Sample records for alkyl thiolate monolayers

  1. Tris(thioimidazolyl)borate-zinc-thiolate complexes for the modeling of biological thiolate alkylations.

    PubMed

    Ibrahim, Mohamed M; Seebacher, Jan; Steinfeld, Gunther; Vahrenkamp, Heinrich

    2005-11-14

    The S3Zn-SR coordination of thiolate-alkylating enzymes such as the Ada DNA repair protein was reproduced in tris(thioimidazolyl)borate-zinc-thiolate complexes Tti(R)Zn-SR'. Four different Tti(R) ligands and nine different thiolates were employed, yielding a total of 12 new complexes. In addition, one Tti(R)Zn-SH complex and two thiolate-bridged [Tti(R)-SEt-Tti(R)]+ complexes were obtained. A selection of six thiolate complexes was converted with methyl iodide to the corresponding methyl thioethers and Tti(R)Zn-I. According to a kinetic analysis these reactions are second-order processes, which implies that the alkylations are likely to occur at the zinc-bound thiolates. They are much faster than the alkylations of zinc thiolates with N3 or N2S tripod ligands. The most reactive thiolate, Tti(Xyl)Zn-SEt, reacts slowly with trimethyl phosphate in a nonpolar medium at room temperature, yielding methyl-ethyl-thioether and Tti(Xyl)Zn-OPO(OMe)2 which can be converted back to the thiolate complex with NaSEt. This is the closest reproduction of the Ada repair process so far.

  2. Molecular Recognition in Gels, Monolayers, and Solids

    DTIC Science & Technology

    1991-12-01

    monolayers (SAMs) of alkyl thiolates on gold to the study of protein adsorption on organic surfaces; and the use of networkc 20. ISTIBUION AVALABLITYOF...areas of molecular recognition: affinity polymers and molecular self-assembly. We illustrute these artas by examples drawn frozr affinity gel electro...polyacmy~amides be’.ring,,sialic acid groups; the application of self-a-eseinbled monolayers (SAMs) of alkyl thiolates on gold to the study of protein

  3. Thermodynamics of Alkanethiol Self-Assembled Monolayer Assembly on Pd Surfaces.

    PubMed

    Kumar, Gaurav; Van Cleve, Timothy; Park, Jiyun; van Duin, Adri; Medlin, J Will; Janik, Michael J

    2018-06-05

    We investigate the structure and binding energy of alkanethiolate self-assembled monolayers (SAMs) on Pd (111), Pd (100), and Pd (110) facets at different coverages. Dispersion-corrected density functional theory calculations are used to correlate the binding energy of alkanethiolates with alkyl chain length and coverage. The equilibrium coverage of thiolate layers strongly prefers 1/3 monolayer (ML) on the Pd (111) surface. The coverage of thiolates varies with chemical potential on Pd (100) and Pd (110), increasing from 1/3 to 1/2 ML on (100) and from 1/4 to 1/2 ML on (110) as the thiol chemical potential is increased. Higher coverages are driven by attractive dispersion interactions between the extended alkyl chains, such that transitions to higher coverages occur at lower thiol chemical potentials for longer chain thiolates. Stronger adsorption to the Pd (100) surface causes the equilibrium Wulff construction of Pd particles to take on a cubic shape upon saturation with thiols. The binding of H, O, and CO adsorbates is weakened as the thiolate coverage is increased, with saturation coverages causing unfavorable binding of O and CO on Pd (100) and weakened binding on other facets. Temperature-dependent CO diffuse reflectance infrared Fourier transform spectroscopy experiments are used to corroborate the weakened binding of CO in the presence of thiolate SAMs of varying surface density. Preliminary results of multiscale modeling efforts on the Pd-thiol system using a reactive force field, ReaxFF, are also discussed.

  4. Chemisorbed monolayers of corannulene penta-thioethers on gold.

    PubMed

    Angelova, Polina; Solel, Ephrath; Parvari, Galit; Turchanin, Andrey; Botoshansky, Mark; Gölzhäuser, Armin; Keinan, Ehud

    2013-02-19

    Penta(tert-butylthio)corannulene and penta(4-dimethylaminophenylthio)corannulene form highly stable monolayers on gold surfaces, as indicated by X-ray photoelectron spectroscopy (XPS). Formation of these homogeneous monolayers involves multivalent coordination of the five sulfur atoms to gold with the peripheral alkyl or aryl substituents pointing away from the surface. No dissociation of C-S bonds upon binding could be observed at room temperature. Yet, the XPS experiments reveal strong chemical bonding between the thioether groups and gold. Temperature-dependent XPS study shows that the thermal stability of the monolayers is higher than the typical stability of self-assembled monolayers (SAMs) of thiolates on gold.

  5. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells.

    PubMed

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-11-09

    We report the preparation of Cu 2 S, In 2 S 3 , CuInS 2 and Cu(In,Ga)S 2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN 1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.

  6. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells

    NASA Astrophysics Data System (ADS)

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-11-01

    We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.

  7. Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters.

    PubMed

    Heinecke, Christine L; Ni, Thomas W; Malola, Sami; Mäkinen, Ville; Wong, O Andrea; Häkkinen, Hannu; Ackerson, Christopher J

    2012-08-15

    Ligand exchange reactions are widely used for imparting new functionality on or integrating nanoparticles into devices. Thiolate-for-thiolate ligand exchange in monolayer protected gold nanoclusters has been used for over a decade; however, a firm structural basis of this reaction has been lacking. Herein, we present the first single-crystal X-ray structure of a partially exchanged Au(102)(p-MBA)(40)(p-BBT)(4) (p-MBA = para-mercaptobenzoic acid, p-BBT = para-bromobenzene thiol) with p-BBT as the incoming ligand. The crystal structure shows that 2 of the 22 symmetry-unique p-MBA ligand sites are partially exchanged to p-BBT under the initial fast kinetics in a 5 min timescale exchange reaction. Each of these ligand-binding sites is bonded to a different solvent-exposed Au atom, suggesting an associative mechanism for the initial ligand exchange. Density functional theory calculations modeling both thiol and thiolate incoming ligands postulate a mechanistic pathway for thiol-based ligand exchange. The discrete modification of a small set of ligand binding sites suggests Au(102)(p-MBA)(44) as a powerful platform for surface chemical engineering.

  8. Chemical and physical passivation of type II strained-layer superlattice devices by means of thiolated self-assembled monolayers and polymer encapsulates

    NASA Astrophysics Data System (ADS)

    Henry, Nathan C.; Knorr, Daniel B.; Williams, Kristen S.; Baril, Neil; Nallon, Eric; Lenhart, Joseph L.; Andzelm, Jan W.; Pellegrino, Joseph; Tidrow, Meimei; Cleveland, Erin; Bandara, Sumith

    2015-05-01

    The efficacy of solution deposition of thiolated self-assembled monolayers (SAMs) has been explored for the purpose of passivating III-V type II superlattice (T2SL) photodetectors, more specifically a p-type heterojunction device. Sulfur passivation has previously been achieved on T2SL devices. However, degradation over time, temperature sensitivity and inconsistent reproducibility necessitate a physical encapsulate that can chemically bond to the chemical passivant. Thus, this research investigates two passivation methods, surface passivation with a thiol monolayer and passivation with a polymer encapsulant with a view toward future combination of these techniques. Analysis of the physical and chemical condition of the surface prior to deposition assisted in the development of ideal processes for optimized film quality. Successful deposition was facilitated by in situ oxide removal. Various commercially available functional (cysteamine) and non-functional (alkane) thiolated monolayers were investigated. Dark current was reduced by 3 orders of magnitude and achieved negligible surface leakage at low bias levels. The lowest dark current result, 7.69 × 10-6 A/cm2 at 50 mV, was achieved through passivation with cysteamine.

  9. Probing Phase Evolutions of Au-Methyl-Propyl-Thiolate Self-Assembled Monolayers on Au(111) at the Molecular Level.

    PubMed

    Gao, Jianzhi; Lin, Haiping; Qin, Xuhui; Zhang, Xin; Ding, Haoxuan; Wang, Yitao; Rokni Fard, Mahroo; Kaya, Dogan; Zhu, Gangqiang; Li, Qing; Li, Youyong; Pan, Minghu; Guo, Quanmin

    2018-06-18

    A self-assembled monolayer (SAM) consisting of a mixture of CH 3 S-Au-SCH 3 , CH 3 S-Au-S(CH 2 ) 2 CH 3 , and CH 3 (CH 2 ) 2 S-Au-S(CH 2 ) 2 CH 3 was studied systematically using scanning tunneling microscopy and density functional calculations. We find that the SAM is subjected to frequent changes at the molecular level on the time scale of ∼minutes. The presence of CH 3 S or CH 3 S-Au as a dissociation product of CH 3 S-Au-SCH 3 plays a key role in the dynamical behavior of the mixed SAM. Slow phase separation takes place at room temperature over hours to days, leading to the formation of methyl-thiolate-rich and propyl-thiolate-rich phases. Our results provide new insights into the chemistry of the thiolate-Au interface, especially for ligand exchange reaction in the RS-Au-SR staple motif.

  10. Covalent attachment of TAT peptides and thiolated alkyl molecules on GaAs surfaces.

    PubMed

    Cho, Youngnam; Ivanisevic, Albena

    2005-07-07

    Four TAT peptide fragments were used to functionalize GaAs surfaces by adsorption from solution. In addition, two well-studied alkylthiols, mercaptohexadecanoic acid (MHA) and 1-octadecanethiol (ODT) were utilized as references to understand the structure of the TAT peptide monolayer on GaAs. The different sequences of TAT peptides were employed in recognition experiments where a synthetic RNA sequence was tested to verify the specific interaction with the TAT peptide. The modified GaAs surfaces were characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). AFM studies were used to compare the surface roughness before and after functionalization. XPS allowed us to characterize the chemical composition of the GaAs surface and conclude that the monolayers composed of different sequences of peptides have similar surface chemistries. Finally, FT-IRRAS experiments enabled us to deduce that the TAT peptide monolayers have a fairly ordered and densely packed alkyl chain structure. The recognition experiments showed preferred interaction of the RNA sequence toward peptides with high arginine content.

  11. Tribology of monolayer films: comparison between n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon.

    PubMed

    Booth, Brandon D; Vilt, Steven G; McCabe, Clare; Jennings, G Kane

    2009-09-01

    This Article presents a quantitative comparison of the frictional performance for monolayers derived from n-alkanethiolates on gold and n-alkyl trichlorosilanes on silicon. Monolayers were characterized by pin-on-disk tribometry, contact angle analysis, ellipsometry, and electrochemical impedance spectroscopy (EIS). Pin-on-disk microtribometry provided frictional analysis at applied normal loads from 10 to 1000 mN at a speed of 0.1 mm/s. At low loads (10 mN), methyl-terminated n-alkanethiolate self-assembled monolayers (SAMs) exhibited a 3-fold improvement in coefficient of friction over SAMs with hydroxyl- or carboxylic-acid-terminated surfaces. For monolayers prepared from both n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon, a critical chain length of at least eight carbons is required for beneficial tribological performance at an applied load of 9.8 mN. Evidence for disruption of chemisorbed alkanethiolate SAMs with chain lengths n monolayers shows that monolayers prepared from n-octadecyl dimethylchlorosilane and n-octadecyl trichlorosilane withstood normal loads at least 30 times larger than those that damaged octadecanethiolate SAMs. Collectively, our results show that the tribological properties of monolayer films are dependent on their internal stabilities, which are influenced by cohesive chain interactions (van der Waals) and the adsorbate-substrate bond.

  12. Comparative Study of the Binding of Concanavalin A to Self-Assembled Monolayers Containing a Thiolated α-Mannoside on Flat Gold and on Nanoporous Gold

    PubMed Central

    Pandey, Binod; Tan, Yih Horng; Fujikawa, Kohki; Demchenko, Alexei V.

    2013-01-01

    We have prepared SAMs containing 8-mercaptooctyl α-D-mannopyranoside, either as a single component or in mixed SAMs with n-octanethiol on flat gold surfaces and on nanoporous gold. Electrochemical impedance spectroscopy showed that the mixed SAMs on flat gold surfaces showed the highest Con A binding near 1:9 solution molar ratio of thiolatedα-mannoside to n-octanethiol whereas those on NPG showed the highest response at 1:19 solution molar ratio of thiolated α-mannoside to n-octanethiol. Atomic force microscopy was employed to image the monolayers, and also to image the bound Con A protein. PMID:23519474

  13. Thiolated alkyl-modified carbomers: Novel excipients for mucoadhesive emulsions.

    PubMed

    Bonengel, Sonja; Hauptstein, Sabine; Leonaviciute, Gintare; Griessinger, Julia; Bernkop-Schnürch, Andreas

    2015-07-30

    The aim of this study was the design and evaluation of mucoadhesive emulsifying polymeric excipients. Three thiol bearing ligands with increasing pKa values of their sulfhydryl group, namely 4-aminothiophenol (pKa=6.86), l-cysteine (pKa=8.4) and d/l-homocysteine (pKa=10.0) were coupled to the polymeric backbone of alkyl-modified carbomer (PA1030). Resulting conjugates displayed 818.5μmol 4-aminothiophenol, 698.5μmol cysteine and 651.5μmol homocysteine per gram polymer and were evaluated regarding the reactivity of thiol groups, emulsifying and mucoadhesive properties. In general, the synthesized conjugates showed a pH dependent reactivity, whereby the fastest oxidation occurred in PA1030-cysteine, as almost no free thiol groups could be detected after 120min. Emulsification of medium chain triglycerides was feasible with all synthesized conjugates leading to oil-in-water-emulsions. Emulsions with PA1030-cysteine displayed the highest stability and the smallest droplet size among the tested formulations. Oxidation and consequently cross-linking of the thiomers prior to the emulsification process led to an overall decreased emulsion stability. Evaluating mucosal residence time of thiomer emulsions on porcine buccal mucosa, a 9.2-fold higher amount of formulation based on PA1030-cysteine remained on the mucosal tissue within 3h compared to the unmodified polymer. According to these results, the highest reactive ligand l-cysteine seems to be most promising in order to obtain thiolated polymers for the preparation of mucoadhesive o/w-emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Intranasal delivery of cyclobenzaprine hydrochloride-loaded thiolated chitosan nanoparticles for pain relief.

    PubMed

    Patel, Deepa; Naik, Sachin; Chuttani, Krishna; Mathur, Rashi; Mishra, Anil K; Misra, Ambikanandan

    2013-09-01

    The purpose of present investigation was to formulate and characterize the cyclobenzaprine HCl (CBZ)-loaded thiolated chitosan nanoparticles and assessment of in-vitro cell viability, trans-mucosal permeability on RPMI2650 cell monolayer, in-vivo pharmacokinetic and pharmacodynamic study of thiolated chitosan nanoparticles on Swiss albino mice after intranasal administration. A significant high permeation of drug was observed from thiolated chitosan nanoparticles with less toxicity on nasal epithelial cells. Brain uptake of the drug after (99m)Tc labeling was significantly enhanced after thiolation of chitosan. CBZ-loaded thiolated chitosan NPs significantly reverse the N-Methyl-.-Aspartate (NMDA)-induced hyperalgesia by intranasal administration than the CBZ solution. The studies of present investigation revealed that thiolation of chitosan significantly reduce trans-mucosal toxicity with enhanced trans-mucosal permeability via paracellular pathway and brain uptake of a hydrophilic drug (normally impermeable across blood brain barrier) and pain alleviation activity via intranasal route.

  15. Mechanistic Investigations of Branched Macromolecules and Metal Nanocomposites for Nonlinear Optical Applications

    DTIC Science & Technology

    2009-09-26

    gold which show a band gap opening. them with alkyl or aryl thiolates and they are often referred as monolayer protected gold clusters (MPC...workers16-18, as well as Tsukuda and co-workers19 with several thiolate capped MPCs. The PI’s laboratory has observed luminescence mainly in the near...properties for sizes between ~50 and ~1000 atoms is not well understood. Careful analysis of absorption spectra for thiolate stabilized gold MPC

  16. Gold surfaces and nanoparticles are protected by Au(0)-thiyl species and are destroyed when Au(I)-thiolates form.

    PubMed

    Reimers, Jeffrey R; Ford, Michael J; Halder, Arnab; Ulstrup, Jens; Hush, Noel S

    2016-03-15

    The synthetic chemistry and spectroscopy of sulfur-protected gold surfaces and nanoparticles is analyzed, indicating that the electronic structure of the interface is Au(0)-thiyl, with Au(I)-thiolates identified as high-energy excited surface states. Density-functional theory indicates that it is the noble character of gold and nanoparticle surfaces that destabilizes Au(I)-thiolates. Bonding results from large van der Waals forces, influenced by covalent bonding induced through s-d hybridization and charge polarization effects that perturbatively mix in some Au(I)-thiolate character. A simple method for quantifying these contributions is presented, revealing that a driving force for nanoparticle growth is nobleization, minimizing Au(I)-thiolate involvement. Predictions that Brust-Schiffrin reactions involve thiolate anion intermediates are verified spectroscopically, establishing a key feature needed to understand nanoparticle growth. Mixing of preprepared Au(I) and thiolate reactants always produces Au(I)-thiolate thin films or compounds rather than monolayers. Smooth links to O, Se, Te, C, and N linker chemistry are established.

  17. Synthesis, characterization, and relative stabilities of self-assembled monolayers on gold generated from bidentate n-alkyl xanthic acids.

    PubMed

    Moore, H Justin; Colorado, Ramon; Lee, Han Ju; Jamison, Andrew C; Lee, T Randall

    2013-08-27

    A series of self-assembled monolayers (SAMs) on gold were generated by the adsorption of n-alkyl xanthic acids (NAXAs) having the general formula CH3(CH2)nOCS2H (n = 12-15). The structural features of these SAMs were characterized by optical ellipsometry, contact angle goniometry, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). This series of xanthate SAMs were compared to SAMs generated from the corresponding n-alkanethiols and aliphatic dithiocarboxylic acids (ADTCAs). The collected data indicate that the NAXAs generate densely packed and well-ordered monolayers. The contact angles of hexadecane on the xanthate monolayers exhibited a large "odd-even" effect similar to that produced by the ADTCA SAMs. The relative stability of these bidentate xanthate SAMs was evaluated by monitoring the changes in ellipsometric thicknesses and wettability as a function of time under various conditions. The results demonstrate that SAMs formed from NAXAs are much less stable than analogous n-alkanethiolate and ADTCA SAMs.

  18. Thiolated chitosans.

    PubMed

    Bernkop-Schnürch, Andreas; Hornof, Margit; Guggi, Davide

    2004-01-01

    The derivatization of the primary amino groups of chitosan with coupling reagents bearing thiol functions leads to the formation of thiolated chitosans. So far, three types of thiolated chitosans have been generated: chitosan-cysteine conjugates, chitosan-thioglycolic acid conjugates and chitosan-4-thio-butyl-amidine conjugates. Various properties of chitosan are improved by this immobilization of thiol groups. Due to the formation of disulfide bonds with mucus glycoproteins, the mucoadhesiveness is 6--100-fold augmented (I). The permeation of paracellular markers through intestinal mucosa can be enhanced 1.6--3-fold utilizing thiolated instead of unmodified chitosan (II). Moreover, thiolated chitosans display in situ-gelling features, due to the pH-dependent formation of inter- as well as intra-molecular disulfide bonds (III). This latter process provides a strong cohesion and stability of carrier matrices being based on thiolated chitosans (IV). Consequently, thiolated chitosans can guarantee a prolonged controlled release of embedded therapeutic ingredients (V). The potential of thiolated chitosans has meanwhile also been demonstrated in vivo. A significant pharmacological efficacy of 1.3% of orally given salmon calcitonin, for instance, could be achieved utilizing thiolated chitosan as polymeric drug carrier matrix, while no effect was reached using unmodified chitosan. According to these results thiolated chitosans represent a promising new category of polymeric excipients in particular for the non-invasive administration of hydrophilic macromolecules. Further applications such as their use as scaffold materials in tissue engineering or as coating material for stents seem feasible.

  19. Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery.

    PubMed

    Perrone, Mara; Lopalco, Antonio; Lopedota, Angela; Cutrignelli, Annalisa; Laquintana, Valentino; Douglas, Justin; Franco, Massimo; Liberati, Elisa; Russo, Vincenzo; Tongiani, Serena; Denora, Nunzio; Bernkop-Schnürch, Andreas

    2017-10-01

    The purpose of this study was to synthesize and characterize a novel thiolated glycogen, so-named S-preactivated thiolated glycogen, as a mucosal drug delivery systems and the assessment of its mucoadhesive properties. In this regard, glycogen-cysteine and glycogen-cysteine-2-mercaptonicotinic acid conjugates were synthesized. Glycogen was activated by an oxidative ring opening with sodium periodate resulting in reactive aldehyde groups to which cysteine was bound via reductive amination. The obtained thiolated polymer displayed 2203.09±200μmol thiol groups per gram polymer. In a second step, the thiol moieties of thiolated glycogen were protected by disulfide bond formation with the thiolated aromatic residue 2-mercaptonicotinic acid (2MNA). In vitro screening of mucoadhesive properties was performed on porcine intestinal mucosa using different methods. In particular, in terms of rheology investigations of mucus/polymer mixtures, the S-preactivated thiolated glycogen showed a 4.7-fold increase in dynamic viscosity over a time period of 5h, in comparison to mucus/Simulated Intestinal Fluid control. The S-preactivated polymer remained attached on freshly excised porcine mucosa for 45h. Analogous results were obtained with tensile studies demonstrating a 2.7-fold increase in maximum detachment force and 3.1- fold increase in total work of adhesion for the S-preactivated polymer compared to unmodified glycogen. Moreover, water-uptake studies showed an over 4h continuing weight gain for the S-preactivated polymer, whereas disintegration took place for the unmodified polymer within the first hour. Furthermore, even in the highest tested concentration of 2mg/ml the new conjugates did not show any cytotoxicity on Caco-2 cell monolayer using an MTT assay. According to these results, S-preactivated glycogen represents a promising type of mucoadhesive polymers useful for the development of various mucosal drug delivery systems. Copyright © 2017 Elsevier B.V. All rights

  20. Comparison of the mucoadhesive properties of thiolated polyacrylic acid to thiolated polyallylamine.

    PubMed

    Duggan, Sarah; O'Donovan, Orla; Owens, Eleanor; Duggan, Elaine; Hughes, Helen; Cummins, Wayne

    2016-02-10

    Synthetic polymers, polyacrylic acid (PAA) and polyallylamine (PAAm), were thiolated using different methods of thiolation. Both polymers resulted in comparable thiol contents, thus allowing for the direct comparison of mucoadhesive and cohesive properties between the well-established thiolated PAA and the more novel thiolated PAAm. Thiolation of both polymers improved the swelling ability and the cohesive and mucoadhesive properties in comparison to unmodified control samples. In this study, it was shown that the swelling abilities of the thiolated PAAm sample were far greater than that of the thiolated PAA sample which, in turn, affected the drug release profile of the thiolated PAAm sample. Importantly, however, the mucoadhesive properties of thiolated PAAm were equivalent to that of the thiolated PAA sample as demonstrated by both the adhesion times on porcine intestinal tissue as measured by the rotating cylinder method and by rheological studies with a mucin solution. This study demonstrates the potential thiolated polyallylamine has as a mucoadhesive drug delivery device. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Organic vapor discrimination with chemiresistor arrays of temperature modulated tin-oxide nanowires and thiolate-monolayer-protected gold nanoparticles.

    PubMed

    Scholten, K; Bohrer, F I; Dattoli, E; Lu, W; Zellers, E T

    2011-03-25

    This paper explores the discrimination of organic vapors with arrays of chemiresistors (CRs) employing interface layers of tin-oxide nanowires (NWs) and thiolate-monolayer-protected gold nanoparticles (MPNs). The former devices use contact-printed mats of NWs on micro-hotplate membranes to bridge a pair of metal electrodes. Oxidation at the NW surface causes changes in charge transport, the temperature dependence of which differs among different vapors, permitting vapor discrimination. The latter devices use solvent cast films of MPNs on interdigital electrodes operated at room temperature. Sorption into the organic monolayers causes changes in film tunneling resistance that differ among different vapors and MPN structures, permitting vapor discrimination. Here, we compare the performance and assess the 'complementarity' of these two types of sensors. Calibrated responses from an NW CR operated at two different temperatures and from a set of four different MPN CRs were generated for three test vapors: n-hexane, toluene, and nitromethane. This pooled data set was then analyzed using principal components regression classification models with varying degrees of random error superimposed on the responses via Monte Carlo simulation in order to estimate the rates of recognition/discrimination for arrays comprising different combinations of sensors. Results indicate that the diversity of most of the dual MPN-CR arrays exceeds that of the dual NW-CR array. Additionally, in assessing all possible arrays of 4-6 CR sensors, the recognition rates of the hybrid arrays (i.e. MPN + NW) were no better than that of the 4-sensor array containing only MPN CRs.

  2. Gold surfaces and nanoparticles are protected by Au(0)–thiyl species and are destroyed when Au(I)–thiolates form

    PubMed Central

    Reimers, Jeffrey R.; Ford, Michael J.; Halder, Arnab; Ulstrup, Jens; Hush, Noel S.

    2016-01-01

    The synthetic chemistry and spectroscopy of sulfur-protected gold surfaces and nanoparticles is analyzed, indicating that the electronic structure of the interface is Au(0)–thiyl, with Au(I)–thiolates identified as high-energy excited surface states. Density-functional theory indicates that it is the noble character of gold and nanoparticle surfaces that destabilizes Au(I)–thiolates. Bonding results from large van der Waals forces, influenced by covalent bonding induced through s–d hybridization and charge polarization effects that perturbatively mix in some Au(I)–thiolate character. A simple method for quantifying these contributions is presented, revealing that a driving force for nanoparticle growth is nobleization, minimizing Au(I)–thiolate involvement. Predictions that Brust–Schiffrin reactions involve thiolate anion intermediates are verified spectroscopically, establishing a key feature needed to understand nanoparticle growth. Mixing of preprepared Au(I) and thiolate reactants always produces Au(I)–thiolate thin films or compounds rather than monolayers. Smooth links to O, Se, Te, C, and N linker chemistry are established. PMID:26929334

  3. SPM Investigation of Thiolated Gold Nanoparticle Patterns Deposited on Different Self-Assembled Substrates

    NASA Astrophysics Data System (ADS)

    Sbrana, F.; Parodi, M. T.; Ricci, D.; Di Zitti, E.

    We present the results of a Scanning Probe Microscopy (SPM) investigation of ordered nanosized metallo-organic structures. Our aim is to investigate the organization and stability of thiolated gold nanoparticles in a compact pattern when deposited onto gold substrates functionalized with self-assembled monolayers made from two molecules that differ essentially in their terminating group: 1,4-benzenedimethanethiol and 4-methylbenzylthiol.

  4. Synthesis and in vitro characterization of a novel S-protected thiolated alginate.

    PubMed

    Hauptstein, Sabine; Dezorzi, Stefanie; Prüfert, Felix; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2015-06-25

    The object of this study was to synthesize and characterize a novel S-protected thiolated polymer with a high degree of modification. In this regard, an alginate-cysteine and an alginate-cysteine-2-mercaptonicotinic acid conjugate were synthesized. To achieve a high coupling rate of the thiol group bearing ligand cysteine to the polymer, the carbohydrate was activated by an oxidative ring opening with sodium periodate followed by a reductive amination to bind the primary amino group of cysteine to resulting reactive aldehyde groups. The obtained thiolated polymer displayed 1561±130μmol thiol groups per gram polymer. About one third of these thiol groups were S-protected by the implementation of a thiol bearing aromatic protection group via disulfide bond formation. Test tablets of both modified polymers showed improved stability against oxidation in aqueous environment compared to the unmodified alginate and exhibit higher water-uptake capacity. Rheological investigations revealed an increased viscosity of the S-protected thiolated polymer whereat the thiolated non S-protected polymer showed gelling properties after the addition of hydrogen peroxide. The mucoadhesive properties could be improved significantly for both derivatives and no alteration in biocompatibility tested on Caco-2 cell monolayer employing an MTT assay could be detected after modification. According to these results, both new derivatives seem promising for various applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Gold nanoparticles protected by mixed hydrogenated/fluorinated monolayers: controlling and exploring the surface features

    NASA Astrophysics Data System (ADS)

    Şologan, Maria; Gentilini, Cristina; Bidoggia, Silvia; Boccalon, Mariangela; Pace, Alice; Pengo, Paolo; Pasquato, Lucia

    2018-06-01

    Harnessing the reciprocal phobicity of hydrogenated and fluorinated thiolates proved to be a valuable strategy in preparing gold nanoparticles displaying mixed monolayers with a well-defined and pre-determined morphology. Our studies display that the organisation of the fluorinated ligands in phase-separated domains takes place even when these represent a small fraction of the ligands grafted on the gold surface. Using simple model ligands and by combining 19F NMR or ESR spectroscopies, and multiscale molecular simulations, we could demonstrate how the monolayer morphology responds in a predictable manner to structural differences between the thiolates. This enables a straightforward preparation of gold nanoparticles with monolayers displaying stripe-like, Janus, patchy, and random morphologies. Additionally, solubility properties may be tuned as function of the nature of the ligands and of the monolayer morphology obtaining gold nanoparticles soluble in organic solvents or in aqueous solutions. Most importantly, this rich diversity can be achieved not by resorting to ad hoc developed fabrication techniques, but rather relying on the spontaneous self-sorting of the ligands upon assembly on the nanoparticle surface. Besides enabling control over the monolayer morphology, fluorinated ligands endow the nanoparticles with several properties that can be exploited in the development of novel materials with applications, for instance in drug delivery and diagnostic imaging.

  6. Monolayer coated aerogels and method of making

    DOEpatents

    Zemanian, Thomas Samuel [Richland, WA; Fryxell, Glen [Kennwick, WA; Ustyugov, Oleksiy A [Spokane, WA

    2006-03-28

    Aerogels having a monolayer coating are described. The aerogel and a monolayer forming precursor are provided in a supercritical fluid, whereupon the aerogel and the monolayer forming precursor are reacted in said supercritical fluid to form a covalent bond between the aerogel and the monolayer forming precursor. Suitable aerogels are ceramic oxides such as silica, alumina, aluminosilicate, and combinations thereof. Suitable monolayer forming precursors include alkyl silanes, chlorosilanes, boranes, chloroboranes, germanes, and combinations thereof. The method may also include providing a surface preparation agent such as water, or hydroetching an aerogel to enhance the coating of the monolayer.

  7. The characterization of organic monolayers at gold surfaces using scanning tunneling microscopy and atomic force microscopy correlation with macrostructural properties

    NASA Astrophysics Data System (ADS)

    Alves, C. A.

    1992-09-01

    Monolayer films formed by self-assembly of organothiols at epitaxially grown Au(111) films at mica were examined in air using scanning tunneling (STM) and atomic force microscopies (AFM). n-Alkanethiolate monolayers exhibit a hexagonal packing arrangement with nearest-neighbor and next-nearest-neighbor spacings of 0.50 and 0.87 nm. This arrangement is consistent with (the square root of 3 x the square root of 3)R30 deg adlayer structure at Au(111). STM reveals the structure of the Au-bound sulfur, while AFM details the structure at the monolayer/air interface, revealing that the order at the Au-S interface is retained up to the monolayer/air interface. The investigation of the self-assembled (CF3CF2)7(CH2)2SH monolayer at Au(111) by AFM reveals a (2 x 2) adlayer structure, with nearest-neighbor and next-nearest-neighbor spacings of 0.58 plus or minus 0.02 nm and 1.0 plus or minus 0.02 nm, respectively. This is consistent with the larger van der Waals diameter of the fluorinated chain. Coverage of this fluorinated thiolate monolayer is (6.3 plus or minus 0.8) x 10(exp -10) mol/cm(sup 2), consistent with the expected 0.25 monolayer coverage of the (2 x 2) adlayer structure at Au(111). Infrared reflection spectroscopy also confirmed this. Upon prolonged exposure to air, the thiolate species is oxidized to elemental sulfur in the forms of cyclooctasulfur (cyclo-S8) and other allotropes. STM reveals square structures on aged thiolate monolayers. Dimensions of these squares (0.40-0.50 nm per side) are close to those of cyclo-S8. Electrochemical reductive desorption experiments also reveal a change in the surface species with time, with a second desorption wave.

  8. The Scope of Direct Alkylation of Gold Surface with Solutions of C1-C4 n-Alkylstannanes.

    PubMed

    Kaletová, Eva; Kohutová, Anna; Hajduch, Jan; Kaleta, Jiří; Bastl, Zdeněk; Pospíšil, Lubomír; Stibor, Ivan; Magnera, Thomas F; Michl, Josef

    2015-09-23

    Treatment of cleaned gold surfaces with dilute tetrahydrofuran or chloroform solutions of tetraalkylstannanes (alkyl = methyl, ethyl, n-propyl, n-butyl) or di-n-butylmethylstannyl tosylate under ambient conditions causes a self-limited growth of disordered monolayers consisting of alkyls and tin oxide. Extensive use of deuterium labeling showed that the alkyls originate from the stannane and not from ambient impurities, and that trialkylstannyl groups are absent in the monolayers, contrary to previous proposals. Methyl groups attached to the Sn atom are not transferred to the surface. Ethyl groups are transferred slowly, and propyl and butyl rapidly. In all cases, tin oxide is codeposited in submonolayer amounts. The monolayers were characterized by ellipsometry, contact angle goniometry, polarization modulated IR reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy with ferrocyanide/ferricyanide, which revealed a very low charge-transfer resistance. The thermal stability of the monolayers and their resistance to solvents are comparable with those of an n-octadecanethiol monolayer. A preliminary examination of the kinetics of monolayer deposition from a THF solution of tetra-n-butylstannane revealed an approximately half-order dependence on the bulk solution concentration of the stannane, hinting that more than one alkyl can be transferred from a single stannane molecule. A detailed structure of the attachment of the alkyl groups is not known, and it is proposed that it involves direct single or multiple bonding of one or more C atoms to one or more Au atoms.

  9. The Rheological Properties of Lipid Monolayers Modulate the Incorporation of l-Ascorbic Acid Alkyl Esters.

    PubMed

    Díaz, Yenisleidy de Las Mercedes Zulueta; Mottola, Milagro; Vico, Raquel V; Wilke, Natalia; Fanani, María Laura

    2016-01-19

    In this work, we tested the hypothesis that the incorporation of amphiphilic drugs into lipid membranes may be regulated by their rheological properties. For this purpose, two members of the l-ascorbic acid alkyl esters family (ASCn) were selected, ASC16 and ASC14, which have different rheological properties when organized at the air/water interface. They are lipophilic forms of vitamin C used in topical pharmacological preparations. The effect of the phase state of the host lipid membranes on ASCn incorporation was explored using Langmuir monolayers. Films of pure lipids with known phase states have been selected, showing liquid-expanded, liquid-condensed, and solid phases as well as pure cholesterol films in liquid-ordered state. We also tested ternary and quaternary mixed films that mimic the properties of cholesterol containing membranes and of the stratum corneum. The compressibility and shear properties of those monolayers were assessed in order to define its phase character. We found that the length of the acyl chain of the ASCn compounds induces differential changes in the rheological properties of the host membrane and subtly regulates the kinetics and extent of the penetration process. The capacity for ASCn uptake was found to depend on the phase state of the host film. The increase in surface pressure resultant after amphiphile incorporation appears to be a function of the capacity of the host membrane to incorporate such amphiphile as well as the rheological response of the film. Hence, monolayers that show a solid phase state responded with a larger surface pressure increase to the incorporation of a comparable amount of amphiphile than liquid-expanded ones. The cholesterol-containing films, including the mixture that mimics stratum corneum, allowed a very scarce ASCn uptake independently of the membrane diffusional properties. This suggests an important contribution of Cho on the maintenance of the barrier function of stratum corneum.

  10. Water-soluble Au13 clusters protected by binary thiolates: Structural accommodation and the use for chemosensing

    NASA Astrophysics Data System (ADS)

    Ding, Weihua; Huang, Chuanqi; Guan, Lingmei; Liu, Xianhu; Luo, Zhixun; Li, Weixue

    2017-05-01

    Here we report a successful synthesis of water-soluble 13-atoms gold clusters under the monolayer protection of binary thiolates, glutathione and penicillamine, under a molecular formula of Au13(SG)5(PA)7. This monolayer-protected cluster (MPC) finds decent stability and is demonstrated to possess an icosahedral geometry pertaining to structural accommodation in contrast to a planar bare Au13 of local minima energy. Natural bond orbital (NBO) analysis depicts the interaction patterns between gold and the ligands, enlightening to understand the origin of enhanced stability of the Au13 MPCs. Further, the water-soluble Au13 MPCs are found to be a decent candidate for chemosensing and bioimaging.

  11. Thiol-ene immobilisation of carbohydrates onto glass slides as a simple alternative to gold-thiol monolayers, amines or lipid binding.

    PubMed

    Biggs, Caroline I; Edmondson, Steve; Gibson, Matthew I

    2015-01-01

    Carbohydrate arrays are a vital tool in studying infection, probing the mechanisms of bacterial, viral and toxin adhesion and the development of new treatments, by mimicking the structure of the glycocalyx. Current methods rely on the formation of monolayers of carbohydrates that have been chemically modified with a linker to enable interaction with a functionalised surface. This includes amines, biotin, lipids or thiols. Thiol-addition to gold to form self-assembled monolayers is perhaps the simplest method for immobilisation as thiolated glycans are readily accessible from reducing carbohydrates in a single step, but are limited to gold surfaces. Here we have developed a quick and versatile methodology which enables the use of thiolated carbohydrates to be immobilised as monolayers directly onto acrylate-functional glass slides via a 'thiol-ene'/Michael-type reaction. By combining the ease of thiol chemistry with glass slides, which are compatible with microarray scanners this offers a cost effective, but also useful method to assemble arrays.

  12. Properties of the gold-sulphur interface: from self-assembled monolayers to clusters.

    PubMed

    Bürgi, Thomas

    2015-10-14

    The gold-sulphur interface of self-assembled monolayers (SAMs) was extensively studied some time ago. More recently tremendous progress has been made in the preparation and characterization of thiolate-protected gold clusters. In this feature article we address different properties of the two systems such as their structure, the mobility of the thiolates on the surface and other dynamical aspects, the chirality of the structures and characteristics related to it and their vibrational properties. SAMs and clusters are in the focus of different communities that typically use different experimental approaches to study the respective systems. However, it seems that the nature of the Au-S interfaces in the two cases is quite similar. Recent single crystal X-ray structures of thiolate-protected gold clusters reveal staple motifs characterized by gold ad-atoms sandwiched between two sulphur atoms. This finding contradicts older work on SAMs. However, newer studies on SAMs also reveal ad-atoms. Whether this finding can be generalized remains to be shown. In any case, more and more studies highlight the dynamic nature of the Au-S interface, both on flat surfaces and in clusters. At temperatures slightly above ambient thiolates migrate on the gold surface and on clusters. Evidence for desorption of thiolates at room temperature, at least under certain conditions, has been demonstrated for both systems. The adsorbed thiolate can lead to chirality at different lengths scales, which has been shown both on surfaces and for clusters. Chirality emerges from the organization of the thiolates as well as locally at the molecular level. Chirality can also be transferred from a chiral surface to an adsorbate, as evidenced by vibrational spectroscopy.

  13. Properties of the gold-sulphur interface: from self-assembled monolayers to clusters

    NASA Astrophysics Data System (ADS)

    Bürgi, Thomas

    2015-09-01

    The gold-sulphur interface of self-assembled monolayers (SAMs) was extensively studied some time ago. More recently tremendous progress has been made in the preparation and characterization of thiolate-protected gold clusters. In this feature article we address different properties of the two systems such as their structure, the mobility of the thiolates on the surface and other dynamical aspects, the chirality of the structures and characteristics related to it and their vibrational properties. SAMs and clusters are in the focus of different communities that typically use different experimental approaches to study the respective systems. However, it seems that the nature of the Au-S interfaces in the two cases is quite similar. Recent single crystal X-ray structures of thiolate-protected gold clusters reveal staple motifs characterized by gold ad-atoms sandwiched between two sulphur atoms. This finding contradicts older work on SAMs. However, newer studies on SAMs also reveal ad-atoms. Whether this finding can be generalized remains to be shown. In any case, more and more studies highlight the dynamic nature of the Au-S interface, both on flat surfaces and in clusters. At temperatures slightly above ambient thiolates migrate on the gold surface and on clusters. Evidence for desorption of thiolates at room temperature, at least under certain conditions, has been demonstrated for both systems. The adsorbed thiolate can lead to chirality at different lengths scales, which has been shown both on surfaces and for clusters. Chirality emerges from the organization of the thiolates as well as locally at the molecular level. Chirality can also be transferred from a chiral surface to an adsorbate, as evidenced by vibrational spectroscopy.

  14. Synthesis and characterisation of mucoadhesive thiolated polyallylamine.

    PubMed

    Duggan, Sarah; Hughes, Helen; Owens, Eleanor; Duggan, Elaine; Cummins, Wayne; O' Donovan, Orla

    2016-02-29

    The thiolation of polyallylamine (PAAm) for use in mucoadhesive drug delivery has been achieved. PAAm was reacted with different ratios of Traut's reagent, yielding products with thiol contents ranging from 134-487μmol/g. Full mucoadhesive characterisation of the thiolated PAAm samples was conducted using swelling studies, mucoadhesive testing on porcine intestinal tissue and rheology. Both swelling and cohesive properties of the thiolated PAAm products were vastly improved in comparison to an unmodified PAAm control. The swelling abilities of the thiolated samples were high and the degree of thiolation of the products affected the initial rate of swelling. High levels of mucoadhesion were demonstrated by the thiolated PAAm samples, with adhesion times of greater than 24h measured for all three samples and, thus, thiol content did not appear to influence mucoadhesion. Rheological studies of the thiolated PAAm samples showed an increase in G' and G″ values upon the addition of a mucin solution which was not observed in the unmodified control, again highlighting the mucoadhesive interactions between these thiolated polymers and mucin. The synthesis of thiolated PAAm by reaction with Traut's reagent and resulting mucoadhesive properties demonstrates its potential for use a mucoadhesive drug delivery device. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Thermal stability and molecular ordering of organic semiconductor monolayers: effect of an anchor group.

    PubMed

    Jones, Andrew O F; Knauer, Philipp; Resel, Roland; Ringk, Andreas; Strohriegl, Peter; Werzer, Oliver; Sferrazza, Michele

    2015-06-08

    The thermal stability and molecular order in monolayers of two organic semiconductors, PBI-PA and PBI-alkyl, based on perylene derivatives with an identical molecular structure except for an anchor group for attachment to the substrate in PBI-PA, are reported. In situ X-ray reflectivity measurements are used to follow the stability of these monolayers in terms of order and thickness as temperature is increased. Films have thicknesses corresponding approximately to the length of one molecule; molecules stand upright on the substrate with a defined structure. PBI-PA monolayers have a high degree of order at room temperature and a stable film exists up to 250 °C, but decomposes rapidly above 300 °C. In contrast, stable physisorbed PBI-alkyl monolayers only exist up to 100 °C. Above the bulk melting point at 200 °C no more order exists. The results encourage using anchor groups in monolayers for various applications as it allows enhanced stability at the interface with the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tailorable thiolated trimethyl chitosans for covalently stabilized nanoparticles.

    PubMed

    Verheul, Rolf J; van der Wal, Steffen; Hennink, Wim E

    2010-08-09

    A novel four-step method is presented to synthesize partially thiolated trimethylated chitosan (TMC) with a tailorable degree of quaternization and thiolation. First, chitosan was partially N-carboxylated with glyoxylic acid and sodium borohydride. Next, the remaining amines were quantitatively dimethylated with formaldehyde and sodium borohydride and then quaternized with iodomethane in NMP. Subsequently, these partially carboxylated TMCs dissolved in water were reacted with cystamine at pH 5.5 using EDC as coupling agent. After addition of DTT and dialysis, thiolated TMCs were obtained, varying in degree of quaternization (25-54%) and degree of thiolation (5-7%), as determined with (1)H NMR and Ellman's assay. Gel permeation chromatography with light scattering detection indicated limited intermolecular cross-linking. All thiolated TMCs showed rapid oxidation to yield disulfide cross-linked TMC at pH 7.4, while the thiolated polymers were rather stable at pH 4.0. When Calu-3 cells were used, XTT and LDH cell viability tests showed a slight reduction in cytotoxicity for thiolated TMCs as compared to the nonthiolated polymers with similar DQs. Positively charged nanoparticles loaded with fluorescently labeled ovalbumin were made from thiolated TMCs and thiolated hyaluronic acid. The stability of these particles was confirmed in 0.8 M NaCl, in contrast to particles made from nonthiolated polymers that dissociated under these conditions, demonstrating that the particles were held together by intermolecular disulfide bonds.

  17. The Structure of Self-Assembled Monolayers of Alkylsiloxanes on Silicon: A Comparison of Results from Ellipsometry and Low-Angle X-Ray Reflectivity

    DTIC Science & Technology

    1989-05-01

    Thicknesses measured by the two methods differ by 2.2 (rlms) for alkyl chains of 10 - 18 carbon atoms and have a maximum difference of 4.2 e Ellipsometry...the approximate area projected by each alkyl group in the plane of the monolayer is 0,, 1’ ) # . Preliminary studies indicate that the use of this...projected by each alkyl group in the plane of the monolayer is - 21 ± 3 A2 . Preliminary studies indicate that this technique can be used to follow the

  18. Disorder-derived, strong tunneling attenuation in bis-phosphonate monolayers.

    PubMed

    Pathak, Anshuma; Bora, Achyut; Liao, Kung-Ching; Schmolke, Hannah; Jung, Antje; Klages, Claus-Peter; Schwartz, Jeffrey; Tornow, Marc

    2016-03-09

    Monolayers of alkyl bisphosphonic acids (bisPAs) of various carbon chain lengths (C4, C8, C10, C12) were grown on aluminum oxide (AlO(x)) surfaces from solution. The structural and electrical properties of these self-assembled monolayers (SAMs) were compared with those of alkyl monophosphonic acids (monoPAs). Through contact angle (CA) and Kelvin-probe (KP) measurements, ellipsometry, and infrared (IR) and x-ray photoelectron (XPS) spectroscopies, it was found that bisPAs form monolayers that are relatively disordered compared to their monoPA analogs. Current-voltage (J-V) measurements made with a hanging Hg drop top contact show tunneling to be the prevailing transport mechanism. However, while the monoPAs have an observed decay constant within the typical range for dense monolayers, β(mono)  =  0.85  ±  0.03 per carbon atom, a surprisingly high value, β(bis) =  1.40  ±  0.05 per carbon atom, was measured for the bisPAs. We attribute this to a strong contribution of 'through-space' tunneling, which derives from conformational disorder in the monolayer due to strong interactions of the distal phosphonic acid groups; they likely form a hydrogen-bonding network that largely determines the molecular layer structure. Since bisPA SAMs attenuate tunnel currents more effectively than do the corresponding monoPA SAMs, they may find future application as gate dielectric modification in organic thin film devices.

  19. Disorder-derived, strong tunneling attenuation in bis-phosphonate monolayers

    NASA Astrophysics Data System (ADS)

    Pathak, Anshuma; Bora, Achyut; Liao, Kung-Ching; Schmolke, Hannah; Jung, Antje; Klages, Claus-Peter; Schwartz, Jeffrey; Tornow, Marc

    2016-03-01

    Monolayers of alkyl bisphosphonic acids (bisPAs) of various carbon chain lengths (C4, C8, C10, C12) were grown on aluminum oxide (AlO x ) surfaces from solution. The structural and electrical properties of these self-assembled monolayers (SAMs) were compared with those of alkyl monophosphonic acids (monoPAs). Through contact angle (CA) and Kelvin-probe (KP) measurements, ellipsometry, and infrared (IR) and x-ray photoelectron (XPS) spectroscopies, it was found that bisPAs form monolayers that are relatively disordered compared to their monoPA analogs. Current-voltage (J-V) measurements made with a hanging Hg drop top contact show tunneling to be the prevailing transport mechanism. However, while the monoPAs have an observed decay constant within the typical range for dense monolayers, β mono  =  0.85  ±  0.03 per carbon atom, a surprisingly high value, β bis  =  1.40  ±  0.05 per carbon atom, was measured for the bisPAs. We attribute this to a strong contribution of ‘through-space’ tunneling, which derives from conformational disorder in the monolayer due to strong interactions of the distal phosphonic acid groups; they likely form a hydrogen-bonding network that largely determines the molecular layer structure. Since bisPA SAMs attenuate tunnel currents more effectively than do the corresponding monoPA SAMs, they may find future application as gate dielectric modification in organic thin film devices.

  20. Preparation and wettability examinations of transparent SiO2 binder-added MgF2 nanoparticle coatings covered with fluoro-alkyl silane self-assembled monolayer.

    PubMed

    Murata, Tsuyoshi; Hieda, Junko; Saito, Nagahiro; Takai, Osamu

    2012-05-01

    SiO2-added MgF2 nanoparticle coatings with various surface roughness properties were formed on fused silica-glass substrates from autoclaved sols prepared at 100-180 °C. To give it hydrophobicity, we treated the samples with fluoro-alkyl silane (FAS) vapor to form self-assembled monolayers on the nanoparticle coating and we examined the wettability of the samples. The samples preserved good transparency even after the FAS treatment. The wettability examination revealed that higher autoclave temperatures produced a larger average MgF2 nanoparticle particle size, a larger surface roughness, and a higher contact angle and the roll-off angle.

  1. Time-resolved electronic and optical properties of a thiolate-protected Au38 nanocluster

    NASA Astrophysics Data System (ADS)

    Meng, Qingguo; May, Stanley P.; Berry, Mary T.; Kilin, Dmitri S.

    2015-02-01

    Density functional theory and density matrix theory are employed to investigate the time-dependent optical and electronic properties of an Au14 nanocluster protected by six cyclic thiolate ligands, Au4(SCH3)4. The Au14[Au4(SCH3)4]6 nanocluster, i.e. Au38(SCH3)24, is equivalent to a truncated-octahedral face-centred cubic Au38 core coated by a monolayer of 24 methylthiol molecules. The electronic and optical properties, such as density of states, linear absorption spectra, nonradiative nonadiabatic dissipative electronic dynamics and radiative emission spectra were calculated and compared for the core Au14 and thiolate-protected Au38(SCH3)24 nanocluster. The main observation from computed photoluminescence for both models is a mechanism of radiative emission. Specifically, a strong contribution to light emission intensity originates from intraband transitions inside the conduction band (CB) in addition to interband LUMO → HOMO transition (HOMO: highest occupied molecular orbital and LUMO: lowest unoccupied molecular orbital). Such comparison clarifies the contributions from Au core and methylthiol ligands to the electronic and optical properties of the Au38(SCH3)24 nanocluster.

  2. Modeling the photosensitizing properties of thiolate-protected gold nanoclusters.

    PubMed

    Azarias, Cloé; Adamo, Carlo; Perrier, Aurélie

    2016-03-21

    An accurate computational strategy for studying the structural, redox and optical properties of thiolated gold nanoclusters (GNCs) using (Time-Dependent) Density Functional Theory is proposed. The influence of the pseudopotential/basis set, solvent description and the choice of the functional has been investigated to model the structural and electronic properties of the Au25(SR)18(-) system, with R being an organic ligand. This study aims to describe with a comparable precision both the GNC and the organic ligands and rationalize the effect of coating on different GNC properties. Two differently coated GNCs have been considered: the system with R = CH2CH2Ph and the GNC coated with 17 alkyl chains (C6H13) and functionalized by one fluorophore pyrene derivative (CH2CH2(NH)(CO)Py). The computational protocol we propose should then be used to design more efficient metal cluster-sensitized solar cells.

  3. Synthesis and In Vitro Evaluation of Thiolated Carrageenan.

    PubMed

    Suchaoin, Wongsakorn; Bonengel, Sonja; Hussain, Shah; Huck, Christian W; Ma, Benjamin N; Bernkop-Schnürch, Andreas

    2015-08-01

    The aim of this study was to generate and characterize a thiolated carrageenan. Thiolated carrageenan (carrageenan-SH) was synthesized from kappa (κ)- and iota (ι)-carrageenan by bromine replacement of the hydroxyl moieties followed by substitution to thiol groups using thiourea. Thiolated κ- and ι-carrageenan exhibited 176.57 ± 20.11 and 109.51 ± 18.26 μmol thiol groups per gram polymer, respectively. The resazurin test in Caco-2 cells revealed no toxic effect of both thiolated carrageenans at a concentration below 0.1% (w/v). Regarding efflux pump inhibitory effect, cellular accumulation of multidrug-resistance protein 2 substrate, sulforhodamine 101, was 1.38- and 1.35-fold increased in cells treated with thiolated κ- and ι-carrageenan, respectively. Modification of κ- and ι-carrageenan led to 3.9- and 2.0-fold increase in dynamic viscosity of mucus-thiolated carrageenan mixture within 4 h. Furthermore, residence time of κ- and ι-carrageenan-SH on porcine intestinal mucosa was 6.4- and 1.8-fold prolonged, respectively, as demonstrated by rotating cylinder method, indicating improved mucoadhesive properties. Hence, thiolation of carrageenans led to novel pharmaceutical excipients for various applications. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Insulin delivery through nasal route using thiolated microspheres.

    PubMed

    Nema, Tarang; Jain, Ashish; Jain, Aviral; Shilpi, Satish; Gulbake, Arvind; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    The aim of the present study was to investigate the potential of developed thiolated microspheres for insulin delivery through nasal route. In the present study, cysteine was immobilized on carbopol using EDAC. A total of 269.93 µmol free thiol groups per gram polymer were determined. The prepared nonthiolated and thiolated microspheres were studied for particle shape, size, drug content, swellability, mucoadhesion and in vitro insulin release. The thiolated microspheres exhibited higher mucoadhesion due to formation of covalent bonds via disulfide bridges with the mucus gel layer. Drug permeation through goat nasal mucosa of nonthiolated and thiolated microspheres were found as 52.62 ± 2.4% and 78.85 ± 3.1% in 6 h, respectively. Thiolated microspheres bearing insulin showed better reduction in blood glucose level (BGL) in comparison to nonthiolated microspheres as 31.23 ± 2.12% and 75.25 ± 0.93% blood glucose of initial BGL were observed at 6 h after nasal delivery of thiolated and nonthiolated microspheres in streptozotocin-induced diabetic rabbits.

  5. Thiolated pectin-doxorubicin conjugates: Synthesis, characterization and anticancer activity studies.

    PubMed

    Cheewatanakornkool, Kamonrak; Niratisai, Sathit; Manchun, Somkamol; Dass, Crispin R; Sriamornsak, Pornsak

    2017-10-15

    In this paper, pectin was cross-linked by a coupling reaction with either thioglycolic acid or cystamine dihydrochloride to form thiolated pectins. The thiolated pectins were then coupled with doxorubicin (DOX) derivative to obtain thiolated pectin-DOX conjugates by two different methods, disulfide bond formation and disulfide bond exchange. The disulfide bond exchange method provided a simple, fast, and efficient approach for synthesis of thiolated pectin-DOX conjugates, compared to the disulfide bond formation. Characteristics, physicochemical properties, and morphology of thiolated pectins and thiolated pectin-DOX conjugates were determined. DOX content in thiolated pectin-DOX conjugates using low methoxy pectin was found to be higher than that using high methoxy pectin. The in vitro anticancer activity of thiolated pectin-DOX conjugates was significantly higher than that of free DOX, in mouse colon carcinoma and human bone osteosarcoma cells, but insignificantly different from that of free DOX, in human prostate cancer cells. Due to their promising anticancer activity in mouse colon carcinoma cells, the thiolated pectin-DOX conjugates might be suitable for building drug platform for colorectal cancer-targeted delivery of DOX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Recent Developments in Thiolated Polymeric Hydrogels for Tissue Engineering Applications.

    PubMed

    Gajendiran, Mani; Rhee, Jae-Sung; Kim, Kyobum

    2018-02-01

    This review focuses on the recent strategy in the preparation of thiolated polymers and fabrication of their hydrogel matrices. The mechanism involved in the synthesis of thiolated polymers and fabrication of thiolated polymer hydrogels is exemplified with suitable schematic representations reported in the recent literature. The 2-iminothiolane namely "Traut's reagent" has been widely used for effectively thiolating the natural polymers such as collagen and gelatin, which contain free amino group in their backbone. The free carboxylic acid group containing polymers such as hyaluronic acid and heparin have been thiolated by using the bifunctional molecules such as cysteamine and L-cysteine via N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The degree of thiolation in the polymer chain has been widely determined by using Ellman's assay method. The thiolated polymer hydrogels are prepared by disulfide bond formation (or) thiol-ene reaction (or) Michael-type addition reaction. The thiolated polymers such as thiolated gelatin are reacted with polyethylene glycol diacrylate for obtaining interpenetrating polymer network hydrogel scaffolds. Several in vitro cell culture experiments indicate that the developed thiolated polymer hydrogels exhibited biocompatibility and cellular mimicking properties. The developed hydrogel scaffolds efficiently support proliferation and differentiation of various cell types. In the present review article, the thiol-functionalized protein-based biopolymers, carbohydrate-based polymers, and some synthetic polymers have been covered with recently published research articles. In addition, the usage of new thiolated nanomaterials as a crosslinking agent for the preparation of three-dimensional tissue-engineered hydrogels is highlighted.

  7. Thiolated xyloglucan: Synthesis, characterization and evaluation as mucoadhesive in situ gelling agent.

    PubMed

    Mahajan, Hitendra S; Tyagi, Vinod Kumar; Patil, Ravindra R; Dusunge, Sanket B

    2013-01-16

    The objective of present study was to enhance bioadhesive potential of xyloglucan by thiolation. Thiolation of xyloglucan was achieved with esterification with thioglycolic acid. Thiolated xyloglucan was characterized by NMR, DSC, and XRD analysis. Thiolated xyloglucan was determined to possess 4mmol of thiol groups/g of polymer by Ellman's method. Comparative evaluation of mucoadhesive property of ondansetron containing in situ gel system of xyloglucan and thiolated xyloglucan using sheep nasal mucosa revealed higher ex vivo bioadhesion time of thiolated xyloglucan as compared to xyloglucan. Improved mucoadhesive property of thiolated xyloglucan over the xyloglucan can be attributed to the formation of disulfide bond between mucus and thiolated xyloglucan. Ex vivo permeation study conducted using sheep nasal showed improved drug permeation in formulation based on thiolated xyloglucan. In conclusion, thiolation of xyloglucan improves its bioadhesion and drug permeation without affecting the resultant gel properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Thiolated chitosans: useful excipients for oral drug delivery.

    PubMed

    Werle, Martin; Bernkop-Schnürch, Andreas

    2008-03-01

    To improve the bioavailability of orally administered drugs, formulations based on polymers are of great interest for pharmaceutical technologists. Thiolated chitosans are multifunctional polymers that exhibit improved mucoadhesive, cohesive and permeation-enhancing as well as efflux-pump-inhibitory properties. They can be synthesized by derivatization of the primary amino groups of chitosan with coupling reagents bearing thiol functions. Various data gained in-vitro as well as in-vivo studies clearly demonstrate the potential of thiolated chitosans for oral drug delivery. Within the current review, the synthesis and characterization of thiolated chitosans so far developed is summarized. Features of thiolated chitosans important for oral drug delivery are discussed as well. Moreover, different formulation approaches, such as matrix tablets and micro-/nanoparticles, as well as the applicability of thiolated chitosans for the oral delivery of various substance classes including peptides and efflux pump substrates, are highlighted.

  9. Thermally induced alkylation of diamond.

    PubMed

    Hoeb, Marco; Auernhammer, Marianne; Schoell, Sebastian J; Brandt, Martin S; Garrido, Jose A; Stutzmann, Martin; Sharp, Ian D

    2010-12-21

    We present an approach for the thermally activated formation of alkene-derived self-assembled monolayers on oxygen-terminated single and polycrystalline diamond surfaces. Chemical modification of the oxygen and hydrogen plasma-treated samples was achieved by heating in 1-octadecene. The resulting layers were characterized using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. This investigation reveals that alkenes selectively attach to the oxygen-terminated sites via covalent C-O-C bonds. The hydrophilic oxygen-terminated diamond is rendered strongly hydrophobic following this reaction. The nature of the process limits the organic layer growth to a single monolayer, and FTIR measurements reveal that such monolayers are dense and well ordered. In contrast, hydrogen-terminated diamond sites remain unaffected by this process. This method is thus complementary to the UV-initiated reaction of alkenes with diamond, which exhibits the opposite reactivity contrast. Thermal alkylation increases the range of available diamond functionalization strategies and provides a means of straightforwardly forming single organic layers in order to engineer the surface properties of diamond.

  10. Interfacial assignment of branched-alkyl benzene sulfonates: A molecular simulation

    NASA Astrophysics Data System (ADS)

    Liu, Zi-Yu; Wei, Ning; Wang, Ce; Zhou, He; Zhang, Lei; Liao, Qi; Zhang, Lu

    2015-11-01

    A molecular dynamics simulation was conducted to analyze orientations of sodium branched-alkyl benzene sulfonates molecules at nonane/water interface, which is helpful to design optimal surfactant structures to achieve ultralow interfacial tension (IFT). Through the two dimensional density profiles, monolayer collapses are found when surfactant concentration continues to increase. Thus the precise scope of monolayer is certain and orientation can be analyzed. Based on the simulated results, we verdict the interfacial assignment of branched-alkyl benzene sulfonates at the oil-water interface, and discuss the effect of hydrophobic tail structure on surfactant assignment. Bigger hydrophobic size can slow the change rate of surfactant occupied area as steric hindrance, and surfactant meta hydrophobic tails have a stronger tendency to stretch to the oil phase below the collapsed concentration. Furthermore, an interfacial model with reference to collapse, increasing steric hindrance and charge repulsive force between interfacial surfactant molecules, responsible for effecting of surfactant concentration and structure has been supposed.

  11. A Concentration-Dependent Insulin Immobilization Behavior of Alkyl-Modified Silica Vesicles: The Impact of Alkyl Chain Length.

