chain and identity of the olefin profoundly influence the activity of cyclometalated ruthenium catalysts in Z-selective metathesis. The criteria set forth for achieving high conversion and Z selectivity are highlighted by cross metathesis and ring-closing metathesis on diverse peptide substrates. The principles outlined in this report are important not only for expanding the scope of Z-selective olefin metathesis to peptides but also for applying stereoselective olefin metathesis in general synthetic endeavors. PMID:25102124

  5. Triblock Copolymers with Grafted Fluorine-Free Amphiphilic Non-Ionic Side Chains for Antifouling and Fouling-Release Applications

    SciTech Connect

    Y Cho; H Sundaram; C Weinman; M Paik; M Dimitriou; J Finlay; M Callow; J Callow; E Kramer; C Ober

    2011-12-31

    Fluorine-free, amphiphilic, nonionic surface active block copolymers (SABCs) were synthesized through chemical modification of a polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene triblock copolymer precursor with selected amphiphilic nonionic Brij and other surfactants. Amphiphilicity was imparted by a hydrophobic aliphatic group combined with a hydrophilic poly(ethylene glycol) (PEG) group-containing moiety. The surfaces were characterized by dynamic water contact angle, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure (NEXAFS) analysis. In biofouling assays, settlement (attachment) of both spores of the green alga Ulva and cells of the diatom Navicula on SABCs modified with Brij nonionic side chains was significantly reduced relative to a PDMS standard, with a nonionic surfactant combining a PEG group and an aliphatic moiety demonstrating the best performance. Additionally, a fouling-release assay using sporelings (young plants) of Ulva and Navicula suggested that the SABC derived from nonionic Brij side chains also out-performed PDMS as a fouling-release material. Good antifouling and fouling-release properties were not demonstrated for the other two amphiphilic surfaces derived from silicone and aromatic group containing nonionic surfactants included in this study. The results suggest that small differences in chemical surface functionality impart more significant changes with respect to the antifouling settlement and fouling-release performance of materials than overall wettability behavior.

  6. Dielectric relaxation and molecular dynamics of liquid crystalline side-chain oligoacrylates with 4-cyanazobensene side mesogenic groups in external electric or mechanical fields

    NASA Astrophysics Data System (ADS)

    Nikonorova, N. A.; Borisova, T. I.; Stakhanov, A. I.; Shibaev, Valery P.

    1998-01-01

    Dielectric relaxation and molecular mobility have ben investigated over the frequency range 60Hz-1MHz between 160 degrees C and 150 degrees C for smectic side-chain oligoacrylates with 4-cyanazobenzene mesogenic side groups and methylene spacers of different length. The studied oligomers were oriented by electric or mechanic fields. In the range of subglass temperatures two dielectric processes were observed - the (gamma) 1 and the (beta) . The (gamma) 1 process reflects the local motion of the spacer groups and the (beta) process is connected with the local motion of the mesogenic moieties. the molecular mobility of the (gamma) 1 process increases with the spacer lengthening but at the same time in the case of the (beta) process the mobility is not changed. In LC state near Tg transition, the temperature-frequency dependencies of dielectric losses show two cooperative processes, the (alpha) - an the (delta) , related to the reorientation of the transverse or longitudinal components of the dipole moment of the mesogenic group, correspondingly. The preliminary orientation in external electric or mechanic fields leads to the establishment of planar or homeotropic orientation of the side mesogenic groups. The order parameters of oriented films were calculated. It was shown the planar or homeotropic orientation of mesogenic groups did not influence on relaxation times of the observed dielectric processes.

  7. Effect of the chain length on the structure of ionic liquids: from spatial heterogeneity to ionic liquid crystals.

    PubMed

    Ji, Yumeng; Shi, Rui; Wang, Yanting; Saielli, Giacomo

    2013-01-31

    Ionic liquids with intermediate nonpolar cationic side-chain lengths are known to have nanoscale spatial heterogeneities with nonpolar tail domains separated by a continuous polar network. In this work, we use coarse-grained molecular dynamics simulations to show that, when the nonpolar cationic side chain is sufficiently long, due to the stronger van der Waals interactions between the side chains, the structure of ionic liquids goes through a transition from spatially heterogeneous to liquid crystalline-like. For XMIm(+)/NO(3)(-) ionic liquids, change occurs when the number of carbon groups on the cationic side chain varies from 14 to 16. In the liquid crystal-like phase, the cationic side chains tend to be parallel to each other, while the cationic head groups and anions, although being mostly layered perpendicularly to the direction along the side chains, still form a continuous polar network.

  8. Controlling Exciton Diffusion and Fullerene Distribution in Photovoltaic Blends by Side Chain Modification

    PubMed Central

    2015-01-01

    The influence of crystallinity on exciton diffusion and fullerene distribution was investigated by blending amorphous and semicrystalline copolymers. We measured exciton diffusion and fluorescence quenching in such blends by dispersing fullerene molecules into them. We find that the diffusion length is more than two times higher in the semicrystalline copolymer than in the amorphous copolymer. We also find that fullerene preferentially mixes into disordered regions of the polymer film. This shows that relatively small differences in molecular structure are important for exciton diffusion and fullerene distribution. PMID:26267202

  9. Alkylation of 2- and 3-alkoxycarbonyl-4-quinolinones. DFT study on the regioselectivity

    NASA Astrophysics Data System (ADS)

    Shmidt, María S.; Arroyo Mañez, Pau; Stortz, Carlos A.; Perillo, Isabel A.; Vega, Daniel; Blanco, María M.

    2017-01-01

    The reaction of 2-alkoxycarbonyl-4-quinolinones (1) with a variety of alkylating reagents under different conditions, lead to the corresponding O-alkylated products. The behavior in basic medium of compounds 1 differs from the 3-alkoxycarbonyl-4-quinolinones (4) isomers suggesting that the position of the carboxylate group determines the regioselectivity of the reaction. DFT calculations allow us to conclude that for 3-alkoxycarbonyl-4-quinolinones, the N-alkylation would be thermodynamically and kinetically favored. But for 2-alkoxycarbonyl-4-quinolinones the side chain in the 2-position of the ring prevents the planar approximation to the contiguous heteroatom leading to a more favorable O-alkylation transition state. Crystal structure of an O-alkylated product is determined by single crystal X-ray diffractometry.

  10. Simple physics-based analytical formulas for the potentials of mean force for the interaction of amino acid side chains in water. 3. Calculation and parameterization of the potentials of mean force of pairs of identical hydrophobic side chains.

    PubMed

    Makowski, Mariusz; Sobolewski, Emil; Czaplewski, Cezary; Liwo, Adam; Ołdziej, Stanisław; No, Joo Hwan; Scheraga, Harold A

    2007-03-22

    The potentials of mean force of homodimers of the molecules modeling hydrophobic amino acid side chains (ethane (for alanine), propane (for proline), isobutane (for valine), isopentane (for leucine and isoleucine), ethylbenzene (for phenylalanine), and methyl propyl sulfide (for methionine)) were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation. Analytical expressions consisting of the Gay-Berne term to represent effective van der Waals interactions and the cavity term derived in paper 1 of this series were fitted to the potentials of mean force. The positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the orientation of the molecules, were well represented by the analytical expressions for all systems, which justifies use of such potentials in coarse-grain protein-folding simulations.

  11. Morphology and phase controlled cobalt nanostructures in magnetic polypropylene nanocomposites: the role of alkyl chain-length in maleic anhydride grafted polypropylene.

    PubMed

    He, Qingliang; Yuan, Tingting; Luo, Zhiping; Haldolaarachchige, Neel; Young, David P; Wei, Suying; Guo, Zhanhu

    2013-04-04

    A novel function of maleic anhydride grafted polypropylene (PP) with different backbone chain-lengths was demonstrated, i.e., in controlling the cobalt morphologies (dispersed polyhedral vs. assembled chain nanostructure), crystalline structures (ε- vs. β-phase), and magnetic property (242 vs. 808 Oe) in the synthesized magnetic PP nanocomposites.

  12. Role of the Escherichia coli O157:H7 O side chain in adherence and analysis of an rfb locus.

    PubMed Central

    Bilge, S S; Vary, J C; Dowell, S F; Tarr, P I

    1996-01-01

    Shiga-toxigenic Escherichia coli strains belonging to serotype O157 are important human pathogens, but the genetic basis of expression of the O157 antigen and the role played by the lipopolysaccharide O side chain in the adherence of this organism to epithelial cells are not understood. We performed TnphoA mutagenesis on E. coli O157:H7 strain 86-24 to identify a mutant (strain F12) deficient in O-antigen expression. Nucleotide sequence analysis demonstrated that the transposon inserted within an open reading frame with significant homology to rfbE of Vibrio cholerae O1 (U. H. Stroeher, L. E. Karageorgos, R. Morona, and P. A. Manning, Proc. Natl. Acad. Sci. USA 89:2566-2570, 1992), which is postulated to encode perosamine synthetase. This open reading frame was designated rfbE(EcO157:H7). The guanine-plus-cytosine fraction (0.35) suggests that rfbE(EcO157:H7) may have originated in a species other than E. coli. rfbE(EcO157:H7) is conserved in nontoxigenic E. coli O157 strains expressing a variety of other flagellar antigens but is not found in E. coli O55:H7 strains, which are more closely related to E. coli O157:H7. Strain F12 was significantly more adherent to HeLa cells in a quantitative adherence assay than was its E. coli O157:H7 parent, but they did not differ in other phenotypes. Restoration of the expression of the O side chain by complementation of the TnphoA mutation in strain F12 by a plasmid expressing intact rfbE(EcO157:H7) reduced the adherence of the hyperadherent strain F12. We conclude that rfbE(EcO157:H7) is necessary for the expression of the O157 antigen, that acquisition of E. coli rfb genes occurred independently in E. coli O157:H7 and unrelated O157 strains, and that the O side chain of E. coli O157:H7 lipopolysaccharide interferes with the adherence of E. coli O157:H7 to epithelial cells. PMID:8890241

  13. Role of Side Chains in β-Sheet Self-Assembly into Peptide Fibrils. IR and VCD Spectroscopic Studies of Glutamic Acid-Containing Peptides.

    PubMed

    Tobias, Fernando; Keiderling, Timothy A

    2016-05-10

    Poly(glutamic acid) at low pH self-assembles after incubation at higher temperature into fibrils composed of antiparallel sheets that are stacked in a β2-type structure whose amide carbonyls have bifurcated H-bonds involving the side chains from the next sheet. Oligomers of Glu can also form such structures, and isotope labeling has provided insight into their out-of-register antiparallel structure [ Biomacromolecules 2013 , 14 , 3880 - 3891 ]. In this paper we report IR and VCD spectra and transmission electron micrograph (TEM) images for a series of alternately sequenced oligomers, Lys-(Aaa-Glu)5-Lys-NH2, where Aaa was varied over a variety of polar, aliphatic, or aromatic residues. Their spectral and TEM data show that these oligopeptides self-assemble into different structures, both local and morphological, that are dependent on both the nature of the Aaa side chains and growth conditions employed. Such alternate peptides substituted with small or polar residues, Ala and Thr, do not yield fibrils; but with β-branched aliphatic residues, Val and Ile, that could potentially pack with Glu side chains, these oligopeptides do show evidence of β2-stacking. By contrast, for Leu, with longer side chains, only β1-stacking is seen while with even larger Phe side chains, either β-form can be detected separately, depending on preparation conditions. These structures are dependent on high temperature incubation after reducing the pH and in some cases after sonication of initial fibril forms and reincubation. Some of these fibrillar peptides, but not all, show enhanced VCD, which can offer evidence for formation of long, multistrand, often twisted structures. Substitution of Glu with residues having selected side chains yields a variety of morphologies, leading to both β1- and β2-structures, that overall suggests two different packing modes for the hydrophobic side chains depending on size and type.

  14. Structure-function study of gemini derivatives with two different side chains at C-20, Gemini-0072 and Gemini-0097.

    PubMed

    Huet, Tiphaine; Maehr, Hubert; Lee, Hong Jin; Uskokovic, Milan R; Suh, Nanjoo; Moras, Dino; Rochel, Natacha

    2011-01-01

    Derivatives of vitamin D(3) containing a second side-chain emanating at C-20 are known as gemini and act as vitamin D receptor agonists. Recently, two of these, namely Gemini-0072 and the epimeric Gemini-0097, were selected for further studies in view of their high biological activities and lack of hypercalcemic effects. We now show that the two analogs recruit coactivator SRC-1 better than the parental gemini and act as VDR superagonists. The crystal structures of complexes of zVDR with Gemini-0072 and Gemini-0097 indicate that these ligands induce an extra cavity within the ligand-binding pocket similar to gemini and that their superagonistic activity is due to an increased stabilization of helix H12.

  15. Crystal structure analysis of auromomycin apoprotein (macromomycin) shows importance of protein side chains to chromophore binding selectivity.

    PubMed Central

    Van Roey, P; Beerman, T A

    1989-01-01

    The crystal structure of macromomycin, the apoprotein of the antitumor antibiotic auromomycin, has been determined and refined at 1.6-A resolution. The overall structure is composed of a flattened seven-stranded antiparallel beta-barrel and two antiparallel beta-sheet ribbons. The barrel and the ribbons define a deep cleft that is the chromophore binding site. The cleft is very accessible and in this structure is occupied by two 2-methyl-2,4-pentanediol and two water molecules. The overall shape of the binding site is similar to that of the analogue actinoxanthin. Highly specific side chains that are not conserved between different analogues extend into the binding site and may be important to the chromophore binding specificity. PMID:2771945

  16. NMR Spectroscopic Assignment of Backbone and Side-Chain Protons in Fully Protonated Proteins: Microcrystals, Sedimented Assemblies, and Amyloid Fibrils.

    PubMed

    Stanek, Jan; Andreas, Loren B; Jaudzems, Kristaps; Cala, Diane; Lalli, Daniela; Bertarello, Andrea; Schubeis, Tobias; Akopjana, Inara; Kotelovica, Svetlana; Tars, Kaspars; Pica, Andrea; Leone, Serena; Picone, Delia; Xu, Zhi-Qiang; Dixon, Nicholas E; Martinez, Denis; Berbon, Mélanie; El Mammeri, Nadia; Noubhani, Abdelmajid; Saupe, Sven; Habenstein, Birgit; Loquet, Antoine; Pintacuda, Guido

    2016-12-12

    We demonstrate sensitive detection of alpha protons of fully protonated proteins by solid-state NMR spectroscopy with 100-111 kHz magic-angle spinning (MAS). The excellent resolution in the Cα-Hα plane is demonstrated for 5 proteins, including microcrystals, a sedimented complex, a capsid and amyloid fibrils. A set of 3D spectra based on a Cα-Hα detection block was developed and applied for the sequence-specific backbone and aliphatic side-chain resonance assignment using only 500 μg of sample. These developments accelerate structural studies of biomolecular assemblies available in submilligram quantities without the need of protein deuteration.

  17. Efficient photosensitization of terbium ions enabled by hydrolysis of siloxy groups in ligands with specific side-chains.

    PubMed

    Wang, QianMing; Ogawa, Keishiro; Li, Yan; Tamiaki, Hitoshi

    2011-01-01

    We have demonstrated the first observable case of efficient energy transfer from poly-ligands to terbium ions through cross-linked siloxane in solution. The intensification of green luminescence was easily perceived by the naked eye under UV-254 nm illumination, where even the terbium dopants reached 0.1 μM. Moreover, the nano-scale fibrous structure (diameter 100-200 nm) aggregated to a micro-meter size round plate (diameter 1.1 μm). In addition, compound 1 equipped with three long tetradecyl chains in gels gained more of an advantage over the doubly tetradecylated compounds 2 and 3 in terms of energy migration to terbium ions due to side chain effects.

  18. Polarizable simulations with second order interaction model (POSSIM) force field: developing parameters for protein side-chain analogues.

