Sample records for alkylating agent cyclophosphamide

  1. Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells.

    PubMed

    Kemp, Kevin; Morse, Ruth; Sanders, Kelly; Hows, Jill; Donaldson, Craig

    2011-07-01

    The adverse effects of melphalan and cyclophosphamide on hematopoietic stem cells are well-known; however, the effects on the mesenchymal stem cells (MSCs) residing in the bone marrow are less well characterised. Examining the effects of chemotherapeutic agents on patient MSCs in vivo is difficult due to variability in patients and differences in the drug combinations used, both of which could have implications on MSC function. As drugs are not commonly used as single agents during high-dose chemotherapy (HDC) regimens, there is a lack of data comparing the short- or long-term effects these drugs have on patients post treatment. To help address these problems, the effects of the alkylating chemotherapeutic agents cyclophosphamide and melphalan on human bone marrow MSCs were evaluated in vitro. Within this study, the exposure of MSCs to the chemotherapeutic agents cyclophosphamide or melphalan had strong negative effects on MSC expansion and CD44 expression. In addition, changes were seen in the ability of MSCs to support hematopoietic cell migration and repopulation. These observations therefore highlight potential disadvantages in the use of autologous MSCs in chemotherapeutically pre-treated patients for future therapeutic strategies. Furthermore, this study suggests that if the damage caused by chemotherapeutic agents to marrow MSCs is substantial, it would be logical to use cultured allogeneic MSCs therapeutically to assist or repair the marrow microenvironment after HDC.

  2. Alkylating agents for Waldenstrom's macroglobulinaemia.

    PubMed

    Yang, Kun; Tan, Jianlong; Wu, Taixiang

    2009-01-21

    Waldenstrom's macroglobulinaemia (WM) is an uncommon B-cell lymphoproliferative disorder characterized by bone marrow infiltration and production of monoclonal immunoglobulin. Uncertainty remains if alkylating agents, such as chlorambucil, melphalan or cyclophosphamide, are an effective form of management. To assess the effects and safety of the alkylating agents on Waldenstrom's macroglobulinaemia (WM). We searched the Cochrane Central Register of Controlled Trials (Issue 1, 2008), MEDLINE (1966 to 2008), EMBASE (1980 to 2008), the Chinese Biomedical Base (1982 to 2008) and reference lists of articles.We also handsearched relevant conference proceedings from 1990 to 2008. Randomised controlled trials (RCTs) comparing alkylating agents given concomitantly with radiotherapy, splenectomy, plasmapheresis, stem-cell transplantation in patients with a confirmed diagnosis of WM. Two authors independently assessed trial quality and extracted data. We contacted study authors for additional information. We collected adverse effects information from the trials. One trial involving 92 participants with pretreated/relapsed WM compared the effect of fludarabine versus the combination of cyclophosphamide (the alkylating agent), doxorubicin and prednisone (CAP). Compared to CAP, the Hazard ratio (HR) for deaths of treatment with fludarabine was estimated to be 1.04, with a standard error of 0.30 (95% CI 0.58 to 1.48) and it indicated that the mean difference of median survival time was -4.00 months, and 16.00 months for response duration. The relative risks (RR) of response rate was 2.80 (95% CI 1.10 to 7.12). There were no statistically difference in overall survival rate and median survival months, while on the basis of response rate and response duration, fludarabine seemed to be superior to CAP for pretreated/relapsed patients with macroglobulinaemia. Although alkylating agents have been used for decades they have never actually been tested in a proper randomised trial. This

  3. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    PubMed

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Atorvastatin Downregulates In Vitro Methyl Methanesulfonate and Cyclophosphamide Alkylation-Mediated Cellular and DNA Injuries

    PubMed Central

    Christoni, Larissa S. A.; Justo, Graça; Soeiro, Maria N. C.

    2018-01-01

    Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, and this class of drugs has been studied as protective agents against DNA damages. Alkylating agents (AAs) are able to induce alkylation in macromolecules, causing DNA damage, as DNA methylation. Our objective was to evaluate atorvastatin (AVA) antimutagenic, cytoprotective, and antigenotoxic potentials against DNA lesions caused by AA. AVA chemopreventive ability was evaluated using antimutagenicity assays (Salmonella/microsome assay), cytotoxicity, cell cycle, and genotoxicity assays in HepG2 cells. The cells were cotreated with AVA and the AA methyl methanesulfonate (MMS) or cyclophosphamide (CPA). Our datum showed that AVA reduces the alkylation-mediated DNA damage in different in vitro experimental models. Cytoprotection of AVA at low doses (0.1–1.0 μM) was observed after 24 h of cotreatment with MMS or CPA at their LC50, causing an increase in HepG2 survival rates. After all, AVA at 10 μM and 25 μM had decreased effect in micronucleus formation in HepG2 cells and restored cell cycle alterations induced by MMS and CPA. This study supports the hypothesis that statins can be chemopreventive agents, acting as antimutagenic, antigenotoxic, and cytoprotective components, specifically against alkylating agents of DNA. PMID:29849914

  5. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the Childhood Cancer Survivor Study.

    PubMed

    Green, Daniel M; Nolan, Vikki G; Goodman, Pamela J; Whitton, John A; Srivastava, DeoKumar; Leisenring, Wendy M; Neglia, Joseph P; Sklar, Charles A; Kaste, Sue C; Hudson, Melissa M; Diller, Lisa R; Stovall, Marilyn; Donaldson, Sarah S; Robison, Leslie L

    2014-01-01

    Estimation of the risk of adverse long-term outcomes such as second malignant neoplasms and infertility often requires reproducible quantification of exposures. The method for quantification should be easily utilized and valid across different study populations. The widely used Alkylating Agent Dose (AAD) score is derived from the drug dose distribution of the study population and thus cannot be used for comparisons across populations as each will have a unique distribution of drug doses. We compared the performance of the Cyclophosphamide Equivalent Dose (CED), a unit for quantifying alkylating agent exposure independent of study population, to the AAD. Comparisons included associations from three Childhood Cancer Survivor Study (CCSS) outcome analyses, receiver operator characteristic (ROC) curves and goodness of fit based on the Akaike's Information Criterion (AIC). The CED and AAD performed essentially identically in analyses of risk for pregnancy among the partners of male CCSS participants, risk for adverse dental outcomes among all CCSS participants and risk for premature menopause among female CCSS participants, based on similar associations, lack of statistically significant differences between the areas under the ROC curves and similar model fit values for the AIC between models including the two measures of exposure. The CED is easily calculated, facilitating its use for patient counseling. It is independent of the drug dose distribution of a particular patient population, a characteristic that will allow direct comparisons of outcomes among epidemiological cohorts. We recommend the use of the CED in future research assessing cumulative alkylating agent exposure. © 2013 Wiley Periodicals, Inc.

  6. Synthesis and Performance of a Biomimetic Indicator for Alkylating Agents.

    PubMed

    Provencher, Philip A; Love, Jennifer A

    2015-10-02

    4-(4-Nitrobenzyl)pyridine (NBP) is a colorimetric indicator compound for many types of carcinogenic alkylating agents. Because of the similar reactivity of NBP and guanine in DNA, NBP serves as a DNA model. NBP assays are used in the toxicological screening of pharmaceutical compounds, detection of chemical warfare agents, environmental hygiene technology, preliminary toxicology tests, mutagenicity of medicinal compounds, and other chemical analyses. Nevertheless, the use of NBP as a DNA model suffers from the compound's low water solubility, its lack of reactive oxygen sites, and dissimilar steric encumbrance compared to DNA. We report herein the design and synthesis of NBP derivatives that address some of these issues. These derivatives have been tested in solution and found to be superior in the colorimetric assay of the alkylating anticancer drug cyclophosphamide. The derivatives have also been integrated into a polymeric silica material which changes color upon the exposure to dangerous alkylating agents, such as iodomethane vapor, without the need for an exogenous base. This material modernizes the NBP assay from a time-consuming laboratory analysis to a real-time solid state sensor, which requires neither solvent nor additional reagents and can detect both gas- and solution-phase alkylating agents.

  7. [Alkylating agents].

    PubMed

    Pourquier, Philippe

    2011-11-01

    With the approval of mechlorethamine by the FDA in 1949 for the treatment of hematologic malignancies, alkylating agents are the oldest class of anticancer agents. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in specific indications and sometimes represent the unique option for the treatment of refractory diseases. Here, we are reviewing the major classes of alkylating agents and their mechanism of action, with a particular emphasis for the new generations of alkylating agents. As for most of the chemotherapeutic agents used in the clinic, these compounds are derived from natural sources. With a complex but original mechanism of action, they represent new interesting alternatives for the clinicians, especially for tumors that are resistant to conventional DNA damaging agents. We also briefly describe the different strategies that have been or are currently developed to potentiate the use of classical alkylating agents, especially the inhibition of pathways that are involved in the repair of DNA lesions induced by these agents. In this line, the development of PARP inhibitors is a striking example of the recent regain of interest towards the "old" alkylating agents.

  8. Thioimidazolium Ionic Liquids as Tunable Alkylating Agents.

    PubMed

    Guterman, Ryan; Miao, Han; Antonietti, Markus

    2018-01-19

    Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

  9. The Scarlet Letter of Alkylation: A Mini Review of Selective Alkylating Agents

    PubMed Central

    Oronsky, Bryan T; Reid, Tony; Knox, Susan J; Scicinski, Jan J

    2012-01-01

    If there were a stigma scale for chemotherapy, alkylating agents would be ranked at the top of the list. The chemical term alkylation is associated with nonselective toxicity, an association that dates back to the use of nitrogen mustards during World War I as chemical warfare agents. That this stigma persists and extends to compounds that, through selectivity, attempt to “tame” the indiscriminate destructive potential of alkylation is the subject of this review. Selective alkylation, as it is referred to herein, constitutes an extremely nascent and dynamic field in oncology. The pharmacodynamic response to this selective strategy depends on a delicate kinetic balance between specificity and the rate and extent of binding. Three representative compounds are presented: RRx-001, 3-bromopyruvate, and TH-302. The main impetus for the development of these compounds has been the avoidance of the serious complications of traditional alkylating agents; therefore, it is the thesis of this review that they should not experience stigma by association. PMID:22937173

  10. Detection of Alkylating Agents using Electrical and Mechanical Means

    NASA Astrophysics Data System (ADS)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Tal, Shay; Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir; Eichen, Yoav

    2011-08-01

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  11. Molecular design of sequence specific DNA alkylating agents.

    PubMed

    Minoshima, Masafumi; Bando, Toshikazu; Shinohara, Ken-ichi; Sugiyama, Hiroshi

    2009-01-01

    Sequence-specific DNA alkylating agents have great interest for novel approach to cancer chemotherapy. We designed the conjugates between pyrrole (Py)-imidazole (Im) polyamides and DNA alkylating chlorambucil moiety possessing at different positions. The sequence-specific DNA alkylation by conjugates was investigated by using high-resolution denaturing polyacrylamide gel electrophoresis (PAGE). The results showed that polyamide chlorambucil conjugates alkylate DNA at flanking adenines in recognition sequences of Py-Im polyamides, however, the reactivities and alkylation sites were influenced by the positions of conjugation. In addition, we synthesized conjugate between Py-Im polyamide and another alkylating agent, 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). DNA alkylation reactivies by both alkylating polyamides were almost comparable. In contrast, cytotoxicities against cell lines differed greatly. These comparative studies would promote development of appropriate sequence-specific DNA alkylating polyamides against specific cancer cells.

  12. Mechanisms of chemoresistance to alkylating agents in malignant glioma.

    PubMed

    Sarkaria, Jann N; Kitange, Gaspar J; James, C David; Plummer, Ruth; Calvert, Hilary; Weller, Michael; Wick, Wolfgang

    2008-05-15

    Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but this is dependent on a functional mismatch repair pathway. Thus, tumor cell lines deficient in mismatch repair are resistant to alkylating agents. Perhaps the most important mechanism of resistance to alkylating agents is the DNA repair enzyme O6-methylguanine methyltransferase, which can eliminate the cytotoxic O6-methylguanine DNA adduct before it causes harm. Another mechanism of resistance to alkylating agents is the base excision repair (BER) pathway. Consequently, efforts are ongoing to develop effective inhibitors of BER. Poly(ADP-ribose)polymerase plays a pivotal role in BER and is an important therapeutic target. Developing effective strategies to overcome chemoresistance requires the identification of reliable preclinical models that recapitulate human disease and which can be used to facilitate drug development. This article describes the diverse mechanisms of chemoresistance operating in malignant glioma and efforts to develop reliable preclinical models and novel pharmacologic approaches to overcome resistance to alkylating agents.

  13. Aryl sulfonate based anticancer alkylating agents.

    PubMed

    Sheikh, Hamdullah Khadim; Arshad, Tanzila; Kanwal, Ghazala

    2018-05-01

    This research work revolves around synthesis of antineoplastic alkylating sulfonate esters with dual alkylating sites for crosslinking of the DNA strands. These molecules were evaluated as potential antineoplastic cross linking alkylating agents by reaction with the nucleoside of Guanine DNA nucleobase at both ends of the synthesized molecule. Synthesis of the alkylating molecules and the crosslinking with the guanosine nucleoside was monitored by MALDITOF mass spectroscopy. The synthesized molecule's crosslinking or adduct forming rate with the nucleoside was compared with that of 1,4 butane disulfonate (busulfan), in form of time taken for the appearance of [M+H] + . It was found that aryl sulfonate leaving group was causing higher rate of nucleophilic attack by the Lewis basic site of the nucleobase. Furthermore, the rate was also found to be a function of electron withdrawing or donating nature of the substituent on the aryl ring. Compound with strong electron withdrawing substituent on the para position of the ring reacted fastest. Hence, new alkylating agents were synthesized with optimized or desired reactivity.

  14. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives.

    PubMed

    Singh, Rajesh K; Kumar, Sahil; Prasad, D N; Bhardwaj, T R

    2018-05-10

    Cancer is considered as one of the most serious health problems today. The discovery of nitrogen mustard as an alkylating agent in 1942, opened a new era in the cancer chemotherapy. This valuable class of alkylating agent exerts its biological activity by binding to DNA, cross linking two strands, preventing DNA replication and ultimate cell death. At the molecular level, nitrogen lone pairs of nitrogen mustard generate a strained intermediate "aziridinium ion" which is very reactive towards DNA of tumor cell as well as normal cell resulting in various adverse side effects alogwith therapeutic implications. Over the last 75 years, due to its high reactivity and peripheral cytotoxicity, numerous modifications have been made in the area of nitrogen mustard to improve its efficacy as well as enhancing drug delivery specifically to tumor cells. This review mainly discusses the medicinal chemistry aspects in the development of various classes of nitrogen mustards (mechlorethamine, chlorambucil, melphalan, cyclophosphamide and steroidal based nitrogen mustards). The literature collection includes the historical and the latest developments in these areas. This comprehensive review also attempted to showcase the recent progress in the targeted delivery of nitrogen mustards that includes DNA directed nitrogen mustards, antibody directed enzyme prodrug therapy (ADEPT), gene directed enzyme prodrug therapy (GDEPT), nitrogen mustard activated by glutathione transferase, peptide based nitrogen mustards and CNS targeted nitrogen mustards. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Cyclophosphamide administration routine in autoimmune rheumatic diseases: a review.

    PubMed

    Teles, Kaian Amorim; Medeiros-Souza, Patricia; Lima, Francisco Aires Correa; Araújo, Bruno Gedeon de; Lima, Rodrigo Aires Correa

    Cyclophosphamide is an alkylating agent widely used for the treatment of malignant neoplasia and which can be used in the treatment of multiple rheumatic diseases. Medication administration errors may lead to its reduced efficacy or increased drug toxicity. Many errors occur in the administration of injectable drugs. The present study aimed at structuring a routine for cyclophosphamide use, as well as creating a document with pharmacotherapeutic guidelines for the patient. The routine is schematized in three phases: pre-chemotherapy, administration of cyclophosphamide, and post-chemotherapy, taking into account the drugs to be administered before and after cyclophosphamide in order to prevent adverse effects, including nausea and hemorrhagic cystitis. Adverse reactions can alter laboratory tests; thus, this routine included clinical management for changes in white blood cells, platelets, neutrophils, and sodium, including cyclophosphamide dose adjustment in the case of kidney disease. Cyclophosphamide is responsible for other rare - but serious - side effects, for instance, hepatotoxicity, severe hyponatremia and heart failure. Other adverse reactions include hair loss, amenorrhea and menopause. In this routine, we also entered guidelines to post-chemotherapy patients. The compatibility of injectable drugs with the vehicle used has been described, as well as stability and infusion times. The routine aimed at the rational use of cyclophosphamide, with prevention of adverse events and relapse episodes, factors that may burden the health care system. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  16. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    PubMed

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  17. Cyclophosphamide dose intensification may circumvent anthracycline resistance of p53 mutant breast cancers.

    PubMed

    Lehmann-Che, Jacqueline; André, Fabrice; Desmedt, Christine; Mazouni, Chafika; Giacchetti, Sylvie; Turpin, Elisabeth; Espié, Marc; Plassa, Louis-François; Marty, Michel; Bertheau, Philippe; Sotiriou, Christos; Piccart, Martine; Symmans, W Fraser; Pusztai, Lajos; de Thé, Hugues

    2010-01-01

    The predictive value of p53 for the efficacy of front-line anthracycline-based chemotherapy regimens has been a matter of significant controversy. Anthracyclines are usually combined with widely different doses of alkylating agents, which may significantly modulate tumor response to these combinations. We analyzed three series of de novo stage II-III breast cancer patients treated front line with anthracycline-based regimens of various cyclophosphamide dose intensities: 65 patients with estrogen receptor (ER)(-) tumors treated with anthracyclines alone (Institut Jules Bordet, Brussels), 51 unselected breast cancer patients treated with intermediate doses of cyclophosphamide (MD Anderson Cancer Center, Houston, TX), and 128 others treated with a dose-dense anthracycline-cyclophosphamide combination (St. Louis, Paris). After chemotherapy and surgery, pathologic complete response (pCR) was evaluated. p53 status was determined by a yeast functional assay on the pretreatment tumor sample. In a multivariate analysis of the pooled results, a lack of ER expression and high-dose cyclophosphamide administration were associated with a higher likelihood of pCR. A sharp statistical interaction was detected between p53 status and cyclophosphamide dose intensity. Indeed, when restricting our analysis to patients with ER(-) tumors, we confirmed that a mutant p53 status was associated with anthracycline resistance, but found that p53 inactivation was required for response to the dose-intense alkylating regimen. The latter allowed very high levels of pCR in triple-negative tumors. Thus, our data strongly suggest that cyclophosphamide dose intensification in ER(-) p53-mutated breast cancer patients could significantly improve their response.

  18. Stability of Cyclophosphamide in Extemporaneous Oral Suspensions

    PubMed Central

    Kennedy, Rachel; Groepper, Daniel; Tagen, Michael; Christensen, Robbin; Navid, Fariba; Gajjar, Amar; Stewart, Clinton F.

    2010-01-01

    Background Cyclophosphamide, an alkylating agent, is widely used for the treatment of many adult and pediatric malignancies. The stability of cyclophosphamide in aqueous- and methylcellulose-based oral suspending vehicles is currently unknown. Objectives The goals of this study were (1) to develop and validate a stability-indicating HPLC method to measure cyclophosphamide concentrations in simple syrup and Ora-Plus, and (2) to assess the 56-day chemical stability and physical appearance of cyclophosphamide in these suspensions at both room temperature and 4°C. Methods The i.v. formulation of cyclophosphamide was diluted to 20 mg/mL in normal saline, compounded 1:1 with either suspending vehicle, and stored in the dark in 3mL amber polypropylene oral syringes at 4°C and 22°C. Aliquots from each syringe were obtained on days 0, 3, 7, 14, 21, 28, 35, 42, 49, and 56 and assayed using the validated stability-indicating HPLC-UV method. A C18 analytical column was used to separate cyclophosphamide from the internal standard, ifosfamide, with a mobile phase of 21% acetonitrile in 79% sodium phosphate buffer. The suspension was examined for odor change, visually examined under normal fluorescent light for color change, and examined under a light microscope for evidence of microbial growth. Results Samples of cyclophosphamide in both simple syrup and Ora-Plus were stable when kept at 4°C for at least 56 days. At room temperature, cyclophosphamide in simple syrup and Ora-Plus had a shelf life of 8 and 3 days, respectively. No changes in color or odor or evidence of microbial growth were observed. Conclusion Cyclophosphamide can be extemporaneously prepared in simple syrup or Ora-Plus and stored at least 2 months under refrigeration without significant degradation. PMID:20103616

  19. Stability of cyclophosphamide in extemporaneous oral suspensions.

    PubMed

    Kennedy, Rachel; Groepper, Daniel; Tagen, Michael; Christensen, Robbin; Navid, Fariba; Gajjar, Amar; Stewart, Clinton F

    2010-02-01

    Cyclophosphamide, an alkylating agent, is widely used for the treatment of many adult and pediatric malignancies. The stability of cyclophosphamide in aqueous- and methylcellulose-based oral suspending vehicles is currently unknown. To develop and validate a stability-indicating high-performance liquid chromatography (HPLC) method to measure cyclophosphamide concentrations in simple syrup and Ora-Plus, and assess the 56-day chemical stability and physical appearance of cyclophosphamide in these suspensions at both room temperature (22 degrees C) and 4 degrees C. The intravenous formulation of cyclophosphamide was diluted to 20 mg/mL in NaCl 0.9%, compounded 1:1 with either suspending vehicle, and stored in the dark in 3-mL amber polypropylene oral syringes at 4 degrees C and 22 degrees C. Aliquots from each syringe were obtained on days 0, 3, 7, 14, 21, 28, 35, 42, 49, and 56 and assayed using the validated stability-indicating HPLC-UV method. A C18 analytical column was used to separate cyclophosphamide from the internal standard, ifosfamide, with a mobile phase of 21% acetonitrile in 79% sodium phosphate buffer. The suspension was examined for odor change, visually examined under normal fluorescent light for color change, and examined under a light microscope for evidence of microbial growth. Samples of cyclophosphamide in both simple syrup and Ora-Plus were stable when kept at 4 degrees C for at least 56 days. At room temperature, cyclophosphamide in simple syrup and Ora-Plus had a shelf life of 8 and 3 days, respectively. No changes in color or odor or evidence of microbial growth were observed. Cyclophosphamide can be extemporaneously prepared in simple syrup or Ora-Plus and stored for at least 2 months under refrigeration without significant degradation.

  20. Stability of solutions of antineoplastic agents during preparation and storage for in vitro assays. General considerations, the nitrosoureas and alkylating agents.

    PubMed

    Bosanquet, A G

    1985-01-01

    In vitro drug sensitivity of tumour biopsies is currently being determined using a variety of methods. For these chemosensitivity assays many drugs are required at short notice, and this in turn means that the drugs must generally be stored in solution. There are, however, a number of potential problems associated with dissolving and storing drugs for in vitro use, which include (a) drug adsorption; (b) effects of freezing; (c) drug stability under the normal conditions of dilution and setting up of an in vitro assay; and (d) insolubility of drugs in normal saline (NS) or phosphate-buffered saline (PBS). These problems are considered in general, and some recommendations for use of solutions of drugs in in vitro assays are suggested. The nitrosoureas and alkylating agents are also investigated in greater detail in this respect. The nitrosoureas are found to be very labile in PBS at pH 7, with 5% degradation (t0.95) occurring in 10-50 min at room temperature. These values are increased about 10-fold on refrigeration and about 5- to 10-fold on reduction of the pH of the medium to pH 4-5. At pH 7 and room temperature, t0.95 is observed in under 1 h with the alkylating agents nitrogen mustard, chlorambucil, melphalan, 2,5-diaziridinyl-3,6-bis(2-hydroxyethylamino)-1,4-benzoquinone (BZQ), dibromodulcitol, dibromomannitol, treosulphan, and procarbazine. Of the other alkylating agents, 4-hydroperoxycylophosphamide (sometimes used in vitro in place of cyclophosphamide), busulphan, dianhydrogalactitol, aziridinylbenzoquinone (AZQ), and dacarbazine have a t0.95 of between 2 and 24 h, while ifosfamide and pentamethylmelamine are both stable in aqueous solution for greater than 7 days. About half the drugs studied in detail have been stored frozen in solution for in vitro use, although very little is known about their stability under these conditions.

  1. Metronomic cyclophosphamide-induced long-term remission after recurrent high-grade serous ovarian cancer: A case study

    PubMed Central

    de Boo, Leonora Wijnandina; Vulink, Annelie Johanna Elisabeth; Bos, Monique Elisabeth Martina Maria

    2017-01-01

    Metronomic oral cyclophosphamide has gained increasing interest in recent years as a promising maintenance therapy in advanced, platinum-sensitive, high-grade serous ovarian cancer (HGSOC). Metronomic treatment with cyclophosphamide refers to the frequent, usually daily, administration of a low (oral) dose of cyclophosphamide with no prolonged drug-free breaks. Main advantages of this treatment are the effective reduction of tumour activity, oral administration in an outpatient setting, low cost and the low toxicity profile. Metronomic oral cyclophosphamide can benefit patients suffering from types of cancer known to be sensitive to alkylating agents, such as platinum-sensitive HGSOC. In recent years, several publications have underlined the advantage of this regimen and possible explanations were explored. We here present a patient with multiple recurrences of metastasized HGSOC, platinum-sensitive, with an on-going complete response to monotherapy with oral cyclophosphamide. This observation supports that patients with relapsing HGSOC who responded to platinum-based chemotherapy and cannot continue platinum-based chemotherapy because of toxicity, can be offered a course of metronomic cyclophosphamide. This case may serve as a reminder that old drugs can be used successfully even in the age of new upcoming therapy such as anti-angiogenic agents (VEGF inhibitors) and poly-ADP-ribose polymerase (PARP) inhibitors. PMID:29285388

  2. Metronomic cyclophosphamide-induced long-term remission after recurrent high-grade serous ovarian cancer: A case study.

    PubMed

    de Boo, Leonora Wijnandina; Vulink, Annelie Johanna Elisabeth; Bos, Monique Elisabeth Martina Maria

    2017-12-01

    Metronomic oral cyclophosphamide has gained increasing interest in recent years as a promising maintenance therapy in advanced, platinum-sensitive, high-grade serous ovarian cancer (HGSOC). Metronomic treatment with cyclophosphamide refers to the frequent, usually daily, administration of a low (oral) dose of cyclophosphamide with no prolonged drug-free breaks. Main advantages of this treatment are the effective reduction of tumour activity, oral administration in an outpatient setting, low cost and the low toxicity profile. Metronomic oral cyclophosphamide can benefit patients suffering from types of cancer known to be sensitive to alkylating agents, such as platinum-sensitive HGSOC. In recent years, several publications have underlined the advantage of this regimen and possible explanations were explored. We here present a patient with multiple recurrences of metastasized HGSOC, platinum-sensitive, with an on-going complete response to monotherapy with oral cyclophosphamide. This observation supports that patients with relapsing HGSOC who responded to platinum-based chemotherapy and cannot continue platinum-based chemotherapy because of toxicity, can be offered a course of metronomic cyclophosphamide. This case may serve as a reminder that old drugs can be used successfully even in the age of new upcoming therapy such as anti-angiogenic agents (VEGF inhibitors) and poly-ADP-ribose polymerase (PARP) inhibitors.

  3. Sorbate-nitrite interactions: acetonitrile oxide as an alkylating agent.

    PubMed

    Pérez-Prior, M Teresa; Gómez-Bombarelli, Rafael; González-Pérez, Marina; Manso, José A; García-Santos, M Pilar; Calle, Emilio; Casado, Julio

    2009-07-01

    Because chemical species with DNA-damaging and mutagenic activity are formed in sorbate-nitrite mixtures and because sorbic acid sometimes coexists with nitrite occurring naturally or incorporated as a food additive, the study of sorbate-nitrite interactions is important. Here, the alkylating potential of the products resulting from such interactions was investigated. Drawn were the following conclusions: (i) Acetonitrile oxide (ACNO) is the compound responsible for the alkylating capacity of sorbate-nitrite mixtures; (ii) ACNO alkylates 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to those of DNA bases, forming an adduct (AD; epsilon = 1.4 x 10(4) M(-1) cm(-1); lambda = 519 nm); (iii) the NBP alkylation reaction complies with the rate equation, r = d[AD]/dt = k(alk)(ACNO)[ACNO][NBP]-k(hyd)(AD)[AD], k(alk)(ACNO) being the NBP alkylation rate constant for ACNO and k(hyd)(AD) the rate constant for the adduct hydrolysis reaction; (iv) the small fraction of ACNO forming the adduct with NBP, as well as the small magnitude of the quotient (k(alk) (ACNO)/k(hyd)(ACNO)) as compared with those reported for other alkylating agents, such as some lactones and N-alkyl-N-nitrosoureas, reveals the ACNO effective alkylating capacity to be less significant; (v) the low value of the NBP-ACNO adduct life (defined as the total amount of adduct present along the progression of the NBP alkylation per unit of alkylating agent concentration) points to the high instability of this adduct; and (vi) the obtained results are in accordance with the low carcinogenicity of ACNO.

  4. Detection and identification of alkylating agents by using a bioinspired "chemical nose".

    PubMed

    Hertzog-Ronen, Carmit; Borzin, Elena; Gerchikov, Yulia; Tessler, Nir; Eichen, Yoav

    2009-10-12

    Alkylating agents are simple and reactive molecules that are commonly used in many and diverse fields such as organic synthesis, medicine, and agriculture. Some highly reactive alkylating species are also being used as blister chemical-warfare agents. The detection and identification of alkylating agents is not a trivial issue because of their high reactivity and simple structure. Herein, we report on a new multispot luminescence-based approach to the detection and identification of alkylating agents. In order to demonstrate the potential of the approach, seven pi-conjugated oligomers and polymers bearing nucleophilic pyridine groups, 1-7, were adsorbed onto a solid support and exposed to vapors of alkylators 8-15. The alkylation-induced color-shift patterns of the seven-spot array allow clear discrimination of the different alkylators. The spots are sensitive to minute concentrations of alkylators and, because the detection is based on the formation of new covalent bonds, these spots saturate at about 50 ppb.

  5. Successful hematopoietic stem cell transplantation following a cyclophosphamide-containing preparative regimen with concomitant phenobarbital administration.

    PubMed

    Weber, Catherine; Kasberg, Heather; Copelan, Edward

    2012-01-01

    Cyclophosphamide is an immunosuppressive agent and an anticancer prodrug which requires bioactivation catalyzed primarily by cytochrome P450 enzymes in order to be transformed into its active alkylating compounds. Concomitant administration of drugs known to inhibit or induce this enzyme system is a clinical concern. Herein, we present the case of a chronically ill 21-year-old patient who received high-dose cyclophosphamide, equine antithymocyte globulin (eATG), and total body irradiation (TBI) followed by an allogeneic hematopoietic stem cell transplant (HSCT) for severe aplastic anemia. Throughout her hospitalization, she continued to receive quadruple anticonvulsant therapy including phenobarbital for her long-standing seizure history. The preparative regimen was tolerated well aside from a hypersensitivity reaction to eATG, and minimal cyclophosphamide-related toxicities. Safe and effective administration of high-dose cyclophosphamide was possible with multidisciplinary care consisting of physician, nursing, pharmacy, neurology consultation, as well as social work and case management.

  6. Investigating the heterogeneity of alkylating agents' efficacy and toxicity between sexes: A systematic review and meta-analysis of randomized trials comparing cyclophosphamide and ifosfamide (MAIAGE study).

    PubMed

    Fresneau, Brice; Hackshaw, A; Hawkins, D S; Paulussen, M; Anderson, J R; Judson, I; Litière, S; Dirksen, U; Lewis, I; van den Berg, H; Gaspar, N; Gelderblom, H; Whelan, J; Boddy, A V; Wheatley, K; Pignon, J P; De Vathaire, F; Le Deley, M C; Le Teuff, G

    2017-08-01

    A marginal interaction between sex and the type of alkylating agent was observed for event-free survival in the Euro-EWING99-R1 randomized controlled trial (RCT) comparing cyclophosphamide and ifosfamide in Ewing sarcoma. To further evaluate this interaction, we performed an individual patient data meta-analysis of RCTs assessing cyclophosphamide versus ifosfamide in any type of cancer. A literature search produced two more eligible RCTs (EICESS92 and IRS-IV). The endpoints were progression-free survival (PFS, main endpoint) and overall survival (OS). The hazard ratios (HRs) of the treatment-by-sex interaction and their 95% confidence interval (95% CI) were assessed using stratified multivariable Cox models. Heterogeneity of the interaction across age categories and trials was explored. We also assessed this interaction for severe acute toxicity using logistic models. The meta-analysis comprised 1,528 pediatric and young adult sarcoma patients from three RCTs: Euro-EWING99-R1 (n = 856), EICESS92 (n = 155), and IRS-IV (n = 517). There were 224 PFS events in Euro-EWING99-R1 and 200 in the validation set (EICESS92 + IRS-IV), and 171 and 154 deaths in each dataset, respectively. The estimated treatment-by-sex interaction for PFS in Euro-EWING99-R1 (HR = 1.73, 95% CI = 1.00-3.00) was not replicated in the validation set (HR = 0.97, 95% CI = 0.55-1.72), without heterogeneity across trials (P = 0.62). In the pooled analysis, the treatment-by-sex interaction was not significant (HR = 1.31, 95% CI = 0.89-1.95, P = 0.17), without heterogeneity across age categories (P = 0.88) and trials (P = 0.36). Similar results were observed for OS. No significant treatment-by-sex interaction was observed for leucopenia/neutropenia (P = 0.45), infection (P = 0.64), or renal toxicity (P = 0.20). Our meta-analysis did not confirm the hypothesis of a treatment-by-sex interaction on efficacy or toxicity outcomes. © 2017 Wiley Periodicals, Inc.

  7. From old alkylating agents to new minor groove binders.

    PubMed

    Puyo, Stéphane; Montaudon, Danièle; Pourquier, Philippe

    2014-01-01

    Alkylating agents represent the oldest class of anticancer agents with the approval of mechloretamine by the FDA in 1949. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in the treatment of specific malignancies, sometimes representing the unique option for the treatment of refractory tumors. Here, we are reviewing the major classes of alkylating agents, with a particular focus on the latest generations of compounds that specifically target the minor groove of the DNA. These naturally occurring derivatives have a unique mechanism of action that explains the recent regain of interest in developing new classes of alkylating agents that could be used in combination with other anticancer drugs to enhance tumor response in the clinic. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Impact of gender on efficacy and acute toxicity of alkylating agent -based chemotherapy in Ewing sarcoma: secondary analysis of the Euro-Ewing99-R1 trial.

    PubMed

    van den Berg, Henk; Paulussen, Michael; Le Teuff, Gwénaël; Judson, Ian; Gelderblom, Hans; Dirksen, Uta; Brennan, Bernadette; Whelan, Jeremy; Ladenstein, Ruth Lydia; Marec-Berard, Perrine; Kruseova, Jarmila; Hjorth, Lars; Kühne, Thomas; Brichard, Benedicte; Wheatley, Keith; Craft, Alan; Juergens, Heribert; Gaspar, Nathalie; Le Deley, Marie-Cécile

    2015-11-01

    Based on the randomised Euro-EWING99-R1 trial, vincristine, adriamycin, cyclophosphamide (VAC) may be able to replace vincristine, adriamycin, ifosfamide (VAI) in the treatment of standard-risk Ewing sarcoma. However some heterogeneity of treatment effect by gender was observed. The current exploratory study aimed at investigating the influence of gender on treatment efficacy and acute toxicity. Impact of gender on event-free survival (EFS), acute toxicity by course, switches between treatment arms and cumulative dose of alkylating agents was evaluated in multivariable models adjusted for age including terms to test for heterogeneity of treatment effect by gender. The analysis of the EFS was performed on the intention-to-treat population. EFS did not significantly differ between the 509 males and 347 females (p=0.33), but an interaction in terms of efficacy was suspected between treatment and gender (p=0.058): VAC was associated with poorer EFS than VAI in males, hazard ratio (HR) (VAC/VAI)=1.37 [95% confidence interval (CI), 0.98-1.90], contrasting with HR=0.81 [95%CI, 0.53-1.24] in females. Severe toxicity was more frequent in females, whatever the toxicity type. Thirty patients switched from VAI to VAC (9/251 males, 4%, and 21/174 females, 12%) mostly due to renal toxicity, and three from VAC to VAI (2/258 males, 0.8%, and 1/173 females, 0.6%). A reduction of alkylating agent cumulative dose >20% was more frequent in females (15% versus 9%, p=0.005), with no major difference between VAC and VAI (10% versus 13%, p=0.15). Differences of acute toxicity rate and cumulative doses of alkylating agents could not explain the marginal interaction observed in the Euro-EWING99-R1 trial data. Effects of gender-dependent polymorphism/activity of metabolic enzymes (e.g. known for CYP2B6) of ifosfamide versus cyclophosphamide should be explored. External data are required to further evaluate whether there is heterogeneity of alkylating agent effect by gender. NCT00987636 and

  9. Ovarian reserve after treatment with alkylating agents during childhood.

    PubMed

    Thomas-Teinturier, Cécile; Allodji, Rodrigue Sétchéou; Svetlova, Ekaterina; Frey, Marie-Alix; Oberlin, Odile; Millischer, Anne-Elodie; Epelboin, Sylvie; Decanter, Christine; Pacquement, Helene; Tabone, Marie-Dominique; Sudour-Bonnange, Helene; Baruchel, André; Lahlou, Najiba; De Vathaire, Florent

    2015-06-01

    What is the effect of different alkylating agents used without pelvic radiation to treat childhood cancer in girls on the ovarian reserve in survivors? Ovarian reserve seems to be particularly reduced in survivors who received procarbazine (in most cases for Hodgkin lymphoma) or high-dose chemotherapy; procarbazine but not cyclophosphamide dose is associated with diminished ovarian reserve. A few studies have demonstrated diminished ovarian reserve in survivors after various combination therapies, but the individual role of each treatment is difficult to assess. Prospective cross-sectional study, involving 105 survivors and 20 controls. One hundred and five survivors aged 17-40 years and 20 controls investigated on Days 2-5 of a menstrual cycle or Day 7 of an oral contraceptive pill-free interval. ovarian surface area (OS), total number of antral follicles (AFC), serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol and anti-Müllerian hormone (AMH). Survivors had a lower OS than controls: 3.5 versus 4.4 cm(2) per ovary (P = 0.0004), and lower AMH levels: 10.7 versus 22 pmol/l (P = 0.003). Ovarian markers (OS, AMH, AFC) were worse in patients who received high-dose compared with conventional-dose alkylating agents (P = 0.01 for OS, P = 0.002 for AMH, P < 0.0001 for AFC). Hodgkin lymphoma survivors seemed to have a greater reduction in ovarian reserve than survivors of leukaemia (P = 0.04 for AMH, P = 0.01 for AFC), sarcoma (P = 0.04 for AMH, P = 0.04 for AFC) and other lymphomas (P = 0.04 for AFC). A multiple linear regression analysis showed that procarbazine but not cyclophosphamide nor ifosfamide dose was associated with reduced OS (P = 0.0003), AFC (P = 0.0007), AMH (P < 0.0001) and higher FSH levels (P < 0.0001). The small percentage of participating survivors (28%) from the total cohort does not allow conclusion on fertility issues because of possible response bias. The association between procarbazine and HL makes it

  10. The antitumour activity of alkylating agents is not correlated with the levels of glutathione, glutathione transferase and O6-alkylguanine-DNA-alkyltransferase of human tumour xenografts. EORTC SPG and PAMM Groups.

    PubMed

    D'Incalci, M; Bonfanti, M; Pifferi, A; Mascellani, E; Tagliabue, G; Berger, D; Fiebig, H H

    1998-10-01

    Twenty-three human xenografts, including five colon, five gastric, nine lung (three small cell lung cancer) and four breast carcinomas, were investigated for their sensitivity to nitrosoureas, dacarbazine (DTIC), cyclophosphamide (CTX) and cisplatin (DDP). In 12 cases, at least one of the drugs produced complete or partial remission, in 2, a minor regression was observed and in the other 9, treatment was ineffective. The level of sensitivity to each drug, using a score from 1 to 5, was correlated to three biochemical parameters reported to be involved in resistance to alkylating agents: glutathione (GSH), glutathione transferase (GST) and O6-alkylguanine-DNA-alkyltransferase (AGT). A wide variability was found in these parameters in the xenografts investigated. No correlation was found between any of the three parameters and sensitivity to the drugs used or between sensitivity to one drug and to any of the other drugs tested. These results illustrate the complexity of the question of resistance to alkylating agents and indicate that, at least in xenografts, the biochemical parameters examined are not predictive of response to alkylating agents.

  11. The clinical pharmacology of alkylating agents in high-dose chemotherapy.

    PubMed

    Huitema, A D; Smits, K D; Mathôt, R A; Schellens, J H; Rodenhuis, S; Beijnen, J H

    2000-08-01

    Alkylating agents are widely used in high-dose chemotherapy regimens in combination with hematological support. Knowledge about the pharmacokinetics and pharmacodynamics of these agents administered in high doses is critical for the safe and efficient use of these regimens. The aim of this review is to summarize the clinical pharmacology of the alkylating agents (including the platinum compounds) in high-dose chemotherapy. Differences between conventional and high doses will be discussed.

  12. DNA Damage Induced by Alkylating Agents and Repair Pathways

    PubMed Central

    Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301

  13. Alcohols as alkylating agents in heteroarene C-H functionalization

    NASA Astrophysics Data System (ADS)

    Jin, Jian; MacMillan, David W. C.

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  14. Alcohols as alkylating agents in heteroarene C-H functionalization.

    PubMed

    Jin, Jian; MacMillan, David W C

    2015-09-03

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of 'spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  15. ATM regulates 3-Methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents

    PubMed Central

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A.; Clarke, Ian D.; Barszczyk, Mark S.; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W.; Taylor, Michael D; Rutka, James T.; Jones, Chris; Dirks, Peter B.; Zadeh, Gelareh; Hawkins, Cynthia

    2014-01-01

    Alkylating agents are a frontline therapy for the treatment of several aggressive cancers including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed; increasing therapeutic response while minimizing toxicity. Using a siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM) were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. PMID:25100205

  16. ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents.

    PubMed

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A; Clarke, Ian D; Barszczyk, Mark S; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W; Taylor, Michael D; Rutka, James T; Jones, Chris; Dirks, Peter B; Zadeh, Gelareh; Hawkins, Cynthia

    2014-10-01

    Alkylating agents are a first-line therapy for the treatment of several aggressive cancers, including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed, increasing therapeutic response while minimizing toxicity. Using an siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular, the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM), were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. Inhibition of ATM and MPG-mediated BER cooperate to sensitize tumor cells to alkylating agents, impairing tumor growth in vitro and in vivo with no toxicity to normal cells, providing an ideal therapeutic window. ©2014 American Association for Cancer Research.

  17. Alcohols as alkylating agents in heteroarene C–H functionalization

    PubMed Central

    Jin, Jian; MacMillan, David W. C.

    2015-01-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage1. One of the core principles that underlies DNA biosynthesis is the radical-mediated elimnation of H2O to deoxygenate ribonucleotides, an example of ‘spin-center shift’ (SCS)2, during which an alcohol C–O bond is cleaved, resulting in a carbon-centered radical intermediate. While SCS is a well-understood biochemical process, it is underutilized by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylations using alcohols as radical precursors. Considering traditional radical-based alkylation methods require the use of stoichiometric oxidants, elevated temperatures, or peroxides3–7, the development of a mild protocol using simple and abundant alkylating agents would have significant utility in the synthesis of diversely functionalized pharmacophores. In this manuscript, we describe the successful execution of this idea via the development of a dual catalytic alkylation of heteroarenes using alcohols as mild alkylating reagents. This method represents the first broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer (HAT) catalysis. The utility of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone. PMID:26308895

  18. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    PubMed Central

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  19. Synthesis and evaluation of novel caged DNA alkylating agents bearing 3,4-epoxypiperidine structure.

    PubMed

    Kawada, Yuji; Kodama, Tetsuya; Miyashita, Kazuyuki; Imanishi, Takeshi; Obika, Satoshi

    2012-07-14

    Previously, we reported that the 3,4-epoxypiperidine structure, whose design was based on the active site of DNA alkylating antitumor antibiotics, azinomycins A and B, possesses prominent DNA cleavage activity. In this report, novel caged DNA alkylating agents, which were designed to be activated by UV irradiation, were synthesized by the introduction of four photo-labile protecting groups to a 3,4-epoxypiperidine derivative. The DNA cleavage activity and cytotoxicity of the caged DNA alkylating agents were examined under UV irradiation. Four caged DNA alkylating agents showed various degrees of bioactivity depending on the photosensitivity of the protecting groups.

  20. Cyclophosphamide Alters the Gene Expression Profile in Patients Treated with High Doses Prior to Stem Cell Transplantation

    PubMed Central

    El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha

    2014-01-01

    Background Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. Methods We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Results Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. Conclusion This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression. PMID:24466173

  1. Cyclophosphamide alters the gene expression profile in patients treated with high doses prior to stem cell transplantation.

    PubMed

    El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha

    2014-01-01

    Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression.

  2. Persistence of DNA adducts, hypermutation and acquisition of cellular resistance to alkylating agents in glioblastoma.

    PubMed

    Head, R J; Fay, M F; Cosgrove, L; Y C Fung, K; Rundle-Thiele, D; Martin, J H

    2017-12-02

    Glioblastoma is a lethal form of brain tumour usually treated by surgical resection followed by radiotherapy and an alkylating chemotherapeutic agent. Key to the success of this multimodal approach is maintaining apoptotic sensitivity of tumour cells to the alkylating agent. This initial treatment likely establishes conditions contributing to development of drug resistance as alkylating agents form the O 6 -methylguanine adduct. This activates the mismatch repair (MMR) process inducing apoptosis and mutagenesis. This review describes key juxtaposed drivers in the balance between alkylation induced mutagenesis and apoptosis. Mutations in MMR genes are the probable drivers for alkylation based drug resistance. Critical to this interaction are the dose-response and temporal interactions between adduct formation and MMR mutations. The precision in dose interval, dose-responses and temporal relationships dictate a role for alkylating agents in either promoting experimental tumour formation or inducing tumour cell death with chemotherapy. Importantly, this resultant loss of chemotherapeutic selective pressure provides opportunity to explore novel therapeutics and appropriate combinations to minimise alkylation based drug resistance and tumour relapse.

  3. Kinetics of micronucleus induction and cytotoxicity caused by distinct antineoplastics and alkylating agents in vivo.

    PubMed

    Morales-Ramírez, Pedro; Vallarino-Kelly, Teresita; Cruz-Vallejo, Virginia

    2014-01-30

    This mini-review aims to compare the differences in the kinetics of the induction of micronucleated polychromatic erythrocytes (MN-PCE) and cytotoxicity by distinct antineoplastic and genotoxic agents in murine peripheral blood in vivo and to correlate these kinetics with the underlying processes. Comparisons were carried out using our previously obtained data with nominal doses causing similar levels of cytotoxicity, as measured in terms reduction of PCE. The aneuploidogens caused the most rapid induction of MN-PCEs and had the highest rates of cytotoxicity and genotoxicity. The promutagens cyclophosphamide and dimethylnitrosamine showed the most delayed responses and had the lowest genotoxic and cytotoxic efficiencies. DNA crosslinking agents had a similar delay of 4-5 h, greater than those of aneuploidogens, but differed in their cytotoxic and genotoxic efficiencies. Methylnitrosourea and 5-aza-cytidine caused greater delays than crosslinking agents. These delays can be due to the methylnitrosourea-mediated induction of formation of mono alkyl adducts which are interpreted as mismatches during DNA duplication, whereas 5-aza-cytidine requires incorporation into the DNA to induce breakage. This review allows us to conclude that the requirement for metabolic activation and the mechanisms of DNA breakage and of micronucleus induction are the main factors that affect the time of maximal MN-PCE induction. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. How cyclophosphamide at environmentally relevant concentration influences Daphnia magna life history and its proteome.

    PubMed

    Grzesiuk, Małgorzata; Mielecki, Damian; Pilżys, Tomasz; Garbicz, Damian; Marcinkowski, Michał; Grzesiuk, Elżbieta

    2018-01-01

    The waste of commonly used medicines is known to contaminate freshwater ecosystems. Pharmaceuticals can be toxic, mutagenic, or modifying to freshwater organisms even at low concentrations if consider their permanent presence in the environment. Chemotherapeutics used to treat cancer, and in particular alkylating agents, contribute significantly to this form of pollution, the latter introducing cytotoxic and/or mutagenic lesions to the DNA and RNA of organisms which can be disruptive to their cells. The aim of the present study was to investigate the influence of the alkylating anticancer agent cyclophosphamide (CP) on Daphnia magna clones. We evaluated the life history parameters and protein profiles of this crustacean following exposure to environmentally relevant CP concentration of 10 ng L-1. Even at this low concentration, the alkylating agent caused modification of the life history parameters and proteome profile of the Daphnia. These changes were clone-specific and involved growth rate, age at first reproduction, neonate number, and proteins related to cell cycle and redox state regulation. The disturbance caused by pharmaceuticals contaminating freshwater ecosystem is probably weaker and unlikely to be cytotoxic in character due to the high dilution of these substances in the water. However, our results indicate that prolonged exposure of organisms to these toxins may lead to modifications on the organismal and molecular levels with unpredictable significance for the entire ecosystem.