    PubMed

    Zhang, Jun; Zhang, Long; Lei, Chang; Huang, Xiaodan; Yang, Yannan; Yu, Chengzhong

    2018-05-01

    The insulin immobilization behaviors of silica vesicles (SV) before and after modification with hydrophobic alkyl -C 8 and -C 18 groups have been studied and correlated to the grafted alkyl chain length. In order to minimize the influence from the other structural parameters, monolayered -C 8 or -C 18 groups are grafted onto SV with controlled density. The insulin immobilization capacity of SV is dependent on the initial insulin concentrations (IIC). At high IIC (2.6-3.0 mg/mL), the trend of insulin immobilization capacity of SV is SV-OH > SV-C 8 > SV-C 18 , which is determined mainly by the surface area of SV. At medium IIC (0.6-1.9 mg/mL), the trend changes to SV-C 8 ≥ SV-C 18 > SV-OH as both the surface area and alkyl chain length contribute to the insulin immobilization. At an extremely low IIC, the hydrophobic-hydrophobic interaction between the alkyl group and insulin molecules plays the most significant role. Consequently, SV-C 18 with longer alkyl groups and the highest hydrophobicity show the best insulin enrichment performance compared to SV-C 8 and SV-OH, as evidenced by an insulin detection limit of 0.001 ng/mL in phosphate buffered saline (PBS) and 0.05 ng/mL in artficial urine determined by mass spectrometry (MS).

  12. Characterization and reactivity of organic monolayers on gold and platinum surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chien-Ching

    1995-12-06

    Purpose is to understand how the mobilization, dielectric, orientation, composition, coverage, and structure of self-assembled organic monolayers on metal surfaces affects the surface reactivities and properties of these films in order to facilitate the construction of desired films. Two model systems were used: tiols at Au and aromatic acids at Pt. Surface analysis methods, including contact angle, electrochemistry, ellipsometry, infrared reflection absorption spectroscopy (IRRAS), and x-ray photospectroscopy, were used to study the self-assembled organic monolayers on Au and Pt. IRRAS, contact angle, and electrochemistry were used to determine the surface pK a of phenylcarboxylic acids and pyridylcarboxylic acids monolayers onmore » Pt. These techniques were also used to determine the orientation of polymethylene chain axis and the carboxylic follow the structural evolution of the chains and end group of the thiolate monolayers during formation. IRRAS was also used to assess the carboxylic acid group in terms of its possible existence as the non-hydrogen-bonded species, the hydrogen-bonded dimeric group, and the hydrogen-bonded polymeric group. These different forms of the end group were also followed vs coverage, as well as the reactivity vs solution pH. IRRAS and contact angle were used to calculate the rate constant of the esterification of carboxylic acid-terminated monolayers on Au.« less

  13. Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors.

    PubMed

    Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito

    2009-12-09

    We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.

  14. Self assembled monolayers on silicon for molecular electronics.

    PubMed

    Aswal, D K; Lenfant, S; Guerin, D; Yakhmi, J V; Vuillaume, D

    2006-05-24

    We present an overview of various aspects of the self-assembly of organic monolayers on silicon substrates for molecular electronics applications. Different chemical strategies employed for grafting the self-assembled monolayers (SAMs) of alkanes having different chain lengths on native oxide of Si or on bare Si have been reviewed. The utility of different characterization techniques in determination of the thickness, molecular ordering and orientation, surface coverage, growth kinetics and chemical composition of the SAMs has been discussed by choosing appropriate examples. The metal counterelectrodes are an integral part of SAMs for measuring their electrical properties as well as using them for molecular electronic devices. A brief discussion on the variety of options available for the deposition of metal counterelectrodes, that is, soft metal contacts, vapor deposition and soft lithography, has been presented. Various theoretical models, namely, tunneling (direct and Fowler-Nordheim), thermionic emission, Poole-Frenkel emission and hopping conduction, used for explaining the electronic transport in dielectric SAMs have been outlined and, some experimental data on alkane SAMs have been analyzed using these models. It has been found that short alkyl chains show excellent agreement with tunneling models; while more experimental data on long alkyl chains are required to understand their transport mechanism(s). Finally, the concepts and realization of various molecular electronic components, that is, diodes, resonant tunnel diodes, memories and transistors, based on appropriate architecture of SAMs comprising of alkyl chains (sigma- molecule) and conjugated molecules (pi-molecule) have been presented.

  15. Development of controlled drug release systems based on thiolated polymers.

    PubMed

    Bernkop-Schnürch, A; Scholler, S; Biebel, R G

    2000-05-03

    The purpose of the present study was to generate mucoadhesive matrix-tablets based on thiolated polymers. Mediated by a carbodiimide, L-cysteine was thereby covalently linked to polycarbophil (PCP) and sodium carboxymethylcellulose (CMC). The resulting thiolated polymers displayed 100+/-8 and 1280+/-84 micromol thiol groups per gram, respectively (means+/-S.D.; n=6-8). In aqueous solutions these modified polymers were capable of forming inter- and/or intramolecular disulfide bonds. The velocity of this process augmented with increase of the polymer- and decrease of the proton-concentration. The oxidation proceeded more rapidly within thiolated PCP than within thiolated CMC. Due to the formation of disulfide bonds within thiol-containing polymers, the stability of matrix-tablets based on such polymers could be strongly improved. Whereas tablets based on the corresponding unmodified polymer disintegrated within 2 h, the swollen carrier matrix of thiolated CMC and PCP remained stable for 6.2 h (mean, n=4) and more than 48 h, respectively. Release studies of the model drug rifampicin demonstrated that a controlled release can be provided by thiolated polymer tablets. The combination of high stability, controlled drug release and mucoadhesive properties renders matrix-tablets based on thiolated polymers useful as novel drug delivery systems.

  16. Ordered Self-Assembled Monolayers of Peptide Nucleic Acids with DNA Recognition Capability

    NASA Astrophysics Data System (ADS)

    Briones, C.; Mateo-Marti, E.; Gómez-Navarro, C.; Parro, V.; Román, E.; Martín-Gago, J. A.

    2004-11-01

    We report on the formation of ordered self-assembled monolayers (SAMs) of single-stranded peptide nucleic acids (ssPNA). In spite of their remarkable length (7nm) thiolated PNAs assemble standing up on gold surfaces similarly to the SAMs of short alkanethiols. SAMs of ssPNA recognize complementary nucleic acids, acting as specific biosensors that discriminate even a point mutation in target ssDNA. These results are obtained by surface characterization techniques that avoid labeling of the target molecule: x-ray photoemission, x-ray absorption and atomic force microscopy.

  17. Pseudorotational epitaxy of self-assembled octadecyltrichlorosilane monolayers on sapphire (0001)

    DOE PAGES

    Steinrück, H. -G.; Magerl, A.; Deutsch, M.; ...

    2014-10-06

    The structure of octadecyltrichlorosilane self-assembled monolayers (SAMs) on sapphire (0001) was studied by Å-resolution surface-specific x-ray scattering methods. The monolayer was found to consist of three sublayers where the outermost layer corresponds to vertically oriented, closely packed alkyl tails. Laterally, the monolayer is hexagonally packed and exhibits pseudorotational epitaxy to the sapphire, manifested by a broad scattering peak at zero relative azimuthal rotation, with long powderlike tails. The lattice mismatch of ~1% – 3% to the sapphire’s and the different length scale introduced by the lateral Si-O-Si bonding prohibit positional epitaxy. However, the substrate induces an intriguing increase in themore » crystalline coherence length of the SAM’s powderlike crystallites when rotationally aligned with the sapphire’s lattice. As a result, the increase correlates well with the rotational dependence of the separation of corresponding substrate-monolayer lattice sites.« less

  18. Selectivity and Sensitivity of Ultrathin Monolayer Electrodes

    NASA Astrophysics Data System (ADS)

    Cheng, Quan

    The objective of this work is to build a molecular architecture on the electrode surface with a well-defined morphology and desirable electrochemical characteristics. The goal is accomplished by means of self-assembly of thioctic acid, a sulfur-terminated organic molecule with a short alkyl chain and a hydrophilic carboxylic headgroup, on a gold electrode. Characterization of the monolayer structure and the electrochemical response of the monolayer electrodes is performed by means of capacitance measurements and voltammetry. Investigation of the capacitance of the self-assembled monolayers provides insight into the macroscopic permeability of the films and reveals that penetration of solvent/ions into the thioctic acid monolayer film occurs extensively. Voltammetric results demonstrate that permselectivity of the monolayer electrode can be obtained as a result of the induced electrostatic interactions between the monolayer interface and the electroactive species. Measurement of the voltammetric response of the redox probes at the monolayers as a function of the electrolyte concentration and composition is used to qualitatively analyze the effect of electrolyte on response. A model describing the role of the interfacial charge in the electrochemical response of the monolayers as a function of the solution composition and surface smoothness is proposed. A strategy is developed to further explore the applications of the monolayer electrodes to control the electrochemical response of the biological molecules such as catecholamines. The ability to control the surface hydrophobicity of the monolayer electrodes through coadsorption of thioctic acid and hexanethiol, to display different electrochemical properties towards biological molecules is tested. The optimum conditions for detection of the biological molecules on the monolayer electrodes are discussed. In order to pursue selective analysis in microenvironments, the thioctic acid monolayer formed on the

  19. Thiolated polymers: evaluation of the influence of the amount of covalently attached L-cysteine to poly(acrylic acid).

    PubMed

    Palmberger, Thomas F; Albrecht, Karin; Loretz, Brigitta; Bernkop-Schnürch, Andreas

    2007-06-01

    It was the aim of this study to investigate the influence of the amount of thiol groups being covalently attached to poly(acrylic acid) 450 kDa on its properties. Five different PAA(450)-L-cysteine conjugates (PAA(450)-Cys) were synthesized bearing 53.0 (PAA I), 113.4 (PAA II), 288.8 (PAA III), 549.1 (PAA IV) and 767.0 (PAA V) micromol immobilized thiol groups per gram polymer. Mucoadhesion studies utilizing the rotating cylinder method, tensile studies and disintegration studies were performed. Self-crosslinking properties were measured by the increase in viscosity. Permeation studies were performed on rat small intestine and Caco-2 monolayers using sodium fluorescein as model drug. Following residence times on the rotating cylinder could be identified: PAA I 3.1; PAA II 5.2; PAA III 22.0; PAA IV 33.8; PAA V 53.7; control 1.3 [h]. The disintegration time of all PAA(450)-Cys tablets was strongly dependent on the degree of thiolation of the polymer. Self-crosslinking studies showed that the different PAA(450)-Cys conjugates (3% m/v) in phosphate buffer, pH 6.8, formed intramolecular disulfide bonds. In case of Caco-2 monolayer transport studies following P(app)-values could be identified: PAA I 9.8; PAA II 10.1; PAA III 11.1; PAA IV 8.9; PAA V 8.2; control 6.4 [P(app)x10(-6), cms(-1)]. Mucoadhesive and self-crosslinking properties are strongly dependent on the degree of thiolation of the polymer and with respect to transport studies, an optimum amount of covalently attached L-cysteine could be identified.

  20. Assembly and relaxation behaviours of phosphatidylethanolamine monolayers investigated by polarization and frequency resolved SFG-VS.

    PubMed

    Wei, Feng; Xiong, Wei; Li, Wenhui; Lu, Wangting; Allen, Heather C; Zheng, Wanquan

    2015-10-14

    The assembly conformation and kinetics of phosphatidylethanolamine (PE) lipids are the key to their membrane curvatures and activities, such as exocytosis, endocytosis and Golgi membrane fusion. In the current study, a polarization and frequency resolved (bandwidth ≈ 1 cm(-1)) picosecond sum frequency generation (SFG) system was developed to characterize phosphatidylethanolamine monolayers. In addition to obtaining π-A isotherms and Brewster angle microscopy (BAM) images, the conformational changes and assembly behaviors of phosphatidylethanolamine molecules are investigated by analyzing the SFG spectra collected at various surface pressures (SPs). The compression kinetics and relaxation kinetics of phosphatidylethanolamine monolayers are also reported. The conformational changes of PE molecules during the monolayer compression are separated into several stages: reorientation of the head group PO2(-) in the beginning of the liquid-expanded (LE) phase, conformational changes of head group alkyl chains in the LE phase, and conformational changes of tail group alkyl chains in the LE-liquid condensed (LE-LC) phase. Such an understanding may help researchers to effectively control the lipid molecular conformation and membrane curvatures during the exocytosis/endocytosis processes.

  1. In situ sulfonation of alkyl benzene self-assembled monolayers: product distribution and kinetic analysis.

    PubMed

    Katash, Irit; Luo, Xianglin; Sukenik, Chaim N

    2008-10-07

    The sulfonation of aromatic rings held at the surface of a covalently anchored self-assembled monolayer has been analyzed in terms of the rates and isomer distribution of the sulfonation process. The observed product distributions are similar to those observed in solution, though the data obtained suggest that the reaction rate and the ortho/para product ratio depend on the length of the tether anchoring the aryl ring to the monolayer interface. It was also found that the interface becomes progressively more disordered and the observed reaction rates decrease as the reaction progresses. There is no evidence for a bias in favor of reaction at the more exposed para-position nor is there evidence for an enhanced reaction rate due to the increased disorder and/or improved wetting as the reaction proceeds. This is the first detailed study of electrophilic aromatic substitution at a monolayer interface. It introduces new approaches to the spectroscopic analysis of reactions on self-assembled monolayers and provides a new general approach to the analysis of isomeric product distribution in such a setting.

  2. Grafted self-assembled monolayers derived from naturally occurring phenolic lipids.

    PubMed

    Pillot, J-P; Birot, M; Tran, T T T; Dao, T M; Belin, C; Desbat, B; Lazare, S

    2005-04-12

    Self-assembled monolayers grafted onto silicon surfaces were obtained from the hydrosilylation products by trialcoxysilanes of naturally occurring phenolic lipid allyl ethers. The as-obtained materials were characterized by various physical and physicochemical methods. Thus, contact angles of water drops showed that they possess very high hydrophobicity. Their excellent regularity was corroborated by AFM microscopy. The frequencies of the stretching CH2 infrared modes indicate the presence of alkyl chains mainly in the trans/trans conformation. Additionally, optical ellipsometry and quartz microbalance measurements enabled us to estimate the thickness of the films. The results, as a whole, are in good agreement with the formation of densely packed monolayers.

  3. Thiolated polymers: evaluation of their potential as dermoadhesive excipients.

    PubMed

    Grießinger, Julia Anita; Bonengel, Sonja; Partenhauser, Alexandra; Ijaz, Muhammad; Bernkop-Schnürch, Andreas

    2017-02-01

    The objective of this study was to evaluate and compare four different thiolated polymers regarding their dermoadhesive potential. Therefore, three hydrophilic polymers (poly(acrylic acid), Carbopol 971 and carboxymethylcellulose) and a lipophilic polymer (silicone oil) were chosen to generate thiolated polymers followed by characterization. The total work of adhesion (TWA) and the maximum detachment force (MDF) of formulations containing modified and unmodified polymers were investigated on skin obtained from pig ears using a tensile sandwich technique. The synthesis of thiolated polymers provided 564 µmol, 1079 µmol, 482 µmol and 217 µmol thiol groups per gram poly(acrylic acid), Carbopol 971, carboxymethylcellulose and silicone oil, respectively. Hydrogels containing poly(acrylic acid)-cysteine, Carbopol 971-cysteine, and carboxymethylcellulose-cysteamine exhibited a 6-fold, 25-fold and 9-fold prolonged adhesion on porcine skin than the hydrogel formulations prepared from the corresponding unmodified polymers, respectively. Furthermore, thiolation of silicone oil with thioglycolic acid led to a 5-fold improvement in adhesion compared to the unmodified silicone oil. A comparison between the four thiolated polymer formulations showed a clear correlation between the amount of coupled thiol groups and the TWA. According to these results thiomers might also be useful excipients to provide a prolonged dermal resistance time of various formulations.

  4. Thiolated graphene oxide as promising mucoadhesive carrier for hydrophobic drugs.

    PubMed

    Pereira de Sousa, Irene; Buttenhauser, Katrin; Suchaoin, Wongsakorn; Partenhauser, Alexandra; Perrone, Mara; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2016-07-25

    The aim of this study was to improve the mucoadhesive properties of graphene by conjugating thiol ligands, in order to formulate an oral delivery system for hydrophobic drugs showing long mucus residence time. Graphene oxide was obtained by oxidation of graphite and then was thiolated following two synthetic paths. On the one hand, the hydroxyl groups were conjugated with thiourea passing through the formation of a brominated intermediate. On the other hand, the carboxylic acid groups were conjugated with cysteamine via carbodiimide chemistry. The mucoadhesive properties of thiolated graphene were evaluated by rheological measurements and by residence time assay. Then, valsartan was loaded on thiolated graphene and the release profile was evaluated in simulated intestinal fluid. Following both synthetic paths it was possible to obtain thiolated graphene bearing 215-302μmol SH/g product. Both products induced after 1h incubation an increase of mucus viscosity of about 22-33-fold compared to unmodified graphite. The residence time assay confirmed that 60% of thiolated graphene could be retained on intestinal mucosa after 4h incubation, whereas just 20% of unmodified graphite could be retained. Valsartan could be loaded with a drug loading of about 31±0.3% and a sustained release profile was observed for both formulations. According to the presented data, the thiolation of graphene could improve its mucoadhesive properties. Therefore, thiolated graphene represents a promising platform for oral delivery of hydrophobic drugs, possessing a long residence time on intestinal mucosa which allows the release of the loaded drug close to the adsorptive epithelium. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery.

    PubMed

    Lee, Dongwon; Zhang, Weidong; Shirley, Shawna A; Kong, Xiaoyuan; Hellermann, Gary R; Lockey, Richard F; Mohapatra, Shyam S

    2007-01-01

    Thiolated chitosan appears to possess enhanced mucoadhesiveness and cell penetration properties, however, its potential in gene-drug delivery remains unknown. Herein, we report on a highly effective gene delivery system utilizing a 33-kDa thiol-modified chitosan derivative. Thiolated chitosan was prepared by the reaction with thioglycolic acid. Nanocomplexes of unmodified chitosan or thiolated chitosan with plasmid DNA encoding green fluorescenct protein (GFP) were characterized for their size, zeta potential, their ability to bind and protect plasmid DNA from degradation. The transfection efficiency of thiolated chitosan and sustained gene expression were evaluated in various cell lines in vitro and in Balb/c mice in vivo. Thiolated chitosan-DNA nanocomplexes ranged in size from 75 to 120 nm in diameter and from +2.3 to 19.7 mV in zeta potential, depending on the weight ratio of chitosan to DNA. Thiolated chitosan, CSH360, exhibited effective physical stability and protection against DNase I digestion at a weight ratio>or=2.5:1. CSH360/DNA nanocomplexes induced significantly (P<0.01) higher GFP expression in HEK293, MDCK and Hep-2 cell lines than unmodified chitosan. Nanocomplexes of disulphide-crosslinked CSH360/DNA showed a sustained DNA release and continuous expression in cultured cells lasting up to 60 h post transfection. Also, intranasal administration of crosslinked CSH360/DNA nanocomplexes to mice yielded gene expression that lasted for at least 14 days. Thiolated chitosans condense pDNA to form nanocomplexes, which exhibit a significantly higher gene transfer potential and sustained gene expression upon crosslinking, indicating their great potential for gene therapy and tissue engineering.

  6. On the inclusion of alkanes into the monolayer of aliphatic alcohols at the water/alkane vapor interface: a quantum chemical approach.

    PubMed

    Vysotsky, Yuri B; Fomina, Elena S; Belyaeva, Elena A; Fainerman, Valentin B; Vollhardt, Dieter

    2013-02-14

    In the framework of the quantum chemical semiempirical PM3 method thermodynamic and structural parameters of the formation and clusterization of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K at the water/alkane vapor C(n)H(2n+2), (n(CH(3)) = 6-16) interface were calculated. The dependencies of enthalpy, entropy and Gibbs' energy of clusterization per one monomer molecule of 2D films on the alkyl chain length of corresponding alcohols and alkanes, the molar fraction of alkanes in the monolayers and the immersion degree of alcohol molecules into the water phase were shown to be linear or stepwise. The threshold of spontaneous clusterization of aliphatic alcohols at the water/alkane vapor interface was 10-11 carbon atoms at 298 K which is in line with experimental data at the air/water interface. It is shown that the presence of alkane vapor does not influence the process of alcohol monolayer formation. The structure of these monolayers is analogous to those obtained at the air/water interface in agreement with experimental data. The inclusion of alkane molecules into the amphiphilic monolayer at the water/alkane vapor interface is possible for amphiphiles with the spontaneous clusterization threshold at the air/water interface (n(s)(0)) of at least 16 methylene units in the alkyl chain, and it does not depend on the molar fraction of alkanes in the corresponding monolayer. The inclusion of alkanes from the vapor phase into the amphiphilic monolayer also requires that the difference between the alkyl chain lengths of alcohols and alkanes is not larger than n(s)(0) - 15 and n(s)(0) - 14 for the 2D film 1 and 2D film 2, respectively.

  7. S-protected thiolated chitosan: Synthesis and in vitro characterization

    PubMed Central

    Dünnhaupt, Sarah; Barthelmes, Jan; Thurner, Clemens C.; Waldner, Claudia; Sakloetsakun, Duangkamon; Bernkop-Schnürch, Andreas

    2012-01-01

    Purpose of the present study was the generation and evaluation of novel thiolated chitosans, so-named S-protected thiolated chitosans as mucosal drug delivery systems. Stability of all conjugates concerning swelling and disintegration behavior as well as drug release was examined. Mucoadhesive properties were evaluated in vitro on intestinal mucosa. Different thiolated chitosans were generated displaying increasing amounts of attached free thiol groups on the polymer, whereby more than 50% of these thiol groups were linked with 6-mercaptonicotinamide. Based on the implementation of this hydrophobic residue, the swelling behavior was 2-fold decreased, whereas stability was essentially improved. Their mucoadhesive properties were 2- and 14-fold increased compared to corresponding thiolated and unmodified chitosans, respectively. Release studies out of matrix tablets comprising the novel conjugates revealed a controlled release of a model peptide. Accordingly, S-protected thiomers represent a promising type of mucoadhesive polymers for the development of various mucosal drug delivery systems. PMID:22839999

  8. S-protected thiolated chitosan: synthesis and in vitro characterization.

    PubMed

    Dünnhaupt, Sarah; Barthelmes, Jan; Thurner, Clemens C; Waldner, Claudia; Sakloetsakun, Duangkamon; Bernkop-Schnürch, Andreas

    2012-10-01

    Purpose of the present study was the generation and evaluation of novel thiolated chitosans, so-named S-protected thiolated chitosans as mucosal drug delivery systems. Stability of all conjugates concerning swelling and disintegration behavior as well as drug release was examined. Mucoadhesive properties were evaluated in vitro on intestinal mucosa. Different thiolated chitosans were generated displaying increasing amounts of attached free thiol groups on the polymer, whereby more than 50% of these thiol groups were linked with 6-mercaptonicotinamide. Based on the implementation of this hydrophobic residue, the swelling behavior was 2-fold decreased, whereas stability was essentially improved. Their mucoadhesive properties were 2- and 14-fold increased compared to corresponding thiolated and unmodified chitosans, respectively. Release studies out of matrix tablets comprising the novel conjugates revealed a controlled release of a model peptide. Accordingly, S-protected thiomers represent a promising type of mucoadhesive polymers for the development of various mucosal drug delivery systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Thiolated chitosan nanoparticles for the nasal administration of leuprolide: bioavailability and pharmacokinetic characterization.

    PubMed

    Shahnaz, Gul; Vetter, Anja; Barthelmes, Jan; Rahmat, Deni; Laffleur, Flavia; Iqbal, Javed; Perera, Glen; Schlocker, Wolfgang; Dünnhaput, Sarah; Augustijns, Patrick; Bernkop-Schnürch, Andreas

    2012-05-30

    The purpose of this study was to develop thiolated nanoparticles to enhance the bioavailability for the nasal application of leuprolide. Thiolated chitosan-thioglycolic acid (chitosan-TGA) and unmodified chitosan nanoparticles (NPs) were developed via ionic gelation with tripolyphosphate (TPP). Leuprolide was incorporated during the formulation process of NPs. The thiolated (chitosan-TGA) NPs had a mean size of 252 ± 82 nm, a zeta potential of +10.9 ± 4 mV, and payload of leuprolide was 12 ± 2.8. Sustained release of leuprolide from thiolated NPs was demonstrated over 6h, which might be attributed to inter- and/or intramolecular disulfide formation within the NPs network. Ciliary beat frequency (CBF) study demonstrated that thiolated NPs can be considered as suitable additives for nasal drug delivery systems. Compared to leuprolide solution, unmodified NPs and thiolated NPs provoked increased leuprolide transport through porcine nasal mucosa by 2.0 and 5.2 folds, respectively. The results of a pharmacokinetic study in male Sprague-Dawley rats showed improved transport of leuprolide from thiolated NPs as compared to leuprolide solution. Thiolated NPs had a 6.9-fold increase in area under the curve, more than 4-fold increase in elimination half-life, and a ∼3.8-fold increase in maximum plasma concentration compared to nasal solution alone. The relative nasal bioavailability (versus s.c. injection) of leuprolide thiolated NPs calculated on the basis of AUC((0-6)) was about 19.6% as compared to leuprolide solution 2.8%. The enhanced bioavailability of leuprolide is likely due to facilitated transport by thiolated NPs rather than improved release. Copyright © 2012. Published by Elsevier B.V.

  10. Formation mechanism and biological activity of novel thiolated human-like collagen iron complex.

    PubMed

    Zhu, Chenhui; Liu, Lingyun; Deng, Jianjun; Ma, Xiaoxuan; Hui, Junfeng; Fan, Daidi

    2016-03-01

    To develop an iron supplement that is effectively absorbed and utilized, thiolated human-like collagen was created to improve the iron binding capacity of human-like collagen. A thiolated human-like collagen-iron complex was prepared in a phosphate buffer, and one mole of thiolated human-like collagen-iron possessed approximately 28.83 moles of iron. The characteristics of thiolated human-like collagen-iron were investigated by ultraviolet-visible absorption spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and differential scanning calorimetry. The results showed that the thiolated human-like collagen-iron complex retained the secondary structure of human-like collagen and had greater thermodynamic stability than human-like collagen, although interactions between iron ions and human-like collagen occurred during the formation of the complex. In addition, to evaluate the bioavailability of thiolated human-like collagen-iron, an in vitro Caco-2 cell model and an in vivo iron deficiency anemia mouse model were employed. The data demonstrated that the thiolated human-like collagen-iron complex exhibited greater bioavailability and was more easily utilized than FeSO4, ferric ammonium citrate, or ferrous glycinate. These results indicated that the thiolated human-like collagen-iron complex is a potential iron supplement in the biomedical field. © The Author(s) 2016.

  11. Thiolated hydroxyethylcellulose: synthesis and in vitro evaluation.

    PubMed

    Sarti, Federica; Staaf, Alexander; Sakloetsakun, Duangkamon; Bernkop-Schnürch, Andreas

    2010-11-01

    In recent years, thiomers have received considerable interest due to advantageous characteristics, such as improved mucoadhesive and permeation enhancing properties. Thiolated polymers, however, are characterized by an ionic charge which represents for various applications a great limitation. The aim of this study was therefore to synthesize a novel thiolated polymer not exhibiting ionizable groups. Hydroxyethylcellulose (HEC) was chosen as polymer backbone. The chemical modification was achieved by the replacement of hydroxyl groups on the carbohydrate structure with thiol moieties, using thiourea as thiolating reagent. The resulting thiolated hydroxyethylcellulose (HEC-SH) was characterized in vitro regarding its gelling properties, swelling behaviour, mucoadhesion on freshly excised porcine intestinal mucosa and permeation enhancing effect across rat intestinal mucosa. The new thiomer displayed up to 131.58 ± 11.17 μmol thiol groups per gram polymer, which are responsible for the observed in situ gelling capacity. The swelling behaviour and the mucoadhesive properties of tablets based on HEC-SH were 1.5-fold and 4-fold improved compared with unmodified HEC, respectively. The permeation enhancing effect of 0.5% (m/v) HEC-SH on rhodamine 123 (Rho-123) transport was 1.9-fold improved compared with buffer only. According to these results, HEC-SH seems to represent a promising tool for the development of in situ gelling, mucoadhesive delivery systems with permeation enhancing properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Mucoadhesive Properties of Thiolated Pectin-Based Pellets Prepared by Extrusion-Spheronization Technique.

    PubMed

    Martins, André Luiz Lopes; de Oliveira, Aline Carlos; do Nascimento, Carolina Machado Ozório Lopes; Silva, Luís Antônio Dantas; Gaeti, Marilisa Pedroso Nogueira; Lima, Eliana Martins; Taveira, Stephânia Fleury; Fernandes, Kátia Flávia; Marreto, Ricardo Neves

    2017-05-01

    The aim of this study was to develop mucoadhesive pellets on a thiolated pectin base using the extrusion-spheronization technique. Thiolation of pectin was performed by esterification with thioglycolic acid. The molecular weight and thiol group content of the pectins were determined. Pellets containing pectin, microcrystalline cellulose, and ketoprofen were prepared and their mucoadhesive properties were evaluated through a wash-off test using porcine intestinal mucosa. The in vitro ketoprofen release was also evaluated. Thiolated pectin presented a thiol group content of 0.69 mmol/g. Thiolation caused a 13% increase in polymer molecular weight. Pellets containing thiolated pectin were still adhering to the intestinal mucosa after 480 min and showed a more gradual release of ketoprofen. Conversely, pellets prepared with nonthiolated pectin showed rapid disintegration and detached after only 15 min. It can be concluded that thiolated pectin-based pellets can be considered a potential platform for the development of mucoadhesive drug delivery systems for the oral route. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. S-protected thiolated hydroxyethyl cellulose (HEC): Novel mucoadhesive excipient with improved stability.

    PubMed

    Leonaviciute, Gintare; Bonengel, Sonja; Mahmood, Arshad; Ahmad Idrees, Muneeb; Bernkop-Schnürch, Andreas

    2016-06-25

    The aim of this study was the design of novel S-protected thiolated hydroxyethyl cellulose (HEC) and the assessment of its mucoadhesive properties and biodegradability compared to the corresponding unmodified polymer. Thiolated HEC was S-protected via disulfide bond formation between 6-mercaptonicotinamide (6-MNA) and the thiol substructures of the polymer. In vitro screening of mucoadhesive properties was accomplished using two different methods: rotating cylinder studies and viscosity measurements. Moreover, biodegradability of these polymers by cellulase, xylanase and lysozyme was evaluated. MTT and LDH assays were performed on Caco-2 cells to determine the cytotoxicity of S-protected thiolated HEC. Thiolated HEC displayed 280.09±1.70μmol of free thiol groups per gram polymer. S-protected thiolated HEC exhibiting 270.8±21.11μmol immobilized 6-MNA ligands per gram of polymer was shown being 2.4-fold more mucoadhesive compared to thiolated HEC. No mucoadhesion was observed in case of unmodified HEC. Results were in a good agreement with rheological studies. The presence of free thiol moieties likely caused lower degree of hydrolysis by xylanase, whereas the degradation by both enzymes cellulase and xylanase was more hampered when 6-MNA was introduced as ligand for thiol group's protection. Findings in cell viability revealed that all three conjugates were non-toxic. S-protection of thiolated hydroxyethyl cellulose improved mucoadhesive properties and provided pronounced stability towards enzymatic attack, that makes this excipient superior for non-invasive drug administration over thiolated and unmodified forms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Organic transistor memory with a charge storage molecular double-floating-gate monolayer.

    PubMed

    Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai

    2015-05-13

    A flexible, low-voltage, and nonvolatile memory device was fabricated by implanting a functional monolayer on an aluminum oxide dielectric surface in a pentacene-based organic transistor. The monolayer-forming molecule contains a phosphonic acid group as the anchoring moiety and a charge-trapping core group flanked between two alkyl chain spacers as the charge trapping site. The memory characteristics strongly depend on the monolayer used due to the localized charge-trapping capability for different core groups, including the diacetylenic (DA) unit as the hole carrier trap, the naphthalenetetracarboxyldiimide (ND) unit as the electron carrier trap, and the one with both DA and ND units present, respectively. The device with the monolayer carrying both DA and ND groups has a larger memory window than that for the one containing DA only and a longer retention time than that for the one containing DA or ND only, giving a memory window of 1.4 V and a retention time around 10(9) s. This device with hybrid organic monolayer/inorganic dielectrics also exhibited rather stable device characteristics upon bending of the polymeric substrate.

  15. Mucoadhesive polymers: Synthesis and in vitro characterization of thiolated poly(vinyl alcohol).

    PubMed

    Suchaoin, Wongsakorn; Pereira de Sousa, Irene; Netsomboon, Kesinee; Rohrer, Julia; Hoffmann Abad, Patricia; Laffleur, Flavia; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2016-04-30

    The aim of this study was to synthesize thiolated poly(vinyl alcohol) (PVA) and to evaluate its mucoadhesive properties. Thiourea and 3-mercaptopropionic acid were utilized in order to obtain thiolated PVAs, namely, TPVA1 and TPVA2, respectively. TPVA1 and TPVA2 displayed 130.44 ± 14.99 and 958.35 ± 155.27 μmol immobilized thiol groups per gram polymer, respectively, which were then evaluated regarding reactivity of thiol groups, swelling behavior and mucoadhesive properties. Both thiolated PVAs exhibited the highest reactivity at pH 8.0 whereas more than 95% of free thiol groups were preserved at pH 5.0. Thiolation of PVA decelerated water uptake and prolonged disintegration time of test discs compared to unmodified PVA. Contact time of TPVA1- and TPVA2-based test discs on porcine intestinal mucosa was 3.2- and 15.8-fold prolonged, respectively, in comparison to non-thiolated PVA as measured by rotating cylinder method. According to tensile studies on mucosa, the total work of adhesion (TWA) and the maximum detachment force (MDF) were increased when compared to PVA. Furthermore, thiolated PVAs preserved higher percentage of viable cells compared to unmodified PVA within 24h as evaluated by MTT assay. Accordingly, thiolated PVA represents a novel excipient that can likely improve the mucoadhesive properties of various pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Development of buccal drug delivery systems based on a thiolated polymer.

    PubMed

    Langoth, Nina; Kalbe, Jochen; Bernkop-Schnürch, Andreas

    2003-02-18

    The purpose of the present study was to investigate the benefit of thiolated polymers (thiomers) for the development of buccal drug delivery systems. L-Cysteine was thereby covalently attached to polycarbophil (PCP) mediated by a carbodiimide. The resulting conjugate displayed 140.5+/-8.4 microM thiol groups per gram polymer. Disintegration studies were carried out with tablets based on unmodified polymer and conjugated polymer, respectively. Due to the formation of disulfide bonds within the thiolated polymer, the stability of matrix-tablets based on this polymer was strongly improved. Additionally tensile studies were carried out, which were in good correlation with further results obtained by mucoadhesion studies, using the rotating cylinder method. These results showed that tablets based on thiolated PCP remained attached on freshly excised porcine mucosa 1.8 times longer than the corresponding control. Moreover, the enzyme inhibitory properties of polymers were evaluated as well. Thiolated PCP increased the stability of the synthetic substrate for aminopeptidase N-leu-p-nitroanilide (N-leu-pNA) and the model drug leucin-enkephalin (leu-enkephalin) against enzymatic degradation on buccal mucosa. Due to the use of thiolated polymers also a controlled drug release for leu-enkephalin was guaranteed over a time period for more than 24 h. Results of the present studies suggest that thiolated polymers represent a very useful tool for buccal delivery of peptide drugs.

  17. The structure and dynamics of Nano Particles encapsulated by the SDS monolayer collapse at the water/TCE interface

    NASA Astrophysics Data System (ADS)

    Shi, Wenxiong

    2016-11-01

    The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly.

  18. Formation of high-quality self-assembled monolayers of conjugated dithiols on gold: base matters.

    PubMed

    Valkenier, Hennie; Huisman, Everardus H; van Hal, Paul A; de Leeuw, Dago M; Chiechi, Ryan C; Hummelen, Jan C

    2011-04-06

    This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases and studied the quality of the resulting SAMs on gold. We found that the optimal conditions to reproducibly form dense, high-quality monolayers are 9-15% triethylamine (Et(3)N) in THF. The deprotection base tetrabutylammonium hydroxide (Bu(4)NOH) leads to less dense SAMs and the incorporation of Bu(4)N into the monolayer. Furthermore, our results show the importance of the equilibrium concentrations of (di)thiolate in solution on the quality of the SAM. To demonstrate the relevance of these results for molecular electronics applications, large-area molecular junctions were fabricated using no base, Et(3)N, and Bu(4)NOH. The magnitude of the current-densities in these devices is highly dependent on the base. A value of β=0.15 Å(-1) for the exponential decay of the current-density of OPEs of varying length formed using Et(3)N was obtained. © 2011 American Chemical Society

  19. Development of thiolated poly(acrylic acid) microparticles for the nasal administration of exenatide.

    PubMed

    Millotti, Gioconda; Vetter, Anja; Leithner, Katharina; Sarti, Federica; Shahnaz Bano, Gul; Augustijns, Patrick; Bernkop-Schnürch, Andreas

    2014-12-01

    The purpose of this study was to develop a microparticulate formulation for nasal delivery of exenatide utilizing a thiolated polymer. Poly(acrylic acid)-cysteine (PAA-cys) and unmodified PAA microparticles loaded with exenatide were prepared via coprecipitation of the drug and the polymer followed by micronization. Particle size, drug load and release of incorporated exenatide were evaluated. Permeation enhancing properties of the formulations were investigated on excised porcine respiratory mucosa. The viability of the mucosa was investigated by histological studies. Furthermore, ciliary beat frequency (CBF) studies were performed. Microparticles displayed a mean size of 70-80 µm. Drug encapsulation was ∼80% for both thiolated and non-thiolated microparticles. Exenatide was released from both thiolated and non-thiolated particles in comparison to exenatide in buffer only within 40 min. As compared to exenatide dissolved in buffer only, non-thiolated and thiolated microparticles resulted in a 2.6- and 4.7-fold uptake, respectively. Histological studies performed before and after permeation studies showed that the mucosa is not damaged during permeation studies. CBF studies showed that the formulations were cilio-friendly. Based on these results, poly(acrylic acid)-cysteine-based microparticles seem to be a promising approach starting point for the nasal delivery of exenatide.

  20. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers

    DOE PAGES

    Ajayi, Obafunso A.; Ardelean, Jenny V.; Shepard, Gabriella D.; ...

    2017-07-24

    Excitonic states in monolayer transition metal dichalcogenides (TMDCs) have been the subject of extensive recent interest. Their intrinsic properties can, however, be obscured due to the influence of inhomogeneity in the external environment. Here we report methods for fabricating high quality TMDC monolayers with narrow photoluminescence (PL) linewidth approaching the intrinsic limit. We find that encapsulation in hexagonal boron nitride (h-BN) sharply reduces the PL linewidth, and that passivation of the oxide substrate by an alkyl monolayer further decreases the linewidth and also minimizes the charged exciton (trion) peak. The combination of these sample preparation methods results in much reducedmore » spatial variation in the PL emission, with a full-width-at-half-maximum as low as 1.7 meV. Furthermore, analysis of the PL line shape yields a homogeneous width of 1.43 ± 0.08 meV and inhomogeneous broadening of 1.1 ± 0.3 meV.« less

  1. Formulation and In Vitro Characterization of Thiolated Buccoadhesive Film of Fluconazole.

    PubMed

    Naz, Kiran; Shahnaz, Gul; Ahmed, Naveed; Qureshi, Naveeda Akhtar; Sarwar, Hafiz Shoaib; Imran, Muhammad; Khan, Gul Majid

    2017-05-01

    The present work is focused on the development of thiolated film for fluconazole buccal delivery. To this end, unmodified polymers chitosan and sodium carboxymethylcellulose (NaCMC) backbone was covalently modified by thioglycolic acid (TGA) and cysteine, respectively. The thiolated buccoadhesive film was evaluated in terms of thickness, weight uniformity, water-uptake capacity, drug content, and release patterns. Moreover, mucoadhesion profile was investigated on buccal mucosa. The resulting chitosan-TGA and NaCMC-cysteine conjugates displayed 171 ± 13 and 380 ± 19 μmol thiol groups per gram of polymer (mean ± SD; n = 3), respectively. The water binding capacity of the thiolated film was significantly ∼2-fold higher (p < 0.05) as compared to unmodified film. The obtained thiolated film displayed 5.8-fold higher mucoadhesive properties compared with corresponding film. Controlled release of drugs from film was observed over 8 h. The transport of fluconazole across excised buccal mucosa was enhanced up to 17-fold in comparison with fluconazole applied in buffer. Based on these findings, thiolated film seems to be promising for fluconazole buccal delivery.

  2. Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Yao, Qiaofeng; Luo, Zhentao; Yuan, Xun; Lee, Jim Yang; Xie, Jianping

    2013-05-01

    In very recent years, thiolate-protected metal nanoclusters (or thiolated MNCs) with core sizes smaller than 2 nm have emerged as a new direction in nanoparticle research due to their discrete and size dependent electronic structures and molecular-like properties, such as HOMO-LUMO transitions in optical absorptions, quantized charging, and strong luminescence. Synthesis of monodisperse thiolated MNCs in sufficiently large quantities (up to several hundred micrograms) is necessary for establishing reliable size-property relationships and exploring potential applications. This Feature Article reviews recent progress in the development of synthetic strategies for the production of monodisperse thiolated MNCs. The preparation of monodisperse thiolated MNCs is viewed as an engineerable process where both the precursors (input) and their conversion chemistry (processing) may be rationally designed to achieve the desired outcome - monodisperse thiolated MNCs (output). Several strategies for tailoring the precursor and the conversion process are analyzed to arrive at a unifying understanding of the processes involved.

  3. Unexpected Toxicity of Monolayer Protected Gold Clusters Eliminated by PEG-Thiol Place Exchange Reactions

    PubMed Central

    Simpson, Carrie A.; Huffman, Brian J.; Gerdon, Aren E.; Cliffel, David E.

    2010-01-01

    Monolayer protected clusters (MPCs) are small, metal nanoparticles capped with thiolate ligands that have been widely studied for their size-dependent properties and for their ability to be functionalized for biological applications. Common water-soluble MPCs, functionalized by 2-mercaptopropanoyl) amino acetic acid (tiopronin) or glutathione, have been used previously to interface with biological systems. These MPCs are ideal for biological applications not only due to their water-solubility but also their small size (< 5 nm). These characteristics are expected to enable easy biodistribution and clearance. In this report we show an unexpected toxicity is associated with the tiopronin monolayer protected cluster (TMPC), making it incompatible for potential in vivo applications. This toxicity is linked to significant histological damage to the renal tubules, causing mortality at concentrations above 20 μM. We further show how the incorporation of poly-ethylene glycol (PEG) by simple place-exchange reaction eliminates this toxicity. We analyzed gold content within blood and urine and found an increased lifetime of the particle within the bloodstream due to the creation of the mixed monolayer. Also shown was the elimination of kidney damage with the use of the mixed-monolayer particle via Multistix™ analysis, MALDI-TOF MS analysis, and histological examination. Final immunological analysis showed no effect on white blood cell (WBC) count for the unmodified particle and a surprising increase in WBC count with injection of mixed monolayer particles at concentrations higher than 30 μM, suggesting that there may be an immune response to these mixed monolayer nanoparticles at high concentrations; therefore, special attention should be focused on selecting the best capping ligands for use in vivo. These findings make the mixed monolayer an excellent candidate for further biological applications using water-soluble nanoparticles. PMID:20715858

  4. The titration of carboxyl-terminated monolayers revisited: in situ calibrated fourier transform infrared study of well-defined monolayers on silicon.

    PubMed

    Aureau, D; Ozanam, F; Allongue, P; Chazalviel, J-N

    2008-09-02

    The acid-base equilibrium at the surface of well-defined mixed carboxyl-terminated/methyl-terminated monolayers grafted on silicon (111) has been investigated using in situ calibrated infrared spectroscopy (attenuated total reflectance (ATR)) in the range of 900-4000 cm (-1). Spectra of surfaces in contact with electrolytes of various pH provide a direct observation of the COOH <--> COO (-) conversion process. Quantitative analysis of the spectra shows that ionization of the carboxyl groups starts around pH 6 and extends over more than 6 pH units: approximately 85% ionization is measured at pH 11 (at higher pH, the layers become damaged). Observations are consistently accounted for by a single acid-base equilibrium and discussed in terms of change in ion solvation at the surface and electrostatic interactions between surface charges. The latter effect, which appears to be the main limitation, is qualitatively accounted for by a simple model taking into account the change in the Helmholtz potential associated with the surface charge. Furthermore, comparison of calculated curves with experimental titration curves of mixed monolayers suggests that acid and alkyl chains are segregated in the monolayer.

  5. The structure and dynamics of Nano Particles encapsulated by the SDS monolayer collapse at the water/TCE interface

    PubMed Central

    Shi, Wenxiong

    2016-01-01

    The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly. PMID:27853312

  6. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Liqin; Li, Xuemin; Liu, Lingrong; Zhang, Qiqing

    2013-02-01

    Oral chemotherapy is a key step towards `chemotherapy at home', a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer.

  7. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    PubMed Central

    2013-01-01

    Oral chemotherapy is a key step towards ‘chemotherapy at home’, a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer. PMID:23394588

  8. Enhanced oral delivery of docetaxel using thiolated chitosan nanoparticles: preparation, in vitro and in vivo studies.

    PubMed

    Saremi, Shahrooz; Dinarvand, Rassoul; Kebriaeezadeh, Abbas; Ostad, Seyed Nasser; Atyabi, Fatemeh

    2013-01-01

    The aim of this study was to evaluate a nanoparticulate system with mucoadhesion properties composed of a core of polymethyl methacrylate surrounded by a shell of thiolated chitosan (Ch-GSH-pMMA) for enhancing oral bioavailability of docetaxel (DTX), an anticancer drug. DTX-loaded nanoparticles were prepared by emulsion polymerization method using cerium ammonium nitrate as an initiator. Physicochemical properties of the nanoparticles such as particle size, size distribution, morphology, drug loading, and entrapment efficiency were characterized. The pharmacokinetic study was carried out in vivo using wistar rats. The half-life of DTX-loaded NPs was about 9 times longer than oral DTX used as positive control. The oral bioavailability of DTX was increased to 68.9% for DTX-loaded nanoparticles compared to 6.5% for positive control. The nanoparticles showed stronger effect on the reduction of the transepithelial electrical resistance (TEER) of Caco-2 cell monolayer by opening the tight junctions. According to apparent permeability coefficient (P(app)) results, the DTX-loaded NPs showed more specific permeation across the Caco-2 cell monolayer in comparison to the DTX. In conclusion, the nanoparticles prepared in this study showed promising results for the development of an oral drug delivery system for anticancer drugs.

  9. Enhanced Oral Delivery of Docetaxel Using Thiolated Chitosan Nanoparticles: Preparation, In Vitro and In Vivo Studies

    PubMed Central

    Saremi, Shahrooz; Kebriaeezadeh, Abbas; Ostad, Seyed Nasser; Atyabi, Fatemeh

    2013-01-01

    The aim of this study was to evaluate a nanoparticulate system with mucoadhesion properties composed of a core of polymethyl methacrylate surrounded by a shell of thiolated chitosan (Ch-GSH-pMMA) for enhancing oral bioavailability of docetaxel (DTX), an anticancer drug. DTX-loaded nanoparticles were prepared by emulsion polymerization method using cerium ammonium nitrate as an initiator. Physicochemical properties of the nanoparticles such as particle size, size distribution, morphology, drug loading, and entrapment efficiency were characterized. The pharmacokinetic study was carried out in vivo using wistar rats. The half-life of DTX-loaded NPs was about 9 times longer than oral DTX used as positive control. The oral bioavailability of DTX was increased to 68.9% for DTX-loaded nanoparticles compared to 6.5% for positive control. The nanoparticles showed stronger effect on the reduction of the transepithelial electrical resistance (TEER) of Caco-2 cell monolayer by opening the tight junctions. According to apparent permeability coefficient (P app) results, the DTX-loaded NPs showed more specific permeation across the Caco-2 cell monolayer in comparison to the DTX. In conclusion, the nanoparticles prepared in this study showed promising results for the development of an oral drug delivery system for anticancer drugs. PMID:23971023

  10. Nano-scaling law: geometric foundation of thiolated gold nanomolecules.

    PubMed

    Dass, Amala

    2012-04-07

    Thiolated gold nanomolecules show a power correlation between the number of gold atoms and the thiolate ligands with a 2/3 scaling similar to Platonic and Archimedean solids. Nanomolecule stability is influenced by a universal geometric factor that is foundational to its stability through the Euclidean surface rule, in addition to the electronic shell closing factor and staple motif requirements. This journal is © The Royal Society of Chemistry 2012

  11. Oxidative Addition of Disulfides, Alkyl Sulfides, and Diphosphides to an Aluminum(I) Center.

    PubMed

    Chu, Terry; Boyko, Yaroslav; Korobkov, Ilia; Kuzmina, Lyudmila G; Howard, Judith A K; Nikonov, Georgii I

    2016-09-06

    The aluminum(I) compound NacNacAl (1) reacts with diphenyl disulfide and diethyl sulfide to form the respective four-coordinate bis(phenyl sulfide) complex NacNacAl(SPh)2 (2) and alkyl thiolate aluminum complex NacNacAlEt(SEt) (3). As well, reaction of 1 with tetraphenyl diphosphine furnishes the bis(diphenyl phosphido) complex NacNacAl(PPh2)2 (4). Production of 3 and 4 are the first examples of C(sp(3))-S and R2P-PR2 activation by a main-group element complex. All three complexes were characterized by multinuclear NMR spectroscopy and X-ray crystal structure analysis. Furthermore, a variable-temperature NMR spectroscopic study was undertaken on 4 to study its dynamic behavior in solution.

  12. Dynamical simulation of electron transfer processes in self-assembled monolayers at metal surfaces using a density matrix approach.

    PubMed

    Prucker, V; Bockstedte, M; Thoss, M; Coto, P B

    2018-03-28

    A single-particle density matrix approach is introduced to simulate the dynamics of heterogeneous electron transfer (ET) processes at interfaces. The characterization of the systems is based on a model Hamiltonian parametrized by electronic structure calculations and a partitioning method. The method is applied to investigate ET in a series of nitrile-substituted (poly)(p-phenylene)thiolate self-assembled monolayers adsorbed at the Au(111) surface. The results show a significant dependence of the ET on the orbital symmetry of the donor state and on the molecular and electronic structure of the spacer.

  13. Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis.

    PubMed

    Sarwar, Hafiz S; Ashraf, Sehreen; Akhtar, Sohail; Sohail, Muhammad F; Hussain, Syed Z; Rafay, Muhammad; Yasinzai, Masoom; Hussain, Irshad; Shahnaz, Gul

    2018-01-01

    Our aim was to inhibit trypanothione reductase (TR) and P-gp efflux pump of Leishmania by the use of thiolated polymers. Thus, increasing the intracellular accumulation and therapeutic effectiveness of antimonial compounds. Mannosylated thiolated chitosan and mannosylated thiolated chitosan-polyethyleneimine graft were synthesized and characterized. Meglumine antimoniate-loaded nanoparticles were prepared and evaluated for TR and P-gp efflux pump inhibition, biocompatibility, macrophage uptake and antileishmanial potential. Thiomers inhibited TR with Ki 2.021. The macrophage uptake was 33.7- and 18.9-fold higher with mannosylated thiolated chitosan-polyethyleneimine graft and mannosylated thiolated chitosan nanoparticles, respectively, as compared with the glucantime. Moreover, the in vitro antileishmanial activity showed 14.41- and 7.4-fold improved IC 50 for M-TCS-g-PEI and M-TCS, respectively as compared with glucantime. These results encouraged the concept that TR and P-gp inhibition by the use of thiomers improves the therapeutic efficacy of antimonial drugs.

  14. Thiolated polyethylene oxide as a non-fouling element for nano-patterned bio-devices

    NASA Astrophysics Data System (ADS)

    Lisboa, Patrícia; Valsesia, Andrea; Colpo, Pascal; Gilliland, Douglas; Ceccone, Giacomo; Papadopoulou-Bouraoui, Andri; Rauscher, Hubert; Reniero, Fabiano; Guillou, Claude; Rossi, François

    2007-03-01

    This work describes the synthesis of a thiolated polyethylene oxide that self-assembles on gold to create a non-fouling surface. Thiolated polyethylene oxide was synthesised by reacting 16-mercaptohexadecanoic acid with polyethylene glycol mono methyl ether. The coverage of the thiolated polyethylene oxide on gold was studied by cyclic voltammetry, and the modified surfaces were characterised by X-ray photoelectron spectroscopy and ellipsometry. Protein resistance was assessed using quartz crystal microbalance. Results showed a non-fouling character produced by the thiolated polyethylene oxide. The synthesised product was used as the passivation layer on nano-patterned surfaces consisting of arrayed nano-spots, fabricated by plasma based colloidal lithography. The specific adsorption of anti-bovine serum albumin in the mercaptohexadecanoic acid spots was verified by atomic force microscopy.

  15. Preactivated thiolated pullulan as a versatile excipient for mucosal drug targeting.

    PubMed

    Leonaviciute, Gintare; Suchaoin, Wongsakorn; Matuszczak, Barbara; Lam, Hung Thanh; Mahmood, Arshad; Bernkop-Schnürch, Andreas

    2016-10-20

    The purpose of the present study was to generate a novel mucoadhesive thiolated pullulan with protected thiol moieties and to evaluate its suitability as mucosal drug delivery system. Two different synthetic pathways: bromination-nucleophilic substitution and reductive amination including periodate cleavage were utilized to synthesize such thiolated pullulans. The thiomer (pullulan-cysteamine) with the highest amount of free thiol groups was further enrolled in a reaction with 6-mercaptonicotinamide and its presence in pullulan structure was confirmed via NMR analysis. Furthermore, unmodified, thiolated and preactivated thiolated pullulan were investigated in terms of mucoadhesion via rotating cylinder studies and rheological synergism method as well as their toxicity potential over Caco-2 cells. Comparing both methods the reductive amination seems to be the method of choice resulting in comparatively higher coupling rates. Using this procedure pullulan-cysteamine conjugate displayed 1522±158μmol immobilized thiol groups and 280±70μmol free thiol groups per gram polymer. Furthermore, 82% of free thiol groups on this conjugate were linked with 6-mercaptonicotinamide (6-MNA). The adhesion time on the rotating cylinder was up to 46-fold prolonged in case of the thiolated polymer and up to 75-fold in case of the preactivated polymer. Rheological measurements of modified pullulan samples showed 98-fold and 160-fold increase in dynamic viscosity upon the addition of mucus within 60min, whereas unmodified pullulan did not show an increase in viscosity at all. Both conjugates had a minor effect on Caco-2 cell viability. Because of these features preactivated thiolated pullulan seems to represent a promising type of mucoadhesive polymers for the development of various mucosal drug delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The expanding universe of thiolated gold nanoclusters and beyond.

    PubMed

    Jiang, De-en

    2013-08-21

    Thiolated gold nanoclusters form a universe of their own. Researchers in this field are constantly pushing the boundary of this universe by identifying new compositions and in a few "lucky" cases, solving their structures. Such solved structures, even if there are only few, provide important hints for predicting the many identified compositions that are yet to be crystallized or structure determined. Structure prediction is the most pressing issue for a computational chemist in this field. The success of the density functional theory method in gauging the energetic ordering of isomers for thiolated gold clusters has been truly remarkable, but to predict the most stable structure for a given composition remains a great challenge. In this feature article from a computational chemist's point of view, the author shows how one understands and predicts structures for thiolated gold nanoclusters based on his old and new results. To further entertain the reader, the author also offers several "imaginative" structures, claims, and challenges for this field.

  17. Preparation and evaluation of microparticles from thiolated polymers via air jet milling.

    PubMed

    Hoyer, Herbert; Schlocker, Wolfgang; Krum, Kafedjiiski; Bernkop-Schnürch, Andreas

    2008-06-01

    Microparticles were formulated by incorporation of the model protein horseradish peroxidase in (thiolated) chitosan and (thiolated) poly(acrylic acid) via co-precipitation. Dried protein/polymer complexes were ground with an air jet mill and resulting particles were evaluated regarding size distribution, shape, zeta potential, drug load, protein activity, release pattern, swelling behaviour and cytotoxicity. The mean particle size distribution was 0.5-12 microm. Non-porous microparticles with a smooth surface were prepared. Microparticles from (thiolated) chitosan had a positive charge whereas microparticles from (thiolated) poly(acrylic acid) were negatively charged. The maximum protein load for microparticles based on chitosan, chitosan-glutathione (Ch-GSH), poly(acrylic acid) (PAA) and for poly(acrylic acid)-glutathione (PAA-GSH) was 7+/-1%, 11+/-2%, 4+/-0.2% and 7+/-2%, respectively. The release profile of all microparticles followed a first order release kinetic. Chitosan (0.5mg), Ch-GSH, PAA and PAA-GSH particles showed a 31.4-, 13.8-, 54.2- and a 42.2-fold increase in weight, respectively. No significant cytotoxicity could be found. Thiolated microparticles prepared by jet milling technique were shown to be stable and to have controlled drug release characteristics. After further optimizations the preparation method described here might be a useful tool for the production of protein loaded drug delivery systems.

  18. Patterning of supported gold monolayers via chemical lift-off lithography

    PubMed Central

    Slaughter, Liane S; Cheung, Kevin M; Kaappa, Sami; Cao, Huan H; Yang, Qing; Young, Thomas D; Serino, Andrew C; Malola, Sami; Olson, Jana M; Link, Stephan

    2017-01-01

    The supported monolayer of Au that accompanies alkanethiolate molecules removed by polymer stamps during chemical lift-off lithography is a scarcely studied hybrid material. We show that these Au–alkanethiolate layers on poly(dimethylsiloxane) (PDMS) are transparent, functional, hybrid interfaces that can be patterned over nanometer, micrometer, and millimeter length scales. Unlike other ultrathin Au films and nanoparticles, lifted-off Au–alkanethiolate thin films lack a measurable optical signature. We therefore devised fabrication, characterization, and simulation strategies by which to interrogate the nanoscale structure, chemical functionality, stoichiometry, and spectral signature of the supported Au–thiolate layers. The patterning of these layers laterally encodes their functionality, as demonstrated by a fluorescence-based approach that relies on dye-labeled complementary DNA hybridization. Supported thin Au films can be patterned via features on PDMS stamps (controlled contact), using patterned Au substrates prior to lift-off (e.g., selective wet etching), or by patterning alkanethiols on Au substrates to be reactive in selected regions but not others (controlled reactivity). In all cases, the regions containing Au–alkanethiolate layers have a sub-nanometer apparent height, which was found to be consistent with molecular dynamics simulations that predicted the removal of no more than 1.5 Au atoms per thiol, thus presenting a monolayer-like structure. PMID:29259879

  19. Individual and collective modes of surface magnetoplasmon in thiolate-protected silver nanoparticles studied by MCD spectroscopy.

    PubMed

    Yao, Hiroshi; Shiratsu, Taisuke

    2016-06-07

    Large magneto-optical (MO) responses at the energy of localized surface plasmon resonance (LSPR), namely, surface magnetoplasmons, are demonstrated for the first time in thiolate-protected silver nanoparticles with magnetic circular dichroism (MCD) spectroscopy. The samples examined are decanethiol (DT)-, azobenzenethiol (ABT)-, and ABT/DT mixed-monolayer-protected Ag nanoparticles. ABT-protected Ag nanoparticles are somewhat aggregated and thus exhibit a broad, collective mode of plasmonic absorption, whereas other samples with highly-dispersed nanoparticles show an individual mode of LSPR absorption. In all Ag nanoparticles, a derivative-like MCD signal is observed under an applied magnetic field of 1.6 T, which can be explained in terms of two circular modes of magnetoplasmon caused by the increase (or decrease) in the Lorentz force imparted on the free electrons that oscillate in the left (or right) circular orbits in the nanosphere. For the Ag nanoparticles exhibiting an individual LSPR mode, in particular, simultaneous deconvolution analysis of UV-vis absorption and MCD spectra reveal that (i) the amplitude of the magnetoplasmonic component with lower frequency (ω-), resulting from the reduction in the confinement strength of collective electrons by the Lorentz force, is stronger than that with a higher frequency (ω+); (ii) the accurate shift or cyclotron frequency between two magnetoplasmonic modes (ωc = ω+-ω-) is size-dependent, and presents a very large value with implications for the apparent enhancement of the local magnetic-field in the Ag nanoparticles. These results strongly suggest that the Ag-thiolate layer or Ag-S bonding on the nanoparticle surface plays a significant role in the MO enhancement.

  20. pH sensitive thiolated cationic hydrogel for oral insulin delivery.

    PubMed

    Sonia, T A; Sharma, Chandra P

    2014-04-01

    The objective of this work is to study the efficacy of pH sensitive thiolated Polydimethylaminoethylmethacrylate for oral delivery of insulin. Synthesis of pH sensitive thiolated Polydimethylaminoethylmethacrylate (PDCPA) was carried out by crosslinking Polymethacrylic acid with thiolated Polydimethylaminoethylmethacrylate (PDCys) via carbodiimide chemistry. Prior to in vivo experiment, various physicochemical and biological characterisation were carried out to evaluate the efficacy of PDCPA. Modification was confirmed by IR and NMR spectroscopy. The particle size was found to be 284 nm with a zeta potential of 37.3+/-1.58 mV. Texture analyser measurements showed that PDCPA is more mucoadhesive than the parent polymer. Transepithelial electrical measurements showed a reduction of greater than 50% on incubation with PDCPA particles. Permeation studies showed that PDCPA is more permeable than the parent polymer. On in vivo evaluation on male diabetic rats, insulin loaded PDCPA exhibited a blood glucose reduction of 19%.