    PubMed

    Li, Xinbi; Ponomarev, Sergei Y; Sa, Qina; Sigalovsky, Daniel L; Kaminski, George A

    2013-05-30

    A previously introduced polarizable simulations with second-order interaction model (POSSIM) force field has been extended to include parameters for small molecules serving as models for peptide and protein side-chains. Parameters have been fitted to permit reproducing many-body energies, gas-phase dimerization energies, and geometries and liquid-phase heats of vaporization and densities. Quantum mechanical and experimental data have been used as the target for the fitting. The POSSIM framework combines accuracy of a polarizable force field and computational efficiency of the second-order approximation of the full-scale induced point dipole polarization formalism. The resulting parameters can be used for simulations of the parameterized molecules themselves or their analogues. In addition to this, these force field parameters are currently being used in further development of the POSSIM fast polarizable force field for proteins.

  19. Polarizable Simulations with Second order Interaction Model (POSSIM) force field: Developing parameters for protein side-chain analogues

    PubMed Central

    Li, Xinbi; Ponomarev, Sergei Y.; Sa, Qina; Sigalovsky, Daniel L.; Kaminski, George A.

    2013-01-01

    A previously introduced POSSIM (POlarizable Simulations with Second order Interaction Model) force field has been extended to include parameters for small molecules serving as models for peptide and protein side-chains. Parameters have been fitted to permit reproducing many-body energies, gas-phase dimerization energies and geometries and liquid-phase heats of vaporization and densities. Quantum mechanical and experimental data have been used as the target for the fitting. The POSSIM framework combines accuracy of a polarizable force field and computational efficiency of the second-order approximation of the full-scale induced point dipole polarization formalism. The resulting parameters can be used for simulations of the parameterized molecules themselves or their analogues. In addition to this, these force field parameters are currently being employed in further development of the POSSIM fast polarizable force field for proteins. PMID:23420678

  20. Synthesis and photophysical properties of polyfluorene with dipicolylamine groups on the side chain: highly selective and sensitive detection of histidine.

    PubMed

    Zhang, Wenjun; Qin, Jingui; Yang, Chuluo

    2013-01-25

    Two new polyfluorenes with dipicolylamine (DPA) pendant, PF-TDPA and PF-HDPA, are designed and synthesized by pre- and post-functionalization, respectively. PF-TDPA with a rigid side chain shows a selective fluorescence quenching upon the addition of Cu(2+) in a mixture solution of tetrahydrofuran and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer. What is more, the PF-TDPA/Cu(2+) complex can selectively detect histidine over other amino acids with a fluorescence recovery. In contrast, PF-HDPA with a flexible spacer exhibits a fluorescence quenching to Cu(2+) but slightly fluorescence recovery after the addition of histidine. This indicates that the proper distance between the two DPA groups play an important role in the detection of histidine.

  1. Ozonolysis of surface-adsorbed methoxyphenols: kinetics of aromatic ring cleavage vs. alkene side-chain oxidation

    NASA Astrophysics Data System (ADS)

    O'Neill, E. M.; Kawam, A. Z.; Van Ry, D. A.; Hinrichs, R. Z.

    2014-01-01

    Lignin pyrolysis products, which include a variety of substituted methoxyphenols, constitute a major component of organics released by biomass combustion, and may play a central role in the formation of atmospheric brown carbon. Understanding the atmospheric fate of these compounds upon exposure to trace gases is therefore critical to predicting the chemical and physical properties of biomass burning aerosol. We used diffuse reflectance infrared spectroscopy to monitor the heterogeneous ozonolysis of 4-propylguaiacol, eugenol, and isoeugenol adsorbed on NaCl and α-Al2O3 substrates. Adsorption of gaseous methoxyphenols onto these substrates produced near-monolayer surface concentrations of 3 × 1018 molecules m-2. The subsequent dark heterogeneous ozonolysis of adsorbed 4-propylguaiacol cleaved the aromatic ring between the methoxy and phenol groups with the product conclusively identified by GC-MS and 1H-NMR. Kinetic analysis of eugenol and isoeugenol dark ozonolysis also suggested the formation of ring-cleaved products, although ozonolysis of the unsaturated substituent groups forming carboxylic acids and aldehydes was an order of magnitude faster. Average uptake coefficients for NaCl-adsorbed methoxyphenols were γ = 2.3 (± 0.8) × 10-7 and 2 (± 1) × 10-6 for ozonolysis of the aromatic ring and the unsaturated side chain, respectively, and reactions on α-Al2O3 were approximately two times slower. UV-visible radiation (λ > 300 nm) enhanced eugenol ozonolysis of the aromatic ring by a factor of 4(± 1) but had no effect on ozonolysis of the alkene side chain.

  2. Polarized optical spectroscopy applied to investigate two poly(phenylene-vinylene) polymers with different side chain structures

    NASA Astrophysics Data System (ADS)

    Pâlsson, Lars-Olof; Vaughan, Helen L.; Monkman, Andrew P.

    2006-10-01

    Two related poly(phenylene-vinylene) (PPV) light-emitting polymers have been investigated by means of polarized optical spectroscopy. The purpose of the investigation was to investigate the nature of the interactions in thin films and to examine what impact the difference in side chain structure and molecular weight in poly(2'-methoxy-5-2-ethyl-hexoxy)-1,4-phenylene vinylene (MEH-PPV) and poly(2-(3',7'-dimethyloctyloxy)-5-methoxy-1,4-phenylene-vinylene) (OC1C10-PPV) has on the electronic and optical properties of the two polymers. Aligning the polymers by dispersing them in anisotropic solvents and stretched films shows that the side chains have an impact on the relative orientations of the transition dipole moments. In anisotropic solvents the linear dichroism is larger for MEH-PPV than for the related polymer OC1C10-PPV, while in stretched films the opposite situation prevails. A lower polarization of the luminescence from OC1C10-PPV, relative to MEH-PPV, was also obtained independent of alignment medium used. The data therefore suggest that while mechanical stretching may align the OC1C10-PPV to a greater degree, the emitting species is distinct from the absorbing species. The circular dichroism (CD) spectra of both polymers undergo dramatic changes when the liquid phase and the solid state (film) are compared. The solution CD spectra shows no evidence of interchain interactions; instead the spectra of both systems indicate a helical conformation of the polymers. The CD spectra of films are dramatically different with the strong Cotton effect being observed. This points to the formation of an aggregate in the film, with an associated ground state interaction, an interchain species such as a physical dimer, or a more complex higher aggregate.

  3. Amide side chain amphiphilic polymers disrupt surface established bacterial bio-films and protect mice from chronic Acinetobacter baumannii infection.

    PubMed

    Uppu, Divakara S S M; Samaddar, Sandip; Ghosh, Chandradhish; Paramanandham, Krishnamoorthy; Shome, Bibek R; Haldar, Jayanta

    2016-01-01

    Bacterial biofilms represent the root-cause of chronic or persistent infections in humans. Gram-negative bacterial infections due to nosocomial and opportunistic pathogens such as Acinetobacter baumannii are more difficult to treat because of their inherent and rapidly acquiring resistance to antibiotics. Due to biofilm formation, A. baumannii has been noted for its apparent ability to survive on artificial surfaces for an extended period of time, therefore allowing it to persist in the hospital environment. Here we report, maleic anhydride based novel cationic polymers appended with amide side chains that disrupt surface established multi-drug resistant A. baumannii biofilms. More importantly, these polymers significantly (p < 0.0001) decrease the bacterial burden in mice with chronic A. baumannii burn wound infection. The polymers also show potent antibacterial efficacy against methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterococci (VRE) and multi-drug resistant clinical isolates of A. baumannii with minimal toxicity to mammalian cells. We observe that optimal hydrophobicity dependent on the side chain chemical structure of these polymers dictate the selective toxicity to bacteria. Polymers interact with the bacterial cell membranes by causing membrane depolarization, permeabilization and energy depletion. Bacteria develop rapid resistance to erythromycin and colistin whereas no detectable development of resistance occurs against these polymers even after several passages. These results suggest the potential use of these polymeric biomaterials in disinfecting biomedical device surfaces after the infection has become established and also for the topical treatment of chronic bacterial infections.

  4. Theoretical study on the polar hydrogen-π (Hp-π) interactions between protein side chains

    PubMed Central

    2013-01-01

    Background In the study of biomolecular structures and interactions the polar hydrogen-π bonds (Hp-π) are an extensive molecular interaction type. In proteins 11 of 20 natural amino acids and in DNA (or RNA) all four nucleic acids are involved in this type interaction. Results The Hp-π in proteins are studied using high level QM method CCSD/6-311 + G(d,p) + H-Bq (ghost hydrogen basis functions) in vacuum and in solutions (water, acetonitrile, and cyclohexane). Three quantum chemical methods (B3LYP, CCSD, and CCSD(T)) and three basis sets (6-311 + G(d,p), TZVP, and cc-pVTZ) are compared. The Hp-π donors include R2NH, RNH2, ROH, and C6H5OH; and the acceptors are aromatic amino acids, peptide bond unit, and small conjugate π-groups. The Hp-π interaction energies of four amino acid pairs (Ser-Phe, Lys-Phe, His-Phe, and Tyr-Phe) are quantitatively calculated. Conclusions Five conclusion points are abstracted from the calculation results. (1) The common DFT method B3LYP fails in describing the Hp-π interactions. On the other hand, CCSD/6-311 + G(d,p) plus ghost atom H-Bq can yield better results, very close to the state-of-the-art method CCSD(T)/cc-pVTZ. (2) The Hp-π interactions are point to π-plane interactions, possessing much more interaction conformations and broader energy range than other interaction types, such as common hydrogen bond and electrostatic interactions. (3) In proteins the Hp-π interaction energies are in the range 10 to 30 kJ/mol, comparable or even larger than common hydrogen bond interactions. (4) The bond length of Hp-π interactions are in the region from 2.30 to 3.00 Å at the perpendicular direction to the π-plane, much longer than the common hydrogen bonds (~1.9 Å). (5) Like common hydrogen bond interactions, the Hp-π interactions are less affected by solvation effects. PMID:23705926

  5. Parameterization of the Hamiltonian Dielectric Solvent (HADES) Reaction-Field Method for the Solvation Free Energies of Amino Acid Side-Chain Analogs.

    PubMed

    Zachmann, Martin; Mathias, Gerald; Antes, Iris

    2015-06-08

    Optimization of the Hamiltonian dielectric solvent (HADES) method for biomolecular simulations in a dielectric continuum is presented with the goal of calculating accurate absolute solvation free energies while retaining the model's accuracy in predicting conformational free-energy differences. The solvation free energies of neutral and polar amino acid side-chain analogs calculated by using HADES, which may optionally include nonpolar contributions, were optimized against experimental data to reach a chemical accuracy of about 0.5 kcal mol(-1). The new parameters were evaluated for charged side-chain analogs. The HADES results were compared with explicit-solvent, generalized Born, Poisson-Boltzmann, and QM-based methods. The potentials of mean force (PMFs) between pairs of side-chain analogs obtained by using HADES and explicit-solvent simulations were used to evaluate the effects of the improved parameters optimized for solvation free energies on intermolecular potentials.

  6. The serotype-specific glucose side chain of rhamnose-glucose polysaccharides is essential for adsorption of bacteriophage M102 to Streptococcus mutans.

    PubMed

    Shibata, Yukie; Yamashita, Yoshihisa; van der Ploeg, Jan R

    2009-05-01

    Bacteriophage M102 is a virulent siphophage that propagates in some serotype c Streptococcus mutans strains, but not in S. mutans of serotype e, f or k. The serotype of S. mutans is determined by the glucose side chain of rhamnose-glucose polysaccharide (RGP). Because the first step in the bacteriophage infection process is adsorption of the phage, it was investigated whether the serotype specificity of phage M102 was determined by adsorption. M102 adsorbed to all tested serotype c strains, but not to strains of different serotypes. Streptococcus mutans serotype c mutants defective in the synthesis of the glucose side chain of RGP failed to adsorb phage M102. These results suggest that the glucose side chain of RGP acts as a receptor for phage M102.

  7. Regioselective synthesis and biological profiling of butyric and phenylalkylcarboxylic esters derivated from D-mannose and xylitol: influence of alkyl chain length on acute toxicity.

    PubMed

    Pouillart, P; Douillet, O; Scappini, B; Gozzini, A; Santini, V; Grossi, A; Pagliai, G; Strippoli, P; Rigacci, L; Ronco, G; Villa, P

    1999-01-01

    Regiospecific synthesis of 12 novel n-butyric and phenylalkylcarboxylic monoesters of mannose and xylitol was achieved. The strategy adopted, avoided a tedious intramolecular transesterification step, previously described for the synthesis of analogous compounds and permitted the facile synthesis of a new generation of stable derivatives. The general tolerance of the drugs has been assayed after intravenous administration of a bolus dose into mice. Monobutyric esters showed a low toxicity commensurate with the requirements for future development. A relationship was observed between chain length and toxicity. In contrast, phenylacetic, 3-phenylpropionic and 4-phenylbutyric esters were found to be toxic. Phenylbutyric esters induced marked and specific neuromuscular damage. Preliminary biological investigations of the new series of monobutyric esters showed them to retain the benificial biological properties of butyric acid whilst remaining relatively non toxic. They induced an inhibition of in vitro proliferation of 10 human cases of de novo acute myeloid leukemia (AML) primary cultures and AML established cell lines. AML blasts growth appeared to be blocked and cell differentiation was established. Transcription and expression of maturation markers and finally apoptosis were observed. Moreover, human gamma-chain hemoglobin (HbF) synthesis in erythroleukemia cells was stimulated by monobutyric esters. Mannose and xylitol butyric derivatives would appear to have exciting potential in treatment of beta-Hemoglobinopathies, sickle cell anemia and cancer.

  8. Synthetic high-charge organomica: effect of the layer charge and alkyl chain length on the structure of the adsorbed surfactants.

    PubMed

    Pazos, M Carolina; Castro, Miguel A; Orta, M Mar; Pavón, Esperanza; Valencia Rios, Jesús S; Alba, María D

    2012-05-15

    A family of organomicas was synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg(6)F(4)O(20)·XH(2)O, where n = 2, 3, and 4) exchanged with dodecylammonium and octadecylammonium cations. The molecular arrangement of the surfactant was elucidated on the basis on XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas was investigated by (13)C, (27)Al, and (29)Si MAS NMR. The arrangement of alkylammonium ions in these high-charge synthetic micas depends on the combined effects of the layer charge of the mica and the chain length of the cation. In the organomicas with dodecylammonium, a transition from a parallel layer to a bilayer-paraffin arrangement is observed when the layer charge of the mica increases. However, when octadecylammonium is the interlayer cation, the molecular arrangement of the surfactant was found to follow the bilayer-paraffin model for all values of layer charge. The amount of ordered conformation all-trans is directly proportional of layer charge.

  9. Self-assembly of amphiphilic homopolymers bearing ferrocene and carboxyl functionalities: effect of polymer concentration, β-cyclodextrin, and length of alkyl linker.

    PubMed

    Feng, Chun; Lu, Guolin; Li, Yongjun; Huang, Xiaoyu

    2013-08-27

    Three new acrylamide monomers containing ferrocene and tert-butyl ester groups were first synthesized via multistep nucleophilic substitution reaction under mild conditions followed by reversible addition-fragmentation chain transfer (RAFT) homopolymerization to give well-defined homopolymers with narrow molecular weight distributions (M(w)/M(n) ≤ 1.36). The target amphiphilic homopolymers were obtained by the acidic hydrolysis of tert-butyoxycarbonyls to carboxyls in every repeating unit using CF3COOH. The self-assembly behaviors of these amphiphilic homopolymers bearing both ferrocene and carboxyl moieties in each repeating unit in aqueous media were investigated by transmission emission microscopy (TEM), dynamic light scattering (DLS), and atomic force microscopy (AFM). Large compound micelles with different morphologies were formed by these amphiphilic homopolymers, which consist of the corona formed by hydrophilic carboxyls and the core containing numerous reverse micelles with hydrophilic islands of carboxyls in continuous hydrophobic phase of ferrocene-based segments. The morphologies of the formed micelles could be tuned by the concentration of amphiphilic homopolymers, pH value of the solution, the length of -CH2 linker between ferrocene group and carboxyl, and the amount of β-cyclodextrin (β-CD).