  5. Pharmacology of dimethanesulfonate alkylating agents: busulfan and treosulfan.

    PubMed

    Galaup, Ariane; Paci, Angelo

    2013-03-01

    Among the dimethanesulfonates, busulfan, in combination with other alkylating agents or nucleoside analogues, is the cornerstone of high-dose chemotherapy. It is used, and followed hematopoietic stem cell transplantation, for the treatment of various hematologic malignancies and immunodeficiencies. Treosulfan, which is a hydrophilic analogue of busulfan, was the first dimethanesufonate registered for the treatment of ovarian cancer. Recently, treosulfan has been investigated for the treatment of hematologic malignancies in combination with the same second agents before hematopoietic stem cell transplantation. This work reviews the pharmacological data of these two dimethanesulfonates alkylating agents. Specifically, the article looks at their chemistry, metabolism, anticancer activity, and their pharmacokinetics and pharmacodynamics. Busulfan has been investigated widely for more than three decades leading to a large and precise handling of this agent with numerous studies on activity and pharmacokinetics and pharmacodynamics. In contrast, the behavior of treosulfan is still under investigation and not fully described. The complexity of treosulfan's metabolism and mechanism of action gives rise to the need of a deeper understanding of its pharmacological activity in a context of high-dose chemotherapy. Specifically, there is a great need to better understand its pharmacokinetics/pharmacodynamics relationship.

  6. Alkylating agent (MNU)-induced mutation in space environment

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Takahashi, A.; Ohnishi, K.; Takahashi, S.; Masukawa, M.; Sekikawa, K.; Amano, T.; Nakano, T.; Nagaoka, S.

    2001-01-01

    In recent years, some contradictory data about the effects of microgravity on radiation-induced biological responses in space experiments have been reported. We prepared a damaged template DNA produced with an alkylating agent (N-methyl-N-nitroso urea; MNU) to measure incorrect base-incorporation during DNA replication in microgravity. We examined whether mutation frequency is affected by microgravity during DNA replication for a DNA template damaged by an alkylating agent. Using an in vitro enzymatic reaction system, DNA synthesis by Taq polymerase or polymerase III was done during a US space shuttle mission (Discovery, STS-91). After the flight, DNA replication and mutation frequencies were measured. We found that there was almost no effect of microgravity on DNA replication and mutation frequency. It is suggested that microgravity might not affect at the stage of substrate incorporation in induced-mutation frequency.

  7. Alkylsilyl Peroxides as Alkylating Agents in the Copper-Catalyzed Selective Mono-N-Alkylation of Primary Amides and Arylamines.

    PubMed

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-07-06

    The copper-catalyzed selective mono-N-alkylation of primary amides or arylamines using alkylsilyl peroxides as alkylating agents is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the alkylsilyl peroxides, as well as to the primary amides and arylamines. Mechanistic studies suggest that the present reaction should proceed through a free-radical process that includes alkyl radicals generated from the alkylsilyl peroxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study.

    PubMed

    Green, Daniel M; Liu, Wei; Kutteh, William H; Ke, Raymond W; Shelton, Kyla C; Sklar, Charles A; Chemaitilly, Wassim; Pui, Ching-Hon; Klosky, James L; Spunt, Sheri L; Metzger, Monika L; Srivastava, DeoKumar; Ness, Kirsten K; Robison, Leslie L; Hudson, Melissa M

    2014-10-01

    Few data define the dose-specific relation between alkylating agent exposure and semen variables in adult survivors of childhood cancer. We undertook this study to test the hypothesis that increased exposure to alkylating agents would be associated with decreased sperm concentration in a cohort of adult male survivors of childhood cancer who were not exposed to radiation therapy for their childhood cancer. We did semen analysis on 214 adult male survivors of childhood cancer (median age 7·7 years [range 0·01-20·3] at diagnosis, 29·0 years [18·4-56·1] at assessment, and a median of 21·0 years [10·5-41·6] since diagnosis) who had received alkylating agent chemotherapy but no radiation therapy. Alkylating agent exposure was estimated using the cyclophosphamide equivalent dose (CED). Odds ratios (ORs) and 95% CIs for oligospermia (sperm concentration >0 and <15 million per mL) and azoospermia were calculated with logistic regression modelling. Azoospermia was noted in 53 (25%) of 214 participants, oligospermia in 59 (28%), and normospermia (sperm concentration ≥15 million per mL) in 102 (48%) participants. 31 (89%) of 35 participants who received CED less than 4000 mg/m(2) were normospermic. CED was negatively correlated with sperm concentration (correlation coefficient=-0·37, p<0·0001). Mean CED was 10 830 mg/m(2) (SD 7274) in patients with azoospermia, 8480 mg/m(2) (4264) in patients with oligospermia, and 6626 mg/m(2) (3576) in patients with normospermia. In multivariable analysis, CED was significantly associated with an increased risk per 1000 mg/m(2) CED for azoospermia (OR 1·22, 95% CI 1·11-1·34), and for oligospermia (1·14, 1·04-1·25), but age at diagnosis and age at assessment were not. Impaired spermatogenesis was unlikely when the CED was less than 4000 mg/m(2). Although sperm concentration decreases with increasing CED, there was substantial overlap of CED associated with normospermia, oligospermia, and azoospermia. These data can

  9. S - and N-alkylating agents diminish the fluorescence of fluorescent dye-stained DNA.

    PubMed

    Giesche, Robert; John, Harald; Kehe, Kai; Schmidt, Annette; Popp, Tanja; Balzuweit, Frank; Thiermann, Horst; Gudermann, Thomas; Steinritz, Dirk

    2017-01-25

    Sulfur mustard (SM), a chemical warfare agent, causes DNA alkylation, which is believed to be the main cause of its toxicity. SM DNA adducts are commonly used to verify exposure to this vesicant. However, the required analytical state-of-the-art mass-spectrometry methods are complex, use delicate instruments, are not mobile, and require laboratory infrastructure that is most likely not available in conflict zones. Attempts have thus been made to develop rapid detection methods that can be used in the field. The analysis of SM DNA adducts (HETE-G) by immunodetection is a convenient and suitable method. For a diagnostic assessment, HETE-G levels must be determined in relation to the total DNA in the sample. Total DNA can be easily visualized by the use of fluorescent DNA dyes. This study examines whether SM and related compounds affect total DNA staining, an issue that has not been investigated before. After pure DNA was extracted from human keratinocytes (HaCaT cells), DNA was exposed to different S- and N-alkylating agents. Our experiments revealed a significant, dose-dependent decrease in the fluorescence signal of fluorescent dye-stained DNA after exposure to alkylating agents. After mass spectrometry and additional fluorescence measurements ruled out covalent modifications of ethidium bromide (EthBr) by SM, we assumed that DNA crosslinks caused DNA condensation and thereby impaired access of the fluorescent dyes to the DNA. DNA digestion by restriction enzymes restored fluorescence, a fact that strengthened our hypothesis. However, monofunctional agents, which are unable to crosslink DNA, also decreased the fluorescence signal. In subsequent experiments, we demonstrated that protons produced during DNA alkylation caused a pH decrease that was found responsible for the reduction in fluorescence. The use of an appropriate buffer system eliminated the adverse effect of alkylating agents on DNA staining with fluorescent dyes. An appropriate buffer system is thus

  10. Nitric oxide donors attenuate clongenic potential in rat C6 glioma cells treated with alkylating chemotherapeutic agents.

    PubMed

    Yang, Jir-Jei; Yin, Jiu-Haw; Yang, Ding-I

    2007-05-11

    1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) kills tumor cells via multiple actions including alkylation and carbamoylation. Previously, we have reported that formation of S-nitrosoglutathione (GSNO) in glioma cells overexpressing inducible nitric oxide synthase (iNOS) contributed to nitric oxide (NO)-dependent carbamoylating chemoresistance against BCNU. To further characterize the effects of NO on alkylating cytotoxicity, colony formation assay was applied to evaluate the effects of various NO donors on rat C6 glioma cells challenged with alkylating agents. We demonstrate that NO donors including GSNO, diethylamine NONOate (DEA/NO), and sodium nitroprusside (SNP) substantially reduced the extent of colony formation in glioma cells treated with alkylating agents, namely methyl methanesulfonate (MMS), N-methyl-N-nitrosourea (MNU), and N-ethyl-N-nitrosourea (ENU). Without alkylating agents these NO-releasing agents alone had no effects on clongenic potential of rat C6 glioma cells. Among these three NO donors used, the effectiveness in potentiating alkylating cytotoxicity is in the order of "GSNO>DEA/NO>SNP" when applied at the same dosages. GSNO also exerted similar synergistic actions reducing the extents of colony formation when co-administrated with 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-hydrazine (compound #1), another alkylating agent that mimics the chloroethylating action of BCNU. Together with our previous findings, we propose that NO donors may be used as adjunct chemotherapy with alkylating agents for such malignant brain tumors as glioblastoma multiforme (GBM). In contrast, production of NO as a result of iNOS induction, such as that occurring after surgical resection of brain tumors, may compromise the efficacy of carbamoylating chemotherapy.

  11. The Impact of Commonly Used Alkylating Agents on Artifactual Peptide Modification.

    PubMed

    Hains, Peter G; Robinson, Phillip J

    2017-09-01

    Iodoacetamide is by far the most commonly used agent for alkylation of cysteine during sample preparation for proteomics. An alternative, 2-chloroacetamide, has recently been suggested to reduce the alkylation of residues other than cysteine, such as the N-terminus, Asp, Glu, Lys, Ser, Thr, and Tyr. Here we show that although 2-chloroacetamide reduces the level of off-target alkylation, it exhibits a range of adverse effects. The most significant of these is methionine oxidation, which increases to a maximum of 40% of all Met-containing peptides, compared with 2-5% with iodoacetamide. Increases were also observed for mono- and dioxidized tryptophan. No additional differences between the alkylating reagents were observed for a range of other post-translational modifications and digestion parameters. The deleterious effects were observed for 2-chloroacetamide from three separate suppliers. The adverse impact of 2-chloroacetamide on methionine oxidation suggests that it is not the ideal alkylating reagent for proteomics.

  12. 'Petite' mutagenesis and mitotic crossing-over in yeast by DNA-targeted alkylating agents.

    PubMed

    Ferguson, L R; Turner, P M; Gourdie, T A; Valu, K K; Denny, W A

    1989-12-01

    Although the biological properties (cytotoxicity, mutagenicity and carcinogenicity) of alkylating agents result from their bonding interactions with DNA, such compounds generally do not show any special binding affinity for DNA. A series of acridine-linked aniline mustards of widely-varying alkylator reactivity have been designed as DNA-directed alkylating agents. We have considered whether such DNA targeting has an effect on mutagenic properties by evaluating this series of drugs in comparison with their untargeted counterparts for toxic, recombinogenic and mutagenic properties in Saccharomyces cerevisiae strain D5. The simple untargeted aniline mustards are effective inducers of mitotic crossing-over in this strain, but resemble other reported alkylators in being rather inefficient inducers of the "petite" or mitochondrial mutation in yeast. However, the majority of the DNA-targeted mustards were very efficient petite mutagens, while showing little evidence of mitotic crossing-over or other nuclear events. The 100% conversion of cells into petites and the lack of a differential between growing and non-growing cells are similar to the effects of the well characterised mitochondrial mutagen ethidium bromide. These data suggest very different modes of action between the DNA-targeted alkylators and their non-targeted counterparts.

  13. Rituximab, alkylating agents or combination therapy for gastric mucosa-associated lymphoid tissue lymphoma: a monocentric non-randomised observational study.

    PubMed

    Amiot, A; Lévy, M; Copie-Bergman, C; Dupuis, J; Szablewski, V; Le Baleur, Y; Baia, M; Belhadj, K; Sobhani, I; Leroy, K; Haioun, C; Delchier, J-C

    2014-03-01

    There is no consensus on the standard treatment of gastric mucosa-associated lymphoid tissue (MALT) lymphoma for Helicobacter pylori-negative patients and for patients with persistent disease despite H. pylori eradication. To evaluate the comparative efficacy and safety of alkylating agents and rituximab alone or in combination. In this monocentric retrospective study, which included 106 patients who had not been previously treated with anti-cancer agents, we evaluated the efficacy and safety of oral alkylating agents monotherapy (n = 48), rituximab monotherapy (n = 28) and the therapy combining both drugs (n = 30). Evaluations were performed at weeks 6 (W6), 25 (W25), and 52 (W52) and after 2 years (W104). After a median follow-up period of 4.9 years (range 0.4-17.2 years), complete remission and overall response were significantly higher in patients in the combination therapy group at W104 (92% and 100% respectively) compared with patients treated with alkylating agents alone (66% and 68%) and rituximab alone (64% and 73%). The 5-year progression-free survival probabilities were 68%, 70% and 89% in patients treated with alkylating agents alone, rituximab alone and combination therapy respectively. Haematological adverse events were reported in 32 (30%) patients (mostly grade 1) and were more frequent in the two groups receiving alkylating agents (P = 0.05 and P < 0.001). No toxicity-related death was reported. The use of anti-cancer systemic therapy is safe and efficient in gastric MALT lymphoma. In this retrospective study, the combination of rituximab plus chlorambucil seems more efficient than rituximab or alkylating agents alone. Rituximab has a better safety profile than regimens containing alkylating agents. © 2014 John Wiley & Sons Ltd.

  14. Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents.

    PubMed

    Wang, Pu; Wu, Jing; Ma, Shenghong; Zhang, Lei; Yao, Jun; Hoadley, Katherine A; Wilkerson, Matthew D; Perou, Charles M; Guan, Kun-Liang; Ye, Dan; Xiong, Yue

    2015-12-22

    Chemotherapy of a combination of DNA alkylating agents, procarbazine and lomustine (CCNU), and a microtubule poison, vincristine, offers a significant benefit to a subset of glioma patients. The benefit of this regimen, known as PCV, was recently linked to IDH mutation that occurs frequently in glioma and produces D-2-hydroxyglutarate (D-2-HG), a competitive inhibitor of α-ketoglutarate (α-KG). We report here that D-2-HG inhibits the α-KG-dependent alkB homolog (ALKBH) DNA repair enzymes. Cells expressing mutant IDH display reduced repair kinetics, accumulate more DNA damages, and are sensitized to alkylating agents. The observed sensitization to alkylating agents requires the catalytic activity of mutant IDH to produce D-2-HG and can be reversed by the deletion of mutant IDH allele or overexpression of ALKBH2 or AKLBH3. Our results suggest that impairment of DNA repair may contribute to tumorigenesis driven by IDH mutations and that alkylating agents may merit exploration for treating IDH-mutated cancer patients. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. HTB140 melanoma cells under proton irradiation and/or alkylating agents

    NASA Astrophysics Data System (ADS)

    Korićanac, L.; Petrović, I.; Privitera, G.; Cuttone, G.; Ristić-Fira, A.

    2007-09-01

    Chemoresistance is a major problem in the treatment of malignant melanoma. The mainstay of treatment for melanoma is the DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), a member of the chloroethylnitrosourea group of alkylating agents, has also demonstrated significant antitumor effects in malignant melanoma. However, the intrinsic and acquired resistance of melanoma limits the clinical application of these drugs. Melanomas are also extremely radioresistant. With the objective of enhancing growth inhibition of melanoma cells, combined treatments of FM or DTIC with proton irradiation have been investigated. These effects were studied on HTB140 melanoma cell viability and proliferation. Cells exposed to treatment with FM and protons have shown inhibition of cell growth and significant reduction of proliferation capacity compared to single irradiation or drug treatment. Treatment with DTIC and protons has shown improved growth inhibition compared to appropriate single drug treatment, while the effects of single proton irradiation have been the most pronounced.

  16. Sensitization of human carcinoma cells to alkylating agents by small interfering RNA suppression of 3-alkyladenine-DNA glycosylase.

    PubMed

    Paik, Johanna; Duncan, Tod; Lindahl, Tomas; Sedgwick, Barbara

    2005-11-15

    One of the major cytotoxic lesions generated by alkylating agents is DNA 3-alkyladenine, which can be excised by 3-alkyladenine DNA glycosylase (AAG). Inhibition of AAG may therefore result in increased cellular sensitivity to chemotherapeutic alkylating agents. To investigate this possibility, we have examined the role of AAG in protecting human tumor cells against such agents. Plasmids that express small interfering RNAs targeted to two different regions of AAG mRNA were transfected into HeLa cervical carcinoma cells and A2780-SCA ovarian carcinoma cells. Stable derivatives of both cell types with low AAG protein levels were sensitized to alkylating agents. Two HeLa cell lines with AAG protein levels reduced by at least 80% to 90% displayed a 5- to 10-fold increase in sensitivity to methyl methanesulfonate, N-methyl-N-nitrosourea, and the chemotherapeutic drugs temozolomide and 1,3-bis(2-chloroethyl)-1-nitrosourea. These cells showed no increase in sensitivity to UV light or ionizing radiation. After treatment with methyl methanesulfonate, AAG knockdown HeLa cells were delayed in S phase but accumulated in G2-M. Our data support the hypothesis that ablation of AAG activity in human tumor cells may provide a useful strategy to enhance the efficacy of current chemotherapeutic regimens that include alkylating agents.

  17. Population pharmacokinetic (PK) analysis of laromustine, an emerging alkylating agent, in cancer patients.

    PubMed

    Nassar, Ala F; Wisnewski, Adam V; King, Ivan

    2017-05-01

    1. Alkylating agents are capable of introducing an alkyl group into nucleophilic sites on DNA or RNA through covalent bond. Laromustine is an active member of a relatively new class of sulfonylhydrazine prodrugs under development as antineoplastic alkylating agents, and displays significant single-agent activity. 2. This is the first report of the population pharmacokinetic analysis of laromustine, 106 patients, 66 with hematologic malignancies and 40 with solid tumors, participated in five clinical trials worldwide. Of these, 104 patients were included in the final NONMEM analysis. 3. The population estimates for total clearance (CL) and volume of distribution of the central compartment (V 1 ) were 96.3 L/h and 45.9 L, associated with high inter-patient variability of 52.9% and 79.8% and inter-occasion variability of 26.7% and 49.3%, respectively. The population estimates for Q and V 2 were 73.2 L/h and 29.9 L, and inter-patient variability in V 2 was 63.1%, respectively. 4. The estimate of V ss (75.8 L) exceeds total body water, indicating that laromustine is distributed to tissues. The half-life is short, less than 1 h, reflecting rapid clearance. Population PK analysis showed laromustine pharmacokinetics to be independent of dose and organ function with no effect on subsequent dosing cycles.

  18. Research on DNA methylation of human osteosarcoma cell MGMT and its relationship with cell resistance to alkylating agents.

    PubMed

    Guo, Jun; Cui, Qiu; Jiang, WeiHao; Liu, Cheng; Li, DingFeng; Zeng, Yanjun

    2013-08-01

    The objective of this study was to explore the O(6)-methylguanine-DNA methyltransferase (MGMT) gene methylation status and its protein expression, as well as the effects of demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-CdR) on MGMT gene expression and its resistance to alkylating agents, and to elucidate MGMT expression mechanism and significance in osteosarcoma. The human osteosarcoma cell lines Saos-2 and MG-63 were collected and treated with 5-Aza-CdR for 6 days. The cells not treated with 5-Aza-CdR were set as a negative control. The genomic DNA was extracted from the Saos-2 and MG-63 cells using methylation-specific PCR to detect the promoter CpG island methylation status of the MGMT gene. Cell sensitivity to alkylating agents before and after drug administration was detected by the MTT method. The variation in MGMT gene mRNA and protein was detected by reverse transcription PCR (RT-PCR) and Western blotting. The MGMT promoter gene of normal Saos-2 cells was methylated, with reduced MGMT mRNA and protein expression; the MGMT mRNA and protein expression of Saos-2 cells treated with 5-Aza-CdR was obviously enhanced, and its sensitivity to alkylating agents was reversed. Meanwhile, with promoter CpG island unmethylation of the MGMT gene, MGMT protein was expressed in the normal MG-63 cells and the MG-63 cells treated with 5-Aza-CdR, and both showed resistance to alkylating agents. The methylation status of the MGMT gene promoter in human osteosarcoma cells reflected the cells' ability to induce MGMT protein expression and can be used as a molecular marker to project the sensitivity of cancer tissues to alkylating agent drugs.

  19. DNA Repair Modulates The Vulnerability of The Developing Brain to Alkylating Agents

    PubMed Central

    Kisby, G.E.; Olivas, A.; Park, T.; Churchwell, M.; Doerge, D.; Samson, L. D.; Gerson, S.L.; Turker, M.S.

    2009-01-01

    Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag-/-) or O6-methylguanine methyltransferase (Mgmt-/-), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt-/- neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag-/- neurons were for the most part significantly less sensitive than wild type or Mgmt-/- neurons to MAM and HN2. Aag-/- neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt-/- mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM treated Aag-/- or MGMT overexpressing (MgmtTg+) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in MgmtTg+ mice treated with HN2. Collectively, these in vitro

  20. Cellular response to alkylating agent MNNG is impaired in STAT1-deficients cells.

    PubMed

    Ah-Koon, Laurent; Lesage, Denis; Lemadre, Elodie; Souissi, Inès; Fagard, Remi; Varin-Blank, Nadine; Fabre, Emmanuelle E; Schischmanoff, Olivier

    2016-10-01

    The SN 1 alkylating agents activate the mismatch repair system leading to delayed G2 /M cell cycle arrest and DNA repair with subsequent survival or cell death. STAT1, an anti-proliferative and pro-apoptotic transcription factor is known to potentiate p53 and to affect DNA-damage cellular response. We studied whether STAT1 may modulate cell fate following activation of the mismatch repair system upon exposure to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Using STAT1-proficient or -deficient cell lines, we found that STAT1 is required for: (i) reduction in the extent of DNA lesions, (ii) rapid phosphorylation of T68-CHK2 and of S15-p53, (iii) progression through the G2 /M checkpoint and (iv) long-term survival following treatment with MNNG. Presence of STAT1 is critical for the formation of a p53-DNA complex comprising: STAT1, c-Abl and MLH1 following exposure to MNNG. Importantly, presence of STAT1 allows recruitment of c-Abl to p53-DNA complex and links c-Abl tyrosine kinase activity to MNNG-toxicity. Thus, our data highlight the important modulatory role of STAT1 in the signalling pathway activated by the mismatch repair system. This ability of STAT1 to favour resistance to MNNG indicates the targeting of STAT1 pathway as a therapeutic option for enhancing the efficacy of SN1 alkylating agent-based chemotherapy. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Active oligonucleotides incorporating alkylating an agent as potential sequence- and base selective modifier of gene expression.

    PubMed

    Sasaki, S

    2001-04-01

    A number of cross-linking (alkylating) agents have been developed and incorporated into the oligonulceotides for sequence selective control of gene expression. Recently, potential application of such active oligonucleotides has been expanding from use for improvement of inhibition efficiency to new biotechnology that may enable chemical alteration of genetic information. These interests in active oligonucleotides have encouraged the generation of new cross-linking agents that exhibit high efficiency for application of either in vitro or in vivo. This mini review summarizes structures of alkylating agents, in particular, a new basic skeleton for cross-linking, a 2'-deoxyribose derivative of 2-amino-6-vinylpurine that has been recently developed by the author's group. The 2-amino-6-vinylpurine has been shown to form a complex with cytidine under acidic conditions, and brings the vinyl and the amino reactive groups into proximity to achieve efficient alkylation. A new strategy was designed so that the reactivity of 2-amino-6-vinylpurine can be induced from the corresponding phenylsulfoxide derivative within a duplex with the complementary strand. The validity of the new strategy has been proven by achievement of cytidine-selective cross-linking with remarkably efficiency.

  2. L-β-N-methylamino-l-alanine (BMAA) nitrosation generates a cytotoxic DNA damaging alkylating agent: An unexplored mechanism for neurodegenerative disease.

    PubMed

    Potjewyd, G; Day, P J; Shangula, S; Margison, G P; Povey, A C

    2017-03-01

    L-β-N-methylamino-l-alanine (BMAA) is a non-proteinic amino acid, that is neurotoxic in vitro and in animals, and is implicated in the causation of amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS-PDC) on Guam. Given that natural amino acids can be N-nitrosated to form toxic alkylating agents and the structural similarity of BMAA to other amino acids, our hypothesis was that N-nitrosation of BMAA might result in a toxic alkylating agent, providing a novel mechanistic hypothesis for BMAA action. We have chemically nitrosated BMAA with sodium nitrite to produce nitrosated BMAA (N-BMAA) which was shown to react with the alkyl-trapping agent, 4-(p-nitrobenzyl)pyridine, cause DNA strand breaks in vitro and was toxic to the human neuroblastoma cell line SH-SY5Y under conditions in which BMAA itself was minimally toxic. Our results indicate that N-BMAA is an alkylating agent and toxin suggesting a plausible and previously unrecognised mechanism for the neurotoxic effects of BMAA. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Induction by alkylating agents of sister chromatid exchanges and chromatid breaks in Fanconi's anemia.

    PubMed

    Latt, S A; Stetten, G; Juergens, L A; Buchanan, G R; Gerald, P S

    1975-10-01

    Sister chromatid exchanges, which may reflect chromosome repair in response to certain types of DNA damage, provide a means of investigating the increased chromosome fragility characteristic of Fanconi's anemia. By a recently developed technique using 33258 Hoechst and 5-bromodeoxyuridine, it was observed that the baseline frequency of sister chromatid exchanges in phytohemagglutinin-stimulated lymphocytes from four males with Fanconi's anemia differed little from that of normal lymphocytes. However, addition of the bifunctional alkylating agent mitomycin C (0.01 or 0.03 mug/ml) to the Fanconi's anemia cells during culture induces less than half of the increase in exchanges found in identically treated normal lymphocytes. This reduced increment in exchanges in accompanied by a partial suppression of mitosis and a marked increase in chromatid breaks and rearrangements. Many of these events occur at sites of incomplete chromatid interchange. The increase in sister chromatid exchanges induced in Fanconi's anemia lymphocytes by the monofunctional alkylating agent ethylmethane sulfonate (0.25 mg/ml) was slightly less than that in normal cells. Lymphocytes from two sets of parents of the patients with Fanconi's anemia exhibited a normal response to alkylating agents, while dermal fibroblasts from two different patients with Fanconi's anemia reacted to mitomycin C with an increase in chromatid breaks, but a nearly normal increment of sister chromatid exchanges. The results suggest that chromosomal breaks and rearrangements in Fanconi's anemia lymphocytes may result from a defect in a form of repair of DNA damage.

  4. Paternal Cyclophosphamide Exposure Induces the Formation of Functional Micronuclei during the First Zygotic Division

    PubMed Central

    Grenier, Lisanne; Robaire, Bernard; Hales, Barbara F.

    2011-01-01

    Paternal exposures to cancer chemotherapeutics or environmental chemicals may have adverse effects on progeny outcome that are manifested in the preimplantation embryo. The objectives of this study were to determine the impact of paternal exposure to cyclophosphamide, an anticancer alkylating agent, on the formation, chromatin origin and function of micronuclei in cleavage stage rat embryos. Male Sprague-Dawley rats were gavaged with saline or cyclophosphamide (6 mg/kg/day) for 4 weeks and mated to naturally cycling females to collect pronuclear zygotes and 2 to 8 cell embryos. Micronuclear chromatin structure was characterized using confocal microscopy to detect immunoreactivities for H3K9me3, a marker for maternal chromatin, and lamin B, a nuclear membrane marker. DNA synthesis was monitored using EdU (5-ethynyl-2′-deoxyuridine) incorporation. Fertilization by cyclophosphamide-exposed spermatozoa led to a dramatic elevation in micronuclei in cleavage stage embryos (control embryos: 1% to 5%; embryos sired by treated males: 70%). The formation of micronuclei occurred during the first zygotic division and was associated with a subsequent developmental delay. The absence of H3K9me3 indicated that these micronuclei were of paternal origin. The micronuclei had incomplete peri-nuclear and peri-nucleolar lamin B1 membrane formation but incorporated EdU into DNA to the same extent as the main nucleus. The formation of micronuclei in response to the presence of a damaged paternal genome may play a role in increasing the rate of embryo loss that is associated with the use of assisted reproductive technologies, parenthood among cancer survivors, and paternal aging. PMID:22110683

  5. Sensitization of gastric cancer cells to alkylating agents by glaucocalyxin B via cell cycle arrest and enhanced cell death

    PubMed Central

    Ur Rahman, Muhammad Saif; Zhang, Ling; Wu, Lingyan; Xie, Yuqiong; Li, Chunchun; Cao, Jiang

    2017-01-01

    Severe side effects are major problems with chemotherapy of gastric cancer (GC). These side effects can be reduced by using sensitizing agents in combination with therapeutic drugs. In this study, the low/nontoxic dosage of glaucocalyxin B (GLB) was used with other DNA linker agents mitomycin C (MMC), cisplatin (DDP), or cyclophosphamide (CTX) to treat GC cells. Combined effectiveness of GLB with drugs was determined by proliferation assay. The molecular mechanisms associated with cell proliferation, migration, invasion, cell cycle, DNA repair/replication, apoptosis, and autophagy were investigated by immunoblotting for key proteins involved. Cell cycle and apoptosis analysis were performed by flow cytometry. Reactive oxygen species level was also examined for identification of its role in apoptosis. Proliferation assay revealed that the addition of 5 µM GLB significantly sensitizes gastric cancer SGC-7901 cells to MMC, DDP, and CTX by decreasing half-maximal inhibitory concentration (IC50) by up to 75.40%±5%, 45.10%±5%, and 52.10%±5%, respectively. GLB + drugs decreased the expression level of proteins involved in proliferation and migration, suggesting the anticancer potential of GLB + drugs. GLB + MMC, GLB + CTX, and GLB + DDP arrest the cells in G0/G1 and G1/S phase, respectively, which may be the consequence of significant decrease in the level of enzymes responsible for DNA replication and telomerase shortening. Combined use of GLB with these drugs also induces DNA damage and apoptosis by activating caspase/PARP pathways and increased production of reactive oxygen species and increased autophagy in GC cells. GLB dosage sensitizes GC cells to the alkylating agents via arresting the cell cycle and enhancing cell death. This is of significant therapeutic importance in the reduction of side effects associated with these drugs. PMID:28860714

  6. Sensitization of gastric cancer cells to alkylating agents by glaucocalyxin B via cell cycle arrest and enhanced cell death.

    PubMed

    Ur Rahman, Muhammad Saif; Zhang, Ling; Wu, Lingyan; Xie, Yuqiong; Li, Chunchun; Cao, Jiang

    2017-01-01

    Severe side effects are major problems with chemotherapy of gastric cancer (GC). These side effects can be reduced by using sensitizing agents in combination with therapeutic drugs. In this study, the low/nontoxic dosage of glaucocalyxin B (GLB) was used with other DNA linker agents mitomycin C (MMC), cisplatin (DDP), or cyclophosphamide (CTX) to treat GC cells. Combined effectiveness of GLB with drugs was determined by proliferation assay. The molecular mechanisms associated with cell proliferation, migration, invasion, cell cycle, DNA repair/replication, apoptosis, and autophagy were investigated by immunoblotting for key proteins involved. Cell cycle and apoptosis analysis were performed by flow cytometry. Reactive oxygen species level was also examined for identification of its role in apoptosis. Proliferation assay revealed that the addition of 5 µM GLB significantly sensitizes gastric cancer SGC-7901 cells to MMC, DDP, and CTX by decreasing half-maximal inhibitory concentration (IC 50 ) by up to 75.40%±5%, 45.10%±5%, and 52.10%±5%, respectively. GLB + drugs decreased the expression level of proteins involved in proliferation and migration, suggesting the anticancer potential of GLB + drugs. GLB + MMC, GLB + CTX, and GLB + DDP arrest the cells in G 0 /G 1 and G 1 /S phase, respectively, which may be the consequence of significant decrease in the level of enzymes responsible for DNA replication and telomerase shortening. Combined use of GLB with these drugs also induces DNA damage and apoptosis by activating caspase/PARP pathways and increased production of reactive oxygen species and increased autophagy in GC cells. GLB dosage sensitizes GC cells to the alkylating agents via arresting the cell cycle and enhancing cell death. This is of significant therapeutic importance in the reduction of side effects associated with these drugs.

  7. Synthesis and DNA cleavage activity of Bis-3-chloropiperidines as alkylating agents.

    PubMed

    Zuravka, Ivonne; Roesmann, Rolf; Sosic, Alice; Wende, Wolfgang; Pingoud, Alfred; Gatto, Barbara; Göttlich, Richard

    2014-09-01

    Nitrogen mustards are an important class of bifunctional alkylating agents routinely used in chemotherapy. They react with DNA as electrophiles through the formation of highly reactive aziridinium ion intermediates. The antibiotic 593A, with potential antitumor activity, can be considered a naturally occurring piperidine mustard containing a unique 3-chloropiperidine ring. However, the total synthesis of this antibiotic proved to be rather challenging. With the aim of designing simplified analogues of this natural product, we developed an efficient bidirectional synthetic route to bis-3-chloropiperidines joined by flexible, conformationally restricted, or rigid diamine linkers. The key step involves an iodide-catalyzed double cyclization of unsaturated bis-N-chloroamines to simultaneously generate both piperidine rings. Herein we describe the synthesis and subsequent evaluation of a series of novel nitrogen-bridged bis-3-chloropiperidines, enabling the study of the impact of the linker structure on DNA alkylation properties. Our studies reveal that the synthesized compounds possess DNA alkylating abilities and induce strand cleavage, with a strong preference for guanine residues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. O6-Methylguanine DNA Methyltransferase Status Does Not Predict Response or Resistance to Alkylating Agents in Well-Differentiated Pancreatic Neuroendocrine Tumors.

    PubMed

    Raj, Nitya; Klimstra, David S; Horvat, Natally; Zhang, Liying; Chou, Joanne F; Capanu, Marinela; Basturk, Olca; Do, Richard Kinh Gian; Allen, Peter J; Reidy-Lagunes, Diane

    2017-07-01

    Alkylating agents have activity in well-differentiated pancreatic neuroendocrine tumors (WD panNETs). In glioblastoma multiforme, decreased activity of O-methylguanine DNA methyltransferase (MGMT) predicts response; in panNETs, MGMT relevance is unknown. We identified patients with WD panNETs treated with alkylating agents, determined best overall response by Response Evaluation Criteria In Solid Tumors (RECIST) 1.1, and performed MGMT activity testing. Fifty-six patients were identified; 26 (46%) of the 56 patients experienced partial response, 24 (43%) of 56 experienced stable disease, and 6 (11%) of 56 experienced progression of disease. O-methylguanine DNA methyltransferase status was available for 36 tumors. For tumors with partial response, 10 (67%) of 15 were MGMT deficient, and 5 (33%) of 15 were MGMT intact. For tumors with stable disease, 7 (47%) of 15 were MGMT deficient, and 8 (53%) of 15 were MGMT intact. For tumors with progression of disease, 3 (50%) of 6 were MGMT deficient, and 3 (50%) of 6 were MGMT intact. We observed response and resistance to alkylating agents in MGMT-deficient and MGMT-intact tumors. O-methylguanine DNA methyltransferase status should not guide alkylating agent therapy in WD panNETs.

  9. Alkylating agent induced NRF2 blocks endoplasmic reticulum stress-mediated apoptosis via control of glutathione pools and protein thiol homeostasis

    PubMed Central

    Zanotto-Filho, Alfeu; Masamsetti, V. Pragathi; Loranc, Eva; Tonapi, Sonal S.; Gorthi, Aparna; Bernard, Xavier; Gonçalves, Rosângela Mayer; Moreira, José C. F.; Chen, Yidong; Bishop, Alexander J. R.

    2016-01-01

    Alkylating agents are a commonly used cytotoxic class of anticancer drugs. Understanding the mechanisms whereby cells respond to these drugs is key to identify means to improve therapy while reducing toxicity. By integrating genome-wide gene expression profiling, protein analysis and functional cell validation, we herein demonstrated a direct relationship between NRF2 and Endoplasmic Reticulum (ER) stress pathways in response to alkylating agents, which is coordinated by the availability of glutathione (GSH) pools. GSH is essential for both drug detoxification and protein thiol homeostasis within the ER, thus inhibiting ER stress induction and promoting survival; an effect independent of its antioxidant role. NRF2 accumulation induced by alkylating agents resulted in increased GSH synthesis via GCLC/GCLM enzyme, and interfering with this NRF2 response by either NRF2 knockdown or GCLC/GCLM inhibition with buthionine sulfoximine (BSO) caused accumulation of damaged proteins within the ER, leading to PERK-dependent apoptosis. Conversely, upregulation of NRF2, through KEAP1 depletion or NRF2-myc overexpression, or increasing GSH levels with N-acetylcysteine (NAC) or glutathione-ethyl-ester (GSH-E), decreased ER stress and abrogated alkylating agents-induced cell death. Based on these results, we identified a subset of lung and head-and-neck carcinomas with mutations in either KEAP1 or NRF2/NFE2L2 genes that correlate with NRF2 targets overexpression and poor survival. In KEAP1 mutant cancer cells, NRF2 knockdown and GSH depletion increased cell sensitivity via ER stress induction in a mechanism specific to alkylating drugs. Overall, we show that the NRF2-GSH influence on ER homeostasis implicates defects in NRF2-GSH or ER stress machineries as affecting alkylating therapy toxicity. PMID:27638861

  10. Alkylating Agent-Induced NRF2 Blocks Endoplasmic Reticulum Stress-Mediated Apoptosis via Control of Glutathione Pools and Protein Thiol Homeostasis.

    PubMed

    Zanotto-Filho, Alfeu; Masamsetti, V Pragathi; Loranc, Eva; Tonapi, Sonal S; Gorthi, Aparna; Bernard, Xavier; Gonçalves, Rosângela Mayer; Moreira, José C F; Chen, Yidong; Bishop, Alexander J R

    2016-12-01

    Alkylating agents are a commonly used cytotoxic class of anticancer drugs. Understanding the mechanisms whereby cells respond to these drugs is key to identify means to improve therapy while reducing toxicity. By integrating genome-wide gene expression profiling, protein analysis, and functional cell validation, we herein demonstrated a direct relationship between NRF2 and Endoplasmic Reticulum (ER) stress pathways in response to alkylating agents, which is coordinated by the availability of glutathione (GSH) pools. GSH is essential for both drug detoxification and protein thiol homeostasis within the ER, thus inhibiting ER stress induction and promoting survival, an effect independent of its antioxidant role. NRF2 accumulation induced by alkylating agents resulted in increased GSH synthesis via GCLC/GCLM enzyme, and interfering with this NRF2 response by either NRF2 knockdown or GCLC/GCLM inhibition with buthionine sulfoximine caused accumulation of damaged proteins within the ER, leading to PERK-dependent apoptosis. Conversely, upregulation of NRF2, through KEAP1 depletion or NRF2-myc overexpression, or increasing GSH levels with N-acetylcysteine or glutathione-ethyl-ester, decreased ER stress and abrogated alkylating agents-induced cell death. Based on these results, we identified a subset of lung and head-and-neck carcinomas with mutations in either KEAP1 or NRF2/NFE2L2 genes that correlate with NRF2 target overexpression and poor survival. In KEAP1-mutant cancer cells, NRF2 knockdown and GSH depletion increased cell sensitivity via ER stress induction in a mechanism specific to alkylating drugs. Overall, we show that the NRF2-GSH influence on ER homeostasis implicates defects in NRF2-GSH or ER stress machineries as affecting alkylating therapy toxicity. Mol Cancer Ther; 15(12); 3000-14. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.

    PubMed

    Tran, Thai Q; Ishak Gabra, Mari B; Lowman, Xazmin H; Yang, Ying; Reid, Michael A; Pan, Min; O'Connor, Timothy R; Kong, Mei

    2017-11-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.

  12. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes

    PubMed Central

    Tran, Thai Q.; Ishak Gabra, Mari B.; Lowman, Xazmin H.; Yang, Ying; Reid, Michael A.; Pan, Min; O’Connor, Timothy R.

    2017-01-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer. PMID:29107960

  13. Activation of the chemosensing transient receptor potential channel A1 (TRPA1) by alkylating agents.

    PubMed

    Stenger, Bernhard; Zehfuss, Franziska; Mückter, Harald; Schmidt, Annette; Balszuweit, Frank; Schäfer, Eva; Büch, Thomas; Gudermann, Thomas; Thiermann, Horst; Steinritz, Dirk

    2015-09-01

    The transient receptor potential ankyrin 1 (TRPA1) cation channel is expressed in different tissues including skin, lung and neuronal tissue. Recent reports identified TRPA1 as a sensor for noxious substances, implicating a functional role in the molecular toxicology. TRPA1 is activated by various potentially harmful electrophilic substances. The chemical warfare agent sulfur mustard (SM) is a highly reactive alkylating agent that binds to numerous biological targets. Although SM is known for almost 200 years, detailed knowledge about the pathophysiology resulting from exposure is lacking. A specific therapy is not available. In this study, we investigated whether the alkylating agent 2-chloroethyl-ethylsulfide (CEES, a model substance for SM-promoted effects) and SM are able to activate TRPA1 channels. CEES induced a marked increase in the intracellular calcium concentration ([Ca(2+)]i) in TRPA1-expressing but not in TRPA1-negative cells. The TRP-channel blocker AP18 diminished the CEES-induced calcium influx. HEK293 cells permanently expressing TRPA1 were more sensitive toward cytotoxic effects of CEES compared with wild-type cells. At low CEES concentrations, CEES-induced cytotoxicity was prevented by AP18. Proof-of-concept experiments using SM resulted in a pronounced increase in [Ca(2+)]i in HEK293-A1-E cells. Human A549 lung epithelial cells, which express TRPA1 endogenously, reacted with a transient calcium influx in response to CEES exposure. The CEES-dependent calcium response was diminished by AP18. In summary, our results demonstrate that alkylating agents are able to activate TRPA1. Inhibition of TRPA1 counteracted cellular toxicity and could thus represent a feasible approach to mitigate SM-induced cell damage.

  14. Effect of green juice and their bioactive compounds on genotoxicity induced by alkylating agents in mice.

    PubMed

    Fagundes, Gabriela Elibio; Damiani, Adriani Paganini; Borges, Gabriela Daminelli; Teixeira, Karina Oliveira; Jesus, Maiellen Martins; Daumann, Francine; Ramlov, Fernanda; Carvalho, Tiago; Leffa, Daniela Dimer; Rohr, Paula; Moraes De Andrade, Vanessa

    2017-01-01

    Kale juice (Brassica oleracea L. var. acephala D.C.) is a reliable source of dietary carotenoids and typically contains the highest concentrations of lutein (LT) and beta-carotene (BC) among green leafy vegetables. As a result of their antioxidant properties, dietary carotenoids are postulated to decrease the risk of disease occurrence, particularly certain cancers. The present study aimed to (1) examine the genotoxic and antigenotoxic activity of natural and commercially available juices derived from Brassica oleracea and (2) assess influence of LT or BC against DNA damage induced by alkylating agents such as methyl methanesulfonate (MS) or cyclophosphamide (CP) in vivo in mice. Male Swiss mice were divided into groups of 6 animals, which were treated with water, natural, or commercial Brassica oleraceae juices (kale), LT, BC, MMS, or CP. After treatment, DNA damage was determined in peripheral blood lymphocytes using the comet assay. Results demonstrated that none of the Brassica oleraceae juices or carotenoids produced genotoxic effects. In all examined cell types, kale juices or carotenoids inhibited DNA damage induced by MMS or CP administered either pre- or posttreatment by 50 and 20%, respectively. Under our experimental conditions, kale leaf juices alone exerted no marked genotoxic or clastogenic effects. However, a significant decrease in DNA damage induced by MMS or CP was noted. This effect was most pronounced in groups that received juices, rather than carotenoids, suggesting that the synergy among constituents present in the food matrix may be more beneficial than the action of single compounds. Data suggest that the antigenotoxic properties of kale juices may be of therapeutic importance.

  15. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents.

    PubMed Central

    Knebel, A; Rahmsdorf, H J; Ullrich, A; Herrlich, P

    1996-01-01

    Several non-physiologic agents such as radiation, oxidants and alkylating agents induce ligand-independent activation of numerous receptor tyrosine kinases (RTKs) and of protein tyrosine kinases at the inner side of the plasma membrane (e.g. Dévary et al., 1992; Sachsenmaier et al., 1994; Schieven et al., 1994; Coffer et al., 1995). Here we show additional evidence for the activation of epidermal growth factor receptor (EGFR), and we show activation of v-ErbB, ErbB2 and platelet-derived growth factor receptor. As a common principle of action the inducing agents such as UVC, UVB, UVA, hydrogen peroxide and iodoacetamide inhibit receptor tyrosine dephosphorylation in a thiol-sensitive and, with the exception of the SH-alkylating agent, reversible manner. EGFR dephosphorylation can also be modulated by these non-physiologic agents in isolated plasma membranes in the presence of Triton X-100. Further, substrate (EGFR) and phosphatase have been separated: a membrane preparation of cells that have been treated with epidermal growth factor (EGF) and whose dephosphorylating enzymes have been permanently destroyed by iodoacetamide can be mixed with a membrane preparation from untreated cells which re-establishes EGFR dephosphorylation. This dephosphorylation can be modulated in vitro by UV and thiol agents. We conclude that RTKs exhibit significant spontaneous protein kinase activity; several adverse agents target (an) essential SH-group(s) carried by (a) membrane-bound protein tyrosine phosphatase(s). Images PMID:8895576

  16. Quantitative assessment of the dose-response of alkylating agents in DNA repair proficient and deficient ames tester strains.

    PubMed

    Tang, Leilei; Guérard, Melanie; Zeller, Andreas

    2014-01-01

    Mutagenic and clastogenic effects of some DNA damaging agents such as methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) have been demonstrated to exhibit a nonlinear or even "thresholded" dose-response in vitro and in vivo. DNA repair seems to be mainly responsible for these thresholds. To this end, we assessed several mutagenic alkylators in the Ames test with four different strains of Salmonella typhimurium: the alkyl transferases proficient strain TA1535 (Ogt+/Ada+), as well as the alkyl transferases deficient strains YG7100 (Ogt+/Ada-), YG7104 (Ogt-/Ada+) and YG7108 (Ogt-/Ada-). The known genotoxins EMS, MMS, temozolomide (TMZ), ethylnitrosourea (ENU) and methylnitrosourea (MNU) were tested in as many as 22 concentration levels. Dose-response curves were statistically fitted by the PROAST benchmark dose model and the Lutz-Lutz "hockeystick" model. These dose-response curves suggest efficient DNA-repair for lesions inflicted by all agents in strain TA1535. In the absence of Ogt, Ada is predominantly repairing methylations but not ethylations. It is concluded that the capacity of alkyl-transferases to successfully repair DNA lesions up to certain dose levels contributes to genotoxicity thresholds. Copyright © 2013 Wiley Periodicals, Inc.

  17. Subclinical impairment of ovarian reserve in systemic lupus erythematosus patients with normal menstruation not using alkylating therapy.

    PubMed

    Ma, Wenhong; Zhan, Zhongping; Liang, Xiaoyan; Chen, Jianhui; Huang, Xingfang; Liao, Caiyun

    2013-12-01

    Disease activity is a major factor in menstrual disorders in systemic lupus erythematosus (SLE) patients not receiving alkylating therapy. However, the ovarian reserve of SLE women with normal menstruation is still unclear. Twenty-three SLE patients naïve to cytotoxic agents (SLE group) and nineteen SLE patients receiving current or previous cyclophosphamide (CTX) therapy (without other cytotoxic agents; SLE-CTX group) were enrolled. Twenty-one age-matched healthy women served as controls. All patients and controls had a regular menstrual cycle. Basal hormone levels, including follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and anti-Müllerian hormone (AMH), and antral follicle count (AFC) were analyzed in the two study groups and compared with the control group. No significant differences were found between the SLE, SLE-CTX, and control groups in age, body mass index (BMI), and basal FSH and LH levels. The E2 (P=0.023) levels were high and the AMH (P=0.000) values and AFC (P=0.001) were significantly lower in the SLE and SLE-CTX groups compared to control. However, these values were similar between the SLE and SLE-CTX groups. SLE patients not receiving alkylating therapy who had normal menstruation and short illness duration still had an impaired ovarian reserve.

  18. Glutathione Depletion Induced by c-Myc Downregulation Triggers Apoptosis on Treatment with Alkylating Agents1

    PubMed Central

    Biroccio, Annamaria; Benassi, Barbara; Fiorentino, Francesco; Zupi, Gabriella

    2004-01-01

    Abstract Here we investigate the mechanism(s) involved in the c-Myc-dependent drug response of melanoma cells. By using three M14-derived c-Myc low-expressing clones, we demonstrate that alkylating agents, cisplatin and melphalan, trigger apoptosis in the c-Myc antisense transfectants, but not in the parental line. On the contrary, topoisomerase inhibitors, adriamycin and camptothecin, induce apoptosis to the same extent regardless of c-Myc expression. Because we previously demonstrated that c-Myc downregulation decreases glutathione (GSH) content, we evaluated the role of GSH in the apoptosis induced by the different drugs. In control cells treated with one of the alkylating agents or the others, GSH depletion achieved by l-buthionine-sulfoximine preincubation opens the apoptotic pathway. The apoptosis proceeded through early Bax relocalization, cytochrome c release, and concomitant caspase-9 activation, whereas reactive oxygen species production and alteration of mitochondria membrane potential were late events. That GSH was determining in the c-Myc-dependent drug-induced apoptosis was demonstrated by altering the intracellular GSH content of the c-Myc low-expressing cells up to the level of controls. Indeed, GSH ethyl ester-mediated increase of GSH abrogated apoptosis induced by cisplatin and melphalan by inhibition of Bax/cytochrome c redistribution. The relationship among c-Myc, GSH content, and the response to alkylating agent has been also evaluated in the M14 Myc overexpressing clones as well as in the melanoma JR8 c-Myc antisense transfectants. All together, these results demonstrate that GSH plays a key role in governing c-Myc-dependent drug-induced apoptosis. PMID:15153331

  19. Hypoxia-Activated Alkylating Agents in BRCA1-Mutant Ovarian Serous Carcinoma.

    PubMed

    Conroy, Michael; Borad, Mitesh J; Bryce, Alan H

    2017-07-26

    Breast cancer 1 antigen (BRCA 1) and breast cancer 2 antigen (BRCA2) genes play a significant role in deoxyribonucleic acid (DNA) repair by means of interstrand crosslink repair, and deleterious germline mutations of these are responsible for most hereditary breast and ovarian cancers. Therapeutic strategies which specifically target interstrand crosslink repair can therefore be helpful in patients with harmful mutations. We describe two patients with advanced ovarian cancer and deleterious BRCA1 mutations who were treated with TH-302, a hypoxia-activated alkylating agent.