  1. The production and verification of pristine semi-fluorinated thiol monolayers on gold.

    PubMed

    Ford, Kym; Battersby, Bronwyn J; Wood, Barry J; Gentle, Ian R

    2012-03-15

    The presence of adventitious contamination of self-assembled monolayers (SAMs) is a well-known phenomenon that is often overlooked or underestimated in the literature. Herein, we demonstrate that it is possible to produce pristine self-assembled monolayers (SAMs) on gold surfaces that are devoid of adventitious species. The chemical purity or the pristine quality of the SAM was verified by the experimental relative atomic ratios measured by X-ray photoelectron spectroscopy (XPS) of all elements including carbon and corresponded to within 5% of the stoichiometric ratios. Perfluoro-octyl-thiolate (F8) was used as a model compound in this study, where monolayers were assembled from solutions of an acetylated F8 precursor. Quantitative elemental characterization of the acetylated F8 precursor by cold-stage XPS provided valuable reference data for the analysis of the subsequent SAMs. Comprehensive analysis of high-resolution XPS C 1s spectra proved to be essential for establishing the purity of the SAMs, since the peaks of the adventitious species were easily distinguished from those of the F8. Analyses of deliberately contaminated F8 SAMs showed that the adventitious species persisted during the process of self-assembly and therefore co-existed with the SAM in the interfacial region. The work also established that even a lengthy deposition time of 18 h was incapable of displacing the adventitious species present at the interface. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Thiolated polymers: synthesis and in vitro evaluation of polymer-cysteamine conjugates.

    PubMed

    Bernkop-Schnürch, A; Clausen, A E; Hnatyszyn, M

    2001-09-11

    The purpose of the present study was to synthesize and characterize novel thiolated polymers. Mediated by a carbodiimide cysteamine was covalently linked to sodium carboxymethylcellulose (CMC) and polycarbophil (PCP). The resulting CMC-cysteamine conjugates displayed 77.9+/-6.7 and 365.1+/-8.7 micromol thiol groups per gram of polymer, whereas the PCP-cysteamine conjugates showed 26.3+/-1.9 and 122.7+/-3.8 micromol thiol groups per gram of polymer (mean+/-S.D.; n=3). In aqueous solutions above pH 5.0 both modified polymers were capable of forming inter- and/or intra-molecular disulfide bonds. The reaction velocity of this oxidation process was accelerated with a decrease in the proton concentration. The oxidation proceeded more rapidly within thiolated CMC than within thiolated PCP. Permeation studies carried out in Ussing-type chambers with freshly excised intestinal mucosa from guinea pigs utilizing sodium fluorescein as model drug for the paracellular uptake revealed an enhancement ratio (R=P(app) (conjugate)/P(app) (control)) of 1.15 and 1.41 (mean+/-S.D.; n=3) for the higher thiolated CMC-cysteamine (0.5%; m/v) and PCP-cysteamine conjugate (1.0%; m/v), respectively. The decrease in the transepithelial electrical resistance values was in good correlation with the enhancement ratios. Due to a high crosslinking tendency by the formation of disulfide bonds stabilizing drug carrier systems based on thiolated polymers and a permeation enhancing effect, CMC- and PCP-cysteamine conjugates represent promising excipients for the development of novel drug delivery systems.

  3. A novel fullerene lipoic acid derivative: Synthesis and preparation of self-assembled monolayers on gold

    NASA Astrophysics Data System (ADS)

    Viana, A. S.; Leupold, S.; Eberle, C.; Shokati, T.; Montforts, F.-P.; Abrantes, L. M.

    2007-11-01

    Synthesis and preparation of self-assembled monolayers of a novel fullerene lipoic acid derivative on gold are reported. The presence of densely packed SAMs was confirmed by ellipsometry and cyclic voltammetry. The electrochemical response of the modified electrode in organic media exhibits the first two redox peaks characteristic of the extended π-electron system of fullerene. C 60 surface coverage (1.4 × 10 -10 mol cm -2) has been electrochemically determined by the redox process of the adsorbed fullerene moiety and by reductive desorption of the SAM in strong alkaline solution. Electrochemical data indicate that all four sulphur atoms are involved in the self-assembly process, providing an increase of SAM stability in comparison to mono or di-thiolated appended molecules. Visualisation of discrete fullerene molecules by scanning tunnelling microscopy supplied further evidence for gold modification and molecular distribution on the surface. Mixed monolayers of hexanethiol and fullerene derivatives in a proportion of 1:2 have been also studied with the purpose of controlling the amount and distribution of fullerene units on the gold surface.

  4. Evaluation of thiolated silicone oil as advanced mucoadhesive antifoaming agent.

    PubMed

    Partenhauser, Alexandra; Netsomboon, Kesinee; Leonaviciute, Gintare; Bernkop-Schnürch, Andreas

    2016-10-01

    Silicone oils, such as dimethicone, are commonly administered against gastrointestinal gas accumulation and are attributed with mucoprotective features. Evaluation of thiolated silicone oil as advanced antiflatulence with a prolonged retention on small intestinal mucosa as an intended site of action. 3-Mercaptopropionic acid (MPA) as a thiol ligand was covalently attached to silicone oil. This thiomer was assessed with regard to foam inhibiting action, droplet size of a suitable self-emulsifying system, mucoadhesion and cytotoxicity. Antifoaming activity of silicone-MPA was complying with United States Pharmacopeia (USP) requirements for simethicone as standard antiflatulence. Another antifoaming test performed on porcine mucosa supported silicone-MPA's outstanding foam destruction, as this thiomer was superior in comparison to non-thiolated silicone oil and dimethicone with 14.7 ± 2.1 versus 73.3 ± 9.1 and 66.3 ± 7.5 s, respectively. A significantly enhanced mucoadhesiveness (p < 0.02) with 26.2 ± 7.1% silicone formulation remaining on small intestinal mucosa after 8 h was evident for the thiomer without any toxic effect. Thiolated silicone oil was found to exhibit excellent antifoaming and superior mucoadhesive features. The prolonged residence time of thiolated silicone oil promises to be beneficial in the treatment of flatulence, aerophagy and inflammation throughout the whole gastrointestinal tract.

  5. Mixed Monolayers of Spiropyrans Maximize Tunneling Conductance Switching by Photoisomerization at the Molecule–Electrode Interface in EGaIn Junctions

    PubMed Central

    2016-01-01

    This paper describes the photoinduced switching of conductance in tunneling junctions comprising self-assembled monolayers of a spiropyran moiety using eutectic Ga–In top contacts. Despite separation of the spiropyran unit from the electrode by a long alkyl ester chain, we observe an increase in the current density J of a factor of 35 at 1 V when the closed form is irradiated with UV light to induce the ring-opening reaction, one of the highest switching ratios reported for junctions incorporating self-assembled monolayers. The magnitude of switching of hexanethiol mixed monolayers was higher than that of pure spiropyran monolayers. The first switching event recovers 100% of the initial value of J and in the mixed-monolayers subsequent dampening is not the result of degradation of the monolayer. The observation of increased conductivity is supported by zero-bias DFT calculations showing a change in the localization of the density of states near the Fermi level as well as by simulated transmission spectra revealing positive resonances that broaden and shift toward the Fermi level in the open form. PMID:27602432

  6. Interaction of benzene thiol and thiolate with small gold clusters.

    PubMed

    Letardi, Sara; Cleri, Fabrizio

    2004-06-01

    We studied the interaction between benzene thiol and thiolate molecules, and gold clusters made of 1 to 3 atoms, by means of ab initio density functional theory in the local density approximation. We find that the thiolate is energetically more stable than the thiol, however the process of detachment of H from the thiol appears to be possibly mediated by the intermediate step of H chemisorption on Au. Cleavage of the S-H bond is accompanied by a 90 degrees rotation of the molecule around the S-Au bond, showing a strong steric specificity. Such a rotation is induced by the relative energy shift of the S atom p orbitals with respect to the benzene pi ring and the Au d orbitals. By analyzing the correlation of the bond energy, bond lengths, and HOMO-LUMO gap with the number of S-Au bonds, we find that the thiolate S atom appears to prefer a low-coordination condition on Au clusters. (c) 2004 American Institute of Physics.

  7. Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer.

    PubMed

    Kaur, Harmanmeet; Yadav, Shikha; Ahuja, Munish; Dilbaghi, Neeraj

    2012-11-06

    In the present study, thiol-functionalization of tamarind seed polysaccharide was carried out by esterification with thioglycolic acid. Thiol-functionalization was confirmed by SH stretch in Fourier-transformed infra-red spectra at 2586 cm(-1). It was found to possess 104.5 mM of thiol groups per gram. The results of differential scanning calorimetry and X-ray diffraction study indicate increase in crystallinity. Polymer compacts of thiolated tamarind seed polysaccharide required 6.85-fold greater force to detach from the mucin coated membrane than that of tamarind seed polysaccharide. Comparative evaluation of Carbopol-based metronidazole gels containing thiolated tamarind seed polysaccharide with gels containing tamarind seed polysaccharide for mucoadhesive strength using chicken ileum by modified balance method revealed higher mucoadhesion of gels containing thiolated tamarind seed polysaccharide. Further, the gels containing tamarind seed polysaccharide and thiolated tamarind seed polysaccharide released the drug by Fickian-diffusion following the first-order and Higuchi's-square root release kinetics, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae.

    PubMed

    Damon, Jadyn R; Pincus, David; Ploegh, Hidde L

    2015-01-15

    Although tRNA modifications have been well catalogued, the precise functions of many modifications and their roles in mediating gene expression are still being elucidated. Whereas tRNA modifications were long assumed to be constitutive, it is now apparent that the modification status of tRNAs changes in response to different environmental conditions. The URM1 pathway is required for thiolation of the cytoplasmic tRNAs tGlu(UUC), tGln(UUG), and tLys(UUU) in Saccharomyces cerevisiae. We demonstrate that URM1 pathway mutants have impaired translation, which results in increased basal activation of the Hsf1-mediated heat shock response; we also find that tRNA thiolation levels in wild-type cells decrease when cells are grown at elevated temperature. We show that defects in tRNA thiolation can be conditionally advantageous, conferring resistance to endoplasmic reticulum stress. URM1 pathway proteins are unstable and hence are more sensitive to changes in the translational capacity of cells, which is decreased in cells experiencing stresses. We propose a model in which a stress-induced decrease in translation results in decreased levels of URM1 pathway components, which results in decreased tRNA thiolation levels, which further serves to decrease translation. This mechanism ensures that tRNA thiolation and translation are tightly coupled and coregulated according to need. © 2015 Damon et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi-level pinning at the molecule-metal interface.

    PubMed

    Lenfant, S; Guerin, D; Tran Van, F; Chevrot, C; Palacin, S; Bourgoin, J P; Bouloussa, O; Rondelez, F; Vuillaume, D

    2006-07-20

    We report the synthesis and characterization of molecular rectifying diodes on silicon using sequential grafting of self-assembled monolayers of alkyl chains bearing a pi group at their outer end (Si/sigma-pi/metal junctions). We investigate the structure-performance relationships of these molecular devices, and we examine the extent to which the nature of the pi end group (change in the energy position of their molecular orbitals) drives the properties of these molecular diodes. Self-assembled monolayers of alkyl chains (different chain lengths from 6 to 15 methylene groups) functionalized by phenyl, anthracene, pyrene, ethylene dioxythiophene, ethylene dioxyphenyl, thiophene, terthiophene, and quaterthiophene were synthesized and characterized by contact angle measurements, ellipsometry, Fourier transform infrared spectroscopy, and atomic force microscopy. We demonstrate that reasonably well-packed monolayers are obtained in all cases. Their electrical properties were assessed by dc current-voltage characteristics and high-frequency (1-MHz) capacitance measurements. For all of the pi groups investigated here, we observed rectification behavior. These results extend our preliminary work using phenyl and thiophene groups (Lenfant et al., Nano Lett. 2003, 3, 741). The experimental current-voltage curves were analyzed with a simple analytical model, from which we extracted the energy position of the molecular orbital of the pi group in resonance with the Fermi energy of the electrodes. We report experimental studies of the band lineup in these silicon/alkyl pi-conjugated molecule/metal junctions. We conclude that Fermi-level pinning at the pi group/metal interface is mainly responsible for the observed absence of a dependence of the rectification effect on the nature of the pi groups, even though the groups examined were selected to have significant variations in their electronic molecular orbitals.

  10. Composition driven monolayer to bilayer transformation in a surfactant intercalated Mg-Al layered double hydroxide.

    PubMed

    Naik, Vikrant V; Chalasani, Rajesh; Vasudevan, S

    2011-03-15

    The structure and organization of dodecyl sulfate (DDS) surfactant chains intercalated in an Mg-Al layered double hydroxide (LDH), Mg(1-x)Alx(OH)2, with differing Al/Mg ratios has been investigated. The Mg-Al LDHs can be prepared over a range of compositions with x varying from 0.167 to 0.37 and therefore provides a simple system to study how the organization of the alkyl chains of the intercalated DDS anions change with packing density; the Al/Mg ratio or x providing a convenient handle to do so. Powder X-ray diffraction measurements showed that at high packing densities (x ≥ 0.3) the alkyl chains of the intercalated dodecyl sulfate ions are anchored on opposing LDH sheets and arranged as bilayers with an interlayer spacing of ∼27 Å. At lower packing densities (x < 0.2) the surfactant chains form a monolayer with the alkyl chains oriented flat in the galleries with an interlayer spacing of ∼8 Å. For the in between compositions, 0.2 ≤ x < 0.3, the material is biphasic. MD simulations were performed to understand how the anchoring density of the intercalated surfactant chains in the Mg-Al LDH-DDS affects the organization of the chains and the interlayer spacing. The simulations are able to reproduce the composition driven monolayer to bilayer transformation in the arrangement of the intercalated surfactant chains and in addition provide insights into the factors that decide the arrangement of the surfactant chains in the two situations. In the bilayer arrangement, it is the dispersive van der Waals interactions between chains in opposing layers of the anchored bilayer that is responsible for the cohesive energy of the solid whereas at lower packing densities, where a monolayer arrangement is favored, Coulomb interactions between the positively charged Mg-Al LDH sheets and the negatively charged headgroup of the DDS anion dominate.

  11. Ternary Surface Monolayers for Ultrasensitive (Zeptomole) Amperometric Detection of Nucleic-Acid Hybridization without Signal Amplification

    PubMed Central

    Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A.; Wang, Joseph

    2010-01-01

    A ternary surface monolayer, consisting of co-assembled thiolated capture probe (SHCP) mercaptohexanol (MCH) and dithiothreitol (DTT), is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers (SAMs). Remarkably low detection limits down to 40 zmole (in 4 μL samples) as well as only 1 CFU E. coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3′,5,5′-tetramethylbenzidine (HRP/TMB) system. Such dramatic improvements in the detection limits (compared to common binary alkanethiol interfaces and to most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to non-specific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration ‘backfillers’ that leads to a remarkably low background noise even in the presence of complex sample matrices. A wide range of surface compositions have been investigated and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety and forensic analysis. PMID:20883023

  12. Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification.

    PubMed

    Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A; Wang, Joseph

    2010-11-01

    A ternary surface monolayer, consisting of coassembled thiolated capture probe, mercaptohexanol and dithiothreitol, is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers. Remarkably low detection limits down to 40 zmol (in 4 μL samples) as well as only 1 CFU Escherichia coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3',5,5'-tetramethylbenzidine system. Such dramatic improvements in the detection limits (compared to those of common binary alkanethiol interfaces and to those of most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to nonspecific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration "backfillers" that leads to a remarkably low background noise even in the presence of complex sample matrixes. A wide range of surface compositions have been investigated, and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety, and forensic analysis.

  13. Antibacterial and tribological behavior of self-assembled monolayer on optical lens

    NASA Astrophysics Data System (ADS)

    Horng, J. H.; Jeng, Y. R.; Wei, C. C.; Tasi, Y. T.

    2010-10-01

    This paper studies the effects of the antibacterial and anti-adhesion properties of self-assembled monolayers (SAMs) on optical parts. Therefore, the experiments in this study prepared several kinds of SAMs, including alkyl and biphenyl spacer chains with different surface terminal groups (-CH3,-COOH) and head groups (-SH). This study reports the growth of eight self-assembled monolayers on optical parts: OTS, ODS, OTS with antibacterial solution, ODS with antibacterial solution, and pure antibacterial solution, with bio-compatibility. Experimental results regarding the contact angle of five self-assembled monolayers show that ODS with antibacterial illustrated the maximum contact angle 103° 12 hours after reaction. The solutions of OTS, ODS with antibacterial, OTS with antibacterial, and pure anti-bacterial showed contact angles of 102°, 99°, 101°, and 59° respectively. These results indicate that the antibacterial solution has negligible effects on anti-adhesion property of optical lenses. The results of digital optical microscope system analysis show that in the antibacterial experiment of eight kinds of selfassembled monolayers, the OTSanti50% effect cultured for 24 hours achieved the best results, with a growth rate of 12%. The descending order of antibacterial effect is antibacterial 10%>ODS>OTS> antibacterial 50%>ODSanti50%>OTSanti10%>ODSanti10%. In summary, the surface treatment of optical lenses involving OTSanti 50% is the most capable of effectively increasing antifouling and antibacterial functions.

  14. Individual and collective modes of surface magnetoplasmon in thiolate-protected silver nanoparticles studied by MCD spectroscopy

    NASA Astrophysics Data System (ADS)

    Yao, Hiroshi; Shiratsu, Taisuke

    2016-05-01

    Large magneto-optical (MO) responses at the energy of localized surface plasmon resonance (LSPR), namely, surface magnetoplasmons, are demonstrated for the first time in thiolate-protected silver nanoparticles with magnetic circular dichroism (MCD) spectroscopy. The samples examined are decanethiol (DT)-, azobenzenethiol (ABT)-, and ABT/DT mixed-monolayer-protected Ag nanoparticles. ABT-protected Ag nanoparticles are somewhat aggregated and thus exhibit a broad, collective mode of plasmonic absorption, whereas other samples with highly-dispersed nanoparticles show an individual mode of LSPR absorption. In all Ag nanoparticles, a derivative-like MCD signal is observed under an applied magnetic field of 1.6 T, which can be explained in terms of two circular modes of magnetoplasmon caused by the increase (or decrease) in the Lorentz force imparted on the free electrons that oscillate in the left (or right) circular orbits in the nanosphere. For the Ag nanoparticles exhibiting an individual LSPR mode, in particular, simultaneous deconvolution analysis of UV-vis absorption and MCD spectra reveal that (i) the amplitude of the magnetoplasmonic component with lower frequency (ω-), resulting from the reduction in the confinement strength of collective electrons by the Lorentz force, is stronger than that with a higher frequency (ω+) (ii) the accurate shift or cyclotron frequency between two magnetoplasmonic modes (ωc = ω+ - ω-) is size-dependent, and presents a very large value with implications for the apparent enhancement of the local magnetic-field in the Ag nanoparticles. These results strongly suggest that the Ag-thiolate layer or Ag-S bonding on the nanoparticle surface plays a significant role in the MO enhancement.Large magneto-optical (MO) responses at the energy of localized surface plasmon resonance (LSPR), namely, surface magnetoplasmons, are demonstrated for the first time in thiolate-protected silver nanoparticles with magnetic circular dichroism (MCD

  15. Formation and Characterization of Self-Assembled Phenylboronic Acid Derivative Monolayers toward Developing Monosaccharide Sensing-Interface

    PubMed Central

    Chen, Hongxia; Lee, Minsu; Lee, Jaebeom; Kim, Jae-Ho; Gal, Yeong-Soon; Hwang, Yoon-Hwae; An, Won Gun; Koh, Kwangnak

    2007-01-01

    We designed and synthesized phenylboronic acid as a molecular recognition model system for saccharide detection. The phenylboronic acid derivatives that have boronic acid moiety are well known to interact with saccharides in aqueous solution; thus, they can be applied to a functional interface of saccharide sensing through the formation of self-assembled monolayer (SAM). In this study, self-assembled phenylboronic acid derivative monolayers were formed on Au surface and carefully characterized by atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIR-RAS), surface enhanced Raman spectroscopy (SERS), and surface electrochemical measurements. The saccharide sensing application was investigated using surface plasmon resonance (SPR) spectroscopy. The phenylboronic acid monolayers showed good sensitivity of monosaccharide sensing even at the low concentration range (1.0 × 10−12 M). The SPR angle shift derived from interaction between phenylboronic acid and monosaccharide was increased with increasing the alkyl spacer length of synthesized phenylboronic acid derivatives.

  16. Redox Chemistry of Gold(I) Phosphine Thiolates: Sulfur-Based Oxidation

    PubMed Central

    Jiang, Tong; Wei, Gang; Turmel, Cristopher; Bruce, Alice E.

    1994-01-01

    The redox chemistry of mononuclear and dinuclear gold(I) phosphine arylthiolate complexes was recently investigated by using electrochemical, chemical, and photochemical techniques. We now report the redox chemistry of dinuclear gold(I) phosphine complexes containing aliphatic dithiolate ligands. These molecules differ from previously studied gold(I) phosphine thiolate complexes in that they are cyclic and contain aliphatic thiolates. Cyclic voltammetry experiments of Au2 (LL)(pdt) [pdt = propanedithiol; LL = 1,2-bis(diphenylphosphino)-ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,4-bis(diphenylphosphino)butane (dppb), 1,5-bis(diphenylphosphino)pentane (dpppn)] in 0.1 M TBAH/CH3CN or CH2Cl2 solutions at 50 to 500 mV/sec using glassy carbon or platinum electrodes, show two irreversible anodic processes at ca. +0.6 and +1.1 V (vs. SCE). Bulk electrolyses at +0.9 V and +1.4 V result in n values of 0.95 and 3.7, respectively. Chemical oxidation of Au2(dppp)(pdt) using one equivalent of Br2 (2 oxidizing equivalents) yields 1,2-dithiolane and Au2(dppp)Br2. The reactivity seen upon mild oxidation ≤ +1.0 V is consistent with formal oxidation of a thiolate ligand, followed by a fast chemical reaction that results in cleavage of a second gold-sulfur bond. Oxidation at higher potentials (≥ +1.3 V) is consistent with oxidation of gold(I) to gold(III). Structural and electrochemical differences between gold(I) aromatic and aliphatic thiolate oxidation processes are discussed. PMID:18476260

  17. Human Growth Hormone Adsorption Kinetics and Conformation on Self-Assembled Monolayers

    PubMed Central

    Buijs, Jos; Britt, David W.; Hlady, Vladimir

    2012-01-01

    The adsorption process of the recombinant human growth hormone on organic films, created by self-assembly of octadecyltrichlorosilane, arachidic acid, and dipalmitoylphosphatidylcholine, is investigated and compared to adsorption on silica and methylated silica substrates. Information on the adsorption process of human growth hormone (hGH) is obtained by using total internal reflection fluorescence (TIRF). The intensity, spectra, and quenching of the intrinsic fluorescence emitted by the growth hormone’s single tryptophan are monitored and related to adsorption kinetics and protein conformation. For the various alkylated hydrophobic surfaces with differences in surface density and conformational freedom it is observed that the adsorbed amount of growth hormone is relatively large if the alkyl chains are in an ordered structure while the amounts adsorbed are considerably lower for adsorption onto less ordered alkyl chains of fatty acid and phospholipid layers. Adsorption on methylated surfaces results in a relatively large conformational change in the growth hormone’s structure, as displayed by a 7 nm blue shift in emission wavelength and a large increase in the effectiveness of fluorescence quenching. Conformational changes are less evident for hGH adsorption onto the fatty acid and phospholipid alkyl chains. Adsorption kinetics on the hydrophilic head groups of the self-assembled monolayers are similar to those on solid hydrophilic surfaces. The relatively small conformational changes in the hGH structure observed for adsorption on silica are even further reduced for adsorption on fatty acid head groups. PMID:25125795

  18. Synthesis of mucoadhesive thiolated gelatin using a two-step reaction process.

    PubMed

    Duggan, Sarah; O'Donovan, Orla; Owens, Eleanor; Cummins, Wayne; Hughes, Helen

    2015-04-01

    Using a novel two-step approach, the thiolation of gelatin for mucoadhesive drug delivery has been achieved. The initial step involved the amination of native gelatin via an amine to carboxylic acid coupling reaction with ethylene diamine, followed by thiolation with Traut's reagent. The resulting thiolated product showed an increase in thiol content of up to 10-fold in comparison with control gelatin samples. Improved cohesion and mucoadhesion in comparison with unmodified and control gelatin samples was also observed. This reaction process was observed to be influenced by both the temperature and the pH of the amination reaction, affecting both amine content and product yield. Swelling ability, cohesion and mucoadhesion were all observed to be strongly dependent on the thiol content of the samples but also, importantly, the molecular weight (MW) of the gelatin used. Gelatin with a MW of 20-25 kDa proved to be optimal in creating this novel mucoadhesive gelatin material. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Allicin-inspired thiolated fluoroquinolones as antibacterials against ESKAPE pathogens.

    PubMed

    Sheppard, Jordan G; Long, Timothy E

    2016-11-15

    Thiolated fluoroquinolones were synthesized from ciprofloxacin and evaluated for antimicrobial activity against a panel of pathogenic bacteria. Gram-positive species including methicillin-resistant Staphylococcus aureus (MRSA) exhibited the highest level of increased sensitivity toward ciprofloxacin bound with a N-propylthio substituent. Evidence was found that the antibiotics form disulfides with low molecular weight thiols in bacteria and potentiate generation of cytosolic reactive oxygen species (ROS). In final analysis, the enhanced anti-MRSA activity of thiolated fluoroquinolones was attributed to increased cell permeability and reaction with cytosolic thiols that yields an inactive disulfide metabolite and the parent drug ciprofloxacin as an inhibitor of DNA synthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Thiolated polymers as mucoadhesive drug delivery systems.

    PubMed

    Duggan, Sarah; Cummins, Wayne; O' Donovan, Orla; Hughes, Helen; Owens, Eleanor

    2017-03-30

    Mucoadhesion is the process of binding a material to the mucosal layer of the body. Utilising both natural and synthetic polymers, mucoadhesive drug delivery is a method of controlled drug release which allows for intimate contact between the polymer and a target tissue. It has the potential to increase bioavailability, decrease potential side effects and offer protection to more sensitive drugs such as proteins and peptide based drugs. The thiolation of polymers has, in the last number of years, come to the fore of mucoadhesive drug delivery, markedly improving mucoadhesion due to the introduction of free thiol groups onto the polymer backbone while also offering a more cohesive polymeric matrix for the slower and more controlled release of drug. This review explores the concept of mucoadhesion and the recent advances in both the polymers and the methods of thiolation used in the synthesis of mucoadhesive drug delivery devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection

    NASA Astrophysics Data System (ADS)

    Moldovan, Carmen; Mihailescu, Carmen; Stan, Dana; Ruta, Lavinia; Iosub, Rodica; Gavrila, Raluca; Purica, Munizer; Vasilica, Schiopu

    2009-08-01

    This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti- Escherichia coli O157:H7 polyclonal purified antibody. A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti- E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab') 2 fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results. These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.

  2. Matrix tablets based on thiolated poly(acrylic acid): pH-dependent variation in disintegration and mucoadhesion.

    PubMed

    Guggi, Davide; Marschütz, Michaela K; Bernkop-Schnürch, Andreas

    2004-04-15

    This study examined the influence of the pH on the mucoadhesive and cohesive properties of polyarcylic acid (PAA) and thiolated PAA. The pH of PAA (molecular mass: 450 kDa) and of a corresponding PAA-cysteine conjugate was adjusted to 3, 4, 5, 6, 7 and 8. The amount of immobilised thiol groups and disulfide bonds was determined via Ellman's reagent. Tablets were compressed out of each pH-batch of both thiolated and unmodified PAA and the swelling behaviour, the disintegration time and the mucoadhesiveness were evaluated. The amount of thiol/disulfide groups per gram thiolated PAA of pH 3 and pH 8 was determined to be 332 +/- 94 micromol and 162 +/- 46 micromol, respectively. The thiolated PAA tablets displayed a minimum four-fold higher water uptake compared to unmodified PAA tablets. A faster and higher water uptake of both polymer types was observed above pH 5. Thiolated polymer tablets showed a 3-20-fold more prolonged disintegration time than unmodified PAA tablets. The cohesiveness of PAA-cysteine conjugate increased at higher pH, whereas the unmodified PAA behaved inversely. A 3-7-fold stronger mucoadhesiveness was observed for the PAA-cysteine conjugate tablets compared to unmodified PAA tablets. For both thiolated and unmodified polymer the mucoadhesiveness was 2-4-fold enhanced below pH 5. The difference in mucoadhesion between the two polymer types was most pronounced at these lower pH values. In this study substantial information regarding the pH-dependence of mucoadhesion and cohesion of unmodified polyacrylates and of thiolated polyacrylates is provided, representing helpful basic information for an ameliorated deployment of these polymers.

  3. In vivo evaluation of thiolated chitosan tablets for oral insulin delivery.

    PubMed

    Millotti, Gioconda; Laffleur, Flavia; Perera, Glen; Vigl, Claudia; Pickl, Karin; Sinner, Frank; Bernkop-Schnürch, Andreas

    2014-10-01

    Chitosan-6-mercaptonicotinic acid (chitosan-6-MNA) is a thiolated chitosan with strong mucoadhesive properties and a pH-independent reactivity. This study aimed to evaluate the in vivo potential for the oral delivery of insulin. The comparison of the nonconjugated chitosan and chitosan-6-MNA was performed on several studies such as mucoadhesion, release, and in vivo studies. Thiolated chitosan formulations were both about 80-fold more mucoadhesive compared with unmodified ones. The thiolated chitosan tablets showed a sustained release for 5 h for the polymer of 20 kDa and 8 h for the polymer of 400 kDa. Human insulin was quantified in rats' plasma by means of ELISA specific for human insulin with no cross-reactivity with the endogenous insulin. In vivo results showed thiolation having a tremendous impact on the absorption of insulin. The absolute bioavailabilities were 0.73% for chitosan-6-MNA of 20 kDa and 0.62% for chitosan-6-MNA 400 kDa. The areas under the concentration-time curves (AUC) of chitosan-6-MNA formulations compared with unmodified chitosan were 4.8-fold improved for the polymer of 20 kDa and 21.02-fold improved for the polymer of 400 kDa. The improvement in the AUC with regard to the most promising aliphatic thiomer was up to 6.8-fold. Therefore, chitosan-6-MNA represents a promising excipient for the oral delivery of insulin. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Transfection efficiency of chitosan and thiolated chitosan in retinal pigment epithelium cells: A comparative study

    PubMed Central

    Oliveira, Ana V.; Silva, Andreia P.; Bitoque, Diogo B.; Silva, Gabriela A.; Rosa da Costa, Ana M.

    2013-01-01

    OBJECTIVE: Gene therapy relies on efficient vector for a therapeutic effect. Efficient non-viral vectors are sought as an alternative to viral vectors. Chitosan, a cationic polymer, has been studied for its gene delivery potential. In this work, disulfide bond containing groups were covalently added to chitosan to improve the transfection efficiency. These bonds can be cleaved by cytoplasmic glutathione, thus, releasing the DNA load more efficiently. MATERIALS AND METHODS: Chitosan and thiolated chitosan nanoparticles (NPs) were prepared in order to obtain a NH3+:PO4− ratio of 5:1 and characterized for plasmid DNA complexation and release efficiency. Cytotoxicity and gene delivery studies were carried out on retinal pigment epithelial cells. RESULTS: In this work, we show that chitosan was effectively modified to incorporate a disulfide bond. The transfection efficiency of chitosan and thiolated chitosan varied according to the cell line used, however, thiolation did not seem to significantly improve transfection efficiency. CONCLUSION: The apparent lack of improvement in transfection efficiency of the thiolated chitosan NPs is most likely due to its size increase and charge inversion relatively to chitosan. Therefore, for retinal cells, thiolated chitosan does not seem to constitute an efficient strategy for gene delivery. PMID:23833516

  5. Electrografting of alkyl films at low driving force by diverting the reactivity of aryl radicals derived from diazonium salts.

    PubMed

    Hetemi, Dardan; Kanoufi, Frédéric; Combellas, Catherine; Pinson, Jean; Podvorica, Fetah I

    2014-11-25

    Alkyl and partial perfluoroalkyl groups are strongly attached to carbon surfaces through (i) the abstraction of the iodine atom from an iodoalkane by the sterically hindered 2,6-dimethylphenyl radical and (ii) the reaction of the ensuing alkyl radical with the carbon surface. Since the 2,6-dimethylphenyl radical is obtained at -0.25 V/Ag/AgCl by reducing the corresponding diazonium salt, the electrografting reaction is facilitated by ∼1.7 V by comparison with the direct electrografting of the iodo compounds. Layers of various thicknesses, including monolayers, are obtained by controlling the time duration of the electrolysis. The grafted films are characterized by electrochemistry, IR, XPS, ellipsometry, and water contact angles.

  6. Alkyl–Alkyl Suzuki Cross-Couplings of Unactivated Secondary Alkyl Chlorides**

    PubMed Central

    Lu, Zhe; Fu, Gregory C.

    2010-01-01

    The first method for achieving alkyl–alkyl Suzuki reactions of unactivated secondary alkyl chlorides has been developed. Carbon–carbon bond formation occurs under mild conditions (at room temperature) with the aid of commercially available catalyst components. This method has proved to be versatile: without modification, it can be applied to Suzuki reactions of secondary and primary alkyl bromides and iodides, as well as primary alkyl chlorides. Mechanistic investigations suggest that oxidative addition is not the turnover-limiting step of the catalytic cycle for unactivated secondary alkyl iodides and bromides, whereas it may be (partially) for chlorides. PMID:20715038

  7. Tetrabutylammonium Iodide-Promoted Thiolation of Oxindoles Using Sulfonyl Chlorides as Sulfenylation Reagents.

    PubMed

    Zhao, Xia; Wei, Aoqi; Lu, Xiaoyu; Lu, Kui

    2017-08-01

    3-Sulfanyloxindoles were synthesised by triphenylphosphine-mediated transition-metal-free thiolation of oxindoles using sulfonyl chlorides as sulfenylation reagents. The above reaction was promoted by iodide anions, which was ascribed to the in situ conversion of sulfenyl chlorides into the more reactive sulfenyl iodides. Moreover, the thiolation of 3-aryloxindoles was facilitated by bases. The use of a transition-metal-free protocol, readily available reagents, and mild reaction conditions make this protocol more practical for preparing 3-sulfanyloxindoles than traditional methods.

  8. A comprehensive in vitro and in vivo evaluation of thiolated matrix tablets as a gastroretentive delivery system.

    PubMed

    Senyigit, Zeynep Ay; Vetter, Anja; Guneri, Tamer; Bernkop-Schnürch, Andreas

    2011-08-01

    The aim of this study was to investigate the potential of thiolated matrix tablets for gastroretentive delivery systems. Poly(acrylic acid)-cysteine (PAA-Cys) and chitosan-4-thiobuthylamidine (chitosan-TBA) were evaluated as anionic and cationic thiolated polymers and riboflavin was used as a model drug. Tablets were prepared by direct compression and each formulation was characterized in terms of disintegration, swelling, mucoadhesion, and drug release properties. Thereafter, the gastric residence times of tablets were determined with in vivo study in rats. The resulting PAA-Cys and chitosan-TBA conjugates displayed 172.80 ± 30.33 and 371.11 ± 72.74 µmol free thiol groups, respectively. Disintegration studies demonstrated the stability of thiolated tablets up to 24 h, whereas tablets prepared with unmodified PAA and chitosan disintegrated within a time period of 1 h. Mucoadhesion studies showed that mucoadhesion work of PAA-Cys and chitosan-TBA tablets were 1.341- and 2.139-times higher than unmodified ones. The mucoadhesion times of PAA, PAA-Cys, chitosan, and chitosan-TBA tablets were 1.5 ± 0.5, 21 ± 1, 1 ± 0.5, 17 ± 1 h, respectively. These results confirm the theory that thiol groups react with mucin glycoproteins and form covalent bonds to the mucus layer. Release studies indicated that a controlled release was provided with thiolated tablets up to 24 h. These promising in vitro results of thiolated tablets were proved with in vivo studies. The thiolated tablets showed a gastroretention time up to 6 h, whereas unmodified tablets completely disintegrated within 1 h in rat stomach. Consequently, the study suggests that thiolated matrix tablets might be promising formulations for gastroretentive delivery systems.

  9. Thiolated nanocarriers for oral delivery of hydrophilic macromolecular drugs.

    PubMed

    Dünnhaupt, S; Barthelmes, J; Köllner, S; Sakloetsakun, D; Shahnaz, G; Düregger, A; Bernkop-Schnürch, A

    2015-03-06

    It was the aim of this study to investigate the effect of unmodified as well as thiolated anionic poly(acrylic acid) (PAA) and cationic chitosan (CS) utilized in free-soluble form and as nanoparticulate system on the absorption of the hydrophilic compound FD4 across intestinal epithelial cell layer with and without a mucus layer. Modifications of these polymers were achieved by conjugation with cysteine to PAA (PAA-Cys) and thioglycolic acid to CS (CS-TGA). Particles were prepared via ionic gelation and characterized based on their amount of thiol groups, particle size and zeta potential. Effects on the cell layer concerning absorption enhancement, transepithelial electrical resistance (TEER) and cytotoxicity were investigated. Permeation enhancement was evaluated with respect to in vitro transport of FD4 across Caco-2 cells, while mucoadhesion was indirectly examined in terms of adsorption behaviour when cells were covered with a mucus layer. Lyophilized particles displayed around 1000 μmol/g of free thiol groups, particle sizes of less than 300 nm and a zeta potential of 18 mV (CS-TGA) and -14 mV (PAA-Cys). Cytotoxicity studies confirmed that all polymer samples were used at nontoxic concentrations (0.5% m/v). Permeation studies revealed that all thiolated formulations had pronounced effects on the paracellular permeability of mucus-free Caco-2 layers and enhanced the permeation of FD4 3.0- to 5.3-fold. Moreover, polymers administered as particles showed a higher permeation enhancement than their corresponding solutions. However, the absorption-enhancing effect of each thiolated formulation was significantly (p<0.05) reduced when cells were covered with mucus layer. In addition, all formulations were able to decrease the TEER of the cell layer significantly (p<0.05). Therefore, both thiolated polymers as nanoparticulate delivery systems represent a promising tool for the oral administration of hydrophilic macromolecules. Copyright © 2014 Elsevier Ltd. All

  10. Benzoate-Induced High-Nuclearity Silver Thiolate Clusters.

    PubMed

    Su, Yan-Min; Liu, Wei; Wang, Zhi; Wang, Shu-Ao; Li, Yan-An; Yu, Fei; Zhao, Quan-Qin; Wang, Xing-Po; Tung, Chen-Ho; Sun, Di

    2018-04-03

    Compared with the well-known anion-templated effects in shaping silver thiolate clusters, the influence from the organic ligands in the outer shell is still poorly understood. Herein, three new benzoate-functionalized high-nuclearity silver(I) thiolate clusters are isolated and characterized for the first time in the presence of diverse anion templates such as S 2- , α-[Mo 5 O 18 ] 6- , and MoO 4 2- . Single-crystal X-ray analysis reveals that the nuclearities of the three silver clusters (SD/Ag28, SD/Ag29, SD/Ag30) vary from 32 to 38 to 78 with co-capped tBuS - and benzoate ligands on the surface. SD/Ag28 is a turtle-like cluster comprising a Ag 29 shell caging a Ag 3 S 3 trigon in the center, whereas SD/Ag29 is a prolate Ag 38 sphere templated by the α-[Mo 5 O 18 ] 6- anion. Upon changing from benzoate to methoxyl-substituted benzoate, SD/Ag30 is isolated as a very complicated core-shell spherical cluster composed of a Ag 57 shell and a vase-like Ag 21 S 13 core. Four MoO 4 2- anions are arranged in a supertetrahedron and located in the interstice between the core and shell. Introduction of the bulky benzoate changes elaborately the nuclearity and arrangements of silver polygons on the shell of silver clusters, which is exemplified by comparing SD/Ag28 and a known similar silver thiolate cluster. The three new clusters emit luminescence in the near-infrared (NIR) region and show different thermochromic luminescence properties. This work presents a flexible approach to synthetic studies of high-nuclearity silver clusters decorated by different benzoates, and structural modulations are also achieved. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multifunctional adhesive polymers: Preactivated thiolated chitosan-EDTA conjugates.

    PubMed

    Netsomboon, Kesinee; Suchaoin, Wongsakorn; Laffleur, Flavia; Prüfert, Felix; Bernkop-Schnürch, Andreas

    2017-02-01

    The aim of this study was to synthesis preactivated thiolated chitosan-EDTA (Ch-EDTA-cys-2MNA) conjugates exhibiting in particular high mucoadhesive, cohesive and chelating properties. Thiol groups were coupled with chitosan by carbodiimide reaction and further preactivated by attachment with 2-mercaptonicotinic acid (2MNA) via disulfide bond formation. Determinations of primary amino and sulfhydryl groups were performed by TNBS and Ellman's tests, respectively. Cytotoxicity was screened by resazurin assay in Caco-2 cells. Mucoadhesive properties and bivalent cation binding capacity with Mg 2+ and Ca 2+ in comparison to chitosan-EDTA (Ch-EDTA) and thiolated Ch-EDTA (Ch-EDTA-cys) were evaluated. Determination of 2MNA and total sulfhydryl groups indicated that 80% of thiol groups were preactivated. The results from cytotoxicity studies demonstrated that Ch-EDTA-cys and Ch-EDTA-cys-2MNA were not toxic to the cells at the polymer test concentration of 0.25% (w/v) while cell viability decreased by increasing the concentration of Ch-EDTA. Although EDTA molecule was modified by thiolation and preactivation, approximately 50% of chelating properties of the conjugates were maintained compared to Ch-EDTA. Ch-EDTA-cys-2MNA adhered on freshly excised porcine intestinal mucosa up to 6h while Ch-EDTA adhered for just 1h. According to the combination of mucoadhesive and chelating properties of the conjugates synthesized in this study, Ch-EDTA-cys-2MNA might be useful for various mucosal drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Preactivated thiolated nanoparticles: A novel mucoadhesive dosage form.

    PubMed

    Menzel, Claudia; Bonengel, Sonja; Pereira de Sousa, Irene; Laffleur, Flavia; Prüfert, Felix; Bernkop-Schnürch, Andreas

    2016-01-30

    Within this study a novel form of mucoadhesive nanoparticles (NPs) exhibiting a prolonged residence time on mucosal tissues was developed. In order to achieve this goal a new thiomer was synthesized by the covalent attachment of the amino acid l-cysteine ethyl ester to poly(acrylic acid) (100 kDa). The free thiol groups were in the following preactivated with the aromatic thiol bearing ligand 2-mercaptonicotinic acid (2-MNA) and the amount of coupled l-cysteine ethyl ester as well as the amount of attached 2-MNA was determined. Based on this, preactivated thiomer NPs were prepared by ionic gelation with polyethylenimine (PEI). The resulting NPs were characterized regarding size and zeta potential. Furthermore their mucoadhesive properties were investigated via rheological measurements with porcine intestinal mucus and via determination of the particles' mucosal residence time. Results showed that 1666.74 μmol l-cysteine ethyl ester and 603.07 μmol 2-MNA could be attached per gram polymer. NPs were in a size range of 112.67-252.84 nm exhibiting a zeta potential of -29 mV. Thiolated NPs only led to a 2-fold increase in mucus viscosity whereas preactivated NPs showed a 6-fold higher mucus viscosity than unmodified NPs. The mucosal residence time of thiolated NPs was 1.6-fold prolonged and that of preactivated NPs even 4.4-fold higher compared to unmodified particles. Accordingly, preactivated thiolated NPs providing a prolonged residence time on mucosal membranes could be a promising dosage form for various applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Formation of hydroxyl-functionalized stilbenoid molecular sieves at the liquid/solid interface on top of a 1-decanol monolayer.

    PubMed

    Bellec, Amandine; Arrigoni, Claire; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice

    2014-10-31

    Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.

  14. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  15. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  16. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  17. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  18. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  19. New perspectives of starch: Synthesis and in vitro assessment of novel thiolated mucoadhesive derivatives.

    PubMed

    Jelkmann, Max; Bonengel, Sonja; Menzel, Claudia; Markovic, Svetislav; Bernkop-Schnürch, Andreas

    2018-05-11

    The purpose of this study was to develop a novel thiolated starch polymer with improved mucoadhesive properties by conjugation of cysteamine to starch as a natural polymer of restricted mucoadhesive properties. Aldehyde substructures were integrated into starch via oxidative cleavage of vicinal diols by increasing amounts of sodium periodate followed by covalent attachment of cysteamine to oxidized starch via reductive amination. Thiol groups were quantified via Ellman's reaction and their impact on mucoadhesion was analyzed by rheological investigations, the rotating cylinder method and tensile studies on porcine mucosa. The total amount of immobilized thiol groups revealed a correlation between degree of oxidation and thiolation. Modified starch demonstrated an up to 1.66-fold increase in water uptake in comparison to native starch. Modification of starch resulted in greatly improved cohesive properties and improvement in mucoadhesion. Rheological investigations revealed a 2- to 4-fold rise in viscosity of mucus. Tensile studies revealed a linear correlation between degree of oxidation/thiolation and enhancement of maximum detachment force and total work adhesion. In terms of these results, thiolated starch is a new, promising, polymer in the field of mucoadhesive drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Effect of a thiolated polymer on oral paclitaxel absorption and tumor growth in rats.

    PubMed

    Föger, Florian; Malaivijitnond, Suchinda; Wannaprasert, Thanakul; Huck, Christian; Bernkop-Schnürch, Andreas; Werle, Martin

    2008-02-01

    The anticancer agent paclitaxel is currently commercially available only as an infusion due to its low oral bioavailability. An oral formulation would be highly beneficial for patients. Besides the low solubility, the main reason for the limited oral bioavailability of paclitaxel is that it is a substrate of the efflux pump P-glycoprotein (P-gp). Recently, it has been demonstrated that P-gp can be inhibited by thiolated polymers. In this study, an oral paclitaxel formulation based on thiolated polycarbophil was evaluated in vivo in wild-type rats and in mammary cancer-induced rats. The paclitaxel plasma level after a single administration of paclitaxel was observed for 12 h in healthy rats. Moreover, cancer-induced rats were treated weekly for 5 weeks with the novel formulation. It was demonstrated that (1) co-administration of thiolated polycarbophil significantly improved paclitaxel plasma levels, (2) a more constant pharmacokinetic profile could be achieved and (3) the tumor growth was reduced. These effects can most likely be attributed to P-gp inhibition. According to the achieved results, thiolated polymers are believed to be interesting tools for the delivery of P-gp substrates such as paclitaxel.

  1. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  2. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  3. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  4. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  5. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  6. Investigation of a thiolated polymer in gene delivery

    NASA Astrophysics Data System (ADS)

    Bacalocostantis, Irene

    Thiol-containing bioreducible polymers show significant potential as delivery vectors in gene therapy, a rapidly growing field which seeks to treat genetic-based disorders by delivering functional synthetic genes to diseased cells. Studies have shown that thiolated polymers exhibit improved biodegradability and prolonged in vivo circulation times over non-thiolated polymers. However, the extent to which thiol concentrations impact the carrier's delivery potential has not been well explored. The aim of this dissertation is to investigate how relative concentrations of free thiols and disulfide crosslinks impact a polymeric carriers delivery performance with respect to DNA packaging, complex stability, cargo protection, gene release, internalization efficiency and cytotoxicity. To accomplish this goal, several fluorescent polymers containing varying concentrations of thiol groups were synthesized by conjugating thiol-pendant chains onto the primary amines of cationic poly(allylamine). In vitro delivery assays and characterization techniques were employed to assess the effect of thiols in gene delivery.

  7. Self-assembled monolayers of alkyl-thiols on InAs: A Kelvin probe force microscopy study

    NASA Astrophysics Data System (ADS)

    Szwajca, A.; Wei, J.; Schukfeh, M. I.; Tornow, M.

    2015-03-01

    We report on the preparation and characterization of self-assembled monolayers from aliphatic thiols with different chain length and termination on InAs (100) planar surfaces. This included as first step the development and investigation of a thorough chemical InAs surface preparation step using a dedicated bromine/NH4OH-based etching process. Ellipsometry, contact angle measurements and atomic force microscopy (AFM) indicated the formation of smooth, surface conforming monolayers. The molecular tilt angles were obtained as 30 ± 10° with respect to the surface normal. Kelvin probe force microscopy (KPFM) measurements in hand with Parameterized Model number 5 (PM5) calculations of the involved molecular dipoles allowed for an estimation of the molecular packing densities on the surface. We obtained values of up to n = 1014 cm- 2 for the SAMs under study. These are close to what is predicted from a simple geometrical model that would calculate a maximum density of about n = 2.7 × 1014 cm- 2. We take this as additional conformation of the substrate smoothness and quality of our InAs-SAM hybrid layer systems.

  8. Development and optimization of thiolated dendrimer as a viable mucoadhesive excipient for the controlled drug delivery: an acyclovir model formulation.

    PubMed

    Yandrapu, Sarath K; Kanujia, Parijat; Chalasani, Kishore B; Mangamoori, Lakshminarasu; Kolapalli, Ramanamurthy V; Chauhan, Abhay

    2013-05-01

    In the present study we report the development of novel thiolated dendrimers for mucoadhesive drug delivery. The thiolated dendrimers were synthesized by conjugating PAMAM dendrimer (G3.5)with cysteamine at two different molar ratios, i.e. 1:30 (DCys1) and 1:60 (DCys2). The thiolated dendrimers were further encapsulated with acyclovir (DCys1Ac and DCys2Ac) and the conjugates were characterized for thiol content, drug loading, drug release, and mucoadhesive behavior. The thiolated dendrimer conjugates showed thiol content of 10.56 ± 0.34 and 68.21 ± 1.84 μM/mg of the conjugate for DCys1 and DCys2, respectively. The acyclovir loading was observed to be highest in dendrimer drug conjugate (DAc) compared to other DCys1Ac and DCys2Ac conjugates. The thiolated dendrimers showed sustained release of acyclovir and showed higher mucoadhesion. The in vitro mucoadhesive activity of DCys2Ac was 1.53 and 2.89 fold higher mucoadhesion compared to DCys1Ac and DAc, respectively. These results demonstrated the usefulness of thiolated dendrimers as a mucoadhesive carrier and represent a novel platform for drug delivery. This study demonstrates the utility of thiolated dendrimers as mucoadhesive carriers as reported in an acyclovir delivery model system. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Monolayers and multilayers of conjugated polymers as nanosized electronic components.

    PubMed

    Zotti, Gianni; Vercelli, Barbara; Berlin, Anna

    2008-09-01

    conduction of model alpha,omega-capped sexithiophenes featuring a range of electron donor/acceptor units and lengths of additional conjugation. The sexithiophene cores exhibit redox-type conductivity, developing at the neutral/cation and cation/dication levels with values depending the nature of the substitution and the redox system. Extending the conjugation beyond the sexithiophene frame introduces further oxidation processes displaying enhanced conductivity. Finally, we discuss the ability of CP-based monolayers to coordinate AuNPs. Although thiophene- and pyrrole-based oligomers aggregate toluene-soluble AuNPs, alkyl substitution inhibits the aggregation process through steric restraint. Consequently, we investigated the interactions between AuNPs and polypyrrole or polythiophene monolayers, including those formed from star-shaped molecules. The hindered aggregation provided by alkyl substituents allowed us to adsorb thiol-functionalized oligothiophenes and oligopyrroles directly onto preformed AuNPs. Novel materials incorporating AuNPs of the same size but bearing different conjugated ends or bridges have great promise for applications in electrocatalysis, electroanalysis, and organic electronics.

  10. Density functional theory with van der waals corrections study of the adsorption of alkyl, alkylthiol, alkoxyl, and amino-alkyl chains on the H:Si(111) surface.

    PubMed

    Arefi, Hadi H; Nolan, Michael; Fagas, Giorgos

    2014-11-11

    Surface modification of silicon with organic monolayers tethered to the surface by different linkers is an important process in realizing future miniaturized electronic and sensor devices. Understanding the roles played by the nature of the linking group and the chain length on the adsorption structures and stabilities of these assemblies is vital to advance this technology. This paper presents a density functional theory (DFT) study of the hydrogen passivated Si(111) surface modified with alkyl chains of the general formula H:Si-(CH2)n-CH2 and H:Si-X-(CH2)n-CH3, where X = NH, O, S and n = (0, 1, 3, 5, 7, 9, 11), at half coverage. For (X)-hexane and (X)-dodecane functionalization, we also examined various coverages up to full monolayer grafting in order to validate the result of half covered surface and the linker effect on the coverage. We find that it is necessary to take into account the van der Waals interaction between the alkyl chains. The strongest binding is for the oxygen linker, followed by S, N, and C, irrespective of chain length. The result revealed that the sequence of the stability is independent of coverage; however, linkers other than carbon can shift the optimum coverage considerably and allow further packing density. For all linkers apart from sulfur, structural properties, in particular, surface-linker-chain angles, saturate to a single value once n > 3. For sulfur, we identify three regimes, namely, n = 0-3, n = 5-7, and n = 9-11, each with its own characteristic adsorption structures. Where possible, our computational results are shown to be consistent with the available experimental data and show how the fundamental structural properties of modified Si surfaces can be controlled by the choice of linking group and chain length.

  11. Electroactive Self-Assembled Monolayers Detect Micelle Formation.

    PubMed

    Dionne, Eric R; Badia, Antonella

    2017-02-15

    The interfacial electrochemistry of self-assembled monolayers (SAMs) of ferrocenyldodecanethiolate on gold (FcC 12 SAu) electrodes is applied to detect the micellization of some common anionic surfactants, sodium n-alkyl sulfates, sodium n-alkyl sulfonates, sodium diamyl sulfosuccinate, and sodium dodecanoate, in aqueous solution by cyclic voltammetry. The apparent formal redox potential (E°' SAM ) of the FcC 12 SAu SAM is used to track changes in the concentration of the unaggregated surfactant anions and determine the critical micelle concentration (cmc). The effect of added salt (NaF) on the sodium alkyl sulfate concentration dependence of E°' SAM is also investigated. Weakly hydrated anions, such as ClO 4 - , pair with the electrogenerated SAM-bound ferroceniums to neutralize the excess positive charge created at the SAM/electrolyte solution interface and stabilize the oxidized cations. E°' SAM exhibits a Nernstian-type dependence on the anion activity in solution. Aggregation of the surfactant anions into micelles above the cmc causes the free surfactant anion activity to deviate from the molar concentration of added surfactant, resulting in a break in the plot of E°' SAM versus the logarithm of the concentration of anionic surfactant. The concentration at which this deviation occurs is in good agreement with literature or experimentally determined values of the cmc. The effects of Ohmic potential drop, liquid junction potential, and surfactant adsorption behavior on E°' SAM are addressed. Ultimately, the E°' SAM response as a function of the anionic surfactant concentration exhibits the same features reported using potentiometry and surfactant ion-selective electrodes, which provide a direct measure of the free surfactant anion activity, thus making FcC 12 SAu SAM electrodes useful for the detection of surfactant aggregation and micelle formation.

  12. Synthesis and in vitro characterization of entirely S-protected thiolated pectin for drug delivery.

    PubMed

    Hintzen, Fabian; Hauptstein, Sabine; Perera, Glen; Bernkop-Schnürch, Andreas

    2013-11-01

    The study was aimed to synthesize a thiolated polymer (thiomer) that is resistant to oxidation in solutions above pH 5. In order to protect a pectin-cysteine conjugate against premature oxidation, the thiomer was S-protected by a disulfide connected leaving group. Therefore, 2-mercaptonicotinic acid was first coupled to L-cysteine by a disulfide exchange reaction and the purified product was subsequently attached to pectin by a carbodiimide mediated amid bond formation. The obtained fully S-protected thiolated pectin was in vitro characterized with respect to co- and mucoadhesive properties and stability toward oxidation. The results indicated a 1.8-fold and 2.3-fold enhanced disintegration time at pH 6.8 of the S-protected thiolated pectin (Pec-Cys-MNA) compared to thiolated pectin (Pec-Cys) and unmodified pectin (Pec). Moreover, rheological measurements of polymer/mucus mixtures showed a 1.6-fold (compared to Pec-Cys) and 6.7-fold (compared to Pec) increased dynamic viscosity of Pec-Cys-MNA. On the other hand, in the presence of a strong oxidizing agent such as H2O2 (0.3% v/v), no increase in viscosity of Pec-Cys-MNA could be observed. A 6-month experiment also demonstrated the long-term stability of a liquid formulation based on Pec-Cys-MNA. Further investigations proved that the first time all thiol groups on a thiolated polymer could be protected owing to the novel synthesis. Accordingly, these features may help to develop thiomer based liquid or gel formulations targeting mucosal surfaces such as nasal, ocular or vaginal drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. PtII diimine chromophores with perfluorinated thiolate ligands: nature and dynamics of the charge-transfer-to-diimine lowest excited state.

    PubMed

    Weinstein, Julia A; Blake, Alexander J; Davies, E Stephen; Davis, Adrienne L; George, Michael W; Grills, David C; Lileev, Igor V; Maksimov, Alexander M; Matousek, Pavel; Mel'nikov, Mikhail Ya; Parker, Anthony W; Platonov, Vyacheslav E; Towrie, Michael; Wilson, Claire; Zheligovskaya, Natalia N

    2003-11-03

    The synthesis of new Pt(II) diimine complexes bearing perfluorinated thiolate ligands, Pt(II)(NN)(4-X-C(6)F(4)-S)(2), where NN = 2,2'-bipyridine or 1,10-phenanthroline and X = F or CN, is reported, together with an investigation of the nature and dynamics of their lowest excited states. A combined UV-vis, (spectro)electrochemical, resonance Raman, and time-resolved infrared (TRIR) study has suggested that the HOMO is mainly composed of thiolate(pi)/S(p)/Pt(d) orbitals and that the LUMO is largely localized on the pi*(diimine) orbital, thus revealing the [charge-transfer-to-diimine] nature of the lowest excited state. An enhancement of the thiolate ring vibrations, C-F vibrations, and the vibration of the CN-substituent on the thiolate moiety was observed in the resonance Raman spectra, whereas no such enhancement was seen for the nonfluorinated analogues. Thus, the introduction of fluorine substituents on the thiolate moiety probably leads to a more pronounced contribution of the intrathiolate modes to the HOMO compared to the analogous complexes with nonfluorinated thiolates. Furthermore, the introduction of the p-CN group into the thiolate moiety has allowed the dynamics of the lowest excited state of Pt(bpy)(4-CN-C(6)F(4)-S)(2) to be monitored by picosecond TRIR spectroscopy. The dynamics of the lowest [charge-transfer-to-diimine] excited state are governed by ca. 2-ps vibrational cooling and 35-ps back electron transfer.

  14. Development and evaluation of buccoadhesive tablet for selegiline hydrochloride based on thiolated polycarbophil.

    PubMed

    Wasnik, Mangesh N; Godse, Rutika D; Nair, Hema A

    2014-05-01

    Selegiline hydrochloride (SHCl), a monoamine oxidase B inhibitor, is used as an adjunct in the therapy of Parkinson's disease. This study is concerned with the preparation and evaluation of mucoadhesive buccal tablet for controlled systemic delivery of SHCl. Buccal absorption of selegiline can bypass its first-pass metabolism and improve bioavailability accompanied by greatly reduced metabolite formation, which is potentially of enhanced therapeutic value in patients with Parkinson's disease. Polycarbophil-cysteine (PCP-cys) conjugate, which is a thiolated derivative of the mucoadhesive polymer polycarbophil, was synthesized by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride-mediated amide bond coupling. Tablets of SHCl based on native and thiolated polycarbophil were prepared. The prepared tablets were evaluated for drug content, swelling behavior, mucoadhesive strength, in vitro drug release, ex vivo permeation and in vitro cytotoxicity. PCP-cys tablets showed enhanced mucoadhesion and retarded drug release compared to polycarbophil tablets. Permeation data of SHCl from matrices prepared using the PCP-cys polymer revealed a significantly higher value of apparent permeability in comparison to polycarbophil, which supported the information in literature that thiolation imparts permeation enhancing properties to mucoadhesive polymers. In vitro cytotoxicity studies on PCP-cys using L-929 mouse fibroblast cell line indicated that conjugation with cysteine does not impart any apparent toxicity to polycarbophil. The results from the study indicate that the buccal delivery of SHCl using thiolated polycarbophil tablet could provide a way for improved therapy of Parkinson's disease.

  15. [Alkylating agents].

    PubMed

    Pourquier, Philippe

    2011-11-01

    With the approval of mechlorethamine by the FDA in 1949 for the treatment of hematologic malignancies, alkylating agents are the oldest class of anticancer agents. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in specific indications and sometimes represent the unique option for the treatment of refractory diseases. Here, we are reviewing the major classes of alkylating agents and their mechanism of action, with a particular emphasis for the new generations of alkylating agents. As for most of the chemotherapeutic agents used in the clinic, these compounds are derived from natural sources. With a complex but original mechanism of action, they represent new interesting alternatives for the clinicians, especially for tumors that are resistant to conventional DNA damaging agents. We also briefly describe the different strategies that have been or are currently developed to potentiate the use of classical alkylating agents, especially the inhibition of pathways that are involved in the repair of DNA lesions induced by these agents. In this line, the development of PARP inhibitors is a striking example of the recent regain of interest towards the "old" alkylating agents.

  16. Can thiolation render a low molecular weight polymer of just 20-kDa mucoadhesive?

    PubMed

    Mahmood, Arshad; Bonengel, Sonja; Laffleur, Flavia; Ijaz, Muhammad; Idrees, Muneeb Ahmad; Hussain, Shah; Huck, Christian W; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2016-01-01

    The objective was to investigate whether even low-molecular weight polymers (LMWPs) can be rendered mucoadhesive due to thiolation. Interceded by the double catalytic system carbodiimide/N-hydroxysuccinimide, cysteamine was covalently attached to a copolymer, poly(4-styrenesulfonic acid-co-maleic acid) (PSSA-MA) exhibiting a molecular weight of just 20 kDa. Depending on the amount of added N-hydroxysuccinimide and cysteamine, the resulting PSSA-MA-cysteamine (PC) conjugates exhibited increasing degree of thiolation, highest being "PC 2300" exhibiting 2300.16 ± 149.86 μmol thiol groups per gram of polymer (mean ± SD; n = 3). This newly developed thiolated polymer was evaluated regarding mucoadhesive, rheological and drug release properties as well from the toxicological point of view. Swelling behavior in 100 mM phosphate buffer pH 6.8 was improved up to 180-fold. Furthermore, due to thiolation, the mucoadhesive properties of the polymer were 240-fold improved. Rheological measurements of polymer/mucus mixtures confirmed results obtained by mucoadhesion studies. In comparison to unmodified polymer, PC 2300 showed 2.3-, 2.3- and 2.4-fold increase in dynamic viscosity, elastic modulus and viscous modulus, respectively. Sustained release of the model drug codeine HCl out of the thiomer was provided for 2.5 h (p < 0.05), whereas the drug was immediately released from the unmodified polymer. Moreover, the thiomer was found non-toxic over Caco-2 cells for a period of 6- and 24-h exposure. Findings of the present study provide evidence that due to thiolation LMWPs can be rendered highly mucoadhesive as well as cohesive and that a controlled drug release out of such polymers can be provided.