  10. Synthesis of new opioid derivatives with a propellane skeleton and their pharmacologies: Part 5, novel pentacyclic propellane derivatives with a 6-amide side chain.

    PubMed

    Nakajima, Ryo; Yamamoto, Naoshi; Hirayama, Shigeto; Iwai, Takashi; Saitoh, Akiyoshi; Nagumo, Yasuyuki; Fujii, Hideaki; Nagase, Hiroshi

    2015-10-01

    We designed and synthesized pentacyclic propellane derivatives with a 6-amide side chain to afford compounds with higher MOR/KOR ratio and lower sedative effects than nalfurafine. The obtained etheno-bridged derivative with a β-amide side chain, YNT-854, showed a higher MOR/KOR ratio than nalfurafine. YNT-854 also exhibited a higher dose ratio between the sedative effect and the analgesic effect than observed with nalfurafine, which may guide the future design of useful analgesics with a weaker sedative effect than nalfurafine.

  11. Using infrared spectroscopy of a nitrile labeled phenylalanine and tryptophan fluorescence to probe the α-MSH peptide's side-chain interactions with a micelle model membrane

    NASA Astrophysics Data System (ADS)

    Gonzalez, Javier D.; Levonyak, Nicholas S.; Schneider, Sydney C.; Smith, Matthew J.; Cremeens, Matthew E.

    2014-01-01

    The interactions of α-MSH (Ac-SYSMEHFRWGKPV-NH2) side-chains were biophysically characterized with a micelle model membrane and in model intracellular bacterial conditions using infrared (IR) spectroscopy of a nitrile labeled α-MSH analogue, circular dichroism (CD), and tryptophan fluorescence. Local changes detected by the tryptophan and a nitrile-labeled phenylalanine using fluorescence and infrared spectroscopies, respectively, suggest that the Trp9 side-chain in the conserved core (HisPheArgTrp) of α-MSH is buried in an SDS micellar environment, while Phe(CN)7 does not appear to be buried.

  12. Determination of individual side-chain conformations, tertiary conformations, and molecular topography of tyrocidine A from scalar coupling constants and chemical shifts.

    PubMed

    Kuo, M C; Gibbons, W A

    1979-12-25

    We report for the decapeptide tyrocidine A: (a) H alpha and H beta chemical shifts and scalar coupling constants for most residues of tyrocidine A in methanol-d4 and dimethyl-d6 sulfoxide (Me2so-d6) and the H alpha and H beta chemical shifts for other residues; (b) scalar coupling constants 3J alpha beta for nine side chains in methanol-d4 but only seven side chains in Me2SO-d6, due to chemical shift degeneracy; the Gln9 and Tyr10 side chains in methanol-d4 were only approximately analyzed; (c) a total spin-spin analysis of Pro5 in Me2SO-d6 and, partly by comparison, also in methanol-d4; (d) conversion of 3J alpha beta values to side-chain conformations for all residues in methanol-d4; comparisons, where possible, led to the conclusion that side-chain conformations are similar in methanol-d4 and Me2SO-d6; (e) an absolute conformational analysis of Pro5 from 3J values and a method of assigning all pro-R,S protons; Pro5 has a Ramachandran B, C2-Cexo-Cendo conformation; (f) chi 1, chi 2 conformations of several aromatic residues based upon proton-chromophore distance measurement from anomalous chemical shifts and Johnson-Bovey diagrams; (g) pro-R and pro-S assignments of H beta's from anomalous chemical shifts, high-temperature dependence of anomalous chemical shifts, and backbone side-chain nuclear Overhauser effects; (h) most tertiary conformations of the whole tyrocidine A molecule possessing residues 4--8 and 10 in highly preferred (ca. 90%) chi 1 conformations, but residues 1--3 and 9 having at least two chi 1 rotamers; (2) description of three topographical regions of the molecule--a hydrophobic region, a flat hydrophilic surface on the other side of the molecule, and a hydrophilic region consisting of two peptide backbone units and the side chains of Asn8, Gln9, and Tyr10; (j) proposed side chain, beta-turn, and beta-pleated sheet conformations that readily account for all "normal" and anomalous chemical shifts.

  13. Exploiting Supramolecular Interactions for the Intramolecular Folding of Side-Chain Functionalized Polymers and Assembly of Anisotropic Colloids

    NASA Astrophysics Data System (ADS)

    Romulus, Joy

    The overarching goal presented in this thesis is the self-assembly of synthetic systems into higher ordered structures utilizing supramolecular chemistry. Noncovalent interactions including charge-transfer and hydrogen bonding as well as DNA hybridization are exploited to induce the assembly of polymers and colloids into well-defined architectures. This strategy provides a tunable handle on materials bulk properties that can be adjusted by simply changing variables such as temperature and solvent. A brief overview of design principles for the supramolecular assembly of side-chain functionalized polymers is presented. The polymerization technique selected was living ring-opening metathesis polymerization (ROMP), thus affording control over molecular weight and molecular weight distributions. ROMP also allowed for the incorporation of functional groups that were used to assemble the polymers into ordered structures. Charge-transfer motifs were exploited and shown to drive the assembly of random and alternating copolymers via intramolecular side-chain interactions. Incorporation of complementary hydrogen bonding motifs was shown to guide the single-chain folding of a multifunctional triblock copolymer into sheet-like structures. Precision over the size, shape, and monomer sequence were identified as key elements for efficient self-assembly. The self-assembly of colloids using DNA hybridization was also investigated. Previously, the majority of colloid-based research relied upon the self-assembly of spherical isotropic particles into closed-packed arrangements. In contrast, anisotropic particles may allow for the realization of open structures. By expanding upon a method to permanently cross-link DNA strands incubated on a colloidal surface, a new strategy to engineer patchy particles is described. These functional DNA-coated patches are demonstrated to direct particle assembly. The self-assembly of polymer and colloidal systems utilizing noncovalent interactions

  14. Bis(alkyl) rare-earth complexes coordinated by bulky tridentate amidinate ligands bearing pendant Ph2P[double bond, length as m-dash]O and Ph2P[double bond, length as m-dash]NR groups. Synthesis, structures and catalytic activity in stereospecific isoprene polymerization.

    PubMed

    Rad'kova, Natalia Yu; Tolpygin, Aleksei O; Rad'kov, Vasily Yu; Khamaletdinova, Nadia M; Cherkasov, Anton V; Fukin, Georgi K; Trifonov, Alexander A

    2016-11-22

    A series of new tridentate amidines 2-[Ph2P[double bond, length as m-dash]X]C6H4NHC(tBu)[double bond, length as m-dash]N(2,6-R2C6H3) (X = O, R = iPr (1); X = S, R = Me (2); X = NPh, R = Me (3); X = N(2,6-Me2C6H3), R = Me (4)) bearing various types of donor Ph2P[double bond, length as m-dash]X groups in a pendant chain was synthesized. Bis(alkyl) complexes {2-[Ph2P[double bond, length as m-dash]X]C6H4NC(tBu)N(2,6-R2C6H3)}Ln(CH2SiMe3)2 (Ln = Y, X = O, R = iPr (5); Ln = Er, X = O, R = iPr (6); Ln = Lu, X = O, R = iPr (7); Ln = Y, X = NPh, R = Me (8); Ln = Lu, X = NPh, R = Me (9); Ln = Lu, X = N(2,6-Me2C6H3), R = Me (10)) were prepared using alkane elimination reactions of 1, 3 and 4 with Ln(CH2SiMe3)3(THF)2 (Ln = Y, Er, Lu) in toluene and were isolated in 45 (5), 62 (6), 56 (7), 65 (8), 60 (9), and 60 (10) % yields respectively. The X-ray diffraction studies showed that complexes 6-8 are solvent free and feature intramolecular coordination of the P[double bond, length as m-dash]X (X = O, NPh) group to the lanthanide ions. The ternary systems 5-10/borate/AlR3 (borate = [PhNHMe2][B(C6F5)4], [Ph3C][B(C6F5)4], AlR3 = AliBu3, AliBu2H; molar ratio = 1/1/10 or 1/1/1, toluene) proved to be active in isoprene polymerization and enable complete conversion of 1000-10 000 equivalents of the monomer into a polymer at 25 °C within 0.5-24 h affording polyisoprenes with polydispersities Mw/Mn = 1.22-3.18. A comparative study of the catalytic performance of the bis(alkyl) complexes coordinated by tridentate amidinate ligands containing different pendant donor groups demonstrated that replacement of the Ph2P[double bond, length as m-dash]O group by Ph2P[double bond, length as m-dash]NPh leads to a switch of stereoselectivity in isoprene polymerization from cis-1,4 (up to 98.5%) to trans-1,4 (up to 84.8%). And conversely introduction of methyl substituents in the 2,6 positions of the phenyl group of the Ph2P[double bond, length as m-dash]NPh fragment allows us to restore the 1,4-cis

  15. Towards understanding the mechanism of action of antibacterial N-alkyl-3-hydroxypyridinium salts: Biological activities, molecular modeling and QSAR studies.

    PubMed

    Dolezal, Rafael; Soukup, Ondrej; Malinak, David; Savedra, Ranylson M L; Marek, Jan; Dolezalova, Marie; Pasdiorova, Marketa; Salajkova, Sarka; Korabecny, Jan; Honegr, Jan; Ramalho, Teodorico C; Kuca, Kamil

    2016-10-04

    In this study, we have carried out a combined experimental and computational investigation to elucidate several bred-in-the-bone ideas standing out in rational design of novel cationic surfactants as antibacterial agents. Five 3-hydroxypyridinium salts differing in the length of N-alkyl side chain have been synthesized, analyzed by high performance liquid chromatography, tested for in vitro activity against a panel of pathogenic bacterial and fungal strains, computationally modeled in water by a SCRF B3LYP/6-311++G(d,p) method, and evaluated by a systematic QSAR analysis. Given the results of this work, the hypothesis suggesting that higher positive charge of the quaternary nitrogen should increase antimicrobial efficacy can be rejected since 3-hydroxyl group does increase the positive charge on the nitrogen but, simultaneously, it significantly derogates the antimicrobial activity by lowering the lipophilicity and by escalating the desolvation energy of the compounds in comparison with non-hydroxylated analogues. Herein, the majority of the prepared 3-hydroxylated substances showed notably lower potency than the parent pyridinium structures, although compound 8 with C12 alkyl chain proved a distinctly better antimicrobial activity in submicromolar range. Focusing on this anomaly, we have made an effort to reveal the reason of the observed activity through a molecular dynamics simulation of the interaction between the bacterial membrane and compound 8 in GROMACS software.

  16. Side-Chain Cysteine-Functionalized Poly(2-oxazoline)s for Multiple Peptide Conjugation by Native Chemical Ligation

    PubMed Central

    2015-01-01

    We prepared statistical copolymers composed of 2-methyl-2-oxazoline (MeOx) in combination with 2-butenyl-2-oxazoline (BuOx) or 2-decenyl-2-oxazoline (DecOx) as a basis for polymer analogous introduction of 1,2-aminothiol moieties at the side chain. MeOx provides hydrophilicity as well as cyto- and hemocompatibility, whereas the alkene groups of BuOx and DecOx serve for functionalization with a thiofunctional thiazolidine by UV-mediated thiol–ene reaction. After deprotection the cysteine content in functionalized poly(2-oxazoline) (POx) is quantified by NMR and a modified trinitrobenzenesulfonic acid assay. The luminescent cell viability assay shows no negative influence of cysteine-functionalized POx (cys-POx) concerning cell viability and cell number. cys-POx was used for multiple chemically orthogonal couplings with thioester-terminated peptides through native chemical ligation (NCL), which was performed and confirmed by NMR and MALDI-ToF measurements. PMID:25728550

  17. Synthesis of amphiphilic alternating polyesters with oligo(ethylene glycol) side chains and potential use for sustained release drug delivery.

    PubMed

    Wang, Wei; Ding, Jianxun; Xiao, Chunsheng; Tang, Zhaohui; Li, Di; Chen, Jie; Zhuang, Xiuli; Chen, Xuesi

    2011-07-11

    Novel amphiphilic alternating polyesters, poly((N-phthaloyl-l-glutamic anhydride)-co-(2-(2-(2-methoxyethoxy)ethoxy)methyl)oxirane) (P(PGA-co-ME(2)MO)), were synthesized by alternating copolymerization of PGA and ME(2)MO. The structures of the synthesized polyesters were characterized by (1)H NMR, (13)C NMR, FT-IR, and GPC analyses. Because of the presence of oligo(ethylene glycol) (OEG) side chains, the polyesters could self-assemble into thermosensitive micelles. Dynamic light scattering (DLS) showed that these micelles underwent thermoinduced size decrease without intermicellar aggregation. In vitro methyl thiazolyl tetrazolium (MTT) assay demonstrated that the polyesters were biocompatible to Henrietta Lacks (HeLa) cells, rendering their potential for drug delivery applications. Two hydrophobic drugs, rifampin and doxorubicin (DOX), were loaded into the polyester micelles and observed to be released in a zero-order sustained manner. The sustained release could be accelerated in lower pH or in the presence of proteinase K, due to the degradation of the polyester under these conditions. Remarkably, in vitro cell experiments showed that the polyester micelles accomplished fast release of DOX inside cells and higher anticancer efficacy as compared with the free DOX. With enhanced stability during circulation condition and accelerated drug release at the target sites (e.g., low pH or enzyme presence), these novel polyesters with amphiphilic structures are promising to be used in sustained release drug delivery systems.

  18. Effects of Xylan Side-Chain Substitutions on Xylan-Cellulose Interactions and Implications for Thermal Pretreatment of Cellulosic Biomass.

    PubMed

    Pereira, Caroline S; Silveira, Rodrigo L; Dupree, Paul; Skaf, Munir S

    2017-04-10

    Lignocellulosic biomass is mainly constituted by cellulose, hemicellulose, and lignin and represents an important resource for the sustainable production of biofuels and green chemistry materials. Xylans, a common hemicellulose, interact with cellulose and often exhibit various side chain substitutions including acetate, (4-O-methyl) glucuronic acid, and arabinose. Recent studies have shown that the distribution of xylan substitutions is not random, but follows patterns that are dependent on the plant taxonomic family and cell wall type. Here, we use molecular dynamics simulations to investigate the role of substitutions on xylan interactions with the hydrophilic cellulose face, using the recently discovered xylan decoration pattern of the conifer gymnosperms as a model. The results show that α-1,2-linked substitutions stabilize the binding of single xylan chains independently of the nature of the substitution and that Ca(2+) ions can mediate cross-links between glucuronic acid substitutions of two neighboring xylan chains, thus stabilizing binding. At high temperature, xylans move from the hydrophilic to the hydrophobic cellulose surface and are also stabilized by Ca(2+) cross-links. Our results help to explain the role of substitutions on xylan-cellulose interactions, and improve our understanding of the plant cell wall architecture and the fundamentals of biomass pretreatments.

  19. Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation

    NASA Astrophysics Data System (ADS)

    Stassi, A.; Gatto, I.; Passalacqua, E.; Antonucci, V.; Arico, A. S.; Merlo, L.; Oldani, C.; Pagano, E.

    A new Aquivion™ E79-03S short-side chain perfluorosulfonic membrane with a thickness of 30 μm (dry form) and an equivalent weight (EW) of 790 g/equiv recently developed by Solvay-Solexis for high-temperature operation was tested in a pressurised (3 bar abs.) polymer electrolyte membrane (PEM) single cell at a temperature of 130 °C. For comparison, a standard Nafion™ membrane (EW 1100 g/equiv) of similar thickness (50 μm) was investigated under similar operating conditions. Both membranes were tested for high temperature operation in conjunction with an in-house prepared carbon supported Pt electrocatalyst. The electrocatalyst consisted of nanosized Pt particles (particle size ∼2 nm) dispersed on a high surface area carbon black. The electrochemical tests showed better performance for the Aquivion™ membrane as compared to Nafion™ with promising properties for high temperature PEM fuel cell applications. Beside the higher open circuit voltage and lower ohmic constraints, a higher electrocatalytic activity was observed at high temperature for the electrocatalyst-Aquivion™ ionomer interface indicating a better catalyst utilization.