  20. Vanadium(III)-l-cysteine enhances the sensitivity of murine breast adenocarcinoma cells to cyclophosphamide by promoting apoptosis and blocking angiogenesis.

    PubMed

    Basu, Abhishek; Bhattacharjee, Arin; Baral, Rathindranath; Biswas, Jaydip; Samanta, Amalesh; Bhattacharya, Sudin

    2017-05-01

    Various epidemiological and preclinical studies have already established the cancer chemopreventive potential of vanadium-based compounds. In addition to its preventive efficacy, studies have also indicated the abilities of vanadium-based compounds to induce cell death selectively toward malignant cells. Therefore, the objective of the present investigation is to improve the therapeutic efficacy and toxicity profile of an alkylating agent, cyclophosphamide, by the concurrent use of an organovanadium complex, vanadium(III)-l-cysteine. In this study, vanadium(III)-l-cysteine (1 mg/kg body weight, per os) was administered alone as well as in combination with cyclophosphamide (25 mg/kg body weight, intraperitoneal) in concomitant and pretreatment schedule in mice bearing breast adenocarcinoma cells. The results showed that the combination treatment significantly decreased the tumor burden and enhanced survivability of tumor-bearing mice through generation of reactive oxygen species in tumor cells. These ultimately led to DNA damage, depolarization of mitochondrial membrane potential, and apoptosis in tumor cells. Further insight into the molecular pathway disclosed that the combination treatment caused upregulation of p53 and Bax and suppression of Bcl-2 followed by the activation of caspase cascade and poly (ADP-ribose) polymerase cleavage. Administration of vanadium(III)-l-cysteine also resulted in significant attenuation of peritoneal vasculature and sprouting of the blood vessels by decreasing the levels of vascular endothelial growth factor A and matrix metalloproteinase 9 in the ascites fluid of tumor-bearing mice. Furthermore, vanadium(III)-l-cysteine significantly attenuated cyclophosphamide-induced hematopoietic, hepatic, and genetic damages and provided additional survival advantages. Hence, this study suggested that vanadium(III)-l-cysteine may offer potential therapeutic benefit in combination with cyclophosphamide by augmenting anticancer efficacy and

  1. Female cancer survivors exposed to alkylating-agent chemotherapy have unique reproductive hormone profiles.

    PubMed

    Johnson, Lauren; Sammel, Mary D; Schanne, Allison; Lechtenberg, Lara; Prewitt, Maureen; Gracia, Clarisa

    2016-12-01

    To evaluate reproductive hormone patterns in women exposed to alkylating-agent chemotherapy. Prospective cohort. University hospital. Normally menstruating mid-reproductive-age women (20-35 years old) who had previously been exposed to alkylating-agent chemotherapy for cancer treatment were compared with two healthy control populations: similarly-aged women and late-reproductive-age women (43-50 years old). Subjects collected daily urine samples for one cycle. Integrated urinary pregnanediol glucuronide (PDG) and estrone conjugate (E1c) and urinary excretion of gonadotropins (FSH and LH). Thirty-eight women (13 survivors, 11 same-age control subjects, 14 late-reproductive-age control subjects) provided 1,082 urine samples. Cycle length, luteal phase length, and evidence of luteal activity were similar among the groups. As expected, ovarian reserve was impaired in cancer survivors compared with same-age control subjects but similar between survivors and late-reproductive-age control subjects. In contrast, survivors had total and peak PDG levels that were similar to same-age control subjects and higher than those observed in late-reproductive-age control subjects. Survivors had higher E1c levels than both same-age and late-reproductive-age control subjects. There was no difference in urinary gonadotropins among the groups. Women exposed to alkylating agents have a unique reproductive hormone milieu that is not solely explained by age or ovarian reserve. The urinary hormone profile observed in survivors appears more similar to same-age control subjects than to late-reproductive-age women with similar ovarian reserve, which may suggest that age plays a more important role than ovarian reserve in the follicular dynamics of survivors. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Impact of Therapy Sequence with Alkylating Agents and MGMT Status in Patients with Advanced Neuroendocrine Tumors.

    PubMed

    Krug, Sebastian; Boch, Michael; Rexin, Peter; Gress, Thomas M; Michl, Patrick; Rinke, Anja

    2017-05-01

    Alkylating chemotherapeutics with either a streptozotocin-(STZ) or temozolomide-(TEM) backbone are routinely used in patients with progressive and unresectable pancreatic neuroendocrine tumors (PNET). In addition, dacarbazine (DTIC) was described as an alternative alkylating therapy option for PNETs. The optimal treatment sequence with alkylating compounds and a potential use of O6-methylguanine-DNA methyltransferase (MGMT) level as predictive biomarker have not yet been sufficiently elucidated. The aim of our study was the evaluation of therapy sequence with either STZ-based treatment followed by DTIC (group A) or the inverse schedule with upfront DTIC (group B) and to correlate MGMT status with clinicopathological characteristics and response to therapy. We retrospectively analyzed 28 patients with neuroendocrine tumors (NET) who were treated with STZ-based therapy and DTIC. Additionally, in a second group MGMT immunohistochemistry was performed from primary and metastatic tumor sites. For statistical evaluation Kaplan-Meier analysis, Cox regression methods and Fisher's exact test were used. There was no difference of objective response and disease control between either STZ-based therapy followed by DTIC treatment (group A) after progression or the reverse sequence (group B). Median time to progression (TTP) was estimated to be 21 months in both arms. First-line STZ-based chemotherapy was not superior to first-line DTIC treatment (16 vs. 13 months; p=0.8). MGMT status did not correlate with clinicopathological characteristics or response to therapy with these alkylating agents. Upfront chemotherapy with either STZ-based treatment or DTIC monotherapy showed similar efficacy and median TTP rates. In this study, MGMT protein expression assessed by immunohistochemistry did not play an important role as a predictive marker for alkylating agents. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents.

    PubMed

    Chen, Clark C; Taniguchi, Toshiyasu; D'Andrea, Alan

    2007-05-01

    DNA alkylating agents including temozolomide (TMZ) and 1,3-bis[2-chloroethyl]-1-nitroso-urea (BCNU) are the most common form of chemotherapy in the treatment of gliomas. Despite their frequent use, the therapeutic efficacy of these agents is limited by the development of resistance. Previous studies suggest that the mechanism of this resistance is complex and involves multiple DNA repair pathways. To better define the pathways contributing to the mechanisms underlying glioma resistance, we tested the contribution of the Fanconi anemia (FA) DNA repair pathway. TMZ and BCNU treatment of FA-proficient cell lines led to a dose- and time-dependent increase in FANCD2 mono-ubiquitination and FANCD2 nuclear foci formation, both hallmarks of FA pathway activation. The FA-deficient cells were more sensitive to TMZ/BCNU relative to their corrected, isogenic counterparts. To test whether these observations were pertinent to glioma biology, we screened a panel of glioma cell lines and identified one (HT16) that was deficient in the FA repair pathway. This cell line exhibited increased sensitivity to TMZ and BCNU relative to the FA-proficient glioma cell lines. Moreover, inhibition of FA pathway activation by a small molecule inhibitor (curcumin) or by small interference RNA suppression caused increased sensitivity to TMZ/BCNU in the U87 glioma cell line. The BCNU sensitizing effect of FA inhibition appeared additive to that of methyl-guanine methyl transferase inhibition. The results presented in this paper underscore the complexity of cellular resistance to DNA alkylating agents and implicate the FA repair pathway as a determinant of this resistance.

  4. Profiling the nucleobase and structure selectivity of anticancer drugs and other DNA alkylating agents by RNA sequencing.

    PubMed

    Gillingham, Dennis; Sauter, Basilius

    2018-05-06

    Drugs that covalently modify DNA are components of most chemotherapy regimens, often serving as first-line treatments. Classically the chemical reactivity of DNA alkylators has been determined in vitro with short oligonucleotides. Here we use next generation RNA sequencing to report on the chemoselectivity of alkylating agents. We develop the method with the well-known clinically used DNA modifiying drugs streptozotocin and temozolomide, and then apply the technique to profile RNA modification with uncharacterized alkylation reactions such as with powerful electrophiles like trimethylsilyldiazomethane. The multiplexed and massively parallel format of NGS offers analyses of chemical reactivity in nucleic acids to be accomplished in less time with greater statistical power. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents

    PubMed Central

    Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  6. Synergy of irofulven in combination with other DNA damaging agents: synergistic interaction with altretamine, alkylating, and platinum-derived agents in the MV522 lung tumor model.

    PubMed

    Kelner, Michael J; McMorris, Trevor C; Rojas, Rafael J; Estes, Leita A; Suthipinijtham, Pharnuk

    2008-12-01

    Irofulven (MGI 114, NSC 683863) is a semisynthetic derivative of illudin S, a natural product present in the Omphalotus illudins (Jack O'Lantern) mushroom. This novel agent produces DNA damage, that in contrast to other agents, is predominately ignored by the global genome repair pathway of the nucleotide excision repair (NER)(2) system. The aim of this study was to determine the antitumor activity of irofulven when administered in combination with 44 different DNA damaging agents, whose damage is in general detected and repaired by the genome repair pathway. The human lung carcinoma MV522 cell line and its corresponding xenograft model were used to evaluate the activity of irofulven in combination with different DNA damaging agents. Two main classes of DNA damaging agents, platinum-derived agents, and select bifunctional alkylating agents, demonstrated in vivo synergistic or super-additive interaction with irofulven. DNA helicase inhibiting agents also demonstrated synergy in vitro, but an enhanced interaction with irofulven could not be demonstrated in vivo. There was no detectable synergistic activity between irofulven and agents capable of inducing DNA cleavage or intercalating into DNA. These results indicate that the antitumor activity of irofulven is enhanced when combined with platinum-derived agents, altretamine, and select alkylating agents such as melphalan or chlorambucil. A common factor between these agents appears to be the production of intrastrand DNA crosslinks. The synergistic interaction between irofulven and other agents may stem from the nucleotide excision repair system being selectively overwhelmed at two distinct points in the pathway, resulting in prolonged stalling of transcription forks, and subsequent initiation of apoptosis.

  7. Beyond Alkylating Agents for Gliomas: Quo Vadimus?

    PubMed

    Puduvalli, Vinay K; Chaudhary, Rekha; McClugage, Samuel G; Markert, James

    2017-01-01

    Recent advances in therapies have yielded notable success in terms of improved survival in several cancers. However, such treatments have failed to improve outcome in patients with gliomas for whom surgery followed by radiation therapy and chemotherapy with alkylating agents remain the standard of care. Genetic and epigenetic studies have helped identify several alterations specific to gliomas. Attempts to target these altered pathways have been unsuccessful due to various factors, including tumor heterogeneity, adaptive resistance of tumor cells, and limitations of access across the blood-brain barrier. Novel therapies that circumvent such limitations have been the focus of intense study and include approaches such as immunotherapy, targeting of signaling hubs and metabolic pathways, and use of biologic agents. Immunotherapeutic approaches including tumor-targeted vaccines, immune checkpoint blockade, antibody-drug conjugates, and chimeric antigen receptor-expressing cell therapies are in various stages of clinical trials. Similarly, identification of key metabolic pathways or converging hubs of signaling pathways that are tumor specific have yielded novel targets for therapy of gliomas. In addition, the failure of conventional therapies against gliomas has led to a growing interest among patients in the use of alternative therapies, which in turn has necessitated developing evidence-based approaches to the application of such therapies in clinical studies. The development of these novel approaches bears potential for providing breakthroughs in treatment of more meaningful and improved outcomes for patients with gliomas.

  8. Monoalkyl sulfates as alkylating agents in water, alkylsulfatase rate enhancements, and the “energy-rich” nature of sulfate half-esters

    PubMed Central

    Wolfenden, Richard; Yuan, Yang

    2007-01-01

    Alkyl sulfate monoesters are involved in cell signaling and structure. Alkyl sulfates are also present in many commercial detergents. Here, we show that monomethyl sulfate acts as an efficient alkylating agent in water, reacting spontaneously with oxygen nucleophiles >100-fold more rapidly than do alkylsulfonium ions, the usual methyl donors in living organisms. These reactions of methyl sulfate, which are much more rapid than its hydrolysis, are insensitive to the nature of the attacking nucleophile, with a Brønsted βnuc value of −0.01. Experiments at elevated temperatures indicate a rate constant of 2 × 10−11 s−1 for the uncatalyzed hydrolysis of methyl sulfate at 25°C (t1/2 = 1,100 y), corresponding to a rate enhancement of ≈1011-fold by a human alkylsulfatase. Equilibria of formation of methyl sulfate from methanol and sodium hydrogen sulfate indicate a group transfer potential (ΔG′pH7) of −8.9 kcal/mol for sulfate ester hydrolysis. The magnitude of that value, involving release of the strong acid HSO4−, helps to explain the need for harnessing the free energy of hydrolysis of two ATP molecules in activating sulfate for the biosynthesis of sulfate monoesters. The “energy-rich” nature of monoalkyl sulfate esters, coupled with their marked resistance to hydrolysis, renders them capable of acting as sulfating or alkylating agents under relatively mild conditions. These findings raise the possibility that, under appropriate circumstances, alkyl groups may undergo transfer from alkyl sulfate monoesters to biological target molecules. PMID:17182738

  9. Dose-Effect Relationship of Alkylating Agents on Testicular Function in Male Survivors of Childhood Lymphoma.

    PubMed

    Servitzoglou, Marina; De Vathaire, Florent; Oberlin, Odile; Patte, Catherine; Thomas-Teinturier, Cécile

    2015-01-01

    The purpose of our study was to assess the gonadal function in male survivors of childhood lymphoma. We studied 171 male survivors of childhood lymphoma (83 with B-cell non-Hodgkin lymphoma [B-NHL], 32 with T-cell non-Hodgkin lymphoma [T-NHL], 50 with Hodgkin lymphoma [HL], and 6 with anaplastic large-cell lymphoma [ALCL]), measuring follicle-stimulating hormone [FSH] and luteinizing hormone [LH] levels at a median age of 21.1 (17-30.4) years after a median delay of 9.3 (2-22.4) years from treatment. FSH levels were above normal range (≥10 IU/L) in 42.1% and LH levels ≥8 IU/L in only 8.9% of survivors. In multivariate analysis, only the following chemotherapeutic agents were associated with higher FSH or LH levels: cyclophosphamide (P < .0001, .04), lomustine (CCNU; P = .002, 0.04), and procarbazine (P < .0001, .07). No significant correlation was found between FSH or LH levels and age or pubertal status at diagnosis. Mean FSH level was significantly lower in NHL survivors treated more recently: 6 ± 5.1 IU/L in B-NHL survivors treated since 1986 versus 12.3 ± 5.4 IU/L for those treated before 1981 (P = .0001), and 6.8 ± 9.6 IU/L in T-NHL survivors treated since 1989 versus 9.4 ± 5.7 IU/L for those treated before 1989 (P = .035). In HL, mean FSH level was 12.4 ± 9.9 IU/L following procarbazine containing chemotherapy versus 3.4 ± 1.9 IU/L in the absence of procarbazine and increased significantly with the number of MOPP/OPPA (mechlorethamine, Oncovin [vincristine], procarbazine, and prednisone/Oncovin, procarbazine, and prednisone, and Adriamycin [doxorubicin]) courses received, from 6.8 ± 5.7 IU/L for 1-2 MOPP/OPPA to 12.6 ± 7.5 for 3-4 MOPP/OPPA and 19.6 ± 13.3 for more than 4 MOPP/OPPA (P for trend = .006). Testicular toxicity of alkylating agents on childhood lymphoma survivors is dose dependent and not correlated to diagnosis, age, or pubertal status at diagnosis.

  10. Progressive outer retinal necrosis after rituximab and cyclophosphamide therapy

    PubMed Central

    Dogra, Mohit; Bajgai, Priya; Kumar, Ashok; Sharma, Aman

    2018-01-01

    We report a case of progressive outer retinal necrosis (PORN) in a patient of microscopic polyangitis (MPA), being treated with immunosuppressive drugs such as cyclophosphamide and rituximab. Her aqueous tap was positive for Varicella Zoster virus and she was treated with oral and intravitreal antivirals, along with discontinuation of one of the immunosuppressive agents, i.e. rituximab, which might have led to reactivation of the virus causing necrotizing retinitis lesions. Rituximab and cyclophosphamide are extremely potent drugs, which are necessary to manage immunological disorders such as MPA. However, they may predispose the patient to serious complications like viral infections, including PORN. PMID:29582832

  11. Progressive outer retinal necrosis after rituximab and cyclophosphamide therapy.

    PubMed

    Dogra, Mohit; Bajgai, Priya; Kumar, Ashok; Sharma, Aman

    2018-04-01

    We report a case of progressive outer retinal necrosis (PORN) in a patient of microscopic polyangitis (MPA), being treated with immunosuppressive drugs such as cyclophosphamide and rituximab. Her aqueous tap was positive for Varicella Zoster virus and she was treated with oral and intravitreal antivirals, along with discontinuation of one of the immunosuppressive agents, i.e. rituximab, which might have led to reactivation of the virus causing necrotizing retinitis lesions. Rituximab and cyclophosphamide are extremely potent drugs, which are necessary to manage immunological disorders such as MPA. However, they may predispose the patient to serious complications like viral infections, including PORN.

  12. Alkylation of enolates: An electrophilicity perspective

    NASA Astrophysics Data System (ADS)

    Elango, M.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P. K.

    Enolates are ambient nucleophiles, and alkylation can occur either at a carbon or at an oxygen site. It is known that the ratio of C/O alkylation depends significantly on various factors, including the type of enolate, alkylating agent, site of alkylation, and solvent environment. Analysis of regioselectivity and solvent effects on alkylation of lithium enolates is investigated using various reactivity descriptors, including generalized philicity. These results point out the reliability of both global and local reactivity descriptors in providing significant information about site selectivity and chemical reactivity of lithium enolates.

  13. Comparison of the Lonidamine Potentiated Effect of Nitrogen Mustard Alkylating Agents on the Systemic Treatment of DB-1 Human Melanoma Xenografts in Mice.

    PubMed

    Nath, Kavindra; Nelson, David S; Putt, Mary E; Leeper, Dennis B; Garman, Bradley; Nathanson, Katherine L; Glickson, Jerry D

    2016-01-01

    Previous NMR studies demonstrated that lonidamine (LND) selectively diminishes the intracellular pH (pHi) of DB-1 melanoma and mouse xenografts of a variety of other prevalent human cancers while decreasing their bioenergetic status (tumor βNTP/Pi ratio) and enhancing the activities of melphalan and doxorubicin in these cancer models. Since melphalan and doxorubicin are highly toxic agents, we have examined three other nitrogen (N)-mustards, chlorambucil, cyclophosphamide and bendamustine, to determine if they exhibit similar potentiation by LND. As single agents LND, melphalan and these N-mustards exhibited the following activities in DB-1 melanoma xenografts; LND: 100% tumor surviving fraction (SF); chlorambucil: 100% SF; cyclophosphamide: 100% SF; bendamustine: 79% SF; melphalan: 41% SF. When combined with LND administered 40 min prior to administration of the N-mustard (to maximize intracellular acidification) the following responses were obtained; chlorambucil: 62% SF; cyclophosphamide: 42% SF; bendamustine: 36% SF; melphalan: 10% SF. The effect of LND on the activities of these N-mustards is generally attributed to acid stabilization of the aziridinium active intermediate, acid inhibition of glutathione-S-transferase, which acts as a scavenger of aziridinium, and acid inhibition of DNA repair by O6-alkyltransferase. Depletion of ATP by LND may also decrease multidrug resistance and increase tumor response. At similar maximum tolerated doses, our data indicate that melphalan is the most effective N-mustard in combination with LND when treating DB-1 melanoma in mice, but the choice of N-mustard for coadministration with LND will also depend on the relative toxicities of these agents, and remains to be determined.

  14. Cardanol: toxicogenetic assessment and its effects when combined with cyclophosphamide

    PubMed Central

    Schneider, Beatriz Ursinos Catelan; Meza, Alisson; Beatriz, Adilson; Pesarini, João Renato; de Carvalho, Pamela Castilho; Mauro, Mariana de Oliveira; Karaziack, Caroline Bilhar; Cunha-Laura, Andréa Luiza; Monreal, Antônio Carlos Duenhas; Matuo, Renata; de Lima, Dênis Pires; Oliveira, Rodrigo Juliano

    2016-01-01

    Abstract Cardanol is an effective antioxidant and is a compound with antimutagenic and antitumoral activity. Here, we evaluated the genotoxic and mutagenic potential of saturated side chain cardanol and its effects in combination with cyclophosphamide in preventing DNA damage, apoptosis, and immunomodulation. Swiss mice were treated with cardanol (2.5, 5 and 10 mg/kg) alone or in combination with cyclophosphamide (100 mg/kg). The results showed that cardanol is an effective chemopreventive compound, with damage reduction percentages that ranged from 18.9 to 31.76% in the comet assay and from 45 to 97% in the micronucleus assay. Moreover, cardanol has the ability to reduce the frequency of apoptosis induced by cyclophosphamide. The compound did not show immunomodulatory activity. A final interpretation of the data showed that, despite its chemoprotective capacity, cardanol has a tendency to induce DNA damage. Hence, caution is needed if this compound is used as a chemopreventive agent. Also, this compound is likely not suitable as an adjuvant in chemotherapy treatments that use cyclophosphamide. PMID:27303909

  15. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    PubMed

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Photo-triggered fluorescent theranostic prodrugs as DNA alkylating agents for mechlorethamine release and spatiotemporal monitoring.

    PubMed

    Cao, Yanting; Pan, Rong; Xuan, Weimin; Wei, Yongyi; Liu, Kejian; Zhou, Jiahong; Wang, Wei

    2015-06-28

    We describe a new theranostic strategy for selective delivery and spatiotemporal monitoring of mechlorethamine, a DNA alkylating agent. A photo-responsive prodrug is designed and composed of a photolabile o-nitrophenylethyl group, a DNA alkylating mechlorethamine drug and a coumarin fluorophore. Masking of the "N" in mechlorethamine in a positively charged state in the prodrug renders it inactive, non-toxic, selective and non-fluorescent. Indeed, the stable prodrug shows negligible cytotoxicity towards normal cells with and without UV activation and is completely non-fluorescent. However, upon photo-irradiation, the active mechlorethamine is released and induces efficient DNA cross-links, accompanied by a strong fluorescence enhancement (152 fold). Furthermore, DNA cross-linking activity from the release can be transformed into anticancer activity observed in in vitro studies of tumor cells. Importantly, the drug release progress and the movement can be conveniently monitored by fluorescence spectroscopy. The mechanistic study proves that the DNA cross-linking activity is mainly due to the release of DNA alkylating mechlorethamine. Altogether, the studies show the power of the theranostic strategy for efficient therapy in cancer treatment.

  17. Cytotoxic and apoptotic effects of bortezomib and gefitinib compared to alkylating agents on human glioblastoma cells.

    PubMed

    Pédeboscq, Stéphane; L'Azou, Béatrice; Passagne, Isabelle; De Giorgi, Francesca; Ichas, François; Pometan, Jean-Paul; Cambar, Jean

    2008-01-01

    Glioblastoma is a malignant astrocytic tumor with a median survival of about 12 months for which new therapeutic strategies are required. We therefore examined the cytotoxicity of anticancer drugs with different mechanisms of action on two human glioblastoma cell lines expressing various levels of EGFR (epidermal growth factor receptor). Apoptosis induced by these anticancer agents was evaluated by flow cytometry. The cytotoxicity of alkylating drugs followed a dose-effect curve and cytotoxicity index values were lower with carboplatin than with BCNU and temozolomide. Anti-EGFR gefitinib (10 microM) cytotoxicity on DBTRG.05-MG expressing high levels of EGFR was significantly higher than on U87-MG expressing low levels of EGFR. Carboplatin and temozolomide cytotoxicity was potentiated with the addition of gefitinib on DBTRG.05-MG. Among the anticancer agents tested, the proteasome inhibitor bortezomib was the most cytotoxic with very low IC50 on the two cell lines. Moreover, all anticancer drugs tested induced apoptosis in a concentration-dependent manner. Bortezomib proved to be a more potent inductor of apoptosis than gefitinib and alkylating agents. These results show the efficacy of bortezomib and of the association between conventional chemotherapy and gefitinib on glioblastoma cells and therefore suggest the interest of these molecules in the treatment of glioblastoma.

  18. Amelioration of cyclophosphamide induced myelosuppression and oxidative stress by cinnamic acid.

    PubMed

    Patra, Kartick; Bose, Samadrita; Sarkar, Shehnaz; Rakshit, Jyotirmoy; Jana, Samarjit; Mukherjee, Avik; Roy, Abhishek; Mandal, Deba Prasad; Bhattacharjee, Shamee

    2012-02-05

    Cinnamic acid (C9H8O2), is a major constituent of the oriental Ayurvedic plant Cinnamomum cassia (Family: Lauraceae). This phenolic acid has been reported to possess various pharmacological properties of which its antioxidant activity is a prime one. Therefore it is rational to hypothesize that it may ameliorate myelosuppression and oxidative stress induced by cyclophosphamide, a widely used chemotherapeutic agent. Commercial cyclophosphamide, Endoxan, was administered intraperitoneally to Swiss albino mice (50mg/kg) pretreated with 15, 30 and 60mg/kg doses of cinnamic acid orally at alternate days for 15days. Cinnamic acid pre-treatment was found to reduce cyclophosphamide induced hypocellularity in the bone marrow and spleen. This recovery was also reflected in the peripheral blood count. Amelioration of hypocellularity could be correlated with the modulation of cell cycle phase distribution. Cinnamic acid pre-treatment reduced bone marrow and hepatic oxidative stress as evident by lipid peroxidation and activity assays of antioxidant enzymes such as superoxide dismutase, catalase and glutathione-S-transferase. The present study indicates that cinnamic acid pretreatment has protective influence on the myelosuppression and oxidative stress induced by cyclophosphamide. This investigation is an attempt and is the first of its kind to establish cinnamic acid as an agent whose consumption provides protection to normal cells from the toxic effects of a widely used anti-cancer drug. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Efficacy and toxicity of the combination chemotherapy of thalidomide, alkylating agent, and steroid for relapsed/refractory myeloma patients: a report from the Korean Multiple Myeloma Working Party (KMMWP) retrospective study.

    PubMed

    Kwon, Jihyun; Min, Chang-Ki; Kim, Kihyun; Han, Jae-Joon; Moon, Joon Ho; Kang, Hye Jin; Eom, Hyeon-Seok; Kim, Min Kyoung; Kim, Hyo Jung; Yoon, Dok Hyun; Lee, Jeong-Ok; Lee, Won Sik; Lee, Jae Hoon; Lee, Je-Jung; Choi, Yoon-Seok; Kim, Sung Hyun; Yoon, Sung-Soo

    2017-01-01

    We analyzed the treatment responses, toxicities, and survival outcomes of patients with relapsed or refractory multiple myeloma who received daily thalidomide, cyclophosphamide, and dexamethasone (CTD) or daily thalidomide, melphalan, and prednisolone (MTP) at 17 medical centers in Korea. Three-hundred and seventy-six patients were enrolled. The combined chemotherapy of thalidomide, corticosteroid, and an alkylating agent (TAS) was second-line chemotherapy in 142 (37.8%) patients, and third-line chemotherapy in 135 (35.9%) patients. The response rate overall was 69.4%. Patients who were not treated with bortezomib and lenalidomide before TAS showed a higher response rate compared to those who were exposed to these agents. The estimated median progression-free survival and overall survival times were 10.4 months and 28.0 months, respectively. The adverse events during TAS were generally tolerable, but 39 (10.4%) patients experienced severe infectious complications. There were no differences in terms of efficacy between CTD and MTP, but infectious complications were more common in CTD group. TAS is an effective treatment regimen which induces a high response rate in relapsed or refractory multiple myeloma patients. Due to the high incidence of grade 3 or 4 infection, proper management of infection is necessary during the TAS treatment, especially the CTD. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  20. Transition-Metal-Catalyzed C-H Alkylation Using Alkenes.

    PubMed

    Dong, Zhe; Ren, Zhi; Thompson, Samuel J; Xu, Yan; Dong, Guangbin

    2017-07-12

    Alkylation reactions represent an important organic transformation to form C-C bonds. In addition to conventional approaches with alkyl halides or sulfonates as alkylating agents, the use of unactivated olefins for alkylations has become attractive from both cost and sustainability viewpoints. This Review summarizes transition-metal-catalyzed alkylations of various carbon-hydrogen bonds (addition of C-H bonds across olefins) using regular olefins or 1,3-dienes up to May 2016. According to the mode of activation, the Review is divided into two sections: alkylation via C-H activation and alkylation via olefin activation.

  1. Comparison of the Lonidamine Potentiated Effect of Nitrogen Mustard Alkylating Agents on the Systemic Treatment of DB-1 Human Melanoma Xenografts in Mice

    PubMed Central

    Nath, Kavindra; Nelson, David S.; Putt, Mary E.; Leeper, Dennis B.; Garman, Bradley; Nathanson, Katherine L.; Glickson, Jerry D.

    2016-01-01

    Previous NMR studies demonstrated that lonidamine (LND) selectively diminishes the intracellular pH (pHi) of DB-1 melanoma and mouse xenografts of a variety of other prevalent human cancers while decreasing their bioenergetic status (tumor βNTP/Pi ratio) and enhancing the activities of melphalan and doxorubicin in these cancer models. Since melphalan and doxorubicin are highly toxic agents, we have examined three other nitrogen (N)-mustards, chlorambucil, cyclophosphamide and bendamustine, to determine if they exhibit similar potentiation by LND. As single agents LND, melphalan and these N-mustards exhibited the following activities in DB-1 melanoma xenografts; LND: 100% tumor surviving fraction (SF); chlorambucil: 100% SF; cyclophosphamide: 100% SF; bendamustine: 79% SF; melphalan: 41% SF. When combined with LND administered 40 min prior to administration of the N-mustard (to maximize intracellular acidification) the following responses were obtained; chlorambucil: 62% SF; cyclophosphamide: 42% SF; bendamustine: 36% SF; melphalan: 10% SF. The effect of LND on the activities of these N-mustards is generally attributed to acid stabilization of the aziridinium active intermediate, acid inhibition of glutathione-S-transferase, which acts as a scavenger of aziridinium, and acid inhibition of DNA repair by O6-alkyltransferase. Depletion of ATP by LND may also decrease multidrug resistance and increase tumor response. At similar maximum tolerated doses, our data indicate that melphalan is the most effective N-mustard in combination with LND when treating DB-1 melanoma in mice, but the choice of N-mustard for coadministration with LND will also depend on the relative toxicities of these agents, and remains to be determined. PMID:27285585

  2. Reichardt's dye and its reactions with the alkylating agents 4-chloro-1-butanol, ethyl methanesulfonate, 1-bromobutane and Fast Red B - a potentially useful reagent for the detection of genotoxic impurities in pharmaceuticals.

    PubMed

    Corrigan, Damion K; Whitcombe, Michael J; McCrossen, Sean; Piletsky, Sergey

    2009-04-01

    Alkylating agents are potentially genotoxic impurities that may be present in drug products. These impurities occur in pharmaceuticals as by-products from the synthetic steps involved in drug production, as impurities in starting materials or from in-situ reactions that take place in the final drug product. Currently, analysis for genotoxic impurities is typically carried out using either HPLC/MS or GC/MS. These techniques require specialist expertise, have long analysis times and often use sample clean-up procedures. Reichardt's dye is well known for its solvatochromic properties. In this paper the dye's ability to undergo alkylation is reported. The reaction between Reichardt's dye and alkylating agents such as 4-chloro-1-butanol and ethyl methanesulfonate was monitored spectrophotometrically at 618 nm in acetonitrile and 624 nm in N,N-dimethylformamide. Changes in absorption were observed using low levels of alkylating agent (5-10 parts per million). Alkylation of the dye with 4-chloro-1-butanol and ethyl methanesulfonate was confirmed. Reichardt's dye, and its changing UV absorption, was examined in the presence of paracetamol (10 and 100 mg/ml). Whilst the alkylation-induced changes in UV absorption were not as pronounced as with standard solutions, detection of alkylation was still possible. Using standard solutions and in the presence of a drug matrix, Reichardt's dye shows promise as a reagent for detection of low levels of industrially important alkylating agents.

  3. Doxycycline potentiates antitumor effect of cyclophosphamide in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhipa, Rishi Raj; Singh, Sandeep; Surve, Sachin V.

    2005-02-01

    Cyclophosphamide (CPA) is a widely used chemotherapeutic drug in neoplasias. It is a DNA and protein alkylating agent that has a broad spectrum of activity against variety of neoplasms including breast cancer. The therapeutic effectiveness of CPA is limited by the high-dose hematopoietic, renal, and cardiac toxicity that accompanies the systemic distribution of liver-derived activated drug metabolites. The present study examines the potential of combining well-tolerated antibiotic doxycycline (DOX) with CPA and understanding the mechanism of cell killing. Interestingly, we found that DOX significantly enhances the tumor regression activity of CPA on xenograft mice model bearing MCF-7 cells. DOX alsomore » potentiates MCF-7 cell killing by CPA in vitro. In presence of DOX (3 {mu}g/ml), the IC{sub 50} value of CPA decreased significantly from 10 to 2.5 mM. Additional analyses indicate that the tumor suppressor p53 and p53-regulated proapoptotic Bax were upregulated in vivo and in vitro following CPA treatment in combination with DOX, suggesting that upregulation of p53 may contribute to the enhancement of antitumor effect of CPA by DOX. Furthermore, downregulation of antiapoptotic Bcl-2 was observed in animals treated with CPA and CPA plus DOX when compared to untreated or DOX-treated groups. Our results raise the possibility that this combination chemotherapeutic regimen may lead to additional improvements in treatment of breast cancer.« less

  4. Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    PubMed Central

    Calvo, Jennifer A.; Moroski-Erkul, Catherine A.; Lake, Annabelle; Eichinger, Lindsey W.; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T.; Christiani, David C.; Meira, Lisiane B.; Samson, Leona D.

    2013-01-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag −/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage. PMID:23593019

  5. Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus.

    PubMed

    O'Hanlon, Karen A; Margison, Geoffrey P; Hatch, Amy; Fitzpatrick, David A; Owens, Rebecca A; Doyle, Sean; Jones, Gary W

    2012-09-01

    An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O(6)-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O(6)-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system.

  6. Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus

    PubMed Central

    O’Hanlon, Karen A.; Margison, Geoffrey P.; Hatch, Amy; Fitzpatrick, David A.; Owens, Rebecca A.; Doyle, Sean; Jones, Gary W.

    2012-01-01

    An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O6-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O6-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system. PMID:22669901

  7. Profound impairment of adaptive immune responses by alkylating chemotherapy

    PubMed Central

    Litterman, Adam J.; Zellmer, David M.; Grinnen, Karen L.; Hunt, Matthew A.; Dudek, Arkadiusz Z.; Salazar, Andres M.; Ohlfest, John R.

    2013-01-01

    Cancer vaccines have overall had a record of failure as an adjuvant therapy for malignancies that are treated with alkylating chemotherapy, and the contribution of standard treatment to that failure remains unclear. Vaccines aim to harness the proliferative potential of the immune system by expanding a small number of tumor-specific lymphocytes into a large number of anti-tumor effectors. Clinical trials are often conducted after treatment with alkylating chemotherapy, given either as standard therapy or for immunomodulatory effect. There is mounting evidence for synergy between chemotherapy and adoptive immunotherapy or vaccination against self-antigens; however, the impact of chemotherapy on lymphocytes primed against tumor neo-antigens remains poorly defined. We report here that clinically relevant dosages of standard alkylating chemotherapies such as temozolomide and cyclophosphamide significantly inhibit the proliferative abilities of lymphocytes in mice. This proliferative impairment was long lasting and led to quantitative and qualitative defects in B and T cell responses to neo-antigen vaccines. High affinity responder lymphocytes receiving the strongest proliferative signals from vaccines experienced the greatest DNA damage responses, skewing the response toward lower affinity responders with inferior functional characteristics. Together these defects lead to inferior efficacy and overall survival in murine tumor models treated by neo-antigen vaccines. These results suggest that clinical protocols for cancer vaccines should be designed to avoid exposing responder lymphocytes to alkylating chemotherapy. PMID:23686484

  8. Hybrid ligand-alkylating agents targeting telomeric G-quadruplex structures.

    PubMed

    Doria, Filippo; Nadai, Matteo; Folini, Marco; Di Antonio, Marco; Germani, Luca; Percivalle, Claudia; Sissi, Claudia; Zaffaroni, Nadia; Alcaro, Stefano; Artese, Anna; Richter, Sara N; Freccero, Mauro

    2012-04-14

    The synthesis, physico-chemical properties and biological effects of a new class of naphthalene diimides (NDIs) capable of reversibly binding telomeric DNA and alkylate it through an electrophilic quinone methide moiety (QM), are reported. FRET and circular dichroism assays showed a marked stabilization and selectivity towards telomeric G4 DNA folded in a hybrid topology. NDI-QMs' alkylating properties revealed a good reactivity on single nucleosides and selectivity towards telomeric G4. A selected NDI was able to significantly impair the growth of melanoma cells by causing telomere dysfunction and down-regulation of telomerase expression. These findings points to our hybrid ligand-alkylating NDIs as possible tools for the development of novel targeted anticancer therapies. This journal is © The Royal Society of Chemistry 2012

  9. N-methylpurine DNA glycosylase inhibits p53-mediated cell cycle arrest and coordinates with p53 to determine sensitivity to alkylating agents.

    PubMed

    Song, Shanshan; Xing, Guichun; Yuan, Lin; Wang, Jian; Wang, Shan; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2012-08-01

    Alkylating agents induce genome-wide base damage, which is repaired mainly by N-methylpurine DNA glycosylase (MPG). An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks. However, the determinant of drug sensitivity or insensitivity still remains unclear. Here, we report that the p53 status coordinates with MPG to play a pivotal role in such process. MPG expression is positive in breast, lung and colon cancers (38.7%, 43.4% and 25.3%, respectively) but negative in all adjacent normal tissues. MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells. The overexpression of MPG reduced, whereas depletion of MPG increased, the expression levels of pro-arrest gene downstream of p53 including p21, 14-3-3σ and Gadd45 but not proapoptotic ones. The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53. Upon DNA alkylation stress, in p53 wild-type tumor cells, p53 dissociated from MPG and induced cell growth arrest. Then, AP sites were repaired efficiently, which led to insensitivity to alkylating agents. By contrast, in p53-mutated cells, the AP sites were repaired with low efficacy. To our knowledge, this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53, and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy.

  10. High Dose Cyclophosphamide without Stem Cell Rescue in 207 Patients with Aplastic anemia and other Autoimmune Diseases

    PubMed Central

    DeZern, Amy E.; Petri, Michelle; Drachman, Daniel B.; Kerr, Doug; Hammond, Edward R.; Kowalski, Jeanne; Tsai, Hua-Ling; Loeb, David M.; Anhalt, Grant; Wigley, Fredrick; Jones, Richard J.; Brodsky, Robert A.

    2011-01-01

    High-dose cyclophosphamide has long been used an anticancer agent, a conditioning regimen for hematopoietic stem cell transplantation and as potent immunosuppressive agent in autoimmune diseases including aplastic anemia. High-dose cyclophosphamide is highly toxic to lymphocytes but spares hematopoietic stem cells because of their abundant levels of aldehyde dehydrogenase, the major mechanism of cyclophosphamide inactivation. High dose cyclophosphamide therapy induces durable remissions in most patients with acquired aplastic anemia. Moreover, high-dose cyclophosphamide without hematopoietic stem cell rescue has shown activity in a variety of other severe autoimmune diseases. Here we review the history of cyclophosphamide as is applies to aplastic anemia (AA) and other autoimmune diseases. Included here are the historical data from early patients treated for AA as well as an observational retrospective study in a single tertiary care hospital. This latter component was designed to assess the safety and efficacy of high-dose cyclophosphamide therapy without stem cell rescue in patients with refractory autoimmune diseases. We analyzed fully the 140 patients with severe, progressive autoimmune diseases treated. All patients discussed here received cyclophosphamide, 50 mg/kg per day for 4 consecutive days. Response, relapse and overall survival were measured. Response was defined as a decrease in disease activity in conjunction with a decrease or elimination of immune modulating drugs. Relapse was defined as worsening disease activity and/or a requirement of an increase in dose of, or administration of new, immunosuppressive medications. Hematologic recovery occurred in all patients. The overall response rate of the was 95%, and 44% of those patients remain progression-free with a median follow up time of 36 (range 1–120) months for the 140 patients analyzed together. The overall actuarial and event free survival across all diseases at 60 months is 90.7% and 20

  11. Relevance of the immunoglobulin VH somatic mutation status in patients with chronic lymphocytic leukemia treated with fludarabine, cyclophosphamide, and rituximab (FCR) or related chemoimmunotherapy regimens.

    PubMed

    Lin, Katherine I; Tam, Constantine S; Keating, Michael J; Wierda, William G; O'Brien, Susan; Lerner, Susan; Coombes, Kevin R; Schlette, Ellen; Ferrajoli, Alessandra; Barron, Lynn L; Kipps, Thomas J; Rassenti, Laura; Faderl, Stefan; Kantarjian, Hagop; Abruzzo, Lynne V

    2009-04-02

    Although immunoglobulin V(H) mutation status (IgV(H) MS) is prognostic in patients with chronic lymphocytic leukemia (CLL) who are treated with alkylating agents or single-agent fludarabine, its significance in the era of chemoimmunotherapy is not known. We determined the IgV(H) somatic mutation status (MS) in 177 patients enrolled in a phase 2 study of fludarabine, cyclophosphamide, and rituximab (FCR) and in 127 patients treated with subsequent chemoimmunotherapy protocols. IgV(H) MS did not impact significantly on the complete remission (CR) rate of patients receiving FCR or related regimens. However, CR duration was significantly shorter in patients with CLL that used unmutated IgV(H) than those whose CLL used mutated IgV(H) (TTP 47% vs 82% at 6 years, P < .001). In a multivariate model considering all baseline characteristics, IgV(H) MS emerged as the only determinant of remission duration (hazard ratio 3.8, P < .001). Our results suggest that postremission interventions should be targeted toward patients with unmutated IgV(H) status.

  12. N-methylpurine DNA glycosylase inhibits p53-mediated cell cycle arrest and coordinates with p53 to determine sensitivity to alkylating agents

    PubMed Central

    Song, Shanshan; Xing, Guichun; Yuan, Lin; Wang, Jian; Wang, Shan; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2012-01-01

    Alkylating agents induce genome-wide base damage, which is repaired mainly by N-methylpurine DNA glycosylase (MPG). An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks. However, the determinant of drug sensitivity or insensitivity still remains unclear. Here, we report that the p53 status coordinates with MPG to play a pivotal role in such process. MPG expression is positive in breast, lung and colon cancers (38.7%, 43.4% and 25.3%, respectively) but negative in all adjacent normal tissues. MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells. The overexpression of MPG reduced, whereas depletion of MPG increased, the expression levels of pro-arrest gene downstream of p53 including p21, 14-3-3σ and Gadd45 but not proapoptotic ones. The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53. Upon DNA alkylation stress, in p53 wild-type tumor cells, p53 dissociated from MPG and induced cell growth arrest. Then, AP sites were repaired efficiently, which led to insensitivity to alkylating agents. By contrast, in p53-mutated cells, the AP sites were repaired with low efficacy. To our knowledge, this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53, and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy. PMID:22801474

  13. Downregulation of hPMC2 imparts chemotherapeutic sensitivity to alkylating agents in breast cancer cells.

    PubMed

    Krishnamurthy, Nirmala; Liu, Lili; Xiong, Xiahui; Zhang, Junran; Montano, Monica M

    2015-01-01

    Triple negative breast cancer cell lines have been reported to be resistant to the cyotoxic effects of temozolomide (TMZ). We have shown previously that a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2) has a role in the repair of estrogen-induced abasic sites. Our present study provides evidence that downregulation of hPMC2 in MDA-MB-231 and MDA-MB-468 breast cancer cells treated with temozolomide (TMZ) decreases cell survival. This increased sensitivity to TMZ is associated with an increase in number of apurinic/apyrimidinic (AP) sites in the DNA. We also show that treatment with another alkylating agent, BCNU, results in an increase in AP sites and decrease in cell survival. Quantification of western blot analyses and immunofluorescence experiments reveal that treatment of hPMC2 downregulated cells with TMZ results in an increase in γ-H2AX levels, suggesting an increase in double strand DNA breaks. The enhancement of DNA double strand breaks in TMZ treated cells upon downregulation of hPCM2 is also revealed by the comet assay. Overall, we provide evidence that downregulation of hPMC2 in breast cancer cells increases cytotoxicity of alkylating agents, representing a novel mechanism of treatment for breast cancer. Our data thus has important clinical implications in the management of breast cancer and brings forth potentially new therapeutic strategies.

  14. Isolation and characterization of Escherichia coli K-12 mutants unable to induce the adaptive response to simple alkylating agents.

    PubMed Central

    Jeggo, P

    1979-01-01

    When Esherichia coli cells are exposed to a low level of simple alkylating agents, they induce the adaptive response which renders them more resistant to the killing and the mutagenic effects of the same or other alkylating agents. This paper describes the isolation of one strain that was deficient in mutagenic adaptation and five that were deficient in both mutagenic and killing adaptation, confirming previous suggestions that killing and mutagenic adaptation are, at least to some extent, separable. These six strains have been called Ada mutants. They were more sensitive to the killing and mutagenic effects of N-methy-N'-nitro-N-nitrosoguanidine (MNNG) than the unadapted Ada+ parent. Thus, the adaptation pathway is responsible for circumventing some alkylation-induced damage even in cells that are preinduced. The increase in mutation frequency seen in Ada cells treated with MNNG was the same whether the cells were lexA+ or lexA, showing that the extra mutations found in Ada- strains do not depend upon the SOS pathway. Ada strains accumulated more O6-methyl guanine lesions than the Ada+ parent on prolonged exposure to MNNG, and this supports the idea that O6-methyl guanine is the most important lesion for MNNG-induced mutagenesis. The ada mutations have been shown to map in the 47 to 53-min region of the E. coli chromosome. PMID:383692

  15. Enantiomerically Pure Acetals in Organic Synthesis: Resolutions and Diastereoselective Alkylations of Alpha-Hydroxy Esters

    DTIC Science & Technology

    1990-01-01

    sensitivity of the alkylating agent to the reaction conditions. In either case , a decision was made to use 5-iodo-2- methyl -l-pentene as the alkylating ...agent, and the reaction conditions. In most cases the diastereomeric products of the alkylation were also separated by column chromatography. This...equatorially substituted product. Oxidation of the alcohol to the ketone followed by treatment with an alkyl Grignard reagent gave only the product which

  16. mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy.

    PubMed

    Weiler, Markus; Blaes, Jonas; Pusch, Stefan; Sahm, Felix; Czabanka, Marcus; Luger, Sebastian; Bunse, Lukas; Solecki, Gergely; Eichwald, Viktoria; Jugold, Manfred; Hodecker, Sibylle; Osswald, Matthias; Meisner, Christoph; Hielscher, Thomas; Rübmann, Petra; Pfenning, Philipp-Niklas; Ronellenfitsch, Michael; Kempf, Tore; Schnölzer, Martina; Abdollahi, Amir; Lang, Florian; Bendszus, Martin; von Deimling, Andreas; Winkler, Frank; Weller, Michael; Vajkoczy, Peter; Platten, Michael; Wick, Wolfgang

    2014-01-07

    A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O(6)-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids.

  17. mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy

    PubMed Central

    Weiler, Markus; Blaes, Jonas; Pusch, Stefan; Sahm, Felix; Czabanka, Marcus; Luger, Sebastian; Bunse, Lukas; Solecki, Gergely; Eichwald, Viktoria; Jugold, Manfred; Hodecker, Sibylle; Osswald, Matthias; Meisner, Christoph; Hielscher, Thomas; Rübmann, Petra; Pfenning, Philipp-Niklas; Ronellenfitsch, Michael; Kempf, Tore; Schnölzer, Martina; Abdollahi, Amir; Lang, Florian; Bendszus, Martin; von Deimling, Andreas; Winkler, Frank; Weller, Michael; Vajkoczy, Peter; Platten, Michael; Wick, Wolfgang

    2014-01-01

    A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O6-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids. PMID:24367102

  18. Regulation of DNA Alkylation Damage Repair: Lessons and Therapeutic Opportunities

    PubMed Central

    Soll, Jennifer M.; Sobol, Robert W.; Mosammaparast, Nima

    2016-01-01

    Alkylation chemotherapy is one of the most widely used systemic therapies for cancer. While somewhat effective, clinical responses and toxicities of these agents are highly variable. A major contributing factor for this variability is the numerous distinct lesions that are created upon alkylation damage. These adducts activate multiple repair pathways. There is mounting evidence that the individual pathways function cooperatively, suggesting that coordinated regulation of alkylation repair is critical to prevent toxicity. Furthermore, some alkylating agents produce adducts that overlap with newly discovered methylation marks, making it difficult to distinguish between bona fide damaged bases and so called ‘epigenetic’ adducts. We discuss new efforts aimed at deciphering the mechanisms that regulate these repair pathways, emphasizing their implications for cancer chemotherapy. PMID:27816326

  19. When alcohol is the answer: trapping, identifying and quantifying simple alkylating species in aqueous environments

    PubMed Central

    Penketh, P. G.; Shyam, K.; Baumann, R. P; Zhu, Rui; Ishiguro, K.; Sartorelli, A. C.; Ratner, E. S.

    2016-01-01

    Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties. PMID:27188264

  20. Cyclophosphamide

    MedlinePlus

    ... medications or in children who experienced intolerable side effects with other medications. Cyclophosphamide is in a class ... on your response to treatment and any side effects that you experience. Talk to your doctor about ...

  1. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-06

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  2. The influence of oxazaphosphorines alkylating agents on autonomic nervous system activity in rat experimental cystitis model.