  17. Microcontact printing of self-assembled monolayers to pattern the light-emission of polymeric light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Brondijk, J. J.; Li, X.; Akkerman, H. B.; Blom, P. W. M.; de Boer, B.

    2009-04-01

    By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were modified with SAMs based on alkanethiols and perfluorinated alkanethiols, applied by microcontact printing, and their work functions have been measured. The molecules form a chemisorbed monolayer of only ˜1.5 nm on the gold surface, thereby locally changing the work function of the metal. Kelvin probe measurements show that the local work function can be tuned from 4.3 to 5.5 eV, which implies that this anode can be used as a hole blocking electrode or as a hole injecting electrode, respectively, in PLEDs based on poly( p-phenylene vinylene) (PPV) derivatives. By microcontact printing of SAMs with opposing dipole moments, the work function was locally modified and the charge injection in the PLED could be controlled down to the micrometer length scale. Consequently, the local light-emission exhibits a high contrast. Microcontact printing of SAMs is a simple and inexpensive method to pattern, with micrometer resolution, the light-emission for low-end applications like static displays.

  18. Mucoadhesive ocular insert based on thiolated poly(acrylic acid): development and in vivo evaluation in humans.

    PubMed

    Hornof, Margit; Weyenberg, Wim; Ludwig, Annick; Bernkop-Schnürch, Andreas

    2003-05-20

    The aim of the study was to develop a mucoadhesive ocular insert for the controlled delivery of ophthalmic drugs and to evaluate its efficacy in vivo. The inserts tested were based either on unmodified or thiolated poly(acrylic acid). Water uptake and swelling behavior of the inserts as well as the drug release rates of the model drugs fluorescein and two diclofenac salts with different solubility properties were evaluated in vitro. Fluorescein was used as fluorescent tracer to study the drug release from the insert in humans. The mean fluorescein concentration in the cornea/tearfilm compartment as a function of time was determined after application of aqueous eye drops and inserts composed of unmodified and of thiolated poly(acrylic acid). The acceptability of the inserts by the volunteers was also evaluated. Inserts based on thiolated poly(acrylic acid) were not soluble and had good cohesive properties. A controlled release was achieved for the incorporated model drugs. The in vivo study showed that inserts based on thiolated poly(acrylic acid) provide a fluorescein concentration on the eye surface for more than 8 h, whereas the fluorescein concentration rapidly decreased after application of aqueous eye drops or inserts based on unmodified poly(acrylic acid). Moreover, these inserts were well accepted by the volunteers. The present study indicates that ocular inserts based on thiolated poly(acrylic acid) are promising new solid devices for ocular drug delivery.

  19. SK-Edge XAS And DFT Calculations on Square-Planar NiII-Thiolate Complexes: Effects of Active And Passive H-Bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, A.; Green, K.N.; Jenkins, R.M.

    S K-edge XAS for a low-spin Ni{sup II}-thiolate complex shows a 0.2 eV shift to higher pre-edge energy but no change in Ni-S bond covalency upon H-bonding. This is different from the H-bonding effect we observed in high-spin Fe{sup III}-thiolate complexes where there is a significant decrease in Fe-S bond covalency but no change in energy due to H-bonding (Dey, A.; Okamura, T.-A.; Ueyama, N.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 2005, 127, 12046-12053). These differences were analyzed using DFT calculations, and the results indicate that two different types of H-bonding interactions are possiblemore » in metal-thiolate systems. In the high-spin Fe{sup III}-thiolate case, the H-bonding involves a thiolate donor orbital which is also involved in bonding with the metal (active), while in the low-spin Ni{sup II}-thiolate, the orbital involved in H-bonding is nonbonding with respect to the M-S bonding (passive). The contributions of active and passive H-bonds to the reduction potential and Lewis acid properties of a metal center are evaluated.« less

  20. S K-edge XAS and DFT Calculations on Square Planar NiII-thiolate Complexes: Effects of Active and Passive H-bonding

    PubMed Central

    Dey, Abhishek; Green, Kayla N.; Jenkins, Roxanne M.; Jeffrey, Stephen P.; Darensbourg, Marcetta; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.

    2008-01-01

    S K-edge XAS for a low-spin NiII-thiolate complex shows a 0.2 eV shift to higher pre-edge energy but no change in Ni-S bond covalency upon H-bonding. This is different from the H-bonding effect we observed in high spin FeIII-thiolate complexes where there is a significant decrease in Fe-S bond covalency but no change in energy due to H-bonding (Dey, A.; Okamura, T.-A.; Ueyama, N.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc.; 2005; 127, 12046-12053.). These differences were analyzed using DFT calculations and the results indicate that two different types of H-bonding interactions are possible in metal-thiolate systems. In the high-spin FeIII-thiolate case, the H-bonding involves a thiolate donor orbital which is also involved in bonding with the metal (active), while in the low-spin NiII-thiolate the orbital involved in H-bonding is non-bonding with respect to the M-S bonding (passive). The contributions of active and passive H-bonds to the reduction potential and Lewis acid properties of a metal center are evaluated. PMID:17949080

  1. Thiolated polycarbophil as an adjuvant for permeation enhancement in nasal delivery of antisense oligonucleotides.

    PubMed

    Vetter, A; Martien, R; Bernkop-Schnürch, A

    2010-03-01

    The purpose of this study was to investigate the effect of thiolated polycarbophil as an adjuvant to enhance the permeation and improve the stability of a phosphorothioate antisense oligonucleotide (PTO-ODN) on the nasal mucosa. Polycarbophil-cysteine (PCP-Cys) was synthesized by the covalent attachment of L-cysteine to the polymeric backbone. Cytotoxicity tests were examined on human nasal epithelial cells from surgery of nasal polyps confirmed by histological studies. Deoxyribonuclease I activity in respiratory region of the porcine nasal cavity was analyzed by an enzymatic assay. The enzymatic degradation of PTO-ODNs on freshly excised porcine nasal mucosa was analyzed and protection of PCP-cysteine toward DNase I degradation was evaluated. Permeation studies were performed in Ussing-type diffusion chambers. PCP-Cys/GSH did not arise a remarkable mortal effect. Porcine respiratory mucosa was shown to possess nuclease activity corresponding to 0.69 Kunitz units/mL. PTO-ODNs were degraded by incubation with nasal mucosa. In the presence of 0.45% thiolated polycarbophil and 0.5% glutathione (GSH), this degradation process could be lowered. In the presence of thiolated polycarbophil and GSH the uptake of PTO-ODNs from the nasal mucosa was 1.7-fold improved. According to these results thiolated polycarbophil/GSH might be a promising excipient for nasal administration of PTO-ODNs. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  2. Phenylselenolate Mercury Alkyl Compounds, PhSeHgMe and PhSeHgEt: Molecular Structures, Protolytic Hg–C Bond Cleavage and Phenylselenolate Exchange‡

    PubMed Central

    Yurkerwich, Kevin; Quinlivan, Patrick J.; Rong, Yi

    2015-01-01

    The phenylselenolate mercury alkyl compounds, PhSeHgMe and PhSeHgEt, have been structurally characterized by X-ray diffraction, thereby demonstrating that both compounds are monomeric with approximately linear coordination geometries; the mercury centers do, nevertheless, exhibit secondary Hg•••Se intermolecular interactions that serve to increase the coordination number in the solid state. The ethyl derivative, PhSeHgEt, undergoes facile protolytic cleavage of the Hg–C bond to release ethane at room temperature, whereas PhSeHgMe exhibits little reactivity under similar conditions. Interestingly, the cleavage of the Hg–C bond of PhSeHgEt is also more facile than that of the thiolate analogue, PhSHgEt, which demonstrates that coordination by selenium promotes protolytic cleavage of the mercury-carbon bond. The phenylselenolate compounds PhSeHgR (R = Me, Et) also undergo degenerate exchange reactions with, for example, PhSHgR and RHgCl. In each case, the alkyl groups preserve coupling to the 199Hg nuclei, thereby indicating that the exchange process involves metathesis of the Hg–SePh/Hg–X groups rather than metathesis of the Hg–R/Hg–R groups. PMID:26644634

  3. Phenylselenolate Mercury Alkyl Compounds, PhSeHgMe and PhSeHgEt: Molecular Structures, Protolytic Hg-C Bond Cleavage and Phenylselenolate Exchange.

    PubMed

    Yurkerwich, Kevin; Quinlivan, Patrick J; Rong, Yi; Parkin, Gerard

    2016-01-08

    The phenylselenolate mercury alkyl compounds, PhSeHgMe and PhSeHgEt, have been structurally characterized by X-ray diffraction, thereby demonstrating that both compounds are monomeric with approximately linear coordination geometries; the mercury centers do, nevertheless, exhibit secondary Hg•••Se intermolecular interactions that serve to increase the coordination number in the solid state. The ethyl derivative, PhSeHgEt, undergoes facile protolytic cleavage of the Hg-C bond to release ethane at room temperature, whereas PhSeHgMe exhibits little reactivity under similar conditions. Interestingly, the cleavage of the Hg-C bond of PhSeHgEt is also more facile than that of the thiolate analogue, PhSHgEt, which demonstrates that coordination by selenium promotes protolytic cleavage of the mercury-carbon bond. The phenylselenolate compounds PhSeHgR (R = Me, Et) also undergo degenerate exchange reactions with, for example, PhSHgR and RHgCl. In each case, the alkyl groups preserve coupling to the 199 Hg nuclei, thereby indicating that the exchange process involves metathesis of the Hg-SePh/Hg-X groups rather than metathesis of the Hg-R/Hg-R groups.

  4. Electrical conductivity in Langmuir-Blodgett films of n-alkyl cyanobiphenyls using current sensing atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayathri, H. N.; Suresh, K. A., E-mail: suresh@cnsms.res.in

    2015-06-28

    We report our studies on the nanoscale electrical conductivity in monolayers of n-alkyl cyanobiphenyl materials deposited on solid surface. Initially, the 8CB, 9CB, and 10CB monolayer films were prepared by the Langmuir technique at air-water interface and characterized by surface manometry and Brewster angle microscopy. The monolayer films were transferred on to solid substrates by the Langmuir-Blodgett (L-B) technique. The 8CB, 9CB, and 10CB monolayer L-B films were deposited on freshly cleaved mica and studied by atomic force microscope (AFM), thereby measuring the film thickness as ∼1.5 nm. The electrical conductivity measurements were carried out on 9CB and 10CB monolayer L-Bmore » films deposited onto highly ordered pyrolytic graphite using current sensing AFM. The nanoscale current-voltage (I-V) measurements show a non-linear variation. The nature of the curve indicates electron tunneling to be the mechanism for electrical conduction. Furthermore, analysis of the I-V curve reveals a transition in the electron conduction mechanism from direct tunneling to injection tunneling. From the transition voltage, we have estimated the values of barrier height for 9CB and 10CB to be 0.71 eV and 0.37 eV, respectively. For both 9CB and 10CB, the effective mass of electron was calculated to be 0.021 m{sub e} and 0.065 m{sub e}, respectively. These parameters are important in the design of molecular electronic devices.« less

  5. Monohalogenated acetamide-induced cellular stress and genotoxicity are related to electrophilic softness and thiol/thiolate reactivity.

    PubMed

    Pals, Justin A; Wagner, Elizabeth D; Plewa, Michael J; Xia, Menghang; Attene-Ramos, Matias S

    2017-08-01

    Haloacetamides (HAMs) are cytotoxic, genotoxic, and mutagenic byproducts of drinking water disinfection. They are soft electrophilic compounds that form covalent bonds with the free thiol/thiolate in cysteine residues through an S N 2 reaction mechanism. Toxicity of the monohalogenated HAMs (iodoacetamide, IAM; bromoacetamide, BAM; or chloroacetamide, CAM) varied depending on the halogen substituent. The aim of this research was to investigate how the halogen atom affects the reactivity and toxicological properties of HAMs, measured as induction of oxidative/electrophilic stress response and genotoxicity. Additionally, we wanted to determine how well in silico estimates of electrophilic softness matched thiol/thiolate reactivity and in vitro toxicological endpoints. Each of the HAMs significantly induced nuclear Rad51 accumulation and ARE signaling activity compared to a negative control. The rank order of effect was IAM>BAM>CAM for Rad51, and BAM≈IAM>CAM for ARE. In general, electrophilic softness and in chemico thiol/thiolate reactivity provided a qualitative indicator of toxicity, as the softer electrophiles IAM and BAM were more thiol/thiolate reactive and were more toxic than CAM. Copyright © 2017. Published by Elsevier B.V.

  6. Adhesion of thiolated silica nanoparticles to urinary bladder mucosa: Effects of PEGylation, thiol content and particle size.

    PubMed

    Mun, Ellina A; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2016-10-15

    Intravesical drug administration is used to deliver cytotoxic agents through a catheter to treat bladder cancer. One major limitation of this approach is poor retention of the drug in the bladder due to periodic urine voiding. Mucoadhesive dosage forms thus offer significant potential to improve drug retention in the bladder. Here, we investigate thiolated silica nanoparticles retention on porcine bladder mucosa in vitro, quantified through Wash Out50 (WO50) values, defined as the volume of liquid necessary to remove 50% of the adhered particles from a mucosal tissue. Following irrigation with artificial urine solution, the thiolated nanoparticles demonstrate significantly greater retention (WO50 up to 36mL) compared to non-mucoadhesive dextran (WO50 7mL), but have weaker mucoadhesive properties than chitosan (WO50 89mL). PEGylation of thiolated silica reduces their mucoadhesion with WO50 values of 29 and 8mL for particles decorated with 750 and 5000Da PEG, respectively. The retention of thiolated silica nanoparticles is dependent on their thiol group contents and physical dimensions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Synthesis and characterization of thiolated carboxymethyl chitosan-graft-cyclodextrin nanoparticles as a drug delivery vehicle for albendazole.

    PubMed

    Alamdarnejad, Ghazaleh; Sharif, Alireza; Taranejoo, Shahrouz; Janmaleki, Mohsen; Kalaee, Mohammad Reza; Dadgar, Mohsen; Khakpour, Mazyar

    2013-08-01

    A new strategy for the synthesis of thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles by an ionic-gelation method is presented. The synthetic approach was based on the utilization of 1,6-hexamethylene diisocyanate during cyclodextrin grafting onto carboxymethyl chitosan. The use of the 1,6-hexamethylene diisocyanate resulted in reactions between cyclodextrin and active sites at the C6-position of chitosan, and preserved amino groups of chitosan for subsequent reactions with thioglycolic acid, as the thiolating agent, and tripolyphosphate, as the gelling counterion. Various methods such as scanning electron microscopy, rheology and in vitro release studies were employed to exhibit significant features of the nanoparticles for mucosal albendazole delivery applications. It was found that the thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles prepared using an aqueous solution containing 1 wt% of tripolyphosphate and having 115.65 (μmol/g polymer) of grafted thiol groups show both the highest mucoadhesive properties and the highest albendazole entrapment efficiency. The latter was confirmed theoretically by calculating the enthalpy of mixing of albendazole in the above thiolated chitosan polymer.

  8. An oral oligonucleotide delivery system based on a thiolated polymer: Development and in vitro evaluation.

    PubMed

    Martien, Ronny; Hoyer, Herbert; Perera, Glen; Schnürch, Andreas Bernkop

    2011-08-01

    The purpose of this study was to develop and evaluate an oral oligonucleotide delivery system based on a thiolated polymer/reduced glutathione (GSH) system providing a protective effect toward nucleases and permeation enhancement. A polycarbophil-cysteine conjugate (PCP-Cys) was synthesized. Enzymatic degradation of a model oligonucleotide by DNase I and within freshly collected intestinal fluid was investigated in the absence and presence of PCP-Cys. Permeation studies with PCP-Cys/GSH versus control were performed in vitro on Caco-2 cell monolayers and ex vivo on rat intestinal mucosa. PCP-Cys displayed 223 ± 13.8 μmol thiol groups per gram polymer. After 4h, 61% of the free oligonucleotides were degraded by DNase I and 80% within intestinal fluid. In contrast, less than 41% (DNase I) and 60% (intestinal fluid) were degraded in the presence of 0.02% (m/v) PCP-Cys. Permeation studies revealed an 8-fold (Caco-2) and 10-fold (intestinal mucosa) increase in apparent permeability compared to buffer control. Hence, this PCP-Cys/GSH system might be a promising tool for the oral administration of oligonucleotides as it allows a significant protection toward degrading enzymes and facilitates their transport across intestinal membranes. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Thiolated silicone oils as adhesive skin protectants for improved barrier function.

    PubMed

    Partenhauser, A; Zupančič, O; Rohrer, J; Bonengel, S; Bernkop-Schnürch, A

    2016-06-01

    The purpose of this study was the evaluation of thiolated silicone oil as novel skin protectant exhibiting prolonged residence time, enhanced barrier function and reinforced occlusivity. Two silicone conjugates were synthesized with mercaptopropionic acid (MPA) and thioglycolic acid (TGA) as thiol ligands. Adhesion, protection against artificial urine and water vapour permeability with both a Payne cup set-up and transepidermal water loss (TEWL) measurements on porcine skin were assessed. Silicone thiomers showed pronounced substantivity on skin with 22.1 ± 6.3% and 39.2 ± 6.7% remaining silicone after 8 h for silicone-TGA and silicone-MPA, respectively, whereas unmodified silicone oil and dimethicone were no longer detectable. In particular, silicone-MPA provided a protective shield against artificial urine penetration with less than 25% leakage within 6 h. An up to 2.5-fold improved water vapour impermeability for silicone-MPA in comparison with unmodified control was discovered with the Payne cup model. In addition, for silicone-MPA a reduced TEWL by two-thirds corresponding to non-thiolated control was determined for up to 8 h. Thiolation of silicone oil leads to enhanced skin adhesiveness and barrier function, which is a major advantage compared to commonly used silicones and might thus be a promising treatment modality for various topical applications. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  10. Dynamics of Functionalized Surface Molecular Monolayers Studied with Ultrafast Infrared Vibrational Spectroscopy

    PubMed Central

    Rosenfeld, Daniel E.; Nishida, Jun; Yan, Chang; Gengeliczki, Zsolt; Smith, Brian J.; Fayer, Michael D.

    2012-01-01

    The structural dynamics of thin films consisting of tricarbonyl (1,10-phenanthroline)rhenium chloride (RePhen(CO)3Cl) linked to an alkyl silane monolayer through a triazole linker synthesized on silica-on-calcium-fluoride substrates are investigated using ultrafast infrared (IR) techniques. Ultrafast 2D IR vibrational echo experiments and polarization selective heterodyne detected transient grating (HDTG) measurements, as well as polarization dependent FT-IR and AFM experiments are employed to study the samples. The vibrational echo experiments measure spectral diffusion, while the HDTG experiments measure the vibrational excited state population relaxation and investigate the vibrational transition dipole orientational anisotropy decay. To investigate the anticipated impact of vibrational excitation transfer, which can be caused by the high concentration of RePhen(CO)3Cl in the monolayer, a concentration dependence of the spectral diffusion is measured. To generate a range of concentrations, mixed monolayers consisting of both hydrogen terminated and triazole/RePhen(CO)3Cl terminated alkyl silanes are synthesized. It is found that the measured rate of spectral diffusion is independent of concentration, with all samples showing spectral diffusion of 37 ± 6 ps. To definitively test for vibrational excitation transfer, polarization selective HDTG experiments are conducted. Excitation transfer will cause anisotropy decay. Polarization resolved heterodyne detected transient grating spectroscopy is sensitive to anisotropy decay (depolarization) caused by excitation transfer and molecular reorientation. The HDTG experiments show no evidence of anisotropy decay on the appropriate time scale, demonstrating the absence of excitation transfer the RePhen(CO)3Cl. Therefore the influence of excitation transfer on spectral diffusion is inconsequential in these samples, and the vibrational echo measurements of spectral diffusion report solely on structural dynamics. A small

  11. Study of lnter-Molecular Dynamics within Alkylsiloxane Self-Assembled Monolayer and Elastomer Systems

    NASA Astrophysics Data System (ADS)

    Roman, Michael

    In this work, molecular motion, and in particular, glassy relaxations are studied in two novel experimental systems. Both experimental systems offer a significant degree of control over molecule-molecule, or group-group (where group refers to a portion of a molecule), interactions by controlling density and the type of inter-molecular interaction. Both systems have rigid elements that decrease the tendency of bulk materials to spontaneously change their density with temperature. Thus, density can be maintained and controlled and the effect of density and temperature can be (at least in part) de-convolved. The goal of this work is to experimentally observe the transition from simple, local relaxations to glassy dynamics as density is increased and to understand how this transition differs as the inter-molecular interactions are altered. In both approaches, the system is fabricated from individual parts where the nature, spacing, and particular arrangement of the parts can be controlled and the resultant changes in molecular motion can be observed. Building up a custom system from parts enables fundamental investigation into the glass transition (as discussed above) and also makes possible the development of materials that have engineered responses as a function of temperature. As a short-hand, we refer to the two systems as the monolayer or SAM (short for Self-Assembled Monolayer) and elastomer approaches. In Chapters 4-7 we discuss results from the monolayer approach. Chapter 8 summarizes results from the elastomer approach. In particular, Chapter 4 introduces you to dielectric spectroscopy and briefly summarizes the previous work by former students in the Clarke group which identified the local and glass relaxations in silane monolayers of substituted alkyl chains as analogous to the local and glassy relaxations in polymeric systems containing phase segregated alkyl chains, and similar to the local and glass modes in poly(ethylene). The remainder of Chapter 4

  12. S-protected thiolated chitosan for oral delivery of hydrophilic macromolecules: evaluation of permeation enhancing and efflux pump inhibitory properties.

    PubMed

    Dünnhaupt, Sarah; Barthelmes, Jan; Rahmat, Deni; Leithner, Katharina; Thurner, Clemens C; Friedl, Heike; Bernkop-Schnürch, Andreas

    2012-05-07

    The objective of this study was the investigation of permeation enhancing and P-glycoprotein (P-gp) inhibition effects of a novel thiolated chitosan, the so-named S-protected thiolated chitosan. Mediated by a carbodiimide, increasing amounts of thioglycolic acid (TGA) were covalently bound to chitosan (CS) in the first step of modification. In the second step, these thiol groups of thiolated chitosan were protected by disulfide bond formation with the thiolated aromatic residue 6-mercaptonicotinamide (6-MNA). Mucoadhesive properties of all conjugates were evaluated in vitro on porcine intestinal mucosa based on tensile strength investigations. Permeation enhancing effects were evaluated ex vivo using rat intestinal mucosa and in vitro via Caco-2 cells using the hydrophilic macromolecule FD(4) as the model drug. Caco-2 cells were further used to show P-gp inhibition effects by using Rho-123 as P-gp substrate. Apparent permeability coefficients (P(app)) were calculated and compared to values obtained from each buffer control. Three different thiolated chitosans were generated in the first step of modification, which displayed increasing amounts of covalently attached free thiol groups on the polymer backbone. In the second modification step, more than 50% of these free thiol groups were covalently linked with 6-MNA. Within 3 h of permeation studies on excised rat intestine, P(app) values of all S-protected chitosans were at least 1.3-fold higher compared to those of corresponding thiomers and more than twice as high as that of unmodified chitosan. Additional permeation studies on Caco-2 cells confirmed these results. Because of the chemical modification and higher amount of reactive thiol groups, all S-protected thiolated chitosans exhibit at least 1.4-fold pronounced P-gp inhibition effects in contrast to their corresponding thiomers. These features approve S-protected thiolated chitosan as a promising excipient for various drug delivery systems providing improved

  13. Electron transfer of quinone self-assembled monolayers on a gold electrode.

    PubMed

    Nagata, Morio; Kondo, Masaharu; Suemori, Yoshiharu; Ochiai, Tsuyoshi; Dewa, Takehisa; Ohtsuka, Toshiaki; Nango, Mamoru

    2008-06-15

    Dialkyl disulfide-linked naphthoquinone, (NQ-Cn-S)2, and anthraquinone, (AQ-Cn-S)2, derivatives with different spacer alkyl chains (Cn: n=2, 6, 12) were synthesized and these quinone derivatives were self-assembled on a gold electrode. The formation of self-assembled monolayers (SAMs) of these derivatives on a gold electrode was confirmed by infrared reflection-absorption spectroscopy (IR-RAS). Electron transfer between the derivatives and the gold electrode was studied by cyclic voltammetry. On the cyclic voltammogram a reversible redox reaction between quinone (Q) and hydroquinone (QH2) was clearly observed under an aqueous condition. The formal potentials for NQ and AQ derivatives were -0.48 and -0.58 V, respectively, that did not depend on the spacer length. The oxidation and reduction peak currents were strongly dependent on the spacer alkyl chain length. The redox behavior of quinone derivatives depended on the pH condition of the buffer solution. The pH dependence was in agreement with a theoretical value of E 1/2 (mV)=E'-59pH for 2H+/2e(-) process in the pH range 3-11. In the range higher than pH 11, the value was estimated with E 1/2 (mV)=E'-30pH , which may correspond to H+/2e(-) process. The tunneling barrier coefficients (beta) for NQ and AQ SAMs were determined to be 0.12 and 0.73 per methylene group (CH2), respectively. Comparison of the structures and the alkyl chain length of quinones derivatives on these electron transfers on the electrode is made.

  14. In vivo evaluation of an oral drug delivery system for peptides based on S-protected thiolated chitosan.

    PubMed

    Dünnhaupt, Sarah; Barthelmes, Jan; Iqbal, Javed; Perera, Glen; Thurner, Clemens C; Friedl, Heike; Bernkop-Schnürch, Andreas

    2012-06-28

    The aim of the present study was the development and evaluation in vitro as well as in vivo of an oral delivery system based on a novel type of thiolated chitosan, so-called S-protected thiolated chitosan, for the peptide drug antide. The sulfhydryl ligand thioglycolic acid (TGA) was covalently attached to chitosan (CS) in the first step of modification. In the second step, these thiol groups of thiolated chitosan were protected by disulfide bond formation with the thiolated aromatic residue 6-mercaptonicotinamide (6-MNA). Absorptive transport studies of antide were evaluated ex vivo using rat intestinal mucosa. Matrix tablets of each polymer sample were prepared and their effect on the absorption of antide evaluated in vivo in male Sprague-Dawley rats. In addition, tablets were examined in terms of their disintegration, swelling and drug release behavior. The resulting S-protected thiomer (TGA-MNA) exhibited 840μmol of covalently linked 6-MNA per gram thiomer. Based on the implementation of this hydrophobic ligand on the thiolated backbone, the disintegration behavior was reduced greatly and a controlled release of the peptide could be achieved. Furthermore, permeation studies with TGA-MNA on rat intestine revealed a 4.5-fold enhanced absorptive transport of the peptide in comparison to antide in solution. Additional in vivo studies confirmed the potential of this novel conjugate. Oral administration of antide in solution led to only very small detectable quantities in plasma with an absolute and relative bioavailability (BA) of 0.003 and 0.03%, only. In contrast, with antide incorporated in TGA-MNA matrix tablets an absolute and relative BA of 1.4 and 10.9% could be reached, resulting in a 421-fold increased area under the plasma concentration time curve (AUC) compared to the antide solution. According to these results, S-protected thiolated chitosan as oral drug delivery system might be a valuable tool for improving the bioavailability of peptides. Copyright

  15. A comparison of thiolated and disulfide-crosslinked polyethylenimine for nonviral gene delivery.

    PubMed

    Aravindan, Latha; Bicknell, Katrina A; Brooks, Gavin; Khutoryanskiy, Vitaliy V; Williams, Adrian C

    2013-09-01

    Branched polyethylenimine (25 kDa) is thiolated and compared with redox-sensitive crosslinked derivatives. Both polymers thiol contents are assessed; the thiolated polymers have 390-2300 mmol SH groups/mol, whereas the crosslinked polymers have lower thiol contents. Cytotoxicity assays show that both modified polymers give lower hemolysis than unmodified PEI. Increased thiol content increases gene transfer efficiency but also elevates cytotoxicity. Crosslinking improves plasmid DNA condensation and enhances transfection efficiency, but extensive crosslinking overstabilizes the polyplexes and decreases transfection, emphasizing the need to balance polyplex stabilization and unpacking. Thus, at low levels of crosslinking, 25 kDa PEI can be an efficient redox-sensitive carrier system. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Devetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit

    2015-05-01

    Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this

  17. The Scarlet Letter of Alkylation: A Mini Review of Selective Alkylating Agents

    PubMed Central

    Oronsky, Bryan T; Reid, Tony; Knox, Susan J; Scicinski, Jan J

    2012-01-01

    If there were a stigma scale for chemotherapy, alkylating agents would be ranked at the top of the list. The chemical term alkylation is associated with nonselective toxicity, an association that dates back to the use of nitrogen mustards during World War I as chemical warfare agents. That this stigma persists and extends to compounds that, through selectivity, attempt to “tame” the indiscriminate destructive potential of alkylation is the subject of this review. Selective alkylation, as it is referred to herein, constitutes an extremely nascent and dynamic field in oncology. The pharmacodynamic response to this selective strategy depends on a delicate kinetic balance between specificity and the rate and extent of binding. Three representative compounds are presented: RRx-001, 3-bromopyruvate, and TH-302. The main impetus for the development of these compounds has been the avoidance of the serious complications of traditional alkylating agents; therefore, it is the thesis of this review that they should not experience stigma by association. PMID:22937173

  18. Functional characterisation and permeation studies of lyophilised thiolated chitosan xerogels for buccal delivery of insulin.

    PubMed

    Boateng, Joshua S; Mitchell, John C; Pawar, Harshavardhan; Ayensu, Isaac

    2014-01-01

    Stable and mucoadhesive, lyophilised, thiolated chitosan xerogels, loaded with insulin for buccal mucosa deliv- ery, in place of the currently used parenteral route have been developed. The xerogels were backed with impervious ethyl- cellulose laminate to ensure unidirectional release and also loaded with enzyme inhibitor to enhance insulin permeability across the buccal mucosa. Characterisation of xerogels using(1) HNMR confirmed the degree of deacetylation of the syn- thesised thiolated chitosan. The amount of thiol groups immobilised on the modified chitosan was quantified by Ellman's reaction and molecular weight monitored by gel permeation chromatography. The stability of the secondary structure of insulin was examined by attenuated total reflectance Fourier transform infra-red spectroscopy and circular dichroism. In vitro and ex vivo permeation studies were undertaken by using EpiOral ™ and sheep buccal membrane respectively. Insu- lin released from thiolated chitosan xerogels, loaded with aprotinin (enzyme inhibitor and permeation enhancer) showed a 1.7-fold increase in permeation through EpiOral ™ buccal tissue construct compared to the pure drug. However, permea- tion was decreased for xerogels containing the enzyme inhibitor glutathione. Further, aprotinin containing xerogels en- hanced insulin permeation through sheep buccal membrane and demonstrated good linear correlation with the permeation data from the EpiOral ™ study. The results show the potential application of lyoph ilised thiolated chitosan xerogels con- taining aprotinin with improved mucoadhesion, penetration enhancing and enzyme inhibition characteristics for buccal mucosa delivery of macromolecules such as insulin.

  19. Synthesis and fabrication of sized-controlled nanoparticles: Using surface self-assemblies as building blocks for developing supralattices on nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Yee, Chanel Kitmon

    2001-10-01

    A general one-phase synthesis for self-assembling thiols onto gold, platinum, palladium and iridium nanoparticles using tetrahydrofuran (THF) as the solvent, and lithium triethylborohydride (superhydride) as the reducing agent, is presented. Using the same synthetic procedure gold nanoparticles functionalized with 11-hydroxyundecane-1-thiol and 4'-bromo-4-mercaptobiphenyl were prepared to show that the availability and reflexibility of this method could lead to surface fabrication with various type of facial moieties. Alkyl selenide- and alkyl thiolate-functionalized gold nanoparticles were also prepared by the same method at 6°C. The properties were compared to their counterparts made at 25°C. The formation of the Se-Au bond and S-Au bonds was investigated by transmission Fourier transform infrared spectroscopy (FTIR), while the bond nature in each case was examined by x-ray photoelectron spectroscopy (XPS). Particle size was determined by Transmission Electron Microscopy (TEM), and further confirmed by ultraviolet spectroscopy (UV). Superparamagnetic Fe and Fe2O3 nanoparticles were synthesized by ultrasound irradiation and post-fabricated with alkyl sulfonic acids of various chain lengths and octadecyl phosphonic acid. TEM reveals nanoparticles of 5--10 mn in diameter. FTIR spectra suggest that the alkyl chains are packed in a solid-like assembly with packing disorder increasing with the decreasing chain length. The octadecyl sulfonic acid coating displays the lowest magnetization within the sulfonic acid series, which may be explained by the high packing and ordering of the alkyl chains on the particle surface. The smallest value of magnetization in the OPA case suggests that the spin-state of surface Fe3+ ions is affected by the bonded surfactant, and that the phosphonate empty d-orbitals increase magnetic interactions between neighboring Fe3+ spins. To build superstructures beyond the monolayer level, a general route for the attachment of amino

  20. Mucoadhesive properties and interaction with P-glycoprotein (P-gp) of thiolated-chitosans and -glycol chitosans and corresponding parent polymers: a comparative study.

    PubMed

    Trapani, Adriana; Palazzo, Claudio; Contino, Marialessandra; Perrone, Maria Grazia; Cioffi, Nicola; Ditaranto, Nicoletta; Colabufo, Nicola Antonio; Conese, Massimo; Trapani, Giuseppe; Puglisi, Giovanni

    2014-03-10

    The aim of the present work was to compare the mucoadhesive and efflux pump P-glycoprotein (P-gp) interacting properties of chitosan (CS)- and glycolchitosan (GCS)-based thiomers and corresponding unmodified parent polymers. For this purpose, the glycol chitosan-N-acetyl-cysteine (GCS-NAC) and glycol chitosan-glutathione (GCS-GSH) thiomers were prepared under simple and mild conditions. Their mucoadhesive characteristics were studied by turbidimetric and zeta potential measurements. The P-gp interacting properties were evaluated measuring the effects of thiolated- and unmodified-polymers on the bidirectional transport (BA/AB) of rhodamine-123 across Caco-2 cells as well as in the calcein-AM and ATPase activity assays. Although all the thiomers and unmodified polymers showed optimal-excellent mucoadhesive properties, the best mucoadhesive performances have been obtained by CS and CS-based thiomers. Moreover, it was found that the pretreatment of Caco-2 cell monolayer with GCS-NAC or GCS restores Rho-123 cell entrance by inhibiting P-gp activity. Hence, GCS-NAC and GCS may constitute new biomaterials useful for improving the bioavailability of P-gp substrates.

  1. Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for cyclosporine A: Improving in vivo ocular distribution.

    PubMed

    Shen, Jie; Deng, Yanping; Jin, Xuefeng; Ping, Qineng; Su, Zhigui; Li, Lejun

    2010-12-15

    Ophthalmic drug delivery with long pre-corneal retention time and high penetration into aqueous humor and intraocular tissues is the key-limiting factor for the treatment of ocular diseases and disorders. Within this study, the conjugate of cysteine-polyethylene glycol monostearate (Cys-PEG-SA) was synthesized and was used to compose the thiolated nanostructured lipid carrier (Cys-NLC) as a potential nanocarrier for the topical ocular administration of cyclosporine A (CyA). The rapid cross-linking process of Cys-PEG-SA in vitro was found in simulated physiological environment. The in vitro CyA release from Cys-NLC was slower than that of non-thiolated nanostructured lipid carriers (NLC) due to the cross-linking of thiomers on the surface of nanocarriers. After topical ocular administration in rabbits, the in vivo ocular distribution of CyA was investigated in comparison of Cys-NLC with non-thiolated NLCs and oil solution. The results showed that CyA concentration in systemic blood was very low and close to the detection limit. The area-under-the-curve (AUC(0-24h)) and mean retention time (MRT(0-24h)) of Cys-NLC group in aqueous humor, tear and eye tissues were significantly higher than that of oil solution, non-thiolated NLCs (p<0.05). These results demonstrated that the thiolated NLC could deliver high level of CyA into intraocular tissues due to its bioadhesive property and sustained release characteristics. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. In vivo evaluation of anionic thiolated polymers as oral delivery systems for efflux pump inhibition.

    PubMed

    Palmberger, Thomas F; Laffleur, Flavia; Greindl, Melanie; Bernkop-Schnürch, Andreas

    2015-08-01

    Recently, the cationic polymer thiolated chitosan has been reported to modulate drug absorption by inhibition of intestinal efflux pumps. The objective of this study was to evaluate in vitro and in vivo whether thiolated anionic biopolymers also show an efflux pump inhibitory effect in order to improve intestinal transcellular drug uptake. Therefore, three thiomers have been synthesized due covalent attachment of cysteine to various polymer backbones: pectin-cysteine (pect-cys), carboxymethylcellulose-cysteine (CMC-cys) and alginate-cysteine (alg-cys). In vitro, the permeation enhancing properties of these thiomers and their corresponding unmodified polymers have been evaluated on rat small intestine in Ussing-type chambers, using sulforhodamine 101 (SR-101) as MRP2 model substrate. In comparison to buffer only, SR-101 transport in presence of pect-cys, CMC-cys and alg-cys was improved 1.5-fold, 1.8-fold and 3.0-fold, respectively. Due to the comparatively best in vitro performance of thiolated alginate, it has been chosen for in vivo studies: a SR-101 solution containing 4% (w/v) alg-cys led to an AUC0 ≥ 12 of SR-101 of 109 ng ml(-1)h in rats representing a 3.8-fold improvement in comparison to a SR-101 buffer solution. Unmodified alginate improved the AUC0 ≥ 12 of SR-101 by a factor of 1.9. These findings suggest thiolated alginate as promising auxiliary agent for drugs being anionic efflux pump substrates, since the oral bioavailability of a MRP2 substrate could be significantly improved. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  4. Mucoadhesive nanoparticles made of thiolated quaternary chitosan crosslinked with hyaluronan.

    PubMed

    Zambito, Ylenia; Felice, Francesca; Fabiano, Angela; Di Stefano, Rossella; Di Colo, Giacomo

    2013-01-30

    Mucoadhesive polymeric nanoparticles intended for drug transport across the gastrointestinal mucosa were prepared from quaternary ammonium-chitosan conjugates synthesised from reduced-MW chitosan (32 kDa). Conjugates contained pendant moieties of 2-4 adjacent diethyl-dimethylene-ammonium groups substituted on repeating units (26-55%). Conjugates were thiolated via amide bonds with thioglycolic acid to yield products with thiol content in the 35-87 μmol/g range. Nanoparticles with mean size in the 270-370 nm range and positive zeta-potential (+3.7 to +12.5 mV) resulted from ionotropic gelation of the thiolated conjugates with de-polymerised hyaluronic acid (470 kDa). The nanoparticles were fairly stable in size and thiol content and showed a significant mucoadhesivity, matching and even exceeding that of the constituent polymers. Nanoparticles were internalised by endothelial progenitor cells in direct relation to their surface charge intensity. Nanoparticle uptake significantly improved cell viability and resistance to oxidation. The lyophilised nanoparticles were re-dispersible and could make a manageable formulation for oral use. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Stereoconvergent Amine-Directed Alkyl–Alkyl Suzuki Reactions of Unactivated Secondary Alkyl Chlorides

    PubMed Central

    Lu, Zhe; Wilsily, Ashraf; Fu, Gregory C.

    2011-01-01

    A new family of stereoconvergent cross-couplings of unactivated secondary alkyl electrophiles has been developed, specifically, arylamine-directed alkyl–alkyl Suzuki reactions. This represents the first such investigation to be focused on the use of alkyl chlorides as substrates. Structure-enantioselectivity studies are consistent with the nitrogen, not the aromatic ring, serving as the primary site of coordination of the arylamine to the catalyst. The rate law for this asymmetric cross-coupling is compatible with transmetalation being the turnover-limiting step of the catalytic cycle. PMID:21553917

  6. The effect of the antioxidant on the properties of thiolated poly(aspartic acid) polymers in aqueous ocular formulations.

    PubMed

    Budai-Szűcs, Mária; Horvát, Gabriella; Gyarmati, Benjámin; Szilágyi, Barnabás Áron; Szilágyi, András; Berkó, Szilvia; Ambrus, Rita; Szabó-Révész, Piroska; Sandri, Giuseppina; Bonferoni, Maria Cristina; Caramella, Carla; Csányi, Erzsébet

    2017-04-01

    Thiolated polymers are a promising new group of excipients, but their stability against atmospheric oxidation has not been investigated in detail, and only a few efforts have been made to improve their stability. The oxidation of the thiol groups in solutions of thiolated polymers may result in a decrease of mucoadhesion and unpredictable in situ gelation. The aims of our work were to study the stability of aqueous solutions of thiolated polymers and the effects of stabilizing agents. We investigated thiolated poly(aspartic acid) polymers stabilized with dithiothreitol, glutathione or acetylcysteine. The effects of these antioxidants on the gel structure, mucoadhesion and drug release were determined by means of scanning electron microscopy, swelling, rheology, adhesion and drug release tests. It was concluded that the stability of polymer solutions containing antioxidants is sufficient for one day. Polymers stabilized with dithiotreitol demonstrated fast swelling and drug release, but weaker mucoadhesion as compared with the other samples. Polymers stabilized with glutathione displayed the weakest cohesive properties, resulting in fast and uncontrolled drug release and moderate mucoadhesion. Acetylcysteine-stabilized polymers exhibited an optimum cross-linked structure, with free thiol groups ensuring polymer-mucin interactions, resulting in the best mucoadhesive properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Alkylation of enolates: An electrophilicity perspective

    NASA Astrophysics Data System (ADS)

    Elango, M.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P. K.

    Enolates are ambient nucleophiles, and alkylation can occur either at a carbon or at an oxygen site. It is known that the ratio of C/O alkylation depends significantly on various factors, including the type of enolate, alkylating agent, site of alkylation, and solvent environment. Analysis of regioselectivity and solvent effects on alkylation of lithium enolates is investigated using various reactivity descriptors, including generalized philicity. These results point out the reliability of both global and local reactivity descriptors in providing significant information about site selectivity and chemical reactivity of lithium enolates.

  8. [Use of a novel polymer, the in-situ gelling mucoadhesive thiolated poly(aspartic acid) in ophthalmic drug delivery].

    PubMed

    Horvát, Gabriella; Budai-Szűcs, Mária; Berkó, Szilvia; Szabóné-Révész, Piroska; Gyarmati, Benjámin; Szilágyi, Barnabas Áron; Szilágyi, András; Csányi Erzsébet

    2015-01-01

    The bioavailability of drugs used on mucosal surfaces can be increased by the use of mucoadhesive polymers. A new type of mucoadhesive polymers is the group of thiolated polymers with thiol group containing side chains. These polymers are able to form covalent bonds (disulphide linkages) with the mucin glycoproteins. For the formulation of an ocular drug delivery system (DDS) thiolated poly(aspartic acid) polymer (ThioPASP) was used. Our aim was to determine their biocompatibility, mucoadhesion and drug release property. According to the results it can be established that the thiolated poly(aspartic acid) polymers can be a potential vehicle of an ocular drug delivery system due to their biocompatibility, good mucoadhesive property and drug release profile. Thanks to their properties controlled drug delivery can be achieved and bioavailability of the ophthalmic formulation can be increased, while the usage frequency can be decreased.

  9. The effect of some general anaesthetics on the surface potential of lipid monolayers

    PubMed Central

    Bangham, A.D.; Mason, W.

    1979-01-01

    1 This study sought to investigate the report by Ginsberg (1978) that 0.7 M ethanol brought about a + 100 mV change (ΔΔV) in the surface potential of glyceryl monooleate (GMO) monolayers formed on KCl, although he predicted that a ΔΔV of -10 mV should have been found. 2 The effect of general anaesthetics such as n-alkyl alcohols and pentobarbitone on surface potential (ΔV) and surface tension (γ) of lipid monolayers formed on 145 mM KCl from either glyceryl monooleate (GMO) or phosphatidyl choline (PC) was examined with an Americium-241 air electrode assembly (ΔV) and a platinized platinum dipping plate and force balance (γ). 3 It was found that, as predicted by Ginsberg (1978), addition of 0.7 M ethanol to the aqueous phase bathing either PC or GMO monolayers brings about a negative-going change in interfacial potential (ΔΔV). 4 The magnitude of ΔΔV is dependent in a linear fashion on ethanol concentration. 5 Longer chain length alcohols up to n-decanol also bring about a negative going change in ΔΔV, and the dependence of ΔΔV on anaesthetic activity, with respect to increasing chain length of anaesthetic, is consistent with Traube's law. 6 Pentobarbitone added to the aqueous phase bathing the monolayer also elicits a negative ΔΔV, a finding which rules out the possibility of adsorption of the volatile alcohols to the measuring electrode. 7 The findings are discussed in terms of the proposition that increasing disorder in an array of fixed dipoles, such as might occur in a bilayer exposed to anaesthetic, would result in a lowering of the electrostatic barrier to the predominantly impermeable cation. PMID:465879

  10. Rapid Surface Functionalization of Hydrogen-Terminated Silicon by Alkyl Silanols.

    PubMed

    Escorihuela, Jorge; Zuilhof, Han

    2017-04-26

    Surface functionalization of inorganic semiconductor substrates, particularly silicon, has focused attention toward many technologically important applications, involving photovoltaic energy, biosensing and catalysis. For such modification processes, oxide-free (H-terminated) silicon surfaces are highly required, and different chemical approaches have been described in the past decades. However, their reactivity is often poor, requiring long reaction times (2-18 h) or the use of UV light (10-30 min). Here, we report a simple and rapid surface functionalization for H-terminated Si(111) surfaces using alkyl silanols. This catalyst-free surface reaction is fast (15 min at room temperature) and can be accelerated with UV light irradiation, reducing the reaction time to 1-2 min. This grafting procedure leads to densely packed organic monolayers that are hydrolytically stable (even up to 30 days at pH 3 or 11) and can display excellent antifouling behavior against a range of organic polymers.

  11. Thioimidazolium Ionic Liquids as Tunable Alkylating Agents.

    PubMed

    Guterman, Ryan; Miao, Han; Antonietti, Markus

    2018-01-19

    Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

  12. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy.

    PubMed

    DeVetter, Brent M; Mukherjee, Prabuddha; Murphy, Catherine J; Bhargava, Rohit

    2015-05-21

    Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min(-1). This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.

  13. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy

    PubMed Central

    DeVetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit

    2015-01-01

    Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min 1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes. PMID:25905515

  14. Influence of heme-thiolate in shaping the catalytic properties of a bacterial nitric-oxide synthase.

    PubMed

    Hannibal, Luciana; Somasundaram, Ramasamy; Tejero, Jesús; Wilson, Adjele; Stuehr, Dennis J

    2011-11-11

    Nitric-oxide synthases (NOS) are heme-thiolate enzymes that generate nitric oxide (NO) from L-arginine. Mammalian and bacterial NOSs contain a conserved tryptophan (Trp) that hydrogen bonds with the heme-thiolate ligand. We mutated Trp(66) to His and Phe (W66H, W66F) in B. subtilis NOS to investigate how heme-thiolate electronic properties control enzyme catalysis. The mutations had opposite effects on heme midpoint potential (-302, -361, and -427 mV for W66H, wild-type (WT), and W66F, respectively). These changes were associated with rank order (W66H < WT < W66F) changes in the rates of oxygen activation and product formation in Arg hydroxylation and N-hydroxyarginine (NOHA) oxidation single turnover reactions, and in the O(2) reactivity of the ferrous heme-NO product complex. However, enzyme ferrous heme-O(2) autoxidation showed an opposite rank order. Tetrahydrofolate supported NO synthesis by WT and the mutant NOS. All three proteins showed similar extents of product formation (L-Arg → NOHA or NOHA → citrulline) in single turnover studies, but the W66F mutant showed a 2.5 times lower activity when the reactions were supported by flavoproteins and NADPH. We conclude that Trp(66) controls several catalytic parameters by tuning the electron density of the heme-thiolate bond. A greater electron density (as in W66F) improves oxygen activation and reactivity toward substrate, but decreases heme-dioxy stability and lowers the driving force for heme reduction. In the WT enzyme the Trp(66) residue balances these opposing effects for optimal catalysis.

  15. A New Look at the Role of Thiolate Ligation in Cytochrome P450

    PubMed Central

    Yosca, Timothy H.; Ledray, Aaron P.; Ngo, Joanna; Green, Michael T.

    2017-01-01

    Protonated ferryl (or iron(IV)hydroxide) intermediates have been characterized in several thiolate-ligated heme proteins that are known to catalyze C-H bond activation. The basicity of the ferryl intermediates in these species has been proposed to play a critical role in facilitating this chemistry, allowing hydrogen abstraction at reduction potentials below those that would otherwise lead to oxidative degradation of the enzyme. In this contribution, we discuss the events that led to the assignment and characterization of the unusual iron(IV)hydroxide species, highlighting experiments that provided a quantitative measure of the ferryl basicity, the iron(IV)hydroxide pKa. We then turn to the importance of the iron(IV)hydroxide state, presenting a new way of looking at the role of thiolate ligation in these systems. PMID:28091754

  16. Development of mannose-anchored thiolated amphotericin B nanocarriers for treatment of visceral leishmaniasis.

    PubMed

    Shahnaz, Gul; Edagwa, Benson J; McMillan, JoEllyn; Akhtar, Sohail; Raza, Abida; Qureshi, Naveeda A; Yasinzai, Masoom; Gendelman, Howard E

    2017-01-01

    Our goal was to improve treatment outcomes for visceral leishmaniasis by designing nanocarriers that improve drug biodistribution and half-life. Thus, long-acting mannose-anchored thiolated chitosan amphotericin B nanocarrier complexes (MTC AmB) were developed and characterized. A mannose-anchored thiolated chitosan nanocarrier was manufactured and characterized. MTC AmB was examined for cytotoxicity, biocompatibility, uptake and antimicrobial activities. MTC AmB was rod shaped with a size of 362 nm. MTC AmB elicited 90% macrophage viability and 71-fold enhancement in drug uptake compared with native drug. The antileishmanial IC 50 for MTC AmB was 0.02 μg/ml compared with 0.26 μg/ml for native drug. These studies show that MTC can serve as a platform for clearance of Leishmania in macrophages.

  17. Highly Stable Bonding of Thiol Monolayers to Hydrogen-Terminated Si via Supercritical Carbon Dioxide: Toward a Super Hydrophobic and Bioresistant Surface.

    PubMed

    Bhartia, Bhavesh; Puniredd, Sreenivasa Reddy; Jayaraman, Sundaramurthy; Gandhimathi, Chinnasamy; Sharma, Mohit; Kuo, Yen-Chien; Chen, Chia-Hao; Reddy, Venugopal Jayarama; Troadec, Cedric; Srinivasan, Madapusi Palavedu

    2016-09-21

    Oxide-free silicon chemistry has been widely studied using wet-chemistry methods, but for emerging applications such as molecular electronics on silicon, nanowire-based sensors, and biochips, these methods may not be suitable as they can give rise to defects due to surface contamination, residual solvents, which in turn can affect the grafted monolayer devices for practical applications. Therefore, there is a need for a cleaner, reproducible, scalable, and environmentally benign monolayer grafting process. In this work, monolayers of alkylthiols were deposited on oxide-free semiconductor surfaces using supercritical carbon dioxide (SCCO2) as a carrier fluid owing to its favorable physical properties. The identity of grafted monolayers was monitored with Fourier transform infrared (FTIR) spectroscopy, high-resolution X-ray photoelectron spectroscopy (HRXPS), XPS, atomic force microscopy (AFM), contact angle measurements, and ellipsometry. Monolayers on oxide-free silicon were able to passivate the surface for more than 50 days (10 times than the conventional methods) without any oxide formation in ambient atmosphere. Application of the SCCO2 process was further extended by depositing alkylthiol monolayers on fragile and brittle 1D silicon nanowires (SiNWs) and 2D germanium substrates. With the recent interest in SiNWs for biological applications, the thiol-passivated oxide-free silicon nanowire surfaces were also studied for their biological response. Alkylthiol-functionalized SiNWs showed a significant decrease in cell proliferation owing to their superhydrophobicity combined with the rough surface morphology. Furthermore, tribological studies showed a sharp decrease in the coefficient of friction, which was found to be dependent on the alkyl chain length and surface bond. These studies can be used for the development of cost-effective and highly stable monolayers for practical applications such as solar cells, biosensors, molecular electronics, micro- and nano

  18. Self-assembled PEG monolayer based SPR immunosensor for label-free detection of insulin.

    PubMed

    Gobi, K Vengatajalabathy; Iwasaka, Hiroyuki; Miura, Norio

    2007-02-15

    A simple and rapid continuous-flow immunosensor based on surface plasmon resonance (SPR) has been developed for detection of insulin as low as 1 ng ml-1 (ppb) with a response time of less than 5 min. At first, a heterobifunctional oligo(ethyleneglycol)-dithiocarboxylic acid derivative (OEG-DCA) containing dithiol and carboxyl end groups was used to functionalize the thin Au-film of SPR chip. Insulin was covalently bound to the Au-thiolate monolayer of OEG-DCA for activating the sensor surface to immunoaffinity interactions. An on-line competitive immunosensing principle is examined for detection of insulin, in which the direct affinity binding of anti-insulin antibody to the insulin on sensor surface is examined in the presence and absence of various concentrations of insulin. Immunoreaction of anti-insulin antibody with the sensor surface was optimized with reference to antibody concentration, sample analysis time and flow-rate to provide the desired detection limit and determination range. With the immunosensor developed, the lowest detectable concentration of insulin is 1 ng ml-1 and the determination range covers a wide concentration of 1-300 ng ml-1. The developed OEG-monolayer based sensor chip exhibited high resistance to non-specific adsorption of proteins, and an uninterrupted highly sensitive detection of insulin from insulin-impregnated serum samples has been demonstrated. After an immunoreaction cycle, active sensor surface was regenerated simply by a brief flow of an acidic buffer (glycine.HCl; pH 2.0) for less than 1 min. A same sensor chip was found reusable for more than 25 cycles without an appreciable change in the original sensor activity.

  19. Confirmation of a de novo structure prediction for an atomically precise monolayer-coated silver nanoparticle

    PubMed Central

    Conn, Brian E.; Atnagulov, Aydar; Yoon, Bokwon; Barnett, Robert N.; Landman, Uzi; Bigioni, Terry P.

    2016-01-01

    Fathoming the principles underpinning the structures of monolayer-coated molecular metal nanoparticles remains an enduring challenge. Notwithstanding recent x-ray determinations, coveted veritable de novo structural predictions are scarce. Building on recent syntheses and de novo structure predictions of M3AuxAg17−x(TBBT)12, where M is a countercation, x = 0 or 1, and TBBT is 4-tert-butylbenzenethiol, we report an x-ray–determined structure that authenticates an a priori prediction and, in conjunction with first-principles theoretical analysis, lends force to the underlying forecasting methodology. The predicted and verified Ag(SR)3 monomer, together with the recently discovered Ag2(SR)5 dimer and Ag3(SR)6 trimer, establishes a family of unique mount motifs for silver thiolate nanoparticles, expanding knowledge beyond the earlier-known Au-S staples in thiol-capped gold nanoclusters. These findings demonstrate key principles underlying ligand-shell anchoring to the metal core, as well as unique T-like benzene dimer and cyclic benzene trimer ligand bundling configurations, opening vistas for rational design of metal and alloy nanoparticles. PMID:28138537

  20. Metal dependent motif transition in a self-assembled monolayer of bipyridine derivatives via coordination: An STM study.

    PubMed

    Wang, Yi; Yuan, Qunhui; Xu, Hongbo; Zhu, Xuefeng; Gan, Wei

    2016-07-21

    Low-dimensional molecular motifs with diversity developed via the on-surface chemistry are attracting growing interest for their potential in advanced nanofabrication. In this work, scanning tunneling microscopy was employed to investigate the in situ and ex situ metal coordinations between 4,4'-ditetradecyl-2,2'-bipyridine (bpy) and Zn(ii) or Cu(ii) ions at a highly oriented pyrolytic graphite (HOPG)/1-phenyloctane interface under ambient conditions. The results demonstrate that the bpy adopts a flat-lying orientation with its substituted alkyl chains in a tail-to-tail arrangement in a bpy monolayer. For the in situ coordination, the bpy/Zn(ii) and bpy/Cu(ii) complexes are aligned in edge-on fashions, wherein the bpy stands vertically on the HOPG surface and interdigitates at the alkyl chains. In the two-dimensional arrays of ex situ coordinated complexes, metal dependent motifs have been observed with Zn(ii) and Cu(ii), wherein the bipyridine moieties are parallel to the graphite surface. These results suggest that the desired on-surface coordination architectures may be achieved by the intentional selection of the metal centers.

  1. Transition-Metal-Catalyzed C-H Alkylation Using Alkenes.

    PubMed

    Dong, Zhe; Ren, Zhi; Thompson, Samuel J; Xu, Yan; Dong, Guangbin

    2017-07-12

    Alkylation reactions represent an important organic transformation to form C-C bonds. In addition to conventional approaches with alkyl halides or sulfonates as alkylating agents, the use of unactivated olefins for alkylations has become attractive from both cost and sustainability viewpoints. This Review summarizes transition-metal-catalyzed alkylations of various carbon-hydrogen bonds (addition of C-H bonds across olefins) using regular olefins or 1,3-dienes up to May 2016. According to the mode of activation, the Review is divided into two sections: alkylation via C-H activation and alkylation via olefin activation.

  2. Thiolated silicone oil: Synthesis, gelling and mucoadhesive properties

    PubMed Central

    Partenhauser, Alexandra; Laffleur, Flavia; Rohrer, Julia; Bernkop-Schnürch, Andreas

    2015-01-01

    The aim of this study was the development of novel thiolated silicone oils and their evaluation with regard to gelling and mucoadhesive properties. A thiol coupling of 220 ± 14 and 127 ± 33 μmol/g polymer for 3-mercaptopropionic acid (MPA)- and cysteine-coupled silicone oil was determined, respectively. The dynamic viscosity of MPA–silicone raised significantly (p < 0.000001) after oxidation with iodine to a maximum of 523-fold within 1 h. During tensile studies, MPA–silicone showed both the highest results for total work of adhesion (TWA) and maximum detachment force (MDF) with a 3.8- and 3.4-fold increase, respectively, compared to the control. As far as the residence time on small intestinal mucosa is concerned, both silicone conjugates were detectable in almost the same quantities for up to 8 h with 56.9 ± 3.3 and 47.8 ± 8.9% of the initially applied conjugated silicone oil. Thiolated silicone oils can be regarded superior in comparison to commonly used silicone oils due to a prolonged retention time in the small intestine as site of action. Gelling and mucoadhesive features are advantageous for antiflatulent as well as mucoprotective biomaterials. Thus, these novel thiomers seem promising for an upgrade of currently available products for the treatment of dyspepsia, reflux oesophagitis and even inflammatory bowel diseases such as ulcerative colitis or Crohn’s disease. PMID:25660565

  3. Development of mannose-anchored thiolated amphotericin B nanocarriers for treatment of visceral leishmaniasis

    PubMed Central

    Shahnaz, Gul; Edagwa, Benson J; McMillan, JoEllyn; Akhtar, Sohail; Raza, Abida; Qureshi, Naveeda A; Yasinzai, Masoom; Gendelman, Howard E

    2017-01-01

    Aim: Our goal was to improve treatment outcomes for visceral leishmaniasis by designing nanocarriers that improve drug biodistribution and half-life. Thus, long-acting mannose-anchored thiolated chitosan amphotericin B nanocarrier complexes (MTC AmB) were developed and characterized. Materials & methods: A mannose-anchored thiolated chitosan nanocarrier was manufactured and characterized. MTC AmB was examined for cytotoxicity, biocompatibility, uptake and antimicrobial activities. Results: MTC AmB was rod shaped with a size of 362 nm. MTC AmB elicited 90% macrophage viability and 71-fold enhancement in drug uptake compared with native drug. The antileishmanial IC50 for MTC AmB was 0.02 μg/ml compared with 0.26 μg/ml for native drug. Conclusion: These studies show that MTC can serve as a platform for clearance of Leishmania in macrophages. PMID:27879160

  4. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature.

    PubMed

    Do, Hien-Quang; Bachman, Shoshana; Bissember, Alex C; Peters, Jonas C; Fu, Gregory C

    2014-02-05

    The development of a mild and general method for the alkylation of amides with relatively unreactive alkyl halides (i.e., poor substrates for SN2 reactions) is an ongoing challenge in organic synthesis. We describe herein a versatile transition-metal-catalyzed approach: in particular, a photoinduced, copper-catalyzed monoalkylation of primary amides. A broad array of alkyl and aryl amides (as well as a lactam and a 2-oxazolidinone) couple with unactivated secondary (and hindered primary) alkyl bromides and iodides using a single set of comparatively simple and mild conditions: inexpensive CuI as the catalyst, no separate added ligand, and C-N bond formation at room temperature. The method is compatible with a variety of functional groups, such as an olefin, a carbamate, a thiophene, and a pyridine, and it has been applied to the synthesis of an opioid receptor antagonist. A range of mechanistic observations, including reactivity and stereochemical studies, are consistent with a coupling pathway that includes photoexcitation of a copper-amidate complex, followed by electron transfer to form an alkyl radical.

  5. Polyimides with pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1982-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  6. In vitro BMP-2 peptide release from thiolated chitosan based hydrogel.