  20. Microbial side-chain cleavage of phytosterols by mycobacteria in vegetable oil/aqueous two-phase system.

    PubMed

    Xu, Yang-Guang; Guan, Yi-Xin; Wang, Hai-Qing; Yao, Shan-Jing

    2014-09-01

    Microbial side-chain cleavage of natural sterols to 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) by Mycobacteria has received much attention in pharmaceutical industry, while low yield of the reaction owing to the strong hydrophobicity of sterols is a tough problem to be solved urgently. Eight kinds of vegetable oils, i.e., sunflower, peanut, corn, olive, linseed, walnut, grape seed, and rice oil, were used to construct oil/aqueous biphasic systems in the biotransformation of phytosterols by Mycobacterium sp. MB 3683 cells. The results indicated that vegetable oils are suitable for phytosterol biotransformation. Specially, the yield of AD carried out in sunflower biphasic system (phase ratio of 1:9, oil to aqueous) was greatly increased to 84.8 % with 10 g/L feeding concentration after 120-h transformation at 30 °C and 200 rpm. Distribution coefficients of AD in different oil/aqueous systems were also determined. Because vegetable oils are of low cost and because of their eco-friendly characters, there is a great potential for the application of oil/aqueous two-phase systems in bacteria whole cell biocatalysis.

  1. A novel vitamin D analog with two double bonds in its side chain. A potent inducer of osteoblastic cell differentiation.

    PubMed

    Mahonen, A; Jääskeläinen, T; Mäenpää, P H

    1996-04-12

    EB 1089 (1 alpha,25-dihydroxy-22,24-diene-24,26,27-trihomovitamin D3) is a novel, synthetic analog of calcitriol, characterized by two extra double bonds in its side chain. It is less potent than calcitriol in its calcemic action, but is an order of magnitude more potent in its antiproliferative action. The aim of this study was to determine the ability of EB 1089 to induce the well-known biological effects of calcitriol in MG-63 human osteosarcoma cells (i.e. by inhibiting cell proliferation and by induction of differentiation). Both calcitriol and EB 1089 significantly decreased cell growth after 2 days in culture. At 5 days, however, Eb 1089 was more potent than the natural hormone in inhibiting the proliferation of MG-63 cells. Potent effects of EB 1089 on cell differentiation were also seen in the stimulation of alkaline phosphatase activity, cellular vitamin D receptor mRNA levels, and medium osteocalcin synthesis. EB 1089 was clearly more effective than calcitriol in stimulating alkaline phosphatase activity and osteocalcin synthesis. In gel shift assays, the binding of vitamin D receptor to the composite AP-1 plus vitamin-D responsive promoter region of the human osteocalcin gene after EB 1089 treatment was stronger and longer-lasting than after calcitriol treatment.

  2. An effective strategy to increase hydroxide-ion conductivity through microphase separation induced by hydrophobic-side chains

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Zhao, T. S.

    2016-01-01

    A highly conductive and durable anion exchange membrane (AEM) is an essential component for alkaline electrochemical conversion and storage systems. Contrary to the conventional wisdom that the ionic conductivity can be improved by increasing the ion exchange capacity (IEC) through a cross-linking process, in this work, a new approach to improve the ionic conductivity by enhancing the ionic mobility is adopted. The microstructure of quaternary ammonia poly (2, 6-dimethyl-1, 4-phenylene oxide) (QAPPO) is manipulated through grafting with hydrophobic side chains, which will drive the well-established hydrophilic/hydrophobic domains and nano-phase separated, well-connected ionic channels. As a result, the local hydroxide concentration is enhanced by the novel microstructure, thereby improving the ionic conductivity of the as-prepared ionomers. The as-prepared ionomers, denoted as self-aggregated QAPPO-CF, with an intermediate IEC value achieved an ionic conductivity of 65 mS cm-1 at 80 °C, outperforming the QAPPO with an even higher IEC value. This result suggests that the microphase separation is an effective approach to enhance the ionic conductivity.

  3. Synthesis, characterization, conformation and self-assembly behavior of polypeptide-based brush with oligo (ethylene glycol) side chains

    NASA Astrophysics Data System (ADS)

    Huang, Yugang; Luo, Weiang; Ye, Guodong

    2015-02-01

    A new polypeptide-based copolymer brush composed of poly (γ-propargyl-L-glutamate)-block-poly (propylene oxide)-block-poly (γ-propargyl-L-glutamate) backbone (PPLG-b-PPO-b-PPLG) and oligo (ethylene glycol) (PEG) side-chain was synthesized by combination of N-carboxyanhydride ring-opening polymerization and click chemistry. Nearly 100% grafting efficiency was achieved by copper-catalyzed azide-alkyne Huisgen 1,3-dipolar cycloaddition (CuAAc) reaction. The α-helical conformation adopted by the grafted polypeptide blocks in water was relatively stable and showed a reversible change in a heating-cooling circle from 5 to 70 °C. It displayed weak stability against elevated temperature but still reversible changes in the presence of 0.47 M NaCl. The brushes were amphiphilic and could self-assemble into thermo-sensitive micelles in water. Big micelles could break into small micelles upon heating due to the improved solubility.

  4. Investigation on ultrafast third-order nonlinear optical properties of benzothiadiazole copolymer with triphenylamine derivative side chain

    NASA Astrophysics Data System (ADS)

    Gong, Weixiang; Yang, Junyi; Qin, Yuan-cheng; Wu, Xing-zhi; Jin, Xiao; Song, Yinglin

    2016-10-01

    The third-order nonlinear optical properties of benzothiadiazole copolymer with triphenylamine derivative side chain (BCT) dissolved in chloroform are investigated by top-hat Z-scan and time-resolved pump-probe techniques with a picoseconds pulses laser at wavelength of 532nm. Organic polymers of triphenylamine have been widely applied to optoelectronic devices owing to its outstanding physics and chemistry characteristic. So its nonlinear optical characteristic is worth studying. The sample's excited-state dynamics can be detected by the pump-probe with phase object device with/without an aperture in the far field. We can determine the sample's nonlinear absorptive and refractive coefficient by the top-hot Z-scan device with/without an aperture in the far field. The experimental results show that the BCT has a good reverse saturation absorption and negative refraction. At the same time, the BCT showed up long excited-state lifetimes. By means of a five-level model and analyzing the experimental curves, all nonlinear optical parameters are obtained. With the proper lifetime and intersystem crossing time, this sample can be a candidate for optical limiting.

  5. Investigation of nonfouling polypeptides of poly(glutamic acid) with lysine side chains synthesized by EDC·HCl/HOBt chemistry.

    PubMed

    Yang, Qinghua; Li, Wenchen; Wang, Longgang; Wang, Guangzhi; Wang, Zhen; Liu, Lingyun; Chen, Shengfu

    2014-01-01

    Nonfouling polypeptides with homogenous alternating charges draw peoples' attentions for their potential capability in biodegradation. Homogenous glutamic acid (E) and lysine (K) polypeptides were proposed and synthesized before. In this work, a new polypeptide formed by poly(glutamic acid) with lysine side chains (poly(E)-K) was synthesized by facile EDC·HCl/HOBt chemistry and investigated. Results show that these polypeptides also have good nonspecific protein resistance determined by enzyme-linked immunosorbent assay. The lowest nonspecific adsorption of the model proteins, anti-IgG and fibrinogen (Fg), on the self-assembling monolayers (SAMs) surface of poly(E)-K was only 3.3 ± 1.8 and 4.4 ± 1.6%, respectively, when protein adsorption on tissue culture polystyrene surface was set as 100%. And, the relative nonspecific protein adsorption increases when the polypeptide molecular weight increases due to the repression of low density polymer brushes. Moreover, almost no obvious cytotoxicity and hemolytic activity in vitro were detected. This work suggests that polypeptides with various formats of homogenous balanced charges could achieve excellent nonspecific protein resistance, which might be the intrinsic reason for the coexistence of high concentration serum proteins in blood.

  6. Dependence of Excited-State Properties of a Low-Bandgap Photovoltaic Copolymer on Side-Chain Substitution and Solvent.

    PubMed

    Zhao, Ning-Jiu; Zhang, Mao-Jie; Liang, Ran; Fu, Li-Min; Zhang, Wei; Ai, Xi-Cheng; Hou, Jian-Hui; Zhang, Jian-Ping

    2016-07-07

    The excited-state properties and chain conformations of a new low-bandgap copolymer based on benzo[1,2-b:4,5-b']dithiophene (BDT) and thieno[3,4-b]thiophene with meta-alkoxyphenyl-substituted side chains in solution were investigated comprehensively. Time-resolved spectroscopy suggested that the excited-state properties were sensitive to the conformations of the copolymer in solution. In addition, excited-state dynamics analyses revealed the photogeneration of triplet excited states by intersystem crossing (ISC) at a rate constant of ∼0.4×10(9)  s(-1) as a result of direct meta-alkoxyphenyl connection to the donor unit BDT irrespective to the macromolecular conformations. According to El-Sayed's rule, the fast ISC herein is correlated with the change of orbital types between singlet and triplet excited states as also shown by quantum chemical calculations. Our studies may shed light on the structure-property relationships of photovoltaic materials.

  7. Conformational analysis of short polar side-chain amino-acids through umbrella sampling and DFT calculations.

    PubMed

    Ramos, Javier; Cruz, Victor L

    2016-11-01

    Molecular and quantum mechanics calculations were carried out in a series of tripeptides (GXG, where X = D, N and C) as models of the unfolded states of proteins. The selected central amino acids, especially aspartic acid (D) and asparagine (N) are known to present significant average conformations in partially allowed areas of the Ramachandran plot, which have been suggested to be important in unfolded protein regions. In this report, we present the calculation of the propensity values through an umbrella sampling procedure in combination with the calculation of the NMR J-coupling constants obtained by a DFT model. The experimental NMR observations can be reasonably explained in terms of a conformational distribution where PPII and β basins sum up propensities above 0.9. The conformational analysis of the side chain dihedral angle (χ1), along with the computation of (3)J(H(α)H(β)), revealed a preference for the g - and g + rotamers. These may be connected with the presence of intermolecular H-bonding and carbonyl-carbonyl interactions sampled in the PPII and β basins. Taking into account all those results, it can be established that these residues show a similar behavior to other amino acids in short peptides regarding backbone φ,ψ dihedral angle distribution, in agreement with some experimental analysis of capped dipeptides.

  8. Restricted mobility of side chains on concave surfaces of solenoid proteins may impart heightened potential for intermolecular interactions.

    PubMed

    Ramya, L; Gautham, N; Chaloin, Laurent; Kajava, Andrey V

    2015-09-01

    Significant progress has been made in the determination of the protein structures with their number today passing over a hundred thousand structures. The next challenge is the understanding and prediction of protein-protein and protein-ligand interactions. In this work we address this problem by analyzing curved solenoid proteins. Many of these proteins are considered as "hub molecules" for their high potential to interact with many different molecules and to be a scaffold for multisubunit protein machineries. Our analysis of these structures through molecular dynamics simulations reveals that the mobility of the side-chains on the concave surfaces of the solenoids is lower than on the convex ones. This result provides an explanation to the observed preferential binding of the ligands, including small and flexible ligands, to the concave surface of the curved solenoid proteins. The relationship between the landscapes and dynamic properties of the protein surfaces can be further generalized to the other types of protein structures and eventually used in the computer algorithms, allowing prediction of protein-ligand interactions by analysis of protein surfaces.

  9. Synthesis and evaluation of amide side-chain modified Agomelatine analogues as potential antidepressant-like agents.

    PubMed

    Chang, Ying; Pi, Weiyi; Ang, Wei; Liu, Yuanyuan; Li, Chunlong; Zheng, Jiajia; Xiong, Li; Yang, Tao; Luo, Youfu

    2014-04-01

    In this work, nineteen analogues of Agomelatine were readily synthesized through structural modification of the acetamide side-chain starting from the key common intermediate 2-(7-methoxynaphthalen-1-yl) ethanamine (3), which was prepared from commercially available compound 2-(7-methoxynaphthalen-1-yl) acetonitrile (2) in two steps. Corticosterone-induced PC12 pheochromocytoma cells phenotypic in vitro model was utilized to evaluate their potential antidepression activities. Imide compound 4a and acylamino carboxylic acid analogue 5b showed good protective effects on traumatic PC12 cells with protection rates of 34.2% and 23.2%, respectively. Further in vivo assessments in C57 mice FST (forced swim test) model demonstrated that compound 4a significantly reduced the immobility time of the tested subjects, indicating antidepressant-like activity. Preliminary toxicity assays conducted on human normal liver L02 cells and embryonic kidney 293 cells suggested a relatively low safety risk for compound 4a compared with the marketed drugs Agomelatine and Fluoxetine. The promising antidepressant-like efficacy of compound 4a, together with the relatively low toxicity to the normal tested cells and high liability of diffusion through the blood-brain barrier (BBB), presents us insights of exploration of me-better drug candidates of Agomelatine.

  10. Charge carrier transport properties in polymer liquid crystals containing oxadiazole and amine moieties in the same side chain.

    PubMed

    Kawamoto, Masuki; Mochizuki, Hiroyuki; Ikeda, Tomiki; Iino, Hiroaki; Hanna, Jun-ichi

    2005-05-19

    Steady-state and transient photocurrent measurements were carried out to study the charge carrier transport properties of polymer liquid crystal (LC) containing oxadiazole (OXD) and amine moieties in the same side chain. The steady-state photocurrent measurement with asymmetric electrodes of ITO and Al and a short penetration depth of the illumination light indicated that both electrons and holes can be transported in this film. The transient hole photocurrent observed by time-of-flight (TOF) experiments was dispersive at room temperature. The hole drift mobility significantly depended on temperature and electric field and was determined to be 6.1 x 10(-8) cm2/Vs at a field of 9.1 x 10(5) V/cm. According to the disorder formalism, the Gaussian width of the density of states was determined to be 170 meV for holes. Despite the indication of possible electron transport in this film, we could not determine the electron mobility by TOF experiments due to strong dispersive photocurrent. We discuss the present charge transport properties of the film in relation to a large dipole attributed to an electrical push-pull structure of p-dimethylaminophenyl-substitited OXD moiety in polymer LC and its electroluminescent properties.

  11. Molybdoenzyme That Catalyzes the Anaerobic Hydroxylation of a Tertiary Carbon Atom in the Side Chain of Cholesterol*

    PubMed Central

    Dermer, Juri; Fuchs, Georg

    2012-01-01

    Cholesterol is a ubiquitous hydrocarbon compound that can serve as substrate for microbial growth. This steroid and related cyclic compounds are recalcitrant due to their low solubility in water, complex ring structure, the presence of quaternary carbon atoms, and the low number of functional groups. Aerobic metabolism therefore makes use of reactive molecular oxygen as co-substrate of oxygenases to hydroxylate and cleave the sterane ring system. Consequently, anaerobic metabolism must substitute oxygenase-catalyzed steps by O2-independent hydroxylases. Here we show that one of the initial reactions of anaerobic cholesterol metabolism in the β-proteobacterium Sterolibacterium denitrificans is catalyzed by an unprecedented enzyme that hydroxylates the tertiary C25 atom of the side chain without molecular oxygen forming a tertiary alcohol. This steroid C25 dehydrogenase belongs to the dimethyl sulfoxide dehydrogenase molybdoenzyme family, the closest relative being ethylbenzene dehydrogenase. It is a heterotrimer, which is probably located at the periplasmic side of the membrane and contains one molybdenum cofactor, five [Fe-S] clusters, and one heme b. The draft genome of the organism contains several genes coding for related enzymes that probably replace oxygenases in steroid metabolism. PMID:22942275

  12. Interaction of charged amino-acid side chains with ions: an optimization strategy for classical force fields.

    PubMed

    Kahlen, Jens; Salimi, Leila; Sulpizi, Marialore; Peter, Christine; Donadio, Davide

    2014-04-10

    Many well-established classical biomolecular force fields, fitted on the solvation properties of single ions, do not necessarily describe all the details of ion pairing accurately, especially for complex polyatomic ions. Depending on the target application, it might not be sufficient to reproduce the thermodynamics of ion pairing, but it may also be necessary to correctly capture structural details, such as the coordination mode. In this work, we analyzed how classical force fields can be optimized to yield a realistic description of these different aspects of ion pairing. Given the prominent role of the interactions of negatively charged amino-acid side chains and divalent cations in many biomolecular systems, we chose calcium acetate as a benchmark system to devise a general optimization strategy that we applied to two popular force fields, namely, GROMOS and OPLS-AA. Using experimental association constants and first-principles molecular dynamics simulations as a reference, we found that small modifications of the van der Waals ion-ion interaction parameters allow a systematic improvement of the essential thermodynamic and structural properties of ion pairing.