    PubMed

    Dobrek, Łukasz; Baranowska, Agnieszka; Thor, Piotr J

    2013-01-01

    The oxazaphosphorines alkylating agents (cyclophosphamide; CP and ifosfamide; IF) are often used in common clinical practice. However, treatment with CP/IF is burdened with the risk of many adverse drug reactions, especially including hemorrhagic cystitis (HC) that is associated with bladder overactivity symptoms (OAB). The HC pathophysiology is still not fully displayed; it seems that autonomic nervous system (ANS) functional abnormalities play important role in this disturbance. The aim of our study was to reveal the potential ANS differences in rat experimental HC model, evoked by CP and IF by an indirect ANS assessment--heart rate variability (HRV) study. We carried out our experimental research in three essential groups: control group (group 1), cyclophosphamide-induced HC (CP-HC; group 2) one and ifosfamide-induced HC (IF-HC; group 3) one. CP was i.p. administrated four times in dose of 75 mg/kg body weight while IF-treated rats received i.p. five drug doses; 50 mg/kg body weight. Control rats were administrated i.p. vehicle in appropriate volumes as CP/IF treated animals. HRV studies were performed the next day after the last oxazaphosphorines dose. Standard time- and spectral (frequency) domain parameters were estimated. We confirmed the HC development after both CP/IF in macroscopic assessment and bladder wet weight measurement; however, it was more aggravated in CP-HC group. Moreover, we demonstrated HRV disturbances, suggesting ANS impairment after both studied oxazaphosphorines, however, consistent with the findings mentioned above, the autonomic dysfunction was more emphasized after CP. CP treatment was also associated with changes of non-normalized HRV spectral components percentage distribution--a marked very low frequency--VLF [%] increase together with low frequency--LF [%] and high frequency--HF [%] decrease were observed. Taking into consideration the next findings, demonstrating the lack of both normalized power spectral components (nLF and n

  3. Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-07-01

    The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety. © The Author(s) 2016.

  4. When alcohol is the answer: Trapping, identifying and quantifying simple alkylating species in aqueous environments.

    PubMed

    Penketh, Philip G; Shyam, Krishnamurthy; Baumann, Raymond P; Zhu, Rui; Ishiguro, Kimiko; Sartorelli, Alan C; Ratner, Elena S

    2016-09-01

    Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Small molecule inhibitors of ERCC1-XPF protein-protein interaction synergize alkylating agents in cancer cells.

    PubMed

    Jordheim, Lars Petter; Barakat, Khaled H; Heinrich-Balard, Laurence; Matera, Eva-Laure; Cros-Perrial, Emeline; Bouledrak, Karima; El Sabeh, Rana; Perez-Pineiro, Rolando; Wishart, David S; Cohen, Richard; Tuszynski, Jack; Dumontet, Charles

    2013-07-01

    The benefit of cancer chemotherapy based on alkylating agents is limited because of the action of DNA repair enzymes, which mitigate the damage induced by these agents. The interaction between the proteins ERCC1 and XPF involves two major components of the nucleotide excision repair pathway. Here, novel inhibitors of this interaction were identified by virtual screening based on available structures with use of the National Cancer Institute diversity set and a panel of DrugBank small molecules. Subsequently, experimental validation of the in silico screening was undertaken. Top hits were evaluated on A549 and HCT116 cancer cells. In particular, the compound labeled NSC 130813 [4-[(6-chloro-2-methoxy-9-acridinyl)amino]-2-[(4-methyl-1-piperazinyl)methyl

  6. Method for reactivating solid catalysts used in alkylation reactions

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  7. Selected Alkylating Agents Can Overcome Drug Tolerance of G0-like Tumor Cells and Eradicate BRCA1-Deficient Mammary Tumors in Mice.

    PubMed

    Pajic, Marina; Blatter, Sohvi; Guyader, Charlotte; Gonggrijp, Maaike; Kersbergen, Ariena; Küçükosmanoğlu, Aslι; Sol, Wendy; Drost, Rinske; Jonkers, Jos; Borst, Piet; Rottenberg, Sven

    2017-11-15

    Purpose: We aimed to characterize and target drug-tolerant BRCA1-deficient tumor cells that cause residual disease and subsequent tumor relapse. Experimental Design: We studied responses to various mono- and bifunctional alkylating agents in a genetically engineered mouse model for BRCA1/p53 -mutant breast cancer. Because of the large intragenic deletion of the Brca1 gene, no restoration of BRCA1 function is possible, and therefore, no BRCA1-dependent acquired resistance occurs. To characterize the cell-cycle stage from which Brca1 -/- ;p53 -/- mammary tumors arise after cisplatin treatment, we introduced the fluorescent ubiquitination-based cell-cycle indicator (FUCCI) construct into the tumor cells. Results: Despite repeated sensitivity to the MTD of platinum drugs, the Brca1 -mutated mammary tumors are not eradicated, not even by a frequent dosing schedule. We show that relapse comes from single-nucleated cells delaying entry into the S-phase. Such slowly cycling cells, which are present within the drug-naïve tumors, are enriched in tumor remnants. Using the FUCCI construct, we identified nonfluorescent G 0 -like cells as the population most tolerant to platinum drugs. Intriguingly, these cells are more sensitive to the DNA-crosslinking agent nimustine, resulting in an increased number of multinucleated cells that lack clonogenicity. This is consistent with our in vivo finding that the nimustine MTD, among several alkylating agents, is the most effective in eradicating Brca1 -mutated mouse mammary tumors. Conclusions: Our data show that targeting G 0 -like cells is crucial for the eradication of BRCA1/p53-deficient tumor cells. This can be achieved with selected alkylating agents such as nimustine. Clin Cancer Res; 23(22); 7020-33. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. HeLa Cells Containing a Truncated Form of DNA Polymerase Beta are More Sensitized to Alkylating Agents than to Agents Inducing Oxidative Stress.

    PubMed

    Khanra, Kalyani; Chakraborty, Anindita; Bhattacharyya, Nandan

    2015-01-01

    The present study was aimed at determining the effects of alkylating and oxidative stress inducing agents on a newly identified variant of DNA polymerase beta (polβ Δ208-304) specific for ovarian cancer. Pol β Δ208-304 has a deletion of exons 11-13 which lie in the catalytic part of enzyme. We compared the effect of these chemicals on HeLa cells and HeLa cells stably transfected with this variant cloned into in pcDNAI/neo vector by MTT, colony forming and apoptosis assays. Polβ Δ208-304 cells exhibited greater sensitivity to an alkylating agent and less sensitivity towards H2O2 and UV when compared with HeLa cells alone. It has been shown that cell death in Pol β Δ208-304 transfected HeLa cells is mediated by the caspase 9 cascade. Exon 11 has nucleotidyl selection activity, while exons 12 and 13 have dNTP selection activity. Hence deletion of this part may affect polymerizing activity although single strand binding and double strand binding activity may remain same. The lack of this part may adversely affect catalytic activity of DNA polymerase beta so that the variant may act as a dominant negative mutant. This would represent clinical significance if translated into a clinical setting because resistance to radiation or chemotherapy during the relapse of the disease could be potentially overcome by this approach.

  9. [Cyclophosphamide in idiopathic nephrotic syndrome: Outcome and outlook].

    PubMed

    Berkane, Majda; Adarmouch, Latifa; Amine, Mohamed; Bourrahouat, Aicha; Ait Sab, Imane; Sbihi, Mohamed

    2018-04-01

    Cyclophosphamide (CYP) has been used for over 40 years in patients with steroid-sensitive nephrotic syndrome (NSSS) presenting frequent relapses (NSRF) or steroid dependence (NSSD). However, the long-term success of treatment with cyclophosphamide is difficult to predict. The objectives of this study are to determine long-term outcomes of cyclophosphamide and identify the factors associated with sustained remission. We retrospectively studied the data from 50 patients with idiopathic nephrotic syndrome, treated by oral cyclophosphamide and followed at service of pediatric for more than 8 years for idiopathic nephrotic syndrome and related factors for survival without relapse were evaluated by univariate analysis. The median age at the time of diagnosis was 4.3 years, and median follow-up time was 1.7 years with the median of 8 years at the first use of CYC. Patients had received a median cumulative dose of 168mg/kg. At the end of follow-up, 38% of patients entered into remission after using CYC while 62% failed to respond and further relapses then occur. The median time of stopping corticosteroid therapy was three month. The survival without relapse was respectively 56% (28 patients), 52% (26 patients), 48% (24 patients), and 38% (19 patients), at 6 months, one year, two years and more than two years. In univariate analysis, the survival without relapse was related to the age at the moment of starting the therapy par CYC (the median was 5 months for an age < 8 years and 41 months for an age≥8 years; P=0.049), the type of nephrotic syndrome [36 months for SNRF, 4 months for NSSD and nephrothic syndrome steroid resistant (NSSR); P=0.068], and the histological lesion (6 months for diffuse mesangial proliferation, 2 months for segmental glomerulosclerosis; P=0.009). The age at the moment of diagnosis, the sex and the cumulative dose of CYC did not have significant influence. The results presented in this study suggest the use of oral cyclophosphamide for short

  10. Antioxidant and antigenotoxic role of recombinant human erythropoeitin against alkylating agents: cisplatin and mitomycin C in cultured Vero cells.

    PubMed

    Rjiba-Touati, Karima; Ayed-Boussema, Imen; Soualeh, Nidhal; Achour, Abdellatif; Bacha, Hassen; Abid, Salwa

    2013-08-01

    Cisplatin (CDDP) and mitomycin C (MMC), two alkylating agents used against various solid tumours, are a common source of acute kidney injury. Thus, strategies for minimizing CDDP and MMC toxicity are of a clinical interest. In this study, we aimed to investigate the protective role of recombinant human erythropoietin (rhEPO) against oxidative stress and genotoxicity induced by CDDP and MMC in cultured Vero cells. Three types of treatments were performed: (i) cells were treated with rhEPO 24 h before exposure to CDDP/MMC (pre-treatment), (ii) cells were treated with rhEPO and CDDP/MMC simultaneously (co-treatment), (iii) cells were treated with rhEPO 24 h after exposure to CDDP/MMC (post-treatment). Our results showed that rhEPO decreased the reactive oxygen species levels, the malondialdehyde levels and ameliorated glutathione (reduced and oxidized glutathione) modulation induced by CDDP and MMC in cultured Vero cells. Furthermore, rhEPO administration prevented alkylating agents-induced DNA damage accessed by comet test. Altogether, our results suggested a protective role of rhEPO, against CDDP- and MMC-induced oxidative stress and genotoxicity, especially in pre-treatment condition.

  11. A novel acetylation cycle of transcription co-activator Yes-associated protein that is downstream of Hippo pathway is triggered in response to SN2 alkylating agents.

    PubMed

    Hata, Shoji; Hirayama, Jun; Kajiho, Hiroaki; Nakagawa, Kentaro; Hata, Yutaka; Katada, Toshiaki; Furutani-Seiki, Makoto; Nishina, Hiroshi

    2012-06-22

    Yes-associated protein (YAP) is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes. Although cytoplasmic retention of YAP is known to be mediated by Hippo pathway-dependent phosphorylation, post-translational modifications that regulate YAP in the nucleus remain unclear. Here we report the discovery of a novel cycle of acetylation/deacetylation of nuclear YAP induced in response to S(N)2 alkylating agents. We show that after treatment of cells with the S(N)2 alkylating agent methyl methanesulfonate, YAP phosphorylation mediated by the Hippo pathway is markedly reduced, leading to nuclear translocation of YAP and its acetylation. This YAP acetylation occurs on specific and highly conserved C-terminal lysine residues and is mediated by the nuclear acetyltransferases CBP (CREB binding protein) and p300. Conversely, the nuclear deacetylase SIRT1 is responsible for YAP deacetylation. Intriguingly, we found that YAP acetylation is induced specifically by S(N)2 alkylating agents and not by other DNA-damaging stimuli. These results identify a novel YAP acetylation cycle that occurs in the nucleus downstream of the Hippo pathway. Intriguingly, our findings also indicate that YAP acetylation is involved in responses to a specific type of DNA damage.

  12. A Novel Acetylation Cycle of Transcription Co-activator Yes-associated Protein That Is Downstream of Hippo Pathway Is Triggered in Response to SN2 Alkylating Agents*

    PubMed Central

    Hata, Shoji; Hirayama, Jun; Kajiho, Hiroaki; Nakagawa, Kentaro; Hata, Yutaka; Katada, Toshiaki; Furutani-Seiki, Makoto; Nishina, Hiroshi

    2012-01-01

    Yes-associated protein (YAP) is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes. Although cytoplasmic retention of YAP is known to be mediated by Hippo pathway-dependent phosphorylation, post-translational modifications that regulate YAP in the nucleus remain unclear. Here we report the discovery of a novel cycle of acetylation/deacetylation of nuclear YAP induced in response to SN2 alkylating agents. We show that after treatment of cells with the SN2 alkylating agent methyl methanesulfonate, YAP phosphorylation mediated by the Hippo pathway is markedly reduced, leading to nuclear translocation of YAP and its acetylation. This YAP acetylation occurs on specific and highly conserved C-terminal lysine residues and is mediated by the nuclear acetyltransferases CBP (CREB binding protein) and p300. Conversely, the nuclear deacetylase SIRT1 is responsible for YAP deacetylation. Intriguingly, we found that YAP acetylation is induced specifically by SN2 alkylating agents and not by other DNA-damaging stimuli. These results identify a novel YAP acetylation cycle that occurs in the nucleus downstream of the Hippo pathway. Intriguingly, our findings also indicate that YAP acetylation is involved in responses to a specific type of DNA damage. PMID:22544757

  13. Suppression of alkylating agent induced cell transformation and gastric ulceration by low-dose alkylating agent pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onodera, Akira, E-mail: onodera@pharm.kobegakuin.ac.jp; Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586; Kawai, Yuichi

    2013-06-14

    Highlights: •Low-dose MNNG pretreatment suppresses high-dose MNNG induced in vitro transformation. •Gastric ulcers induced by high-dose MNNG decreased after low-dose MNNG pretreatment. •Efficacy of low-dose MNNG related to resistance of mutation and oxidative stress. -- Abstract: Exposure to mild stress by chemicals and radiation causes DNA damage and leads to acquired stress resistance. Although the linear no-threshold (LNT) model of safety assessment assumes risk from any dose, evidence from radiological research demonstrates a conflicting hormetic phenomenon known as the hormesis effect. However, the mechanisms underlying radiation hormesis have not yet been clarified, and little is known about the effects ofmore » low doses of chemical carcinogens. We analyzed the efficacy of pretreatment with low doses of the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) on the subsequent induction of cell transformation and gastric ulceration by high-dose MNNG. We used an in vitro Balb/3T3 A31-1-1 cell transformation test and monitored the formation of gastric ulcers in 5-week-old male ICR mice that were administered MNNG in drinking water. The treatment concentrations of MNNG were determined by the cell survival rate and past reports. For low-dose in vitro and in vivo experiments, MNNG was used at 0.028 μM, and 2.8 μg/mL, respectively. The frequency of cell transformation induced by 10 μm MNNG was decreased by low-dose MNNG pretreatment to levels similar to that of spontaneous transformation. In addition, reactive oxygen species (ROS) and mutation frequencies induced by 10 μm MNNG were decreased by low-dose MNNG pretreatment. Importantly, low-dose MNNG pretreatment had no effect on cell proliferation. In vivo studies showed that the number of gastric ulcers induced by 1 mg/mL MNNG decreased after low-dose MNNG pretreatment. These data indicate that low-dose pretreatment with carcinogens may play a beneficial role in the prevention of chemical

  14. Absence of cross-resistance between two alkylating agents: BCNU vs bifunctional galactitol.

    PubMed

    Institóris, E; Szikla, K; Otvös, L; Gál, F

    1989-01-01

    Dianhydrogalactitol (DAG) increased the life span of both BCNU-sensitive and -resistant L1210 tumor-bearing mice. However, the BCNU-resistant strain showed slightly lower sensitivity against DAG, which could be overcome by an increase in drug dose of ca. 20%. The somewhat lower sensitivity was proportional to a slightly reduced DNA cross-linking formation induced by DAG in BCNU-resistant cells. The amount of DNA cross-links was determined by measurement of the 1,6-di(guaninyl)-galactitol content of DNA. The slight reduction in cross-links is not attributable to DNA repair but rather to other factors that seem to prevent the formation of DNA-drug adducts. The absence of cross-resistance is explained by different kinds of DNA damage caused by the two alkylating agents and the presumably different defense mechanisms developed by cells against these lesions.

  15. Evaluation of Novel Agents Which Target Neovasculature of Breast Tumors

    DTIC Science & Technology

    2005-04-01

    chemotherapeutic agents including cyclophosphamide, methotrexate, anthracycline, cytarabine , paclitaxel, and corticosteroids (28). To determine whether the...cyclophosphamide, methotrexate, anthracycline, cytarabine , paclitaxel, and corticosteroids (28). Sasaki et al reported that the level of Bcl-2 in cancer cells

  16. Cyclophosphamide for connective tissue disease-associated interstitial lung disease.

    PubMed

    Barnes, Hayley; Holland, Anne E; Westall, Glen P; Goh, Nicole Sl; Glaspole, Ian N

    2018-01-03

    only modest benefit at best in preserving FVC. Clinicians should carefully monitor for adverse effects during treatment and in the years thereafter.Further studies are required to examine the use of cyclophosphamide; they should be adequately powered to compare outcomes within different subgroups, specifically, stratified for extent of pulmonary infiltrates on high-resolution computed tomography (HRCT) and skin involvement in SSc. Studies on other forms of connective tissue disease are needed. Researchers may consider comparing cyclophosphamide (a potent immunosuppressant) versus antifibrotic agents, or comparing both versus placebo, in particular, for those with evidence of rapidly progressive fibrotic disease, who may benefit the most.

  17. Alkyl phospholipid antihypertensive agents in method of lowering blood pressure

    DOEpatents

    Snyder, Fred L.; Blank, Merle L.; Muirhead, Ernest E.; Leach, deceased, Byron E.; Byers, Lawrence W.

    1988-01-01

    The composition of this invention is 1-O-alkyl-2-acetoyl-sn-glycero-3-phosphocholine, having the ionic structural formula; ##STR1## wherein R is saturated alkyl having 9-21 carbon atoms, or salts or hydrates of the composition. Preferably R has 13-19 carbon atoms and most preferably R has 15 carbon atoms. The composition of this invention is useful for reducing hypertension in warm-blooded animals, including humans, when administered either orally or by injection or innoculation, e.g., intravenous injection. The composition can be prepared from naturally occurring lipids or synthetically from commercially available material.

  18. Cyclophosphamide (Cytoxan)

    MedlinePlus

    ... slightly with age (a normal part of the aging process) or when the immune system is suppressed (by medications such as cyclophosphamide), the virus becomes active again. When it reactivates, Varicella zoster usually causes ...

  19. Effects of Antiparasite Chemotherapeutic Agents on Immune Functions.

    DTIC Science & Technology

    1984-05-01

    OF ALKYLATING AGENTS AGAINST CELLS PARTICIPATING IN SUPPRESSION OF ANTIBODY RESPONSES* RONALD D. PAUL, ABOUL GHAFFARt and M. MICHAEL SIGEL Department... alkylating agents on the induction and expression of specific suppressor cell activity induced by supraoptimal immunization (SO[) with (4x 109) SRBC was...including 1982b). different subsets of T cells (Cantor & Gershon, A number of alkylating agents which are used as 1979). It is therefore necessary to

  20. A Short Review on the Synthetic Strategies of Duocarmycin Analogs that are Powerful DNA Alkylating Agents.

    PubMed

    Patil, Pravin C; Satam, Vijay; Lee, Moses

    2015-01-01

    The duocarmycins and CC-1065 are members of a class of DNA minor groove, AT-sequence selective, and adenine-N3 alkylating agents, isolated from Streptomyces sp. that exhibit extremely potent cytotoxicity against the growth of cancer cells grown in culture. Initial synthesis and structural modification of the cyclopropa[c] pyrrolo[3,2-e]indole (CPI) DNA-alkylating motif as well as the indole non-covalent binding region in the 1980s have led to several compounds that entered clinical trials as potential anticancer drugs. However, due to significant systemic toxicity none of the analogs have passed clinical evaluation. As a result, the intensity in the design, synthesis, and development of novel analogs of the duocarmycins has continued. Accordingly, in this review, which covers a period from the 1990s through the present time, the design and synthesis of duocarmycin SA are described along with the synthesis of novel and highly cytotoxic analogs that lack the chiral center. Examples of achiral analogs of duocarmycin SA described in this review include seco-DUMSA (39 and 40), seco-amino-CBI-TMI (13, Centanamycin), and seco-hydroxy-CBI-TMI (14). In addition, another novel class of biologically active duocarmycin SA analogs that contained the seco-iso-cyclopropylfurano[2,3-e]indoline (seco-iso-CFI) and seco-cyclopropyltetrahydrofurano[2,3-f]quinoline (seco-CFQ) DNA alkylating submit was also designed and synthesized. The synthesis of seco-iso-CFI-TMI (10, Tafuramycin A) and seco-CFQ-TMI (11, Tafuramycin B) is included in this review.

  1. PML expression in soft tissue sarcoma: prognostic and predictive value in alkylating agents/antracycline-based first line therapy.

    PubMed

    Vincenzi, Bruno; Santini, Daniele; Schiavon, Gaia; Frezza, Anna Maria; Silletta, Marianna; Crucitti, Pierfilippo; Casali, Paolo; Dei Tos, Angelo P; Rossi, Sabrina; Rizzo, Sergio; Badalamenti, Giuseppe; Tomasino, Rosa Maria; Russo, Antonio; Butrynski, James E; Tonini, Giuseppe

    2012-04-01

    Soft tissue sarcomas are aggressive tumors representing <1% of all adult neoplasms. Aim of our study was to evaluate promyelocytic leukemia gene expression value as prognostic factor and as a factor predicting response to alkylating agents/antracycline-based first line therapy. One hundred eleven patients affected by locally advanced and metastatic soft tissue sarcoma were selected. PML expression was evaluated by immunohistochemical analysis in pathological samples and in the corresponding normal tissue from each case. PML immunohistochemical results were correlated with prognosis and with radiological response to alkylating agents/antracycline-based first line therapy. PML expression was significantly reduced in synovial sarcomas (P < 0.0001), in myofibroblastic sarcomas (P < 0.0001), angiosarcomas (P < 0.0001), in leiomyosarcomas (P = 0.003), in mixoid liposarcomas (P < 0.0001), and in dedifferentiated liposarcomas (P < 0.0001). No significant difference was found for pleomorphic sarcoma [31.8 (95% CI: 16.7-41.0); P = 0.21]. and pleomorphic liposarcomas (P = 0.51). Loss of PML expression was found to be statistically correlated with TTP (P < 0.0001), median duration of response (P = 0.007), and OS (P = 0.02). No correlation was observed between PML expression and treatment efficacy. PML IHC expression is down-regulated in synovial sarcomas, myofibroblastic sarcomas, angiosarcomas, liposarcoma, and leiomyosarcomas and its expression correlated with prognosis. Copyright © 2011 Wiley Periodicals, Inc.

  2. Speciation of Reactive Sulfur Species and their Reactions with Alkylating Agents: Do we have any clue about what is present inside the cell?

    PubMed

    Bogdándi, Virág; Ida, Tomoaki; Sutton, Thomas R; Bianco, Christopher; Ditrói, Tamás; Koster, Grielof; Henthorn, Hillary A; Minnion, Magda; Toscano, John P; van der Vliet, Albert; Pluth, Michael D; Feelisch, Martin; Fukuto, Jon M; Akaike, Takaaki; Nagy, Péter

    2018-06-17

    Posttranslational modifications of cysteine (Cys) residues represent a major aspect of redox biology, and their reliable detection is key in providing mechanistic insights. The metastable character of these modifications and cell lysis-induced artifactual oxidation render current state-of-the-art protocols to rely on alkylation-based stabilization of labile Cys derivatives before cell/tissue rupture. An untested assumption in these procedures is that for all Cys derivatives alkylation rates are faster than their dynamic interchange. However, when the interconversion of Cys derivatives is not rate-limiting, then electrophilic labeling is under Curtin-Hammett control and hence the final alkylated mixture may not represent the speciation that prevailed before alkylation. We here present evidence that in the majority of cases, the speciation of alkylated polysulfide/thiol derivatives indeed depends on the experimental conditions. Our results reveal that alkylation perturbs sulfur speciation in both a concentration- and time-dependent manner, and that strong alkylating agents can cleave polysulfur chains. Moreover, we show that labeling of sulfenic acids with dimedone also affects Cys speciation, suggesting that part of the endogenous pool of products previously believed to represent sulfenic acid species may in fact represent polysulfides. These observations were obtained using buffered aqueous solutions of inorganic-, organic-, cysteine-, glutathione- and GAPDH-polysulfide species. Additional experiments in human plasma and serum revealed that monobromobimane can extract sulfide from the endogenous sulfur pool by shifting speciation equilibria, suggesting caution should be exercised when interpreting experimental results using this tool. We highlight methodological caveats potentially arising from these pitfalls and conclude that current derivatization strategies often fail to adequately capture physiologic speciation of sulfur species. This article is protected by

  3. Influence of promoter/enhancer region haplotypes on MGMT transcriptional regulation: a potential biomarker for human sensitivity to alkylating agents.

    PubMed

    Xu, Meixiang; Nekhayeva, Ilona; Cross, Courtney E; Rondelli, Catherine M; Wickliffe, Jeffrey K; Abdel-Rahman, Sherif Z

    2014-03-01

    The O6-methylguanine-DNA methyltransferase gene (MGMT) encodes the direct reversal DNA repair protein that removes alkyl adducts from the O6 position of guanine. Several single-nucleotide polymorphisms (SNPs) exist in the MGMT promoter/enhancer (P/E) region. However, the haplotype structure encompassing these SNPs and their functional/biological significance are currently unknown. We hypothesized that MGMT P/E haplotypes, rather than individual SNPs, alter MGMT transcription and can thus alter human sensitivity to alkylating agents. To identify the haplotype structure encompassing the MGMT P/E region SNPs, we sequenced 104 DNA samples from healthy individuals and inferred the haplotypes using the data generated. We identified eight SNPs in this region, namely T7C (rs180989103), T135G (rs1711646), G290A (rs61859810), C485A (rs1625649), C575A (rs113813075), G666A (rs34180180), C777A (rs34138162) and C1099T (rs16906252). Phylogenetics and Sequence Evolution analysis predicted 21 potential haplotypes that encompass these SNPs ranging in frequencies from 0.000048 to 0.39. Of these, 10 were identified in our study population as 20 paired haplotype combinations. To determine the functional significance of these haplotypes, luciferase reporter constructs representing these haplotypes were transfected into glioblastoma cells and their effect on MGMT promoter activity was determined. Compared with the most common (reference) haplotype 1, seven haplotypes significantly upregulated MGMT promoter activity (18-119% increase; P < 0.05), six significantly downregulated MGMT promoter activity (29-97% decrease; P < 0.05) and one haplotype had no effect. Mechanistic studies conducted support the conclusion that MGMT P/E haplotypes, rather than individual SNPs, differentially regulate MGMT transcription and could thus play a significant role in human sensitivity to environmental and therapeutic alkylating agents.

  4. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents.

    PubMed

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-07-09

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents.

  5. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents

    PubMed Central

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-01-01

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents. PMID:26158513

  6. Amelioration of the cyclophosphamide induced genotoxic damage in mice by the ethanolic extract of Equisetum arvense.

    PubMed

    Kour, Jasbir; Ali, Md Niamat; Ganaie, Hilal Ahmad; Tabassum, Nahida

    2017-01-01

    In the present study, we evaluated the potential of the plant E. arvense against the cytotoxic and mutagenic effects induced by cyclophosphamide (chemotherapeutic agent) in the bone marrow cells of mice using the Chromosome assay (CA) and Mitotic index (MI) in vivo as the biomarkers. The study was performed following 3 protocols: pre-treatment, simultaneous treatment and post-treatment with the ethanolic extract of the plant. The results demonstrated that the plant extract was not cytotoxic and mutagenic and has a protective effect against the mutagenicity induced by cyclophosphamide in pre, simultaneous and post treatments and against its cytotoxicity as well. Because of its ability to prevent chromosomal damage , E. arvense is likely to open an interesting field concerning its possible use in clinical applications, most importantly in cancer as a chemopreventive agent or even as a coadjuvant to chemotherapy to reduce the side effects associated with it.

  7. 4-Alkylated homoibotenic acid (HIBO) analogues: versatile pharmacological agents with diverse selectivity profiles towards metabotropic and ionotropic glutamate receptor subtypes.

    PubMed

    Madsen, Ulf; Pickering, Darryl S; Nielsen, Birgitte; Bräuner-Osborne, Hans

    2005-01-01

    4-Alkylated analogues of homoibotenic acid (HIBO) have previously shown high potency and selectivity at ionotropic and metabotropic glutamic acid receptor (iGluR and mGluR) subtypes. Compounds with different selectivity profiles are valuable pharmacological tools for neuropharmacological studies, and the series of 4-alkyl-HIBO analogues have been extended in this paper in the search for versatile agents. Pharmacological characterization of five new analogues, branched and unbranched 4-alkyl-HIBO analogues, have been carried out. The present compounds are all weak antagonists at Group I mGluRs (mGluR1 and 5) presenting only small differences in potencies (Ki values ranging from 89 to 670 microM). Affinities were studied at native and cloned iGluRs, and the compounds described show preference for the AMPA receptor subtypes GluR1 and 2 over GluR3 and 4. However, compared to previous 4-alkyl-HIBO analogues, these compounds show a remarkably high affinity for the Kain preferring subtype GluR5. The observed GluR5 affinities were either similar or higher compared to their GluR1 and 2 affinity. Isopropyl-HIBO showed the highest affinity for GluR5 (Ki=0.16 microM), and represents a unique compound with high affinity towards the three subtypes GluR1, 2 and 5. In general, these compounds represent new selectivity profiles compared to previously reported Glu receptor analogues.

  8. Influence of some DNA-alkylating drugs on thermal stability, acid and osmotic resistance of the membrane of whole human erythrocytes and their ghosts.

    PubMed

    Ivanov, I T; Gadjeva, V

    2000-09-01

    Human erythrocytes and their resealed ghosts were alkylated under identical conditions using three groups of alkylating antitumor agents: mustards, triazenes and chloroethyl nitrosoureas. Osmotic fragility, acid resistance and thermal stability of membranes were changed only in alkylated ghosts in proportion to the concentration of the alkylating agent. All the alkylating agents decreased acid resistance in ghosts. The clinically used drugs sarcolysine, dacarbazine and lomustine all decreased osmotic fragility and thermal stability of ghost membranes depending on their lipophilicity. DM-COOH did not decrease osmotic fragility and thermal stability of ghost membranes, while NEM increased thermal stability of membranes. The preliminary but not subsequent treatment of ghosts with DM-COOH fully abolished the alkylation-induced thermal labilization of ghost membrane proteins while NEM had a partial effect only. The present study gives direct evidence that alkylating agents, having a high therapeutic activity against malignant growth, bind covalently to proteins of cellular membranes.

  9. Synthesis and serotonin transporter activity of sulphur-substituted alpha-alkyl phenethylamines as a new class of anticancer agents.

    PubMed

    Cloonan, Suzanne M; Keating, John J; Butler, Stephen G; Knox, Andrew J S; Jørgensen, Anne M; Peters, Günther H; Rai, Dilip; Corrigan, Desmond; Lloyd, David G; Williams, D Clive; Meegan, Mary J

    2009-12-01

    The discovery that some serotonin reuptake transporter (SERT) ligands have the potential to act as pro-apoptotic agents in the treatment of cancer adds greatly to their diverse pharmacological application. 4-Methylthioamphetamine (MTA) is a selective ligand for SERT over other monoamine transporters. In this study, a novel library of structurally diverse 4-MTA analogues were synthesised with or without N-alkyl and/or C-alpha methyl or ethyl groups so that their potential SERT-dependent antiproliferative activity could be assessed. Many of the compounds displayed SERT-binding activity as well as cytotoxic activity. While there was no direct correlation between these two effects, a number of derivatives displayed anti-tumour effects in lymphoma, leukaemia and breast cancer cell lines, showing further potential to be developed as possible chemotherapeutic agents.

  10. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length

    PubMed Central

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.; Du, Yang; Nielsen, Anne K.; Byrne, Bernadette; Kobilka, Brian K.; Loland, Claus J.; Guan, Lan

    2017-01-01

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. PMID:27981750

  11. Crataegus monogyna aqueous extract ameliorates cyclophosphamide-induced toxicity in rat testis: stereological evidences.

    PubMed

    Jalali, Ali Shalizar; Hasanzadeh, Shapour; Malekinejad, Hassan

    2012-01-01

    Cyclophosphamide (CP) is extensively used as an antineoplastic agent for the treatment of various cancers, as well as an immunosuppressive agent. However, despite its wide spectrum of clinical uses, CP is known to cause several adverse effects including reproductive toxicity. Crataegus monogyna is one of the oldest pharmaceutical plants that have been shown to be cytoprotective by scavenging free radicals. The present study was conducted to assess whether Crataegus monogyna fruits aqueous extract with anti-oxidant properties, could serve as a protective agent against reproductive toxicity during CP treatment in a rat model. Male Wistar rats were categorized into four groups. Two groups of rats were administered CP at a dose of 5 mg in 5 ml saline/kg/day for 28 days by oral gavages. One of these groups received Crataegus monogyna aqueous extract at a dose of 20 mg/kg/day orally four hours after cyclophosphamide administration. A vehicle treated control group and a Crataegus monogyna control group were also included. The CP-treated group showed significant decreases in the body, testes and epididymides weights as well as many histological alterations. Stereological parameters and spermatogenic activities (Sertoli cell, repopulation and miotic indices) were also significantly decreased by CP treatment. Notably, Crataegus coadministration caused a partial recovery in above-mentined parameters. These findings indicate that Crataegus monogyna may be partially protective against CP-induced testicular toxicity.

  12. Metronomic cyclophosphamide eradicates large implanted GL261 gliomas by activating antitumor Cd8+ T-cell responses and immune memory

    PubMed Central

    Wu, Junjie; Waxman, David J

    2015-01-01

    Cancer chemotherapy using cytotoxic drugs can induce immunogenic tumor cell death; however, dosing regimens and schedules that enable single-agent chemotherapy to induce adaptive immune-dependent ablation of large, established tumors with activation of long-term immune memory have not been identified. Here, we investigate this issue in a syngeneic, implanted GL261 glioma model in immune-competent mice given cyclophosphamide on a 6-day repeating metronomic schedule. Two cycles of metronomic cyclophosphamide treatment induced sustained upregulation of tumor-associated CD8+ cytotoxic T lymphocyte (CTL) cells, natural killer (NK) cells, macrophages, and other immune cells. Expression of CTL- and NK–cell-shared effectors peaked on Day 6, and then declined by Day 9 after the second cyclophosphamide injection and correlated inversely with the expression of the regulatory T cell (Treg) marker Foxp3. Sustained tumor regression leading to tumor ablation was achieved after several cyclophosphamide treatment cycles. Tumor ablation required CD8+ T cells, as shown by immunodepletion studies, and was associated with immunity to re-challenge with GL261 glioma cells, but not B16-F10 melanoma or Lewis lung carcinoma cells. Rejection of GL261 tumor re-challenge was associated with elevated CTLs in blood and increased CTL infiltration in tumors, consistent with the induction of long-term, specific CD8+ T-cell anti-GL261 tumor memory. Co-depletion of CD8+ T cells and NK cells did not inhibit tumor regression beyond CD8+ T-cell depletion alone, suggesting that the metronomic cyclophosphamide-activated NK cells function via CD8a+ T cells. Taken together, these findings provide proof-of-concept that single-agent chemotherapy delivered on an optimized metronomic schedule can eradicate large, established tumors and induce long-term immune memory. PMID:26137402

  13. Antiemetic therapy for non-anthracycline and cyclophosphamide moderately emetogenic chemotherapy.

    PubMed

    Inui, Naoki

    2017-05-01

    Although antiemetic management in cancer therapy has improved, chemotherapy-induced nausea and vomiting remain common and troubling adverse events. Chemotherapeutic agents are classified based on their emetogenic effects, and appropriate antiemetics are recommended according to this categorization. Chemotherapy categorized as moderately emetogenic is associated with a wide spectrum of emetic risks. Combined anthracycline and cyclophosphamide regimens have been recently reclassified as highly emetogenic chemotherapy regimen. This review focuses on antiemetic pharmacotherapy in patients receiving non-anthracycline and cyclophosphamide-based moderately emetogenic chemotherapy regimens. Combination therapy with a 5-hydroxytryptamine-3 receptor agonist, preferably palonosetron, and dexamethasone is the standard therapy in moderately emetogenic chemotherapy, although triple therapy with add-on neurokinin-1 receptor antagonist is used as an alternative treatment strategy. Among moderately emetogenic chemotherapy regimens, carboplatin-containing chemotherapy has considerable emetic potential, particularly during the delayed phase. However, the additional of a neurokinin-1 receptor antagonist to the standard antiemetic therapy prevents carboplatin-induced nausea and vomiting. For regimens including oxaliplatin, the benefit of adding neurokinin-1 receptor antagonist requires further clarification.

  14. Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase.

    PubMed

    Rodrigues-Ferreira, Clara; da Silva, Ana Paula Pereira; Galina, Antonio

    2012-02-01

    The alkylating agent 3-Bromopyruvate (3-BrPA) has been used as an anti-tumoral drug due to its anti-proliferative property in hepatomas cells. This propriety is believed to disturb glycolysis and respiration, which leads to a decreased rate of ATP synthesis. In this study, we evaluated the effects of the alkylating agent 3-BrPA on the respiratory states and the metabolic steps of the mitochondria of mice liver, brain and in human hepatocarcinoma cell line HepG2. The mitochondrial membrane potential (ΔΨ(m)), O(2) consumption and dehydrogenase activities were rapidly dissipated/or inhibited by 3-BrPA in respiration medium containing ADP and succinate as respiratory substrate. 3-BrPA inhibition was reverted by reduced glutathione (GSH). Respiration induced by yeast soluble hexokinase (HK) was rapidly inhibited by 3-BrPA. Similar results were observed using mice brain mitochondria that present HK naturally bound to the outer mitochondrial membrane. When the adenine nucleotide transporter (ANT) was blocked by the carboxyatractiloside, the 3-BrPA effect was significantly delayed. In permeabilized human hepatoma HepG2 cells that present HK type II bound to mitochondria (mt-HK II), the inhibiting effect occurred faster when the endogenous HK activity was activated by 2-deoxyglucose (2-DOG). Inhibition of mt-HK II by glucose-6-phosphate retards the mitochondria to react with 3-BrPA. The HK activities recovered in HepG2 cells treated or not with 3-BrPA were practically the same. These results suggest that mitochondrially bound HK supporting the ADP/ATP exchange activity levels facilitates the 3-BrPA inhibition reaction in tumors mitochondria by a proton motive force-dependent dynamic equilibrium between sensitive and less sensitive SDH in the electron transport system.

  15. Long-term risk of malignancy among patients treated with immunosuppressive agents for ocular inflammation: A critical assessment of the evidence

    PubMed Central

    Kempen, John H.; Gangaputra, Sapna; Daniel, Ebenezer; Levy-Clarke, Grace A.; Nussenblatt, Robert B.; Rosenbaum, James T.; Suhler, Eric B.; Thorne, Jennifer E.; Foster, C. Stephen; Jabs, Douglas A.; Helzlsouer, Kathy J.

    2008-01-01

    Purpose To critically assess potentially carcinogenic effects of immunosuppressive therapy in the ocular inflammation setting Design Focused evidence assessment. Methods Relevant publications were identified by MEDLINE and EMBASE queries and reference list searches. Results Extrapolation from transplant, rheumatology, skin disease and inflammatory bowel disease cohorts to the ocular inflammation setting suggest that: 1) alkylating agents increase hematologic malignancy risk and cyclophosphamide increases bladder cancer risk, but less so with ≤18 months’ duration of therapy and hydration respectively; 2) calcineurin inhibitors and azathioprine probably do not increase total cancer risk to a detectable degree, except perhaps some other risk factors (uncommon in ocular inflammation patients) might interact with the former to raise risk; 3) Tumor Necrosis Factor (TNF) inhibitors may accelerate diagnosis of cancer in the first 6–12 months, but probably do not increase long-term cancer risk; and 4) changes in risk with methotrexate, mycophenolate mofetil, and daclizumab appear negligible although non-transplant data are limited for the latter agents. Immunosuppression in general may increase skin cancer risk in a sun-exposure dependent manner. Conclusion Use of alkylating agents for a limited duration seems justifiable for severe, vision-threatening disease, but otherwise cancer risk may be a relevant constraint on use of this approach. Antimetabolites, daclizumab, TNF-inhibitors, and calcineurin inhibitors probably do not increase cancer risk to a degree that outweighs the expected benefits of therapy. Monitoring for skin cancer may be useful for highly sun-exposed patients. Data from ocular inflammation patients are needed to confirm the conclusions made in this analysis by extrapolation. PMID:18579112

  16. E. coli mismatch repair enhances AT-to-GC mutagenesis caused by alkylating agents.

    PubMed

    Nakano, Kota; Yamada, Yoko; Takahashi, Eizo; Arimoto, Sakae; Okamoto, Keinosuke; Negishi, Kazuo; Negishi, Tomoe

    2017-03-01

    Alkylating agents are known to induce the formation of O 6 -alkylguanine (O 6 -alkG) and O 4 -alkylthymine (O 4 -alkT) in DNA. These lesions have been widely investigated as major sources of mutations. We previously showed that mismatch repair (MMR) facilitates the suppression of GC-to-AT mutations caused by O 6 -methylguanine more efficiently than the suppression of GC-to-AT mutations caused by O 6 -ethylguanine. However, the manner by which O 4 -alkyT lesions are repaired remains unclear. In the present study, we investigated the repair pathway involved in the repair of O 4 -alkT. The E. coli CC106 strain, which harbors Δprolac in its genomic DNA and carries the F'CC106 episome, can be used to detect AT-to-GC reverse-mutation of the gene encoding β-galactosidase. Such AT-to-GC mutations should be induced through the formation of O 4 -alkT at AT base pairs. As expected, an O 6 -alkylguanine-DNA alkyltransferase (AGT) -deficient CC106 strain, which is defective in both ada and agt genes, exhibited elevated mutant frequencies in the presence of methylating agents and ethylating agents. However, in the UvrA-deficient strain, the methylating agents were less mutagenic than in wild-type, while ethylating agents were more mutagenic than in wild-type, as observed with agents that induce O 6 -alkylguanine modifications. Unexpectedly, the mutant frequencies decreased in a MutS-deficient strain, and a similar tendency was observed in MutL- or MutH-deficient strains. Thus, MMR appears to promote mutation at AT base pairs. Similar results were obtained in experiments employing double-mutant strains harboring defects in both MMR and AGT, or MMR and NER. E. coli MMR enhances AT-to-GC mutagenesis, such as that caused by O 4 -alkylthymine. We hypothesize that the MutS protein recognizes the O 4 -alkT:A base pair more efficiently than O 4 -alkT:G. Such a distinction would result in misincorporation of G at the O 4 -alkT site, followed by higher mutation frequencies in wild

  17. Light of DNA-alkylating agents in castration-resistant prostate cancer cells: a novel mixed EGFR/DNA targeting combi-molecule.

    PubMed

    Liang, Guan-Can; Zheng, Hao-Feng; Chen, Yan-Xiong; Li, Teng-Cheng; Liu, Wei; Fang, You-Qiang

    2017-01-01

    The mechanism underlying the therapeutic effects of combi-molecule JDF12 on prostate cancer (PCa) DU145 cells remains still unclear. This study aimed to investigate the proteomic profile after JDF12 treatment in DU145 cells by comparing with that in Iressa treated cells and untreated cells. MTT was used to evaluate drug cytotoxicity, DAPI staining was done to assess apoptosis of cells, and flow cytometry was used to analyze cell cycle. iTRAQ and qPCR were employed to obtain the proteomic profiles of JDF12 treated, Iressa treated, and untreated DU145 cells, and validate the expression of selected differentially expressed proteins, respectively. JDF12 could significantly inhibit the proliferation and increase the apoptosis of DU145 cells when compared with Iressa or blank group. In total, 5071 proteins were obtained, out of which, 42, including 21 up-regulated and 21 down-regulated proteins, were differentially expressed in JDF12 group when compared with Iressa and blank groups. The up-regulated proteins were mainly involved in DNA damage/repair and energy metabolism; while the down-regulated proteins were mainly associated with cell apoptosis. qPCR confirmed the expression of several biologically important proteins in DU145 cells after JDF12 treatment. The molecular mechanisms of DNA alkylating agents on PCa therapy that with the assistant of EGFR-blocker were revealed on proteomic level, which may increase the possible applications of DNA alkylating agents and JDF12 on PCa therapy.

  18. Immunomodulatory therapy for ocular inflammatory disease: a basic manual and review of the literature.

    PubMed

    Okada, Annabelle A

    2005-01-01

    Corticosteroids are used as first-line treatment for many ocular inflammatory conditions. The risk of adverse effects, however, necessitates conversion to steroid-sparing immunomodulatory therapy (IMT) for disease that is recurrent, chronic, or poorly responsive to treatment. Combination drug treatments with multiple agent 'recipes' are also considered. Immunomodulatory agents include the broad categories of antimetabolites (azathioprine, methotrexate, mycophenolate mofetil), alkylating agents (cyclophosphamide, chlorambucil), T-cell inhibitors (cyclosporine, tacrolimus), and cytokines (interferon alfa). This article reviews and summarizes the evidence for IMT agent use in the treatment of various forms of ocular inflammation.

  19. Determination of methyl-, 2-hydroxyethyl- and 2-cyanoethylmercapturic acids as biomarkers of exposure to alkylating agents in cigarette smoke.

    PubMed

    Scherer, Gerhard; Urban, Michael; Hagedorn, Heinz-Werner; Serafin, Richard; Feng, Shixia; Kapur, Sunil; Muhammad, Raheema; Jin, Yan; Sarkar, Mohamadi; Roethig, Hans-Juergen

    2010-10-01

    Alkylating agents occur in the environment and are formed endogenously. Tobacco smoke contains a variety of alkylating agents or precursors including, among others, N-nitrosodimethylamine (NDMA), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), acrylonitrile and ethylene oxide. We developed and validated a method for the simultaneous determination of methylmercapturic acid (MMA, biomarker for methylating agents such as NDMA and NNK), 2-hydroxyethylmercapturic acid (HEMA, biomarker for ethylene oxide) and 2-cyanoethylmercapturic acid (CEMA, biomarker for acrylonitrile) in human urine using deuterated internal standards of each compound. The method involves liquid/liquid extraction of the urine sample, solid phase extraction on anion exchange cartridges, derivatization with pentafluorobenzyl bromide (PFBBr), liquid/liquid extraction of the reaction mixture and LC-MS/MS analysis with positive electrospray ionization. The method was linear in the ranges of 5.00-600, 1.00-50.0 and 1.50-900 ng/ml for MMA, HEMA and CEMA, respectively. The method was applied to two clinical studies in adult smokers of conventional cigarettes who either continued smoking conventional cigarettes, were switched to test cigarettes consisting of either an electrically heated cigarette smoking system (EHCSS) or having a highly activated carbon granule filter that were shown to have reduced exposure to specific smoke constituents, or stopped smoking. Urinary excretion of MMA was found to be unaffected by switching to the test cigarettes or stop smoking. Urinary HEMA excretion decreased by 46 to 54% after switching to test cigarettes and by approximately 74% when stopping smoking. Urinary CEMA excretion decreased by 74-77% when switching to test cigarettes and by approximately 90% when stopping smoking. This validated method for urinary alkylmercapturic acids is suitable to distinguish differences in exposure not only between smokers and nonsmokers but also between smoking of conventional and

  20. Safety Assessment of Amino Acid Alkyl Amides as Used in Cosmetics.

    PubMed

    Burnett, Christina L; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the product use, formulation, and safety data of 115 amino acid alkyl amides, which function as skin and hair conditioning agents and as surfactants-cleansing agents in personal care products. Safety test data on dermal irritation and sensitization for the ingredients with the highest use concentrations, lauroyl lysine and sodium lauroyl glutamate, were reviewed and determined to adequately support the safe use of the ingredients in this report. The Panel concluded that amino acid alkyl amides are safe in the present practices of use and concentration in cosmetics, when formulated to be nonirritating.

  1. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length.

    PubMed

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S; Du, Yang; Nielsen, Anne K; Byrne, Bernadette; Kobilka, Brian K; Loland, Claus J; Guan, Lan; Chae, Pil Seok

    2016-12-14

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C 12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile-lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair.

    PubMed

    Löser, Dana A; Shibata, Atsushi; Shibata, Akiko K; Woodbine, Lisa J; Jeggo, Penny A; Chalmers, Anthony J

    2010-06-01

    As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.

  3. Alkyl chitosan film-high strength, functional biomaterials.

    PubMed

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  4. Cancer Risk after Cyclophosphamide Treatment in Idiopathic Membranous Nephropathy

    PubMed Central

    van Dijk, Peter R.; Hofstra, Julia M.; Wetzels, Jack F.M.