    PubMed

    Liu, Xujie; Yu, Bo; Huang, Qianli; Liu, Rui; Feng, Qingling; Cai, Qiang; Mi, Shengli

    2016-12-01

    Thiolated chitosan based thermo-sensitive hydrogel is a water soluble system and the existing thiol groups are beneficial for the delivery of cysteine-rich peptides. In the present study, a kind of thiolated chitosan, i.e. chitosan-4-thio-butylamidine (CS-TBA) conjugate was characterized and used to prepare CS-TBA/hydroxyapatite (HA)/beta-glycerophosphate disodium (β-GP) thermo-sensitive hydrogel. The cysteine terminated peptide 24 (P24) containing residues 73-92 of the knuckle epitope of BMP-2 (N→C: KIPKASSVPTELSAISTLYLSGGC) was synthesized and characterized. The release behavior of P24 from CS-TBA based hydrogel was investigated in vitro. The thiol groups in CS-TBA may react with thiol groups in P24, thus decreases the P24 release rate and maintains the peptide release for a longer time compared with unmodified chitosan based hydrogel. Moreover, the bioactivity of P24 is preserved during release process. These results indicate that P24 loaded CS-TBA based thermosensitive hydrogel is a potential material for minimally invasive surgery of bone repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Preparation and evaluation of microspheres of xyloglucan and its thiolated xyloglucan derivative.

    PubMed

    Sonawane, Savita; Bhalekar, Mangesh; Shimpi, Shamkant

    2014-08-01

    Xyloglucan is a natural polymer reported to possess mucoadhesive properties. To enhance the mucoadhesion potential, xyloglucan was thiolated with cysteine. The microspheres of xyloglucan were prepared using a biocompatible crosslinker sodium trimetaphosphate and it was optimized for formulation variables, namely polymer concentration, internal:external phase ratio and stirring speed using a Box-Behnken experimental design. The formulation was also optimized for performance parameters like entrapment, t80 and % mucoadhesion. The microspheres were characterized by Fourier transform infrared spectroscopy, DSC and SEM for the optimum formula and then were reproduced by replacing the xyloglucan with thiomer. The microspheres formed showed entrapment efficiency of about 80%, t80 of about 400min and % mucoadhesion of 60% while same for thiomer were 90%, 500min and 80% respectively. In oral glucose tolerance test protocol the thiomer microspheres showed significant reduction in blood glucose levels. Thus thiolated xyloglucan offers a better polymer for multiparticulate drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Metal-Assisted Oxo Atom Addition to an Fe(III) Thiolate.

    PubMed

    Villar-Acevedo, Gloria; Lugo-Mas, Priscilla; Blakely, Maike N; Rees, Julian A; Ganas, Abbie S; Hanada, Erin M; Kaminsky, Werner; Kovacs, Julie A

    2017-01-11

    Cysteinate oxygenation is intimately tied to the function of both cysteine dioxygenases (CDOs) and nitrile hydratases (NHases), and yet the mechanisms by which sulfurs are oxidized by these enzymes are unknown, in part because intermediates have yet to be observed. Herein, we report a five-coordinate bis-thiolate ligated Fe(III) complex, [Fe III (S 2 Me2 N 3 (Pr,Pr))] + (2), that reacts with oxo atom donors (PhIO, IBX-ester, and H 2 O 2 ) to afford a rare example of a singly oxygenated sulfenate, [Fe III (η 2 -S Me2 O)(S Me2 )N 3 (Pr,Pr)] + (5), resembling both a proposed intermediate in the CDO catalytic cycle and the essential NHase Fe-S(O) Cys114 proposed to be intimately involved in nitrile hydrolysis. Comparison of the reactivity of 2 with that of a more electron-rich, crystallographically characterized derivative, [Fe III S 2 Me2 N Me N 2 amide (Pr,Pr)] - (8), shows that oxo atom donor reactivity correlates with the metal ion's ability to bind exogenous ligands. Density functional theory calculations suggest that the mechanism of S-oxygenation does not proceed via direct attack at the thiolate sulfurs; the average spin-density on the thiolate sulfurs is approximately the same for 2 and 8, and Mulliken charges on the sulfurs of 8 are roughly twice those of 2, implying that 8 should be more susceptible to sulfur oxidation. Carboxamide-ligated 8 is shown to be unreactive towards oxo atom donors, in contrast to imine-ligated 2. Azide (N 3 - ) is shown to inhibit sulfur oxidation with 2, and a green intermediate is observed, which then slowly converts to sulfenate-ligated 5. This suggests that the mechanism of sulfur oxidation involves initial coordination of the oxo atom donor to the metal ion. Whether the green intermediate is an oxo atom donor adduct, Fe-O═I-Ph, or an Fe(V)═O remains to be determined.

  9. Rapid Surface Functionalization of Hydrogen-Terminated Silicon by Alkyl Silanols

    PubMed Central

    2017-01-01

    Surface functionalization of inorganic semiconductor substrates, particularly silicon, has focused attention toward many technologically important applications, involving photovoltaic energy, biosensing and catalysis. For such modification processes, oxide-free (H-terminated) silicon surfaces are highly required, and different chemical approaches have been described in the past decades. However, their reactivity is often poor, requiring long reaction times (2–18 h) or the use of UV light (10–30 min). Here, we report a simple and rapid surface functionalization for H-terminated Si(111) surfaces using alkyl silanols. This catalyst-free surface reaction is fast (15 min at room temperature) and can be accelerated with UV light irradiation, reducing the reaction time to 1–2 min. This grafting procedure leads to densely packed organic monolayers that are hydrolytically stable (even up to 30 days at pH 3 or 11) and can display excellent antifouling behavior against a range of organic polymers. PMID:28409624

  10. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  11. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  12. Gene silencing activity of siRNA polyplexes based on thiolated N,N,N-trimethylated chitosan.

    PubMed

    Varkouhi, Amir K; Verheul, Rolf J; Schiffelers, Raymond M; Lammers, Twan; Storm, Gert; Hennink, Wim E

    2010-12-15

    N,N,N-Trimethylated chitosan (TMC) is a biodegradable polymer emerging as a promising nonviral vector for nucleic acid and protein delivery. In the present study, we investigated whether the introduction of thiol groups in TMC enhances the extracellular stability of the complexes based on this polymer and promotes the intracellular release of siRNA. The gene silencing activity and the cellular cytotoxicity of polyplexes based on thiolated TMC were compared with those based on the nonthiolated counterpart and the regularly used lipidic transfection agent Lipofectamine. Incubation of H1299 human lung cancer cells expressing firefly luciferase with siRNA/thiolated TMC polyplexes resulted in 60-80% gene silencing activity, whereas complexes based on nonthiolated TMC showed less silencing (40%). The silencing activity of the complexes based on Lipofectamine 2000 was about 60-70%. Importantly, the TMC-SH polyplexes retained their silencing activity in the presence of hyaluronic acid, while nonthiolated TMC polyplexes hardly showed any silencing activity, demonstrating their stability against competing anionic macromolecules. Under the experimental conditions tested, the cytotoxicity of the thiolated and nonthiolated siRNA complexes was lower than those based on Lipofectamine. Given the good extracellular stability and good silencing activity, it is concluded that polyplexes based on TMC-SH are attractive systems for further in vivo evaluations.

  13. Molecular design of sequence specific DNA alkylating agents.

    PubMed

    Minoshima, Masafumi; Bando, Toshikazu; Shinohara, Ken-ichi; Sugiyama, Hiroshi

    2009-01-01

    Sequence-specific DNA alkylating agents have great interest for novel approach to cancer chemotherapy. We designed the conjugates between pyrrole (Py)-imidazole (Im) polyamides and DNA alkylating chlorambucil moiety possessing at different positions. The sequence-specific DNA alkylation by conjugates was investigated by using high-resolution denaturing polyacrylamide gel electrophoresis (PAGE). The results showed that polyamide chlorambucil conjugates alkylate DNA at flanking adenines in recognition sequences of Py-Im polyamides, however, the reactivities and alkylation sites were influenced by the positions of conjugation. In addition, we synthesized conjugate between Py-Im polyamide and another alkylating agent, 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). DNA alkylation reactivies by both alkylating polyamides were almost comparable. In contrast, cytotoxicities against cell lines differed greatly. These comparative studies would promote development of appropriate sequence-specific DNA alkylating polyamides against specific cancer cells.

  14. Mass spectral analysis of long chain alkyl aromatic compounds synthesized from alpha-olefin alkylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, M.T.; Hudson, J.D.

    1994-12-31

    Long chain alkyl aromatic compounds are important petrochemicals with many applications. They are generally synthesized by alkylating the corresponding aromatic nucleus. In this report, the authors will describe the mass spectral fragmentation of alkylphenols and alkylsalicylates.

  15. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under this...

  16. Use of Self-Assembled Monolayers of Different Wettabilities To Study Surface Selection and Primary Adhesion Processes of Green Algal (Enteromorpha) Zoospores

    PubMed Central

    Callow, Maureen E.; Callow, J. A.; Ista, Linnea K.; Coleman, Sarah E.; Nolasco, Aleece C.; López, Gabriel P.

    2000-01-01

    We investigated surface selection and adhesion of motile zoospores of a green, macrofouling alga (Enteromorpha) to self-assembled monolayers (SAMs) having a range of wettabilities. The SAMs were formed from alkyl thiols terminated with methyl (CH3) or hydroxyl (OH) groups or mixtures of CH3- and OH-terminated alkyl thiols and were characterized by measuring the advancing contact angles and by X-ray photoelectron spectroscopy. There was a positive correlation between the number of spores that attached to the SAMs and increasing contact angle (hydrophobicity). Moreover, the sizes of the spore groups (adjacent spores touching) were larger on the hydrophobic SAMs. Video microscopy of a patterned arrangement of SAMs showed that more zoospores were engaged in swimming and “searching” above the hydrophobic sectors than above the hydrophilic sectors, suggesting that the cells were able to “sense” that the hydrophobic surfaces were more favorable for settlement. The results are discussed in relation to the attachment of microorganisms to substrata having different wettabilities. PMID:10919777

  17. Stereocontrolled Alkylative Construction of Quaternary Carbon Centers

    PubMed Central

    Kummer, David A.; Chain, William J.; Morales, Marvin R.; Quiroga, Olga; Myers, Andrew G.

    2009-01-01

    Protocols for the stereodefined formation of α,α-disubstituted enolates of pseudoephedrine amides are presented followed by the implementation of these in diastereoselective alkylation reactions. Direct alkylation of α,α-disubstituted pseudoephedrine amide substrates is demonstrated to be both efficient and diastereoselective across a range of substrates, as exemplified by alkylation of the diastereomeric pseudoephedrine α-methylbutyramides, where both substrates are found to undergo stereospecific replacement of the α-C-H bond with α-C-alkyl, with retention of stereochemistry. This is shown to arise by sequential stereospecific enolization and alkylation reactions, with the alkyl halide attacking a common π-face of the E- and Z-enolates, proposed to be that opposite the pseudoephedrine alkoxide side-chain. Pseudoephedrine α-phenylbutyramides are found to undergo highly stereoselective but not stereospecific α-alkylation reactions, which evidence suggests is due to facile enolate isomerization. Also, we show that α, α-disubstituted pseudoephedrine amide enolates can be generated in a highly stereocontrolled fashion by conjugate addition of an alkyllithium reagent to the s-cis-conformer of an α-alkyl-α,β-unsaturated pseudoephedrine amide, providing α,α-disubstituted enolate substrates that undergo alkylation in the same sense as those formed by direct deprotonation. Methods are presented to transform the α-quaternary pseudoephedrine amide products into optically active carboxylic acids, ketones, primary alcohols, and aldehydes. PMID:18788739

  18. Preactivated thiolated poly(methacrylic acid-co-ethyl acrylate): synthesis and evaluation of mucoadhesive potential.

    PubMed

    Hauptstein, Sabine; Bonengel, Sonja; Rohrer, Julia; Bernkop-Schnürch, Andreas

    2014-10-15

    The study was aimed to developed and investigate a novel polymer for intestinal drug delivery with improved mucoadhesive properties. Therefore Eudragit® L 100-55 (poly(methacrylic acid-co-ethyl acrylate)) was thiolated by covalent attachment of L-cysteine. The immobilized thiol groups were preactivated by disulfide bond formation with 2-mercaptonicotinic acid. Resulting derivative (Eu-S-MNA) was investigated in terms of mucoadhesion via three different methods: tensile studies, rotating cylinder studies and rheological synergism method, as well as water-uptake capacity and cytotoxicity. Different derivatives were obtained with increasing amount of bound L-cysteine (60, 140 and 266 μmol/g polymer) and degree of preactivation (33, 45 and 51 μmol/g polymer). Tensile studies revealed a 30.5-, 35.3- and 52.2-fold rise of total work of adhesion for the preactivated polymers compared to the unmodified Eudragit. The adhesion time on the rotating cylinder was prolonged up to 17-fold in case of thiolated polymer and up to 34-fold prolonged in case of the preactivated polymer. Rheological synergism revealed remarkable interaction of all investigated modified derivatives with mucus. Further, water-uptake studies showed an over 7h continuing weight gain for the modified polymers whereat disintegration took place for the unmodified polymer within the first hour. Cell viability studies revealed no impact of modification. Accordingly, the novel preactivated thiolated Eudragit-derivative seems to be a promising excipient for intestinal drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. LETTER TO THE EDITOR: Surface passivation of (100) InP by organic thiols and polyimide as characterized by steady-state photoluminescence

    NASA Astrophysics Data System (ADS)

    Schvartzman, M.; Sidorov, V.; Ritter, D.; Paz, Y.

    2001-10-01

    A method for the passivation of indium phosphide, based on thiolated organic self-assembled monolayers (SAMs) that form highly ordered, close-packed structures on the semiconductor surface, is presented. It is shown that the intensity of steady-state photoluminescence (PL) of n-type InP wafers covered with the thiolated SAMs increases significantly (as much as 14-fold) upon their covering with the monolayers. The ease with which one can tailor the outer functional groups of the SAMs provides a way to connect this new class of passivators with standard encapsulators, such as polyimide. Indeed, the PL intensity of SAM-coated InP wafers was not altered upon their overcoating with polyimide, despite the high curing temperature of the polymer (200 °C).

  20. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-04

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride.

  1. Synthesis of Thiolated Alginate and Evaluation of Mucoadhesiveness, Cytotoxicity and Release Retardant Properties

    PubMed Central

    Jindal, A. B.; Wasnik, M. N.; Nair, Hema A.

    2010-01-01

    Modification of polymers by covalent attachment of thiol bearing pendant groups is reported to impart many beneficial properties to them. Hence in the present study, sodium alginate–cysteine conjugate was synthesized by carbodiimide mediated coupling under varying reaction conditions and the derivatives characterized for thiol content. The thiolated alginate species synthesized had bound thiol content ranging from 247.8±11.03–324.54±10.107 ΅mol/g of polymer depending on the reaction conditions. Matrix tablets based on sodium alginate-cysteine conjugate and native sodium alginate containing tramadol hydrochloride as a model drug were prepared and mucoadhesive strength and in vitro drug release from the tablets were compared. Tablets containing 75 mg sodium alginate-cysteine conjugate could sustain release of 10 mg of model drug for 3 h, whereas 90% of the drug was released within 1 h from corresponding tablets prepared using native sodium alginate. An approximately 2-fold increase in the minimal detachment force of the tablets from an artificial mucin film was observed for sodium alginate–cysteine conjugate as compared to native sodium alginate. In vitro cytotoxicity studies in L-929 mouse fibroblast cells studied using an MTT assay revealed that at low concentrations of polymer, sodium alginate–cysteine conjugate was less toxic to L-929 mouse fibroblast cell line when compared to native sodium alginate. Hence, thiolation is found to be a simple route to improving polymer performance. The combination of improved controlled drug release and mucoadhesive properties coupled with the low toxicity of these new excipients builds up immense scope for the use of thiolated polymers in mucoadhesive drug delivery systems. PMID:21969750

  2. Orientational Dynamics of a Functionalized Alkyl Planar Monolayer Probed by Polarization-Selective Angle-Resolved Infrared Pump-Probe Spectroscopy.

    PubMed

    Nishida, Jun; Yan, Chang; Fayer, Michael D

    2016-10-12

    Polarization-selective angle-resolved infrared pump-probe spectroscopy was developed and used to study the orientational dynamics of a planar alkylsiloxane monolayer functionalized with a rhenium metal carbonyl headgroup on an SiO 2 surface. The technique, together with a time-averaged infrared linear dichroism measurement, characterized picosecond orientational relaxation of the headgroup occurring at the monolayer-air interface by employing several sets of incident angles of the infrared pulses relative to the sample surface. By application of this method and using a recently developed theory, it was possible to extract both the out-of-plane and "mainly"-in-plane orientational correlation functions in a model-independent manner. The observed correlation functions were compared with theoretically derived correlation functions based on several dynamical models. The out-of-plane correlation function reveals the highly restricted out-of-plane motions of the head groups and also suggests that the angular distribution of the transition dipole moments is bimodal. The mainly-in-plane correlation function, for the sample studied here with the strongly restricted out-of-plane motions, essentially arises from the purely in-plane dynamics. In contrast to the out-of-plane dynamics, significant in-plane motions occurring over various time scales were observed including an inertial motion, a restricted wobbling motion of ∼3 ps, and complete randomization occurring in ∼25 ps.

  3. Synthesis, characterization of thiolated karaya gum and evaluation of effect of pH on its mucoadhesive and sustained release properties.

    PubMed

    Bahulkar, Swati S; Munot, Neha M; Surwase, Sachin S

    2015-10-05

    Present study aims at synthesis and characterization of thiolated gum karaya by reacting karaya gum with 80% thioglycolic acid resulting in esterification and immobilization of thiol groups on polymeric backbone. Immobilized thiol groups were found to be 5.026 mM/g determined by Ellman's method. It was characterized by FTIR, DSC and XRD. Directly compressible tablets prepared using thiolated gum displayed more disintegration time, swelling and mucoadhesion with increase in pH of medium simulating gastric and intestinal environment than plain gum. Controlled drug release for more than 24h by Fickian diffusion following Korsemeyer-Peppas model was observed with Metoprolol Succinate as a model drug as compared to plain gum which released more than 90% of the drug within 2h. Synthesized thiomer showed no cytotoxicity determined using HepG2 cell line. According to these results, thiolated gum karaya seems to be promising excipient for the development of mucoadhesive drug delivery systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Palladium-Catalyzed Borylation of Primary Alkyl Bromides

    PubMed Central

    Joshi-Pangu, Amruta; Ma, Xinghua; Diane, Mohamed; Iqbal, Sidra; Kribs, Robert J.; Huang, Richard; Wang, Chao-Yuan

    2012-01-01

    A mild Pd-catalyzed process for the borylation of alkyl bromides has been developed using bis(pinacolato)diboron as a boron source. This process accommodates the use of a wide range of functional groups on the alkyl bromide substrate. Primary bromides react with complete selectivity in the presence of a secondary bromide. The generality of this approach is demonstrated by its extension to the use of alkyl iodides and alkyl tosylates, as well as borylation reactions employing bis(neopentyl glycolato)diboron as the boron source. PMID:22774861

  5. Synthesis and properties of functionalized 4 nm scale molecular wires with thiolated termini for self-assembly onto metal surfaces.

    PubMed

    Wang, Changsheng; Bryce, Martin R; Gigon, Joanna; Ashwell, Geoffrey J; Grace, Iain; Lambert, Colin J

    2008-07-04

    We report the synthesis of new oligo(aryleneethynylene) molecular wires of ca. 4 nm length scale by palladium-catalyzed Sonogashira cross-coupling methodology. Key structural features are the presence of electron donor 9-(1,3-dithiol-2-ylidene)fluorene (compounds 13 and 14) and electron acceptor 9-[di(4-pyridyl)methylene]fluorene units (compound 16) at the core of the molecules. Terminal thiolate substituents are protected as cyanoethylsulfanyl (13 and 16) or thioacetate derivatives (14). The molecules display well-defined redox processes in solution electrochemical studies. The optical properties in solution are similar to those of the fluorenone analog 6: the strongest absorptions for 6, 13 and 16 are in the region lambda(max) = 387-393 nm, with 13 showing an additional shoulder at 415 nm which is not present for 6 and 16; this shoulder is assigned to a HOMO-LUMO transition from the dithiole to the fluorene unit. Molecules 6, 13, 14 and 16 form self-assembled monolayers on gold substrates which exhibit essentially symmetrical current-voltage (I-V) characteristics when contacted by a gold scanning tunelling microscope (STM) tip. The effects of the chemical modifications at the central unit of 6, 14 and 16 on the HOMO-LUMO levels and electron transport through the molecules in vacuum have been computed by an ab initio approach.

  6. Short-Chain PEG Mixed-Monolayer Protected Gold Clusters Increase Clearance and Red Blood Cell Counts

    PubMed Central

    Simpson, Carrie A.; Agrawal, Amanda C.; Balinski, Andrzej; Harkness, Kellen M.; Cliffel, David E.

    2011-01-01

    Monolayer-protected gold nanoparticles have great potential as novel building blocks for the design of new drugs and therapeutics based on the easy ability to multifunctionalize them for biological targeting and drug activity. In order to create nanoparticles that are biocompatible in vivo, poly-ethylene glycol functional groups have been added to many previous multifunctionalized particles to eliminate non-specific binding. Recently, monolayer-protected gold nanoparticles with mercaptoglycine functionalities were shown to elicit deleterious effects on the kidney in vivo that were eliminated by incorporating a long-chain, mercapto-undecyl-tetraethylene glycol, at very high loadings into a mixed monolayer. These long-chain PEGs induced an immune response to the particle presumably generating an anti-PEG antibody as seen in other long-chain PEG-ylated nanoparticles in vivo. In the present work, we explore the in vivo effects of high and low percent ratios of a shorter chain, mercapto-tetraethylene glycol, within the monolayer using simple place-exchange reactions. The shorter chain PEG MPCs were expected to have better water solubility due to elimination of the alkyl chain, no toxicity, and long-term circulation in vivo. Shorter chain lengths at lower concentrations should not trigger the immune system into creating an anti-PEG antibody. We found that a 10% molar exchange of this short chain PEG within the monolayer met three of the desired goals: high water solubility, no toxicity, and no immune response as measured by white blood cell counts, but none of the short chain PEG mixed monolayer compositions enabled the nanoparticles to have a long circulation time within the blood as compared to mercapto-undecyl-ethylene glycol, which had a residence time of 4 weeks. We also compared the effects of a hydroxyl versus a carboxylic acid terminal functional group on the end of the PEG thiol on both clearance and immune response. The results indicate that short-chain length

  7. Aryl sulfonate based anticancer alkylating agents.

    PubMed

    Sheikh, Hamdullah Khadim; Arshad, Tanzila; Kanwal, Ghazala

    2018-05-01

    This research work revolves around synthesis of antineoplastic alkylating sulfonate esters with dual alkylating sites for crosslinking of the DNA strands. These molecules were evaluated as potential antineoplastic cross linking alkylating agents by reaction with the nucleoside of Guanine DNA nucleobase at both ends of the synthesized molecule. Synthesis of the alkylating molecules and the crosslinking with the guanosine nucleoside was monitored by MALDITOF mass spectroscopy. The synthesized molecule's crosslinking or adduct forming rate with the nucleoside was compared with that of 1,4 butane disulfonate (busulfan), in form of time taken for the appearance of [M+H] + . It was found that aryl sulfonate leaving group was causing higher rate of nucleophilic attack by the Lewis basic site of the nucleobase. Furthermore, the rate was also found to be a function of electron withdrawing or donating nature of the substituent on the aryl ring. Compound with strong electron withdrawing substituent on the para position of the ring reacted fastest. Hence, new alkylating agents were synthesized with optimized or desired reactivity.

  8. In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan.

    PubMed

    Föger, Florian; Schmitz, Thierry; Bernkop-Schnürch, Andreas

    2006-08-01

    Recently, thiolated polymers, so called thiomers, have been reported to modulate drug absorption by inhibition of intestinal P-glycoprotein (P-gp). The aim of the present study was to provide a proof-of-principle for a delivery system based on thiolated chitosan in vivo in rats, using rhodamine-123 (Rho-123) as representative P-gp substrate. In vitro, the permeation enhancing effect of unmodified chitosan, chitosan-4 thiobutylamidine (Ch-TBA) and the combination of Ch-TBA with reduced glutathione (GSH) was evaluated by using freshly excised rat intestinal mucosa mounted in Ussing-type chambers. In comparison to buffer only, Rho-123 transport in presence of 0.5% (w/v) chitosan, 0.5% (w/v) Ch-TBA and the combination of 0.5% (w/v) Ch-TBA/0.5% (w/v) GSH, was 1.8-fold, 2.6-fold, 3.8-fold improved, respectively. Furthermore, enteric-coated tablets based on unmodified chitosan or Ch-TBA/GSH, were investigated in vivo. In rats, the Ch-TBA/GSH tablets increased the area under the plasma concentration time curve (AUC0-12) of Rho-123 by 217% in comparison to buffer control and by 58% in comparison to unmodified chitosan. This in vivo study showed that a delivery system based on thiolated chitosan significantly increased the oral bioavailability of P-gp substrate Rho-123.

  9. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M [Idaho Falls, ID; Petkovic, Lucia [Idaho Falls, ID

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  10. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  11. Modulating release of ranibizumab and aflibercept from thiolated chitosan-based hydrogels for potential treatment of ocular neovascularization.

    PubMed

    Moreno, Miguel; Pow, Poh Yih; Tabitha, Tan Su Teng; Nirmal, Sonali; Larsson, Andreas; Radhakrishnan, Krishna; Nirmal, Jayabalan; Quah, Soo Tng; Geifman Shochat, Susana; Agrawal, Rupesh; Venkatraman, Subbu

    2017-08-01

    This paper describes the synthesis of thiolated chitosan-based hydrogels with varying degrees of crosslinking that has been utilized to modulate release kinetics of two clinically relevant FDA-approved anti-VEGF protein drugs, ranibizumab and aflibercept. These hydrogels have been fabricated into disc shaped structures for potential use as patches on ocular surface. Protein conformational changes and aggregation after loading and release was evaluated by circular dichroism (CD), steady-state tryptophan fluorescence spectroscopy, electrophoresis and size-exclusion chromatography (SEC). Finally, the capacity of both released proteins to bind to VEGF was tested by ELISA and surface plasmon resonance (SPR) technology. The study demonstrates the versatility of thiolated chitosan-based hydrogels for delivering proteins. The effect of various parameters of the hydrogel on protein release kinetics and mechanism of protein release was studied using the Korsmeyer-Peppas release model. Furthermore, we have studied the stability of released proteins in detail while comparing it with non-entrapped proteins under physiological conditions to understand the effect of formulation conditions on protein stability. The disc-shaped thiolated chitosan-based hydrogels provide a potentially useful platform to deliver ranibizumab and aflibercept for the treatments of ocular diseases such as wet AMD, DME and corneal neovascularization.

  12. X-ray Photoelectron Spectroscopy Analysis of Gold Surfaces after Removal of Thiolated DNA Oligomers by Ultraviolet/Ozone Treatment

    PubMed Central

    Mirsaleh-Kohan, Nasrin; Bass, Andrew D.; Sanche, Léon

    2012-01-01

    Well ordered films of molecular DNA can be formed by the attachment of thiolated DNA oligonucleotides to a supporting gold substrate. The gold substrate represents a significant fraction of the total cost of preparing such films and it is thus important to determine whether such substrates can be reused. Here we investigate with X-ray Photoelectron Spectroscopy the suitability of UV/ozonolysis previously employed to remove alkanethiols from gold, for removing 40-mer, single and double stranded synthetic DNA. We find that while UV/O3 can indeed remove thiolated DNA from gold slides, the treatment times required permit the implantation of additional organic contaminants. PMID:20000594

  13. X-ray photoelectron spectroscopy analysis of gold surfaces after removal of thiolated DNA oligomers by ultraviolet/ozone treatment.

    PubMed

    Mirsaleh-Kohan, Nasrin; Bass, Andrew D; Sanche, Léon

    2010-05-04

    Well-ordered films of molecular DNA can be formed by the attachment of thiolated DNA oligonucleotides to a supporting gold substrate. The gold substrate represents a significant fraction of the total cost of preparing such films, and it is thus important to determine whether such substrates can be reused. Here, we investigate with X-ray photoelectron spectroscopy the suitability of UV/ozonolysis previously employed to remove alkanethiols from gold, for removing 40-mer, single- and double-stranded synthetic DNA. We find that while UV/O(3) can indeed remove thiolated DNA from gold slides, the treatment times required permit the implantation of additional organic contaminants.

  14. Alkyl Passivation and Amphiphilic Polymer Coating of Silicon Nanocrystals for Diagnostic Imaging

    PubMed Central

    Hessel, Colin M.; Rasch, Michael R.; Hueso, Jose L.; Goodfellow, Brian W.; Akhavan, Vahid A.; Puvanakrishnan, Priyaveena; Tunnell, James W.

    2011-01-01

    We show a method to produce biocompatible polymer-coated silicon (Si) nanocrystals for medical imaging. Silica-embedded Si nanocrystals are formed by HSQ thermolysis. The nanocrystals are then liberated from the oxide and terminated with Si-H bonds by HF etching, followed by alkyl monolayer passivation by thermal hydrosilylation. The Si nanocrystals have an average diameter of 2.1 ± 0.6 nm and photoluminesce (PL) with a peak emission wavelength of 650 nm, which lies within the transmission window of 650–900 nm that is useful for biological imaging. The hydrophobic Si nanocrystals are then coated with an amphiphilic polymer for dispersion in aqueous media with pH ranging between 7 and 10 and ionic strength between 30 mM and 2 M, while maintaining a bright and stable PL and a hydrodynamic radius of only 20 nm. Fluorescence imaging of polymer-coated Si nanocrystals in a biological tissue host is demonstrated, showing the potential for in vivo imaging. PMID:20818646

  15. The Effect of Hydrophobic Pockets in Human Serum Albumin Adsorption to Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Choi, Eugene J.; Jia, Shijin; Petrash, Stanislaw; Foster, Mark D.

    2001-04-01

    Molecular properties of proteins and their interactions with surfaces have an effect on protein adsorption, which is one of the first and most important events that occurs when a biological fluid contacts a surface. For biomaterials applications, blood reaction to foreign objects can cause thrombosis. To understand thrombosis, it is necessary to understand the mechanism of adsorption of blood proteins onto artificial surfaces. Such interactions as hydrophobicity^1,2, electrostatics^3 and specific binding^4 have been found to be driving forces for protein adsorption. Self-assembled monolayers (SAMs) provide an ideal surface for which protein adsorption behavior can be studied.^1 SAMs provide chemical homogeneity, robustness, and variable surface functionality. The hydrophobicity of SAMs has been of great interest in studying surface interactions with proteins.^1, 2 The packing density of alkyl chains of SAMs can also be varied in order to obtain different surface properties. The most abundant protein in the blood is human serum albumin (HSA). Because HSA acts as a fatty acid transporter, it has six binding sites for fatty acids. Pitt and Cooper^4 have shown that alkylation of surfaces increases the initial adsorption rate of delipidized (fatty acid free) HSA. Petrash et al.^5 have shown that delipidized HSA binds more tenaciously to less densely packed alkyl SAMs than to densely packed alkyl SAMs when desorbed by sodium dodecyl sulfate. Using X-ray reflectivity to study the adsorbed protein layer thickness, lipidized HSA (fatty acid bound) adsorption and desorption studies showed that specific binding of HSA is one of the main factors in binding tenacity between HSA and less densely packed alkyl SAMs. Atomic force microscopy was used as a complementary technique to confirm these results, and neutron reflectivity and spectroscopy techniques will also be used to study the adsorption behaviors of HSA and other blood proteins in future work. 1. Prime, K. L.; Whitesides

  16. Stable Carboxylate-Terminated Gold Surfaces Produced by Spontaneous Grafting of an Alkyl Tin Compound.

    PubMed

    Ortiz, Mayreli; Mehdi, Ahmed; Methivier, Christophe; Thorimbert, Serge; Hasenknopf, Bernold; O'Sullivan, Ciara K

    2018-05-21

    Self-assembled monolayers formed by chemisorption of thiolated molecules on gold surfaces are widely applied for biosensing. Moreover, and due to the low stability of thiol-gold chemistry, contributions to the functionalisation of gold substrates with linkers that provide a more stable platform for the immobilisation of electroactive or biological molecules are highly appreciated. In the work reported here, we demonstrate that a carboxylated organotin compound can be successfully grafted onto gold substrates to form a highly stable organic layer with reactivity for subsequent binding to an aminated molecule. A battery of techniques was used to characterise the surface chemistry. The grafted layer was used to anchor aminoferrocene and subjected to both thermostability tests and long term stability studies over the period of one year, demonstrating thermostability up to 90 oC and storage stability for at least 12 months when stored at 4 oC protected from light. The stable surface tethering of molecules on gold substrates can be exploited in a plethora of applications including molecular techniques such as solid-phase amplification and solid-phase melting curve analysis that require elevated temperature stability, as well as biosensors, which require long-term storage stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Characterizing the mechanics of cultured cell monolayers

    PubMed Central

    Peter, Loic; Bellis, Julien; Baum, Buzz; Kabla, Alexandre J.; Charras, Guillaume T.

    2012-01-01

    One-cell-thick monolayers are the simplest tissues in multicellular organisms, yet they fulfill critical roles in development and normal physiology. In early development, embryonic morphogenesis results largely from monolayer rearrangement and deformation due to internally generated forces. Later, monolayers act as physical barriers separating the internal environment from the exterior and must withstand externally applied forces. Though resisting and generating mechanical forces is an essential part of monolayer function, simple experimental methods to characterize monolayer mechanical properties are lacking. Here, we describe a system for tensile testing of freely suspended cultured monolayers that enables the examination of their mechanical behavior at multi-, uni-, and subcellular scales. Using this system, we provide measurements of monolayer elasticity and show that this is two orders of magnitude larger than the elasticity of their isolated cellular components. Monolayers could withstand more than a doubling in length before failing through rupture of intercellular junctions. Measurement of stress at fracture enabled a first estimation of the average force needed to separate cells within truly mature monolayers, approximately ninefold larger than measured in pairs of isolated cells. As in single cells, monolayer mechanical properties were strongly dependent on the integrity of the actin cytoskeleton, myosin, and intercellular adhesions interfacing adjacent cells. High magnification imaging revealed that keratin filaments became progressively stretched during extension, suggesting they participate in monolayer mechanics. This multiscale study of monolayer response to deformation enabled by our device provides the first quantitative investigation of the link between monolayer biology and mechanics. PMID:22991459

  18. Duplex Healing of Selectively Thiolated Guanosine Mismatches through a Cd2+ Chemical Stimulus.

    PubMed

    Lunn, Samantha M L; Hribesh, Samira; Whitfield, Colette J; Hall, Michael J; Houlton, Andrew; Bronowska, Agnieszka K; Tuite, Eimer M; Pike, Andrew R

    2018-03-25

    The on-column selective conversion of guanosine to thioguanosine (tG) yields modified oligomers that exhibit destabilisation over the fully complementary duplex. Restoration to a stabilised duplex is induced through thio-directed Cd 2+ coordination; a route for healing DNA damage. Short oligomers are G-specifically thiolated through a modified on-column protocol without the need for costly thioguanosine phosphoramidites. Addition of Cd 2+ ions to a duplex containing a highly disrupted tG central mismatch sequence, 3'-A 6 tG 4 T 6 -5', suggests a (tG) 8 Cd 2 central coordination regime, resulting in increased base stacking and duplex stability. Equilibrium molecular dynamic calculations support the hypothesis of metal-induced healing of the thiolated duplex. The 2 nm displacement of the central tG mismatched region is dramatically reduced after the addition of a chemical stimuli, Cd 2+ ions, returning to a minimized fluctuational state comparable to the unmodified fully complementary oligomer. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. In vitro evaluation of thiolated polydimethylaminoethylmethacrylate hydrogel sub-microparticles for oral insulin delivery.

    PubMed

    Sonia, T A; Sharma, Chandra P

    2013-04-01

    In this investigation, novel cationic thiomer, Thiolated polydimethylaminoethylmethacrylate (PDCys) is synthesised and the feasibility of PDCys sub-microparticles as oral insulin delivery carriers is evaluated in vitro. The presence of both positive charge and thiol group in the same matrix plays a vital role in improving the paracellular permeability. Thiol groups interacts with cysteine rich subdomains via disulfide bond formation and positive charge interacts with sialic residues of mucus glycoproteins via electrostatic interaction, thereby increasing the mucoadhesivity. Cytotoxic evaluation by MTT assay shows that PDCys is nontoxic. Force and Work of adhesion of PDCys was found found to be higher than that of parent polymer. ELISA and Circular dichroism spectra confirms that PDCys retains the biological activity and conformation of insulin. Moreover, PDCys is capable of opening the tight junctions by actin and occludin filament dislocation. Furthermore, permeation of FD4 on Caco-2 cells is improved by 3.9 fold compared to the parent polymer. Preliminary studies suggest that thiolated particles can serve as potential vehicles for oral insulin delivery.

  20. Controlling the reproducibility of Coulomb blockade phenomena for gold nanoparticles on an organic monolayer/silicon system.

    PubMed

    Caillard, L; Sattayaporn, S; Lamic-Humblot, A-F; Casale, S; Campbell, P; Chabal, Y J; Pluchery, O

    2015-02-13

    Two types of highly ordered organic layers were prepared on silicon modified with an amine termination for binding gold nanoparticles (AuNPs). These two grafted organic monolayers (GOMs), consisting of alkyl chains with seven or 11 carbon atoms, were grafted on oxide-free Si(111) surfaces as tunnel barriers between the silicon electrode and the AuNPs. Three kinds of colloidal AuNPs were prepared by reducing HAuCl4 with three different reactants: citrate (Turkevich synthesis, diameter ∼16 nm), ascorbic acid (diameter ∼9 nm), or NaBH4 (Natan synthesis, diameter ∼7 nm). Scanning tunnel spectroscopy (STS) was performed in a UHV STM at 40 K, and Coulomb blockade behaviour was observed. The reproducibility of the Coulomb behavior was analysed as a function of several chemical and physical parameters: size, crystallinity of the AuNPs, influence of surrounding surfactant molecules, and quality of the GOM/Si interface (degree of oxidation after the full processing). Samples were characterized with scanning tunneling microscope, STS, atomic force microscope, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy (XPS), and high resolution transmission electronic microscope. We show that the reproducibility in observing Coulomb behavior can be as high as ∼80% with the Natan synthesis of AuNPs and GOMs with short alkyl chains.

  1. Chemistry of anthracene-acetylene oligomers XXV: on-surface chirality of a self-assembled molecular network of a fan-blade-shaped anthracene-acetylene macrocycle with a long alkyl chain.

    PubMed

    Tsuya, Takuya; Iritani, Kohei; Tahara, Kazukuni; Tobe, Yoshito; Iwanaga, Tetsuo; Toyota, Shinji

    2015-03-27

    An anthracene cyclic dimer with two different linkers and a dodecyl group was synthesized by means of coupling reactions. The calculated structure had a planar macrocyclic π core and a linear alkyl chain. Scanning tunneling microscopy observations at the 1-phenyloctane/graphite interface revealed that the molecules formed a self-assembled monolayer that consisted of linear striped bright and dark bands. In each domain, the molecular network consisted of either Re or Si molecules that differed in the two-dimensional chirality about the macrocyclic faces, which led to a unique conglomerate-type self-assembly. The molecular packing mode and the conformation of the alkyl chains are discussed in terms of the intermolecular interactions and the interactions between the molecules and the graphite surface with the aid of MM3 simulations of a model system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Methods of making monolayers

    DOEpatents

    Alford, Kentin L [Pasco, WA; Simmons, Kevin L [Kennewick, WA; Samuels, William D [Richland, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [Albuquerque, NM; Shin, Yongsoon [Richland, WA; Fryxell, Glen E [Kennewick, WA

    2009-12-08

    The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.

  3. Methods of making monolayers

    DOEpatents

    Alford, Kentin L [Pasco, WA; Simmons, Kevin L [Kennewick, WA; Samuels, William D [Richland, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [Albuquerque, NM; Shin, Yongsoon [Richland, WA; Fryxell, Glen E [Kennewick, WA

    2009-09-15

    The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.

  4. Structure/function relationships in ligand-based SO{sub 2}/O{sub 2} conversion to sulfate as promoted by nickel and palladium thiolates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darensbourg, M.Y.; Tuntulani, T.; Reibenspies, J.H.

    1995-12-06

    The dithiolate complex [1,5-bis(mercaptoethyl)-1,5-diazacyclooctane]Pd(II), (bme-daco)Pd{sup II} or Pd-1 whose structure was determined by X-ray crystallography; has been added to a group of metal thiolates which form sulfur-site SO{sub 2} adducts. Exposure of the Pd-1 complex to SO{sub 2} in methanol results in the precipitation of yellow/orange crystalline Pd-1{center_dot}SO{sub 2}. Analogous thiolate-SO{sub 2} adducts based on (bme-daco), Ni-1{center_dot}SO{sub 2}, (Ph{sub 2}PCH{sub 2}CH{sub 2}S){sub 2}Ni{sup II}, Ni-2{center_dot}SO{sub 2}, and (bme*-daco)Ni{sup II}, Ni-1*{center_dot}SO{sub 2}, also precipitate from methanol. To explore the transformation of SO{sub 2} to SO{sub 4}{sup 2-} in these adducts, the following three factors expected to control the sulfate-forming reaction havemore » been examined: (i) the stability of SO{sub 2} adducts; (ii) the oxidizability of the metal thiolate or its tendency to generate disulfide produces on oxidation; and (iii) the ability of the metal thiolates to react with O{sub 2} and produce sulfur-oxygenated products. The studies indicate that the last factor is the most important influence on SO{sub 2} oxygenation. A possible mechanism involves the transient formation of an SO{sub 2}-stabilized sulfperoxide intermediate, which behaves as a nucleophile and further reacts with SO{sub 2} to produce SO{sub 4}{sup 2-}. The use of the aforementioned metal thiolate complexes as catalysts for SO{sub 2} oxygenation in the presence of a sacrificial electron donor has also been explored; simple salts such as NiCl{sub 2} and NiSO{sub 4} are more efficient than the complexes.« less

  5. Sorbate-nitrite interactions: acetonitrile oxide as an alkylating agent.

    PubMed

    Pérez-Prior, M Teresa; Gómez-Bombarelli, Rafael; González-Pérez, Marina; Manso, José A; García-Santos, M Pilar; Calle, Emilio; Casado, Julio

    2009-07-01

    Because chemical species with DNA-damaging and mutagenic activity are formed in sorbate-nitrite mixtures and because sorbic acid sometimes coexists with nitrite occurring naturally or incorporated as a food additive, the study of sorbate-nitrite interactions is important. Here, the alkylating potential of the products resulting from such interactions was investigated. Drawn were the following conclusions: (i) Acetonitrile oxide (ACNO) is the compound responsible for the alkylating capacity of sorbate-nitrite mixtures; (ii) ACNO alkylates 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to those of DNA bases, forming an adduct (AD; epsilon = 1.4 x 10(4) M(-1) cm(-1); lambda = 519 nm); (iii) the NBP alkylation reaction complies with the rate equation, r = d[AD]/dt = k(alk)(ACNO)[ACNO][NBP]-k(hyd)(AD)[AD], k(alk)(ACNO) being the NBP alkylation rate constant for ACNO and k(hyd)(AD) the rate constant for the adduct hydrolysis reaction; (iv) the small fraction of ACNO forming the adduct with NBP, as well as the small magnitude of the quotient (k(alk) (ACNO)/k(hyd)(ACNO)) as compared with those reported for other alkylating agents, such as some lactones and N-alkyl-N-nitrosoureas, reveals the ACNO effective alkylating capacity to be less significant; (v) the low value of the NBP-ACNO adduct life (defined as the total amount of adduct present along the progression of the NBP alkylation per unit of alkylating agent concentration) points to the high instability of this adduct; and (vi) the obtained results are in accordance with the low carcinogenicity of ACNO.

  6. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice.

    PubMed

    Kommareddy, Sushma; Amiji, Mansoor

    2007-02-01

    The objective of the present study was to modify thiolated gelatin nanoparticles with poly(ethylene glycol) (PEG) chains and examine their long circulating and tumor-targeting properties in vivo in an orthotopic a human breast adenocarcinoma xenograft model. The crosslinked nanoparticle systems were characterized to have a size of 150-250 nm with rapid payload release properties in a highly reducing environment. Upon PEG modification, the nanoparticle size increased to 300-350 nm in diameter. The presence of PEG chains on the surface was confirmed by characterization with electron spectroscopy for chemical analysis. The in vivo long-circulating potential, biodistribution and passive tumor targeting of the controls, and PEG-modified thiolated gelatin nanoparticles were evaluated by injecting indium-111 (111In)-labeled nanoparticles into breast tumor (MDA-MB-435)-bearing nude mice. Upon modification with PEG, the nanoparticles were found to have longer circulation times, with the plasma and tumor half-lives of 15.3 and 37.8 h, respectively. The results also showed preferential localization of thiolated nanoparticles in the tumor mass. The resulting nanoparticulate systems with long circulation properties could be used to target encapsulated drugs and genes to tumors passively by utilizing the enhanced permeability and retention effect of the tumor vasculature. Copyright (c) 2006 Wiley-Liss, Inc.

  7. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    NASA Astrophysics Data System (ADS)

    Straka, Pavel; Buryan, Petr; Bičáková, Olga

    2018-02-01

    The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.

  8. Alkylsilyl Peroxides as Alkylating Agents in the Copper-Catalyzed Selective Mono-N-Alkylation of Primary Amides and Arylamines.

    PubMed

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-07-06

    The copper-catalyzed selective mono-N-alkylation of primary amides or arylamines using alkylsilyl peroxides as alkylating agents is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the alkylsilyl peroxides, as well as to the primary amides and arylamines. Mechanistic studies suggest that the present reaction should proceed through a free-radical process that includes alkyl radicals generated from the alkylsilyl peroxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Reactions of Tributylstannyl Anioniods with Alkyl Bromides.

    DTIC Science & Technology

    1981-09-28

    g (12 mmol) of cesium tert-butoxide was added to the reaction vessel before the addition of n-butyllithium. Alkylation of Tributylstannyl Anionoids...Dry reaction vessels were purged with argon. The desired alkyl halide (1.0 mmol unless noted) and any desired additive were added to the reaction ...OFFICE OF NAVAL RESEARCH Contract N00014-79-C-0584 Task No. NR 053-714 TECHNICAL REPORT No. 2 Reactions of Tributylstannyl Anionoids with Alkyl

  10. Melting of the Dipalmitoylphosphatidylcholine Monolayer.

    PubMed

    Xu, Lu; Bosiljevac, Gordon; Yu, Kyle; Zuo, Yi Y

    2018-04-17

    Langmuir monolayer self-assembled at the air-water interface represents an excellent model for studying phase transition and lipid polymorphism in two dimensions. Compared with numerous studies of phospholipid phase transitions induced by isothermal compression, there are very scarce reports on two-dimensional phase transitions induced by isobaric heating. This is mainly due to technical difficulties of continuously regulating temperature variations while maintaining a constant surface pressure in a classical Langmuir-type film balance. Here, with technological advances in constrained drop surfactometry and closed-loop axisymmetric drop shape analysis, we studied the isobaric heating process of the dipalmitoylphosphatidylcholine (DPPC) monolayer. It is found that temperature and surface pressure are two equally important intensive properties that jointly determine the phase behavior of the phospholipid monolayer. We have determined a critical point of the DPPC monolayer at a temperature of 44 °C and a surface pressure of 57 mN/m. Beyond this critical point, no phase transition can exist in the DPPC monolayer, either by isothermal compression or by isobaric heating. The melting process of the DPPC monolayer studied here provides novel insights into the understanding of a wide range of physicochemical and biophysical phenomena, such as surface thermodynamics, critical phenomena, and biophysical study of pulmonary surfactants.

  11. Higher iron bioavailability of a human-like collagen iron complex.

    PubMed

    Zhu, Chenhui; Yang, Fan; Fan, Daidi; Wang, Ya; Yu, Yuanyuan

    2017-07-01

    Iron deficiency remains a public health problem around the world due to low iron intake and/or bioavailability. FeSO 4 , ferrous succinate, and ferrous glycinate chelate are rich in iron but have poor bioavailability. To solve the problem of iron deficiency, following previous research studies, a thiolated human-like collagen-ironcomplex supplement with a high iron content was prepared in an anaerobic workstation. In addition, cell viability tests were evaluated after conducting an MTT assay, and a quantitative analysis of the thiolated human-like collagen-iron digesta samples was performed using the SDS-PAGE method coupled with gel filtration chromatography. The iron bioavailability was assessed using Caco-2 cell monolayers and iron-deficiency anemia mice models. The results showed that (1) one mole of thiolated human-like collagen-iron possessed approximately 35.34 moles of iron; (2) thiolated human-like collagen-iron did not exhibit cytotoxity and (3) thiolated human-like collagen- iron digesta samples had higher bioavailability than other iron supplements, including FeSO 4 , ferrous succinate, ferrous glycine chelate and thiolated human-like collagen-Fe iron. Finally, the iron bioavailability was significantly enhanced by vitamin C. These results indicated that thiolated human-like collagen-iron is a promising iron supplement for use in the future.

  12. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    PubMed Central

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  13. In vitro and ex vivo evaluation of biomaterials' distinctive properties as a result of thiolation.

    PubMed

    Laffleur, Flavia; Wagner, Julian; Mahmood, Arshad

    2015-01-01

    Polysaccharide hyaluronic acid (HA) was chemically modified with cysteine ethyl ester (CYS). By immobilization of the thiol-bearing ligand on the polymeric backbone the thiolated bioconjugate HA-CYS was obtained. METHODOLOGY & RESULTS: Mucoadhesion, permeation enhancement effect and stability was tested. Furthermore mechanical, physicochemical properties as well as mucoadhesive strength, swelling index and residence time on the mucosa were investigated. The developed thiolated bioconjugate displayed 1.5-fold improved mucoadhesiveness on buccal mucosa as well as an enhanced permeation behavior and 2.5-fold higher polymer stability. The near neutral pH and 2.49±0.49% cytotoxicity over 12-h studies indicated their non-irritability and biocompatible nature with biological tissues. Further, the model drug sulforhodamine 101 was incorporated to determine its drug release profiles, which revealed a 2.8-fold controlled release of HA-CYS in comparison to unmodified HA. Thus, the promising results encourage further investigations and exploitation of this versatile polysaccharide.

  14. Alkylating agents for Waldenstrom's macroglobulinaemia.

    PubMed

    Yang, Kun; Tan, Jianlong; Wu, Taixiang

    2009-01-21

    Waldenstrom's macroglobulinaemia (WM) is an uncommon B-cell lymphoproliferative disorder characterized by bone marrow infiltration and production of monoclonal immunoglobulin. Uncertainty remains if alkylating agents, such as chlorambucil, melphalan or cyclophosphamide, are an effective form of management. To assess the effects and safety of the alkylating agents on Waldenstrom's macroglobulinaemia (WM). We searched the Cochrane Central Register of Controlled Trials (Issue 1, 2008), MEDLINE (1966 to 2008), EMBASE (1980 to 2008), the Chinese Biomedical Base (1982 to 2008) and reference lists of articles.We also handsearched relevant conference proceedings from 1990 to 2008. Randomised controlled trials (RCTs) comparing alkylating agents given concomitantly with radiotherapy, splenectomy, plasmapheresis, stem-cell transplantation in patients with a confirmed diagnosis of WM. Two authors independently assessed trial quality and extracted data. We contacted study authors for additional information. We collected adverse effects information from the trials. One trial involving 92 participants with pretreated/relapsed WM compared the effect of fludarabine versus the combination of cyclophosphamide (the alkylating agent), doxorubicin and prednisone (CAP). Compared to CAP, the Hazard ratio (HR) for deaths of treatment with fludarabine was estimated to be 1.04, with a standard error of 0.30 (95% CI 0.58 to 1.48) and it indicated that the mean difference of median survival time was -4.00 months, and 16.00 months for response duration. The relative risks (RR) of response rate was 2.80 (95% CI 1.10 to 7.12). There were no statistically difference in overall survival rate and median survival months, while on the basis of response rate and response duration, fludarabine seemed to be superior to CAP for pretreated/relapsed patients with macroglobulinaemia. Although alkylating agents have been used for decades they have never actually been tested in a proper randomised trial. This

  15. Combinatorial Discovery of Cosolvent Systems for Production of Narrow Dispersion Thiolate-Protected Gold Nanoparticles

    PubMed Central

    2015-01-01

    The effect of aqueous solvent concentration in the synthesis of water-soluble thiolate-protected gold nanoparticles (AuNPs) was investigated for 13 water-miscible solvents and three thiolate ligands (p-mercaptobenzoic acid, thiomalic acid, and glutathione). The results were analyzed by construction of heat maps that rank each reaction result for polydispersity. When solvents were organized in the heat map according to their Dimroth–Reichardt ET parameter (an approximate measure of polarity), two “hot spots” become apparent that are independent of the ligand used. We speculate that one hot spot may arise in part from the metal chelation or coordination ability of solvents that include diglyme, 1,2-dimethoxyethane, 1,4-dioxane, and tetrahydrofuran. The second hot spot arises at concentrations of alcohols including 2-propanol and 1-butanol that appear to selectively precipitate a growing product, presumably stopping its growth at a certain size. We observe some tightly dispersed products that appear novel. Overall, this study expands the number of tightly dispersed water-soluble AuNPs that can be directly synthesized. PMID:25459632

  16. Combinatorial discovery of cosolvent systems for production of narrow dispersion thiolate-protected gold nanoparticles.

    PubMed

    Wong, O Andrea; Compel, W Scott; Ackerson, Christopher J

    2015-01-12

    The effect of aqueous solvent concentration in the synthesis of water-soluble thiolate-protected gold nanoparticles (AuNPs) was investigated for 13 water-miscible solvents and three thiolate ligands (p-mercaptobenzoic acid, thiomalic acid, and glutathione). The results were analyzed by construction of heat maps that rank each reaction result for polydispersity. When solvents were organized in the heat map according to their Dimroth-Reichardt ET parameter (an approximate measure of polarity), two "hot spots" become apparent that are independent of the ligand used. We speculate that one hot spot may arise in part from the metal chelation or coordination ability of solvents that include diglyme, 1,2-dimethoxyethane, 1,4-dioxane, and tetrahydrofuran. The second hot spot arises at concentrations of alcohols including 2-propanol and 1-butanol that appear to selectively precipitate a growing product, presumably stopping its growth at a certain size. We observe some tightly dispersed products that appear novel. Overall, this study expands the number of tightly dispersed water-soluble AuNPs that can be directly synthesized.

  17. Thiolated citrus low-methoxyl pectin: Synthesis, characterization and rheological and oxidation-responsive gelling properties.

    PubMed

    Chen, Jinfeng; Ye, Fayin; Zhou, Yun; Zhao, Guohua

    2018-02-01

    In the present study, citrus low-methoxyl pectin was modified by conjugating cysteine via amide bonds, and the resultant polymer (CYS-PEC) was characterized. CYS-PEC conjugates with thiol contents varying from 77.8μmol/g to 296μmol/g were synthesized, and the successful conjugation was evidenced by elemental, and FT-IR analyses. The sulfur in CYS-PEC is predominately in the thiol form, with a minor fraction forming disulfide bonds (∼15%), which occur when thiol/disulfide interchange interrupts the intended thiolation. Both native and modified pectin dispersions exhibited strong pseudoplastic properties, and the frequency sweeps revealed them to be dispersions containing microgel particles. Dynamic viscoelastic analysis was used to determine the oxidation-response gelling capacities of polymer dispersions containing H 2 O 2 , especially those that are highly thiolated and have cross-linked gel properties. For oxidation-induced CYS-PEC gels, their gelation time, hardness, viscosity and elastic moduli and swelling-disintegration ratio are dependent on the thiol group content, H 2 O 2 concentration and polymer concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. α-chymotrypsin activated and stabilized by self-assembled polypseudorotaxane fabricated with bis-thiolated poly(ethylene glycol) and α-cyclodextrin: Spectroscopic and mechanistic analysis.

    PubMed

    Zhao, Jun; Lin, Ji-Duan; Chen, Jia-Chen; Chen, Guo; Li, Xia-Lan; Wang, Xiao-Qin; Chen, Ming-Xia

    2017-09-01

    The self-assembled polypseudorotaxane (PPRX) fabricated with bis-thiolated poly(ethylene glycol) (PEG) and α-cyclodextrin (α-CyD) acted as an activator for α-chymotrypsin (CT) and retained the activity of CT for a long time up to 7days. The stabilization mechanism was studied, and the interaction between CT and PPRX was analyzed by using circular dichroism, fluorescence spectra and X-ray powder diffraction (XRD). The bis-thiolated PEG and its assembled PPRX with α-CyD exhibited the interaction with the C-terminal region of the CT's B-chain probably through PEGylation of the surface disulfide bridge of CT. It caused the aromatic chromophores more exposed to the hydrophilic microenvironment, leading to conformational variation of CT that was revealed by spectroscopic analysis. It rendered the peptide chains in a more flexible and active state. As a comparison, the non-thiolated components could not decorate the surface of CT and performed almost no effect on its stability, which demonstrated that the decoration of the surface disulfide bridge was a key factor in retaining the activity of CT. Due to the activation and stabilization effect, bis-thiolated PEG/α-CyD PPRX was an excellent soft-immobilized carrier for CT, and provided an intriguing method for enzyme's stabilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  20. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  1. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  2. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  3. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  4. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  5. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  6. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  7. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  8. Surface-functionalized polymethacrylic acid based hydrogel microparticles for oral drug delivery.

    PubMed

    Sajeesh, S; Bouchemal, K; Sharma, C P; Vauthier, C

    2010-02-01

    Aim of the present work was to develop novel thiol-functionalized hydrogel microparticles based on poly(methacrylic acid)-chitosan-poly(ethylene glycol) (PCP) for oral drug delivery applications. PCP microparticles were prepared by a modified ionic gelation process in aqueous medium. Thiol modification of surface carboxylic acid groups of PCP micro particles was carried out by coupling l-cysteine with a water-soluble carbodiimide. Ellman's method was adopted to quantify the sulfhydryl groups, and dynamic light-scattering technique was used to measure the average particle size. Cytotoxicity of the modified particles was evaluated on Caco 2 cells by MTT assay. Effect of thiol modification on permeability of paracellular marker fluorescence dextran (FD4) was evaluated on Caco 2 cell monolayers and freshly excised rat intestinal tissue with an Ussing chamber set-up. Mucoadhesion experiments were carried out by an ex vivo bioadhesion method with excised rat intestinal tissue. The average size of the PCP microparticles was increased after thiol modification. Thiolated microparticles significantly improved the paracellular permeability of FD4 across Caco 2 cell monolayers, with no sign of toxicity. However, the efficacy of thiolated system remained low when permeation experiments were carried out across excised intestinal membrane. This was attributed to the high adhesion of the thiolated particles on the gut mucosa. Nevertheless, it can be concluded that surface thiolation is an interesting strategy to improve paracellular permeability of hydrophilic macromolecules. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  9. Polymerization of Conducting Polymers Confined to Free Surfaces: A comparison of the Langmuir-Blodgett Polymerization of 3-Alkyl Pyrroles and 2- Alkyl Anilines

    DTIC Science & Technology

    1992-05-19

    Confined to Free Surfaces: A Comparison of the Langmuir-Blodgett Polymerization of 3- Alkyl Pyrroles and 2- Alkyl Anilines Submitted for Publication in...Surfaces: A Comparison of the Langmuir Blodgett Polymerizations of 3- alkyl pyrroles and 2- alkyl anilines R. S. Duran and H.C. Zhou Dept. of Chemistry...polymerization reactions in more detail and compare them. To do this, the polymerization reactions were run under two conditions. In the first case

  10. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section. (a) The alkyl ketene dimers are manufactured by the dehydrohalogenation of the acyl halides derived from the fatty acids of animal or vegetable fats and oils. (b) The alkyl ketene dimers are used as...

  11. Enhancing the efficiency of thiomers: Utilizing a highly mucoadhesive polymer as backbone for thiolation and preactivation.

    PubMed

    Prüfert, Felix; Bonengel, Sonja; Menzel, Claudia; Bernkop-Schnürch, Andreas

    2017-01-01

    The objective of this study was to develop a novel thiomer with enhanced mucoadhesive properties using a highly mucoadhesive polymeric backbone. Fixomer™ A-30 (poly(methacrylic acid-co-sodium acrylamidomethyl propane sulfonate)), exhibiting a mucoadhesive strength superior to that of all other polymers, was thiolated by conjugation with l-cysteine and furthermore preactivated with 2-mercaptonicotinic acid (MNA). The resulting derivatives Fix-SH and Fix-S-MNA exhibited coupling rates of 755μmol thiol groups and 304μmol MNA per gram polymer, respectively. The mucoadhesive profile was evaluated with three different methods: tensile studies, rotating cylinder and rheological synergism. In tensile studies, a total work of adhesion of above 500μJ was determined for the unmodified polymer that increased to around 750μJ after thiolation and around 1500μJ after preactivation. The adhesion time of Fix-SH on the rotating cylinder was 3.7-fold and that of Fix-S-MNA 6.8-fold longer compared to the unmodified polymer. A rheological synergism was observed for the unmodified polymer as well as the derivatives with a non-significant difference for Fix-SH but a 5.44-fold improvement for Fix-S-MNA. Fix-S-MNA showed a significantly improved swelling behavior with a water-uptake up to the 30-fold of its initial weight over >50h whereas thiolation showed only slight improvements. Derivatization had no significant influence on cell viability. According to the results, Fix-S-MNA seems to be a suitable polymer for mucoadhesive drug delivery systems. Copyright © 2016. Published by Elsevier B.V.

  12. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    EPA Science Inventory

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  13. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  14. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  15. Extended 3{beta}-alkyl steranes and 3-alkyl triaromatic steroids in crude oils and rock extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, J.; Moldowan, J.M.; Summons, R.E.