  13. Contribution of main chain and side chain atoms and their locations to the stability of thermophilic proteins.

    PubMed

    Tompa, Dharma Rao; Gromiha, M Michael; Saraboji, K

    2016-03-01

    Proteins belonging to the same class, having similar structures thus performing the same function are known to have different thermal stabilities depending on the source- thermophile or mesophile. The variation in thermo-stability has not been attributed to any unified factor yet and understanding this phenomenon is critically needed in several areas, particularly in protein engineering to design stable variants of the proteins. Toward this motive, the present study focuses on the sequence and structural investigation of a dataset of 373 pairs of proteins; a thermophilic protein and its mesophilic structural analog in each pair, from the perspectives of hydrophobic free energy, hydrogen bonds, physico-chemical properties of amino acids and residue-residue contacts. Our results showed that the hydrophobic free energy due to carbon, charged nitrogen and charged oxygen atoms was stronger in 65% of thermophilic proteins. The number of hydrogen bonds which bridges the buried and exposed regions of proteins was also greater in case of thermophiles. Amino acids of extended shape, volume and molecular weight along with more medium and long range contacts were observed in many of the thermophilic proteins. These results highlight the preference of thermophiles toward the amino acids with larger side chain and charged to make up greater free energy, better packing of residues and increase the overall compactness.

  14. 2D IR spectroscopy of histidine: probing side-chain structure and dynamics via backbone amide vibrations.

    PubMed

    Ghosh, Ayanjeet; Tucker, Matthew J; Gai, Feng

    2014-07-17

    It is well known that histidine is involved in many biological functions due to the structural versatility of its side chain. However, probing the conformational transitions of histidine in proteins, especially those occurring on an ultrafast time scale, is difficult. Herein we show, using a histidine dipeptide as a model, that it is possible to probe the tautomer and protonation status of a histidine residue by measuring the two-dimensional infrared (2D IR) spectrum of its amide I vibrational transition. Specifically, for the histidine dipeptide studied, the amide unit of the histidine gives rise to three spectrally resolvable amide I features at approximately 1630, 1644, and 1656 cm(-1), respectively, which, based on measurements at different pH values and frequency calculations, are assigned to a τ tautomer (1630 cm(-1) component) and a π tautomer with a hydrated (1644 cm(-1) component) or dehydrated (1656 cm(-1) component) amide. Because of the intrinsic ultrafast time resolution of 2D IR spectroscopy, we believe that the current approach, when combined with the isotope editing techniques, will be useful in revealing the structural dynamics of key histidine residues in proteins that are important for function.

  15. Utilization of side-chain precursors for penicillin biosynthesis in a high-producing strain of Penicillium chrysogenum.

    PubMed

    Eriksen, S H; Jensen, B; Schneider, I; Kaasgaard, S; Olsen, J

    1994-02-01

    Utilization of the side-chain precursors phenoxyacetic acid (POA) and phenylacetic acid (PA) for penicillin biosynthesis by Penicillium chrysogenum was studied in shake flasks. Precursor uptake and penicillin production were followed by HPLC analysis of precursors and products in the medium and in the cells. P. chrysogenum used both POA and PA as precursors, producing phenoxymethylpenicillin (penicillin V) and benzylpenicillin (penicillin G), respectively. If both precursors were present simultaneously, the formation of penicillin V was blocked and only penicillin G was produced. When PA was added at different times to cells that were induced initially for POA utilization and were producing penicillin V, the POA utilization and penicillin V formation were blocked, whereas the cells started utilizing PA and produced penicillin G. The blocking of the POA turnover lasted for as long as PA was present in the medium. If POA was added to cultures induced initially for PA utilization and producing penicillin G, this continued irrespective of the presence of POA. Utilization of POA increased concomitant with depletion of PA from the medium. Analysis of cellular pools from a growing cell system with POA as precursor to which PA was added after 48 h showed that the cellular concentration of POA was kept high without production of penicillin V and at a concentration comparable to the concentration in the medium. The cellular concentration of POA was higher than the concentration of PA that was utilized for penicillin G production.

  16. Neutral Pectin side chains of Amaranth (Amaranthus hypochondriacus) contain long, partially branched Arabinans and short galactans, both with terminal arabinopyranoses.

    PubMed

    Wefers, Daniel; Tyl, Catrin E; Bunzel, Mirko

    2015-01-21

    Amaranth is a pseudocereal of high nutritional value, including a high dietary fiber content. Amaranth dietary fiber was suggested to contain large amounts of neutral rhamnogalacturonan I side chains. In this study, endo-arabinanase and endo-galactanase were used to liberate arabinan and galactan oligosaccharides from amaranth fiber. The liberated oligosaccharides were identified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and HPLC-MS(n) using standard compounds, which were isolated from amaranth, sugar beet, potato, and red clover sprouts and characterized by one- and two-dimensional NMR spectroscopy. It was demonstrated that insoluble amaranth arabinans have linear and branched areas, with the O-3 position being the dominant branching point. Minor amounts of branches at position O-2 and double substitution were also found. Amaranth arabinans were also demonstrated to contain terminal α-(1→5)-linked l-arabinopyranose units. In addition, it was evidenced that galactans from amaranth seeds are composed of β-(1→4)-linked d-galactopyranose units, which can also be terminated with l-arabinopyranose units. In direct comparison to structural elucidation of amaranth fiber by using methylation analysis, the advantage of the enzymatic approach over methylation analysis was demonstrated.

  17. Preparation of amphiphilic glycopolymers with flexible long side chain and their use as stabilizer for emulsion polymerization.

    PubMed

    Alvárez-Paino, Marta; Juan-Rodríguez, Rafael; Cuervo-Rodríguez, Rocío; Muñoz-Bonilla, Alexandra; Fernández-García, Marta

    2014-03-01

    A glycomonomer was synthesized from poly(ethylene glycol) methacrylate (PEGMA). The terminal hydroxyl moieties were activated with ester groups and subsequently the glucosamine was incorporated forming urethane linkages. The obtained glycomonomer was copolymerized with methyl acrylate by free radical polymerization varying the initial feed composition to produce different amphiphilic glycopolymers. The glycopolymers were then characterized and compared with the homologous glycopolymers based on 2-{[(D-glucosamin-2-N-yl)carbonyl]oxy}ethyl methacrylate. Both series of glycopolymers were used in emulsion polymerization of methyl acrylate as stabilizers without the addition of any cosurfactant. Although high conversions were not achieved with any of the employed surfactant, the glycopolymers provide good colloidal stability, spherical, monodisperse and small latex particles in comparison with the surfactant-free emulsion polymerization. The latex particles stabilized with the glycosurfactant based on PEGMA, containing a flexible spacer between the backbone and the glucosamine, lead to smooth films whereas the short side chain surfactant from 2-hydroxyethyl methacrylate (HEMA), with higher glass transition temperature, restricts the coalescence of particles and, therefore, the film formation. Moreover, the surface bioactivity of these polymer coatings was examined by analyzing their specific interaction with the lectin, Concanavalin A, Canavalia ensiformis. The specific and successful binding to the Concanavalin A was demonstrated by fluorescence microscopy for both series being more intense with increasing amount of glycounits in the glycopolymer stabilizers. Interestingly, the incorporation of a flexible spacer in the glycopolymer structures enhances the binding activity.

  18. Compounds having aromatic rings and side-chain amide-functionality and a method for transporting monovalent anions across biological membranes using the same

    DOEpatents

    Davis, Jeffery T.; Sidorov, Vladimir; Kotch, Frank W.

    2008-04-08

    A compound containing at least two aromatic rings covalently bonded together, with each aromatic ring containing at least one oxyacetamide-based side chain, the compound being capable of forming a chloride ion channel across a lipid bilayer, and transporting chloride ion across the lipid bilayer.

  19. Asymmetric synthesis of the HMG-CoA reductase inhibitor atorvastatin calcium: an organocatalytic anhydride desymmetrization and cyanide-free side chain elongation approach.

    PubMed

    Chen, Xiaofei; Xiong, Fangjun; Chen, Wenxue; He, Qiuqin; Chen, Fener

    2014-03-21

    An efficient asymmetric synthesis of atorvastatin calcium has been achieved from commercially available diethyl 3-hydroxyglutarate through a novel approach that involves an organocatalytic enantioselective cyclic anhydride desymmetrization to establish C(3) stereogenicity and cyanide-free assembly of C7 amino type side chain via C5+C2 strategy as the key transformations.

  20. Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol.

    PubMed

    Sun, Delin; Forsman, Jan; Woodward, Clifford E

    2015-04-14

    Abundant peptides and proteins containing arginine (Arg) and lysine (Lys) amino acids can apparently permeate cell membranes with ease. However, the mechanisms by which these peptides and proteins succeed in traversing the free energy barrier imposed by cell membranes remain largely unestablished. Precise thermodynamic studies (both theoretical and experimental) on the interactions of Arg and Lys residues with model lipid bilayers can provide valuable clues to the efficacy of these cationic peptides and proteins. We have carried out molecular dynamics simulations to calculate the interactions of ionized Arg and Lys side-chains with the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer for 10 widely used lipid/protein force fields: CHARMM36/CHARMM36, SLIPID/AMBER99SB-ILDN, OPLS-AA/OPLS-AA, Berger/OPLS-AA, Berger/GROMOS87, Berger/GROMOS53A6, GROMOS53A6/GROMOS53A6, nonpolarizable MARTINI, polarizable MARTINI, and BMW MARTINI. We performed umbrella sampling simulations to obtain the potential of mean force for Arg and Lys side-chains partitioning from water to the bilayer interior. We found significant differences between the force fields, both for the interactions between side-chains and bilayer surface, as well as the free energy cost for placing the side-chain at the center of the bilayer. These simulation results were compared with the Wimley-White interfacial scale. We also calculated the free energy cost for transferring ionized Arg and Lys side-chains from water to both dry and wet octanol. Our simulations reveal rapid diffusion of water molecules into octanol whereby the equilibrium mole fraction of water in the wet octanol phase was ∼25%. Surprisingly, our free energy calculations found that the high water content in wet octanol lowered the water-to-octanol partitioning free energies for cationic residues by only 0.6 to 0.7 kcal/mol.

  1. New insight into the nanostructure of ionic liquids: a small angle X-ray scattering (SAXS) study on liquid tri-alkyl-methyl-ammonium bis(trifluoromethanesulfonyl)amides and their mixtures.

    PubMed

    Pott, Tanja; Méléard, Philippe

    2009-07-14

    We report a small angle X-ray scattering study on the liquid phase of a series of room temperature ionic liquids and their binary mixtures. The ionic liquids studied belong to the tri-alkyl-methyl-ammonium family with bis(trifluoromethanesulfonyl)amide as the anion and were studied as a function of alkyl chain length. These ionic liquids were found to exhibit marked nanoscale ordering in their isotropic liquid state as judged from the small angle X-ray scattering. The observed structural ordering is of supramolecular order and depends strongly on the length of the cation hydrophobic side chain. Moreover, the data can be analyzed on the basis of a disordered smectic A phase, consisting of strongly interdigitated bilayers that sequester the ionic liquid into polar and hydrophobic regions. These findings were also found to be consistent with density data of these molten salts. Additionally, we demonstrate that this experimentally observed nanostructuring can further be fine-tuned using binary mixtures.

  2. Anomalous diffusion and dynamical correlation between the side chains and the main chain of proteins in their native state

    PubMed Central

    Cote, Yoann; Senet, Patrick; Delarue, Patrice; Maisuradze, Gia G.; Scheraga, Harold A.

    2012-01-01

    Structural fluctuations of a protein are essential for a protein to function and fold. By using molecular dynamics (MD) simulations of the model α/β protein VA3 in its native state, the coupling between the main-chain (MC) motions [represented by coarse-grained dihedral angles (CGDAs) γn based on four successive Cα atoms (n - 1, n, n + 1, n + 2) along the amino acid sequence] and its side-chain (SC) motions [represented by CGDAs δn formed by the virtual bond joining two consecutive Cα atoms (n, n + 1) and the bonds joining these Cα atoms to their respective Cβ atoms] was analyzed. The motions of SCs (δn) and MC (γn) over time occur on similar free-energy profiles and were found to be subdiffusive. The fluctuations of the SCs (δn) and those of the MC (γn) are generally poorly correlated on a ps time-scale with a correlation increasing with time to reach a maximum value at about 10 ns. This maximum value is close to the correlation between the δn(t) and γn(t) time-series extracted from the entire duration of the MD runs (400 ns) and varies significantly along the amino acid sequence. High correlations between the SC and MC motions [δ(t) and γ(t) time-series] were found only in flexible regions of the protein for a few residues which contribute the most to the slowest collective modes of the molecule. These results are a possible indication of the role of the flexible regions of proteins for the biological function and folding. PMID:22689963

  3. Solid-phase synthesis of arginine-containing peptides and fluorogenic substrates using a side-chain anchoring approach.

    PubMed

    Hamzé, Abdallah; Martinez, Jean; Hernandez, Jean-François

    2004-11-26

    Attachment of an amino acid to a solid support by its side chain is sometimes necessary to take advantage of an alpha-carboxylic group available for diverse modifications, including the incorporation of a fluorophore for the preparation of fluorogenic substrates. In contrast to most other amino acids, anchoring the guanidinium group of an arginine to a resin requires the use of a supplementary linker. To avoid the usually multistep synthesis of such a linker as well as its difficult attachment to the guanidine group, we developed a simple method where the guanidine group is built on a Rink amide resin. Our strategy followed the steps of guanidine formation: (i) addition of an isothiocyanate derivative of ornithine to the amino group of a solid support, yielding Nomega-linked thiocitrulline; (ii) S-methylation of thiourea; (iii) guanidinylation using ammonium acetate. Cleavage of the resin generated the arginine-containing compound, the amine group of the resin becoming part of the guanidine. We have demonstrated the usefulness of this method by the synthesis of a series of fluorogenic substrates for trypsin-like serine proteases, which were obtained in high yield and purity. Then, our strategy also allowed generation from the same precursor differentially substituted arginine derivatives, including Nomega-methyl- and Nomega-ethylarginines. The ability to prepare such analogues together with the intermediates thiocitrulline and S-methylisothiocitrulline from a unique precursor while the alpha-amine and carboxylic groups remain available for modification also makes this method a powerful tool for combinatorial solid-phase synthesis of NO synthase inhibitors.

  4. Side-chain conformational thermodynamics of aspartic acid residue in the peptides and achatin-I in aqueous solution.

    PubMed

    Kimura, Tomohiro; Matubayasi, Nobuyuki; Nakahara, Masaru

    2004-02-01

    Sequence-position dependence of the side-chain conformational equilibrium of aspartic acid (Asp) residue is investigated for both model Asp peptides (di- to tetra-) and neuropeptide achatin-I (Gly--Phe-Ala-Asp) in aqueous solution. The trans-to-gauche conformational changes on the dihedral angle of C-C(alpha)-C(beta)-C are analyzed in terms of the standard free energy DeltaG(0), enthalpy DeltaH(0), and entropy -TDeltaS(0). The thermodynamic quantities are obtained by measuring the dihedral-angle-dependent vicinal (1)H-(1)H coupling constants in nuclear magnetic resonance over a wide temperature range. When the carboxyl groups of Asp are ionized, DeltaG(0) in the aqueous phase depends by approximately 1-2 kJ mol(-1) on the sequence position, whereas the energy change in the gas phase (absence of solvent) depends by tens of kJ mol(-1). Therefore, the weak position dependence of DeltaG(0) is a result of the compensation for the intramolecular effect by the hydration (= DeltaG(0)-). The DeltaH(0) and -TDeltaS(0) components, on the other hand, exhibit a notable trend at the C-terminus. The C-terminal DeltaH(0) is larger than the N- and nonterminal DeltaH(0) values due to the intramolecular repulsion between alpha- and beta-. The C-terminal -TDeltaS(0) is negative and larger in magnitude than the others, and an attractive solute-solvent interaction at the C-terminus serves as a structure breaker of the water solvent.