    2014-01-01

    Background and objectives Cyclophosphamide treatment improves renal survival in patients with idiopathic membranous nephropathy. However, use of cyclophosphamide is associated with cancer. The incidence of malignancies in patients with idiopathic membranous nephropathy was evaluated, and the cancer risk associated with cyclophosphamide use was estimated. Design, setting, participants, & measurements Patients who attended the clinic were included prospectively from 1995 on. A crude incidence ratio for the occurrence of malignancy was calculated. Incidence ratios were subsequently standardized to potential confounders. Latency between cyclophosphamide therapy and the occurrence of cancer was estimated by stratifying for time since the start of treatment. Finally, Poisson regression was used to obtain a multiple adjusted incidence ratio and investigate the dose–response relationship between cyclophosphamide and cancer. Results Data were available for 272 patients; the mean age was 51 years, and 70% of the patients were men. Median follow-up was 6.0 years (interquartile range=3.6–9.5), and 127 patients were treated with cyclophosphamide. Cancer incidence was 21.2 per 1000 person-years in treated patients compared with 4.6 per 1000 person-years in patients who did not receive cyclophosphamide, resulting in crude and adjusted incidence ratios of 4.6 (95% confidence interval, 1.5 to 18.8) and 3.2 (95% confidence interval, 1.0 to 9.5), respectively. Conclusion Cyclophosphamide therapy in idiopathic membranous nephropathy gives a threefold increase in cancer risk. For the average patient, this finding translates into an increase in annual risk from approximately 0.3% to 1.0%. The increased risk of malignancy must be balanced against the improved renal survival. PMID:24855280

  5. Rituximab versus Cyclophosphamide for ANCA-Associated Vasculitis

    PubMed Central

    Stone, John H.; Merkel, Peter A.; Spiera, Robert; Seo, Philip; Langford, Carol A.; Hoffman, Gary S.; Kallenberg, Cees G.M.; St. Clair, E. William; Turkiewicz, Anthony; Tchao, Nadia K.; Webber, Lisa; Ding, Linna; Sejismundo, Lourdes P.; Mieras, Kathleen; Weitzenkamp, David; Ikle, David; Seyfert-Margolis, Vicki; Mueller, Mark; Brunetta, Paul; Allen, Nancy B.; Fervenza, Fernando C.; Geetha, Duvuru; Keogh, Karina A.; Kissin, Eugene Y.; Monach, Paul A.; Peikert, Tobias; Stegeman, Coen; Ytterberg, Steven R.; Specks, Ulrich

    2011-01-01

    BACKGROUND Cyclophosphamide and glucocorticoids have been the cornerstone of remission-induction therapy for severe antineutrophil cytoplasmic antibody (ANCA)–associated vasculitis for 40 years. Uncontrolled studies suggest that rituximab is effective and may be safer than a cyclophosphamide-based regimen. METHODS We conducted a multicenter, randomized, double-blind, double-dummy, noninferiority trial of rituximab (375 mg per square meter of body-surface area per week for 4 weeks) as compared with cyclophosphamide (2 mg per kilogram of body weight per day) for remission induction. Glucocorticoids were tapered off; the primary end point was remission of disease without the use of prednisone at 6 months. RESULTS Nine centers enrolled 197 ANCA-positive patients with either Wegener’s granulomatosis or microscopic polyangiitis. Baseline disease activity, organ involvement, and the proportion of patients with relapsing disease were similar in the two treatment groups. Sixty-three patients in the rituximab group (64%) reached the primary end point, as compared with 52 patients in the control group (53%), a result that met the criterion for noninferiority (P<0.001). The rituximab-based regimen was more efficacious than the cyclophosphamide-based regimen for inducing remission of relapsing disease; 34 of 51 patients in the rituximab group (67%) as compared with 21 of 50 patients in the control group (42%) reached the primary end point (P = 0.01). Rituximab was also as effective as cyclophosphamide in the treatment of patients with major renal disease or alveolar hemorrhage. There were no significant differences between the treatment groups with respect to rates of adverse events. CONCLUSIONS Rituximab therapy was not inferior to daily cyclophosphamide treatment for induction of remission in severe ANCA-associated vasculitis and may be superior in relapsing disease. (Funded by the National Institutes of Allergy and Infectious Diseases, Genentech, and Biogen; Clinical

  6. Curculigo orchioides Gaertn Effectively Ameliorates the Uro- and Nephrotoxicities Induced by Cyclophosphamide Administration in Experimental Animals

    PubMed Central

    Murali, Vishnu Priya; Kuttan, Girija

    2015-01-01

    Background. Curculigo orchioides Gaertn is an ancient medicinal plant (Family: Amaryllidaceae), well known for its immunomodulatory and rejuvenating effects. Cyclophosphamide (CPA) is an alkylating agent widely used for treating a variety of human malignancies, but associated with different toxicities too. Our previous reports regarding the hemoprotective and hepatoprotective effects of the plant against CPA toxicities provide the background for the present study, which is designed to analyze the ameliorative effect of the methanolic extract of C orchioides on the urotoxicity and nephrotoxicity induced by CPA. Methods. CPA was administered to male Swiss albino mice at a single dose of 1.5 mmol/kg body weight to induce urotoxicity after 5 days of prophylactic treatment with C orchioides extract (20 mg/kg body weight). Mesna (2-mercaptoethanesulfonate) was used as a control drug. Serum, tissue, and urine levels of kidney function markers and antioxidant levels were checked along with the serum cytokine levels. Results. The plant extract was found to be effective in ameliorating the urotoxic and nephrotoxic side effects of CPA. Upregulation of serum interferon-γ and interleukin-2 levels were observed with C orchioides treatment, which was decreased by CPA administration. Besides these, serum tumor necrosis factor-α level was also downregulated by C orchioides treatment. Conclusion. Curculigo orchioides was found to be effective against the CPA-induced bladder and renal toxicities by its antioxidant capability and also by regulating the pro-inflammatory cytokine levels. PMID:26424815

  7. O6-methylguanine-DNA methyltransferase as a prognostic and predictive marker for basal-like breast cancer treated with cyclophosphamide-based chemotherapy

    PubMed Central

    ISONO, SAYURI; FUJISHIMA, MAKOTO; AZUMI, TATSUYA; HASHIMOTO, YUKIHIKO; KOMOIKE, YOSHIFUMI; YUKAWA, MASAO; WATATANI, MASAHIRO

    2014-01-01

    The O6-methylguanine-DNA methyltransferase (MGMT) protein protects cells from alkylating agents by removing alkyl groups from the O6-position of guanine. However, its effect on DNA damage induced by cyclophosphamide (CPM) is unclear. The present study investigated whether MGMT expression was correlated with prognosis in patients with breast cancer that was managed according to a common therapeutic protocol or treated with CPM-based chemotherapy. The intrinsic subtypes and MGMT protein expression levels were assessed in 635 consecutive patients with breast cancer using immunohistochemistry. In total, 425 (67%) luminal A, 95 (15%) luminal B, 47 (7%) human epidermal growth factor receptor-2+/estrogen receptor− (HER2+/ER−) and 48 (8%) basal-like subtypes were identified. Of these, MGMT positivity was identified in 398 (63%) of 635 breast cancers; 68% of luminal A, 67% of luminal B, 30% of HER2+/ER− and 46% of basal-like subtypes were positive. The overall survival (OS) and disease-free survival (DFS) rates did not significantly differ according to the MGMT status among patients with luminal A, luminal B or HER2+/ER− subtypes, and patients with MGMT-negative basal-like cancers tended to have a longer DFS, but not a significantly longer OS time. CPM-containing chemotherapy was administered to 26%, 40%, 47% and 31% of patients with luminal A, luminal B, HER2+/ER− and basal-like tumors, respectively. Although the MGMT status and clinical outcomes of patients with the luminal A, luminal B or HER2+/ER− subtypes treated with CPM were not significantly correlated, the patients with MGMT-negative basal-like tumors who received CPM exhibited significantly improved DFS and OS compared with the CPM-treated patients with MGMT-positive tumors. MGMT may be a useful prognostic and predictive marker for CPM-containing chemotherapy in basal-like breast cancer. PMID:24932232

  8. O6-methylguanine-DNA methyltransferase as a prognostic and predictive marker for basal-like breast cancer treated with cyclophosphamide-based chemotherapy.

    PubMed

    Isono, Sayuri; Fujishima, Makoto; Azumi, Tatsuya; Hashimoto, Yukihiko; Komoike, Yoshifumi; Yukawa, Masao; Watatani, Masahiro

    2014-06-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein protects cells from alkylating agents by removing alkyl groups from the O 6 -position of guanine. However, its effect on DNA damage induced by cyclophosphamide (CPM) is unclear. The present study investigated whether MGMT expression was correlated with prognosis in patients with breast cancer that was managed according to a common therapeutic protocol or treated with CPM-based chemotherapy. The intrinsic subtypes and MGMT protein expression levels were assessed in 635 consecutive patients with breast cancer using immunohistochemistry. In total, 425 (67%) luminal A, 95 (15%) luminal B, 47 (7%) human epidermal growth factor receptor-2 + /estrogen receptor - (HER2 + /ER - ) and 48 (8%) basal-like subtypes were identified. Of these, MGMT positivity was identified in 398 (63%) of 635 breast cancers; 68% of luminal A, 67% of luminal B, 30% of HER2 + /ER - and 46% of basal-like subtypes were positive. The overall survival (OS) and disease-free survival (DFS) rates did not significantly differ according to the MGMT status among patients with luminal A, luminal B or HER2 + /ER - subtypes, and patients with MGMT-negative basal-like cancers tended to have a longer DFS, but not a significantly longer OS time. CPM-containing chemotherapy was administered to 26%, 40%, 47% and 31% of patients with luminal A, luminal B, HER2 + /ER - and basal-like tumors, respectively. Although the MGMT status and clinical outcomes of patients with the luminal A, luminal B or HER2 + /ER - subtypes treated with CPM were not significantly correlated, the patients with MGMT-negative basal-like tumors who received CPM exhibited significantly improved DFS and OS compared with the CPM-treated patients with MGMT-positive tumors. MGMT may be a useful prognostic and predictive marker for CPM-containing chemotherapy in basal-like breast cancer.

  9. A pilot study of addition of amifostine to melphalan, carboplatin, etoposide, and cyclophosphamide with autologous hematopoietic stem cell transplantation in pediatric solid tumors-A pediatric blood and marrow transplant consortium study.

    PubMed

    Ozkaynak, M Fevzi; Sahdev, Indira; Gross, Thomas G; Levine, John E; Cheerva, Alexandra C; Richards, Michael K; Rozans, Marta K; Shaw, Peter J; Kadota, Richard P

    2008-03-01

    Limited information is available regarding the use of amifostine in pediatric hematopoietic stem cell transplant (HSCT) patients. Melphalan, carboplatin, etoposide +/- cyclophosphamide is a commonly used preparatory regimen in pediatric solid tumor HSCT. Therefore, we decided to determine the feasibility of the addition of amifostine (750 mg/m b.i.d. x 4 d) to melphalan (200 mg/m), carboplatin (1200 mg/m), and etoposide (800 mg/m) (level 1) and escalating doses of cyclophosphamide (3000 mg/m and 3800 mg/m, levels 2 and 3, respectively) followed by autologous HSCT. Thirty-two patients with a variety of pediatric solid tumors were studied. Seventeen patients were accrued at level 1, 9 at level 2, and 6 at level 3. Major toxicities during the administration of the preparatory regimen were hypocalcemia, emesis, and hypotension. Hypocalcemia required aggressive calcium supplementation during the conditioning phase. No dose limiting toxicities were encountered at level 3. Amifostine at 750 mg/m b.i.d. for 4 days can be administered with a double alkylator regimen consisting of melphalan (200 mg/m), cyclophosphamide (up to 3800 mg/m), carboplatin (1200 mg/m), and etoposide (800 mg/m) with manageable toxicities.

  10. Alternating sequential chemotherapy with high-dose ifosfamide and doxorubicin/cyclophosphamide for adult non-small round cell soft tissue sarcomas.

    PubMed

    Kawai, Akira; Umeda, Toru; Wada, Takuro; Ihara, Koichiro; Isu, Kazuo; Abe, Satoshi; Ishii, Takeshi; Sugiura, Hideshi; Araki, Nobuhito; Ozaki, Toshifumi; Yabe, Hiroo; Hasegawa, Tadashi; Tsugane, Shoichiro; Beppu, Yasuo

    2005-05-01

    Doxorubicin and ifosfamide are the two most active agents used to treat soft tissue sarcomas. However, because of their overlapping side effects, concurrent administration to achieve optimal doses of each agent is difficult. We therefore conducted a Phase II trial to investigate the efficacy and feasibility of a novel alternating sequential chemotherapy regimen consisting of high dose ifosfamide and doxorubicin/cyclophosphamide in advanced adult non-small round cell soft tissue sarcomas. Adult patients with non-small round cell soft tissue sarcomas were enrolled. The treatment consisted of four sequential courses of chemotherapy that was planned for every 3 weeks. Cycles 1 and 3 consisted of ifosfamide (14 g/m(2)), and cycles 2 and 4 consisted of doxorubicin (60 mg/m(2)) and cyclophosphamide (1200 mg/m(2)). Forty-two patients (median age 47 years) were enrolled. Of the 36 assessable patients, 1 complete response and 16 partial responses were observed, for a response rate of 47.2%. Responses were observed in 57% of patients who had received no previous chemotherapy and 13% of those who had previously undergone chemotherapy. Grade 3-4 neutropenia was observed during 70% of all cycles. Sequential administration of high-dose ifosfamide and doxorubicin/cyclophosphamide has promising activity with manageable side effects in patients with advanced adult non-small round cell soft tissue sarcomas.

  11. Modulation of thalidomide pharmacokinetics by cyclophosphamide or 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in mice: the role of tumour necrosis factor.

    PubMed

    Chung, Francisco; Wang, Liang-Chuan S; Kestell, Philip; Baguley, Bruce C; Ching, Lai-Ming

    2004-05-01

    There is considerable current interest in the use of thalidomide as a single agent or in combination with drugs such as cyclophosphamide in the treatment of multiple myeloma and other cancers. Our previous work has shown that thalidomide potentiates the antitumour activity of both cyclophosphamide and 5,6-dimethylxanthenone-4-acetic acid (DMXAA) against murine Colon 38 tumours. In both of these cases, thalidomide extends the half-life (t(1/2)) of the other drug. We wished to determine whether cyclophosphamide and DMXAA altered the t(1/2) of thalidomide. Since both thalidomide and DMXAA modulate tumour necrosis factor (TNF), we also wished to determine the role of TNF in this interaction. Mice with Colon 38 tumours were treated with cyclophosphamide (220 mg/kg) and/or thalidomide (20 mg/kg) or DMXAA (25 mg/kg) and thalidomide (100 mg/kg), combinations that have previously demonstrated synergistic activity. Plasma and tumour tissue drug concentrations were analysed by high-performance liquid chromatography. To determine the role of TNF, similar experiments were performed using mice defective in the TNF gene (TNF(-/-)) or the TNF receptor-1 gene (TNFR1(-/-)). Coadministration of cyclophosphamide increased the thalidomide t(1/2) by 3.9- and 3.6-fold, respectively, in plasma and tumour tissue, with a corresponding increase in the concentration-time curve (AUC). The corresponding values following coadministration of DMXAA were 3.0- and 4.6-fold, respectively. Coadministration of cyclophosphamide had similar effects on thalidomide t(1/2) in C57Bl/6, TNF(-/-) and TNFR1(-/-) mice, while coadministration of DMXAA did not alter the t(1/2) or AUC in TNF(-/-) and TNFR1(-/-) mice. Both cyclophosphamide and DMXAA have a pharmacokinetic interaction with thalidomide, increasing t(1/2) and AUC. TNF mediates the effect of DMXAA on thalidomide pharmacokinetics but not that of cyclophosphamide.

  12. Effect of chemotherapy with alkylating agents on the yield of CD34+ cells in patients with multiple myeloma. Results of the Spanish Myeloma Group (GEM) Study.

    PubMed

    de la Rubia, Javier; Bladé, Joan; Lahuerta, Juan-José; Ribera, Josep M; Martínez, Rafael; Alegre, Adrián; García-Laraña, José; Fernández, Pascual; Sureda, Anna; de Arriba, Felipe; Carrera, Dolores; Besalduch, Joan; García Boyero, Raimundo; Palomera Bernal, Luis; Hernández, Miguel T; García, Paz Ribas; Pérez-Calvo, Javier; Alcalá, Antonio; Casado, Luis Felipe; San Miguel, Jesús

    2006-05-01

    Although alkylating agents are clearly beneficial in multiple myeloma (MM), their deleterious effect on bone marrow hematopoietic progenitor cells usually precludes their use as front-line therapy in patients scheduled to undergo autologous stem cell transplantation (ASCT). We analyzed the impact of first-line chemotherapy with alkylating agents on stem cell collection in MM patients. Seven hundred and eighty-nine patients included in the Spanish multicenter protocol GEM-2000 underwent mobilization therapy after four courses of alternating VBMCP/VBAD chemotherapy. The mobilization regimens consisted of standard or high-dose granulocyte colony-stimulating factor (G-CSF) in 551 (70%) patients, and chemotherapy and G-CSF in 206 (26%) patients. The CD34+ cell yield was lower than 4x10(6)/kg in 388 patients (49%), and equal or greater than 4x10(6)/kg in 401 patients (51%). Multivariate analysis indicated that advanced age (p<0.0001) and longer interval between diagnosis and mobilization (p=0.012) were the two variables associated with a lower CD34+ cell yield. Significant differences in CD34+ cell yield were not observed between the mobilization regimens. Of the 789 patients included in the protocol, 726 (92%) underwent the planned ASCT, whereas 25 (3%) patients did not because of the low number of CD34+ cells collected. Following ASCT, 0.5x10(9) neutrophils/L could be recovered after 11 days (median time; range, 5-71 days) and 20x10(9) platelets/L could be recovered after 12 days (median time; range, 6-69 days). A short-course of therapy with alkylating agents according to the GEM-2000 protocol was associated with an appropriate CD34+ cell collection, and allowed the planned ASCT to be performed in the majority of MM patients.

  13. O6-methylguanine-DNA methyltransferase activity is associated with response to alkylating agent therapy and with MGMT promoter methylation in glioblastoma and anaplastic glioma

    PubMed Central

    Bobola, Michael S.; Alnoor, Mohammad; Chen, John Y.-S.; Kolstoe, Douglas D.; Silbergeld, Daniel L.; Rostomily, Robert C.; Blank, A.; Chamberlain, Marc C.; Silber, John R.

    2014-01-01

    Background CpG methylation in the O6-methylguanine-DNA methyltransferase (MGMT) promoter is associated with better outcome following alkylating agent chemotherapy in glioblastoma (GBM) and anaplastic glioma (AG). To what extent improved response reflects low or absent MGMT activity in glioma tissue has not been unequivocally assessed. This information is central to developing anti-resistance therapies. Methods We examined the relationship of MGMT activity in 91 GBMs and 84 AGs with progression-free survival (PFS) following alkylator therapy and with promoter methylation status determined by methylation-specific PCR (MSP). Results Cox regression analysis revealed that GBMs with high activity had a significantly greater risk for progression in dichotomous (P ≤ 0.001) and continuous (P ≤ 0.003) models, an association observed for different alkylator regimens, including concurrent chemo-radiation with temozolomide. Analysis of MGMT promoter methylation status in 47 of the GBMs revealed that methylated tumors had significantly lower activity (P ≤ 0.005) and longer PFS (P ≤ 0.036) compared to unmethylated tumors, despite overlapping activities. PFS was also significantly greater in methylated vs. unmethylated GBMs with comparable activity (P ≤ 0.005), and among unmethylated tumors with less than median activity (P ≤ 0.026), suggesting that mechanisms in addition to MGMT promote alkylator resistance. Similar associations of MGMT activity with PFS and promoter methylation status were observed for AGs. Conclusions Our results provide strong support for the hypotheses that MGMT activity promotes alkylator resistance and reflects promoter methylation status in malignant gliomas. General significance MGMT activity is an attractive target for anti-resistance therapy regardless of methylation status. PMID:25558448

  14. ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage

    PubMed Central

    Jordan, Jennifer J; Chhim, Sophea; Margulies, Carrie M; Allocca, Mariacarmela; Bronson, Roderick T; Klungland, Arne; Samson, Leona D; Fu, Dragony

    2017-01-01

    Regulated necrosis has emerged as a major cell death mechanism in response to different forms of physiological and pharmacological stress. The AlkB homolog 7 (ALKBH7) protein is required for regulated cellular necrosis in response to chemotherapeutic alkylating agents but its role within a whole organism is unknown. Here, we show that ALKBH7 modulates alkylation-induced cellular death through a tissue and sex-specific mechanism. At the whole-animal level, we find that ALKBH7 deficiency confers increased resistance to MMS-induced toxicity in male but not female mice. Moreover, ALKBH7-deficient mice exhibit protection against alkylation-mediated cytotoxicity in retinal photoreceptor and cerebellar granule cells, two cell types that undergo necrotic death through the initiation of the base excision repair pathway and hyperactivation of the PARP1/ARTD1 enzyme. Notably, the protection against alkylation-induced cerebellar degeneration is specific to ALKBH7-deficient male but not female mice. Our results uncover an in vivo role for ALKBH7 in mediating a sexually dimorphic tissue response to alkylation damage that could influence individual responses to chemotherapies based upon alkylating agents. PMID:28726787

  15. Evaluation of patritumab with or without erlotinib in combination with standard cytotoxic agents against pediatric sarcoma xenograft models.

    PubMed

    Bandyopadhyay, Abhik; Favours, Edward; Phelps, Doris A; Pozo, Vanessa Del; Ghilu, Samson; Kurmashev, Dias; Michalek, Joel; Trevino, Aron; Guttridge, Denis; London, Cheryl; Hirotani, Kenji; Zhang, Ling; Kurmasheva, Raushan T; Houghton, Peter J

    2018-02-01

    Integrating molecularly targeted agents with cytotoxic drugs used in curative treatment of pediatric cancers is complex. An evaluation was undertaken with the ERBB3/Her3-specific antibody patritumab (P) either alone or with the ERBB1/epidermal growth factor receptor inhibitor erlotinib (E) in combination with standard cytotoxic agents, cisplatin, vincristine, and cyclophosphamide, in pediatric sarcoma xenograft models that express receptors and ligands targeted by these agents. Tumor models were selected based upon ERBB3 expression and phosphorylation, and ligand (heregulin) expression. Patritumab, E, or these agents combined was evaluated without or with concomitant cytotoxic agents using procedures developed by the Pediatric Preclinical Testing Program. Full doses of cytotoxic agents were tolerated when combined with P, whereas dose reductions of 25% (vincristine, cisplatin) or 50% (cyclophosphamide) were required when combined with P + E. Patritumab, E alone, or in combination did not significantly inhibit growth of any tumor model, except for Rh18 xenografts (E alone). Patritumab had no single-agent activity and marginally enhanced the activity of vincristine and cisplatin only in Ewing sarcoma ES-4. P + E did not increase the antitumor activity of vincristine or cisplatin, whereas dose-reduced cyclophosphamide was significantly less active than cyclophosphamide administered at its maximum tolerated dose when combined with P + E. P had no single-agent activity, although it marginally potentiated the activity of vincristine and cisplatin in one of three models studied. However, the addition of E necessitated dose reduction of each cytotoxic agent, abrogating the enhancement observed with P alone. © 2017 Wiley Periodicals, Inc.

  16. Imaging enhancement of malignancy by cyclophosphamide: surprising chemotherapy opposite effects

    NASA Astrophysics Data System (ADS)

    Yamauchi, Kensuke; Yang, Meng; Hayashi, Katsuhiro; Jiang, Ping; Xu, Mingxu; Yamamoto, Norio; Tsuchiya, Hiroyuki; Tomita, Katsuro; Moossa, A. R.; Bouvet, Michael; Hoffman, Robert M.

    2008-02-01

    Although side effects of cancer chemotherapy are well known, "opposite effects" of chemotherapy which enhance the malignancy of the treated cancer are not well understood. We have observed a number of steps of malignancy that are enhanced by chemotherapy pre-treatment of mice before transplantation of human tumor cells. The induction of intravascular proliferation, extravasation, and colony formation by cancer cells, critical steps of metastasis was enhanced by pretreatment of host mice with the commonly-used chemotherapy drug cyclophosphamide. Cyclophosphamide appears to interfere with a host process that inhibits intravascular proliferation, extravasation, and extravascular colony formation by at least some tumor cells. Cyclophosphamide does not directly affect the cancer cells since cyclophosphamide has been cleared by the time the cancer cells were injected. Without cyclophosphamide pretreatment, human colon cancer cells died quickly after injection in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the cancer cells occurred within 6 hours. The number of apoptotic cells rapidly increased within the portal vein within 12 hours of injection. However, when the host mice were pretreated with cyclophosphamide, the cancer cells survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the cancer cells. This review describes an important unexpected "opposite effects" of chemotherapy that enhances critical steps in malignancy rather than inhibiting them, suggesting that certain current approaches to cancer chemotherapy should be modified.

  17. Severe Hepatic Sinusoidal Obstruction Syndrome in a Child Receiving Vincristine, Actinomycin-D, and Cyclophosphamide for Rhabdomyosarcoma: Successful Treatment with Defibrotide.

    PubMed

    Choi, Aery; Kang, Young Kyung; Lim, Sewon; Kim, Dong Ho; Lim, Jung Sub; Lee, Jun Ah

    2016-10-01

    Hepatic sinusoidal obstruction syndrome (SOS) is a life-threatening syndrome that generally occurs as a complication after hematopoietic stem cell transplantation or, less commonly, after conventional chemotherapy. Regarding SOS in rhabdomyosarcoma patients who received conventional chemotherapy, the doses of chemotherapeutic agents are associated with the development of SOS. Several cases of SOS in rhabdomyosarcoma patients after receiving chemotherapy with escalated doses of cyclophosphamide have been reported. Here, we report on a 9-year-old female with rhabdomyosarcoma who developed severe SOS after receiving chemotherapy consisting of vincristine, actinomycin-D, and a moderate dose of cyclophosphamide. She was treated successfully with defibrotide without sequelae to the liver.

  18. Severe Hepatic Sinusoidal Obstruction Syndrome in a Child Receiving Vincristine, Actinomycin-D, and Cyclophosphamide for Rhabdomyosarcoma: Successful Treatment with Defibrotide

    PubMed Central

    Choi, Aery; Kang, Young Kyung; Lim, Sewon; Kim, Dong Ho; Lim, Jung Sub; Lee, Jun Ah

    2016-01-01

    Hepatic sinusoidal obstruction syndrome (SOS) is a life-threatening syndrome that generally occurs as a complication after hematopoietic stem cell transplantation or, less commonly, after conventional chemotherapy. Regarding SOS in rhabdomyosarcoma patients who received conventional chemotherapy, the doses of chemotherapeutic agents are associated with the development of SOS. Several cases of SOS in rhabdomyosarcoma patients after receiving chemotherapy with escalated doses of cyclophosphamide have been reported. Here, we report on a 9-year-old female with rhabdomyosarcoma who developed severe SOS after receiving chemotherapy consisting of vincristine, actinomycin-D, and a moderate dose of cyclophosphamide. She was treated successfully with defibrotide without sequelae to the liver. PMID:27034141

  19. Low immunosuppressive burden after HLA-matched related or unrelated BMT using posttransplantation cyclophosphamide.

    PubMed

    Kanakry, Christopher G; Bolaños-Meade, Javier; Kasamon, Yvette L; Zahurak, Marianna; Durakovic, Nadira; Furlong, Terry; Mielcarek, Marco; Medeot, Marta; Gojo, Ivana; Smith, B Douglas; Kanakry, Jennifer A; Borrello, Ivan M; Brodsky, Robert A; Gladstone, Douglas E; Huff, Carol Ann; Matsui, William H; Swinnen, Lode J; Cooke, Kenneth R; Ambinder, Richard F; Fuchs, Ephraim J; de Lima, Marcos J; Andersson, Borje S; Varadhan, Ravi; O'Donnell, Paul V; Jones, Richard J; Luznik, Leo

    2017-03-09

    The intensive and prolonged immunosuppressive therapy required to prevent or treat graft-versus-host disease (GVHD) after allogeneic blood or marrow transplantation (alloBMT) puts patients at substantial risk for life-threatening infections, organ toxicity, and disease relapse. Posttransplantation cyclophosphamide (PTCy) can function as single-agent GVHD prophylaxis after myeloablative, HLA-matched related (MRD), or HLA-matched unrelated (MUD) donor T-cell-replete bone marrow allografting, obviating the need for additional prophylactic immunosuppression. However, patients who develop GVHD require supplemental treatment. We assessed the longitudinal requirement for immunosuppressive therapy in 339 patients treated with this transplantation platform: 247 receiving busulfan/cyclophosphamide (BuCy) conditioning (data collected retrospectively) and 92 receiving busulfan/fludarabine (BuFlu) conditioning (data collected prospectively). Approximately 50% of MRD patients and 30% of MUD patients never required immunosuppression beyond PTCy. In patients requiring further immunosuppression, typically only 1 to 2 agents were required, and the median durations of systemic pharmacologic immunosuppression for the BuCy MRD, BuFlu MRD, BuCy MUD, and BuFlu MUD groups all were 4.5 to 5 months. For these 4 groups, 1-year probabilities of being alive and off all systemic immunosuppression were 61%, 53%, 53%, and 51% and 3-year probabilities were 53%, 48%, 49%, and 56%, respectively. These data suggest that PTCy minimizes the global immunosuppressive burden experienced by patients undergoing HLA-matched alloBMT.

  20. Cyclophosphamide and Nandrolone Decanoate in the Treatment of Advanced Carcinoma of the Breast—Results of a Comparative Controlled Trial of the Agents Used Singly and in Combination

    PubMed Central

    Cole, M. P.; Todd, I. D. H.; Wilkinson, P. M.

    1973-01-01

    A random trial in which cyclophosphamide, nandrolone decanoate and the two drugs in combination were used in the treatment of advanced breast carcinoma is described. The results suggest that it is preferable to use cyclophosphamide on its own. PMID:4576562

  1. Safety Assessment of Alkyl PEG Sulfosuccinates as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of alkyl polyethylene glycol (PEG) sulfosuccinates, which function in cosmetics mostly as surfactants/cleansing agents. Although these ingredients may cause ocular and skin irritation, dermal penetration is unlikely because of the substantial polarity and molecular size of these ingredients. The Panel considered the negative oral carcinogenicity and reproductive and developmental toxicity data on chemically related laureths (PEG lauryl ethers) and negative repeated dose toxicity and skin sensitization data on disodium laureth sulfosuccinate supported the safety of these alkyl PEG sulfosuccinates in cosmetic products, but. The CIR Expert Panel concluded that the alkyl PEG sulfosuccinates are safe in the present practices of use and concentration when formulated to be nonirritating. © The Author(s) 2015.

  2. A New Class of Antibody-Drug Conjugates with Potent DNA Alkylating Activity.

    PubMed

    Miller, Michael L; Fishkin, Nathan E; Li, Wei; Whiteman, Kathleen R; Kovtun, Yelena; Reid, Emily E; Archer, Katie E; Maloney, Erin K; Audette, Charlene A; Mayo, Michele F; Wilhelm, Alan; Modafferi, Holly A; Singh, Rajeeva; Pinkas, Jan; Goldmacher, Victor; Lambert, John M; Chari, Ravi V J

    2016-08-01

    The promise of tumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADC) has now been realized, evidenced by the approval of two ADCs, both of which incorporate highly cytotoxic tubulin-interacting agents, for cancer therapy. An ongoing challenge remains in identifying potent agents with alternative mechanisms of cell killing that can provide ADCs with high therapeutic indices and favorable tolerability. Here, we describe the development of a new class of potent DNA alkylating agents that meets these objectives. Through chemical design, we changed the mechanism of action of our novel DNA cross-linking agent to a monofunctional DNA alkylator. This modification, coupled with linker optimization, generated ADCs that were well tolerated in mice and demonstrated robust antitumor activity in multiple tumor models at doses 1.5% to 3.5% of maximally tolerated levels. These properties underscore the considerable potential of these purpose-created, unique DNA-interacting conjugates for broadening the clinical application of ADC technology. Mol Cancer Ther; 15(8); 1870-8. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. [Quasi-adaptive response to alkylating agents in Escherichia coli and Ada-protein functions].

    PubMed

    Vasil'eva, S V; Moshkovskaia, E Iu; Terekhov, A S; Mikoian, V D; Vanin, A F

    2008-01-01

    In 2005 we have described in exponentially growing E. coli cells a new fundamental genetic phenomenon,--quasi-adaptive response to alkylating compounds (quasi-Ada). Phenotypic expression of quasi-Ada is similar to the true Ada response. However, in contrast to the letter, it develops in the course of pretreatment of the cells by a sublethal dose of nonalkylating agent, an NO-containing dinitrosyl iron complex with glutathione (DNICglu). To reveal the mechanisms of quasi-adaptation and its association with the function of the Ada regulatory protein, here we used a unique property of dual gene expression regulation of aidB1 gene, a part of the Ada-regulon, namely its relative independence from Ada protein in anaerobic conditions. Based on the results of aidB1 gene expression analysis an EPR spectra of E. coli MV2176 cells (aidB1::lacZ) in aerobic and anaerobic conditions after the corresponding treatments, we conclude that the function and the spatial structure of meAda and [(Cys-)2Fe+(NO+)2]Ada are identical and thus the nitrosylated protein represents a regulator of the Ada regulon gene expression during quasi-adaptation development.

  4. Safety Assessment of Alkyl Ethylhexanoates as Used in Cosmetics.

    PubMed

    Fiume, Monice; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 16 alkyl ethylhexanoates for use in cosmetics, concluding that these ingredients are safe in cosmetic formulations in the present practices of use and concentrations when formulated to be nonirritating. The alkyl ethylhexanoates primarily function as skin-conditioning agents in cosmetics. The highest concentration of use reported for any of the alkyl ethylhexanoates is 77.3% cetyl ethylhexanoate in rinse-off formulations used near the eye, and the highest leave-on use reported is 52% cetyl ethylhexanoate in lipstick formulations. The Panel reviewed available animal and clinical data related to these ingredients, and the similarities in structure, properties, functions, and uses of ingredients from previous CIR assessments on constituent alcohols that allowed for extrapolation of the available toxicological data to assess the safety of the entire group. © The Author(s) 2015.

  5. In vitro testing of drug combinations employing nilotinib and alkylating agents with regard to pretransplant conditioning treatment of advanced-phase chronic myeloid leukemia.

    PubMed

    Radujkovic, Aleksandar; Luft, Thomas; Dreger, Peter; Ho, Anthony D; Jens Zeller, W; Fruehauf, Stefan; Topaly, Julian

    2014-08-01

    The prognosis of patients with advanced-phase chronic myeloid leukemia (CML) remains dismal despite the availability of targeted therapies and allogeneic stem cell transplantation (allo-SCT). Increasing the antileukemic efficacy of the pretransplant conditioning regimen may be a strategy to increase remission rates and duration. We therefore investigated the antiproliferative effects of nilotinib in combination with drugs that are usually used for conditioning: the alkylating agents mafosfamide, treosulfan, and busulfan. Drug combinations were tested in vitro in different imatinib-sensitive and imatinib-resistant BCR-ABL-positive cell lines. A tetrazolium-based MTT assay was used for the assessment and quantification of growth inhibition after exposure to alkylating agents alone or to combinations with nilotinib. Drug interaction was analyzed using the median-effect method of Chou and Talalay, and combination index (CI) values were calculated according to the classic isobologram equation. Treatment of imatinib-sensitive, BCR-ABL-positive K562 and LAMA84 cells with nilotinib in combination with mafosfamide, treosulfan, or busulfan resulted in synergistic (CI < 1), additive (CI ~ 1), and predominantly antagonistic (CI > 1) effects, respectively. In imatinib-resistant K562-R and LAMA84-R cells, all applied drug combinations were synergistic (CI < 1) at higher growth inhibition levels. Our in vitro data warrant further investigation and may provide the basis for nilotinib-supplemented conditioning regimens for allo-SCT in advanced-phase CML.

  6. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jin; Ye, Feng; Dan, Guorong

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O{sup 6}-methylguanine–DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPCmore » was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1 h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24 h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. - Highlights: • Nitrogen mustard-induced MGMT-DNA cross-linking was detected in a living cell. • Concentration- and time-dependent manners of MGMT-DNA cross-linking were revealed. • Proteolysis played an important role in protein (MGMT)-DNA cross-linking repair. • DVC1 acts as a proteolytic enzyme in cross

  7. Alkyl–Alkyl Suzuki Cross-Couplings of Unactivated Secondary Alkyl Chlorides**

    PubMed Central

    Lu, Zhe; Fu, Gregory C.

    2010-01-01

    The first method for achieving alkyl–alkyl Suzuki reactions of unactivated secondary alkyl chlorides has been developed. Carbon–carbon bond formation occurs under mild conditions (at room temperature) with the aid of commercially available catalyst components. This method has proved to be versatile: without modification, it can be applied to Suzuki reactions of secondary and primary alkyl bromides and iodides, as well as primary alkyl chlorides. Mechanistic investigations suggest that oxidative addition is not the turnover-limiting step of the catalytic cycle for unactivated secondary alkyl iodides and bromides, whereas it may be (partially) for chlorides. PMID:20715038

  8. Recovery from Cyclophosphamide Overdose in a Dog.

    PubMed

    Finlay, Jessica Renee; Wyatt, Kenneth; North, Courtney

    An adult female spayed dog was evaluated after inadvertently receiving a total dose of 1,750 mg oral cyclophosphamide, equivalent to 2,303 mg/m 2 , over 21 days (days -21 to 0). Nine days after the last dose of cyclophosphamide (day +9), the dog was evaluated at Perth Veterinary Specialists. Physical examination revealed mucosal pallor, a grade 2/6 systolic heart murmur, and severe hemorrhagic cystitis. Severe nonregenerative pancytopenia was detected on hematology. Broad spectrum antibiotics, two fresh whole blood transfusions, granulocyte colony stimulating factor, and tranexamic acid were administered. Five days after presentation (day +14), the peripheral neutrophil count had recovered, and by 12 days (day +21) the complete blood count was near normal. A second episode of thrombocytopenia (day +51) was managed with vincristine, prednisolone, and melatonin. The dog made a complete recovery with no long-term complications at the time of writing. To the author's knowledge, this is the highest inadvertently administered dose of cyclophosphamide to result in complete recovery.

  9. Insulin-induced enhancement of MCF-7 breast cancer cell response to 5-fluorouracil and cyclophosphamide.

    PubMed

    Agrawal, Siddarth; Łuc, Mateusz; Ziółkowski, Piotr; Agrawal, Anil Kumar; Pielka, Ewa; Walaszek, Kinga; Zduniak, Krzysztof; Woźniak, Marta

    2017-06-01

    The study was designed to evaluate the potential use of insulin for cancer-specific treatment. Insulin-induced sensitivity of MCF-7 breast cancer cells to chemotherapeutic agents 5-fluorouracil and cyclophosphamide was evaluated. To investigate and establish the possible mechanisms of this phenomenon, we assessed cell proliferation, induction of apoptosis, activation of apoptotic and autophagic pathways, expression of glucose transporters 1 and 3, formation of reactive oxygen species, and wound-healing assay. Additionally, we reviewed the literature regarding theuse of insulin in cancer-specific treatment. We found that insulin increases the cytotoxic effect of 5-fluorouracil and cyclophosphamide in vitro up to two-fold. The effect was linked to enhancement of apoptosis, activation of apoptotic and autophagic pathways, and overexpression of glucose transporters 1 and 3 as well as inhibition of cell proliferation and motility. We propose a model for insulin-induced sensitization process. Insulin acts as a sensitizer of cancer cells to cytotoxic therapy through various mechanisms opening a possibility for metronomic insulin-based treatments.

  10. Role of (18)F-FDG PET-CT in Monitoring the Cyclophosphamide Induced Pulmonary Toxicity in Patients with Breast Cancer - 2 Case Reports.

    PubMed

    Taywade, Sameer Kamalakar; Kumar, Rakesh; Bhethanabhotla, Sainath; Bal, Chandrasekhar

    2016-09-01

    Drug induced pulmonary toxicity is not uncommon with the use of various chemotherapeutic agents. Cyclophosphamide is a widely used chemotherapeutic drug in the treatment of breast cancer. Although rare, lung toxicity has been reported with cyclophosphamide use. Detection of bleomycin induced pulmonary toxicity and pattern of (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in lungs on fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG PET-CT) has been elicited in literature in relation to lymphoma. However, limited data is available regarding the role of (18)F-FDG PET-CT in monitoring drug induced pulmonary toxicity in breast cancer. We here present two cases of cyclophosphamide induced drug toxicity. Interim (18)F-FDG PET-CT demonstrated diffusely increased tracer uptake in bilateral lung fields in both these patients. Subsequently there was resolution of lung uptake on (18)F-FDG PET-CT scan post completion of chemotherapy. These patients did not develop significant respiratory symptoms during chemotherapy treatment and in follow up.

  11. Ameliorative Effect of Gallic Acid on Cyclophosphamide-Induced Oxidative Injury and Hepatic Dysfunction in Rats

    PubMed Central

    Olayinka, Ebenezer Tunde; Ore, Ayokanmi; Ola, Olaniyi Solomon; Adeyemo, Oluwatobi Adewumi

    2015-01-01

    Cyclophosphamide (CP), a bifunctional alkylating agent used in chemotherapy has been reported to induce organ toxicity mediated by generation of reactive oxygen species and oxidative stress. Gallic acid (GA), a phenolic substance, is a natural antioxidant with proven free radical scavenging activity and offers protection against oxidative damage. This research study was designed to investigate the ameliorative effect of GA against CP-induced toxicity in rats. Twenty-five male Wistar rats (180–200 g) were randomized into five treatment groups: (A) control, (B) CP, 2 mg/kg body weight (b.w.), (C) pre-treatment with GA (20 mg/kg b.w.) for seven days followed by CP (2 mg/kg b.w.) for seven days, (D) co-treatment with GA (20 mg/kg b.w) and CP (2 mg/kg b.w.) for seven days, and (E) GA (20 mg/kg b.w.) for seven days. CP induced marked renal and hepatic damages as plasma levels of urea, creatinine, bilirubin and activities of AST, ALT, ALP and GGT were significantly elevated (p < 0.05) in the CP-treated group relative to control. In addition, hepatic levels of GSH, vitamin C and activities of SOD, catalase and GST significantly reduced in the CP-treated group when compared with control. This was accompanied with a significant increase in hepatic lipid peroxidation. The restoration of the markers of renal and hepatic damages as well as antioxidant indices and lipid peroxidation by pre- and co-treatment with GA clearly shows that GA offers ameliorative effect by scavenging the reactive oxygen species generated by CP. This protective effect may be attributed to the antioxidant property of gllic acid. PMID:29083393

  12. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  13. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  14. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  15. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  16. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  17. Mangiferin protects rat myocardial tissue against cyclophosphamide induced cardiotoxicity.

    PubMed

    Bhatt, Laxit; Sebastian, Binu; Joshi, Viraj

    Mangiferin is a highly potent antioxidant present in mango leaves which is utilized for therapeutic purposes. The present study was undertaken to evaluate the cardioprotective effect of mangiferin against cyclophosphamide induced cardiotoxicity. Rats were treated with 100 mg/kg of mangiferin in alone and interactive groups for 10 days. Apart from normal and mangiferin control groups, all the groups were subjected to cyclophosphamide (200 mg/kg, i.p.) toxicity on Day 1 and effects of different treatments were analyzed by changes in serum biomarkers, tissue antioxidant levels, electrocardiographic parameters, lipid profile and histopathological evaluation. Mangiferin treated group showed decrease in serum biomarker enzyme levels and increase in tissue antioxidant levels. Compared to cyclophosphamide control group, mangiferin treated animals showed improvement in lipid profile, electrocardiographic parameters, histological score and mortality. The present findings clearly suggest the protective role of mangiferin as a powerful antioxidant preventing cardiotoxicity caused by cyclophosphamide. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  18. Alkylating chemotherapy may exert a uniquely deleterious effect upon neo-antigen-targeting anticancer vaccination

    PubMed Central

    Litterman, Adam J; Dudek, Arkadiusz Z; Largaespada, David A

    2013-01-01

    Alkylating chemotherapy exerts both antineoplastic and immunostimulatory effects. However, in addition to depleting regulatory T cells (Treg), alkylating agents also mediate a long lasting antiproliferative effect on responder lymphocytes. Our recent findings indicate that this antiproliferative effect profoundly impairs vaccination-induced immune responses, especially in the case of vaccines that target specific tumor-associated neo-antigens that do not require Treg depletion. PMID:24251080

  19. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  20. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  1. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  2. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  3. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  4. The photochemical alkylation and reduction of heteroarenes.

    PubMed

    McCallum, T; Pitre, S P; Morin, M; Scaiano, J C; Barriault, L

    2017-11-01

    The functionalization of heteroarenes has been integral to the structural diversification of medicinally active molecules such as quinolines, pyridines, and phenanthridines. Electron-deficient heteroarenes are electronically compatible to react with relatively nucleophilic free radicals such as hydroxyalkyl. However, the radical functionalization of such heteroarenes has been marked by the use of transition-metal catalyzed processes that require initiators and stoichiometric oxidants. Herein, we describe the photochemical alkylation of quinolines, pyridines and phenanthridines, where through direct excitation of the protonated heterocycle, alcohols and ethers, such as methanol and THF, can serve as alkylating agents. We also report the discovery of a photochemical reduction of these heteroarenes using only iPrOH and HCl. Mechanistic studies to elucidate the underlying mechanism of these transformations, and preliminary results on catalytic methylations are also reported.

  5. Synergistic effects of N-ethyl-N-nitrosourea (an alkylating agent with a low Swain-Scott substrate constant) and X-rays in the stamen hairs of Tradescantia clone BNL 4430.

    PubMed

    Shima, N; Ichikawa, S

    1997-01-01

    The mutagenic interaction between N-ethyl-N-nitrosourea (ENU) and X-rays was tested in the stamen hairs of Tradescantia clone BNL 4430, a blue/pink heterozygote. ENU, a monofunctional alkylating agent with a low Swain-Scott substrate constant (s) of 0.26, exhibited a strong cytotoxicity. ENU-induced somatic pink mutation frequency per 10(4) hair-cell divisions increased with increasing ENU dose, with a slope of 1.243 on a log-log graph, the slope value being similar to that for X-ray-induced mutation frequency. Three out of five combined treatments with ENU and X-rays produced mutation frequencies significantly higher than those expected from the additive effects of the two mutagens. Clear synergistic effects were detected when relatively higher X-ray doses were applied, resembling those confirmed earlier between methyl methanesulfonate (MMS) and X-rays, although the s value for ENU is very much smaller than that (0.88) for MMS. It is therefore concluded that mutagenic interactions between alkylating agents and X-rays do not have any clear relationship with the s values.

  6. Design and synthesis of 2-nitroimidazoles with variable alkylating and acylating functionality.

    PubMed

    Winters, Thomas; Sercel, Anthony; Suto, Carla; Elliott, William; Leopold, Wilbur; Leopold, Judith; Showalter, Hollis

    2014-01-01

    The synthesis of a small series of 2-nitroimidazoles in which the β-amino alcohol side chain was amidated with a range of alkylating/acylating functionality is described. Synthetic methodologies were developed that generally provided for selective N-acyl versus N,O-bisacyl products. In vitro, target analogs showed minimal radiosensitization activity, with only a few exhibiting a sensitizer enhancement ratio (SER) >2.0 and C(1.6) values comparable to reference agents RB-6145 and RSU-1069. In an assay to determine potential to alkylate biomolecules, representative analogs showed <1% of the alkylating activity of RSU-1069. In vivo, one analog showed an enhancement ratio of 1.6 relative to vehicle control when tested in B6C3F1 mice with an implanted KHT sarcoma. The data reinforce prior findings that there is a correlation between alkylation potential and in vivo activity.

  7. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model.

    PubMed

    Wada, Satoshi; Yoshimura, Kiyoshi; Hipkiss, Edward L; Harris, Tim J; Yen, Hung-Rong; Goldberg, Monica V; Grosso, Joseph F; Getnet, Derese; Demarzo, Angelo M; Netto, George J; Anders, Robert; Pardoll, Drew M; Drake, Charles G

    2009-05-15

    To study the immune response to prostate cancer, we developed an autochthonous animal model based on the transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse in which spontaneously developing tumors express influenza hemagglutinin as a unique, tumor-associated antigen. Our prior studies in these animals showed immunologic tolerance to hemagglutinin, mirroring the clinical situation in patients with cancer who are generally nonresponsive to their disease. We used this physiologically relevant animal model to assess the immunomodulatory effects of cyclophosphamide when administered in combination with an allogeneic, cell-based granulocyte-macrophage colony-stimulating factor-secreting cancer immunotherapy. Through adoptive transfer of prostate/prostate cancer-specific CD8 T cells as well as through studies of the endogenous T-cell repertoire, we found that cyclophosphamide induced a marked augmentation of the antitumor immune response. This effect was strongly dependent on both the dose and the timing of cyclophosphamide administration. Mechanistic studies showed that immune augmentation by cyclophosphamide was associated with a transient depletion of regulatory T cells in the tumor draining lymph nodes but not in the peripheral circulation. Interestingly, we also noted effects on dendritic cell phenotype; low-dose cyclophosphamide was associated with increased expression of dendritic cell maturation markers. Taken together, these data clarify the dose, timing, and mechanism of action by which immunomodulatory cyclophosphamide can be translated to a clinical setting in a combinatorial cancer treatment strategy.

  8. Alkylation sensitivity screens reveal a conserved cross-species functionome

    PubMed Central

    Svilar, David; Dyavaiah, Madhu; Brown, Ashley R.; Tang, Jiang-bo; Li, Jianfeng; McDonald, Peter R.; Shun, Tong Ying; Braganza, Andrea; Wang, Xiao-hong; Maniar, Salony; St Croix, Claudette M.; Lazo, John S.; Pollack, Ian F.; Begley, Thomas J.; Sobol, Robert W.

    2013-01-01

    To identify genes that contribute to chemotherapy resistance in glioblastoma, we conducted a synthetic lethal screen in a chemotherapy-resistant glioblastoma derived cell line with the clinical alkylator temozolomide (TMZ) and an siRNA library tailored towards “druggable” targets. Select DNA repair genes in the screen were validated independently, confirming the DNA glycosylases UNG and MYH as well as MPG to be involved in the response to high dose TMZ. The involvement of UNG and MYH is likely the result of a TMZ-induced burst of reactive oxygen species. We then compared the human TMZ sensitizing genes identified in our screen with those previously identified from alkylator screens conducted in E. coli and S. cerevisiae. The conserved biological processes across all three species composes an Alkylation Functionome that includes many novel proteins not previously thought to impact alkylator resistance. This high-throughput screen, validation and cross-species analysis was then followed by a mechanistic analysis of two essential nodes: base excision repair (BER) DNA glycosylases (UNG, human and mag1, S. cerevisiae) and protein modification systems, including UBE3B and ICMT in human cells or pby1, lip22, stp22 and aim22 in S. cerevisiae. The conserved processes of BER and protein modification were dual targeted and yielded additive sensitization to alkylators in S. cerevisiae. In contrast, dual targeting of BER and protein modification genes in human cells did not increase sensitivity, suggesting an epistatic relationship. Importantly, these studies provide potential new targets to overcome alkylating agent resistance. PMID:23038810

  9. Algorithm of Molecular and Biological Assessment of the Mechanisms of Sensitivity to Drug Toxicity by the Example of Cyclophosphamide.