    1995-09-01

    In oils and Precambian- to Miocene-age source rocks from varying depositional environments, we have conclusively identified several novel 3-alkyl sterane and triaromatic steroid series, including (1) 3{beta}-n-pentyl steranes, (2) 3{beta}-isopentyl steranes, (3) 3{beta}-n-hexyl steranes, (4) 3{beta}-n-hepatyl steranes, (5) 3,4-dimethyl steranes, (6) 3{beta}-butyl,4-methyl steranes, (7) triaromatic 3-n-pentyl steroids, and (8) triaromatic 3-isopentyl steroids. We have also tentatively identified additional homologs with 3-alkyl substituents as large as C{sub 11}. The relative abundances of these compounds vary substantially between samples, as indicated by (1) the ratio of 3{beta}-n-pentyl steranes to 3{beta}-isopentyl steranes and (2) the ratio of 3-n-pentyl triaromatic steroids to 3-isopentyl triaromaticmore » steroids. These data suggest possible utility for these parameters as tools for oil-source rock correlations and reconstruction of depositional environments. Although no 3-alkyl steroid natural products are currently known, several lines of evidence suggest that 3{beta}-alkyl steroids result from bacterial side-chain additions to diagenetic {delta}{sup 2}-sterenes.« less

  16. Archaeal Tuc1/Ncs6 Homolog Required for Wobble Uridine tRNA Thiolation Is Associated with Ubiquitin-Proteasome, Translation, and RNA Processing System Homologs

    PubMed Central

    Chavarria, Nikita E.; Hwang, Sungmin; Cao, Shiyun; Fu, Xian; Holman, Mary; Elbanna, Dina; Rodriguez, Suzanne; Arrington, Deanna; Englert, Markus; Uthandi, Sivakumar; Söll, Dieter; Maupin-Furlow, Julie A.

    2014-01-01

    While cytoplasmic tRNA 2-thiolation protein 1 (Tuc1/Ncs6) and ubiquitin-related modifier-1 (Urm1) are important in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at wobble uridines of tRNAs in eukaryotes, the biocatalytic roles and properties of Ncs6/Tuc1 and its homologs are poorly understood. Here we present the first report of an Ncs6 homolog of archaea (NcsA of Haloferax volcanii) that is essential for maintaining cellular pools of thiolated tRNALys UUU and for growth at high temperature. When purified from Hfx. volcanii, NcsA was found to be modified at Lys204 by isopeptide linkage to polymeric chains of the ubiquitin-fold protein SAMP2. The ubiquitin-activating E1 enzyme homolog of archaea (UbaA) was required for this covalent modification. Non-covalent protein partners that specifically associated with NcsA were also identified including UbaA, SAMP2, proteasome activating nucleotidase (PAN)-A/1, translation elongation factor aEF-1α and a β-CASP ribonuclease homolog of the archaeal cleavage and polyadenylation specificity factor 1 family (aCPSF1). Together, our study reveals that NcsA is essential for growth at high temperature, required for formation of thiolated tRNALys UUU and intimately linked to homologs of ubiquitin-proteasome, translation and RNA processing systems. PMID:24906001

  17. Archaeal Tuc1/Ncs6 homolog required for wobble uridine tRNA thiolation is associated with ubiquitin-proteasome, translation, and RNA processing system homologs.

    PubMed

    Chavarria, Nikita E; Hwang, Sungmin; Cao, Shiyun; Fu, Xian; Holman, Mary; Elbanna, Dina; Rodriguez, Suzanne; Arrington, Deanna; Englert, Markus; Uthandi, Sivakumar; Söll, Dieter; Maupin-Furlow, Julie A

    2014-01-01

    While cytoplasmic tRNA 2-thiolation protein 1 (Tuc1/Ncs6) and ubiquitin-related modifier-1 (Urm1) are important in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at wobble uridines of tRNAs in eukaryotes, the biocatalytic roles and properties of Ncs6/Tuc1 and its homologs are poorly understood. Here we present the first report of an Ncs6 homolog of archaea (NcsA of Haloferax volcanii) that is essential for maintaining cellular pools of thiolated tRNA(Lys)UUU and for growth at high temperature. When purified from Hfx. volcanii, NcsA was found to be modified at Lys204 by isopeptide linkage to polymeric chains of the ubiquitin-fold protein SAMP2. The ubiquitin-activating E1 enzyme homolog of archaea (UbaA) was required for this covalent modification. Non-covalent protein partners that specifically associated with NcsA were also identified including UbaA, SAMP2, proteasome activating nucleotidase (PAN)-A/1, translation elongation factor aEF-1α and a β-CASP ribonuclease homolog of the archaeal cleavage and polyadenylation specificity factor 1 family (aCPSF1). Together, our study reveals that NcsA is essential for growth at high temperature, required for formation of thiolated tRNA(Lys)UUU and intimately linked to homologs of ubiquitin-proteasome, translation and RNA processing systems.

  18. Polyimide characterization studies - Effect of pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1984-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  19. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length

    PubMed Central

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.; Du, Yang; Nielsen, Anne K.; Byrne, Bernadette; Kobilka, Brian K.; Loland, Claus J.; Guan, Lan

    2017-01-01

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. PMID:27981750

  20. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    PubMed Central

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  1. Janus Monolayer Transition-Metal Dichalcogenides.

    PubMed

    Zhang, Jing; Jia, Shuai; Kholmanov, Iskandar; Dong, Liang; Er, Dequan; Chen, Weibing; Guo, Hua; Jin, Zehua; Shenoy, Vivek B; Shi, Li; Lou, Jun

    2017-08-22

    The crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe 2 , the top layer of selenium atoms is substituted by sulfur atoms, while the bottom selenium layer remains intact. The structure of this material is systematically investigated by Raman, photoluminescence, transmission electron microscopy, and X-ray photoelectron spectroscopy and confirmed by time-of-flight secondary ion mass spectrometry. Density functional theory (DFT) calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction activity is discovered for the Janus monolayer, and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.

  2. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles.

    PubMed

    Bravo-Osuna, Irene; Vauthier, Christine; Farabollini, Alessandra; Palmieri, Giovanni Filippo; Ponchel, Gilles

    2007-04-01

    The study is focused on the evaluation of the potential bioadhesive behaviour of chitosan and thiolated chitosan (chitosan-TBA)-coated poly(isobutyl cyanoacrylates) (PIBCA) nanoparticles. Nanoparticles were obtained by radical emulsion polymerisation with chitosan of different molecular weight and with different proportions of chitosan/chitosan-TBA. Mucoadhesion was ex vivo evaluated under static conditions by applying nanoparticle suspensions on rat intestinal mucosal surfaces and evaluating the amount of nanoparticles remaining attached to the mucosa after incubation. The analysis of the results obtained demonstrated that the presence of either chitosan or thiolated chitosan on the PIBCA nanoparticle surface clearly enhanced the mucoadhesion behaviour thanks to non-covalent interactions (ionic interaction and hydrogen bonds) with mucus chains. Both, the molecular weight of chitosan and the proportion of chitosan-TBA in the formulation influenced the nanoparticle hydrodynamic diameter and hence their transport through the mucus layer. Improved interpenetration ability with the mucus chain during the attachment process was suggested for the chitosan of high molecular weight, enhancing the bioadhesiveness of the system. The presence of thiol groups on the nanoparticle surface at high concentration (200 x 10(-6) micromol SH/cm2) increased the mucoadhesion capacity of nanoparticles by forming covalent bonds with the cysteine residues of the mucus glycoproteins.

  3. 40 CFR 721.10677 - Alkyl phosphonate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10677 Alkyl phosphonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl phosphonate (PMN P-12-584...

  4. Control of Gallium Oxide Growth on Liquid Metal Eutectic Gallium/Indium Nanoparticles via Thiolation.

    PubMed

    Farrell, Zachary J; Tabor, Christopher

    2018-01-09

    Eutectic gallium-indium alloy (EGaIn, a room-temperature liquid metal) nanoparticles are of interest for their unique potential uses in self-healing and flexible electronic devices. One reason for their interest is due to a passivating oxide skin that develops spontaneously on exposure to ambient atmosphere which resists deformation and rupture of the resultant liquid particles. It is then of interest to develop methods for control of this oxide growth process. It is hypothesized here that functionalization of EGaIn nanoparticles with thiolated molecules could moderate oxide growth based on insights from the Cabrera-Mott oxidation model. To test this, the oxidation dynamics of several thiolated nanoparticle systems were tracked over time with X-ray photoelectron spectroscopy. These results demonstrate the ability to suppress gallium oxide growth by up to 30%. The oxide progressively matures over a 28 day period, terminating in different final thicknesses as a function of thiol selection. These results indicate not only that thiols moderate gallium oxide growth via competition with oxygen for surface sites but also that different thiols alter the thermodynamics of oxide growth through modification of the EGaIn work function.

  5. PREPARATION OF ALKYL PYROPHOSPHATE EXTRACTANTS

    DOEpatents

    Levine, C.A.; Skiens, W.E.; Moore, G.R.

    1960-08-01

    A process for providing superior solvent extractants for metal recovery processes is given wherein the extractant comprises an alkyl pyrophosphoric acid ester dissolved in an organic solvent diluent. Finely divided solid P/sub 2/O/ sub 5/ is slurried in an organic solvent-diluent selected from organic solvents such as kerosene, benzene, chlorobenzene, toluene, etc. An alcohol selected from the higher alcohols having 4 to 17 carbon atoms. e.g.. hexanol-1. heptanol-3, octanol-1. 2.6-dimethyl-heptanol-4, and decanol-1, is rapidly added to the P/sub 2/O/sub 5/ slurry in the amount of about 2 moles of alcohol to 1 mole of P/sub 2/ O/sub 5/. The temperature is maintained below about 110 deg C during the course of the P/sub 2/O/sub 5/-alcohol reaction. An alkyl pyrophosphate extractant compound is formed as a consequence of the reaction process. The alkyl pyrophosphate solvent-diluent extractant phase is useful in solvent extraction metal recovery processes.

  6. Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: relevance of their surface active properties and of the type of emulsifier.

    PubMed

    González, María J; Medina, Isabel; Maldonado, Olivia S; Lucas, Ricardo; Morales, Juan C

    2015-09-15

    The antioxidant activity of gallic acid and a series of alkyl gallates (C4-C18) and glycosylated alkyl gallates (C4-C18) on fish oil-in-water emulsions was studied. Three types of emulsifiers, lecithin, Tween-20 and sodium dodecyl sulphate (SDS) were tested. A nonlinear behavior of the antioxidant activity of alkyl gallates when increasing alkyl chain length was observed for emulsions prepared with lecithin. Medium-size alkyl gallates (C6-C12) were the best antioxidants. In contrast, for emulsions prepared with Tween-20, the antioxidants seem to follow the polar paradox. Glucosyl alkyl gallates were shown previously to be better surfactants than alkyl gallates. Nevertheless, they exhibited a worse antioxidant capacity than their corresponding alkyl gallates, in emulsions prepared with lecithin or Tween-20, indicating the greater relevance of having three OH groups at the polar head in comparison with having improved surfactant properties but just a di-ortho phenolic structure in the antioxidant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Miscibility of binary monolayers at the air-water interface and interaction of protein with immobilized monolayers by surface plasmon resonance technique.

    PubMed

    Wang, Yuchun; Du, Xuezhong

    2006-07-04

    The miscibility and stability of the binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA) at the air-water interface and the interaction of ferritin with the immobilized monolayers have been studied in detail using surface pressure-area isotherms and surface plasmon resonance technique, respectively. The surface pressure-area isotherms indicated that the binary monolayers of DPPC and DOMA at the air-water interface were miscible and more stable than the monolayers of the two individual components. The surface plasmon resonance studies indicated that ferritin binding to the immobilized monolayers was primarily driven by the electrostatic interaction and that the amount of adsorbed protein at saturation was closely related not only to the number of positive charges in the monolayers but also to the pattern of positive charges at a given mole fraction of DOMA. The protein adsorption kinetics was determined by the properties of the monolayers (i.e., the protein-monolayer interaction) and the structure of preadsorbed protein molecules (i.e., the protein-protein interaction).

  8. Janus Monolayer Transition-Metal Dichalcogenides

    DOE PAGES

    Zhang, Jing; Jia, Shuai; Kholmanov, Iskandar; ...

    2017-08-03

    In this work, the crystal configuration of sandwiched S–Mo–Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized. By controlled sulfurization of monolayer MoSe 2, the top layer of selenium atoms is substituted by sulfur atoms, while the bottom selenium layer remains intact. Furthermore, the structure of this material is systematically investigated by Raman, photoluminescence, transmission electron microscopy, and X-ray photoelectron spectroscopy and confirmed by time-of-flight secondary ion mass spectrometry. Density functional theory (DFT) calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found tomore » correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction activity is discovered for the Janus monolayer, and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.« less

  9. Effect of the C-2 hydroxyl group on the mesomorphism of alkyl glycosides: synthesis and thermotropic behavior of alkyl 2-deoxy-D-arabino-hexopyranosides.

    PubMed

    Singh, Madan Kumar; Jayaraman, Narayanaswamy; Rao, D S Shankar; Prasad, S Krishna

    2008-10-01

    A homologous series of alkyl 2-deoxy-alpha-d-arabino-hexopyranosides and alkyl 2-deoxy-beta-d-arabino-hexopyranosides were synthesized, upon glycosylation of 1-alkanols (from C8 to C18 alkanols) with ethyl 2-deoxy-3,4,6-tri-O-acetyl-1-thio-d-arabino-hexopyranoside, followed by a deprotection. The thermotropic behavior of these new types of alkyl glycosides was investigated. It was observed that the beta-anomers of these alkyl glycosides, bearing nonyl to tetradecyl alkyl chain are mesomorphic, exhibiting monotropic smectic A phase. In contrast, the alpha-anomers are all non-mesomorphic. An effort to identify the liquid crystalline behavior of binary mixtures of the alpha- and beta-anomers was undertaken and it was found that mixtures containing equimolar amounts of the anomers exhibited mesomorphic behavior. A fine balance of the hydrophilic and hydrophobic components within the molecule is also found to be important for the alkyl 2-deoxy glycosides to form the mesophase.

  10. Direct N-alkylation of unprotected amino acids with alcohols

    PubMed Central

    Yan, Tao; Feringa, Ben L.; Barta, Katalin

    2017-01-01

    N-alkyl amino acids find widespread application as highly valuable, renewable building blocks. However, traditional synthesis methodologies to obtain these suffer from serious limitations, providing a major challenge to develop sustainable alternatives. We report the first powerful catalytic strategy for the direct N-alkylation of unprotected α-amino acids with alcohols. This method is highly selective, produces water as the only side product leading to a simple purification procedure, and a variety of α-amino acids are mono- or di-N-alkylated, in most cases with excellent retention of optical purity. The hydrophobicity of the products is tunable, and even simple peptides are selectively alkylated. An iron-catalyzed route to mono-N-alkyl amino acids using renewable fatty alcohols is also described that represents an ideal green transformation for obtaining fully bio-based surfactants. PMID:29226249

  11. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length.

    PubMed

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S; Du, Yang; Nielsen, Anne K; Byrne, Bernadette; Kobilka, Brian K; Loland, Claus J; Guan, Lan; Chae, Pil Seok

    2016-12-14

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C 12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile-lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Salvage of failed protein targets by reductive alkylation.

    PubMed

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.

  13. Salvage of Failed Protein Targets by Reductive Alkylation

    PubMed Central

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719

  14. Spontaneous desorption and phase transitions of self-assembled alkanethiol and alicyclic thiol monolayers chemisorbed on Au(111) in ultrahigh vacuum at room temperature.

    PubMed

    Ito, Eisuke; Kang, Hungu; Lee, Dongjin; Park, Joon B; Hara, Masahiko; Noh, Jaegeun

    2013-03-15

    Scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) were used to examine the surface structure and adsorption conditions of hexanethiol (HT) and cyclohexanethiol (CHT) self-assembled monolayers (SAMs) on Au(111) as a function of storage period in ultrahigh vacuum (UHV) conditions of 3×10(-7) Pa at room temperature (RT). STM imaging revealed that after storage for 7 days, HT SAMs underwent phase transitions from c(4×2) phase to low coverage 4×√3 phase. This transition is due to a structural rearrangement of hexanethiolates that results from the spontaneous desorption of chemisorbed HT molecules on Au(111) surface. XPS measurements showed approximately 28% reduction in sulfur coverage, which indicates desorption of hexanethiolates from the surfaces. Contrary to HT SAMs, the structural order of CHT SAMs with (5×2√3)R35° phase completely disappeared after storage for 3 or 7 days. XPS results show desorption of more than 80% of the cyclohexanethiolates, even after storage for 3 days. We found that spontaneous desorption of CHT molecules on Au(111) in UHV at RT occurred quickly, whereas spontaneous desorption of HT molecules was much slower. Thermal desorption spectroscopy (TDS) results suggest CHT SAMs in UHV at RT can desorb more efficiently than HT SAMs due to formation of thiol desorption fragments that result from chemical reactions between surface hydrogen atoms and thiolates on Au(111) surfaces. This study clearly demonstrated that organic thiols chemisorbed on gold surfaces are desorbed spontaneously in UHV at RT and van der Waals interactions play an important role in determining the structural stability of thiolate SAMs in UHV. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    PubMed

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  16. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  17. Identification of alkyl carbazoles and alkyl benzocarbazoles in Brazilian petroleum derivatives.

    PubMed

    Oliveira, Eniz Conceição; Vaz de Campos, Maria Cecília; Rodrigues, Maria Regina Alves; Pérez, Valéria Flores; Melecchi, Maria Inês Soares; Vale, Maria Goreti Rodrigues; Zini, Cláudia Alcaraz; Caramão, Elina Bastos

    2006-02-10

    Carbozoles are important compounds in crude oils, as they may be used as geochemical tracers, being the major type of nitrogen compounds in petroleum. At the same time, they are regarded as undesirable due to the problems they may cause in the refining process, such as catalyst poisoning, corrosion, gum or color formation in final products. As separation and identification of carbazoles are challenging goals, this work presents a chromatographic method, made of a pre-fractionation on neutral alumina followed by the separation and identification of two classes of carbazoles using FeCl(3)/Chromossorb W and gas chromatograph with mass spectrometer (GC/MS) (SIM-single ion monitoring mode) analysis. For the first time, a series of alkyl carbazoles and alkyl benzocarbazoles were identified in heavy gas oil (HGO) and atmospheric residue of distillation (ARD) obtained from Brazilian petroleum.

  18. Size-tunable Lateral Confinement in Monolayer Semiconductors

    DOE PAGES

    Wei, Guohua; Czaplewski, David A.; Lenferink, Erik J.; ...

    2017-06-12

    Three-dimensional confinement allows semiconductor quantum dots to exhibit size-tunable electronic and optical properties that enable a wide range of opto-electronic applications from displays, solar cells and bio-medical imaging to single-electron devices. Additional modalities such as spin and valley properties in monolayer transition metal dichalcogenides provide further degrees of freedom requisite for information processing and spintronics. In nanostructures, however, spatial confinement can cause hybridization that inhibits the robustness of these emergent properties. Here in this paper, we show that laterally-confined excitons in monolayer MoS 2 nanodots can be created through top-down nanopatterning with controlled size tunability. Unlike chemically-exfoliated monolayer nanoparticles, themore » lithographically patterned monolayer semiconductor nanodots down to a radius of 15 nm exhibit the same valley polarization as in a continuous monolayer sheet. The inherited bulk spin and valley properties, the size dependence of excitonic energies, and the ability to fabricate MoS 2 nanostructures using semiconductor-compatible processing suggest that monolayer semiconductor nanodots have potential to be multimodal building blocks of integrated optoelectronics and spintronics systems« less

  19. Superheating of monolayer ice in graphene nanocapillaries

    NASA Astrophysics Data System (ADS)

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-04-01

    The freezing and melting of low-dimensional materials, either via a first-order phase transition or without any discontinuity in thermodynamic, still remain a matter of debate. Melting (superheating) in two-dimensional (2D) ice is fundamentally different from that in bulk counterpart. Here, we perform comprehensive molecular dynamics simulations of the superheating of monolayer ice in graphene nanocapillaries to understand the nature of melting transition in 2D water/ice. We find four different superheating (melting) scenarios can happen in the superheating of monolayer square-like ice, which are closely related to the lateral pressure and the channel width. The anomalous two-stage melting transition with arisen coexistence phase is found, which reveals the unknown extraordinary characteristics of melting in 2D water/ice. Under ultrahigh lateral pressure, the intermediate monolayer triangular amorphous ice will be formed during the superheating of monolayer square-like ice with both continuous-like and first-order phase transitions. Whereas, under low lateral pressure, the melting in monolayer square-like ice manifests typical discontinuity with notable hysteresis-loop in potential energy during the heating/cooling process. Moreover, we also find that highly puckered monolayer square-like ice can transform into bilayer AB-stacked amorphous ice with square pattern in the superheating process. The superheating behavior under high lateral pressure can be partly regarded as the compression limit of superheated monolayer water. The intrinsic phenomena in our simulated superheating of monolayer ice may be significant for understanding the melting behavior in 2D water/ice.

  20. Superheating of monolayer ice in graphene nanocapillaries.

    PubMed

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-04-07

    The freezing and melting of low-dimensional materials, either via a first-order phase transition or without any discontinuity in thermodynamic, still remain a matter of debate. Melting (superheating) in two-dimensional (2D) ice is fundamentally different from that in bulk counterpart. Here, we perform comprehensive molecular dynamics simulations of the superheating of monolayer ice in graphene nanocapillaries to understand the nature of melting transition in 2D water/ice. We find four different superheating (melting) scenarios can happen in the superheating of monolayer square-like ice, which are closely related to the lateral pressure and the channel width. The anomalous two-stage melting transition with arisen coexistence phase is found, which reveals the unknown extraordinary characteristics of melting in 2D water/ice. Under ultrahigh lateral pressure, the intermediate monolayer triangular amorphous ice will be formed during the superheating of monolayer square-like ice with both continuous-like and first-order phase transitions. Whereas, under low lateral pressure, the melting in monolayer square-like ice manifests typical discontinuity with notable hysteresis-loop in potential energy during the heating/cooling process. Moreover, we also find that highly puckered monolayer square-like ice can transform into bilayer AB-stacked amorphous ice with square pattern in the superheating process. The superheating behavior under high lateral pressure can be partly regarded as the compression limit of superheated monolayer water. The intrinsic phenomena in our simulated superheating of monolayer ice may be significant for understanding the melting behavior in 2D water/ice.

  1. Spectral assignment and orientational analysis in a vibrational sum frequency generation study of DPPC monolayers at the air/water interface

    NASA Astrophysics Data System (ADS)

    Feng, Rong-Juan; Li, Xia; Zhang, Zhen; Lu, Zhou; Guo, Yuan

    2016-12-01

    The interfacial behavior of the benchmark zwitterionic phospholipid molecule dipalmitoylphosphatidylcholine (DPPC) has been extensively investigated by surface-selective vibrational sum frequency generation spectroscopy (VSFG). However, there is still a lack of agreement between various orientational measurements of phospholipid monolayers at the air/water interface, mainly because of the difficulty in assigning congested VSFG features. In this study, polarization-dependent VSFG measurements reveal a frequency shift between the in-plane and out-of-plane antisymmetric stretching modes of the terminal methyl groups in the DPPC alkyl tails, favoring the model of Cs local symmetry rather than the previously assumed C3v symmetry. Further VSFG experiments of isotopically labeled DPPC successfully capture the vibrational signatures of the glycerol backbone. With the newly derived VSFG polarization selection rules for Cs symmetry and the refreshed spectral assignments, the average tilt angles of the alkyl tail groups, choline headgroup, and glycerol backbone of DPPC molecules can all be determined, showing the powerful capability of VSFG spectroscopy in revealing the structural details at interfaces. The VSFG polarization dependence rules and the orientational analysis procedures developed for Cs symmetry in this work are applicable to other bulky molecules in which the methyl group cannot freely rotate, and they therefore have general applications in future VSFG studies.

  2. 40 CFR 721.10548 - Mixed alkyl phosphate esters alkoxylated (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed alkyl phosphate esters... Specific Chemical Substances § 721.10548 Mixed alkyl phosphate esters alkoxylated (generic). (a) Chemical... as mixed alkyl phosphate esters alkoxylated (PMN P-04-624) is subject to reporting under this section...

  3. 40 CFR 721.10548 - Mixed alkyl phosphate esters alkoxylated (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed alkyl phosphate esters... Specific Chemical Substances § 721.10548 Mixed alkyl phosphate esters alkoxylated (generic). (a) Chemical... as mixed alkyl phosphate esters alkoxylated (PMN P-04-624) is subject to reporting under this section...

  4. Monolayer collapse regulating process of adsorption-desorption of palladium nanoparticles at fatty acid monolayers at the air-water interface.

    PubMed

    Goto, Thiago E; Lopez, Ricardo F; Iost, Rodrigo M; Crespilho, Frank N; Caseli, Luciano

    2011-03-15

    In this paper, we investigate the affinity of palladium nanoparticles, stabilized with glucose oxidase, for fatty acid monolayers at the air-water interface, exploiting the interaction between a planar system and spheroids coming from the aqueous subphase. A decrease of the monolayer collapse pressure in the second cycle of interface compression proved that the presence of the nanoparticles causes destabilization of the monolayer in a mechanism driven by the interpenetration of the enzyme into the bilayer/multilayer structure formed during collapse, which is not immediately reversible after monolayer expansion. Surface pressure and surface potential-area isotherms, as well as infrared spectroscopy [polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS)] and deposition onto solid plates as Langmuir-Blodgett (LB) films, were employed to construct a model in which the nanoparticle has a high affinity for the hydrophobic core of the structure formed after collapse, which provides a slow desorption rate from the interface after monolayer decompression. This may have important consequences on the interaction between the metallic particles and fatty acid monolayers, which implies the regulation of the multifunctional properties of the hybrid material.

  5. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  6. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  7. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  8. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  9. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  10. 40 CFR 721.10493 - Tris-alkyl-alkoxy melamine polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tris-alkyl-alkoxy melamine polymer... Specific Chemical Substances § 721.10493 Tris-alkyl-alkoxy melamine polymer (generic). (a) Chemical... as tris-alkyl-alkoxy melamine polymer (PMN P-05-417) is subject to reporting under this section for...

  11. 40 CFR 721.10493 - Tris-alkyl-alkoxy melamine polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tris-alkyl-alkoxy melamine polymer... Specific Chemical Substances § 721.10493 Tris-alkyl-alkoxy melamine polymer (generic). (a) Chemical... as tris-alkyl-alkoxy melamine polymer (PMN P-05-417) is subject to reporting under this section for...

  12. Selective alkylation of T–T mismatched DNA using vinyldiaminotriazine–acridine conjugate

    PubMed Central

    Onizuka, Kazumitsu; Usami, Akira; Yamaoki, Yudai; Kobayashi, Tomohito; Hazemi, Madoka E; Chikuni, Tomoko; Sato, Norihiro; Sasaki, Kaname; Katahira, Masato

    2018-01-01

    Abstract The alkylation of the specific higher-order nucleic acid structures is of great significance in order to control its function and gene expression. In this report, we have described the T–T mismatch selective alkylation with a vinyldiaminotriazine (VDAT)–acridine conjugate. The alkylation selectively proceeded at the N3 position of thymidine on the T–T mismatch. Interestingly, the alkylated thymidine induced base flipping of the complementary base in the duplex. In a model experiment for the alkylation of the CTG repeats DNA which causes myotonic dystrophy type 1 (DM1), the observed reaction rate for one alkylation increased in proportion to the number of T–T mismatches. In addition, we showed that primer extension reactions with DNA polymerase and transcription with RNA polymerase were stopped by the alkylation. The alkylation of the repeat DNA will efficiently work for the inhibition of replication and transcription reactions. These functions of the VDAT–acridine conjugate would be useful as a new biochemical tool for the study of CTG repeats and may provide a new strategy for the molecular therapy of DM1. PMID:29309639

  13. Structural and dynamic characteristics in monolayer square ice.

    PubMed

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-07-28

    When water is constrained between two sheets of graphene, it becomes an intriguing monolayer solid with a square pattern due to the ultrahigh van der Waals pressure. However, the square ice phase has become a matter of debate due to the insufficient experimental interpretation and the slightly rhomboidal feature in simulated monolayer square-like structures. Here, we performed classical molecular dynamics simulations to reveal monolayer square ice in graphene nanocapillaries from the perspective of structure and dynamic characteristics. Monolayer square-like ice (instantaneous snapshot), assembled square-rhombic units with stacking faults, is a long-range ordered structure, in which the square and rhombic units are assembled in an order of alternative distribution, and the other rhombic unit forms stacking faults (polarized water chains). Spontaneous flipping of water molecules in monolayer square-like ice is intrinsic and induces transformations among different elementary units, resulting in the structural evolution of monolayer square ice in dynamics. The existence of stacking faults should be attributed to the spontaneous flipping behavior of water molecules under ambient temperature. Statistical averaging results (thermal average positions) demonstrate the inherent square characteristic of monolayer square ice. The simulated data and insight obtained here might be significant for understanding the topological structure and dynamic behavior of monolayer square ice.

  14. Alkyl chitosan film-high strength, functional biomaterials.

    PubMed

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  15. In situ gelable interpenetrating double network hydrogel formulated from binary components: thiolated chitosan and oxidized dextran.

    PubMed

    Zhang, Hanwei; Qadeer, Aisha; Chen, Weiliam

    2011-05-09

    In situ gelable interpenetrating double-network hydrogels composed of thiolated chitosan (Chitosan-NAC) and oxidized dextran (Odex), completely devoid of potentially cytotoxic small molecule cross-linkers and that do not require complex maneuvers or catalysis, have been formulated. The interpenetrating network structure is created by Schiff base formations and disulfide bond inter-cross-linkings through exploiting the disparity of their reaction times. Compared with the autogelable thiolated chitosan hydrogels that typically require a relatively long time span for gelation to occur, the Odex/Chitosan-NAC composition solidifies rapidly and forms a well-developed 3D network in a short time span. Compared with typical hydrogels derived from natural materials, the Odex/Chitosan-NAC hydrogels are mechanically strong and resist degradation. The cytotoxicity potential of the hydrogels was determined by an in vitro viability assay using fibroblast as a model cell, and the results reveal that the hydrogels are noncytotoxic. In parallel, in vivo results from subdermal implantation in mice models demonstrate that this hydrogel is not only highly resistant to degradation but also induces very mild tissue response.

  16. In situ Gelable Interpenetrating Double Network Hydrogel Formulated from Binary Components: Thiolated Chitosan and Oxidized Dextran

    PubMed Central

    Zhang, Hanwei; Qadeer, Aisha; Chen, Weiliam

    2011-01-01

    In situ gelable interpenetrating double network hydrogels composed of thiolated chitosan (Chitosan-NAC) and oxidized dextran (Odex), completely devoid of potentially cytotoxic small molecule crosslinkers and do not require complex maneuvers or catalysis, have been formulated. The interpenetrating network structure is created by Schiff base formations and disulfide bond inter-crosslinkings through exploiting the disparity of their reaction times. Compare to the auto-gelable thiolated chitosan hydrogels that typically require a relatively long time span for gelation to occur, the Odex/Chitosan-NAC composition solidifies rapidly and forms a well-developed three-dimensional network in a short time span. Compare to typical hydrogels derived from natural materials, the Odex/Chitosan-NAC hydrogels are mechanically strong and resist degradation. The cytotoxicity potential of the hydrogels was determined by an in vitro viability assay using fibroblast as a model cell and the results reveal that the hydrogels are non-cytotoxic. In parallel, in vivo results from subdermal implantation in mice models demonstrate that this hydrogel is not only highly resistant to degradation but also induces very mild tissue response. PMID:21410248

  17. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  18. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  19. Detection and identification of alkylating agents by using a bioinspired "chemical nose".

    PubMed

    Hertzog-Ronen, Carmit; Borzin, Elena; Gerchikov, Yulia; Tessler, Nir; Eichen, Yoav

    2009-10-12

    Alkylating agents are simple and reactive molecules that are commonly used in many and diverse fields such as organic synthesis, medicine, and agriculture. Some highly reactive alkylating species are also being used as blister chemical-warfare agents. The detection and identification of alkylating agents is not a trivial issue because of their high reactivity and simple structure. Herein, we report on a new multispot luminescence-based approach to the detection and identification of alkylating agents. In order to demonstrate the potential of the approach, seven pi-conjugated oligomers and polymers bearing nucleophilic pyridine groups, 1-7, were adsorbed onto a solid support and exposed to vapors of alkylators 8-15. The alkylation-induced color-shift patterns of the seven-spot array allow clear discrimination of the different alkylators. The spots are sensitive to minute concentrations of alkylators and, because the detection is based on the formation of new covalent bonds, these spots saturate at about 50 ppb.

  20. Effect of chitosan and thiolated chitosan coating on the inhibition behaviour of PIBCA nanoparticles against intestinal metallopeptidases

    NASA Astrophysics Data System (ADS)

    Bravo-Osuna, Irene; Vauthier, Christine; Farabollini, Alessandra; Millotti, Gioconda; Ponchel, Gilles

    2008-12-01

    Surface modified nanoparticles composed of poly(isobutylcyanoacrylate) (PIBCA) cores surrounded by a chitosan and thiolated chitosan gel layer were prepared and characterized in previous works. The presence of such biopolymers on the nanoparticle surface conferred those nanosystems interesting characteristics that might partially overcome the gastrointestinal enzymatic barrier, improving the oral administration of pharmacologically active peptides. In the present work, the antiprotease behaviour of this family of core-shell nanoparticles was in vitro tested against two model metallopeptidases present in the gastrointestinal tract (GIT): Carboxypeptidase A -CP A- (luminal protease) and Leucine Aminopeptidase M -LAP M- (membrane protease). As previous step, the zinc-binding capacity of these nanoparticles was evaluated. Interestingly, an improvement of both the zinc-binding capacity and the antiprotease effect of chitosan was observed when the biopolymers (chitosan and thiolated chitosan) were used as coating component of the core-shell nanoparticles, in comparison with their behaviour in solution, thanks to the different biopolymer chains rearrangement. The presence of amino, hydroxyl and thiol groups on the nanoparticle surface promoted zinc binding and hence the inhibition of the metallopeptidases analysed. On the contrary, the occurrence of a cross-linked structure in the gel layer surrounding the PIBCA cores of thiolated formulations, due to the formation of interchain and intrachain disulphide bonds, partially limited the inhibition of the proteases. The low accessibility of cations to the active groups of the cross-linked polymeric shell was postulated as a possible explanation of this behaviour. Results obtained in this work make this family of surface-modified nanocarriers promising candidates for the successfull administration of pharmacologically active peptides and proteins by the oral route.

  1. Thiolate/disulfide organic redox couples for efficient organic dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Wen-Yan; Zheng, Hai-Kuo; Wang, Jian-Wen; Zhang, Le-Le; Han, Hui-Min; Wu, Ming-Xing

    2017-08-01

    A series of organic thiolate/disulfide redox couples based on benz-imidazole/othiazole/oxazole have been synthesized and applied to dye-sensitized solar cells (DSCs). Platinum (Pt) and carbon material are introduced as counter electrode (CE) catalysts towards this kind of organic redox couples regeneration and the photovoltaic performance of the DSCs using this organic redox couples has been investigated. The carbon CE shows high catalytic activity than Pt for the organic redox couples and the DSCs using carbon CE exhibit much higher efficiencies than those of the Pt CE-based devices.

  2. Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap.

    PubMed

    Oh, Jeong-Wook; Lim, Dong-Kwon; Kim, Gyeong-Hwan; Suh, Yung Doug; Nam, Jwa-Min

    2014-10-08

    The design, synthesis and control of plasmonic nanostructures, especially with ultrasmall plasmonically coupled nanogap (∼1 nm or smaller), are of significant interest and importance in chemistry, nanoscience, materials science, optics and nanobiotechnology. Here, we studied and established the thiolated DNA-based synthetic principles and methods in forming and controlling Au core-nanogap-Au shell structures [Au-nanobridged nanogap particles (Au-NNPs)] with various interior nanogap and Au shell structures. We found that differences in the binding affinities and modes among four different bases to Au core, DNA sequence, DNA grafting density and chemical reagents alter Au shell growth mechanism and interior nanogap-forming process on thiolated DNA-modified Au core. Importantly, poly A or poly C sequence creates a wider interior nanogap with a smoother Au shell, while poly T sequence results in a narrower interstitial interior gap with rougher Au shell, and on the basis of the electromagnetic field calculation and experimental results, we unraveled the relationships between the width of the interior plasmonic nanogap, Au shell structure, electromagnetic field and surface-enhanced Raman scattering. These principles and findings shown in this paper offer the fundamental basis for the thiolated DNA-based chemistry in forming and controlling metal nanostructures with ∼1 nm plasmonic gap and insight in the optical properties of the plasmonic NNPs, and these plasmonic nanogap structures are useful as strong and controllable optical signal-generating nanoprobes.

  3. Structure-biocompatibility and transfection activity relationships of cationic polyaspartamides with (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups.

    PubMed

    Salakhieva, Diana; Shevchenko, Vesta; Németh, Csaba; Gyarmati, Benjámin; Szilágyi, András; Abdullin, Timur

    2017-01-30

    A series of 14 cationic derivatives of poly(aspartic acid) i.e. cationic polyaspartamides with different (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups was synthesized by nucleophilic addition on polysuccinimide. The resulting polyaspartamides have moderate amphiphilic properties. Relationships between the structure and ratio of side groups and in vitro properties of polyaspartamides, including their cytotoxic and membrane-damaging activity towards human cell lines, primary skin fibroblasts and erythrocytes, were established and discussed. Cationic polyaspartamides vary in their DNA-binding, condensing and nuclease-protecting characteristics depending on the concentration ratio of (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups. Effective cell transfection was achieved upon polyaspartamide-mediated plasmid DNA delivery in serum-free medium in the presence of chloroquine. Effect of serum proteins adsorption onto polyaspartamide based polyplexes, and the role of concentration of polyplexes in culture medium in their colloidal stability and transfection process were demonstrated. Synthesized polyaspartamides are biocompatible and long-acting gene carriers, which are applied to cells after dilution and without washing, thus providing transfection level comparable to that of commercial transfection reagent. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Complex thiolated mannose/quinone film modified on EQCM/Au electrode for recognizing specific carbohydrate-proteins.

    PubMed

    Zeng, Hongjuan; Yu, Junsheng; Jiang, Yadong; Zeng, Xiangqun

    2014-05-15

    A complex thiolated mannose (TM)/quinone functionalised polythiophene (QFPT) thin film was modified on EQCM/Au electrode for recognition of specific carbohydrate-proteins. Different lectins such as those from Sambucus nigra (elder berry), Arachis hypogaea (peanut), Ulex europaeus (gorse, furze), Triticum vulgaris and Concanavalin A (ConA) was used for probes to evaluate bio-sensing performance of the TM/QFPT film. A specific response was observed for ConA from lectins when using the TM/QFPT film as sensing material and employing either elelctrochemical or the QCM method. No response was detected between thiolated mannose and other lectins. The linear relationship between current and ConA concentration is in the range of 0.5-17.5 nM by the elelctrochemical method and the linear relationship between frequency change and ConA concentration is in the range of 0.5-4.5 nM by the QCM method. This shows that the TM/QFPT-modified EQCM biosensor presents a paralleled determination by using electrochemical and the QCM method. The elelctrochemical method of the biosensor can be applicable in a large concentration range and its frequency change can be more precise. © 2013 Published by Elsevier B.V.

  5. Mechanisms of chemoresistance to alkylating agents in malignant glioma.

    PubMed

    Sarkaria, Jann N; Kitange, Gaspar J; James, C David; Plummer, Ruth; Calvert, Hilary; Weller, Michael; Wick, Wolfgang

    2008-05-15

    Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but this is dependent on a functional mismatch repair pathway. Thus, tumor cell lines deficient in mismatch repair are resistant to alkylating agents. Perhaps the most important mechanism of resistance to alkylating agents is the DNA repair enzyme O6-methylguanine methyltransferase, which can eliminate the cytotoxic O6-methylguanine DNA adduct before it causes harm. Another mechanism of resistance to alkylating agents is the base excision repair (BER) pathway. Consequently, efforts are ongoing to develop effective inhibitors of BER. Poly(ADP-ribose)polymerase plays a pivotal role in BER and is an important therapeutic target. Developing effective strategies to overcome chemoresistance requires the identification of reliable preclinical models that recapitulate human disease and which can be used to facilitate drug development. This article describes the diverse mechanisms of chemoresistance operating in malignant glioma and efforts to develop reliable preclinical models and novel pharmacologic approaches to overcome resistance to alkylating agents.

  6. Alcohols as alkylating agents in heteroarene C-H functionalization

    NASA Astrophysics Data System (ADS)

    Jin, Jian; MacMillan, David W. C.

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  7. Alcohols as alkylating agents in heteroarene C-H functionalization.

    PubMed

    Jin, Jian; MacMillan, David W C

    2015-09-03

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of 'spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  8. Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures

    NASA Astrophysics Data System (ADS)

    Yang, Huayan; Wang, Yu; Zheng, Nanfeng

    2013-03-01

    The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions.The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions. Electronic supplementary information (ESI) available: Experimental details, more pictures of the structure and XPS spectra of the clusters. CCDC 916463 and 916464. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr34328f

  9. 40 CFR 721.10711 - Alkyl substituted catechol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10711 Alkyl substituted catechol (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  10. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this section...

  11. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this section...

  12. Effect of alkyl chain length on the rotational diffusion of nonpolar and ionic solutes in 1-alkyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imides.

    PubMed

    Gangamallaiah, V; Dutt, G B

    2013-10-10

    Rotational diffusion of a nonpolar solute 9-phenylanthracene (9-PA) and a cationic solute rhodamine 110 (R110) has been examined in a series of 1-alkyl-3-methylimidazolium (alkyl = octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl) bis(trifluoromethylsulfonyl)imides to understand the influence of alkyl chain length on solute rotation. In this study, reorientation times (τr) have been measured as a function of viscosity (η) by varying the temperature (T) of the solvents. These results have been analyzed using the Stokes-Einstein-Debye (SED) hydrodynamic theory along with the ones obtained for the same solutes in 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides (Gangamallaiah and Dutt, J. Phys. Chem. B 2012, 116, 12819-12825). It has been noticed that the data for 9-PA and R110 follows the relation τr = A(η/T)(n) with A being the ratio of hydrodynamic volume of the solute to the Boltzmann constant and n = 1 as envisaged by the SED theory. However, upon increasing the alkyl chain length from methyl to octadecyl significant deviations from the SED theory have been observed especially from the octyl derivative onward. From methyl to octadecyl derivatives, the value of A decreases by a factor of 3 for both the solutes and n by a factor of 1.4 and 1.6 for 9-PA and R110, respectively. These observations have been rationalized by taking into consideration the organized structure of the ionic liquids, whose influence appears to be pronounced when the number of carbon atoms in the alkyl chain attached to the imidazolium cation exceeds eight.

  13. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    PubMed

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lithium perchlorate-nitromethane-promoted alkylation of anilines with arylmethanols.

    PubMed

    Zhou, Jun; Mao, Hai-Feng; Wang, Lu; Zou, Jian-Ping; Zhang, Wei

    2011-11-01

    A new application of lithium perchlorate-nitromethane (LPNM) for the formation of aromatic C-N and C-C bonds is introduced. LPNM-promoted reactions of anilines with diarylmethanols selectively generate N-alkylated anilines or mono and double Friedel-Crafts alkylation products under different conditions by changing the reaction time, reaction temperature, and the ratio of the reactants. This method does not require the use of transition metal catalysts to prepare alkylated aniline derivatives.

  15. Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold

    NASA Technical Reports Server (NTRS)

    Porter, Marc D. (Inventor); Weisshaar, Duane E. (Inventor)

    1998-01-01

    An electrochemical method for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS--, therein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH.sub.3 or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage.

  16. Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold

    DOEpatents

    Porter, Marc D.; Weisshaar, Duane E.

    1998-10-27

    An electrochemical method for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS--, therein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH.sub.3 or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage.

  17. Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold

    DOEpatents

    Porter, Marc D.; Weisshaar, Duane E.

    1997-06-03

    An electrochemical method for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS.sup.-, wherein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH.sub.3 or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage.

  18. Chiral Brønsted Base-Promoted Nitroalkane Alkylation: Enantioselective Synthesis of sec-Alkyl-3-Substituted Indoles

    PubMed Central

    Dobish, Mark C.; Johnston, Jeffrey N.

    2010-01-01

    A Brønsted base-catalyzed reaction of nitroalkanes with alkyl electrophiles provides indole heterocycles substituted at C3 bearing a sec-alkyl group with good enantioselectivity (up to 90% ee). Denitration by hydrogenolysis provides a product with equally high ee. An indolenine intermediate is implicated in the addition step, and surprisingly, water cosolvent was found to have a beneficial effect in this step, leading to a one-pot protocol for elimination/enantioselective addition using PBAM, a bis(amidine) chiral nonracemic base. PMID:21090654

  19. Synthesis and characterization of Pd(0), PdS, and Pd-PdO core-shell nanoparticles by solventless thermolysis of a Pd-thiolate cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jose, Deepa; Jagirdar, Balaji R., E-mail: jagirdar@ipc.iisc.ernet.i

    2010-09-15

    Colloids of palladium nanoparticles have been prepared by the solvated metal atom dispersion (SMAD) method. The as-prepared Pd colloid consists of particles with an average diameter of 2.8{+-}0.1 nm. Digestive ripening of the as-prepared Pd colloid, a process involving refluxing the as-prepared colloid at or near the boiling point of the solvent in the presence of a passivating agent, dodecanethiol resulted in a previously reported Pd-thiolate cluster, [Pd(SC{sub 12}H{sub 25}){sub 2}]{sub 6} but did not render the expected narrowing down of the particle size distribution. Solventless thermolysis of the Pd-thiolate complex resulted in various Pd systems such as Pd(0), PdS,more » and Pd-PdO core-shell nanoparticles thus demonstrating its versatility. These Pd nanostructures have been characterized using high-resolution electron microscopy and powder X-ray diffraction methods. - Graphical abstract: Solventless thermolysis of a single palladium-thiolate cluster affords various Pd systems such as Pd(0), Pd-PdO core-shell, and PdS nanoparticles demonstrating the versatility of the precursor and the methodology.« less

  20. The ferromagnetic monolayer Fe(110) on W(110)

    NASA Astrophysics Data System (ADS)

    Gradmann, U.; Liu, G.; Elmers, H. J.; Przybylski, M.

    1990-07-01

    Ferromagnetic order in the pseudomorphic monolayer Fe(110) on W(110) was analyzed experimentally using Conversion Electron Mössbauer Spectroscopy (CEMS) and Torsion Oscillation Magnetometry (TOM). The monolayer is thermodynamically stable, crystallizes to large monolayer patches at elevated temperatures and therefore forms an excellent approximation to the ideal monolayer structure. It is ferromagnetic below a Curie-temperature T c,mono, which is given by (282±3) K for the Ag-coated layer, (290±10) K for coating by Cu, Ag or Au and ≈210 K for the free monolayer. For the Ag-coated monolayer, ground state hyperfine field B hf (0)=(11.9±0.3) T and magnetic moment per atom μ=2.53 μB could be determined, in fair agreement with theoretical predictions. Unusual properties of the phase transition are detected by the combination of both experimental techniques. Strong magnetic anisotropies, which are essential for ferromagnetic order, are determined by CEMS.

  1. Liquid-Crystalline Collapse of Pulmonary Surfactant Monolayers

    PubMed Central

    Schief, William R.; Antia, Meher; Discher, Bohdana M.; Hall, Stephen B.; Vogel, Viola

    2003-01-01

    During exhalation, the surfactant film of lipids and proteins that coats the alveoli in the lung is compressed to high surface pressures, and can remain metastable for prolonged periods at pressures approaching 70 mN/m. Monolayers of calf lung surfactant extract (CLSE), however, collapse in vitro, during an initial compression at ∼45 mN/m. To gain information on the source of this discrepancy, we investigated how monolayers of CLSE collapse from the interface. Observations with fluorescence, Brewster angle, and light scattering microscopies show that monolayers containing CLSE, CLSE-cholesterol (20%), or binary mixtures of dipalmitoyl phosphatidylcholine(DPPC)-dihydrocholesterol all form bilayer disks that reside above the monolayer. Upon compression and expansion, lipids flow continuously from the monolayer into the disks, and vice versa. In several respects, the mode of collapse resembles the behavior of other amphiphiles that form smectic liquid-crystal phases. These findings suggest that components of surfactent films must collapse collectively rather than being squeezed out individually. PMID:12770885

  2. A facile and efficient method to modify gold nanorods with thiolated DNA at a low pH value.

    PubMed

    Shi, Dangwei; Song, Chen; Jiang, Qiao; Wang, Zhen-Gang; Ding, Baoquan

    2013-03-28

    We report a simple, rapid and efficient strategy for modification of gold nanorods (AuNRs) with thiolated DNA at low solution pH and high salt concentration. DNA functionalized AuNRs were then used to assemble with DNA modified gold nanoparticles to form discrete satellite nanostructures.

  3. Sleep-inducing N-alkyl-5-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinones and N-alkyl-3-(trifluoromethyl)cinnamamides.

    PubMed

    Houlihan, W J; Gogerty, J H; Ryan, E A; Schmitt, G

    1985-01-01

    A series of N-alkyl-3-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinones and N-alkyl-3-(trifluoromethyl)-cinnamamides were prepared and screened in a series of tests designed to detect potential sleep inducers. The more active members of the series were evaluated for their ability to induce sleep in Cebus monkeys. The most active compound, N-methyl-5-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinone, was equal to methaqualone.

  4. Thermoelectric properties of SnSe2 monolayer.

    PubMed

    Li, Guanpeng; Ding, Guangqian; Gao, Guoying

    2017-01-11

    The 2H (MoS 2 -type) phase of 2D transition metal dichalcogenides (TMDCs) has been extensively studied and exhibits excellent electronic and optoelectronic properties, but the high phonon thermal conductivity is detrimental to the thermoelectric performances. Here, we use first-principles methods combined with Boltzmann transport theory to calculate the electronic and phononic transport properties of 1T (CdI 2 -type) SnSe 2 monolayer, a recently realized 2D metal dichalcogenide semiconductor. The calculated band gap is 0.85 eV, which is a little larger than the bulk value. Lower phonon thermal conductivity and higher power factor are obtained in 1T-SnSe 2 monolayer compared to 2H-TMDCs monolayers. The low phonon thermal conductivity (3.27 W mK -1 at room temperature) is mainly due to the low phonon frequency of acoustic modes and the coupling of acoustic modes with optical modes. We also find that the p-type has better thermoelectric performance than the n-type, and the figure of merit within p-type can reach 0.94 at 600 K for 1T-SnSe 2 monolayer, which is higher than those of most 2H-TMDCs monolayers, making 1T-SnSe 2 monolayer a promising candidate for thermoelectric applications.

  5. Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coan, Patrick D.; Ellis, Lucas D.; Griffin, Michael B.

    Here, cooperative catalysts containing a combination of noble metal hydrogenation sites and Bronsted acid sites are critical for many reactions, including the deoxygenation (DO) of biomass-derived oxygenates in the upgrading of pyrolysis oil. One route toward the design of cooperative catalysts is to tether two different catalytically active functions so that they are in close proximity while avoiding undesirable interactions that can block active sites. Here, we deposited carboxylic acid (CA)-functionalized organophosphonate monolayers onto Al 2O 3-supported Pd nanoparticle catalysts to prepare bifunctional catalysts containing both Bronsted acid and metal sites. Modification with phosphonic acids (PAs) improved activity and selectivitymore » for gas-phase DO reactions, but the degree of improvement was highly sensitive to both the presence and positioning of the CA group, suggesting a significant contribution from both the PA and CA sites. Short spacer lengths of 1-2 methylene groups between the phosphonate head and CA tail were found to yield the best DO rates and selectivities, whereas longer chains performed similarly to self-assembled monolayers having alkyl tails. Results from a combination of density functional theory and Fourier transform infrared spectroscopy suggested that the enhanced catalyst performance on the optimally positioned CAs was due to the generation of strong acid sites on the Al 2O 3 support adjacent to the metal. Furthermore, the high activity of these sites was found to result from a hydrogen-bonded cyclic structure involving cooperativity between the phosphonate head group and CA tail function. More broadly, these results indicate that functional groups tethered to supports via organic ligands can influence catalytic chemistry on metal nanoparticles.« less

  6. Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers

    DOE PAGES

    Coan, Patrick D.; Ellis, Lucas D.; Griffin, Michael B.; ...

    2018-03-05

    Here, cooperative catalysts containing a combination of noble metal hydrogenation sites and Bronsted acid sites are critical for many reactions, including the deoxygenation (DO) of biomass-derived oxygenates in the upgrading of pyrolysis oil. One route toward the design of cooperative catalysts is to tether two different catalytically active functions so that they are in close proximity while avoiding undesirable interactions that can block active sites. Here, we deposited carboxylic acid (CA)-functionalized organophosphonate monolayers onto Al 2O 3-supported Pd nanoparticle catalysts to prepare bifunctional catalysts containing both Bronsted acid and metal sites. Modification with phosphonic acids (PAs) improved activity and selectivitymore » for gas-phase DO reactions, but the degree of improvement was highly sensitive to both the presence and positioning of the CA group, suggesting a significant contribution from both the PA and CA sites. Short spacer lengths of 1-2 methylene groups between the phosphonate head and CA tail were found to yield the best DO rates and selectivities, whereas longer chains performed similarly to self-assembled monolayers having alkyl tails. Results from a combination of density functional theory and Fourier transform infrared spectroscopy suggested that the enhanced catalyst performance on the optimally positioned CAs was due to the generation of strong acid sites on the Al 2O 3 support adjacent to the metal. Furthermore, the high activity of these sites was found to result from a hydrogen-bonded cyclic structure involving cooperativity between the phosphonate head group and CA tail function. More broadly, these results indicate that functional groups tethered to supports via organic ligands can influence catalytic chemistry on metal nanoparticles.« less

  7. Synthesis and characterization of chitosan alkyl urea.

    PubMed

    Wang, Jing; Jiang, Ji-Zhou; Chen, Wei; Bai, Zheng-Wu

    2016-07-10

    Chitosan is a versatile material employed for various purposes in many fields including the development of chiral stationary phases for enantioseparation. Chitosan alkyl urea is a kind of intermediate used to prepare enantioseparation materials. In order to synthesize the intermediates, in the present work, a new way to prepare chitosan alkyl urea has been established: chitosan was first reacted with methyl chloroformate yielding N-methoxyformylated chitosan, which was then converted to chitosan alkyl urea through amine-ester exchange reaction. With a large excess of methyl chloroformate and primary amine of low stereohindrance, the amino group in chitosan could be almost completely converted to ureido group. The as-prepared chitosan alkyl urea derivatives were characterized by IR, (1)H NMR, (13)C NMR,(1)H-(1)H COSY and (1)H-(13)C HSQC NMR spectra. The chemical shifts of hydrogen and carbon atoms of glucose unit were assigned. It was found that the degree of substitution was obviously lower if cyclopropyl amine, aniline, tert-butyl amine and diethyl amine were used as reactants for the amine-ester exchange reaction. The reason was explained with the aid of theoretical calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Molecular precursor routes to transition metal sulfides

    NASA Astrophysics Data System (ADS)

    Dinnage, Christopher Walker

    This thesis is primarily concerned with the synthesis of homoleptic early transition meta thiolates and the subsequent preparation of bulk and thin-film metal disulfides from these compounds. Chapter 1 gives an introduction into the properties, preparation procedures and uses of bulk and thin-film transition metal disulfides as well as giving an overview of early transition metal thiolates synthesied so far in the literature (for titanium, zirconium, tantalum and niobium). Chapter 2 is concerned with the synthesis of a number of ionic and neutral transition metal thiolates. The main synthetic methodologies discussed in this chapter include substitution reactions of transition metal amides and alkyls with thiols, salt metathesis reactions of transition metal chlorides with alkali metal thiolates or with a base / thiol and the use of Grignard reagents. Chapter 3 discusses the preparation of bulk transition metal disulfides using the thiolates prepared in the previous chapter via a thio "sol-gel" route. The preparation of a range of bulk metal and mixed-metal disulfides using transition metal chlorides and hexamethyldisilathiane is also discussed in this chapter. Finally, chapter 4 is concerned with the attempted preparation of thin-films of some transition metal disulfides. Decomposition studies of some of the thiolates prepared in chapter 2 are discussed using thermal gravimetric analysis. Vapour-phase deposition studies are also explored in order to test the potential of the transition metal thiolates as precursors to the disulfides. Experiments using low-pressure chemical vapour deposition and aerosol-assisted chemical vapour deposition are also described.

  9. Alcohols as alkylating agents in heteroarene C–H functionalization

    PubMed Central

    Jin, Jian; MacMillan, David W. C.

    2015-01-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage1. One of the core principles that underlies DNA biosynthesis is the radical-mediated elimnation of H2O to deoxygenate ribonucleotides, an example of ‘spin-center shift’ (SCS)2, during which an alcohol C–O bond is cleaved, resulting in a carbon-centered radical intermediate. While SCS is a well-understood biochemical process, it is underutilized by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylations using alcohols as radical precursors. Considering traditional radical-based alkylation methods require the use of stoichiometric oxidants, elevated temperatures, or peroxides3–7, the development of a mild protocol using simple and abundant alkylating agents would have significant utility in the synthesis of diversely functionalized pharmacophores. In this manuscript, we describe the successful execution of this idea via the development of a dual catalytic alkylation of heteroarenes using alcohols as mild alkylating reagents. This method represents the first broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer (HAT) catalysis. The utility of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone. PMID:26308895

  10. Enhanced sensitivity of self-assembled-monolayer-based SPR immunosensor for detection of benzaldehyde using a single-step multi-sandwich immunoassay.

    PubMed

    Gobi, K Vengatajalabathy; Matsumoto, Kiyoshi; Toko, Kiyoshi; Ikezaki, Hidekazu; Miura, Norio

    2007-04-01

    This paper describes the fabrication and sensing characteristics of a self-assembled monolayer (SAM)-based surface plasmon resonance (SPR) immunosensor for detection of benzaldehyde (BZ). The functional sensing surface was fabricated by the immobilization of a benzaldehyde-ovalbumin conjugate (BZ-OVA) on Au-thiolate SAMs containing carboxyl end groups. Covalent binding of BZ-OVA on SAM was found to be dependent on the composition of the base SAM, and it is improved very much with the use of a mixed monolayer strategy. Based on SPR angle measurements, the functional sensor surface is established as a compact monolayer of BZ-OVA bound on the mixed SAM. The BZ-OVA-bound sensor surface undergoes immunoaffinity binding with anti-benzaldehyde antibody (BZ-Ab) selectively. An indirect inhibition immunoassay principle has been applied, in which analyte benzaldehyde solution was incubated with an optimal concentration of BZ-Ab for 5 min and injected over the sensor chip. Analyte benzaldehyde undergoes immunoreaction with BZ-Ab and makes it inactive for binding to BZ-OVA on the sensor chip. As a result, the SPR angle response decreases with an increase in the concentration of benzaldehyde. The fabricated immunosensor demonstrates a low detection limit (LDL) of 50 ppt (pg mL(-1)) with a response time of 5 min. Antibodies bound to the sensor chip during an immunoassay could be detached by a brief exposure to acidic pepsin. With this surface regeneration, reusability of the same sensor chip for as many as 30 determination cycles has been established. Sensitivity has been enhanced further with the application of an additional single-step multi-sandwich immunoassay step, in which the BZ-Ab bound to the sensor chip was treated with a mixture of biotin-labeled secondary antibody, streptavidin and biotin-bovine serum albumin (Bio-BSA) conjugate. With this approach, the SPR sensor signal increased by ca. 12 times and the low detection limit improved to 5 ppt with a total response

  11. Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold

    DOEpatents

    Porter, M.D.; Weisshaar, D.E.

    1998-10-27

    An electrochemical method is described for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS-, therein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH{sub 3} or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage. 13 figs.

  12. Detection of Alkylating Agents using Electrical and Mechanical Means

    NASA Astrophysics Data System (ADS)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Tal, Shay; Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir; Eichen, Yoav

    2011-08-01

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  13. Efficient quasisolid dye- and quantum-dot-sensitized solar cells using thiolate/disulfide redox couple and CoS counter electrode.

    PubMed

    Meng, Ke; Thampi, K Ravindranathan

    2014-12-10

    For the first time, a quasisolid thiolate/disulfide-based electrolyte was prepared using succinonitrile as a matrix. An optimized configuration of the quasisolid electrolyte contains 5-mercapto-1-methyltetrazole N-tetramethylammonium/disulfide/LiClO4/N-methylbenzimidazole in the molar ratio of 0.8:0.8:0.1:0.1. Dye-sensitized solar cells fabricated using this quasisolid electrolyte, together with N719 dye-sensitized photoelectrode and CoS counter electrode, attained power conversion efficiencies of 4.25% at 1 sun and 6.19% at 0.1 sun illumination intensities. The optimized quasisolid electrolyte, when introduced to quasisolid CdS quantum-dot-sensitized solar cells, exhibited a power conversion efficiency of 0.94%, despite the fact that CdS absorbs only a small fraction of the visible light, unlike dyes. The encouraging results show the potential for the utilization of the quasisolid thiolate/disulfide-based electrolyte in sensitized solar cells.

  14. Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-07-01

    The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety. © The Author(s) 2016.

  15. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells.

    PubMed

    Talaei, Fatemeh; Azizi, Ebrahim; Dinarvand, Rassoul; Atyabi, Fatemeh

    2011-01-01

    Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan) and NAP-C (N-acetyl penicillamine-chitosan) in anticancer drug delivery targeting epidermal growth factor receptor (EGFR). Doxorubicin (DOX) and antisense oligonucleotide (ASOND)-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D) were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo.

  16. Compression-Induced Conformation and Orientation Changes in an n-Alkane Monolayer on a Au(111) Surface.

    PubMed

    Endo, Osamu; Nakamura, Masashi; Amemiya, Kenta; Ozaki, Hiroyuki

    2017-04-25

    The influence of the preparation method and adsorbed amount of n-tetratetracontane (n-C 44 H 90 ) on its orientation in a monolayer on the Au(111) surface is studied by near carbon K-edge X-ray absorption fine structure spectroscopy (C K-NEXAFS), scanning tunneling microscopy (STM) under ultrahigh vacuum, and infrared reflection-absorption spectroscopy (IRAS) at the electrochemical interface in sulfuric acid solution. The n-C 44 H 90 molecules form self-assembled lamellar structures with the chain axis parallel to the surface, as observed by STM. For small amounts adsorbed, the carbon plane is parallel to the surface (flat-on orientation). An increase in the adsorbed amount by ∼10-20% induces compression of the lamellar structure either along the lamellar axis or alkyl chain axis. The compressed molecular arrangement is observed by STM, and induced conformation and orientation changes are confirmed by in situ IRAS and C K-NEXAFS.

  17. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery.