  5. Autoantibodies against Cytochrome P450 Side-Chain Cleavage Enzyme in Dogs (Canis lupus familiaris) Affected with Hypoadrenocorticism (Addison's Disease).

    PubMed

    Boag, Alisdair M; Christie, Michael R; McLaughlin, Kerry A; Syme, Harriet M; Graham, Peter; Catchpole, Brian

    2015-01-01

    Canine hypoadrenocorticism likely arises from immune-mediated destruction of adrenocortical tissue, leading to glucocorticoid and mineralocorticoid deficiency. In humans with autoimmune Addison's disease (AAD) or autoimmune polyendocrine syndrome (APS), circulating autoantibodies have been demonstrated against enzymes associated with adrenal steroid synthesis. The current study investigates autoantibodies against steroid synthesis enzymes in dogs with spontaneous hypoadrenocorticism. Coding regions of canine CYP21A2 (21-hydroxylase; 21-OH), CYP17A1 (17-hydroxylase; 17-OH), CYP11A1 (P450 side-chain cleavage enzyme; P450scc) and HSD3B2 (3β hydroxysteroid dehydrogenase; 3βHSD) were amplified, cloned and expressed as 35S-methionine radiolabelled recombinant protein. In a pilot study, serum samples from 20 dogs with hypoadrenocorticism and four unaffected control dogs were screened by radio-immunoprecipitation assay. There was no evidence of reactivity against 21-OH, 17-OH or 3βHSD, but five dogs with hypoadrenocorticism showed immunoreactivity to P450scc compared with controls. Serum samples were subsequently obtained from 213 dogs diagnosed with hypoadrenocorticism and 110 dogs from a hospital control population. Thirty control dogs were randomly selected to establish a threshold for antibody positivity (mean + 3 × standard deviation). Dogs with hypoadrenocorticism were more likely to be P450scc autoantibody positive than hospital controls (24% vs. 1.2%, respectively; p = 0.0016). Sex was significantly associated with the presence of P450scc autoantibodies in the case population, with 30% of females testing positive compared with 17% of males (p = 0.037). Significant associations with breed (p = 0.015) and DLA-type (DQA1*006:01 allele; p = 0.017) were also found. This cross-sectional study indicates that P450scc autoantibodies are present in a proportion of dogs affected with hypoadrenocorticism.

  6. Orientation of tyrosine side chain in neurotoxic Aβ differs in two different secondary structures of the peptide

    PubMed Central

    Das, Swagata; Das, Supriya; Roy, Anupam

    2016-01-01

    Amyloid β (Aβ) peptide is present as a major component in amyloid plaque that is one of the hallmarks of Alzheimer's disease. The peptide contains a single tyrosine residue and Aβ has a major implication in the pathology of the disease progression. Current investigation revealed that the tyrosine side chain attained two different critical stereo orientations in two dissimilar conformational states of the peptide. The extended α-helical structure of the peptide observed in an apolar solvent or methanol/water mixture became disordered in aqueous medium and the radius of gyration decreased. In aqueous medium, the torsional angle around Cα–Cβ of tyrosine group became −60°. However, in its α-helical conformation in an apolar system, the measured angle was 180° and this rotameric state may be reasoned behind stronger tyrosine fluorescence compared with the disordered state of the peptide. Molecular dynamics simulation analyses and spectroscopic studies have helped us to understand the major structural changes in the secondary structure of the peptide in the two conformational states. A conformational clustering indicated that the compact state is more stable with tyrosine residue attaining the torsion angle value of −60°, whereas the native state (in HFIP/water mixture) is prevalent at a torsion angle value of −180°. High solvent accessibility has possibly stabilized the particular rotameric state (−60°) of the tyrosine residue and could be the reason behind decrease in fluorescence of the sole tyrosine residue in an aqueous buffer solution (pH 7.4) compared with its fluorescence in the α-helical structure in the micellar environment. PMID:27853536

  7. Active site-directed inhibitors of cytochrome P-450scc. Structural and mechanistic implications of a side chain-substituted series of amino-steroids.

    PubMed

    Sheets, J J; Vickery, L E

    1983-10-10

    A series of analogues of cholesterol, each having a shortened side chain and a primary amine group, were prepared and tested for their effects on bovine adrenocortical cholesterol side chain cleavage cytochrome P-450 (P-450scc). A previous study had shown that one derivative, 22-amino-23,24-bisnor-5-cholen-3 beta-ol, is a potent competitive inhibitor of the enzyme and forms a complex in which the steroid ring binds to the cholesterol site and the side chain amine forms a bond with the heme iron (Sheets, J. J., and Vickery, L. E. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 5773-5777). In the studies reported here, the 23-amine derivative, 23-amino-24-nor-5-cholen-3 beta-ol, was found to be an equally potent inhibitor and to be competitive with respect to cholesterol (Ki = 38 nM). Binding of the 23-amine to P-450scc also caused formation of a low spin complex with an absorption maximum at 422 nm, indicative of a nitrogen-donor ligand. Other derivatives in which the side chain amine was linked closer to the steroid, 17 beta-amino-5-androsten-3 beta-ol and (20 R + S)-20-amino-5-pregnen-3 beta-ol, were found to be only very weak inhibitors (I50 greater than 100 microM) and did not produce the 422 nm spectral form when bound. Derivatives in which the amine was attached a greater distance from the steroid ring, 24-amino-5-cholen-3 beta-ol and 25-amino-26,27-bisnor-5-cholesten-3 beta-ol, caused a progressive decrease in inhibitory potency and a failure to produce the 422 nm form on binding. The dependence of the type of interaction of these amino-steroids with P-450scc upon the amine position establishes that the steroid binding site and the heme catalytic site of the enzyme are fixed within a specific distance of one another. The heme appears to be located sufficiently close to the position that the side chain of cholesterol would occupy to allow for direct attack of an iron-bound oxidant to occur during hydroxylation and side chain cleavage.

  8. Hierarchical supramolecular ordering with biaxial orientation of a combined main-chain/side-chain liquid-crystalline polymer obtained from radical polymerization of 2-vinylterephthalate.

    PubMed

    Xie, He-Lou; Jie, Chang-Kai; Yu, Zhen-Qiang; Liu, Xuan-Bo; Zhang, Hai-Liang; Shen, Zhihao; Chen, Er-Qiang; Zhou, Qi-Feng

    2010-06-16

    The liquid-crystalline (LC) phase structures and transitions of a combined main-chain/side-chain LC polymer (MCSCLCP) 1 obtained from radical polymerization of a 2-vinylterephthalate, poly(2,5-bis{[6-(4-butoxy-4'-oxybiphenyl) hexyl]oxycarbonyl}styrene), were studied using differential scanning calorimetry, one- and two-dimensional wide-angle X-ray diffraction (1D and 2D WAXD), and polarized light microscopy. We have found that 1 with sufficiently high molecular weight can self-assemble into a hierarchical structure with double orderings on the nanometer and subnanometer scales at low temperatures. The main chains of 1, which are rodlike as a result of the "jacketing" effect generated by the central rigid portion of the side chains laterally attached to every second carbon atom along the polyethylene backbone, form a 2D centered rectangular scaffold. The biphenyl-containing side chains fill the space between the main chains, forming a smectic E (SmE)-like structure with the side-chain axis perpendicular to that of the main chain. This biaxial orientation of 1 was confirmed by our 2D WAXD experiments through three orthogonal directions. The main-chain scaffold remains when the SmE-like packing is melted at elevated temperatures. Further heating leads to a normal smectic A (SmA) structure followed by the isotropic state. We found that when an external electric field was applied, the main-chain scaffold greatly inhibited the motion of the biphenyls. While the main chains gain a sufficiently high mobility in the SmA phase, macroscopic orientation of 1 can be achieved using a rather weak electric field, implying that the main and side chains with orthogonal directions can move cooperatively. Our work demonstrates that when two separate components, one offering the "jacketing" effect to the normally flexible backbone and the other with mesogens that form surrounding LC phases, are introduced simultaneously into the side chains, the polymer obtained can be described as an

  9. High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: the importance of the polymer packing structure and the nanoscale blend morphology.

    PubMed

    Lee, Changyeon; Kang, Hyunbum; Lee, Wonho; Kim, Taesu; Kim, Ki-Hyun; Woo, Han Young; Wang, Cheng; Kim, Bumjoon J

    2015-04-17

    The effectiveness of side-chain engineering is demonstrated to produce highly efficient all-polymer solar cells (efficiency of 5.96%) using a series of naphthalene diimide-based polymer acceptors with controlled side chains. The dramatic changes in the polymer packing, blend morphology, and electron mobility of all-polymer solar cells elucidate clear trends in the photovoltaic performances.

  10. Detoxification of alkyl methylphosphonofluoridates by an oxime-substituted β-cyclodextrin--an in vitro structure-activity study.

    PubMed

    Bierwisch, Anne; Zengerle, Michael; Thiermann, Horst; Kubik, Stefan; Worek, Franz

    2014-01-13

    Detoxification rates of a series of alkyl methylphosphonofluoridates by an oxime-substituted β-cyclodextrin (β-CD) were assessed quantitatively by using an AChE inhibition assay. The cyclodextrin (CD) derivative was identified in previous work as a highly active cyclosarin scavenger. Here, a structure-activity relationship was established by investigating the effect of this CD on the detoxification of sarin derivatives differing in the structure of the alkoxy residue. The results show that detoxification rates correlate with the steric bulk and chain length of the alkoxy group in the organophosphonate (OP). OPs with larger, more bulky residues are detoxified more rapidly, with the exception of soman, which is bearing a pinacolyloxy side chain. In addition, the substituted CD was in every case more active than unsubstituted, native β-CD with up to a 400-fold difference. Comparing the kinetic results obtained with the known thermodynamic stabilities of related β-CD complexes indicate that detoxification rates generally increase when the alkoxy residue on the OP is exchanged by a residue, which forms a more stable complex with β-CD. This correlation lends support to the proposed mode of action of the substituted CD, involving initial complexation of the OP followed by reaction between the CD and the OP. The moderate to high efficacy on the detoxification of sarin derivatives suggests the potential applicability of this CD as a small molecule scavenger for G-type nerve agents.

  11. Effects of Side-Chain and Electron Exchange Correlation on the Band Structure of Perylene Diimide Liquid Crystals: A Density Functional Study

    SciTech Connect

    Arantes, J. T.; Lima, M. P.; Fazzio, A.; Xiang, H.; Wei, S. H.; Dalpian, G. M.

    2009-04-01

    The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (DFT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.

  12. The effect of glutamic acid side chain on acidity constant of lysine in beta-sheet: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Sargolzaei, M.; Afshar, M.; Sadeghi, M. S.; Kavee, M.

    2014-07-01

    In this work, the possibility of proton transfer between side chain of lysine and glutamic acid in peptide of Glu--Ala-Lys+ was demonstrated using density functional theory (DFT). We have shown that the proton transfer takes place between side chain of glutamic and lysine residues through the hydrogen bond formation. The structures of transition state for proton transfer reaction were detected in gas and solution phases. Our kinetic studies show that the proton transfer reaction rate in gas phase is higher than solution phase. The ionization constant (p K a) value of lysine residue in peptide was estimated 1.039 which is lower than intrinsic p K a of lysine amino acid.

  13. Side-chain Engineering of Benzo[1,2-b:4,5-b’]dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells

    PubMed Central

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-01-01

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b’]dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing. PMID:27140224

  14. Side-chain Engineering of Benzo[1,2-b:4,5-b']dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells.

    PubMed

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-05-03

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b']dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing.

  15. Highly efficient stabilisation of meta-ethynylpyridine polymers with amide side chains in water by coordination of rare-earth metals.

    PubMed

    Makida, Hiroki; Abe, Hajime; Inouye, Masahiko

    2015-02-14

    An amphiphilic meta-ethynylpyridine polymer with chiral amide side chains was developed. The polymer was prepared by sequential Sonogashira reactions, and the product was soluble in polar and apolar solvents. The additive effects of metal salts on the polymer were examined in water and aqueous EtOH on the basis of UV-vis and CD spectra. The enhancement of the positive Cotton effect and hypochromism around 360 nm occurred by the addition of various metal salts, indicating the coordination of the cations to the amide side chains of the polymer to stabilise the helical structure. Among them, rare-earth metal salts, especially Sc(OTf)3 showed more efficient additive effects probably because of its strong coordination ability even in water. Positive cooperativity was observed for the coordination of Sc(OTf)3 to the polymer in aqueous EtOH.

  16. Crystalline arrays of side chain modified bile acids derivatives. Two novel self-assemblies based on π-π and belly-to-belly interactions.

    PubMed

    Mayorquín-Torres, Martha C; Arcos-Ramos, Rafael; Flores-Álamo, Marcos; Iglesias-Arteaga, Martín A

    2016-11-01

    Crystalline derivatives of side chain modified bile acids were efficiently prepared from the naturally occurring steroids by palladium-catalyzed cross coupling reaction as a key step. The solvent-free crystalline bile acids derivatives 2b-e are readily accessed by slow evaporation from selected solvents. A variety of steroidal scaffolds were found and elucidated by SXRD studies. The crystal packing of the title compounds are dominated by hydrogen-bonding interactions established between differently positioned acetyl protecting groups, which in the case of 2b and 2e take advantage of the facial amphiphilicity producing two novel steroidal supramolecular self-assemblies combining π-π and strong facial interactions. Thus, these crystalline arrays of side chain modified bile acids represent promising scaffolds for research and implementation in biomolecular materials or inclusion phenomena.

  17. alpha-Aminoalkylphosphonates as a tool in experimental optimisation of P1 side chain shape of potential inhibitors in S1 pocket of leucine- and neutral aminopeptidases.

    PubMed

    Drag, Marcin; Grembecka, Jolanta; Pawełczak, Małgorzata; Kafarski, Paweł

    2005-08-01

    The synthesis and biological activity studies of the series of structurally different alpha-aminoalkylphosphonates were performed in order to optimise the shape of the side chain of the potential inhibitors in S1 pocket of leucine aminopeptidase [E.C.3.4.11.1]. Analysis of a series of compounds with aromatic, aliphatic and alicyclic P1 side chains enabled to find out the structural features, optimal for that fragment of inhibitors of LAP. The most active among all investigated compounds were the phosphonic analogues of homo-tyrosine (K(i)=120 nM) and homo-phenylalanine (K(i)=140 nM), which even as racemic mixtures were better inhibitors in comparison with the best till now-phosphonic analogue of l-leucine (230 nM). Additional comparison of the inhibitory activity obtained for aminopeptidase N (APN, E.C.3.4.11.2) give insight into structural preferences of both enzymes.

  18. Side-chain Engineering of Benzo[1,2-b:4,5-b’]dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-05-01

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b’]dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing.

  19. SideLink: Automated side-chain assignment of biopolymers from NMR data by relative-hypothesis-prioritization-based simulated logic

    NASA Astrophysics Data System (ADS)

    Masse, James E.; Keller, Rochus; Pervushin, Konstantin

    2006-07-01

    Previously we published the development of AutoLink, a program to assign the backbone resonances of macromolecules. The primary limitation of this program has proven to be its inability to directly recognize spectral data, relying on the user to define peak positions in its input. Here, we introduce a new program for the assignment of side-chain resonances. Like AutoLink, this new program, called SideLink, uses Relative Hypothesis Prioritization to emulate "human" logic. To address the higher complexity of side-chain assignment problems, the RHP algorithm has itself been advanced, making it capable of processing almost any combinatorial logic problem. Additionally, SideLink directly examines spectral data, overcoming the need and limitations of prior data interpretation by users.

  20. Role of the side chain stereochemistry in the α-glucosidase inhibitory activity of kotalanol, a potent natural α-glucosidase inhibitor. Part 2.