    PubMed

    Telegin, L Yu; Sarmanaev, S Kh; Devichenskii, V M; Tutelyan, V A

    2018-01-01

    Comparative study of the liver, blood, and spleen of DBA/2JSto and BALB/cJLacSto mice sensitive and resistant to acute toxicity of the cyclophosphamide allowed us to reveal basic toxicity biomarkers of this antitumor and immunosuppressive agent. Obtained results can be used for the development of an algorithm for evaluation of toxic effects of drugs and food components.

  10. Suppressing effects of glucan on micronuclei induced by cyclophosphamide in mice.

    PubMed

    Chorvatovicová, D; Navarová, J

    1992-07-01

    The effect of pretreatment with carboxymethylglucan (CMG) on the frequency of micronuclei induced by cyclophosphamide administration in mice was evaluated. Two doses of CMG (50 mg/kg body weight) injected either intraperitoneally 24 h or intravenously 1 h prior to two cyclophosphamide administrations (80 mg/kg) significantly decreased the frequency of micronucleated PCE in bone marrow. Of two evaluated derivatives of carboxymethylglucan, the K3 derivative was most efficient. The results show that it is possible to achieve a suppressive effect of soluble carboxymethylglucan prepared from Saccharomyces cerevisiae against cyclophosphamide mutagenicity. The notion may be useful for glucan's effects against pharmacocarcinogenesis. Therapeutic application of glucan with cyclophosphamide therapy may provide a remarkable decrease of the secondary tumour risk. The utilization of these results for human patients needs to be considered.

  11. Cyclophosphamide-induced hemorrhagic cystitis in rats that underwent colocystoplasty: experimental study.

    PubMed

    Rodó, J; Farré, X; Martín, E

    2001-02-01

    Cyclophosphamide and its derivatives induce hemorrhagic cystitis. A substantial number of patients receive bladder augmentation or replacements using bowel. If patients who have undergone colocystoplasty need treatment with cyclophosphamide before or after the operation, does hemorrhagic cystitis develop? We evaluated the histological changes produced in the colon wall and bladder related to cyclophosphamide and its derivatives in rats that underwent colocystoplasty. Sprague-Dawley rats of each sex were grouped according to whether they received a single 200 mg./kg. dose of cyclophosphamide, underwent colocystoplasty, underwent each technique or served as controls. The technique of colocystoplasty was the same in all groups. Results were analyzed according to previously reported criteria, by the gross appearance of the bladder and colon segment used for colocystoplasty, and by histological changes. Two weeks after surgery colocystoplasty had not resulted in secondary changes in the implanted colon segment or original bladder, while there were only nonspecific changes of an inflammatory type in the anastomotic area. After cyclophosphamide administration the animals lost considerable weight and in the bladder area we observed hemorrhagic cystitis that was greater in males than in females, and greater in isolated bladder than when the bladder was sutured to the colon segment. In the colon there was no inflammation or hemorrhage damage of the hemorrhagic cystitis type in the bladder. A total of 12 days after colocystoplasty there were no secondary histological changes except in the anastomotic area. A single 200 mg./kg. dose of cyclophosphamide caused substantial weight loss and hemorrhagic cystitis. Cystitis was quantitatively greater in males than in females and greater in isolated bladder than in bladder anastomosed to the colon. Administering a single dose of cyclophosphamide did not result in lesions in the colon segment used for colocystoplasty analogous to those

  12. Etoposide; colchicine; mitomycin C and cyclophosphamide tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster lung (CHL) cells at Covance laboratories; Harrogate UK in support of OECD draft Test Guideline 487.

    PubMed

    Fowler, Paul; Whitwell, James; Jeffrey, Laura; Young, Jamie; Smith, Katie; Kirkland, David

    2010-10-29

    The following genotoxic chemicals were tested in the in vitro micronucleus assay, at Covance Laboratories, Harrogate, UK in the Chinese hamster lung cell line CHL. Etoposide (a topoisomerase inhibitor), colchicine (an aneugen), mitomycin C (a DNA cross linking agent) and cyclophosphamide (an alkylating agent requiring metabolic activation) were treated with and without cytokinesis block (by addition of cytochalasin B). This work formed part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 for the in vitro micronucleus test. The toxicity measures used, detecting both cytostasis and cell death, were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index or cytokinesis blocked proliferation index in the presence of cytokinesis block. All of the chemicals tested gave significant increases in the percentage of micronucleated cells with and without cytokinesis block at concentrations giving approximately 60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcomes from this series of tests support the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation

    NASA Astrophysics Data System (ADS)

    Jolliffe, John D.; Armstrong, Roly J.; Smith, Martin D.

    2017-06-01

    Axially chiral biaryls, as exemplified by 1,1‧-bi-2-naphthol (BINOL), are key components of catalysts, natural products and medicines. These materials are synthesized conventionally in enantioenriched form through metal-mediated cross coupling, de novo construction of an aromatic ring, point-to-axial chirality transfer or an atropselective transformation of an existing biaryl. Here, we report a highly enantioselective organocatalytic method for the synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Treatment of racemic 1-aryl-2-tetralones with a chiral quinidine-derived ammonium salt under basic conditions in the presence of an alkylating agent leads to atropselective O-alkylation with e.r. up to 98:2. Oxidation with DDQ gives access to C2-symmetric and non-symmetric BINOL derivatives without compromising e.r. We propose that the chiral ammonium counterion differentiates between rapidly equilibrating atropisomeric enolates, leading to highly atropselective O-alkylation. This dynamic kinetic resolution process offers a general approach to the synthesis of enantioenriched atropisomeric materials.

  14. Wasabi nose: an underreported complication of cyclophosphamide infusions.

    PubMed

    Janow, Ginger L; Ilowite, Norman T; Wahezi, Dawn M

    2011-07-01

    Wasabi nose, a term used to describe the nasopharyngeal discomfort experienced during cyclophosphamide infusions, is a rare phenomenon, previously described in case reports of adult oncology patients typically receiving high-dose chemotherapy regimens. The underlying mechanism by which this phenomenon occurs is unknown. We report four cases of children with rheumatic diseases afflicted by profound nasopharyngeal discomfort secondary to low-dose cyclophosphamide infusions. We additionally review the literature regarding potential medical management of these complications and describe our experience using these interventions.

  15. ALKYL PYROPHOSPHATE METAL SOLVENT EXTRACTANTS AND PROCESS

    DOEpatents

    Long, R.L.

    1958-09-30

    A process is presented for the recovery of uranium from aqueous mineral acidic solutions by solvent extraction. The extractant is a synmmetrical dialkyl pyrophosphate in which the alkyl substituents have a chain length of from 4 to 17 carbon atoms. Mentioned as a preferred extractant is dioctyl pyrophosphate. The uranium is precipitated irom the organic extractant phase with an agent such as HF, fluoride salts. alcohol, or ammonia.

  16. Extended exposure to alkylator chemotherapy: delayed appearance of myelodysplasia.

    PubMed

    Chamberlain, Marc C; Raizer, Jeffrey

    2009-06-01

    A case series of gliomas treated with alkylator-based chemotherapy who subsequently developed myelodysplastic syndrome (tMDS) or acute myelocytic leukemia (AML). Alkylator-based chemotherapy is recognized to be leukemogenic; however, it is infrequently described as a delayed consequence of anti-glioma treatment. Seven patients (4 men; 3 women) ages 34-69 years (median 44), with gliomas (3 Grade 2; 4 Grade 3) were treated with surgery, all but one with involved-field radiotherapy and all with alkylator-based chemotherapy (temozolomide; 6 patients, nitrosoureas; 5 patients, both agents; 5 patients). Exposure to alkylator-based chemotherapy ranged from 8 to 30 months (median 24). The diagnosis of tMDS was determined by bone marrow biopsy in 7 patients. Seven patients showed chromosomal abnormalities consistent with chemotherapy induced MDS. Three patients were diagnosed with AML as well (in two determined by bone marrow and one at autopsy). Interval from last chemotherapy exposure to diagnosis of tMDS/AML ranged from 3 to 31 months (median 24 months). Two patients were treated with bone marrow transplantation and 5 received supportive care only. Five patients have died, 2 as a consequence of recurrent brain tumor, 1 as a complication of transplantation, and 2 due to AML. Although rare, induction of tMDS/AML following extended use of alkylator-based chemotherapy may become more relevant with the evolving practice to treat gliomas for protracted periods. Future work to determine at risk patients would be important.

  17. Toward Hypoxia-Selective DNA-Alkylating Agents Built by Grafting Nitrogen Mustards onto the Bioreductively Activated, Hypoxia-Selective DNA-Oxidizing Agent 3-Amino-1,2,4-benzotriazine 1,4-Dioxide (Tirapazamine)

    PubMed Central

    2015-01-01

    Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) is a heterocyclic di-N-oxide that undergoes enzymatic deoxygenation selectively in the oxygen-poor (hypoxic) cells found in solid tumors to generate a mono-N-oxide metabolite. This work explored the idea that the electronic changes resulting from the metabolic deoxygenation of tirapazamine analogues might be exploited to activate a DNA-alkylating species selectively in hypoxic tissue. Toward this end, tirapazamine analogues bearing nitrogen mustard units were prepared. In the case of the tirapazamine analogue 18a bearing a nitrogen mustard unit at the 6-position, it was found that removal of the 4-oxide from the parent di-N-oxide to generate the mono-N-oxide analogue 17a did indeed cause a substantial increase in reactivity of the mustard unit, as measured by hydrolysis rates and DNA-alkylation yields. Hammett sigma values were measured to quantitatively assess the magnitude of the electronic changes induced by metabolic deoxygenation of the 3-amino-1,2,4-benzotriazine 1,4-dioxide heterocycle. The results provide evidence that the 1,2,4-benzotiazine 1,4-dioxide unit can serve as an oxygen-sensing prodrug platform for the selective unmasking of bioactive agents in hypoxic cells. PMID:25029663

  18. Toward hypoxia-selective DNA-alkylating agents built by grafting nitrogen mustards onto the bioreductively activated, hypoxia-selective DNA-oxidizing agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine).

    PubMed

    Johnson, Kevin M; Parsons, Zachary D; Barnes, Charles L; Gates, Kent S

    2014-08-15

    Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) is a heterocyclic di-N-oxide that undergoes enzymatic deoxygenation selectively in the oxygen-poor (hypoxic) cells found in solid tumors to generate a mono-N-oxide metabolite. This work explored the idea that the electronic changes resulting from the metabolic deoxygenation of tirapazamine analogues might be exploited to activate a DNA-alkylating species selectively in hypoxic tissue. Toward this end, tirapazamine analogues bearing nitrogen mustard units were prepared. In the case of the tirapazamine analogue 18a bearing a nitrogen mustard unit at the 6-position, it was found that removal of the 4-oxide from the parent di-N-oxide to generate the mono-N-oxide analogue 17a did indeed cause a substantial increase in reactivity of the mustard unit, as measured by hydrolysis rates and DNA-alkylation yields. Hammett sigma values were measured to quantitatively assess the magnitude of the electronic changes induced by metabolic deoxygenation of the 3-amino-1,2,4-benzotriazine 1,4-dioxide heterocycle. The results provide evidence that the 1,2,4-benzotiazine 1,4-dioxide unit can serve as an oxygen-sensing prodrug platform for the selective unmasking of bioactive agents in hypoxic cells.

  19. Involvement of Escherichia coli DNA Polymerase IV in Tolerance of Cytotoxic Alkylating DNA Lesions in Vivo

    PubMed Central

    Bjedov, Ivana; Dasgupta, Chitralekha Nag; Slade, Dea; Le Blastier, Sophie; Selva, Marjorie; Matic, Ivan

    2007-01-01

    Escherichia coli PolIV, a DNA polymerase capable of catalyzing synthesis past replication-blocking DNA lesions, belongs to the most ubiquitous branch of Y-family DNA polymerases. The goal of this study is to identify spontaneous DNA damage that is bypassed specifically and accurately by PolIV in vivo. We increased the amount of spontaneous DNA lesions using mutants deficient for different DNA repair pathways and measured mutation frequency in PolIV-proficient and -deficient backgrounds. We found that PolIV performs an error-free bypass of DNA damage that accumulates in the alkA tag genetic background. This result indicates that PolIV is involved in the error-free bypass of cytotoxic alkylating DNA lesions. When the amount of cytotoxic alkylating DNA lesions is increased by the treatment with chemical alkylating agents, PolIV is required for survival in an alkA tag-proficient genetic background as well. Our study, together with the reported involvement of the mammalian PolIV homolog, Polκ, in similar activity, indicates that Y-family DNA polymerases from the DinB branch can be added to the list of evolutionarily conserved molecular mechanisms that counteract cytotoxic effects of DNA alkylation. This activity is of major biological relevance because alkylating agents are continuously produced endogenously in all living cells and are also present in the environment. PMID:17483416

  20. Exposure of hospital workers to airborne antineoplastic agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    deWerk Neal, A.; Wadden, R.A.; Chiou, W.L.

    Practices for handling antineoplastic drugs were surveyed, and ambient-air sampling for four antineoplastic agents was conducted in outpatient oncology clinics. A questionnaire was administered in 1981 to the nurse or pharmacist in charge of drug preparation at 10 hospital oncology clinics. At three sites, air samples were collected during working hours in medication-preparation rooms and nearby offices. The air-sampling pumps contained filters at breathing-zone height; room air was drawn through each filter for 40 hours. Extracts from the filters were assayed by high-performance liquid chromatography (HPLC) for fluorouracil and cyclophosphamide in seven sets of samples and methotrexate and doxorubicin inmore » five sets of samples. Mass spectrometry (MS) was used to confirm detection of fluorouracil. Total use of each monitored drug was recorded at each site. Nine clinics had no ventilation hood, and drugs were prepared by nurses in eight clinics. Routine use of gloves (three clinics) and masks (one clinic) was uncommon, and wastes were disposed of in uncovered receptacles in four of the clinics. Eating and drinking occurred in seven of the preparation rooms. At the main air-sampling site, fluorouracil (0.12-82.26 ng/cu m) was detected in air during 200 of the 320 hours monitored. Cyclophosphamide (370 ng/cu m) was present during 80 hours. In the two other sites, fluorouracil was detected by HPLC but not confirmed by MS, and no cyclophosphamide was detected. No detectable amounts of methotrexate and doxorubicin were present. Fluorouracil was the most frequently used drug, and cyclophosphamide was second. Results suggest that personnel handling antineoplastic drugs are subject to potential systemic absorption of these agents by inhalation.« less

  1. Protective effect of Zingiber officinale extract on rat testis after cyclophosphamide treatment.

    PubMed

    Mohammadi, F; Nikzad, H; Taghizadeh, M; Taherian, A; Azami-Tameh, A; Hosseini, S M; Moravveji, A

    2014-08-01

    Decreasing the side effects of chemotherapy in testis has been the subjects of many studies. In this study, the protective effects of Zingiber officinale extract on rat testis were investigated after chemotherapy with cyclophosphamide. Histological and biochemical parameters were compared in cyclophosphamide-treated rats with or without ginger extract intake. Wistar male rats were randomly divided into four groups each 10. The control group received a single injection of 1 ml isotonic saline intraperitoneally. The Cyclophosphamide (CP) group received a single dose of cyclophosphamide (100 mg kg(-1) BW) intraperitoneally. CP + 300 and CP + 600 groups received orally 300 or 600 mg of ginger extract, respectively, for a period of 6 weeks after cyclophosphamide injection. The morphologic and histological structure of the testis was compared in different groups of the rats. Also, factors like malondialdehyde, reactive oxygen species, total antioxidant capacity and testosterone level were assessed in blood serum as well. Our results showed that although ginger extract could not change testis weight, malondialdehyde (MDA) and ROS, but antioxidant and testosterone levels in serum were increased significantly. Also, an obvious improved histological change was seen in CP + 300 and CP + 600 groups in comparison with CP group. These protective effects of ginger on rat testis after cyclophosphamide treatment could be attributed to the higher serum level of antioxidants. © 2013 Blackwell Verlag GmbH.

  2. Drilling fluid containing a copolymer filtration control agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enright, D.P.; Lucas, J.M.; Perricone, A.C.

    1981-10-06

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: (1) a (Meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and (2) a (Meth) acrylamide or n-alkyl (Meth) acrylamide. The copolymer may be cross-linked with a quaternary ammonium salt cross-linking agent.

  3. Reversal of progressive necrotizing vasculitis with intravenous pulse cyclophosphamide and methylprednisolone.

    PubMed

    Fort, J G; Abruzzo, J L

    1988-09-01

    We describe a patient with polyarteritis nodosa who, despite therapy with daily doses of oral prednisone and cyclophosphamide, developed acute renal failure. Renal histopathologic examination demonstrated crescentic glomerulonephritis. Treatment with intravenous pulse cyclophosphamide and methylprednisolone resulted in clinical improvement and significant recovery of renal function.

  4. Genomic phenotyping by barcode sequencing broadly distinguishes between alkylating agents, oxidizing agents, and non-genotoxic agents, and reveals a role for aromatic amino acids in cellular recovery after quinone exposure.

    PubMed

    Svensson, J Peter; Quirós Pesudo, Laia; McRee, Siobhan K; Adeleye, Yeyejide; Carmichael, Paul; Samson, Leona D

    2013-01-01

    Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N'-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic 'barcode', were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput 'barcode' sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised.

  5. The protective effect of Moringa oleifera leaves against cyclophosphamide-induced urinary bladder toxicity in rats.

    PubMed

    Taha, Nevine R; Amin, Hanan Ali; Sultan, Asrar A

    2015-02-01

    Cyclophosphamide (CP), an alkylating antineoplastic agent is widely used in the treatment of solid tumors and B-cell malignant disease. It is known to cause urinary bladder damage due to inducing oxidative stress. Moringa oleifera (Mof) is commonly known as drumstick tree. Moringa leaves have been reported to be a rich source of β-carotene, protein, vitamin C, calcium, and potassium. It acts as a good source of natural antioxidants; due to the presence of various types of antioxidant compounds such as ascorbic acid, flavonoids, phenolics and carotenoids. The aim of this work was to test the possible antioxidant protective effects of M. oleifera leaves against CP induced urinary bladder toxicity in rats. Female Wister albino rats were divided into 4 groups. Group I served as control, received orally normal saline, group II received a single dose CP 100mg/kg intraperitoneally, group III and VI both received orally hydroethanolic extract of Mof; 500 mg/kg and 1000 mg/kg respectively daily for a week, 1h before and 4h after CP administration. Rats were sacrificed 24h after CP injection. The bladder was removed, sectioned, and subjected to light, transition electron microscopic studies, and biochemical studies (measuring the parameter of lipid peroxidation; malondialdehyde along with the activities of the antioxidant enzyme reduced glutathione). The bladders of CP treated rats showed ulcered mucosa, edematous, hemorrhagic, and fibrotic submucosa by light microscopy. Ultrastructure observation showed; losing large areas of uroepithelium, extended intercellular gaps, junction complexes were affected as well as damage of mitochondria in the form of swelling and destruction of cristae. Biochemical analysis showed significant elevation of malondialdhyde, while reduced glutathione activity was significantly lowered. From the results obtained in this work, we can say that Moringa leaves play an important role in ameliorating and protecting the bladder from CP toxicity

  6. The Fanconi anemia pathway sensitizes to DNA alkylating agents by inducing JNK-p53-dependent mitochondrial apoptosis in breast cancer cells.

    PubMed

    Zhao, Lin; Li, Yanlin; He, Miao; Song, Zhiguo; Lin, Shu; Yu, Zhaojin; Bai, Xuefeng; Wang, Enhua; Wei, Minjie

    2014-07-01

    The Fanconi anemia/BRCA (FA/BRCA) DNA damage repair pathway plays a pivotal role in the cellular response to DNA alkylating agents and greatly influences drug response in cancer treatment. However, the molecular mechanisms underlying the FA/BRCA pathway reversed resistance have received limited attention. In the present study, we investigated the effect of Fanconi anemia complementation group F protein (FANCF), a critical factor of the FA/BRCA pathway, on cancer cell apoptosis induced by DNA alkylating agents such as mitomycin c (MMC). We found that FANCF shRNA potentiated MMC-induced cytotoxicity and apoptosis in MCF-7 and MDA-MB-231 breast cancer cells. At a mechanistic level, FANCF shRNA downregulated the anti-apoptotic protein Bcl-2 and upregulated the pro-apoptotic protein Bax, accompanied by release of cyt-c and smac into the cytosol in MMC-treated cells. Furthermore, activation of caspase-3 and -9, other than caspase-8, cleavage of poly(ADP ribose) polymerase (PARP), and a decrease of mitochondrial membrane potential (MMP) indicated that involvement of the mitochondrial apoptotic pathway in FANCF silencing of MMC-treated breast cancer cells. A decrease in IAP family proteins XIAP and survivin were also observed following FANCF silencing in MMC-treated breast cancer cells. Notably, FANCF shRNA was able to increase p53 levels through activation of the JNK pathway in MMC-treated breast cancer cells. Furthermore, p53 inhibition using pifithrin-α abolished the induction of caspase-3 and PARP by FANCF shRNA and MMC, indicating that MMC-induced apoptosis is substantially enhanced by FANCF shRNA via p53-dependent mechanisms. To our knowledge, we provide new evidence for the potential application of FANCF as a chemosensitizer in breast cancer therapy.

  7. Purine Analog-Like Properties of Bendamustine Underlie Rapid Activation of DNA Damage Response and Synergistic Effects with Pyrimidine Analogues in Lymphoid Malignancies

    PubMed Central

    Hiraoka, Nobuya; Kikuchi, Jiro; Yamauchi, Takahiro; Koyama, Daisuke; Wada, Taeko; Uesawa, Mitsuyo; Akutsu, Miyuki; Mori, Shigehisa; Nakamura, Yuichi; Ueda, Takanori; Kano, Yasuhiko; Furukawa, Yusuke

    2014-01-01

    Bendamustine has shown considerable clinical activity against indolent lymphoid malignancies as a single agent or in combination with rituximab, but combination with additional anti-cancer drugs may be required for refractory and/or relapsed cases as well as other intractable tumors. In this study, we attempted to determine suitable anti-cancer drugs to be combined with bendamustine for the treatment of mantle cell lymphoma, diffuse large B-cell lymphoma, aggressive lymphomas and multiple myeloma, all of which are relatively resistant to this drug, and investigated the mechanisms underlying synergism. Isobologram analysis revealed that bendamustine had synergistic effects with alkylating agents (4-hydroperoxy-cyclophosphamide, chlorambucil and melphalan) and pyrimidine analogues (cytosine arabinoside, gemcitabine and decitabine) in HBL-2, B104, Namalwa and U266 cell lines, which represent the above entities respectively. In cell cycle analysis, bendamustine induced late S-phase arrest, which was enhanced by 4-hydroperoxy-cyclophosphamide, and potentiated early S-phase arrest by cytosine arabinoside (Ara-C), followed by a robust increase in the size of sub-G1 fractions. Bendamustine was able to elicit DNA damage response and subsequent apoptosis faster and with shorter exposure than other alkylating agents due to rapid intracellular incorporation via equilibrative nucleoside transporters (ENTs). Furthermore, bendamustine increased the expression of ENT1 at both mRNA and protein levels and enhanced the uptake of Ara-C and subsequent increase in Ara-C triphosphate (Ara-CTP) in HBL-2 cells to an extent comparable with the purine analog fludarabine. These purine analog-like properties of bendamustine may underlie favorable combinations with other alkylators and pyrimidine analogues. Our findings may provide a theoretical basis for the development of more effective bendamustine-based combination therapies. PMID:24626203

  8. Enantioselectivity in the Metabolism of Cyclophosphamide in Patients With Multiple or Systemic Sclerosis.

    PubMed

    de Castro, Francine Attié; Simões, Belinda Pinto; Coelho, Eduardo Barbosa; Lanchote, Vera Lucia

    2017-06-01

    The aim of this study was to evaluate the enantioselective pharmacokinetics of cyclophosphamide and its metabolites 4-hydroxycyclophosphamide and carboxyethylphosphoramide mustard in patients with systemic or multiple sclerosis. Patients with systemic sclerosis (n = 10) or multiple sclerosis (n = 10), genotyped for the allelic variants of CYP2C9*2 and CYP2C9*3 and of the CYP2B6 G516T polymorphism, were treated with 50 mg cyclophosphamide/kg daily for 4 days. Serial blood samples were collected up to 24 hours after administration of the last cyclophosphamide dose. Cyclophosphamide, 4-hydroxycyclophosphamide, and carboxyethylphosphoramide enantiomers were analyzed in plasma samples using liquid chromatography-tandem mass spectrometry coupled to chiral column Chiralcel OD-R or Chiralpak AD-RH. Cytokines IL-2, IL-4, IL-6, IL-8, IL-10, IL- 12p70, IL-17, TNF-α, and INT-δ in the plasma samples collected before cyclophosphamide infusion were analyzed by Milliplex MAP human cytokine/chemokine. Pharmacokinetic parameters showed higher plasma concentrations of (S)-(-)-cyclophosphamide (AUC 215.0 vs 186.2 μg·h/mL for multiple sclerosis patients and 219.1 vs 179.2 μg·h/mL for systemic sclerosis patients) and (R)-4-hydroxycyclophosphamide (AUC 5.6 vs 3.7 μg·h/mL for multiple sclerosis patients and 6.3 vs 5.6 μg·h/mL for systemic sclerosis patients) when compared to their enantiomers in both groups of patients, whereas the pharmacokinetics of the carboxyethylphosphoramide metabolite was not enantioselective. Cytokines' plasma concentrations were similar between multiple and systemic sclerosis groups. The pharmacokinetics of cyclophosphamide is enantioselective in patients with systemic sclerosis and multiple sclerosis, with higher plasma concentrations of the (S)-(-)-cyclophosphamide enantiomer due to the preferential formation of the (R)-4-hydroxycyclophosphamide metabolite. © 2017, The American College of Clinical Pharmacology.

  9. Safety Assessment of Alkyl Esters as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart A; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of 237 alkyl esters for use in cosmetics. The alkyl esters included in this assessment have a variety of reported functions in cosmetics, with skin-conditioning agent being the most common function. The Panel reviewed available animal and clinical data in making its determination of safety on these ingredients, and where there were data gaps, similarity in structure, properties, functions, and uses of these ingredients allowed for extrapolation of the available toxicological data to assess the safety of the entire group. The Panel concluded that these ingredients are safe in cosmetic formulations in the present practices of use and concentration when formulated to be nonirritating. © The Author(s) 2015.

  10. Structural characterization of a novel derivative of myricetin from Mimosa pudica as an anti-proliferative agent for the treatment of cancer.

    PubMed

    Jose, Joby; Dhanya, A T; Haridas, Karickal R; Sumesh Kumar, T M; Jayaraman, Sony; Variyar, E Jayadevi; Sudhakaran, Sudheesh

    2016-12-01

    The study was initiated to determine the anticancer activity of a novel compound isolated from the plant Mimosa pudica. The structure of the compound was identified as a derivative of myricetin having alkyl, hydroxy alkyl and methyl substitutions on the basis of spectral evidences (UV-vis, FT-IR, 1 H NMR and Mass spectra). The isolated compound was interpreted as 2-(2',6'-dimethyl-3',4',5'-alkyl or hydroxy alkyl substituted phenyl)-3-oxy-(alkyl or hydoxy alkyl)- 5,7-dihydroxy-chromen-4-one. In vitro evaluation of anticancer activity against human lung adenocarcinoma cell line (A549) and human erythroleukemic cell line (K562) were conducted using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. In vivo anticancer activity was determined against Dalton's Ascites Lymphoma (DAL) in Swiss albino mice. The mice were treated with intraperitoneal administration of the compound at 25mg/kg and 100mg/kg body weight and were compared with the normal, DAL control and standard drug cyclophosphamide treated groups. The histology revealed that the compound could protect the cellular architecture of liver and kidney. The results from the in vitro, in vivo and histological examinations confirmed the ethnopharmacological significance of the isolated compound and could be considered further for the development of an effective drug against cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Ovarian folliculogenesis: detrimental effect of prenatal exposure to cyclophosphamide: a preliminary study.

    PubMed

    Ray, B; Potu, B K

    2010-01-01

    To investigate whether cyclophosphamide interferes with ovarian folliculogenesis. In this experiment, pregnant rats (n=12) were randomly assigned into two groups, control group (n=6) and cyclophosphamide treatment group (n=6). In the cyclophosphamide treatment group cyclophosphamide was injected intraperitoneally from day 10 of gestation till 20th day, at 2 mg/kg of body weight. The pregnant rats were sacrificed on gestation day 20 and the fetus was collected. The collected fetuses were processed for sectioning and stained with haematoxyline and eosin for microscopic observation of the ovaries. A meshwork-like appearance of mesenchyme with decreased number of somatic cells and absence of the majority of the germ cells in the ovarian follicles were found in treated fetus. Non-availability of primordial germ cells stopped the interaction between primordial germ cells and somatic supporting cells leading to nonproliferation and degeneration of somatic cells and fluid-filled vacant spaces in the meshwork -like arrangement of mesenchymal cells. We conclude that cyclophosphamide exposure prevents folliculogenesis by causing anovulation and results in infertility. The same detrimental effect might be seen in human fertility with environmental pollutants which are also metabolites of the drug (Fig. 2, Ref. 25).

  12. Modulation of O6-alkylating agent induced clastogenicity by enhanced DNA repair capacity of bone marrow cells.

    PubMed

    Chinnasamy, N; Fairbairn, L J; Laher, J; Willington, M A; Rafferty, J A

    1998-08-07

    The murine bone marrow micronucleus assay has been used to examine (1) the potentiation of fotemustine and streptozotocin induced-clastogenicity by the O6-alkylguanine-DNA alkyltransferase (ATase) inactivator O6-benzylguanine (O6-beG) and (2) the level of protection afforded against this potentiation by retrovirus-mediated expression of an O6-beG-resistant mutant of human ATase (haTPA/GA) in mouse bone marrow. Both fotemustine and streptozotocin induced significantly higher levels of micronucleated polychromatic erythrocytes (p < 0.001 for the highest doses studied) compared to those seen in vehicle-treated animals. The number of micronuclei produced by either agent was dramatically elevated by pretreatment with O6-beG (p < 0.001). Furthermore, in myeloablated mice reconstituted with bone marrow expressing the O6-beG-resistant hATPA/GA as a result of retroviral gene transfer, the frequency of micronucleus formation following exposure of mice to otherwise clastogenic doses of fotemustine or streptozotocin, in the presence of O6-beG, wash highly significantly reduced (p < 0.001 for both agents) relative to that in mock transduced controls. These data clearly implicate O6-chloroethyl- and O6-methylguanine as clastogenic lesions in vivo and establish ATase as a major protective mechanism operating to reduce the frequency of such damage. The potentiation of drug induced clastogenicity by O6-beG suggests that the clinical use of this inactivator in combination with O6-alkylating agents, could substantially increase the risk of therapy related malignancy. Nevertheless the use of hATPA/GA as a protective mechanism via gene therapy may overcome this risk.

  13. Occurrence and fate of the cytostatic drugs cyclophosphamide and ifosfamide in wastewater and surface waters.

    PubMed

    Buerge, Ignaz J; Buser, Hans-Rudolf; Poiger, Thomas; Müller, Markus D

    2006-12-01

    The two oxazaphosphorine compounds cyclophosphamide and ifosfamide are important cytostatic drugs used in the chemotherapy of cancer and in the treatment of autoimmune diseases. Their mechanism of action, involving metabolic activation and unspecific alkylation of nucleophilic compounds, accounts for genotoxic effects described in the literature and is reason for environmental concern. The occurrence and fate of cyclophosphamide and ifosfamide were studied in wastewater treatment plants (WWTPs) and surface waters in Switzerland, using a highly sensitive analytical method based on solid-phase extraction and liquid chromatography tandem mass spectrometry. The compounds were detected in untreated and treated wastewater at concentrations of <0.3-11 ng/L, which corresponded well with concentrations predicted from consumption data and typical renal excretion rates. Weekly loads determined in influent and effluent wastewater were comparable and suggested a high persistence in WWTPs. Furthermore, no degradation was observed in activated sludge incubation experiments within 24 h at concentrations of approximately 100 ng/L. Processes that may be relevant for elimination in natural waterbodies were studied with a set of incubation experiments in the laboratory. After extrapolation to natural conditions in surface waters, a slow dark-chemical degradation (half-lives on the order of years) is the most important transformation process. Degradation by photochemically formed HO* radicals may be of some relevance only in shallow, clear, and nitrate-rich waterbodies but could be further exploited for elimination of these compounds by advanced oxidation processes, i.e., in a treatment of hospital wastewater. In surface waters, concentrations ranged from < or =50 to 170 pg/L and were thus several orders of magnitude lower than the levels at which acute ecotoxicological effects have been reported in the literature (mg/L range). However, due to a lack of studies on chronic effects on

  14. Evaluation of Novel Agents Which Target Neovasculature of Breast Tumors

    DTIC Science & Technology

    2006-04-01

    chemotherapeutic agents including cyclophosphamide, methotrexate, anthracycline, cytarabine , paclitaxel, and corticosteroids [29]. To determine whether the...anthracycline, cytarabine , paclitaxel, and corticosteroids [29]. Sasaki et al reported that the level of Bcl-2 in cancer cells was an indicator of 5-FU

  15. Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models.

    PubMed

    Daenen, Laura G; Shaked, Yuval; Man, Shan; Xu, Ping; Voest, Emile E; Hoffman, Robert M; Chaplin, David J; Kerbel, Robert S

    2009-10-01

    Vascular disrupting agents preferentially target the established but abnormal tumor vasculature, resulting in extensive intratumoral hypoxia and cell death. However, a rim of viable tumor tissue remains from which angiogenesis-dependent regrowth can occur, in part through the mobilization and tumor colonization of circulating endothelial progenitor cells (CEP). Cotreatment with an agent that blocks CEPs, such as a vascular endothelial growth factor pathway-targeting biological antiangiogenic drug, results in enhanced antitumor efficacy. We asked whether an alternative therapeutic modality, low-dose metronomic chemotherapy, could achieve the same result given its CEP-targeting effects. We studied the combination of the vascular disrupting agent OXi4503 with daily administration of CEP-inhibiting, low-dose metronomic cyclophosphamide to treat primary orthotopic tumors with the use of the 231/LM2-4 breast cancer cell line and MeWo melanoma cell line. In addition, CEP mobilization and various tumor characteristics were assessed. We found that daily p.o. low-dose metronomic cyclophosphamide was capable of preventing the CEP spike and tumor colonization induced by OXi4503. This was associated with a decrease in the tumor rim and marked suppression of primary 231/LM2-4 growth in nude as well as severe combined immunodeficient mice. Similar results were found in MeWo-bearing nude mice. The delay in tumor growth was accompanied by significant decreases in microvessel density, perfusion, and proliferation, and a significant increase in tumor cell apoptosis. No overt toxicity was observed. The combination of OXi4503 and metronomic chemotherapy results in prolonged tumor control, thereby expanding the list of therapeutic agents that can be successfully integrated with metronomic low-dose chemotherapy.

  16. Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer.

    PubMed

    Barault, L; Amatu, A; Bleeker, F E; Moutinho, C; Falcomatà, C; Fiano, V; Cassingena, A; Siravegna, G; Milione, M; Cassoni, P; De Braud, F; Rudà, R; Soffietti, R; Venesio, T; Bardelli, A; Wesseling, P; de Witt Hamer, P; Pietrantonio, F; Siena, S; Esteller, M; Sartore-Bianchi, A; Di Nicolantonio, F

    2015-09-01

    O(6)-methyl-guanine-methyl-transferase (MGMT) silencing by promoter methylation may identify cancer patients responding to the alkylating agents dacarbazine or temozolomide. We evaluated the prognostic and predictive value of MGMT methylation testing both in tumor and cell-free circulating DNA (cfDNA) from plasma samples using an ultra-sensitive two-step digital PCR technique (methyl-BEAMing). Results were compared with two established techniques, methylation-specific PCR (MSP) and Bs-pyrosequencing. Thresholds for MGMT methylated status for each technique were established in a training set of 98 glioblastoma (GBM) patients. The prognostic and the predictive value of MGMT methylated status was validated in a second cohort of 66 GBM patients treated with temozolomide in which methyl-BEAMing displayed a better specificity than the other techniques. Cutoff values of MGMT methylation specific for metastatic colorectal cancer (mCRC) tissue samples were established in a cohort of 60 patients treated with dacarbazine. In mCRC, both quantitative assays methyl-BEAMing and Bs-pyrosequencing outperformed MSP, providing better prediction of treatment response and improvement in progression-free survival (PFS) (P < 0.001). Ability of methyl-BEAMing to identify responding patients was validated in a cohort of 23 mCRC patients treated with temozolomide and preselected for MGMT methylated status according to MSP. In mCRC patients treated with dacarbazine, exploratory analysis of cfDNA by methyl-BEAMing showed that MGMT methylation was associated with better response and improved median PFS (P = 0.008). Methyl-BEAMing showed high reproducibility, specificity and sensitivity and was applicable to formalin-fixed paraffin-embedded tissues and cfDNA. This study supports the quantitative assessment of MGMT methylation for clinical purposes since it could refine prediction of response to alkylating agents. © The Author 2015. Published by Oxford University Press on behalf of the European

  17. Effect of ionic strength and cationic DNA affinity binders on the DNA sequence selective alkylation of guanine N7-positions by nitrogen mustards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, J.A.; Forrow, S.M.; Souhami, R.L.

    Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increase ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specificmore » chemical cleavage technique for DNA sequencing. The result differed with both the nitrogen mustard and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove.« less

  18. Cyclosporine A or intravenous cyclophosphamide for lupus nephritis: the Cyclofa-Lune study.

    PubMed

    Zavada, J; Pesickova, Ss; Rysava, R; Olejarova, M; Horák, P; Hrncír, Z; Rychlík, I; Havrda, M; Vítova, J; Lukác, J; Rovensky, J; Tegzova, D; Böhmova, J; Zadrazil, J; Hána, J; Dostál, C; Tesar, V

    2010-10-01

    Intravenous cyclophosphamide is considered to be the standard of care for the treatment of proliferative lupus nephritis. However, its use is limited by potentially severe toxic effects. Cyclosporine A has been suggested to be an efficient and safe treatment alternative to cyclophosphamide. Forty patients with clinically active proliferative lupus nephritis were randomly assigned to one of two sequential induction and maintenance treatment regimens based either on cyclophosphamide or Cyclosporine A. The primary outcomes were remission (defined as normal urinary sediment, proteinuria <0.3 g/24 h, and stable s-creatinine) and response to therapy (defined as stable s-creatinine, 50% reduction in proteinuria, and either normalization of urinary sediment or significant improvement in C3) at the end of induction and maintenance phase. Secondary outcomes were incidence of adverse events, and relapse-free survival. At the end of the induction phase, 24% of the 21 patients treated by cyclophosphamide achieved remission, and 52% achieved response, as compared with 26% and 43%, respectively of the 19 patients treated by the Cyclosporine A. At the end of the maintenance phase, 14% of patients in cyclophosphamide group, and 37% in Cyclosporine A group had remission, and 38% and 58% respectively response. Treatment with Cyclosporine A was associated with transient increase in blood pressure and reversible decrease in glomerular filtration rate. There was no significant difference in median relapse-free survival. In conclusion, Cyclosporine A was as effective as cyclophosphamide in the trial of sequential induction and maintenance treatment in patients with proliferative lupus nephritis and preserved renal function.(ClinicalTrials.gov identifier: NCT00976300)

  19. Genomic Phenotyping by Barcode Sequencing Broadly Distinguishes between Alkylating Agents, Oxidizing Agents, and Non-Genotoxic Agents, and Reveals a Role for Aromatic Amino Acids in Cellular Recovery after Quinone Exposure

    PubMed Central

    Svensson, J. Peter; Quirós Pesudo, Laia; McRee, Siobhan K.; Adeleye, Yeyejide; Carmichael, Paul; Samson, Leona D.

    2013-01-01

    Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N′-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised. PMID:24040048

  20. Experimental rabies in skunks: effects of immunosuppression induced by cyclophosphamide.

    PubMed Central

    Charlton, K M; Casey, G A; Campbell, J B

    1984-01-01

    Striped skunks (Mephitis mephitis) were inoculated with street rabies virus and immunosuppressed with several doses of cyclophosphamide. Control skunks were inoculated with street virus only. The skunks were killed in terminal stages of the disease and several tissues were collected for examination by immunofluorescence, light microscopy and viral titration. Sera collected at euthanasia from most of the principals did not contain detectable rabies neutralizing antibodies, whereas high titers occurred terminally in controls. Immunofluorescence was much more entensive in submandibular salivary glands of cyclophosphamide-treated than control skunks. Similarly, virus was isolated from this tissue more consistently and at higher titer from principals than from controls. Immunofluorescence was extensive in brains of all skunks (both groups), but virus was isolated consistently only from brains of cyclophosphamide-treated skunks. Most of the cyclophosphamide-treated skunks had very few inflammatory cells in brain and cerebrospinal ganglia. Neuronal degeneration occurred in dorsal root ganglia of both principals and controls. The results suggest that the immune response has no effect on the development of rabies-induced aggressive behavior, that the immune response may inhibit salivary gland infection and that it is not essential for the development of neuronal degeneration in dorsal root ganglia. PMID:6370390

  1. Toxic epidermal necrolysis due to therapy with cyclophosphamide and mesna. A case report of a patient with seronegative rheumatoid arthritis and rheumatoid vasculitis.

    PubMed

    Chowdhury, A C; Misra, D P; Patro, P S; Agarwal, V

    2016-03-01

    Rheumatoid vasculitis usually occurs on the background of seropositive rheumatoid arthritis, although in rare cases the patients can be seronegative. We report a woman with seronegative rheumatoid arthritis with rheumatoid vasculitis who developed toxic epidermal necrolysis involving most of her body surface area, while on therapy with intravenous cyclophosphamide and mesna. After withdrawal of suspected offending agents, administration of intravenous immunoglobulin, and supportive therapy, she had a favorable outcome. Such an occurrence is rare and serves to educate about a potentially life-threatening adverse event associated with a commonly used immunosuppressive agent.

  2. Prevention of chemotherapy-induced alopecia in rodent models

    PubMed Central

    Jimenez, Joaquin J.; Roberts, Stephen M.; Mejia, Jessica; Mauro, Lucia M.; Munson, John W.; Elgart, George W.; Connelly, Elizabeth Alvarez; Chen, Qingbin; Zou, Jiangying; Goldenberg, Carlos

    2008-01-01

    Alopecia (hair loss) is experienced by thousands of cancer patients every year. Substantial-to-severe alopecia is induced by anthracyclines (e.g., adriamycin), taxanes (e.g., taxol), alkylating compounds (e.g., cyclophosphamide), and the topisomerase inhibitor etoposide, agents that are widely used in the treatment of leukemias and breast, lung, ovarian, and bladder cancers. Currently, no treatment appears to be generally effective in reliably preventing this secondary effect of chemotherapy. We observed in experiments using different rodent models that localized administration of heat or subcutaneous/intradermal injection of geldanamycin or 17-(allylamino)-17-demethoxygeldanamycin induced a stress protein response in hair follicles and effectively prevented alopecia from adriamycin, cyclophosphamide, taxol, and etoposide. Model tumor therapy experiments support the presumption that such localized hair-saving treatment does not negatively affect chemotherapy efficacy. PMID:18347939

  3. Therapy Insight: preserving fertility in cyclophosphamide-treated patients with rheumatic disease.

    PubMed

    Dooley, Mary Anne; Nair, Raj

    2008-05-01

    Cyclophosphamide remains a necessary treatment for severe rheumatic diseases, despite the continued search for alternative therapies with less gonadal toxicity. The risk of premature gonadal failure and sterility might lead young patients to delay treatment with cyclophosphamide. The patient's age at treatment and the cumulative dose received remain important risk factors for cyclophosphamide-induced gonadal failure in both males and females. Estrogen-containing oral contraceptives for females and testosterone for males are suggested to reduce the gonadal toxicity of cyclophosphamide, although few studies support these interventions. Owing to increased side effects, hormonal therapy is often avoided in patients with edema, hypertension, nephrotic syndrome or antiphospholipid antibodies. Agonists and antagonists of gonadotropin receptors are under study. Gonadotropin-receptor agonists might have beneficial effects in addition to suppression of sex-hormone production. The outcome of attempted cryopreservation of eggs, embryos or ovaries remains uncertain for women seeking to preserve their reproductive potential. Storing male gametes before chemotherapy is widely practiced and technically successful. As recovery of menses or production of testosterone does not predict individual fertility, identification of biomarkers of gonadal function and reserve, including serum levels of several hormones, ultrasonographic measurements of ovarian volume and antral follicle count, are necessary.

  4. Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy.

    PubMed

    Jaffrès, Paul-Alain; Gajate, Consuelo; Bouchet, Ana Maria; Couthon-Gourvès, Hélène; Chantôme, Aurélie; Potier-Cartereau, Marie; Besson, Pierre; Bougnoux, Philippe; Mollinedo, Faustino; Vandier, Christophe

    2016-09-01

    Synthetic alkyl lipids, such as the ether lipids edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) and ohmline (1-O-hexadecyl-2-O-methyl-rac-glycero-3-β-lactose), are forming a class of antitumor agents that target cell membranes to induce apoptosis and to decrease cell migration/invasion, leading to the inhibition of tumor and metastasis development. In this review, we present the structure-activity relationship of edelfosine and ohmline, and we point out differences and similarities between these two amphiphilic compounds. We also discuss the mechanisms of action of these synthetic alkyl ether lipids (involving, among other structures and molecules, membrane domains, Fas/CD95 death receptor signaling, and ion channels), and highlight a key role for lipid rafts in the underlying process. The reorganization of lipid raft membrane domains induced by these alkyl lipids affects the function of death receptors and ion channels, thus leading to apoptosis and/or inhibition of cancer cell migration. The possible therapeutic use of these alkyl lipids and the clinical perspectives for these lipids in prevention or/and treatment of tumor development and metastasis are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. DRDE-07 and its analogues as promising cytoprotectants to nitrogen mustard (HN-2)--an alkylating anticancer and chemical warfare agent.

    PubMed

    Sharma, Manoj; Vijayaraghavan, R; Gautam, Anshoo

    2009-08-10

    Nitrogen mustard (HN-2), also known as mechlorethamine, is an alkylating anticancer agent as well as blister inducing chemical warfare agent. We evaluated the cytoprotective efficacy of amifostine, DRDE-07 and their analogues, and other antidotes of mustard agents against HN-2. Administration of 1 LD(50) of HN-2 (20mg/kg) percutaneously, decreased WBC count from 24h onwards. Liver glutathione (GSH) level decreased prominently and the maximum depletion was observed on 7th day post-HN-2 administration. Oxidised glutathione (GSSG) level increased significantly at 24h post-administration and subsequently showed a progressive decrease. Hepatic malondialdehyde (MDA) level and percent DNA damage increased progressively following HN-2 administration. The spleen weight decreased progressively and reached a minimum on 3-4 days with subsequent increase. The antidotes were administered repeatedly for 4 and 8 days after percutaneous administration of single sublethal dose (0.5 and 0.25 LD(50)) of HN-2. Treatment with DRDE-07, DRDE-30 and DRDE-35 significantly protected the changes in spleen weight, WBC count, GSH, GSSG, MDA and DNA damage following HN-2 administration (0.5 and 0.25 LD(50)). There was no alteration in the transaminases (AST and ALT), and alkaline phosphatase (ALP) activities, neither with HN-2 nor with antidotes. The present study shows that HN-2 is highly toxic by percutaneous route and DRDE-07, DRDE-30 and DRDE-35 can partially protect it.

  6. N-alkylated aminopyrazines for use as hydrophilic optical agents

    NASA Astrophysics Data System (ADS)

    Poreddy, Amruta R.; Asmelash, Bethel; Galen, Karen P.; Fitch, Richard M.; Shieh, Jeng-Jong; Wilcox, James M.; Schoenstein, Tasha M.; Wojdyla, Jolette K.; Gaston, Kimberly R.; Freskos, John N.; Neumann, William L.; Rajagopalan, Raghavan; Ahn, Hyo-Yang; Kostelc, James G.; Debreczeny, Martin P.; Belfield, Kevin D.; Dorshow, Richard B.

    2009-02-01

    Rapid assessment of glomerular filtration rate (GFR), which measures the amount of plasma filtered through the kidney within a given time, would greatly facilitate monitoring of renal function for patients at the bedside in the clinic. In our pursuit to develop exogenous fluorescent tracers for real-time monitoring of renal function by optical methods, N-alkylated aminopyrazine dyes and their hydrophilic conjugates based on poly (ethylene glycol) (PEG) were synthesized via reductive amination as the key step. Photophysical properties indicated a bathochromic shift on the order of 50 nm in both absorption and emission compared to naked aminopyrazines which could be very useful in enhancing both tissue penetration as well as easier detection methods. Structure-activity relationship (SAR) and pharmacokinetic (PK) studies, and the correlation of in vivo optical data with plasma PK for measurement of clearance (and hence GFR) are focus of the current investigation.

  7. Α-aryl-N-alkyl nitrones, as potential agents for stroke treatment: synthesis, theoretical calculations, antioxidant, anti-inflammatory, neuroprotective, and brain-blood barrier permeability properties.