    PubMed

    Sajeesh, S; Vauthier, C; Gueutin, C; Ponchel, G; Sharma, Chandra P

    2010-08-01

    In the present study thiol functionalized polymethacrylic acid-polyethylene glycol-chitosan (PCP)-based hydrogel microparticles were utilized to develop an oral insulin delivery system. Thiol modification was achieved by grafting cysteine to the activated surface carboxyl groups of PCP hydrogels (Cys-PCP). Swelling and insulin loading/release experiments were conducted on these particles. The ability of these particles to inhibit protease enzymes was evaluated under in vitro experimental conditions. Insulin transport experiments were performed on Caco-2 cell monolayers and excised intestinal tissue with an Ussing chamber set-up. Finally, the efficacy of insulin-loaded particles in reducing the blood glucose level in streptozotocin-induced diabetic rats was investigated. Thiolated hydrogel microparticles showed less swelling and had a lower insulin encapsulation efficiency as compared with unmodified PCP particles. PCP and Cys-PCP microparticles were able to inhibit protease enzymes under in vitro conditions. Thiolation was an effective strategy to improve insulin absorption across Caco-2 cell monolayers, however, the effect was reduced in the experiments using excised rat intestinal tissue. Nevertheless, functionalized microparticles were more effective in eliciting a pharmacological response in diabetic animal, as compared with unmodified PCP microparticles. From these studies thiolation of hydrogel microparticles seems to be a promising approach to improve oral delivery of proteins/peptides. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. A Comparative XAFS Study of Gold-thiolate Nanoparticles and Nanoclusters

    NASA Astrophysics Data System (ADS)

    Chevrier, D. M.; Chatt, A.; Sham, T. K.; Zhang, P.

    2013-04-01

    Tiopronin-capped gold nanoparticles and gold nanoclusters of sizes 3.0 and 1.5 nm, respectively, were investigated with XAFS at the gold L3-edge. The specific EXAFS fitting procedure is discussed for obtaining reliable fit parameters for each system. The difficulties and challenges faced when analysing EXAFS data for gold nanoparticles and nanoclusters are also mentioned. Fitting results for gold nanoparticles reveal a small amount of surface Au-thiolate interactions with a large Au-Au metal core. For gold nanoclusters, only a one-shell fit was obtainable. Instead of Au-Au metal core, long-range interactions are expected for gold nanoclusters. Tiopronin-capped gold nanoclusters are proposed to be polymeric in nature, which helps explain the observed red luminescence.

  19. Alkylation of 6-mercaptopurine (6-MP) with N-alkyl-N-alkoxycarbonylaminomethyl chlorides: S6-(N-alkyl-N-alkoxycarbonyl)aminomethyl-6-MP prodrug structure effect on the dermal delivery of 6-MP.

    PubMed

    Siver, K G; Sloan, K B

    1990-01-01

    The S6-(N-alkyl-N-alkoxycarbonyl)aminomethyl-6-MP (6-CARB-6-MP) prodrugs 5-20 were synthesized from the reaction of 6-MP with N-alkyl-N-alkyoxycarbonylaminomethyl chlorides (4) in dimethyl sulfoxide in overall yields of 5-62%, depending on the N-alkyl and the alkoxy groups involved. The derivatives were fully characterized by spectral and microanalyses. The assignment of the substitution pattern as S6-alkyl was based on comparisons of the UV, 1H NMR and 13C NMR spectra with model compounds. A S6, 9-bis-alkyl derivative was obtained from the reaction of 2 equivalents of 4 with 6-MP but the product was unstable and decomposed on standing to a 9-alkyl derivative. The 6-CARB-6-MP prodrugs reverted to 6-MP in water by an SN1-type mechanism involving unimolecular charge separation in the transition state of the rate determining step. There was no effect of dermal enzymes on the rate of hydrolysis. The solubilities in isopropyl myristate (IPM) for all of the 6-CARB-6-MP prodrugs were significantly greater than the solubility of 6-MP in IPM but only one prodrug (5) was apparently even as soluble as 6-MP in water. Selected 6-CARB-6-MP prodrugs were examined in diffusion cell experiments. Only the N-methyl-N-methoxycarbonyl derivative 5 gave a steady-state rate of delivery of 6-MP from IPM that was significantly greater than the steady-state rate of delivery of 6-MP from 6-MP in IPM. All the other derivatives gave steady-state rates of delivery of 6-MP from IPM that were either not significantly different, or were significantly lower than the rate obtained from 6-MP in IPM. In all cases, the effect of the 6-CARB-6-MP:IPM suspensions on the permeability of the skin, as determined by the second application flux of theophylline:propylene glycol, was of the same magnitude as the effect of IPM alone.

  20. Ultrasound promoted N-alkylation of pyrrole using potassium superoxide as base in crown ether.

    PubMed

    Yim, E S; Park, M K; Han, B H

    1997-04-01

    Ultrasound accelerates the N-alkylation of pyrrole by alkylating reagents using potassium superoxide as base in the presence of 18-crown-6. A much lower yield of N-alkylated pyrrole was realized in the absence of ultrasound. N-alkylating reagents employed for pyrrole are methyl iodide, ethyl bromide, benzyl bromide, as well as acrylonitrile allyl cyanide and methyl acrylate. In an extension of this work, we have found that ultrasound was not necessary for the N-alkylation of indole and alkyl amine, such as diphenyl amine and piperidine with alkyl halides using our reagents. In all cases we observed that the 18-crown-6 catalyzed N-alkylation reaction gives higher yields of N-alkylated products than that without crown ether, when potassium superoxide was used as base. These observations are probably due to the potassium-crown complex which can be released when the reaction goes to completion.

  1. Thiolated polymers--thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates.

    PubMed

    Kast, C E; Bernkop-Schnürch, A

    2001-09-01

    The aim of this study was to improve mucoadhesive properties of chitosan by the covalent attachment of thiol moieties to this cationic polymer. Mediated by a carbodiimide, thioglycolic acid (TGA) was covalently attached to chitosan. This was achieved by the formation of amide bonds between the primary amino groups of the polymer and the carboxylic acid group of TGA. Dependent on the pH-value and the weight ratio of polymer to TGA during the coupling reaction the resulting thiolated polymers, the so-called thiomers, displayed 6.58, 9.88, 27.44, and 38.23 micromole thiol groups per gram polymer. Tensile studies carried out with these chitosan-TGA conjugates on freshly excised porcine intestinal mucosa demonstrated a 6.3-, 8.6-, 8.9-, and 10.3-fold increase in the total work of adhesion (TWA) compared to the unmodified polymer, respectively. In contrast, the combination of chitosan and free unconjugated TGA showed almost no mucoadhesion. These data were in good correlation with further results obtained by another mucoadhesion test demonstrating a prolonged residence time of thiolated chitosan on porcine mucosa. The swelling behavior of all conjugates was thereby exactly in the same range as for an unmodified polymer pretreated in the same way. Furthermore, it could be shown that chitosan-TGA conjugates are still biodegradable by the glycosidase lysozyme. According to these results. chitosan-TGA conjugates represent a promising tool for the development of mucoadhesive drug delivery systems.

  2. Mannan-decorated thiolated Eudragit microspheres for targeting antigen presenting cells via nasal vaccination.

    PubMed

    Li, Hui-Shan; Singh, Bijay; Park, Tae-Eun; Hong, Zhong-Shan; Kang, Sang-Kee; Cho, Chong-Su; Choi, Yun-Jaie

    2015-12-01

    Mucosal vaccination of protein as an antigen requires appropriate delivery or adjuvant systems to deliver antigen to mucosal immune cells efficiently and generate valid immune responses. For successful nasal immunization, the obstacles imposed by the normal process of mucociliary clearance which limits residence time of applied antigens and low antigen delivery to antigen presenting cells (APCs) in nasal associated lymphoid tissue (NALT) need to be overcome for the efficient vaccination. Here, we prepared mucoadhesive and mannan-decorated thiolated Eudragit microspheres (Man-TEM) as a nasal vaccine carrier to overcome the limitations. Mucoadhesive thiolated Eudragit (TE) were decorated with mannan for targeting mannose receptors (MR) in antigen presenting cells (APCs) to obtain efficient immune responses. The potential adjuvant ability of Man-TEM for intranasal immunization was confirmed by in vitro and in vivo experiments. In mechanistic study using APCs in vitro, we obtained that Man-TEM enhanced the receptor-mediated endocytosis by stimulating the MR receptors of APCs. The nasal vaccination of OVA-loaded Man-TEM in mice showed higher levels of serum IgG and mucosal sIgA than the soluble OVA group due to the specific recognition of MR of APCs by the mannan in the Man-TEM. These results suggest that mucoadhesive and Man-TEM may be a promising candidate for nasal vaccine delivery system to elicit systemic and mucosal immunity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics.

    PubMed

    Anderson, Eric; Crisci, Anthony; Murugappan, Karthick; Román-Leshkov, Yuriy

    2017-05-22

    Reductive catalytic fractionation of biomass has recently emerged as a powerful lignin extraction and depolymerization method to produce monomeric aromatic oxygenates in high yields. Here, bifunctional molybdenum-based polyoxometalates supported on titania (POM/TiO 2 ) are shown to promote tandem hydrodeoxygenation (HDO) and alkylation reactions, converting lignin-derived oxygenated aromatics into alkylated benzenes and alkylated phenols in high yields. In particular, anisole and 4-propylguaiacol were used as model compounds for this gas-phase study using a packed-bed flow reactor. For anisole, 30 % selectivity for alkylated aromatic compounds (54 % C-alkylation of the methoxy groups by methyl balance) with an overall 72 % selectivity for HDO at 82 % anisole conversion was observed over H 3 PMo 12 O 40 /TiO 2 at 7 h on stream. Under similar conditions, 4-propylguaiacol was mainly converted into 4-propylphenol and alkylated 4-propylphenols with a selectivity to alkylated 4-propylphenols of 42 % (77 % C-alkylation) with a total HDO selectivity to 4-propylbenzene and alkylated 4-propylbenzenes of 4 % at 92 % conversion (7 h on stream). Higher catalyst loadings pushed the 4-propylguaiacol conversion to 100 % and resulted in a higher selectivity to propylbenzene of 41 %, alkylated aromatics of 21 % and alkylated phenols of 17 % (51 % C-alkylation). The reactivity studies coupled with catalyst characterization revealed that Lewis acid sites act synergistically with neighboring Brønsted acid sites to simultaneously promote alkylation and hydrodeoxygenation activity. A reaction mechanism is proposed involving activation of the ether bond on a Lewis acid site, followed by methyl transfer and C-alkylation. Mo-based POMs represent a versatile catalytic platform to simultaneously upgrade lignin-derived oxygenated aromatics into alkylated arenes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  5. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  6. 40 CFR 721.2094 - N,N′-di(alkyl heteromonocycle)amino chlorotriazine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false N,Nâ²-di(alkyl heteromonocycle)amino... Specific Chemical Substances § 721.2094 N,N′-di(alkyl heteromonocycle)amino chlorotriazine. (a) Chemical... as N,N′-di(alkyl heteromonocycle)amino chlorotriazine (PMN P-93-1369) is subject to reporting under...

  7. 40 CFR 721.2094 - N,N′-di(alkyl heteromonocycle)amino chlorotriazine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false N,Nâ²-di(alkyl heteromonocycle)amino... Specific Chemical Substances § 721.2094 N,N′-di(alkyl heteromonocycle)amino chlorotriazine. (a) Chemical... as N,N′-di(alkyl heteromonocycle)amino chlorotriazine (PMN P-93-1369) is subject to reporting under...

  8. Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications.

    PubMed

    Sood, Ankur; Arora, Varun; Shah, Jyoti; Kotnala, R K; Jain, Tapan K

    2017-11-01

    In this paper we report synthesis of aqueous based gold coated iron oxide nanoparticles to integrate the localized surface plasma resonance (SPR) properties of gold and magnetic properties of iron oxide in a single system. Iron oxide-gold core shell nanoparticles were stabilized by attachment of thiolated sodium alginate to the surface of nanoparticles. Transmission electron microscope (TEM) micrograph presents an average elementary particle size of 8.1±2.1nm. High resolution TEM (HR-TEM) and X-ray photon spectroscopy further confirms the presence of gold shell around iron oxide core. Gold coating is responsible for reducing saturation magnetization (M s ) value from ~41emu/g to ~24emu/g - in thiolated sodium alginate stabilized gold coated iron oxide core-shell nanoparticles. The drug (curcumin) loading efficiency for the prepared nanocomposites was estimated to be around 7.2wt% (72μgdrug/mg nanoparticles) with encapsulation efficiency of 72.8%. Gold-coated iron oxide core-shell nanoparticles could be of immense importance in the field of targeted drug delivery along with capability to be used as contrast agent for MRI & CT. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Surface phase behavior of di-n-tetradecyl hydrogen phosphate in Langmuir monolayers at the air-water interface.

    PubMed

    Hossain, Md Mufazzal; Iimura, Ken-Ichi; Kato, Teiji

    2006-10-01

    Surface phase behavior of di-n-tetradecyl hydrogen phosphate, DTP, has been studied by measuring pi-A isotherms with a film balance and observing monolayer morphology with a Brewster angle microscopy (BAM) at different temperatures. A generalized phase diagram, which shows a triple point for gas (G), liquid-expanded (LE) and liquid-condensed (LC) phases at about 32 degrees C, is constructed for the amphiphile. Below the triple point, a first-order G-LC phase transition has been shown to occur, whereas a first-order G-LE phase transition followed by another first-order LE-LC transition has been found to take place at a temperature above the triple point. The amphiphile shows the fingering LC domains with uniform brightness indicating the presence of untilted molecules. The domain shapes are independent of the change in temperature and compression rate. The existence of similar fingering domains over a wide range of temperature is rather uncommon in the monolayer systems and is considered to be due to the restricted movement of the molecules incorporating into the LC phase. Because the two-alkyl chains are directly attached to two covalent bonds of the phosphate head group, the rearrangement of the molecules, which is an essential condition for the circular domain formation, needs the movement of the whole molecules including the hydration sphere. The difficulty related to such a movement of the molecules causes fingering domains, which are independent of external variables.

  10. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for the...

  11. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for the...

  12. Unsupported single-atom-thick copper oxide monolayers

    NASA Astrophysics Data System (ADS)

    Yin, Kuibo; Zhang, Yu-Yang; Zhou, Yilong; Sun, Litao; Chisholm, Matthew F.; Pantelides, Sokrates T.; Zhou, Wu

    2017-03-01

    Oxide monolayers may present unique opportunities because of the great diversity of properties of these materials in bulk form. However, reports on oxide monolayers are still limited. Here we report the formation of single-atom-thick copper oxide layers with a square lattice both in graphene pores and on graphene substrates using aberration-corrected scanning transmission electron microscopy. First-principles calculations find that CuO is energetically stable and its calculated lattice spacing matches well with the measured value. Furthermore, free-standing copper oxide monolayers are predicted to be semiconductors with band gaps ˜3 eV. The new wide-bandgap single-atom-thick copper oxide monolayers usher a new frontier to study the highly diverse family of two-dimensional oxides and explore their properties and their potential for new applications.

  13. Modeling of S-Nitrosothiol-Thiol Reactions of Biological Significance: HNO Production by S-Thiolation Requires a Proton Shuttle and Stabilization of Polar Intermediates.

    PubMed

    Ivanova, Lena V; Cibich, Daniel; Deye, Gregory; Talipov, Marat R; Timerghazin, Qadir K

    2017-04-18

    Nitroxyl (HNO), a reduced form of the important gasotransmitter nitric oxide, exhibits its own unique biological activity. A possible biological pathway of HNO formation is the S-thiolation reaction between thiols and S-nitrosothiols (RSNOs). Our density functional theory (DFT) calculations suggested that S-thiolation proceeds through a proton transfer from the thiol to the RSNO nitrogen atom, which increases electrophilicity of the RSNO sulfur, followed by nucleophilic attack by thiol, yielding a charge-separated zwitterionic intermediate structure RSS + (R)N(H)O - (Zi), which decomposes to yield HNO and disulfide RSSR. In the gas phase, the proton transfer and the S-S bond formation are asynchronous, resulting in a high activation barrier (>40 kcal mol -1 ), making the reaction infeasible. However, the barrier can decrease below the S-N bond dissociation energy in RSNOs (≈30 kcal mol -1 ) upon transition into an aqueous environment that stabilizes Zi and provides a proton shuttle to synchronize the proton transfer and the S-S bond formation. These mechanistic features suggest that S-thiolation can easily lend itself to enzymatic catalysis and thus can be a possible route of endogenous HNO production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline

    PubMed Central

    Lee, Dong-Won; Shirley, Shawna A; Lockey, Richard F; Mohapatra, Shyam S

    2006-01-01

    Background Chitosan, a polymer derived from chitin, has been used for nasal drug delivery because of its biocompatibility, biodegradability and bioadhesiveness. Theophylline is a drug that reduces the inflammatory effects of allergic asthma but is difficult to administer at an appropriate dosage without causing adverse side effects. It was hypothesized that adsorption of theophylline to chitosan nanoparticles modified by the addition of thiol groups would improve theophylline absorption by the bronchial epithelium and enhance its anti-inflammatory effects. Objectives We sought to develop an improved drug-delivery matrix for theophylline based on thiolated chitosan, and to investigate whether thiolated chitosan nanoparticles (TCNs) can enhance theophylline's capacity to alleviate allergic asthma. Methods A mouse model of allergic asthma was used to test the effects of theophylline in vivo. BALB/c mice were sensitized to ovalbumin (OVA) and OVA-challenged to produce an inflammatory allergic condition. They were then treated intranasally with theophylline alone, chitosan nanoparticles alone or theophylline adsorbed to TCNs. The effects of theophylline on cellular infiltration in bronchoalveolar lavage (BAL) fluid, histopathology of lung sections, and apoptosis of lung cells were investigated to determine the effectiveness of TCNs as a drug-delivery vehicle for theophylline. Results Theophylline alone exerts a moderate anti-inflammatory effect, as evidenced by the decrease in eosinophils in BAL fluid, the reduction of bronchial damage, inhibition of mucus hypersecretion and increased apoptosis of lung cells. The effects of theophylline were significantly enhanced when the drug was delivered by TCNs. Conclusion Intranasal delivery of theophylline complexed with TCNs augmented the anti-inflammatory effects of the drug compared to theophylline administered alone in a mouse model of allergic asthma. The beneficial effects of theophylline in treating asthma may be enhanced

  15. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline.

    PubMed

    Lee, Dong-Won; Shirley, Shawna A; Lockey, Richard F; Mohapatra, Shyam S

    2006-08-24

    Chitosan, a polymer derived from chitin, has been used for nasal drug delivery because of its biocompatibility, biodegradability and bioadhesiveness. Theophylline is a drug that reduces the inflammatory effects of allergic asthma but is difficult to administer at an appropriate dosage without causing adverse side effects. It was hypothesized that adsorption of theophylline to chitosan nanoparticles modified by the addition of thiol groups would improve theophylline absorption by the bronchial epithelium and enhance its anti-inflammatory effects. We sought to develop an improved drug-delivery matrix for theophylline based on thiolated chitosan, and to investigate whether thiolated chitosan nanoparticles (TCNs) can enhance theophylline's capacity to alleviate allergic asthma. A mouse model of allergic asthma was used to test the effects of theophylline in vivo. BALB/c mice were sensitized to ovalbumin (OVA) and OVA-challenged to produce an inflammatory allergic condition. They were then treated intranasally with theophylline alone, chitosan nanoparticles alone or theophylline adsorbed to TCNs. The effects of theophylline on cellular infiltration in bronchoalveolar lavage (BAL) fluid, histopathology of lung sections, and apoptosis of lung cells were investigated to determine the effectiveness of TCNs as a drug-delivery vehicle for theophylline. Theophylline alone exerts a moderate anti-inflammatory effect, as evidenced by the decrease in eosinophils in BAL fluid, the reduction of bronchial damage, inhibition of mucus hypersecretion and increased apoptosis of lung cells. The effects of theophylline were significantly enhanced when the drug was delivered by TCNs. Intranasal delivery of theophylline complexed with TCNs augmented the anti-inflammatory effects of the drug compared to theophylline administered alone in a mouse model of allergic asthma. The beneficial effects of theophylline in treating asthma may be enhanced through the use of this novel drug delivery

  16. Enzymatic degradation of thiolated chitosan.

    PubMed

    Laffleur, Flavia; Hintzen, Fabian; Rahmat, Deni; Shahnaz, Gul; Millotti, Gioconda; Bernkop-Schnürch, Andreas

    2013-10-01

    The objective of this study was to evaluate the biodegradability of thiolated chitosans in comparison to unmodified chitosan. Mediated by carbodiimide, thioglycolic acid (TGA) and mercaptonicotinic acid (MNA) were covalently attached to chitosan via formation an amide bond. Applying two different concentrations of carbodiimide 50 and 100 mM, two chitosan TGA conjugates (TGA A and TGA B) were obtained. According to chitosan solution (3% m/v) thiomer solutions were prepared and chitosanolytic enzyme solutions were added. Lysozyme, pectinase and cellulase were examined in chitosan degrading activity. The enzymatic degradability of these thiomers was investigated by viscosity measurements with a plate-plate viscometer. The obtained chitosan TGA conjugate A displayed 267.7 µmol and conjugate B displayed 116.3 µmol of immobilized thiol groups. With 325.4 µmol immobilized thiol groups, chitosan MNA conjugate displayed the most content of thiol groups. In rheological studies subsequently the modification proved that chitosan TGA conjugates with a higher coupling rate of thiol groups were not only degraded to a lesser extent by 20.9-26.4% but also more slowly. Chitosan mercaptonicotinic acid was degraded by 31.4-50.1% depending the investigated enzyme and even faster than unmodified chitosan. According to these results the biodegradability can be influenced by various modifications of the polymer which showed in particular that the rate of biodegradation is increased when MNA is the ligand, whereas the degradation is hampered when TGA is used as ligand for chitosan.

  17. 40 CFR 721.644 - Amines, C12-14-tert-alkyl, sulfonates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amines, C12-14-tert-alkyl, sulfonates... Substances § 721.644 Amines, C12-14-tert-alkyl, sulfonates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amines, C12-14-tert-alkyl, sulfonates (PMN...

  18. 40 CFR 721.644 - Amines, C12-14-tert-alkyl, sulfonates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amines, C12-14-tert-alkyl, sulfonates... Substances § 721.644 Amines, C12-14-tert-alkyl, sulfonates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amines, C12-14-tert-alkyl, sulfonates (PMN...

  19. Nonequilibrium 2-Hydroxyoctadecanoic Acid Monolayers: Effect of Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lendrum, Conrad D.; Ingham, Bridget; Lin, Binhua

    2012-02-06

    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position {alpha} to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of {approx}6. Themore » role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase.« less

  20. Monolayer phase coarsening using oscillatory flow

    NASA Astrophysics Data System (ADS)

    Leung, J.; Lopez, J. M.; Vogel, M. J.

    2005-11-01

    The co-existing phase domains of monolayers commonly observed via microscope are examined on flowing systems. Recent evidence shows that co-existing phase domains have profound effects on monolayer response to bulk flow. The present flow geometry consists of an open-top rectangular cavity in which the flow is driven by the periodic oscillation of the floor in its own plane. The oscillation of the floor dilates and compresses any film at the gas/liquid interface while still maintaining an essentially flat interface. A range of flow conditions (oscillation frequency and amplitude) is chosen so that the flow remains essentially two-dimensional. Measurements at the interface, initially covered by an insoluble monolayer (vitamin K1 or stearic acid), are made using a Brewster angle microscope system with a pulsed laser. Various phenomena such as fragmentation (breaking up of co-existing domains into finer ones) had previously been observed in sheared monolayer flows. In this new flow regime, we have seen dramatic coarsening of the domains. Interesting relaxation behavior at short and long time scales will also be discussed.

  1. Testing the effectiveness of monolayers under wind and wave conditions.

    PubMed

    Palada, C; Schouten, P; Lemckert, C

    2012-01-01

    Monolayers are highly desirable for their evaporation reducing capabilities due to their relatively minimal cost and ease of application. Despite these positive attributes, monolayers have consistently failed to perform effectively due to the harsh wind and wave conditions prevalent across real-world water reserves. An exhaustive and consistent study testing the influence of wind and wave combinations on monolayer performance has yet to be presented in the literature. To remedy this, the effect of simultaneous wind and wave conditions on a benchmark high-performance monolayer (octadecanol suspension, CH(3)(CH(2))(16)CH(2)OH) has been analysed. Subjected only to waves, the monolayer remained intact due to its innate ability to compress and expand. However, the constant simultaneous application of wind and waves caused the monolayer to break up and gather down-wind where it volatilised over time. At wind speeds above 1.3 m s(-1) the monolayer was completely ineffective. For wind speeds below this threshold, the monolayer had an influence on the evaporation rate dependent on wind speed. From these results a series of application protocols can now be developed for the optimised deployment of monolayers in real-world water reserves. This will be of interest to private, commercial and government organisations involved in the storage and management of water resources.

  2. Alkylation sensitivity screens reveal a conserved cross-species functionome

    PubMed Central

    Svilar, David; Dyavaiah, Madhu; Brown, Ashley R.; Tang, Jiang-bo; Li, Jianfeng; McDonald, Peter R.; Shun, Tong Ying; Braganza, Andrea; Wang, Xiao-hong; Maniar, Salony; St Croix, Claudette M.; Lazo, John S.; Pollack, Ian F.; Begley, Thomas J.; Sobol, Robert W.

    2013-01-01

    To identify genes that contribute to chemotherapy resistance in glioblastoma, we conducted a synthetic lethal screen in a chemotherapy-resistant glioblastoma derived cell line with the clinical alkylator temozolomide (TMZ) and an siRNA library tailored towards “druggable” targets. Select DNA repair genes in the screen were validated independently, confirming the DNA glycosylases UNG and MYH as well as MPG to be involved in the response to high dose TMZ. The involvement of UNG and MYH is likely the result of a TMZ-induced burst of reactive oxygen species. We then compared the human TMZ sensitizing genes identified in our screen with those previously identified from alkylator screens conducted in E. coli and S. cerevisiae. The conserved biological processes across all three species composes an Alkylation Functionome that includes many novel proteins not previously thought to impact alkylator resistance. This high-throughput screen, validation and cross-species analysis was then followed by a mechanistic analysis of two essential nodes: base excision repair (BER) DNA glycosylases (UNG, human and mag1, S. cerevisiae) and protein modification systems, including UBE3B and ICMT in human cells or pby1, lip22, stp22 and aim22 in S. cerevisiae. The conserved processes of BER and protein modification were dual targeted and yielded additive sensitization to alkylators in S. cerevisiae. In contrast, dual targeting of BER and protein modification genes in human cells did not increase sensitivity, suggesting an epistatic relationship. Importantly, these studies provide potential new targets to overcome alkylating agent resistance. PMID:23038810

  3. Regulation of DNA Alkylation Damage Repair: Lessons and Therapeutic Opportunities

    PubMed Central

    Soll, Jennifer M.; Sobol, Robert W.; Mosammaparast, Nima

    2016-01-01

    Alkylation chemotherapy is one of the most widely used systemic therapies for cancer. While somewhat effective, clinical responses and toxicities of these agents are highly variable. A major contributing factor for this variability is the numerous distinct lesions that are created upon alkylation damage. These adducts activate multiple repair pathways. There is mounting evidence that the individual pathways function cooperatively, suggesting that coordinated regulation of alkylation repair is critical to prevent toxicity. Furthermore, some alkylating agents produce adducts that overlap with newly discovered methylation marks, making it difficult to distinguish between bona fide damaged bases and so called ‘epigenetic’ adducts. We discuss new efforts aimed at deciphering the mechanisms that regulate these repair pathways, emphasizing their implications for cancer chemotherapy. PMID:27816326

  4. Monolayer coated gold nanoparticles for delivery applications

    PubMed Central

    Rana, Subinoy; Bajaj, Avinash; Mout, Rubul; Rotello, Vincent M.

    2011-01-01

    Gold nanoparticles (AuNPs) provide attractive vehicles for delivery of drugs, genetic materials, proteins, and small molecules. AuNPs feature low core toxicity coupled with the ability to parametrically control particle size and surface properties. In this review, we focus on engineering of the AuNP surface monolayer, highlighting recent advances in tuning monolayer structures for efficient delivery of drugs and biomolecules. This review covers two broad categories of particle functionalization, organic monolayers and biomolecule coatings, and discusses their applications in drug, DNA/RNA, protein and small molecule delivery. PMID:21925556

  5. A kinetic model of the formation of organic monolayers on hydrogen-terminated silicon by hydrosilation of alkenes.

    PubMed

    Woods, M; Carlsson, S; Hong, Q; Patole, S N; Lie, L H; Houlton, A; Horrocks, B R

    2005-12-22

    We have analyzed a kinetic model for the formation of organic monolayers based on a previously suggested free radical chain mechanism for the reaction of unsaturated molecules with hydrogen-terminated silicon surfaces (Linford, M. R.; Fenter, P. M.; Chidsey, C. E. D. J. Am. Chem. Soc 1995, 117, 3145). A direct consequence of this mechanism is the nonexponential growth of the monolayer, and this has been observed spectroscopically. In the model, the initiation of silyl radicals on the surface is pseudo first order with rate constant, ki, and the rate of propagation is determined by the concentration of radicals and unreacted Si-H nearest neighbor sites with a rate constant, kp. This propagation step determines the rate at which the monolayer forms by addition of alkene molecules to form a track of molecules that constitute a self-avoiding random walk on the surface. The initiation step describes how frequently new random walks commence. A termination step by which the radicals are destroyed is also included. The solution of the kinetic equations yields the fraction of alkylated surface sites and the mean length of the random walks as a function of time. In mean-field approximation we show that (1) the average length of the random walk is proportional to (kp/ki)1/2, (2) the monolayer surface coverage grows exponentially only after an induction period, (3) the effective first-order rate constant describing the growth of the monolayer and the induction period (kt) is k = (2ki kp)1/2, (4) at long times the effective first-order rate constant drops to ki, and (5) the overall activation energy for the growth kinetics is the mean of the activation energies for the initiation and propagation steps. Monte Carlo simulations of the mechanism produce qualitatively similar kinetic plots, but the mean random walk length (and effective rate constant) is overestimated by the mean field approximation and when kp > ki, we find k approximately ki0.7kp0.3 and Ea = (0.7Ei+ 0.3Ep

  6. Wet formation and structural characterization of quasi-hexagonal monolayers.

    PubMed

    Batys, Piotr; Weroński, Paweł; Nosek, Magdalena

    2016-01-01

    We have presented a simple and efficient method for producing dense particle monolayers with controlled surface coverage. The method is based on particle sedimentation, manipulation of the particle-substrate electrostatic interaction, and gentle mechanical vibration of the system. It allows for obtaining quasi-hexagonal structures under wet conditions. Using this method, we have produced a monolayer of 3 μm silica particles on a glassy carbon substrate. By optical microscopy, we have determined the coordinates of the particles and surface coverage of the obtained structure to be 0.82. We have characterized the monolayer structure by means of the pair-correlation function and power spectrum. We have also compared the results with those for a 2D hexagonal monolayer and monolayer generated by random sequential adsorption at the coverage 0.50. We have found the surface fractal dimension to be 2.5, independently of the monolayer surface coverage. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Palladium-catalyzed Heck-type cross-couplings of unactivated alkyl iodides.

    PubMed

    McMahon, Caitlin M; Alexanian, Erik J

    2014-06-02

    A palladium-catalyzed, intermolecular Heck-type coupling of alkyl iodides and alkenes is described. This process is successful with a variety of primary and secondary unactivated alkyl iodides as reaction partners, including those with hydrogen atoms in the β position. The mild catalytic conditions enable intermolecular C-C bond formations with a diverse set of alkyl iodides and alkenes, including substrates containing base- or nucleophile-sensitive functionality. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chiral Alkyl Halides: Underexplored Motifs in Medicine

    PubMed Central

    Gál, Bálint; Bucher, Cyril; Burns, Noah Z.

    2016-01-01

    While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation. PMID:27827902

  9. Catalytic Activity of Thiolate-Bridged Diruthenium Complexes Bearing Pendent Ether Moieties in the Oxidation of Molecular Dihydrogen.

    PubMed

    Yuki, Masahiro; Sakata, Ken; Kikuchi, Shoma; Kawai, Hiroyuki; Takahashi, Tsuyoshi; Ando, Masaki; Nakajima, Kazunari; Nishibayashi, Yoshiaki

    2017-01-23

    Thiolate-bridged diruthenium complexes bearing pendent ethers have been found to work as effective catalysts toward the oxidation of molecular dihydrogen into protons and electrons in water. The pendent ether moiety in the complex plays an important role to facilitate the proton transfer between the metal center and the external proton acceptor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells

    PubMed Central

    Talaei, Fatemeh; Azizi, Ebrahim; Dinarvand, Rassoul; Atyabi, Fatemeh

    2011-01-01

    Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan) and NAP-C (N-acetyl penicillamine-chitosan) in anticancer drug delivery targeting epidermal growth factor receptor (EGFR). Doxorubicin (DOX) and antisense oligonucleotide (ASOND)-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D) were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo. PMID:21976973

  11. Selective sp3 C-H alkylation via polarity-match-based cross-coupling.

    PubMed

    Le, Chip; Liang, Yufan; Evans, Ryan W; Li, Ximing; MacMillan, David W C

    2017-07-06

    The functionalization of carbon-hydrogen (C-H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence. Although many C-H functionalization reactions involve C(sp 3 )-C(sp 2 ) coupling, there is a growing demand for C-H alkylation reactions, wherein sp 3 C-H bonds are replaced with sp 3 C-alkyl groups. Here we describe a polarity-match-based selective sp 3 C-H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C-H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl-alkyl fragment coupling. The sp 3 C-H alkylation is highly selective for the α-C-H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry.

  12. mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy.

    PubMed

    Weiler, Markus; Blaes, Jonas; Pusch, Stefan; Sahm, Felix; Czabanka, Marcus; Luger, Sebastian; Bunse, Lukas; Solecki, Gergely; Eichwald, Viktoria; Jugold, Manfred; Hodecker, Sibylle; Osswald, Matthias; Meisner, Christoph; Hielscher, Thomas; Rübmann, Petra; Pfenning, Philipp-Niklas; Ronellenfitsch, Michael; Kempf, Tore; Schnölzer, Martina; Abdollahi, Amir; Lang, Florian; Bendszus, Martin; von Deimling, Andreas; Winkler, Frank; Weller, Michael; Vajkoczy, Peter; Platten, Michael; Wick, Wolfgang

    2014-01-07

    A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O(6)-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids.

  13. Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    PubMed Central

    Calvo, Jennifer A.; Moroski-Erkul, Catherine A.; Lake, Annabelle; Eichinger, Lindsey W.; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T.; Christiani, David C.; Meira, Lisiane B.; Samson, Leona D.

    2013-01-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag −/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage. PMID:23593019

  14. mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy

    PubMed Central

    Weiler, Markus; Blaes, Jonas; Pusch, Stefan; Sahm, Felix; Czabanka, Marcus; Luger, Sebastian; Bunse, Lukas; Solecki, Gergely; Eichwald, Viktoria; Jugold, Manfred; Hodecker, Sibylle; Osswald, Matthias; Meisner, Christoph; Hielscher, Thomas; Rübmann, Petra; Pfenning, Philipp-Niklas; Ronellenfitsch, Michael; Kempf, Tore; Schnölzer, Martina; Abdollahi, Amir; Lang, Florian; Bendszus, Martin; von Deimling, Andreas; Winkler, Frank; Weller, Michael; Vajkoczy, Peter; Platten, Michael; Wick, Wolfgang

    2014-01-01

    A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O6-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids. PMID:24367102

  15. Selective sp3 C-H alkylation via polarity-match-based cross-coupling

    NASA Astrophysics Data System (ADS)

    Le, Chip; Liang, Yufan; Evans, Ryan W.; Li, Ximing; MacMillan, David W. C.

    2017-07-01

    The functionalization of carbon-hydrogen (C-H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence. Although many C-H functionalization reactions involve C(sp3)-C(sp2) coupling, there is a growing demand for C-H alkylation reactions, wherein sp3 C-H bonds are replaced with sp3 C-alkyl groups. Here we describe a polarity-match-based selective sp3 C-H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C-H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl-alkyl fragment coupling. The sp3 C-H alkylation is highly selective for the α-C-H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry.

  16. Protonation of octadecylamine Langmuir monolayer by adsorption of halide counterions

    NASA Astrophysics Data System (ADS)

    Sung, Woongmo; Avazbaeva, Zaure; Lee, Jonggwan; Kim, Doseok

    Langmuir monolayer consisting of octadecylamine (C18H37NH2, ODA) was investigated by heterodyne vibrational sum-frequency generation (HD-VSFG) spectroscopy in conjunction with surface pressure-area (π- A) isotherm, and the result was compared with that from cationic-lipid (DPTAP) Langmuir monolayer. In case of ODA monolayer on pure water, both SF intensity of water OH band and the surface pressure were significantly smaller than those of the DPTAP monolayer implying that only small portion of the amine groups (-NH3+ is protonated in the monolayer. In the presence of sodium halides (NaCl and NaI) in the subphase water, it was found that the sign of Imχ (2) of water OH band remained the same as that of the ODA monolayer on pure water, but there was a substantial increase in the SF amplitude. From this, we propose that surface excess of the halide counterions (Cl- and I-) makes the solution condition near the ODA monolayer/water interface more acidic so that ODA molecules in the monolayer are more positively charged, which works to align the water dipoles at the interface.

  17. Synthesis, structure and reactivity of tetranuclear square-type complexes of rhenium and manganese bearing pyrimidine-2-thiolate (pymS) ligands: versatile and efficient precursors for mono- and polynuclear compounds containing M(CO)(3) (M = Re, Mn) fragments.

    PubMed

    Kabir, S E; Alam, J; Ghosh, S; Kundu, K; Hogarth, G; Tocher, D A; Hossain, G M G; Roesky, H W

    2009-06-21

    Reactions of M(2)(CO)(10) (M = Re, Mn) with pyrimidine-2-thiol (pymSH) in the presence of Me(3)NO afford the tetranuclear square-type complexes [M(4)(CO)(12)(micro-kappa(3)-pymS)(4)] (, M = Re; , M = Mn). Both consist of four M(CO)(3) (M = Re, Mn) units, pairs of which are joined by tridentate pyrimidine-2-thiolate ligands. Treatment of with a variety of donor ligands results in cleavage of the square to afford mononuclear species with either a mono- or bidentate pyrimidine-2-thiolate ligand. Triphenylphosphine reacts with to give [Mn(CO)(3)(PPh(3))(kappa(2)-pymS)] () in which the pyrimidine-2-thiolate coordinates in a bidentate fashion. With diamines [M(CO)(3)(kappa(2)-L)(kappa(1)-pymS)] () (M = Re, Mn; L = 2,2'- bipy, 1,10-phen, en) result in which the pyrimidine-2-thiolate binds in a monodentate fashion through sulfur. With diphosphines, complexes with different stoichiometries and pyrimidine-2-thiolate binding modes are obtained depending on the nature of the metal and diphosphine. With dppm and dppe, gives [Re(CO)(2)(kappa(1)-pymS)(kappa(2)-dppm)] () and [Re(CO)(2)(kappa(2)-pymS)(kappa(1)-dppe)(2)] (), respectively, whereas affords [Mn(CO)(2)(kappa(2)-pymS)(kappa(1)-dppm)(2)] () and [Mn(CO)(2)(kappa(2)-pyS)(kappa(2)-dppe)] () under similar conditions. Reactions of with [Os(3)(CO)(10)(NCMe)(2)] affords mixed-metal butterfly clusters [MOs(3)(CO)(13)(micro(3)-kappa(2)-pymS)] () in which the group 7 metal occupies a wing-tip position and the pyrimidine-2-thiolate ligand caps a triangular Os(2)M face. With Ru(3)(CO)(12), carbon-sulfur bond cleavage occurs to give the tetranuclear clusters [MRu(3)(CO)(14)(micro(4)-S)(micro-kappa(1):eta(1)-pym)] () bearing both the extruded sulfur and the heterocyclic ring. The molecular structures of , and have been established by X-ray diffraction allowing the binding mode of the pyrimidine-2-thiolate ligands to be probed.

  18. Thiolation of arabinoxylan and its application in the fabrication of controlled release mucoadhesive oral films.

    PubMed

    Hanif, Muhammad; Zaman, Muhammad

    2017-03-20

    Mucoadhesion is an important property that helps oral drug delivery system to remain attached with buccal mucosa and hence to improve the delivery of the drug. The current study was designed to achieve the thiol modification of Arabinoxylan (ARX) and to develop a mucoadhesive oral film for the improved delivery of tizanidine hydrochloride (TZN HCl). Synthesis of thiolated arabinoxylan (TARX) was accomplished by esterification of ARX with thioglycolic acid (TGA). TARX was further used for the development of mucoadhesive oral films which were prepared by using a solvent casting technique. Formulation of the films was designed and optimized by using central composite design (CCRD), selecting TARX (X 1 ) and glycerol (X 2 ) as variables. Prepared film formulations were evaluated for mechanical strength, ex-vivo mucoadhesion, in-vitro drug release, ex-vivo drug permeation, surface morphology and drug contents. Thiolation of ARX was confirmed by fourier transform infra-red spectroscopy (FTIR) as a peak related to thiol group appeared at 2516 cm -1 . The claim of successful thiolation of ARX was strengthened by the presence of 2809.003 ± 1.03 μmoles of thiol contents per gram of the polymer, which was determined by Ellman's reagent method. From the results, it was observed that the films were of satisfactory mechanical strength and mucoadhesiveness with folding endurance greater than 300 and mucoadhesive strength 11.53 ± 0.17 N, respectively. Reasonable drug retention was observed during in-vitro dissolution (85.03% cumulative drug release) and ex-vivo permeation (78.90% cumulative amount of permeated drug) studies conducted for 8 h. Effects of varying concentrations of both polymer and plasticizer on prepared mucoadhesive oral films were evaluated by ANOVA and it was observed that glycerol can enhanced the dissolution as well as permeation of the drug while TARX has opposite impact on these parameters. In nutshell, TARX in combination with glycerolwas found

  19. Defects and oxidation of group-III monochalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun

    2017-09-01

    Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.

  20. Stilling Waves with Ordered Molecular Monolayers

    ERIC Educational Resources Information Center

    Vitz, Ed

    2008-01-01

    A demonstration of the damping effect of an oil monolayer on water waves is described. The history of this remarkable demonstration--with a 2000 (or more) year span--and a brief explanation in terms of the properties of water and the monolayer are presented. If a layer of olive oil, one molecule thick (about one-ten millionth of a centimeter), is…

  1. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks

    PubMed Central

    Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho

    2015-01-01

    Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952

  2. Dielectric relaxation of alkyl chains in graphite oxide and n-alkylammonium halides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, Xiaoqian; Tian, Yuchen; Gu, Min, E-mail: mgu@nju.edu.cn

    2016-05-15

    The dynamic of n-alkylammonium halides and n-alkylammonium cations (n = 12, 14, 16, 18) intercalated in graphite oxide (GO) have been investigated with complex impedance spectroscopy. X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, elemental analysis and thermogravimetry served to characterize the materials. The intercalated alkylammonium cations distributes as monolayers (when n = 12, 14 or 16) or bilayers (when n = 18), with their long axis parallel to GO layers, and with cations of headgroups bonded ionically to C-O{sup -} groups of GO; backbones of the confined molecules remain free. All halides and intercalation compounds suffer dielectric loss atmore » low temperature. Arrhenius plots of the thermal dependence of the loss peaks, which are asymmetric, produce apparent activation energies that rise with increasing n. Ngai’s correlated-state model helps to correct for effects of dipole-dipole interaction, leading to virtually identical values for actual activation energy of 110 meV ± 5%; the values are also almost the same as the barrier energy for internal rotation in the alkyl macromolecule. We conclude that the relaxation of the alkylammonium cations arises not from C{sub 3} reorientation of the CH{sub 3} at its headgroup, but from small-angle wobbling around its major axis, an intrinsic motion.« less

  3. The Impact of Commonly Used Alkylating Agents on Artifactual Peptide Modification.

    PubMed

    Hains, Peter G; Robinson, Phillip J

    2017-09-01

    Iodoacetamide is by far the most commonly used agent for alkylation of cysteine during sample preparation for proteomics. An alternative, 2-chloroacetamide, has recently been suggested to reduce the alkylation of residues other than cysteine, such as the N-terminus, Asp, Glu, Lys, Ser, Thr, and Tyr. Here we show that although 2-chloroacetamide reduces the level of off-target alkylation, it exhibits a range of adverse effects. The most significant of these is methionine oxidation, which increases to a maximum of 40% of all Met-containing peptides, compared with 2-5% with iodoacetamide. Increases were also observed for mono- and dioxidized tryptophan. No additional differences between the alkylating reagents were observed for a range of other post-translational modifications and digestion parameters. The deleterious effects were observed for 2-chloroacetamide from three separate suppliers. The adverse impact of 2-chloroacetamide on methionine oxidation suggests that it is not the ideal alkylating reagent for proteomics.

  4. Alkyl gallates, intensifiers of beta-lactam susceptibility in methicillin-resistant Staphylococcus aureus.

    PubMed

    Shibata, Hirofumi; Kondo, Kyoko; Katsuyama, Ryo; Kawazoe, Kazuyoshi; Sato, Yoichi; Murakami, Kotaro; Takaishi, Yoshihisa; Arakaki, Naokatu; Higuti, Tomihiko

    2005-02-01

    We found that ethyl gallate purified from a dried pod of tara (Caesalpinia spinosa) intensified beta-lactam susceptibility in methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus (MRSA and MSSA strains, respectively). This compound and several known alkyl gallates were tested with MRSA and MSSA strains to gain new insights into their structural functions in relation to antimicrobial and beta-lactam susceptibility-intensifying activities. The maximum activity of alkyl gallates against MRSA and MSSA strains occurred at 1-nonyl and 1-decyl gallate, with an MIC at which 90% of the isolates tested were inhibited of 15.6 microg/ml. At concentrations lower than the MIC, alkyl gallates synergistically elevated the susceptibility of MRSA and MSSA strains to beta-lactam antibiotics. Such a synergistic activity of the alkyl gallates appears to be specific for beta-lactam antibiotics, because no significant changes were observed in the MICs of other classes of antibiotics examined in this study. The length of the alkyl chain was also associated with the modifying activity of the alkyl gallates, and the optimum length was C5 to C6. The present work clearly demonstrates that the length of the alkyl chain has a key role in the elevation of susceptibility to beta-lactam antibiotics.

  5. Integrated circuits based on conjugated polymer monolayer

    DOE PAGES

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; ...

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1. The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Realmore » logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Lastly, our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.« less

  6. Integrated circuits based on conjugated polymer monolayer.

    PubMed

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2  V -1  s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.

  7. Integrated circuits based on conjugated polymer monolayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1. The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Realmore » logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Lastly, our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.« less

  8. The use of thiolated polymers as carrier matrix in oral peptide delivery--proof of concept.

    PubMed

    Bernkop-Schnürch, Andreas; Pinter, Yvonne; Guggi, Davide; Kahlbacher, Hermann; Schöffmann, Gudrun; Schuh, Maximilian; Schmerold, Ivo; Del Curto, Maria Dorly; D'Antonio, Mauro; Esposito, Pierandrea; Huck, Christian

    2005-08-18

    It was the aim of this study to develop an oral delivery system for the peptide drug antide. The stability of the therapeutic peptide towards gastrointestinal peptidases was evaluated. The therapeutic agent and the permeation mediator glutathione were embedded in the thiolated polymer chitosan-4-thio-butylamidine conjugate (chitosan-TBA conjugate) and compressed to tablets. Drug release studies were performed in the dissolution test apparatus according to the Pharmacopoeia Europea using the paddle method and demineralized water as release medium. In order to avoid mucoadhesion of these delivery systems already in the oral cavity and oesophagus tablets were coated with a triglyceride. These tablets were orally given to pigs (weight: 50+/-2 kg; Edelschwein Pietrain). Moreover, antide was administered intravenously, subcutaneously and orally in solution. Results showed stability of antide towards pepsin, trypsin and chymotrypsin. In contrast, antide was rapidly degraded by elastase. Consequently a stomach-targeted delivery system was designed. Drug release studies demonstrated an almost zero-order controlled release of antide over 8 h. In vivo studies demonstrated a relative bioavailability of 34.4% for the subcutaneous administration. Oral administration of antide in solution led to no detectable concentrations of the drug in plasma at all. In contrast, administering antide being incorporated in the thiolated polymer resulted in a significant uptake of the peptide. The absolute and relative bioavailability was determined to be 1.1% and 3.2%, respectively.

  9. Thiol-ene chemistry guided preparation of thiolated polymeric nanocomposite for anodic stripping voltammetric analysis of Cd2+ and Pb2+.

    PubMed

    Su, Zhaohong; Liu, Ying; Zhang, Yi; Xie, Qingji; Chen, Li; Huang, Yi; Fu, Yingchun; Meng, Yue; Li, Xuejiao; Ma, Ming; Yao, Shouzhuo

    2013-02-21

    We report on the thiol-ene chemistry guided preparation of a novel thiolated polymeric nanocomposite involving polyaniline (PANI), a functionalized thiol, e.g., sulfur-rich 2,5-dimercapto-1,3,4-thiadiazole (DMcT), and multiwalled carbon nanotubes (MWCNTs) for the sensitive differential pulse anodic stripping voltammetric determination of Cd(2+) and Pb(2+) on a glassy carbon electrode (GCE). Briefly, the thiol-ene reaction of a thiol with oxidized PANI that was chemically synthesized in the presence of solution-dispersed acidified MWCNTs yielded a thiolated polymeric nanocomposite of thiol-PANI/MWCNTs. The thiols examined include DMcT, 1,6-hexanedithiol and β-mercaptoethanol. Quartz crystal microbalance, cyclic voltammetry, scanning electron microscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy were used for film characterization and process monitoring. Under the optimized conditions, the obtained Bi/Nafion/DMcT-PANI/MWCNTs/GCE can sensitively sense Cd(2+) and Pb(2+) with limits of detection of 0.01 and 0.04 μg L(-1), respectively.

  10. 40 CFR 721.10517 - Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl methacrylates, polymer with... Substances § 721.10517 Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide... reporting. (1) The chemical substance identified generically as alkyl methacrylates, polymer with...

  11. Ultrasonic Relaxation Study of 1-Alkyl-3-methylimidazolium-Based Room-Temperature Ionic Liquids: Probing the Role of Alkyl Chain Length in the Cation.

    PubMed

    Zorębski, Michał; Zorębski, Edward; Dzida, Marzena; Skowronek, Justyna; Jężak, Sylwia; Goodrich, Peter; Jacquemin, Johan

    2016-04-14

    Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally, the speed of sound, density, and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e., relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single-Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.

  12. Electrochemical Properties of Organosilane Self Assembled Monolayers on Aluminum 2024

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Calle, Luz Marina

    2004-01-01

    Self assembled monolayers are commonly used to modify surfaces. Within the last 15 years, self assembled monolayers have been investigated as a way to protect from corrosion[1,2] or biofouling.[3] In this study, self assembled monolayers of decitriethoxysilane (C10H21Si(OC2H5)3) and octadecyltriethoxysilane (C18H37Si(OC2H5)3) were formed on aluminum 2024-T3. The modified surfaces and bare Al 2024 were characterized by dynamic water contact angle measurements, x-ray photoelectron spectroscopy (XIPS) and infrared spectroscopy. Electrochemical impedance spectroscopy (EIS) in 0.5 M NaCl was used to characterize the monolayers and evaluate their corrosion protection properties. The advancing water contact angle and infrared measurements show that the mono layers form a surface where the hydrocarbon chains are packed and oriented away from the surface, consistent with what is found in similar systems. The contact angle hysteresis measured in these systems is relatively large, perhaps indicating that the hydrocarbon chains are not as well packed as monolayers formed on other substrates. The results of the EIS measurements were modeled using a Randle's circuit modified by changing the capacitor to a constant phase element. The constant phase element values were found to characterize the monolayer. The capacitance of the monolayer modified surface starts lower than the bare Al 2024, but approaches values similar to the bare Al 2024 within 24 hours as the monolayer is degraded. The n values found for bare Al 2024 quickly approach the value of a true capacitor and are greater than 0.9 within hours after the start of exposure. For the monolayer modified structure, n can stay lower than 0.9 for a longer period of time. In fact, n for the monolayer modified surfaces is different from the bare surface even after the capacitance values have converged. This indicates that the deviation from ideal capacitance is the most sensitive indicator of the presence of the monolayer.

  13. Electromelting of confined monolayer ice.

    PubMed

    Qiu, Hu; Guo, Wanlin

    2013-05-10

    In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under a perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to the field-induced disruption of the water-wall interaction induced well-ordered network of the hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.

  14. Giant coercivity in perpendicularly magnetized cobalt monolayer

    NASA Astrophysics Data System (ADS)

    Lin, D. C.; Song, C.; Cui, B.; Wang, Y. Y.; Wang, G. Y.; Pan, F.

    2012-09-01

    We report giant coercivity (HC) up to 35 kOe at 4 K, measured by the anomalous Hall effect, in perpendicularly magnetized Co (˜0.3 nm) films, where Co is approximately one monolayer. The HC is dramatically reduced with huge applied current, due to Joule heating rather than Rashba effect. It is also sensitive to temperatures, producing almost zero HC at 200 K. The Curie temperature of the Co monolayer is ˜275 K, far lower than that of bulk Co. The giant HC could be explained by the strong interaction at Co/Pd interface, providing a promising paradise: one monolayer, one permanent magnet.

  15. Molecular printboards: monolayers of beta-cyclodextrins on silicon oxide surfaces.

    PubMed

    Onclin, Steffen; Mulder, Alart; Huskens, Jurriaan; Ravoo, Bart Jan; Reinhoudt, David N

    2004-06-22

    Monolayers of beta-cyclodextrin host molecules have been prepared on SiO2 surfaces. An ordered and stable cyano-terminated monolayer was modified in three consecutive surface reactions. First, the cyanide groups were reduced to their corresponding free amines using Red Al as a reducing agent. Second, 1,4-phenylene diisothiocyanate was used to react with the amine monolayer where it acts as a linking molecule, exposing isothiocyanates that can be derivatized further. Finally, per-6-amino beta-cyclodextrin was reacted with these isothiocyanate functions to yield a monolayer exposing beta-cyclodextrin. All monolayers were characterized by contact angle measurements, ellipsometric thickness measurements, Brewster angle Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry, which indicate the formation of a densely packed cyclodextrin surface. It was demonstrated that the beta-cyclodextrin monolayer could bind suitable guest molecules in a reversible manner. A fluorescent molecule (1), equipped with two adamantyl groups for complexation, was adsorbed onto the host monolayer from solution to form a monolayer of guest molecules. Subsequently, the guest molecules were desorbed from the surface by competition with increasing beta-cyclodextrin concentration in solution. The data were fitted using a model. An intrinsic binding constant of 3.3 +/- 1 x 10(5) M(-1) was obtained, which corresponds well to previously obtained results with a divalent guest molecule on beta-cyclodextrin monolayers on gold. In addition, the number of guest molecules bound to the host surface was determined, and a surface coverage of ca. 30% was found.

  16. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  17. Metal ion interaction with phosphorylated tyrosine analogue monolayers on gold.

    PubMed

    Petoral, Rodrigo M; Björefors, Fredrik; Uvdal, Kajsa

    2006-11-23

    Phosphorylated tyrosine analogue molecules (pTyr-PT) were assembled onto gold substrates, and the resulting monolayers were used for metal ion interaction studies. The monolayers were characterized by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), both prior to and after exposure to metal ions. XPS verified the elemental composition of the molecular adsorbate and the presence of metal ions coordinated to the phosphate groups. Both the angle-dependent XPS and IRAS results were consistent with the change in the structural orientation of the pTyr-PT monolayer upon exposure to metal ions. The differential capacitance of the monolayers upon coordination of the metal ions was evaluated using EIS. These metal ions were found to significantly change the capacitance of the pTyr-PT monolayers in contrast to the nonphosphorylated tyrosine analogue (TPT). CV results showed reduced electrochemical blocking capabilities of the phosphorylated analogue monolayer when exposed to metal ions, supporting the change in the structure of the monolayer observed by XPS and IRAS. The largest change in the structure and interfacial capacitance was observed for aluminum ions, compared to calcium, magnesium, and chromium ions. This type of monolayer shows an excellent capability to coordinate metal ions and has a high potential for use as sensing layers in biochip applications to monitor the presence of metal ions.

  18. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  19. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  20. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  1. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  2. When alcohol is the answer: trapping, identifying and quantifying simple alkylating species in aqueous environments

    PubMed Central

    Penketh, P. G.; Shyam, K.; Baumann, R. P; Zhu, Rui; Ishiguro, K.; Sartorelli, A. C.; Ratner, E. S.

    2016-01-01

    Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties. PMID:27188264

  3. Extended exposure to alkylator chemotherapy: delayed appearance of myelodysplasia.

    PubMed

    Chamberlain, Marc C; Raizer, Jeffrey

    2009-06-01

    A case series of gliomas treated with alkylator-based chemotherapy who subsequently developed myelodysplastic syndrome (tMDS) or acute myelocytic leukemia (AML). Alkylator-based chemotherapy is recognized to be leukemogenic; however, it is infrequently described as a delayed consequence of anti-glioma treatment. Seven patients (4 men; 3 women) ages 34-69 years (median 44), with gliomas (3 Grade 2; 4 Grade 3) were treated with surgery, all but one with involved-field radiotherapy and all with alkylator-based chemotherapy (temozolomide; 6 patients, nitrosoureas; 5 patients, both agents; 5 patients). Exposure to alkylator-based chemotherapy ranged from 8 to 30 months (median 24). The diagnosis of tMDS was determined by bone marrow biopsy in 7 patients. Seven patients showed chromosomal abnormalities consistent with chemotherapy induced MDS. Three patients were diagnosed with AML as well (in two determined by bone marrow and one at autopsy). Interval from last chemotherapy exposure to diagnosis of tMDS/AML ranged from 3 to 31 months (median 24 months). Two patients were treated with bone marrow transplantation and 5 received supportive care only. Five patients have died, 2 as a consequence of recurrent brain tumor, 1 as a complication of transplantation, and 2 due to AML. Although rare, induction of tMDS/AML following extended use of alkylator-based chemotherapy may become more relevant with the evolving practice to treat gliomas for protracted periods. Future work to determine at risk patients would be important.

  4. Alkyl Glucosides in Contact Dermatitis.

    PubMed

    Loranger, Camille; Alfalah, Maisa; Ferrier Le Bouedec, Marie-Christine; Sasseville, Denis

    Ecologically sound because they are synthesized from natural and renewable sources, the mild surfactants alkyl glucosides are being rediscovered by the cosmetic industry. They are currently found in rinse-off products such as shampoos, liquid cleansers, and shower gels, but also in leave-on products that include moisturizers, deodorants, and sunscreens. During the past 15 years, numerous cases of allergic contact dermatitis have been published, mostly to lauryl and decyl glucosides, and these compounds are considered emergent allergens. Interestingly, the sunscreen Tinosorb M contains decyl glucoside as a hidden allergen, and most cases of allergic contact dermatitis reported to this sunscreen ingredient are probably due to sensitization to decyl glucoside. This article will review the chemistry of alkyl glucosides, their sources of exposure, as well as their cutaneous adverse effects reported in the literature and encountered in various patch testing centers.

  5. C2-Selective Branched Alkylation of Benzimidazoles by Rhodium(I)-Catalyzed C-H Activation.

    PubMed

    Tran, Gaël; Confair, Danielle; Hesp, Kevin D; Mascitti, Vincent; Ellman, Jonathan A

    2017-09-01

    Herein, we report a Rh(I)/bisphosphine/K 3 PO 4 catalytic system allowing for the first time the selective branched C-H alkylation of benzimidazoles with Michael acceptors. Branched alkylation with N,N-dimethyl acrylamide was successfully applied to the alkylation of a broad range of benzimidazoles incorporating a variety of N-substituents and with both electron-rich and -poor functionality displayed at different sites of the arene. Moreover, the introduction of a quaternary carbon was achieved by alkylation with ethyl methacrylate. The method was also shown to be applicable to the C2-selective branched alkylation of azabenzimidazoles.

  6. Sodium adsorption and diffusion on monolayer black phosphorus with intrinsic defects

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Wang, Zhiguo

    2018-01-01

    Monolayer black phosphorus is a potential anode material for rechargeable ion batteries. In this work, the effects of intrinsic defects including mono-vacancy (MV), di-vacancy, and Stone-Wales (SW) defects on the adsorption and diffusion of sodium on monolayer black phosphorus were investigated using first-principles calculations. The adsorption energies for sodium on monolayer black phosphorus are in the range of -1.80 to -0.56 eV, which is lower than the value of -0.48 eV for sodium adsorbed on pristine monolayer phosphorus. This indicates that these defects can enhance the adsorption of sodium on monolayer black phosphorus. The diffusivity of sodium on monolayer phosphorus with SW and MV defects is 2.35 × 10-4-3.36 × 10-6 cm2/s, and 7.38 × 10-5-1.48 × 10-9 cm2/s, respectively. Although these values are smaller than that of the pristine monolayer phosphorus at 7.38 × 10-5 cm2/s, defects are inevitably introduced during these fabrication processes. These diffusivity values are reasonable for defective monolayer phosphorus used as an effective anode for sodium ion batteries.

  7. Mechanism of Surface Alkylation of a Gold Aerogel with Tetra-n-butylstannane-d36: Identification of Byproducts.

    PubMed

    Benkovičová, Monika; Wen, Dan; Plutnar, Jan; Čížková, Martina; Eychmüller, Alexander; Michl, Josef

    2017-05-18

    The formation of self-assembled monolayers on surfaces is often likely to be accompanied by the formation of byproducts, whose identification holds clues to the reaction mechanism but is difficult due to the minute amounts produced. We now report a successful identification of self-assembly byproducts using gold aerogel with a large specific surface area, a procedure likely to be applicable generally. Like a thin gold layer on a flat substrate, the aerogel surface is alkylated with n-butyl-d 9 groups upon treatment with a solution of tetra-n-butylstannane-d 36 under ambient conditions. The reaction byproducts accumulate in the mother liquor in amounts sufficient for GC-MS analysis. In chloroform solvent, they are butene-d 8 , butane-d 10 , octane-d 18 , and tributylchlorostannane-d 27 . In hexane, they are the same except that tributylchlorostannane-d 27 is replaced with hexabutyldistannane-d 54 . The results are compatible with an initial homolytic dissociation of a C-Sn bond on the gold surface, followed by known radical processes.