    PubMed

    Tanabe, Genzoh; Matsuoka, Kanjyun; Yoshinaga, Masahiro; Xie, Weijia; Tsutsui, Nozomi; A Amer, Mumen F; Nakamura, Shinya; Nakanishi, Isao; Wu, Xiaoming; Yoshikawa, Masayuki; Muraoka, Osamu

    2012-11-01

    To examine the role of the side chain of kotalanol (2), a potent natural α-glucosidase inhibitor isolated from Salacia reticulata, on inhibitory activity, four diastereomers (11a-11d) with reversed configuration (S) at the C-4' position in the side chain were synthesized and evaluated. Two of the four (11b and 11d) significantly lost their inhibitory activity against both maltase and sucrase, while the other two (11a and 11c) sustained the inhibitory activity to a considerable extent, showing distinct activity in response to the change of stereochemistry of the hydroxyls at the 5'and 6' positions. Different activities were rationalized with reference to in silico docking studies on these inhibitors with hNtMGAM. Against isomaltase, all four analogs showed potent inhibitory activity as well as 2, and 11b and 11d exhibited enzyme selectivity.

  1. Escherichia coli O157:H7 LPS O-side chains and pO157 are required for killing Caenorhabditis elegans.

    PubMed

    Youn, Min; Lee, Kang-Mu; Kim, So Hyun; Lim, Jeesun; Yoon, Jang W; Park, Sungsu

    2013-07-05

    As a model host, the nematode Caenorhabditis elegans has been used for studying unknown pathogen-host interactions and identifying novel virulence factors in bacterial pathogens. Among the bacterial pathogens that can induce death of C. elegans is enterohemorrhagic Escherichia coli (EHEC) O157:H7, a major serotype of EHEC that causes hemorrhagic colitis and hemolytic uremic syndrome in humans and animals. However, it is unknown which EHEC O157:H7 factors are required for nematode death. In this study, bacterial ability to kill C. elegans was tested for several EHEC O157:H7 wild-type and mutant strains missing one virulence-associated factor, including Shiga toxins, enterohemolysin, pO157 (a large virulence plasmid in EHEC O157:H7), Type 3 secretion system, LuxS, and lipopolysaccharide (LPS) O-side chains. Our results demonstrate that only mutants lacking either pO157 or LPS O-side chains cause full attenuation in killing C. elegans. The LPS O-side chain-defective ΔperA mutant strain was not able to colonize in the intestine even at 24h post-feeding with C. elegans, while the wild-type strain began to accumulate and colonize in the intestine as early as 3h post-feeding. A simple complementation of the mutant strain with the plasmid carrying the intact perA gene in trans completely restored the production of LPS O-side chains, as well as the ability to kill C. elegans. Our results show that pO157 and PerA are required for EHEC O157:H7 to kill C. elegans.

  2. Side-Chain Fluorination: An Effective Approach to Achieving High-Performance All-Polymer Solar Cells with Efficiency Exceeding 7.

    PubMed

    Oh, Jiho; Kranthiraja, Kakaraparthi; Lee, Changyeon; Gunasekar, Kumarasamy; Kim, Seonha; Ma, Biwu; Kim, Bumjoon J; Jin, Sung-Ho

    2016-12-01

    Side-chain fluorination of polymers is demonstrated as a highly effective strategy to improve the efficiency of all-polymer solar cells from 2.93% (nonfluorinated P1) to 7.13% (fluorinated P2). This significant enhancement is achieved by synergistic improvements in open-circuit voltage, charge generation, and charge transport, as fluorination of the donor polymer optimizes the band alignment and the film morphology.

  3. Supramolecular nanocarrier of siRNA from PEG-based block catiomer carrying diamine side chain with distinctive pKa directed to enhance intracellular gene silencing.

    PubMed

    Itaka, Keiji; Kanayama, Naoki; Nishiyama, Nobuhiro; Jang, Woo-Dong; Yamasaki, Yuichi; Nakamura, Kozo; Kawaguchi, Hiroshi; Kataoka, Kazunori

    2004-10-27

    An siRNA nanocarrier formed through self-assembly of PEG-based block catiomer possessing two distinct amino groups with different pKa values in a side chain was developed. This design provided the carrier with a sufficient siRNA complexation and an assumed buffering capacity in the endosomes, allowing it to exhibit remarkable gene knockdown abilities as well as sufficient serum tolerability.

  4. Non-native side chain IR probe in peptides: ab initio computation and 1D and 2D IR spectral simulation.

    PubMed

    Zheng, Michael L; Zheng, David C; Wang, Jianping

    2010-02-18

    Infrared frequency region of 2000-2600 cm(-1) (i.e., ca. 4-5 microm in wavelength) is a well-known open spectral window for peptides and proteins. In this work, six unnatural amino acids (unAAs) were designed to have characteristic absorption bands located in this region. Key chemical groups that served as side chains in these unAAs are C[triple bond]C, Phe-C[triple bond]C, N=C=O, N=C=S, P-H, and Si-H, respectively. Cysteine (a natural AA having S-H in side chain) was also studied for comparison. The anharmonic vibrational properties, including frequencies, anharmonicities, and intermode couplings, were examined using the density functional theory. Broadband linear infrared (IR) and two-dimensional (2D) IR spectra were simulated for each molecule. It is found that all of the side chain modes have significant overtone diagonal anharmonicities. All have moderate transition dipole strengths except the C[triple bond]C and S-H stretching modes, in comparison with the C=O stretching mode. In each case, a collection of 2D IR cross peaks were predicted to appear due to the presence of the side chain groups, whose strengths are closely related to the intramolecular anharmonic interactions, and to the transition dipole strengths of the coupled vibrators. Further, potential energy distribution analysis and high-order anharmonic constant computation showed that these IR probes possess a varying degree of mode localization. The results suggest that these IR probes are potentially useful in complementing the well-studied amide-I mode, to investigate structures and dynamics of peptides and proteins.

  5. Modular synthesis of polyene side chain analogues of the potent macrolide antibiotic etnangien by a flexible coupling strategy based on hetero-bis-metallated alkenes.

    PubMed

    Altendorfer, Mario; Raja, Aruna; Sasse, Florenz; Irschik, Herbert; Menche, Dirk

    2013-04-07

    An efficient procedure for the concise synthesis of hetero-bis-metallated alkenes as useful building blocks for the modular access to highly elaborate polyenes and stabilized analogues is reported. By applying these bifunctional olefins in convergent Stille/Suzuki-Miyaura couplings, novel, carefully selected side chain analogues of the potent RNA polymerase inhibitor etnangien were synthesized by a modular late stage coupling strategy and evaluated for antibacterial and antiproliferative activities.

  6. Influence of the degree of unsaturation of the acyl side chain upon the interaction of analogues of 1-arachidonoylglycerol with monoacylglycerol lipase and fatty acid amide hydrolase.

    PubMed

    Vandevoorde, Séverine; Saha, Bijali; Mahadevan, Anu; Razdan, Raj K; Pertwee, Roger G; Martin, Billy R; Fowler, Christopher J

    2005-11-11

    Little is known as to the structural requirements of the acyl side chain for interaction of acylglycerols with monoacylglycerol lipase (MAGL), the enzyme chiefly responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain. In the present study, a series of twelve analogues of 1-AG (the more stable regioisomer of 2-AG) were investigated with respect to their ability to inhibit the metabolism of 2-oleoylglycerol by cytosolic and membrane-bound MAGL. In addition, the ability of the compounds to inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) was investigated. For cytosolic MAGL, compounds with 20 carbon atoms in the acyl chain and 2-5 unsaturated bonds inhibited the hydrolysis of 2-oleoylglycerol with similar potencies (IC50 values in the range 5.1-8.2 microM), whereas the two compounds with a single unsaturated bond were less potent (IC50 values 19 and 21 microM). The fully saturated analogue 1-monoarachidin did not inhibit the enzyme, whereas the lower side chain analogues 1-monopalmitin and 1-monomyristin inhibited the enzyme with IC50 values of 12 and 32 microM, respectively. The 22-carbon chain analogue of 1-AG was also potent (IC50 value 4.5 microM). Introduction of an alpha-methyl group for the C20:4, C20:3, and C22:4 compounds did not affect potency in a consistent manner. For the FAAH and the membrane-bound MAGL, there was no obvious relationship between the degree of unsaturation of the acyl side chain and the ability to inhibit the enzymes. It is concluded that increasing the number of unsaturated bonds on the acyl side chain of 1-AG from 1 to 5 has little effect on the affinity of acylglycerols for cytosolic MAGL.

  7. Side Chain Conformational Distributions of a Small Protein Derived from Model-Free Analysis of a Large Set of Residual Dipolar Couplings.

    PubMed

    Li, Fang; Grishaev, Alexander; Ying, Jinfa; Bax, Ad

    2015-11-25

    Accurate quantitative measurement of structural dispersion in proteins remains a prime challenge to both X-ray crystallography and NMR spectroscopy. Here we use a model-free approach based on measurement of many residual dipolar couplings (RDCs) in differentially orienting aqueous liquid crystalline solutions to obtain the side chain χ1 distribution sampled by each residue in solution. Applied to the small well-ordered model protein GB3, our approach reveals that the RDC data are compatible with a single narrow distribution of side chain χ1 angles for only about 40% of the residues. For more than half of the residues, populations greater than 10% for a second rotamer are observed, and four residues require sampling of three rotameric states to fit the RDC data. In virtually all cases, sampled χ1 values are found to center closely around ideal g(-), g(+) and t rotameric angles, even though no rotamer restraint is used when deriving the sampled angles. The root-mean-square difference between experimental (3)JHαHβ couplings and those predicted by the Haasnoot-parametrized, motion-adjusted Karplus equation reduces from 2.05 to 0.75 Hz when using the new rotamer analysis instead of the 1.1-Å X-ray structure as input for the dihedral angles. A comparison between observed and predicted (3)JHαHβ values suggests that the root-mean-square amplitude of χ1 angle fluctuations within a given rotamer well is ca. 20°. The quantitatively defined side chain rotamer equilibria obtained from our study set new benchmarks for evaluating improved molecular dynamics force fields, and also will enable further development of quantitative relations between side chain chemical shift and structure.

  8. Application of palladium-catalyzed carboxyl anhydride-boronic acid cross coupling in the synthesis of novel bile acids analogs with modified side chains.

    PubMed

    Mayorquín-Torres, Martha C; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2015-09-01

    Palladium-catalyzed cross coupling of 4-methoxycarbonyl phenyboronic acid with acetylated bile acids in which the carboxyl functions was activated by formation of a mixed anhydride with pivalic anhydride afforded the cross coupled compounds, which were converted in novel side chain modified bile acids by one pot carbonyl reduction/removal of the protecting acetyl groups by Wolff-Kishner reduction. Unambiguous assignments of the NMR signals and crystal characterization of the heretofore unknown compounds are provided.

  9. Constructing π-Electron-Conjugated Diarylbutadiyne-Based Polydiacetylene under Molecular Framework Controlled by Hydrogen Bond and Side-Chain Substituent Position.

    PubMed

    Tanphibal, Pimsai; Tashiro, Kohji; Chirachanchai, Suwabun

    2016-04-01

    Diarylbutadiyne derivatives are ideal monomers for providing the π-electron-conjugated system of polydiacetylenes (PDAs). The geometrical parameters for diacetylene topochemical polymerization are known. However, control of the molecules under these parameters is yet to be addressed. This work shows that by simply tailoring diarylbutadiyne with amide side-chain substituents, the arrangement of the substituents and the resulting hydrogen bond framework allows formation of π-electron-conjugated PDA.

  10. Regioregular Alternating Polyampholytes Have Enhanced Biomimetic Ice Recrystallization Activity Compared to Random Copolymers and the Role of Side Chain versus Main Chain Hydrophobicity

    PubMed Central

    2016-01-01

    Antifreeze proteins from polar fish species are potent ice recrystallization inhibitors (IRIs) effectively stopping all ice growth. Additives that have IRI activity have been shown to enhance cellular cryopreservation with potential to improve the distribution of donor cells and tissue. Polyampholytes, polymers with both anionic and cationic side chains, are a rapidly emerging class of polymer cryoprotectants, but their mode of action and the structural features essential for activity are not clear. Here regioregular polyampholytes are synthesized from maleic anhydride copolymers to enable stoichiometric installation of the charged groups, ensuring regioregularity, which is not possible using conventional random copolymerization. A modular synthetic strategy is employed to enable the backbone and side chain hydrophobicity to be varied, with side chain hydrophobicity found to have a profound effect on the IRI activity. The activity of the regioregular polymers was found to be superior to those derived from a standard random copolymerization with statistical incorporation of monomers, demonstrating that sequence composition is crucial to the activity of IRI active polyampholytes. PMID:27936601

  11. Exploration on natural product anibamine side chain modification toward development of novel CCR5 antagonists and potential anti-prostate cancer agents.

    PubMed

    Xu, Guoyan G; Zaidi, Saheem A; Zhang, Feng; Singh, Shilpa; Raborg, Thomas J; Yuan, Yunyun; Zhang, Yan

    2015-09-01

    Prostate cancer is one of the leading causes of death among males in the world. Prostate cancer cells have been shown to express upregulated chemokine receptor CCR5, a G protein-coupled receptor (GPCR) that relates to the inflammation process. Anibamine, a natural product containing a pyridine ring and two aliphatic side chains, was shown to carry a binding affinity of 1 μM at CCR5 as an antagonist with potential anti-cancer activity. However, it is not drug-like according to the Lipinski's rule of five mainly due to its two long aliphatic side chains. In our effort to improve its drug-like property, a series of anibamine derivatives were designed and synthesized by placement of aromatic side chains through an amide linkage to the pyridine ring. The newly synthesized compounds were tested for their CCR5 affinity and antagonism, and potential anti-proliferation activity against prostate cancer cell lines. Basal cytotoxicity was finally studied for compounds showing potent anti-proliferation activity. It was found that compounds with hydrophobic substitutions on the aromatic systems seemed to carry more promising CCR5 binding and prostate cancer cell proliferation inhibition activities.

  12. Cytochrome b5 promotes the synthesis of delta 16-C19 steroids by homogeneous cytochrome P-450 C21 side-chain cleavage from pig testis.

    PubMed

    Nakajin, S; Takahashi, M; Shinoda, M; Hall, P F

    1985-10-30

    Conversion of progesterone to 17 alpha-hydroxyprogesterone plus androstenedione (17 alpha-hydroxylation) and to androstadienone (delta 16 synthetase activity) by microsomes from neonatal pig testis, were both inhibited by antibodies raised against homogeneous cytochrome P-450 C21 side-chain cleavage. Inhibition of the two activities showed the same relationship to the concentration of antibody added. Analogous results were obtained with pregnenolone as substrate. In a reconstituted enzyme system consisting of the homogeneous cytochrome P-450 C21 side-chain cleavage enzyme, P-450 reductase and NADPH, addition of cytochrome b5 resulted in the synthesis of the corresponding delta 16-C19-steroid from progesterone (androstadienone) and pregnenolone (androstadienol). The effect of cytochrome b5 was concentration-dependent and prevented by anti-cytochrome b5. It is concluded that the cytochrome P-450 C21 side-chain cleavage enzyme from pig testicular microsomes is also capable of synthesizing delta 16-C19-steroids and is, therefore, likely to be responsible for the large amounts of the pherormone androstadienone produced by male pigs.

  13. Regioregular Alternating Polyampholytes Have Enhanced Biomimetic Ice Recrystallization Activity Compared to Random Copolymers and the Role of Side Chain versus Main Chain Hydrophobicity.

    PubMed

    Stubbs, Christopher; Lipecki, Julia; Gibson, Matthew I

    2017-01-09

    Antifreeze proteins from polar fish species are potent ice recrystallization inhibitors (IRIs) effectively stopping all ice growth. Additives that have IRI activity have been shown to enhance cellular cryopreservation with potential to improve the distribution of donor cells and tissue. Polyampholytes, polymers with both anionic and cationic side chains, are a rapidly emerging class of polymer cryoprotectants, but their mode of action and the structural features essential for activity are not clear. Here regioregular polyampholytes are synthesized from maleic anhydride copolymers to enable stoichiometric installation of the charged groups, ensuring regioregularity, which is not possible using conventional random copolymerization. A modular synthetic strategy is employed to enable the backbone and side chain hydrophobicity to be varied, with side chain hydrophobicity found to have a profound effect on the IRI activity. The activity of the regioregular polymers was found to be superior to those derived from a standard random copolymerization with statistical incorporation of monomers, demonstrating that sequence composition is crucial to the activity of IRI active polyampholytes.