    PubMed

    Chioua, Mourad; Sucunza, David; Soriano, Elena; Hadjipavlou-Litina, Dimitra; Alcázar, Alberto; Ayuso, Irene; Oset-Gasque, María Jesús; González, María Pilar; Monjas, Leticia; Rodríguez-Franco, María Isabel; Marco-Contelles, José; Samadi, Abdelouahid

    2012-01-12

    We report the synthesis, theoretical calculations, the antioxidant, anti-inflammatory, and neuroprotective properties, and the ability to cross the blood-brain barrier (BBB) of (Z)-α-aryl and heteroaryl-N-alkyl nitrones as potential agents for stroke treatment. The majority of nitrones compete with DMSO for hydroxyl radicals, and most of them are potent lipoxygenase inhibitors. Cell viability-related (MTT assay) studies clearly showed that nitrones 1-3 and 10 give rise to significant neuroprotection. When compounds 1-11 were tested for necrotic cell death (LDH release test) nitrones 1-3, 6, 7, and 9 proved to be neuroprotective agents. In vitro evaluation of the BBB penetration of selected nitrones 1, 2, 10, and 11 using the PAMPA-BBB assay showed that all of them cross the BBB. Permeable quinoline nitrones 2 and 3 show potent combined antioxidant and neuroprotective properties and, therefore, can be considered as new lead compounds for further development in specific tests for potential stroke treatment.

  8. Immunosuppressive myeloid cells induced by chemotherapy attenuate antitumor CD4+ T-cell responses through the PD-1-PD-L1 axis.

    PubMed

    Ding, Zhi-Chun; Lu, Xiaoyun; Yu, Miao; Lemos, Henrique; Huang, Lei; Chandler, Phillip; Liu, Kebin; Walters, Matthew; Krasinski, Antoni; Mack, Matthias; Blazar, Bruce R; Mellor, Andrew L; Munn, David H; Zhou, Gang

    2014-07-01

    In recent years, immune-based therapies have become an increasingly attractive treatment option for patients with cancer. Cancer immunotherapy is often used in combination with conventional chemotherapy for synergistic effects. The alkylating agent cyclophosphamide (CTX) has been included in various chemoimmunotherapy regimens because of its well-known immunostimulatory effects. Paradoxically, cyclophosphamide can also induce suppressor cells that inhibit immune responses. However, the identity and biologic relevance of these suppressor cells are poorly defined. Here we report that cyclophosphamide treatment drives the expansion of inflammatory monocytic myeloid cells (CD11b(+)Ly6C(hi)CCR2(hi)) that possess immunosuppressive activities. In mice with advanced lymphoma, adoptive transfer (AT) of tumor-specific CD4(+) T cells following cyclophosphamide treatment (CTX+CD4 AT) provoked a robust initial antitumor immune response, but also resulted in enhanced expansion of monocytic myeloid cells. These therapy-induced monocytes inhibited long-term tumor control and allowed subsequent relapse by mediating functional tolerization of antitumor CD4(+) effector cells through the PD-1-PD-L1 axis. PD-1/PD-L1 blockade after CTX+CD4 AT therapy led to persistence of CD4(+) effector cells and durable antitumor effects. Depleting proliferative monocytes by administering low-dose gemcitabine effectively prevented tumor recurrence after CTX+CD4 AT therapy. Similarly, targeting inflammatory monocytes by disrupting the CCR2 signaling pathway markedly potentiated the efficacy of cyclophosphamide-based therapy. Besides cyclophosphamide, we found that melphalan and doxorubicin can also induce monocytic myeloid suppressor cells. These findings reveal a counter-regulation mechanism elicited by certain chemotherapeutic agents and highlight the importance of overcoming this barrier to prevent late tumor relapse after chemoimmunotherapy. ©2014 American Association for Cancer Research.

  9. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  10. Anti-biofilm action of nitric oxide-releasing alkyl-modified poly(amidoamine) dendrimers against Streptococcus mutans.

    PubMed

    Backlund, Christopher J; Worley, Brittany V; Schoenfisch, Mark H

    2016-01-01

    The effect of nitric oxide (NO)-releasing dendrimer hydrophobicity on Streptococcus mutans killing and biofilm disruption was examined at pH 7.4 and 6.4, the latter relevant to dental caries. Generation 1 (G1) poly(amidoamine) (PAMAM) dendrimers were modified with alkyl epoxides to generate propyl-, butyl-, hexyl-, octyl-, and dodecyl-functionalized dendrimers. The resulting secondary amines were reacted with NO to form N-diazeniumdiolate NO donor-modified dendrimer scaffolds (total NO ∼1μmol/mg). The bactericidal action of the NO-releasing dendrimers against both planktonic and biofilm-based S. mutans proved greatest with increasing alkyl chain length and at lower pH. Improved bactericidal efficacy at pH 6.4 was attributed to increased scaffold surface charge that enhanced dendrimer-bacteria association and ensuing membrane damage. For shorter alkyl chain (i.e., propyl and butyl) dendrimer modifications, increased antibacterial action at pH 6.4 was due to faster NO-release kinetics from proton-labile N-diazeniumdiolate NO donors. Octyl- and dodecyl-modified PAMAM dendrimers proved most effective for eradicating S. mutans biofilms with NO release mitigating dendrimer scaffold cytotoxicity. We report the antibacterial and anti-biofilm efficacy of dual-action nitric oxide (NO)-releasing dendrimers against S. mutans, an etiological agent in dental caries. This work was undertaken to enhance the anti-biofilm action of these scaffolds by employing various alkyl chain modifications. Furthermore, we evaluated the ability of NO to eradicate cariogenic biofilms. We found that at the lower pH associated with dental caries (pH ∼6.4), NO has a more pronounced antibacterial effect for alkyl modifications less capable of biofilm penetration and membrane disruption. Of greatest significance, we introduce dendrimers as a new macromolecular antibacterial agent against the cariogenic bacteria S. mutans. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All

  11. Fatal hemorrhagic cystitis induced by pelvic irradiation and cyclophosphamide therapy. Case reports and review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, W.E.; Keldahl, L.R.

    The potent cytotoxic drug cyclophosphamide has been used extensively for neoplastic and non-neoplastic diseases. Patients taking this drug may have received or may be receiving pelvic irradiation concurrently. This report describes two patients who developed fatal hemorrhagic cystitis induced by pelvic irradiation and cyclophosphamide therapy. Etiology, incidence, pathologic descriptions, and diagnostic and therapeutic aspects of this entity are described. The incidence and risk of serious, life-threatening bladder hemorrhage from cyclophosphamide therapy is increased by prior or concurrent pelvic irradiation. Alternative cytotoxic, non-urotoxic chemotherapy should be used in these high-risk patients.

  12. Stereoconvergent Amine-Directed Alkyl–Alkyl Suzuki Reactions of Unactivated Secondary Alkyl Chlorides

    PubMed Central

    Lu, Zhe; Wilsily, Ashraf; Fu, Gregory C.

    2011-01-01

    A new family of stereoconvergent cross-couplings of unactivated secondary alkyl electrophiles has been developed, specifically, arylamine-directed alkyl–alkyl Suzuki reactions. This represents the first such investigation to be focused on the use of alkyl chlorides as substrates. Structure-enantioselectivity studies are consistent with the nitrogen, not the aromatic ring, serving as the primary site of coordination of the arylamine to the catalyst. The rate law for this asymmetric cross-coupling is compatible with transmetalation being the turnover-limiting step of the catalytic cycle. PMID:21553917

  13. [The biochemical mechanisms of the action of N-alkyl-N-nitrosoureas. The possible reasons for drug resistance to these compounds].

    PubMed

    Syrkin, A B; Gorbacheva, L B

    1996-01-01

    N-alkyl-N-nitrosoureas exhibit a wide spectrum of antitumor activity. They react as alkylating agents at nucleophilic sites in purine and pyrimidine moieties of DNA. The predominant site of this alkylation is N7 of guanine, which is followed by the site N3 of adenine and 06 of guanine. The formation and persistence of 0(6)-alkylguanine (0(6)-AG) may be of primary importance in cytotoxicity of the nitrosoureas. 0(6)-AG adducts of DNA of the tumor cells are repaired by protein 0(6)-alkylguanine-DNA transferase (0(6)-AGT) which transfers the alkyl group to internal cysteine residue being the acceptor protein for the alkyl group in an irreversible transfer reaction. 0(6)-AGT can protect the tumor cells against 0(6)-AG adducts by the way of inhibiting the formation of the DNA interstrand cross-links 0(6)-AGT plays an important role in the drug resistance because it repairs the DNA alkyl adducts at the 0(6) position of guanine. The 0(6)-AGT activity inversely correlates with the cytotoxic effect of the nitrosoureas. The agents like 0(6)-methylguanosine, 0(6)-methyl-2'-deoxyguanosine, and some 0(6)-benzylated guanine derivatives are effective inactivators of 0(6)-AGT, and thus can be used to enhance the cytotoxicity of N-nitrosoureas. The activation of 0(6)-AGT and other repairing enzymes such as alpha and beta DNA-polymerases as well as an increase in the level of reduced glutathione may be used in developing the resistance to the nitrosoureas.

  14. Ada response – a strategy for repair of alkylated DNA in bacteria

    PubMed Central

    Mielecki, Damian; Grzesiuk, Elżbieta

    2014-01-01

    Alkylating agents are widespread in the environment and also occur endogenously. They can be cytotoxic or mutagenic to the cells introducing alkylated bases to DNA or RNA. All organisms have evolved multiple DNA repair mechanisms to counteract the effects of DNA alkylation: the most cytotoxic lesion, N3-methyladenine (3meA), is excised by AlkA glycosylase initiating base excision repair (BER); toxic N1-methyladenine (1meA) and N3-methylcytosine (3meC), induced in DNA and RNA, are removed by AlkB dioxygenase; and mutagenic and cytotoxic O6-methylguanine (O6meG) is repaired by Ada methyltransferase. In Escherichia coli, Ada response involves the expression of four genes, ada, alkA, alkB, and aidB, encoding respective proteins Ada, AlkA, AlkB, and AidB. The Ada response is conserved among many bacterial species; however, it can be organized differently, with diverse substrate specificity of the particular proteins. Here, an overview of the organization of the Ada regulon and function of individual proteins is presented. We put special effort into the characterization of AlkB dioxygenases, their substrate specificity, and function in the repair of alkylation lesions in DNA/RNA. PMID:24810496

  15. Ada response - a strategy for repair of alkylated DNA in bacteria.

    PubMed

    Mielecki, Damian; Grzesiuk, Elżbieta

    2014-06-01

    Alkylating agents are widespread in the environment and also occur endogenously. They can be cytotoxic or mutagenic to the cells introducing alkylated bases to DNA or RNA. All organisms have evolved multiple DNA repair mechanisms to counteract the effects of DNA alkylation: the most cytotoxic lesion, N(3)-methyladenine (3meA), is excised by AlkA glycosylase initiating base excision repair (BER); toxic N(1)-methyladenine (1meA) and N(3)-methylcytosine (3meC), induced in DNA and RNA, are removed by AlkB dioxygenase; and mutagenic and cytotoxic O(6)-methylguanine (O(6) meG) is repaired by Ada methyltransferase. In Escherichia coli, Ada response involves the expression of four genes, ada, alkA, alkB, and aidB, encoding respective proteins Ada, AlkA, AlkB, and AidB. The Ada response is conserved among many bacterial species; however, it can be organized differently, with diverse substrate specificity of the particular proteins. Here, an overview of the organization of the Ada regulon and function of individual proteins is presented. We put special effort into the characterization of AlkB dioxygenases, their substrate specificity, and function in the repair of alkylation lesions in DNA/RNA. © 2014 The Authors. FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  16. Combined therapy with cyclophosphamide and DNA preparation inhibits the tumor growth in mice

    PubMed Central

    Alyamkina, Ekaterina A; Dolgova, Evgenia V; Likhacheva, Anastasia S; Rogachev, Vladimir A; Sebeleva, Tamara E; Nikolin, Valeriy P; Popova, Nelly A; Orishchenko, Konstantin E; Strunkin, Dmitriy N; Chernykh, Elena R; Zagrebelniy, Stanislav N; Bogachev, Sergei S; Shurdov, Mikhail A

    2009-01-01

    Background When cyclophosphamide and preparations of fragmented exogenous genomic double stranded DNA were administered in sequence, the regressive effect on the tumor was synergic: this combined treatment had a more pronounced effect than cyclophosphamide alone. Our further studies demonstrated that exogenous DNA stimulated the maturation and specific activities of dendritic cells. This suggests that cyclophosphamide, combined with DNA, leads to an immune response to the tumors that were grafted into the subjects post treatment. Methods Three-month old CBA/Lac mice were used in the experiments. The mice were injected with cyclosphamide (200 mkg per 1 kg body weight) and genomic DNA (of human, mouse or salmon sperm origin). The DNA was administered intraperitoneally or subcutaneously. After 23 to 60 days, one million tumor cells were intramuscularly grafted into the mice. In the final experiment, the mice were pre-immunized by subcutaneous injections of 20 million repeatedly thawed and frozen tumor cells. Changes in tumor growth were determined by multiplying the three perpendicular diameters (measured by caliper). Students' t-tests were used to determine the difference between tumor growth and average survival rate between the mouse groups and the controls. Results An analysis of varying treatments with cyclophosphamide and exogenous DNA, followed by tumor grafting, provided evidence that this combined treatment had an immunizing effect. This inhibitory effect in mice was analyzed in an experiment with the classical immunization of a tumor homogenate. The strongest inhibitory action on a transplanted graft was created through the following steps: cyclophosphamide at 200 mg/kg of body weight administered as a pretreatment; 6 mg fragmented exogenous DNA administered over the course of 3 days; tumor homogenate grafted 10 days following the final DNA injection. Conclusion Fragmented exogenous DNA injected with cyclophosphamide inhibits the growth of tumors that are

  17. Effects of cyclophosphamide on laser immunotherapy for the treatment of metastatic cancer

    NASA Astrophysics Data System (ADS)

    Bahavar, Cody F.; Acquaviva, Joseph T.; Rabei, Sheyla; Sikes, Allie; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.

    2014-02-01

    Laser immunotherapy (LIT) is an innovative cancer modality that uses laser irradiation and immunological stimulation to treat late-stage, metastatic cancers. The current mode of operation in LIT is through interstitial laser irradiation. Although LIT is still in development, recent clinical trials have shown that it can be used to successfully treat patients with late-stage breast cancer and melanoma. Cyclophosphamide is a chemotherapy drug that suppresses regulatory T cells when used in low doses. In this study tumor-bearing rats were treated with LIT using an 805-nm laser with a power of 2.0 W and low-dose cyclophosphamide. Glycated chitosan was used as an immunological stimulant. The goal was to observe the effects of different doses of cyclophosphamide in addition to LIT on the survival of the tumor-bearing rats.

  18. Neurobehavioral Teratogenicity of Perfluorinated Alkyls in an Avian Model

    PubMed Central

    Pinkas, Adi; Slotkin, Theodore A.; Brick-Turin, Yael; Van der Zee, Eddy A.; Yanai, Joseph

    2010-01-01

    Perfluorinated alkyls are widely-used agents that accumulate in ecosystems and organisms because of their slow rate of degradation. There is increasing concern that these agents may be developmental neurotoxicants and the present study was designed to develop an avian model for the neurobehavioral teratogenicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Fertilized chicken eggs were injected with 5 or 10 mg/kg of either compound on incubation day 0. On the day of hatching, imprinting behavior was impaired by both compounds. We then explored underlying mechanisms involving the targeting of protein kinase C (PKC) isoforms (α, β, γ) in the intermedial part of the hyperstriatum ventrale, the region most closely associated with imprinting. With PFOA exposure, cytosolic PKC concentrations were significantly elevated for all three isoforms; despite the overall increase in PKC expression, membrane-associated PKC was unaffected, indicating a defect in PKC translocation. In contrast, PFOS exposure evoked a significant decrease in cytosolic PKC, primarily for the β and γ isoforms, but again without a corresponding change in membrane-associated enzyme; this likely partial, compensatory increases in translocation to offset the net PKC deficiency. Our studies indicate that perfluorinated alkyls are indeed developmental neurotoxicants that affect posthatch cognitive performance but that the underlying synaptic mechanisms may differ substantially among the various members of this class of compounds, setting the stage for disparate outcomes later in life. PMID:19945530

  19. Distributed Drug Discovery, Part 2: Global Rehearsal of Alkylating Agents for the Synthesis of Resin-Bound Unnatural Amino Acids and Virtual D3 Catalog Construction

    PubMed Central

    2008-01-01

    Distributed Drug Discovery (D3) proposes solving large drug discovery problems by breaking them into smaller units for processing at multiple sites. A key component of the synthetic and computational stages of D3 is the global rehearsal of prospective reagents and their subsequent use in the creation of virtual catalogs of molecules accessible by simple, inexpensive combinatorial chemistry. The first section of this article documents the feasibility of the synthetic component of Distributed Drug Discovery. Twenty-four alkylating agents were rehearsed in the United States, Poland, Russia, and Spain, for their utility in the synthesis of resin-bound unnatural amino acids 1, key intermediates in many combinatorial chemistry procedures. This global reagent rehearsal, coupled to virtual library generation, increases the likelihood that any member of that virtual library can be made. It facilitates the realistic integration of worldwide virtual D3 catalog computational analysis with synthesis. The second part of this article describes the creation of the first virtual D3 catalog. It reports the enumeration of 24 416 acylated unnatural amino acids 5, assembled from lists of either rehearsed or well-precedented alkylating and acylating reagents, and describes how the resulting catalog can be freely accessed, searched, and downloaded by the scientific community. PMID:19105725

  20. Hot foam for weed control-Do alkyl polyglucoside surfactants used as foaming agents affect the mobility of organic contaminants in soil?

    PubMed

    Cederlund, H; Börjesson, E

    2016-08-15

    Use of alkyl polyglucosides (APGs) as a foaming agent during hot water weed control may influence the environmental fate of organic contaminants in soil. We studied the effects of the APG-based foaming agent NCC Spuma (C8-C10) on leaching of diuron, glyphosate, and polycyclic aromatic hydrocarbons (PAHs) in sand columns. We also examined how APG concentration affected the apparent water solubility and adsorption of the herbicides and of the PAHs acenaphthene, acenaphthylene and fluorene. Application of APGs at the recommended concentration of 0.3% did not significantly affect leaching of any of the compounds studied. However, at a concentration of 1.5%, leaching of both diuron and glyphosate was significantly increased. The increased leaching corresponded to an increase in apparent water solubility of diuron and a decrease in glyphosate adsorption to the sand. However, APG addition did not significantly affect the mobility of PAHs even though their apparent water solubility was increased. These results suggest that application of APG-based foam during hot water weed control does not significantly affect the mobility of organic contaminants in soil if used according to recommendations. Moreover, they suggest that APGs could be useful for soil bioremediation purposes if higher concentrations are used. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Sensitization of melanoma cells to alkylating agent-induced DNA damage and cell death via orchestrating oxidative stress and IKKβ inhibition.

    PubMed

    Tse, Anfernee Kai-Wing; Chen, Ying-Jie; Fu, Xiu-Qiong; Su, Tao; Li, Ting; Guo, Hui; Zhu, Pei-Li; Kwan, Hiu-Yee; Cheng, Brian Chi-Yan; Cao, Hui-Hui; Lee, Sally Kin-Wah; Fong, Wang-Fun; Yu, Zhi-Ling

    2017-04-01

    Nitrosourea represents one of the most active classes of chemotherapeutic alkylating agents for metastatic melanoma. Treatment with nitrosoureas caused severe systemic side effects which hamper its clinical use. Here, we provide pharmacological evidence that reactive oxygen species (ROS) induction and IKKβ inhibition cooperatively enhance nitrosourea-induced cytotoxicity in melanoma cells. We identified SC-514 as a ROS-inducing IKKβ inhibitor which enhanced the function of nitrosoureas. Elevated ROS level results in increased DNA crosslink efficiency triggered by nitrosoureas and IKKβ inhibition enhances DNA damage signals and sensitizes nitrosourea-induced cell death. Using xenograft mouse model, we confirm that ROS-inducing IKKβ inhibitor cooperates with nitrosourea to reduce tumor size and malignancy in vivo. Taken together, our results illustrate a new direction in nitrosourea treatment, and reveal that the combination of ROS-inducing IKKβ inhibitors with nitrosoureas can be potentially exploited for melanoma therapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Glioma Cell Death Induced by Irradiation or Alkylating Agent Chemotherapy Is Independent of the Intrinsic Ceramide Pathway

    PubMed Central

    Gramatzki, Dorothee; Herrmann, Caroline; Happold, Caroline; Becker, Katrin Anne; Gulbins, Erich; Weller, Michael; Tabatabai, Ghazaleh

    2013-01-01

    Background/Aims Resistance to genotoxic therapy is a characteristic feature of glioma cells. Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and glucosylceramide synthase (GCS) catalyzes ceramide metabolism. Increased ceramide levels have been suggested to enhance chemotherapy-induced death of cancer cells. Methods Microarray and clinical data for ASM and GCS in astrocytomas WHO grade II–IV were acquired from the Rembrandt database. Moreover, the glioblastoma database of the Cancer Genome Atlas network (TCGA) was used for survival data of glioblastoma patients. For in vitro studies, increases in ceramide levels were achieved either by ASM overexpression or by the GCS inhibitor DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) in human glioma cell lines. Combinations of alkylating chemotherapy or irradiation and ASM overexpression, PPMP or exogenous ceramide were applied in parental cells. The anti-glioma effects were investigated by assessing proliferation, metabolic activity, viability and clonogenicity. Finally, viability and clonogenicity were assessed in temozolomide (TMZ)-resistant cells upon treatment with PPMP, exogenous ceramide, alkylating chemotherapy, irradiation or their combinations. Results Interrogations from the Rembrandt and TCGA database showed a better survival of glioblastoma patients with low expression of ASM or GCS. ASM overexpression or PPMP treatment alone led to ceramide accumulation but did not enhance the anti-glioma activity of alkylating chemotherapy or irradiation. PPMP or exogenous ceramide induced acute cytotoxicity in glioblastoma cells. Combined treatments with chemotherapy or irradiation led to additive, but not synergistic effects. Finally, no synergy was found when TMZ-resistant cells were treated with exogenous ceramide or PPMP alone or in combination with TMZ or irradiation. Conclusion Modulation of intrinsic glioma cell ceramide levels by ASM overexpression or GCS inhibition does not

  3. The translesion polymerase Rev3L in the tolerance of alkylating anticancer drugs.

    PubMed

    Roos, Wynand Paul; Tsaalbi-Shtylik, Anastasia; Tsaryk, Roman; Güvercin, Fatma; de Wind, Niels; Kaina, Bernd

    2009-10-01

    Temozolomide and fotemustine, representing methylating and chloroethylating agents, respectively, are used in the treatment of glioma and malignant melanoma. Because chemoresistance of these tumors is a common phenomenon, identification of the underlying mechanisms is needed. Here we show that Rev3L, the catalytic subunit of the translesion DNA polymerase zeta, mediates resistance to both temozolomide and fotemustine. Rev3L knockout cells are hypersensitive to both agents. It is remarkable that cells heterozygous for Rev3L showed an intermediate sensitivity. Rev3L is not involved in the tolerance of the toxic O6-methylguanine lesion. However, a possible role of Rev3L in the tolerance of O6-chloroethylguanine or the subsequently formed N1-guanine-N3-cytosine interstrand cross-link is shown. Rev3L had no influence on base excision repair (BER) of the N-alkylation lesions but is very likely to be involved in the tolerance of N-alkylations or apurinic/apyrimidinic sites originating from them. We also show that Rev3L exerts its protective effect in replicating cells and that loss of Rev3L leads to a significant increase in DNA double-strand breaks after temozolomide and fotemustine treatment. These data show that Rev3L contributes to temozolomide and fotemustine resistance, thus acting in concert with O6-methylguanine-DNA methyltransferase, BER, mismatch repair, and double-strand break repair in defense against simple alkylating anticancer drugs.

  4. Digital PCR assessment of MGMT promoter methylation coupled with reduced protein expression optimises prediction of response to alkylating agents in metastatic colorectal cancer patients.

    PubMed

    Sartore-Bianchi, Andrea; Pietrantonio, Filippo; Amatu, Alessio; Milione, Massimo; Cassingena, Andrea; Ghezzi, Silvia; Caporale, Marta; Berenato, Rosa; Falcomatà, Chiara; Pellegrinelli, Alessio; Bardelli, Alberto; Nichelatti, Michele; Tosi, Federica; De Braud, Filippo; Di Nicolantonio, Federica; Barault, Ludovic; Siena, Salvatore

    2017-01-01

    O(6)-methylguanine-DNA-methyltransferase (MGMT) is a repair protein, and its deficiency makes tumours more susceptible to the cytotoxic effect of alkylating agents. Five clinical trials with temozolomide or dacarbazine have been performed in metastatic colorectal cancer (mCRC) with selection based on methyl-specific PCR (MSP) testing with modest results. We hypothesised that mitigated results are consequences of unspecific patient selection and that alternative methodologies for MGMT testing such as immunohistochemistry (IHC) and digital polymerase chain reaction (PCR) could enhance patient enrolment. Formalin-fixed paraffin embedded archival tumour tissue samples from four phase II studies of temozolomide or dacarbazine in MGMT MSP-positive mCRCs were analysed by IHC for MGMT protein expression and by methyl-BEAMing (MB) for percentage of promoter methylation. Pooled data were then retrospectively analysed according to objective response rate, progression-free survival (PFS) and overall survival (OS). One hundred and five patients were included in the study. Twelve had achieved partial response (PR) (11.4%), 24 stable disease (SD; 22.9%) and 69 progressive disease (PD; 65.7%). Patients with PR/SD had lower IHC scores and higher MB levels than those with PD. MGMT expression by IHC was negatively and MB levels positively associated with PFS (p < 0.001 and 0.004, respectively), but not with OS. By combining both assays, IHC low/MB high patients displayed an 87% reduction in the hazard of progression (p < 0.001) and a 77% in the hazard for death (p = 0.001). In mCRC selected for MGMT deficiency by MSP, IHC and MB testing improve clinical outcome to alkylating agents. Their combination could enhance patient selection in this setting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Rapamycin Prevents cyclophosphamide-induced Over-activation of Primordial Follicle pool through PI3K/Akt/mTOR Signaling Pathway in vivo.

    PubMed

    Zhou, Linyan; Xie, Yanqiu; Li, Song; Liang, Yihua; Qiu, Qi; Lin, Haiyan; Zhang, Qingxue

    2017-08-16

    Primordial follicular depletion has thought to be a common adverse effect of chemotherapy especially for female of reproductive age. The study aimed to evaluate the protective effect of rapamycin on the primordial follicles and its potential mechanism for patients receiving chemotherapy. 8-week old BALB/c female mice were randomly assigned into four groups (control; rapamycin; cyclophosphamide; and rapamycin combined with cyclophosphamide). Hematoxylin staining, immunohistochemical, TUNEL, western blotting and ELISA were employed to assess inter-group differences using Student's t-test and Mann-Whitney test. Cyclophosphamide depleted the follicular reserve and induced the phosphorylation of the key proteins of PI3K/Akt/mTOR pathway in mice in a dose-dependent manner. Co-treatment with rapamycin significantly reduced primordial follicle loss at all cyclophosphamide dose groups and prevent the follicle growth wave caused by cyclophosphamide treatment (P < 0.05). TUNEL staining showed that no apoptosis occured in the primordial follicles in all groups and fewer apoptosis in large growing follicles were observed in ovaries from rapamycin + cyclophosphamide group compared to that received cyclophosphamide alone. Serum anti-Müllerian hormone (AMH) was significantly reduced in cyclophosphamide alone group, in contrast to the normal level in rapamycin + cyclophosphamide group. Compared to p-Akt/Akt and p-mtor/mtor, p-rps6/rps6 was significantly decreased in rapamycin + cyclophosphamide group (P < 0.05), indicating that rapamycin attenuated the increased level of phosphorylation of rpS6 after cyclophosphamide treatment. Rapamycin can prevent the primordial follicle activation induced by cyclophosphamide through PI3K/Akt/mTOR signaling pathway and thus plays a role in preserving the follicle pool. These results suggest that rapamycin may be an effective protection for ovarian function during chemotherapy, which means a new nonsurgical application for protection of

  6. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature.

    PubMed

    Do, Hien-Quang; Bachman, Shoshana; Bissember, Alex C; Peters, Jonas C; Fu, Gregory C

    2014-02-05

    The development of a mild and general method for the alkylation of amides with relatively unreactive alkyl halides (i.e., poor substrates for SN2 reactions) is an ongoing challenge in organic synthesis. We describe herein a versatile transition-metal-catalyzed approach: in particular, a photoinduced, copper-catalyzed monoalkylation of primary amides. A broad array of alkyl and aryl amides (as well as a lactam and a 2-oxazolidinone) couple with unactivated secondary (and hindered primary) alkyl bromides and iodides using a single set of comparatively simple and mild conditions: inexpensive CuI as the catalyst, no separate added ligand, and C-N bond formation at room temperature. The method is compatible with a variety of functional groups, such as an olefin, a carbamate, a thiophene, and a pyridine, and it has been applied to the synthesis of an opioid receptor antagonist. A range of mechanistic observations, including reactivity and stereochemical studies, are consistent with a coupling pathway that includes photoexcitation of a copper-amidate complex, followed by electron transfer to form an alkyl radical.

  7. Polyimides with pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1982-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  8. Reevaluation of the effect of ellagic acid on N-methyl-N-nitrosourea DNA alkylation and mutagenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, H.L.; Josephy, P.D.; Snieckus, V.A.

    N-Methyl-N-nitrosourea (MNU) is a reactive, mutagenic methylating agent. MNU methylates DNA at various sites, including guanine N{sup 7}, guanine O{sup 6}, and adenine N{sup 3}. Dixit and Gold ((1986) Proc. Natl, Acad. Sci. U.S.A. 83, 8039-8043) reported that ellagic acid, a phenolic natural product, inhibited the mutagenicity of MNU in Salmonella typhimurium strain TA 100, inhibited salmon sperm DNA alkylation by ({sup 3}H)MNU, and also greatly reduced the ratio of guanine O{sup 6} to guanine N{sup 7} alkylation. We have examined the MNU-induced alkylation of calf thymus DNA and evaluated the effect of ellagic acid on this binding. Ellagic acidmore » had only a slight effect on total alkylation and did not alter the ratio of methylation at guanine-O{sup 6} and -N{sup 7} positions. In further experiments, ellagic acid did not significantly inhibit MNU mutagenicity. These findings do not support the potential use of ellagic acid as an inhibitor of biological damage induced by nitrosoureas.« less

  9. Synthesis and evaluation of thermo-rheological behaviour and ionotropic crosslinking of new gellan gum-alkyl derivatives.

    PubMed

    Agnello, Stefano; Palumbo, Fabio Salvatore; Pitarresi, Giovanna; Fiorica, Calogero; Giammona, Gaetano

    2018-04-01

    This paper reports the synthesis and the physicochemical characterization of two series of gellan gum (GG) derivatives functionalized with alkyl chains with different number of carbon, from 8 to 18. In particular, low molecular weight gellan gum samples with 52.6 or 96.7 kDa, respectively, were functionalized with octylamine (C 8 ), dodecylamine (C 12 ) and octadecylamine (C 18 ) by using bis(4-nitrophenyl) carbonate (4-NPBC) as a coupling agent. Thermo-rheological and ionotropic crosslinking properties of these gellan gum-alkyl derivatives were evaluated and related to the degree of derivatization in alkyl chains. Results suggested as length and degree of derivatization differently influenced coil-to-helix gelation mechanism of GG derivatives, ionotropic crosslinking, and strength of crosslinked hydrogels obtained in CaCl 2 0.102 M and NaCl 0.15 M. Statement of hypothesis: The insertion of alkyl chains on the gellan gum backbone interferes with coil-to-helix transition mechanism and allows the production of hydrophobically assembled hydrogels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The effects of Vitamin C on sperm quality parameters in laboratory rats following long-term exposure to cyclophosphamide.

    PubMed

    Shabanian, Sheida; Farahbod, Farnoosh; Rafieian, Mahmoud; Ganji, Forouzan; Adib, Afshin

    2017-01-01

    Cyclophosphamide is a widely used medication and can cause oxidative stress. This study was conducted to investigate the effects of Vitamin C on reproductive organs' weight and the quality of sperm parameters in laboratory rats. In this experimental study, 40 rats were randomly assigned into five groups of eight each. Distilled water (DW) group received only food and water, Group 2 was administered with drug solvent (DW) by gavage, Group 3 intraperitoneally administered with 1.6 mg/kg cyclophosphamide, Group 4 gavaged Vitamin C at 0.88 mg/kg, and Group 5 administered with effective doses of Vitamin C and cyclophosphamide by gavage with 1-h intervals. Sperm parameters of the samples were taken from distal epididymis and tissues were studied, and the data were analyzed by SPSS version 22. The lowest weight of testicles and epididymis was seen in cyclophosphamide-exposed rats and the highest weight of testicles and epididymis in Vitamin C-exposed rats ( P < 0.05). The highest motility, progression, viability, and count of sperm were seen in the Vitamin C-treated group and the lowest in the cyclophosphamide-exposed group. The highest proportion of sperm anomalies was seen in the cyclophosphamide-exposed group. Vitamin C, as an antioxidant, can be effective on some of the sperm parameters and can reduce cyclophosphamide-induced complications in animal model.

  11. The effects of Vitamin C on sperm quality parameters in laboratory rats following long-term exposure to cyclophosphamide

    PubMed Central

    Shabanian, Sheida; Farahbod, Farnoosh; Rafieian, Mahmoud; Ganji, Forouzan; Adib, Afshin

    2017-01-01

    Cyclophosphamide is a widely used medication and can cause oxidative stress. This study was conducted to investigate the effects of Vitamin C on reproductive organs' weight and the quality of sperm parameters in laboratory rats. In this experimental study, 40 rats were randomly assigned into five groups of eight each. Distilled water (DW) group received only food and water, Group 2 was administered with drug solvent (DW) by gavage, Group 3 intraperitoneally administered with 1.6 mg/kg cyclophosphamide, Group 4 gavaged Vitamin C at 0.88 mg/kg, and Group 5 administered with effective doses of Vitamin C and cyclophosphamide by gavage with 1-h intervals. Sperm parameters of the samples were taken from distal epididymis and tissues were studied, and the data were analyzed by SPSS version 22. The lowest weight of testicles and epididymis was seen in cyclophosphamide-exposed rats and the highest weight of testicles and epididymis in Vitamin C-exposed rats (P < 0.05). The highest motility, progression, viability, and count of sperm were seen in the Vitamin C-treated group and the lowest in the cyclophosphamide-exposed group. The highest proportion of sperm anomalies was seen in the cyclophosphamide-exposed group. Vitamin C, as an antioxidant, can be effective on some of the sperm parameters and can reduce cyclophosphamide-induced complications in animal model. PMID:28516060

  12. Surface contamination of counting tools after mock dispensing of cyclophosphamide in a simulated outpatient pharmacy.

    PubMed

    Chaffee, Bruce W; Lander, Michael J; Christen, Catherine; Redic, Kimberly A

    2018-01-01

    Purpose The primary aim was to determine if dispensing of cyclophosphamide tablets resulted in accumulated residue on pharmacy counting tools during a simulated outpatient dispensing process. Secondary objectives included determining if cyclophosphamide contamination exceeded a defined threshold level of 1 ng/cm 2 and if a larger number of prescriptions dispensed resulted in increased contamination. Methods Mock prescriptions of 40 cyclophosphamide 50 mg tablets were counted on clean trays in three scenarios using a simulated outpatient pharmacy after assaying five cleaned trays as controls. The three scenarios consisted of five simulated dispensings of one, three, or six prescriptions dispensed per scenario. Wipe samples of trays and spatulas were collected and assayed for all trays, including the five clean trays used as controls. Contamination was defined as an assayed cyclophosphamide level at or above 0.001 ng/cm 2 and levels above 1 ng/cm 2 were considered sufficient to cause risk of human uptake. Mean contamination for each scenario was calculated and compared using one-way analysis of variance. P-values of < 0.05 implied significance. Results Mean cyclophosphamide contamination on trays used to count one, three, and six cyclophosphamide prescriptions was 0.51 ± 0.10 (p=0.0003), 1.02 ± 0.10 (p < 0.0001), and 1.82 ± 0.10 ng/cm 2 (p < 0.0001), respectively. Control trays did not show detectable cyclophosphamide contamination. Increasing the number of prescriptions dispensed from 1 to 3, 1 to 6, and 3 to 6 counts increased contamination by 0.51 ± 0.15 (p = 0.0140), 1.31 + 0.15 (p < 0.0001), and 0.80 ± 0.15 ng/cm 2 (p = 0.0004), respectively. Conclusion Dispensing one or more prescriptions of 40 cyclophosphamide 50 mg tablets contaminates pharmacy counting tools, and an increased number of prescriptions dispensed correlates with increased level of contamination. Counting out three or more

  13. Mass spectral analysis of long chain alkyl aromatic compounds synthesized from alpha-olefin alkylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, M.T.; Hudson, J.D.

    1994-12-31

    Long chain alkyl aromatic compounds are important petrochemicals with many applications. They are generally synthesized by alkylating the corresponding aromatic nucleus. In this report, the authors will describe the mass spectral fragmentation of alkylphenols and alkylsalicylates.

  14. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under this...

  15. Investigation of J-shaped dose-responses induced by exposure to the alkylating agent N-methyl-N-nitrosourea.

    PubMed

    Chapman, Katherine E; Hoffmann, George R; Doak, Shareen H; Jenkins, Gareth J S

    2017-07-01

    Hormesis is defined as a biphasic dose-response where biological effects of low doses of a stressor demonstrate the opposite effect to high-dose effects of the same stressor. Hormetic, or J-shaped, dose-response relationships are relatively rarely observed in toxicology, resulting in a limited understanding and even some skepticism of the concept. Low dose-response studies for genotoxicity endpoints have been performed at Swansea University for over a decade. However, no statistically significant decreases below control genotoxicity levels have been detected until recently. A hormetic-style dose-response following a 24h exposure to the alkylating agent N-methyl-N-nitrosourea (MNU) was observed in a previous study for HPRT mutagenesis in the human lymphoblastoid cell line AHH-1. A second recent study demonstrated a J-shaped dose-response for the induction of micronuclei by MNU in a 24h treatment in a similar test system. Following mechanistic investigations, it was hypothesized that p53 may be responsible for the observed hormetic phenomenon. As genotoxic carcinogens are a major causative factor of many cancers, consideration of hormesis in carcinogenesis could be important in safety assessment. The data examined here offer possible insights into hormesis, including its estimated prevalence, underlying mechanisms and lack of generalizability. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Chemotherapy Agents Alter Plasma Lipids in Breast Cancer Patients and Show Differential Effects on Lipid Metabolism Genes in Liver Cells.

    PubMed

    Sharma, Monika; Tuaine, Jo; McLaren, Blair; Waters, Debra L; Black, Katherine; Jones, Lynnette M; McCormick, Sally P A

    2016-01-01

    Cardiovascular complications have emerged as a major concern for cancer patients. Many chemotherapy agents are cardiotoxic and some appear to also alter lipid profiles, although the mechanism for this is unknown. We studied plasma lipid levels in 12 breast cancer patients throughout their chemotherapy. Patients received either four cycles of doxorubicin and cyclophosphamide followed by weekly paclitaxel or three cycles of epirubicin, cyclophosphamide and 5'-fluorouracil followed by three cycles of docetaxel. Patients demonstrated a significant reduction (0.32 mmol/L) in high density lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (apoA1) levels (0.18 g/L) and an elevation in apolipoprotein B (apoB) levels (0.15 g/L) after treatment. Investigation of the individual chemotherapy agents for their effect on genes involved in lipoprotein metabolism in liver cells showed that doxorubicin decreased ATP binding cassette transporter A1 (ABCA1) via a downregulation of the peroxisomal proliferator activated receptor γ (PPARγ) and liver X receptor α (LXRα) transcription factors. In contrast, ABCA1 levels were not affected by cyclophosphamide or paclitaxel. Likewise, apoA1 levels were reduced by doxorubicin and remained unaffected by cyclophosphamide and paclitaxel. Doxorubicin and paclitaxel both increased apoB protein levels and paclitaxel also decreased low density lipoprotein receptor (LDLR) protein levels. These findings correlate with the observed reduction in HDL-C and apoA1 and increase in apoB levels seen in these patients. The unfavourable lipid profiles produced by some chemotherapy agents may be detrimental in the longer term to cancer patients, especially those already at risk of cardiovascular disease (CVD). This knowledge may be useful in tailoring effective follow-up care plans for cancer survivors.

  17. Stereocontrolled Alkylative Construction of Quaternary Carbon Centers

    PubMed Central

    Kummer, David A.; Chain, William J.; Morales, Marvin R.; Quiroga, Olga; Myers, Andrew G.

    2009-01-01

    Protocols for the stereodefined formation of α,α-disubstituted enolates of pseudoephedrine amides are presented followed by the implementation of these in diastereoselective alkylation reactions. Direct alkylation of α,α-disubstituted pseudoephedrine amide substrates is demonstrated to be both efficient and diastereoselective across a range of substrates, as exemplified by alkylation of the diastereomeric pseudoephedrine α-methylbutyramides, where both substrates are found to undergo stereospecific replacement of the α-C-H bond with α-C-alkyl, with retention of stereochemistry. This is shown to arise by sequential stereospecific enolization and alkylation reactions, with the alkyl halide attacking a common π-face of the E- and Z-enolates, proposed to be that opposite the pseudoephedrine alkoxide side-chain. Pseudoephedrine α-phenylbutyramides are found to undergo highly stereoselective but not stereospecific α-alkylation reactions, which evidence suggests is due to facile enolate isomerization. Also, we show that α, α-disubstituted pseudoephedrine amide enolates can be generated in a highly stereocontrolled fashion by conjugate addition of an alkyllithium reagent to the s-cis-conformer of an α-alkyl-α,β-unsaturated pseudoephedrine amide, providing α,α-disubstituted enolate substrates that undergo alkylation in the same sense as those formed by direct deprotonation. Methods are presented to transform the α-quaternary pseudoephedrine amide products into optically active carboxylic acids, ketones, primary alcohols, and aldehydes. PMID:18788739

  18. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds.

    PubMed

    Witte, Anne-Barbara; Anestål, Karin; Jerremalm, Elin; Ehrsson, Hans; Arnér, Elias S J

    2005-09-01

    Mammalian thioredoxin reductase (TrxR) is important for cell proliferation, antioxidant defense, and redox signaling. Together with glutathione reductase (GR) it is the main enzyme providing reducing equivalents to many cellular processes. GR and TrxR are flavoproteins of the same enzyme family, but only the latter is a selenoprotein. With the active site containing selenocysteine, TrxR may catalyze reduction of a wide range of substrates, but can at the same time easily be targeted by electrophilic compounds due to the extraordinarily high reactivity of a selenolate moiety. Here we addressed the inhibition of the enzyme by major anticancer alkylating agents and platinum-containing compounds and we compared it to that of GR. We confirmed prior studies suggesting that the nitrosourea carmustine can inhibit both GR and TrxR. We next found, however, that nitrogen mustards (chlorambucil and melphalan) and alkyl sulfonates (busulfan) efficiently inhibited TrxR while these compounds, surprisingly, did not inhibit GR. Inhibitions were concentration and time dependent and apparently irreversible. Anticancer anthracyclines (daunorubicin and doxorubicin) were, in contrast to the alkylating agents, not inhibitors but poor substrates of TrxR. We also found that TrxR, but not GR, was efficiently inhibited by both cisplatin, its monohydrated complex, and oxaliplatin. Carboplatin, in contrast, could not inhibit any of the two enzymes. These findings lead us to conclude that representative compounds of the major classes of clinically used anticancer alkylating agents and most platinum compounds may easily target TrxR, but not GR. The TrxR inhibition should thereby be considered as a factor that may contribute to the cytotoxicity seen upon clinical use of these drugs.

  19. Methotrexate versus cyclophosphamide for remission maintenance in ANCA-associated vasculitis: A randomised trial.

    PubMed

    Maritati, Federica; Alberici, Federico; Oliva, Elena; Urban, Maria L; Palmisano, Alessandra; Santarsia, Francesca; Andrulli, Simeone; Pavone, Laura; Pesci, Alberto; Grasselli, Chiara; Santi, Rosaria; Tumiati, Bruno; Manenti, Lucio; Buzio, Carlo; Vaglio, Augusto

    2017-01-01

    The treatment of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is based on remission-induction and remission-maintenance. Methotrexate is a widely used immunosuppressant but only a few studies explored its role for maintenance in AAV. This trial investigated the efficacy and safety of methotrexate as maintenance therapy for AAV. In this single-centre, open-label, randomised trial we compared methotrexate and cyclophosphamide for maintenance in AAV. We enrolled patients with granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA), the latter with poor-prognosis factors and/or peripheral neuropathy. Remission was induced with cyclophosphamide. At remission, the patients were randomised to receive methotrexate or to continue with cyclophosphamide for 12 months; after treatment, they were followed for another 12 months. The primary end-point was relapse; secondary end-points included renal outcomes and treatment-related toxicity. Of the 94 enrolled patients, 23 were excluded during remission-induction or did not achieve remission; the remaining 71 were randomised to cyclophosphamide (n = 33) or methotrexate (n = 38). Relapse frequencies at months 12 and 24 after randomisation were not different between the two groups (p = 1.00 and 1.00). Relapse-free survival was also comparable (log-rank test p = 0.99). No differences in relapses were detected between the two treatments when GPA+MPA and EGPA were analysed separately. There were no differences in eGFR at months 12 and 24; proteinuria declined significantly (from diagnosis to month 24) only in the cyclophosphamide group (p = 0.0007). No significant differences in adverse event frequencies were observed. MTX may be effective and safe for remission-maintenance in AAV. clinicaltrials.gov NCT00751517.

  20. Effect of Anti-Parasite Chemotherapeutic Agents on Immune Reactions.

    DTIC Science & Technology

    1980-08-01

    observations). Similar effects of a number of other alkylating agents have been noticed (9, and personal observa- tions). Similarly, corticosteroids inhibit...Wellham, L. L., and Sigel, M. M. Ef- fect of anti-cancer chemotherapeutic agents on immune reactions of mice. I. Comparison of two nitrosoureas . J...7 D-Ri138 852 EFFECT OF ANTI-PARASITE CHEMOTHERAPEUTIC AGENTS ON i/i IMMUNE REACTIONS(U) SOUTH CAROLINA UNIV COLUMBIA DEPT OF MICROBIOLOGY AND

  1. Environmental Impact of Alkyl Lead(IV) Derivatives: Perspective after Their Phase-out.

    PubMed

    Filella, Montserrat; Bonet, Josep

    2017-04-10

    The use of alkyl lead derivatives as antiknock agents in gasoline can be considered as one of the main pollution disasters of the 20th century because of both the global character of the pollution emitted and the seriousness of the impact on human health. Alkyl lead derivatives in themselves cannot be considered to be persistent pollutants because they readily degrade either before being released from the tailpipes or soon afterwards in the atmosphere. However, the inorganic lead they produced has been deposited in soils all over the planet, largely, but not exclusively in urban areas and along motorways, since the direct emission of lead into the atmosphere favored its dispersal over great distances: The signal of the massive use of alkyl lead derivatives has been found all over the world, including in remote sites such as polar areas. The short residence time of lead in the atmosphere implies that this compartment is highly responsive to changes in emissions. This was demonstrated when leaded gasoline was phased-out and is in striking contrast to the very long permanence of inorganic lead in soils, where resuspension is a permanent source of toxic lead.

  2. Cimetidine enhancement of cyclophosphamide antitumour activity.

    PubMed Central

    Dorr, R. T.; Alberts, D. S.

    1982-01-01

    Male DBA2 mice were given 10(6) P-388 leukaemic cells i.p. and cimetidine (CMT) at 100 mg/kg 1 day for 10 days, or as a single 100 mg/kg injection 30 min before cyclophosphamide (CTX). CMT significantly prolonged the survival of groups of mice receiving 50, 100 and 200 mg/kg of CTX 3 days after tumour inoculation. Median survival increased by 5.5 days (P less than 0.05), 10 days (P less than 0.05) and 13 days (P less than 0.05) respectively. The addition of CMT had the effect of roughly doubling the CTX dose, without increasing the lethality. CMT produced the only long-term survival seen in the study (1-2/10) CMT alone had no apparent antitumour activity. CMT significantly prolonged mean pentobarbital sleep to 28.6-60 min vs only 10 min for phenobarbital treated mice. Both CMT regimens increased the plasma concentration time products for CTX-induced metabolites (NBP) by about 1.3 fold (in contrast to a 33% reduction with phenobarbital). On average the single-dose CMT regimen produced the greatest effect on survival, on pentobarbital sleep duration and on total NBP reactive species. Probable mechanisms for the CMT-CTX interaction include competitive microsomal enzyme inhibition and/or acutely depressed hepatic blood flow. Caution should be used in combining CMT with full doses of CTX and any other highly metabolized antineoplastic agents in man. PMID:7059463

  3. Chain length effects on the vibrational structure and molecular interactions in the liquid normal alkyl alcohols

    NASA Astrophysics Data System (ADS)

    Kiefer, Johannes; Wagenfeld, Sabine; Kerlé, Daniela

    2018-01-01

    Alkyl alcohols are widely used in academia, industry, and our everyday lives, e.g. as cleaning agents and solvents. Vibrational spectroscopy is commonly used to identify and quantify these compounds, but also to study their structure and behavior. However, a comprehensive investigation and comparison of all normal alkanols that are liquid at room temperature has not been performed, surprisingly. This study aims at bridging this gap with a combined experimental and computational effort. For this purpose, the alkyl alcohols from methanol to undecan-1-ol have been analyzed using infrared and Raman spectroscopy. A detailed assignment of the individual peaks is presented and the influence of the alkyl chain length on the hydrogen bonding network is discussed. A 2D vibrational mapping allows a straightforward visualization of the effects. The conclusions drawn from the experimental data are backed up with results from Monte Carlo simulations using the simulation package Cassandra.