  8. Selective sp3 C–H alkylation via polarity-match-based cross-coupling

    PubMed Central

    Le, Chip; Liang, Yufan; Evans, Ryan W.; Li, Ximing; MacMillan, David W. C.

    2017-01-01

    The functionalization of carbon–hydrogen (C–H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence1. Although many C–H functionalization reactions involve C(sp3)–C(sp2) coupling, there is a growing demand for C–H alkylation reactions, wherein sp3 C–H bonds are replaced with sp3 C–alkyl groups. Here we describe a polarity-match-based selective sp3 C–H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C–H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl–alkyl fragment coupling. The sp3 C–H alkylation is highly selective for the α-C–H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry. PMID:28636596

  9. Synthesis of thiolated arabinoxylan and its application as sustained release mucoadhesive film former.

    PubMed

    Zaman, Muhammad; Hanif, Muhammad; Sultana, Kishwar; Atta-Ur-Rehman

    2018-02-08

    The present work aimed to synthesize thiolated arabinoxylan (TAX), and to evaluate its mucoadhesive potential. Synthesis of TAX was accomplished by esterification of arabinoxylan (AX) with thioglycolic acid (TGA). The appearance of a characteristic peak at 2516 cm -1 in the FTIR spectrum of TAX, and presence of 6.01 ± 1.03 m moles of thiol per gram of the polymer confirmed successful thiolation of AX. The incorporation of the thiol group considerably promoted mucoadhesive strength of the polymer-viz. 3.99-fold. Moreover, in vivo safety analysis in albino rats revealed TAX to be safe in the concentration range of 750-1000 mg kg -1 body weight. Synthesized TAX was utilized to prepare Tizanidine HCl (TZN HCl) loaded sustained release (SR) mucoadhesive buccal films using a solvent casting technique. Results proved that the prepared films were of uniform thickness, good mechanical strength (with folding endurance >300), acceptable moisture contents (5%-7%) and surface pH (6.23 ± 0.81 to 6.43 ± 0.49) compatible to that of the buccal cavity. Presence of greater that 90% of drug contents indicated the excellent drug loading ability of the prepared films. Results of in vitro dissolution studies and ex vivo permeation studies conducted respectively by USP dissolution apparatus II and Franz diffusion cell indicated that sustained effect of TAX was achieved for 8 h. These results have conclusively proven that TAX has the potential to improve the bioavailability of TZN HCl due to enhanced mucoadhesion in buccal cavity, hence signifying its suitability as a mucoadhesive buccal film former.

  10. Non-thiolate ligation of nickel by nucleotide-free UreG of Klebsiella aerogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Diaconescu, Vlad; Joseph, Crisjoe A.; Boer, Jodi L.

    Nickel-dependent ureases are activated by a multiprotein complex that includes the GTPase UreG. Prior studies showed that nucleotide-free UreG from Klebsiella aerogenes is monomeric and binds one nickel or zinc ion with near-equivalent affinity using an undefined binding site, whereas nucleotide-free UreG from Helicobacter pylori selectively binds one zinc ion per dimer via a universally conserved Cys-Pro-His motif in each protomer. Iodoacetamide-treated K. aerogenes UreG was nearly unaffected in nickel binding compared to non-treated sample, suggesting the absence of thiolate ligands to the metal. X-ray absorption spectroscopy of nickel-bound UreG showed the metal possessed four-coordinate geometry with all O/N donormore » ligands including one imidazole, thus confirming the absence of thiolate ligation. The nickel site in Strep-tag II-modified protein possessed six-coordinate geometry, again with all O/N donor ligands, but now including two or three imidazoles. An identical site was noted for the Strep-tag II-modified H74A variant, substituted in the Cys-Pro-His motif, ruling out coordination by this His residue. These results are consistent with metal binding to both His6 and a His residue of the fusion peptide in Strep-tagged K. aerogenes UreG. We conclude that the nickel- and zinc-binding site in nucleotide-free K. aerogenes UreG is distinct from that of nucleotide-free H. pylori UreG and does not involve the Cys-Pro-His motif. Further, we show the Strep-tag II can perturb metal coordination of this protein.« less

  11. Discovery and identification of a series of alkyl decalin isomers in petroleum geological samples.

    PubMed

    Wang, Huitong; Zhang, Shuichang; Weng, Na; Zhang, Bin; Zhu, Guangyou; Liu, Lingyan

    2015-07-07

    The comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS) has been used to characterize a crude oil and a source rock extract sample. During the process, a series of pairwise components between monocyclic alkanes and mono-aromatics have been discovered. After tentative assignments of decahydronaphthalene isomers, a series of alkyl decalin isomers have been synthesized and used for identification and validation of these petroleum compounds. From both the MS and chromatography information, these pairwise compounds were identified as 2-alkyl-decahydronaphthalenes and 1-alkyl-decahydronaphthalenes. The polarity of 1-alkyl-decahydronaphthalenes was stronger. Their long chain alkyl substituent groups may be due to bacterial transformation or different oil cracking events. This systematic profiling of alkyl-decahydronaphthalene isomers provides further understanding and recognition of these potential petroleum biomarkers.

  12. Methylene blue adsorption on a DMPA lipid langmuir monolayer.

    PubMed

    Giner Casares, Juan José; Camacho, Luis; Martín-Romero, Maria Teresa; López Cascales, José Javier

    2010-07-12

    Adsorption of methylene blue (MB) onto a dimyristoylphosphatidic acid (DMPA) Langmuir air/water monolayer is studied by molecular dynamics (MD) simulations, UV reflection spectroscopy and surface potential measurements. The free-energy profile associated with MB transfer from water to the lipid monolayer shows two minima of -66 and -60 kJ mol(-1) for its solid and gas phase, respectively, corresponding to a spontaneous thermodynamic process. From the position of the free-energy minima, it is possible to predict the precise location of MB in the interior of the DMPA monolayer. Thus, MB is accommodated in the phosphoryl or carbonyl region of the DMPA Langmuir air/water interface, depending on the isomorphic state (solid or gas phase, respectively). Reorientation of MB, measured from the bulk solution to the interior of the lipid monolayer, passes from a random orientation in bulk solution to an orientation parallel to the surface of the lipid monolayer when MB is absorbed.

  13. A pentacene monolayer trapped between graphene and a substrate.

    PubMed

    Zhang, Qicheng; Peng, Boyu; Chan, Paddy Kwok Leung; Luo, Zhengtang

    2015-09-21

    A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures.

  14. When alcohol is the answer: Trapping, identifying and quantifying simple alkylating species in aqueous environments.

    PubMed

    Penketh, Philip G; Shyam, Krishnamurthy; Baumann, Raymond P; Zhu, Rui; Ishiguro, Kimiko; Sartorelli, Alan C; Ratner, Elena S

    2016-09-01

    Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Monolayer atomic crystal molecular superlattices.

    PubMed

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A; Huang, Yu; Duan, Xiangfeng

    2018-03-07

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 10 7 , along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  16. Monolayer atomic crystal molecular superlattices

    NASA Astrophysics Data System (ADS)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  17. Nickel-Catalyzed Reductive Allylation of Tertiary Alkyl Halides with Allylic Carbonates.

    PubMed

    Chen, Haifeng; Jia, Xiao; Yu, Yingying; Qian, Qun; Gong, Hegui

    2017-10-09

    The construction of all C(sp 3 ) quaternary centers has been successfully achieved under Ni-catalyzed cross-electrophile coupling of allylic carbonates with unactivated tertiary alkyl halides. For allylic carbonates bearing C1 or C3 substituents, the reaction affords excellent regioselectivity through the addition of alkyl groups to the unsubstituted allylic carbon terminus. The allylic alkylation method also exhibits excellent functional-group compatibility, and delivers the products with high E selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Side chain variations radically alter the diffusion of poly(2-alkyl-2-oxazoline) functionalised nanoparticles through a mucosal barrier.

    PubMed

    Mansfield, Edward D H; de la Rosa, Victor R; Kowalczyk, Radoslaw M; Grillo, Isabelle; Hoogenboom, Richard; Sillence, Katy; Hole, Patrick; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2016-08-16

    Functionalised nanomaterials are gaining popularity for use as drug delivery vehicles and, in particular, mucus penetrating nanoparticles may improve drug bioavailability via the oral route. To date, few polymers have been investigated for their muco-penetration, and the effects of systematic structural changes to polymer architectures on the penetration and diffusion of functionalised nanomaterials through mucosal tissue have not been reported. We investigated the influence of poly(2-oxazoline) alkyl side chain length on nanoparticle diffusion; poly(2-methyl-2-oxazoline), poly(2-ethyl-2-oxazoline), and poly(2-n-propyl-2-oxazoline) were grafted onto the surface of thiolated silica nanoparticles and characterised by FT-IR, Raman and NMR spectroscopy, thermogravimetric analysis, and small angle neutron scattering. Diffusion coefficients were determined in water and in a mucin dispersion (using Nanoparticle Tracking Analysis), and penetration through a mucosal barrier was assessed using an ex vivo fluorescence technique. The addition of a single methylene group in the side chain significantly altered the penetration and diffusion of the materials in both mucin dispersions and mucosal tissue. Nanoparticles functionalised with poly(2-methyl-2-oxazoline) were significantly more diffusive than particles with poly(2-ethyl-2-oxazoline) while particles with poly(2-n-propyl-2-oxazoline) showed no significant increase compared to the unfunctionalised particles. These data show that variations in the polymer structure can radically alter their diffusive properties with clear implications for the future design of mucus penetrating systems.

  19. Method of making gold thiolate and photochemically functionalized microcantilevers

    DOEpatents

    Boiadjiev, Vassil I [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Bonnesen, Peter V [Knoxville, TN; Goretzki, Gudrun [Nottingham, GB

    2009-08-25

    Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process. By focusing the activating UV light sequentially on selected silicon or silicon nitride hydrogen terminated surfaces and soaking or spotting selected metallic surfaces with organic thiols, sulfides, or disulfides, the microcantilevers are functionalized. The device and photochemical method are intended to be integrated into systems for detecting specific agents including chromate groundwater contamination, gasoline, and biological species.

  20. Hybrid ligand-alkylating agents targeting telomeric G-quadruplex structures.

    PubMed

    Doria, Filippo; Nadai, Matteo; Folini, Marco; Di Antonio, Marco; Germani, Luca; Percivalle, Claudia; Sissi, Claudia; Zaffaroni, Nadia; Alcaro, Stefano; Artese, Anna; Richter, Sara N; Freccero, Mauro

    2012-04-14

    The synthesis, physico-chemical properties and biological effects of a new class of naphthalene diimides (NDIs) capable of reversibly binding telomeric DNA and alkylate it through an electrophilic quinone methide moiety (QM), are reported. FRET and circular dichroism assays showed a marked stabilization and selectivity towards telomeric G4 DNA folded in a hybrid topology. NDI-QMs' alkylating properties revealed a good reactivity on single nucleosides and selectivity towards telomeric G4. A selected NDI was able to significantly impair the growth of melanoma cells by causing telomere dysfunction and down-regulation of telomerase expression. These findings points to our hybrid ligand-alkylating NDIs as possible tools for the development of novel targeted anticancer therapies. This journal is © The Royal Society of Chemistry 2012

  1. Alkyl Azides, Diazides, Haloazides and Bridged Polycyclic Diazides

    DTIC Science & Technology

    1991-05-16

    temperature. Most of the methyl ether was removed during this process. The ehtyl ether was distilled from the reaction mixture using a water aspirator into a...Street PROGRAM IPROJECT ITASK IWORK li1111? ArliiqIoh, VA 22217-5000 EILIMENT NO I NO. I oACCESSION P10) Alkyl Azides, Dlazides, laloazides and...REPRODUCE LEGIBLY. ALKYL AZIDES, DIAZIDES, HALOAZIDES AND BRIDGED POLYCYCLIC DIAZIDES Final REPORTe July 1, 1989-November 14, 1990 A6jd.%4gi0 F’or

  2. Characterization of Self-Assembled Monolayers on a Ruthenium Surface

    PubMed Central

    2017-01-01

    We have modified and stabilized the ruthenium surface by depositing a self-assembled monolayer (SAM) of 1-hexadecanethiol on a polycrystalline ruthenium thin film. The growth mechanism, dynamics, and stability of these monolayers were studied. SAMs, deposited under ambient conditions, on piranha-cleaned and piranha + H2SO4 cleaned substrates were compared to monolayers formed on H-radical-cleaned Ru surfaces. We found that alkanethiols on H-radical-cleaned Ru formed densely packed monolayers that remained stable when kept in a nitrogen atmosphere. X-ray photoelectron spectroscopy (XPS) shows a distinct sulfur peak (BE = 162.3 eV), corresponding to metal–sulfur bonding. When exposed to ambient conditions, the SAM decayed over a period of hours. PMID:28585831

  3. Adsorption of radionuclides on the monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Zhang, Zheng; Ouyang, Xiaoping

    2018-04-01

    How to remove radionuclides from radioactive wastewater has long been a difficult problem, especially in nuclear accidents. In this paper, the adsorption of radionuclides Cs, Sr, and Ba on the monolayer MoS2 was investigated by using the first principles calculation method. Through the calculation of adsorption energy and Hirshfeld charge of the radionuclides on the monolayer MoS2 at six adsorption sites, the results show that all of the radionuclides chemisorbed on the monolayer MoS2, and the adsorption strength of these three kinds of radionuclides on the monolayer MoS2 is Ba > Sr > Cs. This work might shed some light on the treatment of the radioactive wastewater.

  4. Enantiomerically Pure Acetals in Organic Synthesis: Resolutions and Diastereoselective Alkylations of Alpha-Hydroxy Esters

    DTIC Science & Technology

    1990-01-01

    sensitivity of the alkylating agent to the reaction conditions. In either case , a decision was made to use 5-iodo-2- methyl -l-pentene as the alkylating ...agent, and the reaction conditions. In most cases the diastereomeric products of the alkylation were also separated by column chromatography. This...equatorially substituted product. Oxidation of the alcohol to the ketone followed by treatment with an alkyl Grignard reagent gave only the product which

  5. Treponema pallidum Invades Intercellular Junctions of Endothelial Cell Monolayers

    NASA Astrophysics Data System (ADS)

    Thomas, D. Denee; Navab, Mahamad; Haake, David A.; Fogelman, Alan M.; Miller, James N.; Lovett, Michael A.

    1988-05-01

    The pathogenesis of syphilis reflects invasive properties of Treponema pallidum, but the actual mode of tissue invasion is unknown. We have found two in vitro parallels of treponemal invasiveness. We tested whether motile T. pallidum could invade host cells by determining the fate of radiolabeled motile organisms added to a HeLa cell monolayer; 26% of treponemes associated with the monolayer in a trypsin-resistant niche, presumably between the monolayer and the surface to which it adhered, but did not attain intracellularity. Attachment of T. pallidum to cultured human and rabbit aortic and human umbilical vein endothelial cells was 2-fold greater than to HeLa cells. We added T. pallidum to aortic endothelial cells grown on membrane filters under conditions in which tight intercellular junctions had formed. T. pallidum was able to pass through the endothelial cell monolayers without altering tight junctions, as measured by electrical resistance. In contrast, heat-killed T. pallidum and the nonpathogen Treponema phagedenis biotype Reiter failed to penetrate the monolayer. Transmission electron micrographs of sections of the monolayer showed T. pallidum in intercellular junctions. Our in vitro observations suggest that these highly motile spirochetes may leave the circulation by invading the junctions between endothelial cells.

  6. Spray-Dried Thiolated Chitosan-Coated Sodium Alginate Multilayer Microparticles for Vaginal HIV Microbicide Delivery.

    PubMed

    Meng, Jianing; Agrahari, Vivek; Ezoulin, Miezan J; Purohit, Sudhaunshu S; Zhang, Tao; Molteni, Agostino; Dim, Daniel; Oyler, Nathan A; Youan, Bi-Botti C

    2017-05-01

    It is hypothesized that novel thiolated chitosan-coated multilayer microparticles (MPs) with enhanced drug loading are more mucoadhesive than uncoated MPs and safe in vivo for vaginal delivery of topical anti-HIV microbicide. Formulation optimization is achieved through a custom experimental design and the alginate (AG) MPs cores are prepared using the spray drying method. The optimal MPs are then coated with the thiolated chitosan (TCS) using a layer-by-layer method. The morphological analysis, in situ drug payload, in vitro drug release profile, and mucoadhesion potential of the MPs are carried out using scanning electron microscopy, solid-state 31 P NMR spectroscopy, UV spectroscopy, fluorescence imaging and periodic acid Schiff method, respectively. The cytotoxicity and preclinical safety of MPs are assessed on human vaginal (VK2/E6E7) and endocervical (End1/E6E7) epithelial cell lines and in female C57BL/6 mice, respectively. The results show that the MPs are successfully formulated with an average diameter ranging from 2 to 3 μm with a drug loading of 7-12% w/w. The drug release profile of these MPs primarily follows the Baker-Lonsdale and Korsmeyer-Peppas models. The MPs exhibit high mucoadhesion (20-50 folds) compared to native AGMPs. The multilayer MPs are noncytotoxic. Histological and immunochemical analysis of the mice genital tract shows neither signs of damage nor inflammatory cell infiltrate. These data highlight the potential use of TCS-coated AG-based multilayer MPs templates for the topical vaginal delivery of anti-HIV/AIDS microbicides.

  7. Chitosan and thiolated chitosan: Novel therapeutic approach for preventing corneal haze after chemical injuries.

    PubMed

    Zahir-Jouzdani, Forouhe; Mahbod, Mirgholamreza; Soleimani, Masoud; Vakhshiteh, Faezeh; Arefian, Ehsan; Shahosseini, Saeed; Dinarvand, Rasoul; Atyabi, Fatemeh

    2018-01-01

    Corneal haze, commonly caused by deep physical and chemical injuries, can greatly impair vision. Growth factors facilitate fibroblast proliferation and differentiation, which leads to haze intensity. In this study, the potential effect of chitosan (CS) and thiolated-chitosan (TCS) nanoparticles and solutions on inhibition of fibroblast proliferation, fibroblast to myofibroblast differentiation, neovascularization, extracellular matrix (ECM) deposition, and pro-fibrotic cytokine expression was examined. Transforming growth factor beta-1 (TGFβ 1 ) was induced by interleukin-6 (IL6) in human corneal fibroblasts and expression levels of TGFβ 1 , Platelet-derived growth factor (PDGF), α-smooth muscle actins (α-SMA), collagen type I (Col I), fibronectin (Fn) and vascular endothelial growth factor (VEGF) were quantified using qRT-PCR. To assess wound-healing capacity, TCS-treated mice were examined for α-SMA positive cells, collagen deposition, inflammatory cells and neovascularization through pathological immunohistochemistry. The results revealed that CS and TCS could down-regulate the expression levels of TGFβ 1 and PDGF comparable to that of TGFβ 1 knockdown experiment. However, down-regulation of TGFβ 1 was not regulated through miR29b induction. Neovascularization along with α-SMA and ECM deposition were significantly diminished. According to these findings, CS and TCS can be considered as potential anti-fibrotic and anti-angiogenic therapeutics. Furthermore, TCS, thiolated derivative of CS, will increase mucoadhesion of the polymer at the corneal surface which makes the polymer efficient and non-toxic therapeutic approach for corneal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Monodisperse hexagonal silver nanoprisms: synthesis via thiolate-protected cluster precursors and chiral, ligand-imprinted self-assembly.

    PubMed

    Cathcart, Nicole; Kitaev, Vladimir

    2011-09-27

    Silver nanoprisms of a predominantly hexagonal shape have been prepared using a ligand combination of a strongly binding thiol, captopril, and charge-stabilizing citrate together with hydrogen peroxide as an oxidative etching agent and a strong base that triggered nanoprism formation. The role of the reagents and their interplay in the nanoprism synthesis is discussed in detail. The beneficial role of chloride ions to attain a high degree of reproducibility and monodispersity of the nanoprisms is elucidated. Control over the nanoprism width, thickness, and, consequently, plasmon resonance in the system has been demonstrated. One of the crucial factors in the nanoprism synthesis was the slow, controlled aggregation of thiolate-stabilized silver nanoclusters as the intermediates. The resulting superior monodispersity (better than ca. 10% standard deviation in lateral size and ca. 15% standard deviation in thickness (<1 nm variation)) and charge stabilization of the produced silver nanoprisms enabled the exploration of the rich diversity of the self-assembled morphologies in the system. Regular columnar assemblies of the self-assembled nanoprisms spanning 2-3 μm in length have been observed. Notably, the helicity of the columnar phases was evident, which can be attributed to the chirality of the strongly binding thiol ligand. Finally, the enhancement of Raman scattering has been observed after oxidative removal of thiolate ligands from the AgNPR surface. © 2011 American Chemical Society

  9. Self-assembly properties of semiconducting donor-acceptor-donor bithienyl derivatives of tetrazine and thiadiazole-effect of the electron accepting central ring.

    PubMed

    Zapala, Joanna; Knor, Marek; Jaroch, Tomasz; Maranda-Niedbala, Agnieszka; Kurach, Ewa; Kotwica, Kamil; Nowakowski, Robert; Djurado, David; Pecaut, Jacques; Zagorska, Malgorzata; Pron, Adam

    2013-11-26

    Scanning tunneling microscopy was used to study the effect of the electron-accepting unit and the alkyl substituent's position on the type and extent of 2D supramolecular organization of penta-ring donor-acceptor-donor (DAD) semiconductors, consisting of either tetrazine or thiadiazole central acceptor ring symmetrically attached to two bithienyl groups. Microscopic observations of monomolecular layers on HOPG of four alkyl derivatives of the studied adsorbates indicate significant differences in their 2D organizations. Ordered monolayers of thiadiazole derivatives are relatively loose and, independent of the position of alkyl substituents, characterized by large intermolecular separation of acceptor units in the adjacent molecules located in the face-to-face configuration. The 2D supramolecular architecture in both derivatives of thiadiazole is very sensitive to the alkyl substituent's position. Significantly different behavior is observed for derivatives of tetrazine (which is a stronger electron acceptor). Stronger intermolecular DA interactions in these adsorbates generate an intermolecular shift in the monolayer, which is a dominant factor determining the 2D structural organization. As a consequence of this molecular arrangement, tetrazine groups (A segments) face thiophene rings (D segments) of the neighboring molecules. Monolayers of tetrazine derivatives are therefore much more densely packed and characterized by similar π-stacking of molecules independently of the position of alkyl substituents. Moreover, a comparative study of 3D supramolecular organization, deduced from the X-ray diffraction patterns, is also presented clearly confirming the polymorphism of the studied adsorbates.

  10. 40 CFR 721.5860 - Methylphenol, bis(sub-sti-tuted)alkyl.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5860 Methylphenol, bis(sub-sti-tuted)alkyl. (a) Chemical substance and significant new uses...-ed)alkyl (P-84-417) is subject to reporting under this section for the significant new uses described...

  11. Direct β-Alkylation of Aldehydes via Photoredox Organocatalysis

    PubMed Central

    2015-01-01

    Direct β-alkylation of saturated aldehydes has been accomplished by synergistically combining photoredox catalysis and organocatalysis. Photon-induced enamine oxidation provides an activated β-enaminyl radical intermediate, which readily combines with a wide range of Michael acceptors to produce β-alkyl aldehydes in a highly efficient manner. Furthermore, this redox-neutral, atom-economical C–H functionalization protocol can be achieved both inter- and intramolecularly. Mechanistic studies by various spectroscopic methods suggest that a reductive quenching pathway is operable. PMID:24754456

  12. Strain induced chemical potential difference between monolayer graphene sheets.

    PubMed

    Zhang, Yupeng; Luo, Chengzhi; Li, Weiping; Pan, Chunxu

    2013-04-07

    Monolayer graphene sheets were deposited on a transparent and flexible polydimethylsiloxane (PDMS) substrate, and a tensile strain was loaded by stretching the substrate in one direction. It was found that an electric potential difference between stretched and static monolayer graphene sheets reached 8 mV when the strain was 5%. Theoretical calculations for the band structure and total energy revealed an alternative way to experimentally tune the band gap of monolayer graphene, and induce the generation of electricity.

  13. From old alkylating agents to new minor groove binders.

    PubMed

    Puyo, Stéphane; Montaudon, Danièle; Pourquier, Philippe

    2014-01-01

    Alkylating agents represent the oldest class of anticancer agents with the approval of mechloretamine by the FDA in 1949. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in the treatment of specific malignancies, sometimes representing the unique option for the treatment of refractory tumors. Here, we are reviewing the major classes of alkylating agents, with a particular focus on the latest generations of compounds that specifically target the minor groove of the DNA. These naturally occurring derivatives have a unique mechanism of action that explains the recent regain of interest in developing new classes of alkylating agents that could be used in combination with other anticancer drugs to enhance tumor response in the clinic. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Biocompatible Ferromagnetic Cr-Trihalide Monolayers

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    Cr with an electronic configuration of 3d54s1 possesses the largest atomic magnetic moment (6µB) of all elements in the 3d transition metal series. Furthermore, the trivalent chromium (Cr3+) is biocompatible and is widely found in food and supplements. Here using first principles calculations combined with Monte Carlo simulations based on Ising model, we systematically study a class of 2D ferromagnetic monolayers CrX3 (X = Cl, Br, I). The feasibility of exfoliation from their layered bulk phase is confirmed by the small cleavage energy and high in-plane stiffness. Spin-polarized calculations, combined with self consistently determined Hubbard U that accounts for strong correlation energy, demonstrate that CrX3 (X =Cl, Br, I) monolayers are ferromagnetic and Cr is trivalent and carries a magnetic moment of 3µB, the resulting Cr3+ ions are biocompatible. The corresponding Curie temperatures for CrCl3 CrBr3 CrI3 are are found to 66, 86, and 107 K, respectively, which can be increased to 323, 314, 293 K by hole doping. The biocompatibility and ferromagnetism render these Cr-containing trichalcogenide monolayers unique for applications.

  15. The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water.

    PubMed

    Miles, Rachael E H; Davies, James F; Reid, Jonathan P

    2016-07-20

    We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer

  16. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    DOEpatents

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  17. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  18. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  19. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  20. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  1. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  2. Lipid monolayer structure and interactions in the presence of peptides and proteins

    NASA Astrophysics Data System (ADS)

    Freites, Juan Alfredo

    Structural aspects of two simple model systems, protein-lipid monolayer and peptide-lipid monolayer, were studied by experimental and computer simulation techniques. In both cases, both the choice of system and the approach employed to studying it, were motivated by specific biological problems. The interaction of annexin A1 with monolayers of dipalmitoylphosphatidylcholine (DPPC) was studied by fluorescence microscopy as a function of lipid monolayer phase and pH. It was shown that the annexin A1-DPPC interaction depends strongly on both the domain structure and phase behavior of the DPPC monolayer, and only weakly on the subphase pH. Annexin A1 was found to be line-active, adsorbing preferentially at phase boundaries. Also, annexin A1 was found to form networks in the presence of a domain structure in the lipid monolayer. Molecular dynamics simulations were carried out on a model system composed of a surfactant protein B peptide, SP-B1--25, and a monolayer of hexadecanoic acid. A detailed structural characterization was performed as a function of the lipid monolayer specic area. It was found that the peptide remains inserted in the monolayer up to values of specific area corresponding to an untilted condensed phase of the pure hexadecanoic acid monolayer. The system remains stable by altering the conformational order of both the anionic lipid monolayer and the peptide secondary structure, and effectively constitutes a unique disordered lipid-peptide monolayer phase. Two elements appear to be key for the constitution of this phase: an electrostatic interaction between the cationic residues of the peptide with the anionic headgroups of the lipids, and an exclusion of the aromatic residues on the hydrophobic end of the peptide from the hydrophilic and aqueous regions of the system. A direct comparison between molecular dynamics simulations and laboratory experiments was performed for hexadecanoic acid monolayer systems. In order to simulate specific points on the

  3. Optical properties of two-dimensional GaS and GaSe monolayers

    NASA Astrophysics Data System (ADS)

    Jappor, Hamad Rahman; Habeeb, Majeed Ali

    2018-07-01

    Optical properties of GaS and GaSe monolayers are investigated using first-principles calculations. The optical properties are studied up to 35 eV. Precisely, our results demonstrated that the optical properties appearance of GaS monolayer is comparative with GaSe monolayer with few informations contrasts. Moreover, the absorption begins in the visible region, although the peaks in the ultraviolet (UV) region. The refractive index values are 1.644 (GaS monolayer) and 2.01 (GaSe monolayer) at zero photon energy limit and increase to 2.092 and 2.698 respectively and both located in the visible region. Furthermore, we notice that the optical properties of both monolayers are obtained in the ultraviolet range and the results are significant. Accordingly, it can be used as a highly promising material in the solar cell, ultraviolet optical nanodevices, nanoelectronics, optoelectronic, and photocatalytic applications.

  4. Alkylation Induced DNA Repair and Mutagenesis in Escherichia coli.

    DTIC Science & Technology

    1987-11-23

    III (Gates and inn, 1977), Micrococcus luteus UV endo- nuclease (Grossman et al, 1978) and bacteriophage T UV endonuclease (Warner et al, 1980) have DNA...34, Garland Publishing, Inc. New York & London USA. Ather, A., Z. Ahmed and S. Riazxxddin, 1984. Adaptive response of Micrococcus luteus to alkylating...Laval, J., 3. Pierre and F. Laval. 1981. Release of 7-nmthylguanine residues frain alkylated ENA by extracts of Micrococcus luteus and Escherichia

  5. 40 CFR 721.10621 - Distillation bottoms, alkylated benzene by-product (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene by-product (generic). 721.10621 Section 721.10621 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10621 Distillation bottoms, alkylated benzene by... substance identified generically as distillation bottoms, alkylated benzene by-product (PMN P-12-196) is...

  6. 40 CFR 721.10621 - Distillation bottoms, alkylated benzene by-product (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene by-product (generic). 721.10621 Section 721.10621 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10621 Distillation bottoms, alkylated benzene by... substance identified generically as distillation bottoms, alkylated benzene by-product (PMN P-12-196) is...

  7. 40 CFR 721.10702 - Polyfluorinated alkyl thio polyacrylic acid-acrylamide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... acid-acrylamide (generic). 721.10702 Section 721.10702 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10702 Polyfluorinated alkyl thio polyacrylic acid... substance identified generically as polyfluorinated alkyl thio polyacrylic acid-acrylamide (PMN P-11-534) is...

  8. Experimental study of thermal rectification in suspended monolayer graphene

    PubMed Central

    Wang, Haidong; Hu, Shiqian; Takahashi, Koji; Zhang, Xing; Takamatsu, Hiroshi; Chen, Jie

    2017-01-01

    Thermal rectification is a fundamental phenomenon for active heat flow control. Significant thermal rectification is expected to exist in the asymmetric nanostructures, such as nanowires and thin films. As a one-atom-thick membrane, graphene has attracted much attention for realizing thermal rectification as shown by many molecular dynamics simulations. Here, we experimentally demonstrate thermal rectification in various asymmetric monolayer graphene nanostructures. A large thermal rectification factor of 26% is achieved in a defect-engineered monolayer graphene with nanopores on one side. A thermal rectification factor of 10% is achieved in a pristine monolayer graphene with nanoparticles deposited on one side or with a tapered width. The results indicate that the monolayer graphene has great potential to be used for designing high-performance thermal rectifiers for heat flow control and energy harvesting. PMID:28607493

  9. Experimental study of thermal rectification in suspended monolayer graphene.

    PubMed

    Wang, Haidong; Hu, Shiqian; Takahashi, Koji; Zhang, Xing; Takamatsu, Hiroshi; Chen, Jie

    2017-06-13

    Thermal rectification is a fundamental phenomenon for active heat flow control. Significant thermal rectification is expected to exist in the asymmetric nanostructures, such as nanowires and thin films. As a one-atom-thick membrane, graphene has attracted much attention for realizing thermal rectification as shown by many molecular dynamics simulations. Here, we experimentally demonstrate thermal rectification in various asymmetric monolayer graphene nanostructures. A large thermal rectification factor of 26% is achieved in a defect-engineered monolayer graphene with nanopores on one side. A thermal rectification factor of 10% is achieved in a pristine monolayer graphene with nanoparticles deposited on one side or with a tapered width. The results indicate that the monolayer graphene has great potential to be used for designing high-performance thermal rectifiers for heat flow control and energy harvesting.

  10. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    PubMed

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  11. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    PubMed Central

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  12. Charge injection and transport in a single organic monolayer island

    NASA Astrophysics Data System (ADS)

    Vuillaume, Dominique

    2005-03-01

    We report how electrons and holes, that are locally injected in a single organic monolayer island (where organic monolayers are made from sublimated oligomers (pentacene and other oligoacenes), or made from chemisorption in solution (self-assembled monolayers) of pi-conjugated moieties), stay localized or are able to delocalize over the island as a function of the molecular conformation (order vs. disorder) of this island. Charge carriers were locally injected by the apex of an atomic force microscope tip, and the resulting two-dimensional distribution and concentration of injected charges were measured by electrical force microscopy (EFM) experiments. We show that in crystalline monolayer islands, both electrons and holes can be equally injected, at a similar charge concentration for symmetric injection bias conditions, and that both charge carriers are delocalized over the whole island. On the contrary, charges injected into a more disordered monolayer stay localized at their injection point. These different results are discussed in relation with the electrical performances of molecular devices made from these monolayers (OFET, SAMFET). These results provide insight into the electronic properties, at the nanometer scale, of these molecular devices.

  13. Poly(ethyleneoxide) functionalization through alkylation

    DOEpatents

    Sivanandan, Kulandaivelu; Eitouni, Hany Basam; Li, Yan; Pratt, Russell Clayton

    2015-04-21

    A new and efficient method of functionalizing high molecular weight polymers through alkylation using a metal amide base is described. This novel procedure can also be used to synthesize polymer-based macro-initiators containing radical initiating groups at the chain-ends for synthesis of block copolymers.

  14. Effect of Doping on Hydrogen Evolution Reaction of Vanadium Disulfide Monolayer.

    PubMed

    Qu, Yuanju; Pan, Hui; Kwok, Chi Tat; Wang, Zisheng

    2015-12-01

    As cheap and abundant materials, transitional metal dichalcogenide monolayers have attracted increasing interests for their application as catalysts in hydrogen production. In this work, the hydrogen evolution reduction of doped vanadium disulfide monolayers is investigated based on first-principles calculations. We find that the doping elements and concentration affect strongly the catalytic ability of the monolayer. We show that Ti-doping can efficiently reduce the Gibbs free energy of hydrogen adsorption in a wide range of hydrogen coverage. The catalytic ability of the monolayer at high hydrogen coverage can be improved by low Ti-density doping, while that at low hydrogen coverage is enhanced by moderate Ti-density doping. We further show that it is much easier to substitute the Ti atom to the V atom in the vanadium disulfide (VS2) monolayer than other transitional metal atoms considered here due to its lowest and negative formation energy. It is expected that the Ti-doped VS2 monolayer may be applicable in water electrolysis with improved efficiency.

  15. Versatile assembly of p-carboxylatocalix[4]arene-O-alkyl ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Stuart; Teat, Simon J.; Dalgarno, Scott J.

    Crystallisation of lower-rim tetra-O-alkylated p-carboxylatocalix[4]arenes from pyridine results in the formation of both bi-layer and pillar type supramolecular motifs. Full alkylation at the calixarene lower rim has significant influence over the supramolecular self-assembly motif, including preclusion of pyridine guest molecules from the calixarene cavity in the solid state.

  16. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with alkyl...

  17. Oxidative 1,2-carboamination of alkenes with alkyl nitriles and amines toward γ-amino alkyl nitriles

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Yun; Yang, Xu-Heng; Song, Ren-Jie; Luo, Shenglian; Li, Jin-Heng

    2017-04-01

    Difunctionalization of alkenes has become a powerful tool for quickly increasing molecular complexity in synthesis. Despite significant progress in the area of alkene difunctionalization involving the incorporation of a nitrogen atom across the C-C double bonds, approaches for the direct 1,2-carboamination of alkenes to produce linear N-containing molecules are scarce and remain a formidable challenge. Here we describe a radical-mediated oxidative intermolecular 1,2-alkylamination of alkenes with alkyl nitriles and amines involving C(sp3)-H oxidative functionalization catalysed by a combination of Ag2CO3 with iron Lewis acids. This three-component alkene 1,2-alkylamination method is initiated by the C(sp3)-H oxidative radical functionalization, which enables one-step formation of two new chemical bonds, a C-C bond and a C-N bond, to selectively produce γ-amino alkyl nitriles.

  18. Safety Assessment of Alkyl Ethylhexanoates as Used in Cosmetics.

    PubMed

    Fiume, Monice; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 16 alkyl ethylhexanoates for use in cosmetics, concluding that these ingredients are safe in cosmetic formulations in the present practices of use and concentrations when formulated to be nonirritating. The alkyl ethylhexanoates primarily function as skin-conditioning agents in cosmetics. The highest concentration of use reported for any of the alkyl ethylhexanoates is 77.3% cetyl ethylhexanoate in rinse-off formulations used near the eye, and the highest leave-on use reported is 52% cetyl ethylhexanoate in lipstick formulations. The Panel reviewed available animal and clinical data related to these ingredients, and the similarities in structure, properties, functions, and uses of ingredients from previous CIR assessments on constituent alcohols that allowed for extrapolation of the available toxicological data to assess the safety of the entire group. © The Author(s) 2015.

  19. Chain Stretching and Order-Disorder Transitions in Block Copolymer Monolayers and Multilayers

    NASA Astrophysics Data System (ADS)

    Kramer, Edward J.; Mishra, Vindhya; Stein, Gila E.; Sohn, Karen E.; Hur, Sumi; Fredrickson, Glenn H.; Cochran, Eric W.

    2009-03-01

    Both monolayers of block copolymer cylinders and spheres undergo order to disorder transitions (ODT) at temperatures well below those of the bulk. Monolayers of PS-b-P2VP cylinders undergo a ``nematic'' to ``isotropic'' transition at temperatures about 20 K below the bulk ODT while monolayers of PS-b-P2VP with P2VP spheres undergo a 2D crystal to hexatic transition at least 10 K below the bulk ODT. Bilayers of each structure disorder at temperatures well above that of the monolayers. While one is tempted to attribute all of the difference to the fact that ordered monolayers are quasi 2 dimensional while bilayers are not, an alternative explanation exists. In the cylinder monolayer the corona PS chains must stretch to fill a nearly square cross-section domain rather than a hexagonal one in the bulk, while the corona PS chains in a sphere monolayer must stretch to fill a hexagonal prism rather than an octahedron in the bulk. The more non-uniform stretching of the chains in the monolayer should increase its free energy and decrease its order-disorder temperature.

  20. Experimental and QSAR study on the surface activities of alkyl imidazoline surfactants

    NASA Astrophysics Data System (ADS)

    Kong, Xiangjun; Qian, Chengduo; Fan, Weiyu; Liang, Zupei

    2018-03-01

    15 alkyl imidazoline surfactants with different structures were synthesized and their critical micelle concentration (CMC) and surface tension under the CMC (σcmc) in aqueous solution were measured at 298 K. 54 kinds of molecular structure descriptors were selected as independent variables and the quantitative structure-activity relationship (QSAR) between surface activities of alkyl imidazoline and molecular structure were built through the genetic function approximation (GFA) method. Experimental results showed that the maximum surface excess of alkyl imidazoline molecules at the gas-liquid interface increased and the area occupied by each surfactant molecule and the free energies of micellization ΔGm decreased with increasing carbon number (NC) of the hydrophobic chain or decreasing hydrophilicity of counterions, which resulted in a CMC and σcmc decrease, while the log CMC and NC had a linear relationship and a negative correlation. The GFA-QSAR model, which was generated by a training set composed of 13 kinds of alkyl imidazoline though GFA method regression analysis, was highly correlated with predicted values and experimental values of the CMC. The correlation coefficient R was 0.9991, which means high prediction accuracy. The prediction error of 2 kinds of alkyl imidazoline CMCs in the Validation Set that quantitatively analyzed the influence of the alkyl imidazoline molecular structure on the CMC was less than 4%.

  1. The interaction of insulin, glucose, and insulin-glucose mixtures with a phospholipid monolayer.

    PubMed

    Shigenobu, Hayato; McNamee, Cathy E

    2012-12-15

    We determined how glucose or insulin interacts with a phospholipid monolayer at the air/water interface and explained these mechanisms from a physico-chemical point of view. The 1,2-dipalmitoyl-2-sn-glycero-3-phosphatidylcholine (DPPC) monolayer at an air/water interface acted as a model membrane, which allowed the effect of the molecular packing density in the monolayer on the interactions to be determined. The interaction of glucose, insulin, and a mixture of glucose and insulin to the DPPC monolayer were investigated via surface pressure-area per molecule Langmuir isotherms and fluorescence microscopy. Glucose adsorbed to the underside of the DPPC monolayer, while insulin was able to penetrate through the monolayer when the phospholipid molecules were not densely packed. The presence of a mixture of insulin and glucose affected the molecular packing in the DPPC monolayer differently than the pure insulin or glucose solutions, and the glucose-insulin mixture was seen to be able to penetrate through the monolayer. These results indicated that glucose and insulin interact with one another, giving a material that may then transported through a pore in the monolayer or through the spaces between the molecules of the monolayer. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Improving oral bioavailability of acyclovir using nanoparticulates of thiolated xyloglucan.

    PubMed

    Madgulkar, Ashwini; Bhalekar, Mangesh R; Dikpati, Amrita A

    2016-08-01

    Acyclovir a BCS class III drug exhibits poor bioavailability due to limited permeability. The intention of this research work was to formulate and characterize thiolated xyloglucan polysaccharide nanoparticles (TH-NPs) of acyclovir with the purpose of increasing its oral bioavailability. Acyclovir-loaded TH-NPs were prepared using a cross-linking agent. Interactions of formulation excipients were reconnoitered using Fourier transform infrared spectroscopy (FT-IR). The formulated nanoparticles were lyophilised by the addition of a cryoprotectant and characterized for its particle size, morphology and stability and optimized using Box Behnken Design.The optimized TH-NP formulation exhibited particle size of 474.4±2.01 and an entrapment efficiency of 81.57%. A marked enhancement in the mucoadhesion was also observed. In-vivo study in a rat model proved that relative bioavailability of acyclovir TH-NPs is ∼2.575 fold greater than that of the marketed acyclovir drug suspension. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Exciton Binding Energy of Monolayer WS2

    PubMed Central

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-01-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 ± 0.01 eV around K valley in the Brillouin zone. PMID:25783023

  4. Refractive index and thickness determination in Langmuir monolayers of myelin lipids.

    PubMed

    Pusterla, Julio M; Malfatti-Gasperini, Antonio A; Puentes-Martinez, Ximena E; Cavalcanti, Leide P; Oliveira, Rafael G

    2017-05-01

    Langmuir monolayers at the air/water interface are widely used as biomembrane models and for amphiphilic molecules studies in general. Under controlled intermolecular organization (lateral molecular area), surface pressure, surface potential, reflectivity (R) and other magnitudes can be precisely determined on these planar monomolecular films. However, some physical parameters such as the refractive index of the monolayer (n) still remain elusive. The refractive index is very relevant because (in combination with R) it allows for the determination of the thickness of the film. The uncertainties of n determine important errors that propagate non-linearly into the calculation of monolayers thickness. Here we present an analytical method for the determination of n in monolayers based on refractive index matching. By using a Brewster angle microscopy (BAM) setup and monolayers spread over subphases with variable refractive index (n 2 ), a minimum in R is search as a function of n 2 . In these conditions, n equals n 2 . The results shown correspond to monolayers of myelin lipids. The n values remain constant at 1.46 upon compression and equals the obtained value for myelin lipid bilayers in suspension. The values for n and R allow for the determination of thickness. We establish comparisons between these thicknesses for the monolayer and those obtained from two X-ray scattering techniques: 1) GIXOS for monolayers at the air/water interface and 2) SAXS for bilayers in bulk suspension. This allows us to conclude that the thickness that we measure by BAM includes the apolar and polar headgroup regions of the monolayer. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Extensive reprogramming of the genetic code for genetically encoded synthesis of highly N-alkylated polycyclic peptidomimetics.

    PubMed

    Kawakami, Takashi; Ishizawa, Takahiro; Murakami, Hiroshi

    2013-08-21

    Cyclic structures can increase the proteolytic stability and conformational rigidity of peptides, and N-alkylation of the peptide backbone can make peptides more cell-permeable and resistant to proteolysis. Therefore, cyclic N-alkyl amino acids are expected to be useful building blocks to increase simultaneously these pharmacological properties of peptides. In this study, we screened various cyclic N-alkyl amino acids for their ribosomal incorporation into peptides and identified cyclic N-alkyl amino acids that can be efficiently and successively incorporated. We also demonstrated genetic code reprogramming for reassigning 16 NNU codons to 16 different cyclic N-alkyl amino acids with high fidelity to synthesize highly N-alkylated polycyclic peptidomimetics and an mRNA-displayed library of completely N-alkylated polycyclic peptidomimetics by using our recently developed TRAP (transcription/translation coupled with association of puromycin linker) display. In vitro selection from a highly diverse library of such completely N-alkylated polycyclic peptidomimetics could become a powerful means to discover small-molecule ligands such as drug candidates that can be targeted to biomolecules inside living cells.

  6. Stochastic resonance algorithm applied to quantitative analysis for weak chromatographic signals of alkyl halides and alkyl benzenes in water samples.

    PubMed

    Xiang, Suyun; Wang, Wei; Xia, Jia; Xiang, Bingren; Ouyang, Pingkai

    2009-09-01

    The stochastic resonance algorithm is applied to the trace analysis of alkyl halides and alkyl benzenes in water samples. Compared to encountering a single signal when applying the algorithm, the optimization of system parameters for a multicomponent is more complex. In this article, the resolution of adjacent chromatographic peaks is first involved in the optimization of parameters. With the optimized parameters, the algorithm gave an ideal output with good resolution as well as enhanced signal-to-noise ratio. Applying the enhanced signals, the method extended the limit of detection and exhibited good linearity, which ensures accurate determination of the multicomponent.

  7. Multifunctional Self-Assembled Monolayers for Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Cernetic, Nathan

    Organic field effect transistors (OFETs) have the potential to reach commercialization for a wide variety of applications such as active matrix display circuitry, chemical and biological sensing, radio-frequency identification devices and flexible electronics. In order to be commercially competitive with already at-market amorphous silicon devices, OFETs need to approach similar performance levels. Significant progress has been made in developing high performance organic semiconductors and dielectric materials. Additionally, a common route to improve the performance metric of OFETs is via interface modification at the critical dielectric/semiconductor and electrode/semiconductor interface which often play a significant role in charge transport properties. These metal oxide interfaces are typically modified with rationally designed multifunctional self-assembled monolayers. As means toward improving the performance metrics of OFETs, rationally designed multifunctional self-assembled monolayers are used to explore the relationship between surface energy, SAM order, and SAM dipole on OFET performance. The studies presented within are (1) development of a multifunctional SAM capable of simultaneously modifying dielectric and metal surface while maintaining compatibility with solution processed techniques (2) exploration of the relationship between SAM dipole and anchor group on graphene transistors, and (3) development of self-assembled monolayer field-effect transistor in which the traditional thick organic semiconductor is replaced by a rationally designed self-assembled monolayer semiconductor. The findings presented within represent advancement in the understanding of the influence of self-assembled monolayers on OFETs as well as progress towards rationally designed monolayer transistors.

  8. Persistence of DNA adducts, hypermutation and acquisition of cellular resistance to alkylating agents in glioblastoma.

    PubMed

    Head, R J; Fay, M F; Cosgrove, L; Y C Fung, K; Rundle-Thiele, D; Martin, J H

    2017-12-02

    Glioblastoma is a lethal form of brain tumour usually treated by surgical resection followed by radiotherapy and an alkylating chemotherapeutic agent. Key to the success of this multimodal approach is maintaining apoptotic sensitivity of tumour cells to the alkylating agent. This initial treatment likely establishes conditions contributing to development of drug resistance as alkylating agents form the O 6 -methylguanine adduct. This activates the mismatch repair (MMR) process inducing apoptosis and mutagenesis. This review describes key juxtaposed drivers in the balance between alkylation induced mutagenesis and apoptosis. Mutations in MMR genes are the probable drivers for alkylation based drug resistance. Critical to this interaction are the dose-response and temporal interactions between adduct formation and MMR mutations. The precision in dose interval, dose-responses and temporal relationships dictate a role for alkylating agents in either promoting experimental tumour formation or inducing tumour cell death with chemotherapy. Importantly, this resultant loss of chemotherapeutic selective pressure provides opportunity to explore novel therapeutics and appropriate combinations to minimise alkylation based drug resistance and tumour relapse.

  9. Unanticipated C=C bonds in covalent monolayers on silicon revealed by NEXAFS.

    PubMed

    Lee, Michael V; Lee, Jonathan R I; Brehmer, Daniel E; Linford, Matthew R; Willey, Trevor M

    2010-02-02

    Interfaces are crucial to material properties. In the case of covalent organic monolayers on silicon, molecular structure at the interface controls the self-assembly of the monolayers, which in turn influences the optical properties and electrical transport. These properties intrinsically affect their application in biology, tribology, optics, and electronics. We use near-edge X-ray absorption fine structure spectroscopy to show that the most basic covalent monolayers formed from 1-alkenes on silicon retain a double bond in one-fifth to two-fifths of the resultant molecules. Unsaturation in the predominantly saturated monolayers will perturb the regular order and affect the dependent properties. The presence of unsaturation in monolayers produced by two different methods also prompts the re-evaluation of other radical-based mechanisms for forming covalent monolayers on silicon.

  10. The Intrinsic Ferromagnetism in a MnO2 Monolayer.

    PubMed

    Kan, M; Zhou, J; Sun, Q; Kawazoe, Y; Jena, P

    2013-10-17

    The Mn atom, because of its special electronic configuration of 3d(5)4s(2), has been widely used as a dopant in various two-dimensional (2D) monolayers such as graphene, BN, silicene and transition metal dichalcogenides (TMDs). The distributions of doped Mn atoms in these systems are highly sensitive to the synthesis process and conditions, thus suffering from problems of low solubility and surface clustering. Here we show for the first time that the MnO2 monolayer, synthetized 10 years ago, where Mn ions are individually held at specific sites, exhibits intrinsic ferromagnetism with a Curie temperature of 140 K, comparable to the highest TC value achieved experimentally for Mn-doped GaAs. The well-defined atomic configuration and the intrinsic ferromagnetism of the MnO2 monolayer suggest that it is superior to other magnetic monolayer materials.

  11. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    NASA Astrophysics Data System (ADS)

    Roest, Steven; van der Mei, Henny C.; Loontjens, Ton J. A.; Busscher, Henk J.

    2015-11-01

    Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 1014 cm-2. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 1016 cm-2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its carrier. The at.% N401.3 eV should be above 0.45 at.% for Gram-positive bacterial contact-killing.

  12. Electronic structure in 1T-ZrS2 monolayer by strain

    NASA Astrophysics Data System (ADS)

    Xin, Qianqian; Zhao, Xu; Ma, Xu; Wu, Ninghua; Liu, Xiaomeng; Wei, Shuyi

    2017-09-01

    We report electronic structure of 1T-ZrS2 monolayer with biaxial strain from -10% to 15%, basing the first principles calculations. Our calculation results indicate that the band structure of ZrS2 monolayer was changed clearly. The location of conduction band minimum (CBM) and valence band maximum (VBM) changed with the variation of isotropic strain. At compressive strain, the location of CBM and VBM retains at M and Γ point, respectively. The band gap of ZrS2 monolayer decreases from 1.111 eV to 0 eV when compressive strain increases from 0% to -8%, which means that the ZrS2 monolayer turns to metal at -8% compressive strain. Under the tensile strain, the ZrS2 monolayer also retains be an indirect band gap semiconductor. The location of CBM moves from M to Γ point and the location of VBM moves along Γ-A-K-Γ direction. The band gap of ZrS2 monolayer firstly increases and then decreases and the biggest band gap is 1.577 eV at tensile strain 6%. We can see the compression strain is more effective than tensile strain in modulating band gap of 1T-ZrS2 monolayer.

  13. Thiolated and S-protected hydrophobically modified cross-linked poly(acrylic acid)--a new generation of multifunctional polymers.

    PubMed

    Bonengel, Sonja; Haupstein, Sabine; Perera, Glen; Bernkop-Schnürch, Andreas

    2014-10-01

    The aim of this study was to create a novel multifunctional polymer by covalent attachment of l-cysteine to the polymeric backbone of hydrophobically modified cross-linked poly(acrylic acid) (AC1030). Secondly, the free thiol groups of the resulting thiomer were activated using 2-mercaptonicotinic acid (2-MNA) to provide full reactivity and stability. Within this study, 1167.36 μmol cysteine and 865.72 μmol 2-MNA could be coupled per gram polymer. Studies evaluating mucoadhesive properties revealed a 4-fold extended adherence time to native small intestinal mucosa for the thiomer (AC1030-cysteine) as well as an 18-fold prolonged adhesion for the preactivated thiomer (AC1030-Cyst-2-MNA) compared to the unmodified polymer. Modification of the polymer led to a higher tablet stability concerning the thiomer and the S-protected thiomer, but a decelerated water uptake could be observed only for the preactivated thiomer. Neither the novel conjugates nor the unmodified polymer showed severe toxicity on Caco-2 cells. Evaluation of emulsification capacity proofed the ability to incorporate lipophilic compounds like medium chain triglycerides and the preservation of the emulsifying properties after the modifications. According to these results thiolated AC1030 as well as the S-protected thiolated polymer might provide a promising tool for solid and semisolid formulations in pharmaceutical development. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A micro GC detector array based on chemiresistors employing various surface functionalized monolayer-protected gold nanoparticles.

    PubMed

    Jian, Rih-Sheng; Huang, Rui-Xuan; Lu, Chia-Jung

    2012-01-15

    Aspects of the design, fabrication, and characterization of a chemiresistor type of microdetector for use in conjunction with gas chromatograph are described. The detector was manufactured on silicon chips using microelectromechanical systems (MEMS) technology. Detection was based on measuring changes in resistance across a film comprised of monolayer-protected gold nanoclusters (MPCs). When chromatographic separated molecules entered the detector cell, the MPC film absorbed vapor and undergoes swelling, then the resistance changes accordingly. Thiolates were used as ligand shells to encapsulate the nano-gold core and to manipulate the selectivity of the detector array. The dimensions of the μ-detector array were 14(L)×3.9(W)×1.2(H)mm. Mixtures of eight volatile organic compounds with different functional groups and volatility were tested to characterize the selectivity of the μ-detector array. The detector responses were rapid, reversible, and linear for all of the tested compounds. The detection limits ranged from 2 to 111ng, and were related to both the compound volatility and the selectivity of the surface ligands on the gold nanoparticles. Design and operation parameters such as flow rate, detector temperature, and width of the micro-fluidic channel were investigated. Reduction of the detector temperature resulted in improved sensitivity due to increased absorption. When a wider flow channel was used, the signal-to-noise ratio was improved due to the larger sensing area. The extremely low power consumption and small size makes this μ-detector array potentially useful for the development of integrated μ-GC. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Optical properties of monolayer MoS2 nanoribbons

    NASA Astrophysics Data System (ADS)

    Wei, Guohua; Lenferink, Erik J.; Stern, Nathaniel P.

    Confinement of carriers in semiconductors is a powerful mechanism for manipulating optical and electronic properties of materials. Although atomically-thin monolayer semiconductors such as transition metal dichalcogenides naturally confine carriers in the out-of-plane direction, achieving appreciable confinement effects in the in-plane dimensions is less well-studied because their optical processes are dominated by tightly bound excitons. In earlier work, we have shown that lateral confinement effects can be controlled in monolayer MoS2 using high-resolution top-down nanopatterning. Here, we use similar techniques to create monolayer MoS2 nanoribbons that exhibit size-tunable photoluminescence and anisotropic Raman scattering. Our process also allows characterization of transport properties of the nanoribbons. This approach demonstrates how dimensionality influences monolayer semiconductors, which could impact charge and valley dynamics relevant to nano-scale opto-electronic devices. This work is supported by ISEN and ONR (N00014-16-1-3055). Use of the Center for Nanoscale Materials was supported by DOE Contract No. DE-AC02-06CH11357. N.P.S. is an Alfred P. Sloan Research Fellow.

  16. Switchable polarization in an unzipped graphene oxide monolayer.

    PubMed

    Noor-A-Alam, Mohammad; Shin, Young-Han

    2016-08-14

    Ferroelectricity in low-dimensional oxide materials is generally suppressed at the scale of a few nanometers, and has attracted considerable attention from both fundamental and technological aspects. Graphene is one of the thinnest materials (one atom thick). Therefore, engineering switchable polarization in non-polar pristine graphene could potentially lead to two-dimensional (2D) ferroelectric materials. In the present study, based on density functional theory, we show that an unzipped graphene oxide (UGO) monolayer can exhibit switchable polarization due to its foldable bonds between the oxygen atom and two carbon atoms underneath the oxygen. We find that a free standing UGO monolayer exhibits antiferroelectric switchable polarization. A UGO monolayer can be obtained as an intermediate product during the chemical exfoliation process of graphene. Interestingly, despite its dimensionality, our estimated polarization in a UGO monolayer is comparable to that in bulk ferroelectric materials (e.g., ferroelectric polymers). Our calculations could help realize antiferroelectric switchable polarization in 2D materials, which could find various potential applications in nanoscale devices such as sensors, actuators, and capacitors with high energy-storage density.

  17. Safety Assessment of Alkyl PEG Sulfosuccinates as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of alkyl polyethylene glycol (PEG) sulfosuccinates, which function in cosmetics mostly as surfactants/cleansing agents. Although these ingredients may cause ocular and skin irritation, dermal penetration is unlikely because of the substantial polarity and molecular size of these ingredients. The Panel considered the negative oral carcinogenicity and reproductive and developmental toxicity data on chemically related laureths (PEG lauryl ethers) and negative repeated dose toxicity and skin sensitization data on disodium laureth sulfosuccinate supported the safety of these alkyl PEG sulfosuccinates in cosmetic products, but. The CIR Expert Panel concluded that the alkyl PEG sulfosuccinates are safe in the present practices of use and concentration when formulated to be nonirritating. © The Author(s) 2015.

  18. ATM regulates 3-Methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents

    PubMed Central

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A.; Clarke, Ian D.; Barszczyk, Mark S.; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W.; Taylor, Michael D; Rutka, James T.; Jones, Chris; Dirks, Peter B.; Zadeh, Gelareh; Hawkins, Cynthia

    2014-01-01

    Alkylating agents are a frontline therapy for the treatment of several aggressive cancers including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed; increasing therapeutic response while minimizing toxicity. Using a siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM) were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. PMID:25100205

  19. Development and evaluation of mucoadhesive nanoparticles based on thiolated Eudragit for oral delivery of protein drugs

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Yang, Zhijie; Hu, Xi; Zhang, Ling; Li, Feng; Li, Meimei; Tang, Xing; Xiao, Wei

    2015-02-01

    The objective of this study was to develop pH-sensitive Eudragit L100-cysteine/reduced glutathione (Eul-cys/GSH) nanoparticles (NPs), which provided the mucoadhesion and protection for protein drugs against enzymatic degradation. Insulin was chosen as a model biomolecule for testing this system. The Eul-cys conjugate, which was obtained by grafting cysteine onto the carboxy group of Eudragit L100, was analyzed by HNMR and SEM, and the swelling degree (SD), cation binding, and enzymatic inhibition were also determined. The results obtained showed that the Eul-cys conjugate represent a pH-sensitive delivery system which effectively protected the insulin from being degraded by the proteases, and this is related to the mechanism of Ca2+ binding. Insulin-loaded Eul-cys/GSH NPs were prepared by a diffusion method involving an electrostatic interaction between the network structure of the polymer and the embedded proteins, including insulin and GSH. TEM images indicated that Eul-cys/GSH existed as smooth and spherical NPs in aqueous solution with particle sizes of 260 ± 20 nm. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) findings showed the presence of amorphous insulin in thiolated NPs and higher free thiol oxidation than the result obtained by Ellman's reagent method. In addition, thiolated NPs showed excellent binding efficiency to the mucin in rat intestine, indicating that Eul-cys/GSH NPs have great potential to be applied as safe carriers for the oral administration of protein drugs.

  20. Thiolated chitosan nanoparticles for enhancing oral absorption of docetaxel: preparation, in vitro and ex vivo evaluation.

    PubMed

    Saremi, Shahrooz; Atyabi, Fatemeh; Akhlaghi, Seyedeh Parinaz; Ostad, Seyed Nasser; Dinarvand, Rassoul

    2011-01-12

    The aim of this study was to prepare and evaluate mucoadhesive core-shell nanoparticles based on copolymerization of thiolated chitosan coated on poly methyl methacrylate cores as a carrier for oral delivery of docetaxel. Docetaxel-loaded nanoparticles with various concentrations were prepared via a radical emulsion polymerization method using cerium ammonium nitrate as an initiator. The physicochemical properties of the obtained nanoparticles were characterized by: dynamic light-scattering analysis for their mean size, size distribution, and zeta potential; scanning electron microscopy and transmission electron microscopy for surface morphology; and differential scanning calorimetry analysis for confirmation of molecular dispersity of docetaxel in the nanoparticles. Nanoparticles were spherical with mean diameter below 200 nm, polydispersity of below 0.15, and positive zeta potential values. The entrapment efficiency of the nanoparticles was approximately 90%. In vitro release studies showed a sustained release characteristic for 10 days after a burst release at the beginning. Ex vivo studies showed a significant increase in the transportation of docetaxel from intestinal membrane of rat when formulated as nanoparticles. Cellular uptake of nanoparticles was investigated using fluoresceinamine-loaded nanoparticles. Docetaxel nanoparticles showed a high cytotoxicity effect in the Caco-2 and MCF-7 cell lines after 72 hours. It can be concluded that by combining the advantages of both thiolated polymers and colloidal particles, these nanoparticles can be proposed as a drug carrier system for mucosal delivery of hydrophobic drugs.