  14. Computational modeling of the side chain dihedral angle distributions of methionine using hard-sphere repulsive and short-range attractive interactions

    NASA Astrophysics Data System (ADS)

    Virrueta, Alejandro; O'Hern, Corey; Regan, Lynne

    Methionine (Met) is a versatile amino acid found frequently both in protein cores and at protein-protein interfaces. Thus, a complete description of the structure of Met is tantamount to a fundamental understanding of protein structure and design. In previous work, we showed that our hard-sphere dipeptide model is able to recapitulate the side chain dihedral angle distributions observed in high-resolution protein crystal structures for the 8 amino acids we have studied to date: Val, Thr, Ser, Leu, Ile, Cys, Tyr, and Phe. Using the same approach, we can predict the observed Met side chain dihedral angle distributions P (χ1) and P (χ2) , but not P (χ3) . In this manuscript, we investigate the possible origins of the discrepancy and identify the minimal additions to the hard-sphere dipeptide model necessary to quantitatively predict P (χ3) of Met. We find that applying a Lennard-Jones potential with weak attraction between hydrogen atoms is sufficient to achieve predictions that match the observed χ3 side chain dihedral angle probability distributions for Met, Nle, and Mse without negatively affecting our results for the 8 previously studied amino acids. A. V. is supported by an NSF Graduate Research Fellowship and a Ford Foundation Fellowship.

  15. Itraconazole Side Chain Analogues: Structure–Activity Relationship Studies for Inhibition of Endothelial Cell Proliferation, Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Glycosylation, and Hedgehog Signaling

    PubMed Central

    Shi, Wei; Nacev, Benjamin A.; Aftab, Blake T.; Head, Sarah; Rudin, Charles M.; Liu, Jun O.

    2012-01-01

    Itraconazole is an antifungal drug that was recently found to possess potent antiangiogenic activity and anti-hedgehog (Hh) pathway activity. To search for analogues of itraconazole with greater potency and to understand the structure–activity relationship in both antiangiogenic and Hh targeting activity, 25 itraconazole side chain analogues were synthesized and assayed for inhibition of endothelial cell proliferation and Gli1 transcription in a medulloblastoma (MB) culture. Through this analysis, we have identified analogues with increased potency for inhibiting endothelial cell proliferation and the Hh pathway, as well as VEGFR2 glycosylation that was recently found to be inhibited by itraconazole. An SAR analysis of these activities revealed that potent activity of the analogues against VEGFR2 glycosylation was generally driven by side chains of at least four carbons in composition with branching at the α or β position. SAR trends for targeting the Hh pathway were divergent from those related to HUVEC proliferation or VEGFR2 glycosylation. These results also suggest that modification of the sec-butyl side chain can lead to enhancement of the biological activity of itraconazole. PMID:21936514

  16. Photo-aligned blend films of azobenzene-containing polyimides with and without side-chains for inducing inclined alignment of liquid crystal molecules

    NASA Astrophysics Data System (ADS)

    Usami, Kiyoaki; Sakamoto, Kenji

    2011-08-01

    We have succeeded in controlling the pretilt angle of liquid crystal (LC) molecules over the whole range of 0 to 90° by using photo-aligned blend films of two azobenzene-containing polyimides (Azo-PIs) with and without side-chains. The Azo-PIs were synthesized from pyromellitic dianhydride and a mixture of 4,4'-diaminoazobenzene and 4-(4'-propylbi(cyclohexan)-4-yl)phenyl 3,5-diaminobenzoate (PBCP-DABA). PBCP-DABA is a diamine to introduce a side-chain structure into the polyimide. Defect-free uniform LC alignment was obtained in the pretilt angle (θp) ranges of θp ≤ 11° and θp ≥ 78°. Previously, we reported that the pretilt angle can be controlled using pure photo-aligned films of Azo-PIs with different molar fractions of PBCP-DABA. For the pure photo-aligned films, the defect-free pretilt angle ranges were θp < 5° and θp ≥ 85°. These results suggest that the azimuthal anchoring strength of the blend Azo-PI film is stronger than that of the pure films of Azo-PIs with side-chains, at least for the pretilt angle range from 5 to 11°. We found that the defect-free pretilt angle range can be extended by using the blend Azo-PI films instead of the pure Azo-PI films.

  17. A platinum(II) phenylphenanthroimidazole with an extended side-chain exhibits slow dissociation from a c-Kit G-quadruplex motif.

    PubMed

    Castor, Katherine J; Liu, Zhaomin; Fakhoury, Johans; Hancock, Mark A; Mittermaier, Anthony; Moitessier, Nicolas; Sleiman, Hanadi F

    2013-12-23

    A series of three platinum(II) phenanthroimidazoles each containing a protonable side-chain appended from the phenyl moiety through copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) were evaluated for their capacities to bind to human telomere, c-Myc, and c-Kit derived G-quadruplexes. The side-chain has been optimized to enable a multivalent binding mode to G-quadruplex motifs, which would potentially result in selective targeting. Molecular modeling, high-throughput fluorescence intercalator displacement (HT-FID) assays, and surface plasmon resonance (SPR) studies demonstrate that complex 2 exhibits significantly slower dissociation rates compared to platinum phenanthroimidazoles without side-chains and other reported G-quadruplex binders. Complex 2 showed little cytotoxicity in HeLa and A172 cancer cell lines, consistent with the fact that it does not follow a telomere-targeting pathway. Preliminary mRNA analysis shows that 2 specifically interacts with the ckit promoter region. Overall, this study validates 2 as a useful molecular probe for c-Kit related cancer pathways.

  18. Side-chain conformational space analysis (SCSA): a multi conformation-based QSAR approach for modeling and prediction of protein-peptide binding affinities.

    PubMed

    Zhou, Peng; Chen, Xiang; Shang, Zhicai

    2009-03-01

    In this article, the concept of multi conformation-based quantitative structure-activity relationship (MCB-QSAR) is proposed, and based upon that, we describe a new approach called the side-chain conformational space analysis (SCSA) to model and predict protein-peptide binding affinities. In SCSA, multi-conformations (rather than traditional single-conformation) have received much attention, and the statistical average information on multi-conformations of side chains is determined using self-consistent mean field theory based upon side chain rotamer library. Thereby, enthalpy contributions (including electrostatic, steric, hydrophobic interaction and hydrogen bond) and conformational entropy effects to the binding are investigated in terms of occurrence probability of residue rotamers. Then, SCSA was applied into the dataset of 419 HLA-A 0201 binding peptides, and nonbonding contributions of each position in peptide ligands are well determined. For the peptides, the hydrogen bond and electrostatic interactions of the two ends are essential to the binding specificity, van der Waals and hydrophobic interactions of all the positions ensure strong binding affinity, and the loss of conformational entropy at anchor positions partially counteracts other favorable nonbonding effects.

  19. Preparation of main-chain-type and side-chain-type sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Tsai, Jie-Cheng; Lin, Chien-Kung

    Novel main-chain-type and side-chain-type sulphonated poly(ether ether ketone)s (MS-SPEEKs) are synthesised by reacting the sulphonic acid groups of pristine SPEEKs with 2-aminoethanesulphonic acid to improve the nano-phase separated morphology of the material. 1H NMR and FT-IR spectroscopy are employed to determine the structure and composition of main-chain-type and side-chain-type sulphonated polymers. Flexible and tough membranes with reasonable thermal properties are obtained. The MS-SPEEKs show good hydrolytic stability, and water uptake values ranging from 15% to 30% are observed. Compared to Nafion 117 ®, the methanol permeability of the MS-SPEEKs is dramatically reduced to 8.83 × 10 -8 cm 2 s -1 to 3.31 × 10 -7 cm 2 s -1. The proton conductivity increases with increasing temperature, reaching 0.013-0.182 S cm -1. A maximum power density and open circuit voltage of 115 mW cm -2 and 0.830 V are obtained at 80 °C, respectively, which is significantly greater than the values generated with Nafion 117 ®. The introduction of pendent side-chain-type sulphonic acid groups increases the single-cell performance by more than approximately 20%; thus, the lower water diffusivity, methanol permeability, electro-osmotic drag coefficient and high cell performance indicated that MS-SPEEK is a promising candidate for DMFC applications.

  20. Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the "hydrophobic wall" of carbonic anhydrase.

    PubMed

    Mecinović, Jasmin; Snyder, Phillip W; Mirica, Katherine A; Bai, Serena; Mack, Eric T; Kwant, Richard L; Moustakas, Demetri T; Héroux, Annie; Whitesides, George M

    2011-09-07

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H(2)NSO(2)C(6)H(4)-CONHCH(2)(CX(2))(n)CX(3), n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and entropic contributions to the

  1. Alkyl ferulates in wound healing potato tubers.

    PubMed

    Bernards, M A; Lewis, N G

    1992-10-01

    Seven ferulic acid esters of 1-alkanols ranging in carbon length from C16 to C28 were synthesized and an HPLC protocol for their separation developed. Extracts prepared from wound healing potato (Solanum tuberosum) tubers and analysed by HPLC indicated that alkyl ferulate esters begin to accumulate 3-7 days after wound treatment. Of the nine esters identified by EIMS, (including two esters of odd chain length alkanols) hexadecyl and octadecyl ferulates were predominant. Alkyl ferulate esters were restricted to the wound periderm.

  2. Defective peroxisomal cleavage of the C27-steroid side chain in the cerebro-hepato-renal syndrome of Zellweger.

    PubMed Central

    Kase, B F; Björkhem, I; Hågå, P; Pedersen, J I

    1985-01-01

    only slow incorporation of radioactivity into 24-OH-THCA and into the C29-dicarboxylic acid. From the specific activity decay curve of 14C in cholic acid obtained after intravenous injection of 14C-cholic acid, the pool size of cholic acid was calculated to be 24 mg/m2 and the daily production rate to 9 mg/m2 per d. This corresponds to a reduction of approximately 85 and 90%, respectively, when compared with normal infants. It is concluded that liver peroxisomes are essential in the normal conversion of THCA to cholic acid. In the Zellweger syndrome this conversion is defective and as a consequence the accumulated THCA is either excreted as such or transformed into other metabolites by hydroxylation or side chain elongation. The accumulation of THCA, as well as the similar rate of conversion of 5 beta-cholestane-3 alpha,7 alpha.12 alpha-triol and THCA into cholic acid, support the contention that the 26-hydroxylase pathway with intermediate formation of THCA is the most important pathway for formation of cholic acid in man. PMID:3973012

  3. Structure, position, and biosynthesis of the high mannose and the complex oligosaccharide side chains of the bean storage protein phaseolin.

    PubMed

    Sturm, A; Van Kuik, J A; Vliegenthart, J F; Chrispeels, M J

    1987-10-05

    Phaseolin, the major storage protein of the common bean (Phaseolus vulgaris), is a glycoprotein which is synthesized during seed development and accumulates in protein storage vacuoles or protein bodies. The protein has three different N-linked oligosaccharide side chains: Man9(GlcNAc)2, Man7(GlcNAc)2, and Xyl-Man3(GlcNAc)2 (where Xyl represents xylose). The structures of these glycans were determined by 1H NMR spectroscopy. The Man9(GlcNAc)2 glycan has the typical structure found in plant and animal glycoproteins. The structures of the two other glycans are shown below. (Formula; see text) Phaseolin was separated by electrophoresis on denaturing gels into four size classes of polypeptides. The two abundant ones have two oligosaccharides each, whereas the less abundant ones have only one oligosaccharide each. Polypeptides with two glycans have Man7(GlcNAc)2 attached to Asn252 and Man9(GlcNAc)2 attached to Asn341. Polypeptides with only one glycan have Xyl-Man3(GlcNAc)2 attached to Asn252. Both these asparagine residues are in canonical glycosylation sites; the numbering starts with the N-terminal methionine of the signal peptide of phaseolin. The presence of the Man7(GlcNAc)2 and of Xyl-Man3(GlcNAc)2 at the same asparagine residue (position 252) of different polypeptides seems to be controlled by the glycosylation status of Asn341. When Asp341 is unoccupied, the glycan at Asn252 is complex. When Asn341 is occupied, the glycan at Asn252 is only modified to the extent that 2 mannosyl residues are removed. The processing of the glycans, after the removal of the glucose residues, involves enzymes in the Golgi apparatus as well as in the protein bodies. Formation of the Xyl-Man3(GlcNAc)2 glycan is a multistep process that involves the Golgi apparatus-mediated removal of 6 mannose residues and the addition of 2 N-acetylglucosamine residues and 1 xylose. The terminal N-acetylglucosamine residues are later removed in the protein bodies. The conversion of Man9(GlcNAc)2 to

  4. Side-Chain Conformational Thermodynamics of Aspartic Acid Residue in the Peptides and Achatin-I in Aqueous Solution

    PubMed Central

    Kimura, Tomohiro; Matubayasi, Nobuyuki; Nakahara, Masaru

    2004-01-01

    Sequence-position dependence of the side-chain conformational equilibrium of aspartic acid (Asp) residue is investigated for both model Asp peptides (di- to tetra-) and neuropeptide achatin-I (Gly-𝒟-Phe-Ala-Asp) in aqueous solution. The trans-to-gauche conformational changes on the dihedral angle of C–Cα–Cβ–C are analyzed in terms of the standard free energy ΔG0, enthalpy ΔH0, and entropy −TΔS0. The thermodynamic quantities are obtained by measuring the dihedral-angle-dependent vicinal 1H-1H coupling constants in nuclear magnetic resonance over a wide temperature range. When the carboxyl groups of Asp are ionized, ΔG0 in the aqueous phase depends by ∼1–2 kJ mol−1 on the sequence position, whereas the energy change \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\Delta}E_{{\\mathrm{gas}}}^{0}\\end{equation*}\\end{document} in the gas phase (absence of solvent) depends by tens of kJ mol−1. Therefore, the weak position dependence of ΔG0 is a result of the compensation for the intramolecular effect \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\Delta}E_{{\\mathrm{gas}}}^{0}\\end{equation*}\\end{document} by the hydration \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\Delta}G_{{\\mathrm{hyd}}}^{0}\\end{equation*}\\end{document} (= ΔG0–\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage

  5. DNA-directed alkylating ligands as potential antitumor agents: sequence specificity of alkylation by intercalating aniline mustards.

    PubMed

    Prakash, A S; Denny, W A; Gourdie, T A; Valu, K K; Woodgate, P D; Wakelin, L P

    1990-10-23

    The sequence preferences for alkylation of a series of novel parasubstituted aniline mustards linked to the DNA-intercalating chromophore 9-aminoacridine by an alkyl chain of variable length were studied by using procedures analogous to Maxam-Gilbert reactions. The compounds alkylate DNA at both guanine and adenine sites. For mustards linked to the acridine by a short alkyl chain through a para O- or S-link group, 5'-GT sequences are the most preferred sites at which N7-guanine alkylation occurs. For analogues with longer chain lengths, the preference of 5'-GT sequences diminishes in favor of N7-adenine alkylation at the complementary 5'-AC sequence. Magnesium ions are shown to selectively inhibit alkylation at the N7 of adenine (in the major groove) by these compounds but not the alkylation at the N3 of adenine (in the minor groove) by the antitumor antibiotic CC-1065. Effects of chromophore variation were also studied by using aniline mustards linked to quinazoline and sterically hindered tert-butyl-9-aminoacridine chromophores. The results demonstrate that in this series of DNA-directed mustards the noncovalent interactions of the carrier chromophores with DNA significantly modify the sequence selectivity of alkylation by the mustard. Relationships between the DNA alkylation patterns of these compounds and their biological activities are discussed.

  6. Polyimide characterization studies - Effect of pendant alkyl groups