  4. Removing polysaccharides-and saccharides-related coloring impurities in alkyl polyglycosides by bleaching with the H2O2/TAED/NaHCO3 system.

    PubMed

    Yanmei, Liu; Jinliang, Tao; Jiao, Sun; Wenyi, Chen

    2014-11-04

    The effect of H2O2/TAED/NaHCO3 system, namely NaHCO3 as alkaline agent with the (tetra acetyl ethylene diamine (TAED)) TAED-activated peroxide system, bleaching of alkyl polyglycosides solution was studied by spectrophotometry. The results showed that the optimal bleaching conditions about H2O2/TAED/NaHCO3 system bleaching of alkyl polyglycosides solution were as follows: molar ratio of TAED to H2O2 was 0.06, addition of H2O2 was 8.6%, addition of NaHCO3 was 3.2%, bleaching temperature of 50-65 °C, addition of MgO was 0.13%, and bleaching time was 8h. If too much amount of NaHCO3 was added to the system and maintained alkaline pH, the bleaching effect would be greatly reduced. Fixing molar ratio of TAED to H2O2 and increasing the amount of H2O2 were beneficial to improve the whiteness of alkyl polyglycosides, but adding too much amount of H2O2 would reduce the transparency. In the TAED-activated peroxide system, NaHCO3 as alkaline agent and buffer agent, could overcome the disadvantage of producing black precipitates when NaOH as alkaline agent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Theoretical DFT, vibrational and NMR studies of benzimidazole and alkyl derivatives

    NASA Astrophysics Data System (ADS)

    Infante-Castillo, Ricardo; Rivera-Montalvo, Luis A.; Hernández-Rivera, Samuel P.

    2008-04-01

    Benzimidazoles are heterocyclic compounds that have awaked great interest during the last few years because of their proven biological activity as antiviral, antimicrobial, and antitumoral agents. For this reason, the development of a systematic FT-IR, FT-Raman and NMR study of 1-substituted compounds in 2-methylbenzimidazole constitutes a significant tool in understanding the molecular dynamics and the structural parameters that govern their behavior. Two new 1-alkyl-2-methylbenzimidazoles compounds were synthesized from reaction of 2-methylbenzimidazole with primary and secondary alkyl halides using a strong base as a catalyst. These compounds were purified and characterized by elemental analysis and different spectroscopic methods. The comparative analysis of vibrational modes of benzimidazole and its alkyl derivatives show that regions of absorption are very similar in all of them. However, changes are produced at low frequencies specifically in the C-H out of plane deformations, ring breathing and ring skeletal vibrations. The ring out-of plane bending modes shift by 10-15 cm -1 in some cases as results of alkyl substitution. The theoretical calculated spectra, using Density Functional Theory (DFT) approximation, and experimental results were consistent with each other. The GIAO method was used to calculate absolute shieldings, which agree consistently with those measured by 1H and 13C NMR. The consistency and efficiency of the GIAO 13C and 1H NMR calculations were thoroughly checked by the analysis of statistical parameters concerning computed and experimental 13C and 1H NMR chemical shift values of the studied compounds.

  6. Long alkyl-chain imidazolium ionic liquids: Antibiofilm activity against phototrophic biofilms.

    PubMed

    Reddy, G Kiran Kumar; Nancharaiah, Y V; Venugopalan, V P

    2017-07-01

    Biofilm formation is problematic and hence undesirable in medical and industrial settings. In addition to bacteria, phototrophic organisms are an integral component of biofilms that develop on surfaces immersed in natural waters. 1-Alkyl-3-methyl imidazolium ionic liquids (IL) with varying alkyl chain length were evaluated for their influence on the formation of monospecies (Navicula sp.) and multispecies biofilms under phototrophic conditions. An IL with a long alkyl side chain, 1-hexadecyl-3-methylimidaazolium chloride ([C 16 (MIM)][Cl]) retarded growth, adhesion and biofilm formation of Navicula sp. at concentrations as low as 5μM. Interestingly, [C 16 (MIM)][Cl] was very effective in preventing multispecies phototrophic biofilms on fibre reinforced plastic surfaces immersed in natural waters (fresh and seawater). SYTOX ® Green staining and chlorophyll leakage assay confirmed that the biocidal activity of the IL was exerted through cell membrane disruption. The data show that [C 16 (MIM)][Cl] is a potent inhibitor of phototrophic biofilms at micromolar concentrations and a promising agent for biofilm control in re-circulating cooling water systems. This is the first report that ionic liquids inhibit biofilm formation by phototrophic organisms which are important members of biofilms in streams and cooling towers. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cyclophosphamide, thalidomide, and dexamethasone as induction therapy for newly diagnosed multiple myeloma patients destined for autologous stem-cell transplantation: MRC Myeloma IX randomized trial results

    PubMed Central

    Morgan, Gareth J.; Davies, Faith E.; Gregory, Walter M.; Bell, Sue E.; Szubert, Alexander J.; Navarro Coy, Nuria; Cook, Gordon; Feyler, Sylvia; Johnson, Peter R.E.; Rudin, Claudius; Drayson, Mark T.; Owen, Roger G.; Ross, Fiona M.; Russell, Nigel H.; Jackson, Graham H.; Child, J. Anthony

    2012-01-01

    Background Thalidomide is active in multiple myeloma and is associated with minimal myelosuppression, making it a good candidate for induction therapy prior to high-dose therapy with autologous stem-cell transplantation. Design and Methods Oral cyclophosphamide, thalidomide, and dexamethasone was compared with infusional cyclophosphamide, vincristine, doxorubicin, and dexamethasone in patients with newly diagnosed multiple myeloma. Results The post-induction overall response rate (≥ partial response) for the intent-to-treat population was significantly higher with cyclophosphamide-thalidomide-dexamethasone (n=555) versus cyclophosphamide-vincristine-doxorubicin-dexamethasone (n=556); 82.5% versus 71.2%; odds ratio 1.91; 95% confidence interval 1.44–2.55; P<0.0001. The complete response rates were 13.0% with cyclophosphamide-thalidomide-dexamethasone and 8.1% with cyclophos-phamide-vincristine-doxorubicin-dexamethasone (P=0.0083), with this differential response being maintained in patients who received autologous stem-cell transplantation (post-transplant complete response 50.0% versus 37.2%, respectively; P=0.00052). Cyclophosphamide-thalidomide-dexamethasone was non-inferior to cyclophosphamide-vincristine-doxorubicin-dexamethasone for progression-free and overall survival, and there was a trend toward a late survival benefit with cyclophosphamide-thalidomide-dexamethasone in responders. A trend toward an overall survival advantage for cyclophosphamide-thalidomide-dexamethasone over cyclophosphamide-vincristine-doxorubicin-dexamethasone was also observed in a subgroup of patients with favorable interphase fluorescence in situ hybridization. Compared with cyclophosphamide-vincristine-doxorubicin-dexamethasone, cyclophosphamide-thalidomide-dexamethasone was associated with more constipation and somnolence, but a lower incidence of cytopenias. Conclusions The cyclophosphamide-thalidomide-dexamethasone regimen showed improved response rates and was not inferior

  8. Immunoenhancement of Edible Fungal Polysaccharides (Lentinan, Tremellan, and Pachymaran) on Cyclophosphamide-Induced Immunosuppression in Mouse Model

    PubMed Central

    Zhang, Qian; Cong, Renhuai; Hu, Minghua; Yang, Xiangliang

    2017-01-01

    Fungal polysaccharides display a variety of important biological activities, including anti-inflammatory, antitumor, and immune-stimulating activities. The aim of present study was to investigate the immunomodulatory effect of fungal polysaccharides on cyclophosphamide-induced immunosuppression in mice. Mice were pretreated orally with lentinan, tremellan, pachymaran, or a mixture of the three, respectively. The results showed that pretreatments with polysaccharides significantly increased the thymus index in cyclophosphamide-induced immunosuppression mice. The level of the cytokine IL-10 in sera of cyclophosphamide-induced mice was decreased after pretreatments of polysaccharides. Flow cytometry results showed that pretreatments with polysaccharides enhanced the phagocytosis of peritoneal macrophages in mice. The increased levels of serum antibody IgG and IgM were observed in the groups pretreated with polysaccharides. Our work demonstrated that the treatment of polysaccharides elicited strong immune activity and a protective effect against cyclophosphamide-induced immunosuppression. PMID:29358974

  9. Antigenotoxic effects of Citrus aurentium L. fruit peel oil on mutagenicity of two alkylating agents and two metals in the Drosophila wing spot test.

    PubMed

    Demir, Eşref; Kocaoğlu, Serap; Cetin, Huseyin; Kaya, Bülent

    2009-07-01

    Antigenotoxic effects of Citrus aurentium L. (Rutaceae) fruit peel oil (CPO) in combination with mutagenic metals and alkylating agents were studied using the wing spot test of D. melanogaster. The four reference mutagens, potassium dichromate (K2Cr2O7), cobalt chloride (CoCl2), ethylmethanesulfonate (EMS), and N-ethyl-N-nitrosourea (ENU) were clearly genotoxic. CPO alone at doses from 0.1 to 0.5% in Tween 80 was not mutagenic and did not enhance the mutagenic effect of the reference mutagens. However, antigenotoxic effects of CPO were clearly demonstrated in chronic cotreatments with mutagens and oil, by a significant decrease in wing spots induced by all four mutagens. The D. melanogaster wing spot test was found to be a suitable assay for detecting antigenotoxic effects in vivo. Copyright 2009 Wiley-Liss, Inc.

  10. Effects of polysaccharide peptide (PSP) from Coriolus versicolor on the pharmacokinetics of cyclophosphamide in the rat and cytotoxicity in HepG2 cells.

    PubMed

    Chan, Siu-Lung; Yeung, John H K

    2006-05-01

    Polysaccharide peptide (PSP), isolated from Coriolus versicolor COV-1, has been shown to restore the immunological effects against cyclophosphamide-induced immuno-suppression, although the mechanism(s) involved remain uncertain. This study investigated the PSP-cyclophosphamide interaction by studying the effects of PSP on the pharmacokinetic of cyclophosphamide in the rat and the effect of PSP on the cytotoxic effects of cyclophosphamide on a cancer cell line (HepG2 cells). In the pharmacokinetic studies in the rat, acute pre-treatment of PSP (4 micromol/kg/day, i.p.) decreased the clearance (CL) of cyclophosphamide by 31%, with a concomitant increase in the area under concentration-time curve (AUC) by 44%, and prolongation of the plasma half-life (T(1/2)) by 43%. Sub-chronic pre-treatment of PSP (2 micromol/kg/day, i.p., 3 days) decreased the CL of cyclophosphamide by 33%, with a concomitant increase in the AUC by 50%, and prolongation of the plasma T(1/2) by 34%. In cytotoxicity studies using HepG2 cells, non-toxic dose of PSP (1-10 microM) enhanced the cytotoxicity of cyclophosphamide. PSP at 10 microM further decreased HepG2 cell viability by 22% compared to when cyclophosphamide was present alone. In summary, PSP enhanced the cytotoxic effect of cyclophosphamide on a cancer cell line in vitro and altered the pharmacokinetics of cyclophosphamide in vivo in the rat. Both of these effects may be beneficial in the use of PSP as an adjunct to cyclophosphamide treatment.

  11. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-04

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride.

  12. Metastatic Thymoma-Associated Myasthenia Gravis: Favorable Response to Steroid Pulse Therapy Plus Immunosuppressive Agent

    PubMed Central

    Qi, Guoyan; Liu, Peng; Dong, Huimin; Gu, Shanshan; Yang, Hongxia; Xue, Yinping

    2017-01-01

    Background Our study retrospectively reviewed the therapeutic effect of steroid pulse therapy in combination with an immunosuppressive agent in myasthenia gravis (MG) patients with metastatic thymoma. Material/Methods MG patients with metastatic thymoma that underwent methylprednisolone pulse therapy plus cyclophosphamide were retrospectively analyzed. Patients initially received methylprednisolone pulse therapy followed by oral methylprednisolone. Cyclophosphamide was prescribed simultaneously at the beginning of treatment. Clinical outcomes, including therapeutic efficacy and adverse effects of MG and thymoma, were assessed. Results Twelve patients were recruited. According to histological classification, 4 cases were type B2 thymoma, 3 were type B3, 2 were type B1, and 1 was type AB. After combined treatment for 15 days, both the thymoma and MG responded dramatically to high-dose methylprednisolone plus cyclophosphamide. The symptoms of MG were improved in all patients, with marked improvement in 6 patients and basic remission in 4. Interestingly, complete remission of thymoma was achieved in 5 patients and partial remission in 7 patients. Myasthenic crisis was observed in 1 patient and was relieved after intubation and ventilation. Adverse reactions were observed in 7 patients (58.3%), most commonly infections, and all were resolved without discontinuation of therapy. During the follow-up, all patients were stabilized except for 1 with pleural metastasis who received further treatment and another 1 who died from myasthenic crisis. Conclusions The present study in a series of MG patients with metastatic thymoma indicated that steroid pulse therapy in combination with immunosuppressive agents was an effective and well-tolerated for treatment of both metastatic thymoma and MG. Glucocorticoid pulse therapy plus immunosuppressive agents should therefore be considered in MG patients with metastatic thymoma. PMID:28278141

  13. Iridium-catalyzed direct synthesis of tryptamine derivatives from indoles: exploiting n-protected β-amino alcohols as alkylating agents.

    PubMed

    Bartolucci, Silvia; Mari, Michele; Bedini, Annalida; Piersanti, Giovanni; Spadoni, Gilberto

    2015-03-20

    The selective C3-alkylation of indoles with N-protected ethanolamines involving the "borrowing hydrogen" strategy is described. This method provides convenient and sustainable access to several tryptamine derivatives.

  14. Inducible repair of alkylated DNA in microorganisms.

    PubMed

    Mielecki, Damian; Wrzesiński, Michał; Grzesiuk, Elżbieta

    2015-01-01

    Alkylating agents, which are widespread in the environment, also occur endogenously as primary and secondary metabolites. Such compounds have intrinsically extremely cytotoxic and frequently mutagenic effects, to which organisms have developed resistance by evolving multiple repair mechanisms to protect cellular DNA. One such defense against alkylation lesions is an inducible Adaptive (Ada) response. In Escherichia coli, the Ada response enhances cell resistance by the biosynthesis of four proteins: Ada, AlkA, AlkB, and AidB. The glycosidic bonds of the most cytotoxic lesion, N3-methyladenine (3meA), together with N3-methylguanine (3meG), O(2)-methylthymine (O(2)-meT), and O(2)-methylcytosine (O(2)-meC), are cleaved by AlkA DNA glycosylase. Lesions such as N1-methyladenine (1meA) and N3-methylcytosine (3meC) are removed from DNA and RNA by AlkB dioxygenase. Cytotoxic and mutagenic O(6)-methylguanine (O(6)meG) is repaired by Ada DNA methyltransferase, which transfers the methyl group onto its own cysteine residue from the methylated oxygen. We review (i) the individual Ada proteins Ada, AlkA, AlkB, AidB, and COG3826, with emphasis on the ubiquitous and versatile AlkB and its prokaryotic and eukaryotic homologs; (ii) the organization of the Ada regulon in several bacterial species; (iii) the mechanisms underlying activation of Ada transcription. In vivo and in silico analysis of various microorganisms shows the widespread existence and versatile organization of Ada regulon genes, including not only ada, alkA, alkB, and aidB but also COG3826, alkD, and other genes whose roles in repair of alkylated DNA remain to be elucidated. This review explores the comparative organization of Ada response and protein functions among bacterial species beyond the classical E. coli model. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Randomized study of whole-abdomen irradiation versus pelvic irradiation plus cyclophosphamide in treatment of early ovarian cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sell, A.; Bertelsen, K.; Andersen, J.E.

    From 1 September 1981 to 1 January 1987, 118 patients with FIGO Stage IB, IC, IIA, IIB, and IIC epithelial ovarian cancer were randomized to abdominal irradiation or pelvic irradiation + cyclophosphamide. There was no difference between the regimens with respect to recurrence-free survival (55%) and 4-year overall survival (63%). At routine second-look laparotomy, 16% of patients without clinical detectable tumor showed recurrence. Twenty-five percent of the patients treated with pelvic irradiation + cyclophosphamide had hemorrhagic cystitis, probably caused by radiation damage and cyclophosphamide cystitis. Eight percent had late gastrointestinal symptoms requiring surgery.

  16. Palladium-Catalyzed Borylation of Primary Alkyl Bromides

    PubMed Central

    Joshi-Pangu, Amruta; Ma, Xinghua; Diane, Mohamed; Iqbal, Sidra; Kribs, Robert J.; Huang, Richard; Wang, Chao-Yuan

    2012-01-01

    A mild Pd-catalyzed process for the borylation of alkyl bromides has been developed using bis(pinacolato)diboron as a boron source. This process accommodates the use of a wide range of functional groups on the alkyl bromide substrate. Primary bromides react with complete selectivity in the presence of a secondary bromide. The generality of this approach is demonstrated by its extension to the use of alkyl iodides and alkyl tosylates, as well as borylation reactions employing bis(neopentyl glycolato)diboron as the boron source. PMID:22774861

  17. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp; Haniu, Hisao; Matsuda, Yoshikazu

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases,more » including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.« less

  18. Cadmium chloride, benzo[a]pyrene and cyclophosphamide tested in the in vitro mammalian cell micronucleus test (MNvit) in the human lymphoblastoid cell line TK6 at Covance laboratories, Harrogate UK in support of OECD draft Test Guideline 487.

    PubMed

    Fowler, Paul; Whitwell, James; Jeffrey, Laura; Young, Jamie; Smith, Katie; Kirkland, David

    2010-10-29

    The following genotoxic chemicals were tested in the in vitro micronucleus assay, at Covance Laboratories, Harrogate, UK in the human lymphoblastoid cell line TK6. Cadmium chloride (an inorganic carcinogen), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation) and cyclophosphamide (an alkylating agent requiring metabolic activation) were treated with and without cytokinesis block (by addition of cytochalasin B). This work formed part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 for the in vitro micronucleus test. The toxicity measures used, capable of detecting both cytostasis and cell death, were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index or cytokinesis blocked proliferation index in the presence of cytokinesis block. All of the chemicals tested gave significant increases in the percentage of micronucleated cells with and without cytokinesis block at concentrations giving approximately 60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcomes from this series of tests support the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in the in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Mycothiol-Deficient Mycobacterium smegmatis Mutants Are Hypersensitive to Alkylating Agents, Free Radicals, and Antibiotics

    PubMed Central

    Rawat, Mamta; Newton, Gerald L.; Ko, Mary; Martinez, Gladys J.; Fahey, Robert C.; Av-Gay, Yossef

    2002-01-01

    Mycothiol (MSH; 1d-myo-inosityl 2-[N-acetyl-l-cysteinyl]amido-2-deoxy-α-d-glucopyranoside) is the major low-molecular-weight thiol produced by mycobacteria. Mutants of Mycobacterium smegmatis mc2155 deficient in MSH production were produced by chemical mutagenesis as well as by transposon mutagenesis. One chemical mutant (mutant I64) and two transposon mutants (mutants Tn1 and Tn2) stably deficient in MSH production were isolated by screening for reduced levels of MSH content. The MSH contents of transposon mutants Tn1 and Tn2 were found to be less than 0.1% that of the parent strain, and the MSH content of I64 was found to be 1 to 5% that of the parent strain. All three strains accumulated 1d-myo-inosityl 2-deoxy-α-d-glucopyranoside to levels 20- to 25-fold the level found in the parent strain. The cysteine:1d-myo-inosityl 2-amino-2-deoxy-α-d-glucopyranoside ligase (MshC) activities of the three mutant strains were ≤2% that of the parent strain. Phenotypic analysis revealed that these MSH-deficient mutants possess increased susceptibilities to free radicals and alkylating agents and to a wide range of antibiotics including erythromycin, azithromycin, vancomycin, penicillin G, rifamycin, and rifampin. Conversely, the mutants possess at least 200-fold higher levels of resistance to isoniazid than the wild type. We mapped the mutation in the chemical mutant by sequencing the mshC gene and showed that a single amino acid substitution (L205P) is responsible for reduced MSH production and its associated phenotype. Our results demonstrate that there is a direct correlation between MSH depletion and enhanced sensitivity to toxins and antibiotics. PMID:12384335

  20. Pseudomonas putida AlkA and AlkB Proteins Comprise Different Defense Systems for the Repair of Alkylation Damage to DNA – In Vivo, In Vitro, and In Silico Studies

    PubMed Central

    Mielecki, Damian; Saumaa, Signe; Wrzesiński, Michał; Maciejewska, Agnieszka M.; Żuchniewicz, Karolina; Sikora, Anna; Piwowarski, Jan; Nieminuszczy, Jadwiga; Kivisaar, Maia; Grzesiuk, Elżbieta

    2013-01-01

    Alkylating agents introduce cytotoxic and/or mutagenic lesions to DNA bases leading to induction of adaptive (Ada) response, a mechanism protecting cells against deleterious effects of environmental chemicals. In Escherichia coli, the Ada response involves expression of four genes: ada, alkA, alkB, and aidB. In Pseudomonas putida, the organization of Ada regulon is different, raising questions regarding regulation of Ada gene expression. The aim of the presented studies was to analyze the role of AlkA glycosylase and AlkB dioxygenase in protecting P. putida cells against damage to DNA caused by alkylating agents. The results of bioinformatic analysis, of survival and mutagenesis of methyl methanesulfonate (MMS) or N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) treated P. putida mutants in ada, alkA and alkB genes as well as assay of promoter activity revealed diverse roles of Ada, AlkA and AlkB proteins in protecting cellular DNA against alkylating agents. We found AlkA protein crucial to abolish the cytotoxic but not the mutagenic effects of alkylans since: (i) the mutation in the alkA gene was the most deleterious for MMS/MNNG treated P. putida cells, (ii) the activity of the alkA promoter was Ada-dependent and the highest among the tested genes. P. putida AlkB (PpAlkB), characterized by optimal conditions for in vitro repair of specific substrates, complementation assay, and M13/MS2 survival test, allowed to establish conservation of enzymatic function of P. putida and E. coli AlkB protein. We found that the organization of P. putida Ada regulon differs from that of E. coli. AlkA protein induced within the Ada response is crucial for protecting P. putida against cytotoxicity, whereas Ada prevents the mutagenic action of alkylating agents. In contrast to E. coli AlkB (EcAlkB), PpAlkB remains beyond the Ada regulon and is expressed constitutively. It probably creates a backup system that protects P. putida strains defective in other DNA repair systems against

  1. [Multiple organ failure presumably due to alkylating agents used as preconditioning drugs for autologous peripheral blood stem cell transplantation in an acute promyelocytic leukemia].

    PubMed

    Ida, Tori; Hashimoto, Shigeo; Suzuki, Nobuaki; Ebe, Yusuke; Yano, Toshio; Sato, Naoko; Koike, Tadashi

    2016-01-01

    A 52-year-old male was diagnosed as having acute promyelocytic leukemia (APL) in 2006. He received induction chemotherapy including all-trans retinoic acid and initially achieved a complete remission (CR). After several courses of consolidation therapy combining anthracyclines and cytarabine, he maintained CR. In 2009, an APL relapse was diagnosed, and he was treated with arsenic trioxide. Since he achieved a second CR, he underwent autologous peripheral blood stem cell transplantation (auto-PBSCT) with a conditioning regimen consisting of busulfan and melphalan. At four months after auto-PBSCT, he developed a pneumothorax and acute respiratory failure. He died despite intensive therapy. Autopsy findings included various atypical and apoptotic cells in his pulmonary tissue. These changes were confirmed in multiple organs throughout the body, suggesting them to be drug-induced. The findings in this case suggested multiple organ failure due to alkylating agents.

  2. Cyclophosphamide conditioning in patients with severe aplastic anaemia given unrelated marrow transplantation: a phase 1-2 dose de-escalation study.

    PubMed

    Anderlini, Paolo; Wu, Juan; Gersten, Iris; Ewell, Marian; Tolar, Jakob; Antin, Joseph H; Adams, Roberta; Arai, Sally; Eames, Gretchen; Horwitz, Mitchell E; McCarty, John; Nakamura, Ryotaro; Pulsipher, Michael A; Rowley, Scott; Leifer, Eric; Carter, Shelly L; DiFronzo, Nancy L; Horowitz, Mary M; Confer, Dennis; Deeg, H Joachim; Eapen, Mary

    2015-09-01

    The optimum preparative regimen for unrelated donor marrow transplantation in patients with severe aplastic anaemia remains to be established. We investigated whether the combination of fludarabine, anti-thymocyte globulin, and total body irradiation (TBI) would enable reduction of the cyclophosphamide dose to less than 200 mg/kg while maintaining engraftment and having a survival similar to or better than that with standard regimens using a cyclophosphamide dose of 200 mg/kg (known to be associated with significant organ toxicity) for unrelated donor transplantation for severe aplastic anaemia. We have previously shown that cyclophosphamide at 150 mg/kg resulted in excess toxicity and its omission (0 mg/kg) resulted in unacceptable graft failure (three of three patients had secondary graft failure). Here we report results for the 50 mg/kg and 100 mg/kg cohorts. In a multicentre phase 1-2 study, patients (aged ≤65 years) with severe aplastic anaemia, adequate organ function, and an unrelated adult marrow donor HLA matched at the allele level for HLA A, B, C, and DRB1 or mismatched at a single HLA locus received bone marrow grafts from unrelated donors. All patients received anti-thymocyte globulin (rabbit derived 3 mg/kg per day, intravenously, on days -4 to -2, or equine derived 30 mg/kg per day, intravenously, on days -4 to -2), fludarabine (30 mg/m(2) per day, intravenously, on days -5 to -2), and TBI (2 Gy). Cyclophosphamide dosing started at 150 mg/kg and was de-escalated in steps of 50 mg/kg (to 100 mg/kg, 50 mg/kg, and 0 mg/kg). The primary endpoint was the selection of the optimum cyclophosphamide dose based on assessments of graft failure (primary or secondary), toxicity, and early death during 100 days of follow-up after the transplant; this is the planned final analysis for the primary endpoint. This trial is registered with ClinicalTrials.gov, number NCT00326417. 96 patients had bone marrow transplant. At day 100, 35 (92%) of 38 patients were

  3. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial.

    PubMed

    Catovsky, D; Richards, S; Matutes, E; Oscier, D; Dyer, M J S; Bezares, R F; Pettitt, A R; Hamblin, T; Milligan, D W; Child, J A; Hamilton, M S; Dearden, C E; Smith, A G; Bosanquet, A G; Davis, Z; Brito-Babapulle, V; Else, M; Wade, R; Hillmen, P

    2007-07-21

    Previous studies of patients with chronic lymphocytic leukaemia reported high response rates to fludarabine combined with cyclophosphamide. We aimed to establish whether this treatment combination provided greater survival benefit than did chlorambucil or fludarabine. 777 patients with chronic lymphocytic leukaemia requiring treatment were randomly assigned to fludarabine (n=194) or fludarabine plus cyclophosphamide (196) for six courses, or chlorambucil (387) for 12 courses. The primary endpoint was overall survival, with secondary endpoints of response rates, progression-free survival, toxic effects, and quality of life. Analysis was by intention to treat. This study is registered as an International Standard Randomised Controlled Trial, number NCT 58585610. There was no significant difference in overall survival between patients given fludarabine plus cyclophosphamide, fludarabine, or chlorambucil. Complete and overall response rates were better with fludarabine plus cyclophosphamide than with fludarabine (complete response rate 38%vs 15%, respectively; overall response rate 94%vs 80%, respectively; p<0.0001 for both comparisons), which were in turn better than with chlorambucil (complete response rate 7%, overall response rate 72%; p=0.006 and 0.04, respectively). Progression-free survival at 5 years was significantly better with fludarabine plus cyclophosphamide (36%) than with fludarabine (10%) or chlorambucil (10%; p<0.00005). Fludarabine plus cyclophosphamide was the best combination for all ages, including patients older than 70 years, and in prognostic groups defined by immunoglobulin heavy chain gene (V(H)) mutation status and cytogenetics, which were tested in 533 and 579 cases, respectively. Patients had more neutropenia and days in hospital with fludarabine plus cyclophosphamide, or fludarabine, than with chlorambucil. There was less haemolytic anaemia with fludarabine plus cyclophosphamide (5%) than with fludarabine (11%) or chlorambucil (12

  4. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M [Idaho Falls, ID; Petkovic, Lucia [Idaho Falls, ID

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  5. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  6. Aggravation of cyclophosphamide-induced acute neurological disorders under conditions of artificial acidification of chyme in rats.

    PubMed

    Schaefer, T V; Rejuniuk, V L; Malakhovsky, V N; Ivnitsky, Ju Ju

    2012-10-01

    The effect of artificial acidification of the intestinal content on neurological manifestations of acute severe cyclophosphamide intoxication was studied in rats. The animals were gavaged with 20 ml/kg sulfuric (0.05 M), hydrochloric, boric, or lactic acids (0.1 M) 3 h before intraperitoneal injections of the cytostatic in doses of 0, 200, 600, or 1000 mg/kg. The decrease in pH (by.0) and ammonia-producing activity of the cecal chyme developed within 3 h after administration of acids. Cyclophosphamide caused hyperammonemia; glutamine/ammonia and urea/ammonia ratios in the blood decreased. These changes augmented after administration of acids (boric acid produced maximum and lactic acid minimum effects). Acid treatment resulted in greatest elevation of ammonia level in the portal venous blood and a lesser elevation in the vena cava posterior blood. Acid treatment promoted manifestation of cyclophosphamide neurotoxic effect and animal death. Hence, acidification of the chyme inhibited the formation of ammonia in it, while ammonia release from the gastrointestinal tract into the blood increased; the treatment augmented hyperammonemia and aggravated the neurological manifestations of cyclophosphamide intoxication.

  7. Gastrointestinal toxicity after vincristine or cyclophosphamide administered with or without maropitant in dogs: a prospective randomised controlled study.

    PubMed

    Mason, S L; Grant, I A; Elliott, J; Cripps, P; Blackwood, L

    2014-08-01

    To assess the prevalence of gastrointestinal toxicity in dogs receiving chemotherapy with vincristine and cyclophosphamide and the efficacy of maropitant citrate (Cerenia™, Zoetis) in reducing these events. Dogs receiving chemotherapy with cyclophosphamide or vincristine were randomised to either receive maropitant or not in the period immediately after treatment and for 4 days afterwards. Owners completed a diary of adverse events following treatment. Adverse events occurred in 40/58 (69%) dogs in the vincristine group. Most of these adverse events were mild and included: lethargy (62%), appetite loss (43%), diarrhoea (34%) and vomiting (24%). Adverse events occurred in 34/42 (81%) dogs treated with cyclophosphamide. Most of these adverse events were mild and included: lethargy (62%), diarrhoea (36%), appetite loss (36%) and vomiting (21%). There was no difference in total clinical score, vomiting, diarrhoea, appetite loss or lethargy score between dogs treated with maropitant and non-treated dogs in either the vincristine or cyclophosphamide groups. Chemotherapy-related side effects are frequent but usually mild in dogs receiving vincristine or cyclophosphamide. Prophylactic administration of maropitant does not reduce the frequency of adverse events and maropitant should be administered only as required for individual cases. © 2014 British Small Animal Veterinary Association.

  8. Effect of ghrelin on total antioxidant capacity, lipid peroxidation, sperm parameters and fertility in mice against oxidative damage caused by cyclophosphamide.

    PubMed

    Salimnejad, R; Soleimani Rad, J; Mohammad Nejad, D; Roshangar, L

    2018-03-01

    Cyclophosphamide is a drug used for chemotherapy and as an immune-suppressive in the organ transplantation. Despite its many clinical implications in the treatment of cancers, this drug has toxic effects on the reproductive system. This study aimed to evaluate the effect of ghrelin against the damages caused by cyclophosphamide. In this experimental study, 40 male mice were randomly divided into four groups: (i) control; (ii) cyclophosphamide; (iii) cyclophosphamide + ghrelin; and (iv) ghrelin. Cyclophosphamide (100 mg/kg body weight), once a week, and ghrelin (80 μg/kg body weight), daily, were administered intraperitoneally for 5 weeks. After 5 weeks, the epididymides were removed and the lipid peroxidation, total antioxidant capacity and sperm parameters were examined. The fertility rate was evaluated by performance in vitro fertilisation. In the mice exposed to cyclophosphamide, the number of spermatozoa and viability, as well as total antioxidant capacity, decreased significantly (p < .05). The increase in the abnormal sperm and MDA levels was observed (p < .05). In addition, the fertility rate decreased in this group, while the use of ghrelin significantly improved the above disorders in the treatment group (p < .05). The findings of this study showed that ghrelin attenuates negative effects caused by cyclophosphamide in the sperm parameters and enhances the fertility. © 2017 Blackwell Verlag GmbH.

  9. The Ethanol Extract of the Inner Bark of Caesalpinia pyramidalis (Tul.) Reduces Urinary Bladder Damage during Cyclophosphamide-Induced Cystitis in Rats

    PubMed Central

    Moraes, Janaína P.; Pereira, Denyson S.; Matos, Alexandre S.; Santana, Danielle G.; Santos, Cliomar A.; Estevam, Charles S.; Fakhouri, Ricardo; de Lucca Junior, Waldecy; Camargo, Enilton A.

    2013-01-01

    Hemorrhagic cystitis (HC) is a common side effect of cyclophosphamide therapy, which deserves new therapeutic strategies, such as those based on natural products. The ethanol extract of the inner bark of Caesalpinia pyramidalis (Tul.) (EECp) possesses anti-inflammatory, antinociceptive, and antioxidant activities as previously showed by our group. We have investigated the effect of EECp on the cyclophosphamide-induced HC. Cystitis was induced in male Wistar rats by the injection of cyclophosphamide. These animals were pretreated with EECp (100–400 mg/kg), vehicle, or mesna. Myeloperoxidase activity and malondialdehyde formation were measured in urinary bladder and other tissues. Bladder edema and histopathological alterations and serum nitric oxide metabolites concentration NOx − were also evaluated. Treatment with EECp (100–400 mg/kg) or mesna impaired the increase of myeloperoxidase activity in urinary bladder and the serum NOx − induced by cyclophosphamide but did not reduce edema in this tissue, as did mesna. Total histological score was reduced by EECp (100 mg/kg). Lung myeloperoxidase activity, which was increased by cyclophosphamide, was decreased significantly by EECp (400 mg/kg). EECp also diminished the malondialdehyde formation in bladder, lung, and spleen, although these parameters were not affected by cyclophosphamide. These results indicate that EECp reduced urinary bladder damage during cyclophosphamide-induced HC in rats. PMID:24348180

  10. The MUK five protocol: a phase II randomised, controlled, parallel group, multi-centre trial of carfilzomib, cyclophosphamide and dexamethasone (CCD) vs. cyclophosphamide, bortezomib (Velcade) and dexamethasone (CVD) for first relapse and primary refractory multiple myeloma.

    PubMed

    Brown, Sarah; Hinsley, Samantha; Ballesteros, Mónica; Bourne, Sue; McGarry, Paul; Sherratt, Debbie; Flanagan, Louise; Gregory, Walter; Cavenagh, Jamie; Owen, Roger; Williams, Cathy; Kaiser, Martin; Low, Eric; Yong, Kwee

    2016-01-01

    Multiple myeloma is a plasma cell tumour with an annual incidence in the UK of approximately 40-50 per million i.e. about 4500 new cases per annum. The triple combination cyclophosphamide, bortezomib (Velcade®) and dexamethasone (CVD) is an effective regimen at relapse and has emerged in recent years as the standard therapy at first relapse in the UK. Carfilzomib has good activity as a single agent in the relapsed setting, and it is expected that efficacy will be improved when used in combination with dexamethasone and cyclophosphamide. MUK Five is a phase II open label, randomised, controlled, parallel group, multi-centre trial that will compare the activity of carfilzomib, cyclophosphamide and dexamethasone (CCD) with that of CVD, given over an equivalent treatment period (24 weeks), in participants with multiple myeloma at first relapse, or refractory to no more than 1 line of treatment. In addition, the study also aims to assess the utility of a maintenance schedule of carfilzomib in these participants. The primary objective of the trial is to assess whether CCD provides non-inferior activity in terms of ≥ VGPR rates at 24 weeks, and whether the addition of maintenance treatment with carfilzomib to CCD provides superior activity in terms of progression-free survival, as compared to CCD with no maintenance. Secondary objectives include comparing toxicity profiles, further summarizing and comparing the activity of the different treatment arms and analysis of the effect of each treatment arm on minimal residual disease status. The development of carfilzomib offers the opportunity to further explore the anti-tumour efficacy of proteasome inhibition and, based on the available evidence, it is important and timely to obtain data on the activity, toxicity and tolerability of this drug. In contrast to ongoing phase III trials, this phase II trial has a unique subset of participants diagnosed with multiple myeloma at first relapse or refractory to no more than

  11. Evaluation of the mutagenicity of alkylating agents, methylnitrosourea and temozolomide, using the rat Pig-a assay with total red blood cells or reticulocytes.

    PubMed

    Muto, Shigeharu; Yamada, Katsuya; Kato, Tatsuya; Ando, Masamitsu; Inoue, Yoshimi; Iwase, Yumiko; Uno, Yoshifumi

    2016-11-15

    A collaborative study of the endogenous phosphatidylinositol glycan class A (Pig-a) gene mutation assay was conducted by the Japanese Environmental Mutagen Society/Mammalian Mutagenicity Study Group with a single-dosing regimen of test chemicals administered to male rats. As a part of the study, two DNA alkylating agents, methylnitrosourea (MNU) and temozolomide (TMZ), were dosed by single oral gavage at 25, 50, and 100mg/kg body weight. Pig-a mutant analysis of total red blood cells (RBCs; RBC Pig-a assay) and reticulocytes (RETs; PIGRET assay) was performed on Days 8, 15 and 29 after the administration. Both chemicals increased Pig-a mutants among RBCs and RETs with dose dependency on all days examined. The mutant frequencies were higher among RETs compared with RBCs, indicating that the PIGRET assay could detect mutagenicity more sensitively than the RBC Pig-a assay after a single dose of test chemicals. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Pilot study of sodium phenylbutyrate as adjuvant in cyclophosphamide-resistant endemic Burkitt's lymphoma.

    PubMed

    Phillips, John A; Griffin, Beverly E

    2007-12-01

    Burkitt's lymphoma (BL) accounts for the majority of childhood malignancies seen in sub-Saharan Africa. In Malawi, cyclophosphamide (CPM), the mainstay of treatment for endemic BL, is effective in around 50% of cases. Evidence exists in support of an association between activation of replication of Epstein-Barr virus (EBV) in the tumour and response to this chemotheraupeutic agent. Phenylbutyrate (PB), approved for treatment of inborn errors of the urea cycle with minimal toxicity in children, induces EBV replication and cell lysis in BL-derived cell cultures. It has also shown some success as adjuvant in treatment of chronic leukaemia and lymphoma. We tested in African BL patients with CPM-resistant tumours, and thus unlikely to survive, the hypothesis that PB can reverse this resistance. A study of five patients showed PB before CPM to induce shrinkage of CPM-resistant tumours in two of them. Findings suggested that for this effect PB pre-treatment should be given for a week before CPM treatment. A larger study is indicated.

  13. Protective effect of hawthorn extract against genotoxicity induced by cyclophosphamide in mouse bone marrow cells.

    PubMed

    Hosseinimehr, Seyed Jalal; Azadbakht, Mohammad; Abadi, Atefeh Jahan

    2008-01-01

    The preventive effect of hawthorn (Crataegus microphylla) fruit extract was investigated in mouse bone marrow cells against genotoxicity induced by cyclophosphamide. Mice were orally (gavages) pretreated with solutions of hawthorn extract which was prepared at five different doses (25, 50, 100, 200 and 400mg/kg b.w.) for seven consecutive days. Mice were injected intraperitoneally on the seventh day with cyclophosphamide (50mg/kg b.w.) and killed after 24h for the evaluation of micronucleated polychromatic erythrocytes (MnPCEs) and the ratio of PCE/(PCE+NCE) (polychromatic erythrocyte/polychromatic erythrocyte+normochromatic erythrocyte). All of five doses of extract significantly reduced MnPCEs induced by cyclophosphamide (P<0.0001). Hawthorn extract at dose 100mg/kg b.w. reduced MnPCEs 2.5 time and also completely normalized PCE/(PCE+NCE) ratio. Hawthorn extract exhibited concentration-dependent antioxidant activity on 1,1-diphenyl-2-picryl hydrazyl free radical. Hawthorn contains high amounts of phenolic compounds; the HPLC analysis showed that it contained chlorogenic acid, epicatechin and hyperoside. It is obvious that hawthorn, particularly flavonoids constituents with antioxidative activity, reduced the oxidative stress and genotoxicity induced by cyclophosphamide in mouse bone marrow cells. Copyright © 2007 Elsevier B.V. All rights reserved.

  14. Modulatory effects of garlic extract against the cyclophosphamide induced genotoxicity in human lymphocytes in vitro.

    PubMed

    Sowjanya, B Lakshmi; Devi, K Rudrama; Madhavi, D

    2009-09-01

    Cyclophosphamide (CP) is a commonly used chemotherapeutic and immunosuppressive agent which is used in the treatment of wide range of cancers and autoimmune diseases. Besides that it is a well known carcinogen. In this study by using chromosomal aberrations (CA) and sister chromatid exchanges (SCE) assays method, the modulatory effects exerted by the extract of garlic against the CP induced genotoxicity in the human lymphocyte cultures in vitro were tested. Three different doses of garlic extract were tested for their modulatory capacity on the mutagenecity exerted by 100 microg ml(-1) of CR The results indicate a significant decrease in the frequency of CA and SCE suggesting that the garlic extract modulates the CP induced genotoxicity in a dose dependent manner. These findings provide the future directions for the research on design and development of possible modulatory drugs containing garlic extract.

  15. Dietary fucoidan of Acaudina molpadioides alters gut microbiota and mitigates intestinal mucosal injury induced by cyclophosphamide.

    PubMed

    Shi, Hongjie; Chang, Yaoguang; Gao, Yuan; Wang, Xiong; Chen, Xin; Wang, Yuming; Xue, Changhu; Tang, Qingjuan

    2017-09-20

    Cyclophosphamide (cy) is a widely used cancer drug. Many researchers have focused on the prevention and alleviation of its side effects, particularly damage to the intestinal mucosal barrier. In this study, we examined the effects of fucoidan, isolated from Acaudina molpadioides, on mice with intestinal mucosal damage induced by cyclophosphamide. Our results showed that fucoidan intervention could relieve injury such as decreasing inflammation and increasing the expression of tight junction proteins, and 50 kDa fucoidan significantly increased the abundance of short chain fatty acid (SCFA) producer Coprococcus, Rikenella, and Butyricicoccus (p < 0.05, p < 0.001, and p < 0.05, respectively) species within the intestinal mucosa compared with the cyclophosphamide group, as determined by 16S rDNA gene high-throughput sequencing. In addition, SCFAs, particularly propionate, butyrate, and total SCFAs, were increased in the feces, and SCFA receptors were upregulated in the small intestine. The protective effects of fucoidan on cyclophosphamide treatment may be associated with gut microflora, and 50 kDa fucoidan had superior effects. Therefore, fucoidan may have applications as an effective supplement to protect against intestinal mucosal barrier damage during chemotherapy.

  16. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    NASA Astrophysics Data System (ADS)

    Straka, Pavel; Buryan, Petr; Bičáková, Olga

    2018-02-01

    The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.

  17. Effect of polyester blends in hydroentangled raw and bleached cotton nonwoven fabrics on the adsorption of alkyl-dimethyl-benzyl-ammonium chloride

    USDA-ARS?s Scientific Manuscript database

    The adsorption kinetics and isotherms of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on hydroentangled nonwoven fabrics (applicable for wipes) including raw cotton, bleached cotton, and their blends with polyester (PES) were stu...

  18. Synthesis of Norbornane Bisether Antibiotics via Silver-mediated Alkylation

    PubMed Central

    Hickey, Shane M.; Ashton, Trent D.; White, Jonathan M.; Li, Jian; Nation, Roger L.; Yu, Heidi Y.; Elliott, Alysha G.; Butler, Mark S.; Huang, Johnny X.; Cooper, Matthew A.

    2015-01-01

    A small series of norbornane bisether diguanidines have been synthesized and evaluated as antibacterial agents. The key transformation—bisalkylation of norbornane diol 6—was not successful using Williamson methodology but has been accomplished using Ag2O mediated alkylation. Further functionalization to incorporate two guanidinium groups gave rise to a series of structurally rigid cationic amphiphiles; several of which (16d, 16g and 16h) exhibited antibiotic activity. For example, compound 16d was active against a broad range of bacteria including Pseudomonas aeruginosa (MIC = 8 µg/mL), Escherichia coli (MIC = 8 µg/mL) and methicillin-resistant Staphylococcus aureus (MIC = 8 µg/mL). PMID:26251697

  19. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response.

    PubMed

    Hombach-Klonisch, Sabine; Mehrpour, Maryam; Shojaei, Shahla; Harlos, Craig; Pitz, Marshall; Hamai, Ahmed; Siemianowicz, Krzysztof; Likus, Wirginia; Wiechec, Emilia; Toyota, Brian D; Hoshyar, Reyhane; Seyfoori, Amir; Sepehri, Zahra; Ande, Sudharsana R; Khadem, Forough; Akbari, Mohsen; Gorman, Adrienne M; Samali, Afshin; Klonisch, Thomas; Ghavami, Saeid

    2018-04-01

    Despite advances in neurosurgical techniques and radio-/chemotherapy, the treatment of brain tumors remains a challenge. This is particularly true for the most frequent and fatal adult brain tumor, glioblastoma (GB). Upon diagnosis, the average survival time of GB patients remains only approximately 15months. The alkylating drug temozolomide (TMZ) is routinely used in brain tumor patients and induces apoptosis, autophagy and unfolded protein response (UPR). Here, we review these cellular mechanisms and their contributions to TMZ chemoresistance in brain tumors, with a particular emphasis on TMZ chemoresistance in glioma stem cells and GB. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Poly(alkyl methacrylate) Brush-Grafted Silica Nanoparticles as Oil Lubricant Additives: Effects of Alkyl Pendant Groups on Oil Dispersibility, Stability, and Lubrication Property

    DOE PAGES

    Seymour, Bryan T.; Wright, Roger A. E.; Parrott, Alexander C.; ...

    2017-07-03

    This paper reports on the synthesis of a series of poly(alkyl methacrylate) brush-grafted, 23 nm silica nanoparticles (hairy NPs) and the study of the effect of alkyl pendant length on their use as oil lubricant additives for friction and wear reduction. The hairy NPs were prepared by surface-initiated reversible addition–fragmentation chain transfer polymerization from trithiocarbonate chain transfer agent (CTA)-functionalized silica NPs in the presence of a free CTA. We found that hairy NPs with sufficiently long alkyl pendant groups (containing >8 carbon atoms, such as 12, 13, 16, and 18 in this study) could be readily dispersed in poly(alphaolefin) (PAO),more » forming clear, homogeneous dispersions, and exhibited excellent stability at low and high temperatures as revealed by visual inspection and dynamic light scattering studies. Whereas poly(n-hexyl methacrylate) hairy NPs cannot be dispersed in PAO under ambient conditions or at 80 °C, interestingly, poly(2-ethylhexyl methacrylate) hairy NPs can be dispersed in PAO at 80 °C but not at room temperature, with a reversible clear-to-cloudy transition observed upon cooling. High-contact-stress ball-on-flat reciprocating sliding tribological tests at 100 °C showed significant reductions in both the coefficient of friction (up to 38%) and wear volume (up to 90% for iron flat) for transparent, homogeneous dispersions of hairy NPs in PAO at a concentration of 1.0 wt % compared with neat PAO. Finally, the formation of a load-bearing tribofilm at the rubbing interface was confirmed using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy.« less

  1. Poly(alkyl methacrylate) Brush-Grafted Silica Nanoparticles as Oil Lubricant Additives: Effects of Alkyl Pendant Groups on Oil Dispersibility, Stability, and Lubrication Property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seymour, Bryan T.; Wright, Roger A. E.; Parrott, Alexander C.

    This paper reports on the synthesis of a series of poly(alkyl methacrylate) brush-grafted, 23 nm silica nanoparticles (hairy NPs) and the study of the effect of alkyl pendant length on their use as oil lubricant additives for friction and wear reduction. The hairy NPs were prepared by surface-initiated reversible addition–fragmentation chain transfer polymerization from trithiocarbonate chain transfer agent (CTA)-functionalized silica NPs in the presence of a free CTA. We found that hairy NPs with sufficiently long alkyl pendant groups (containing >8 carbon atoms, such as 12, 13, 16, and 18 in this study) could be readily dispersed in poly(alphaolefin) (PAO),more » forming clear, homogeneous dispersions, and exhibited excellent stability at low and high temperatures as revealed by visual inspection and dynamic light scattering studies. Whereas poly(n-hexyl methacrylate) hairy NPs cannot be dispersed in PAO under ambient conditions or at 80 °C, interestingly, poly(2-ethylhexyl methacrylate) hairy NPs can be dispersed in PAO at 80 °C but not at room temperature, with a reversible clear-to-cloudy transition observed upon cooling. High-contact-stress ball-on-flat reciprocating sliding tribological tests at 100 °C showed significant reductions in both the coefficient of friction (up to 38%) and wear volume (up to 90% for iron flat) for transparent, homogeneous dispersions of hairy NPs in PAO at a concentration of 1.0 wt % compared with neat PAO. Finally, the formation of a load-bearing tribofilm at the rubbing interface was confirmed using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy.« less

  2. Reactions of Tributylstannyl Anioniods with Alkyl Bromides.

    DTIC Science & Technology

    1981-09-28

    g (12 mmol) of cesium tert-butoxide was added to the reaction vessel before the addition of n-butyllithium. Alkylation of Tributylstannyl Anionoids...Dry reaction vessels were purged with argon. The desired alkyl halide (1.0 mmol unless noted) and any desired additive were added to the reaction ...OFFICE OF NAVAL RESEARCH Contract N00014-79-C-0584 Task No. NR 053-714 TECHNICAL REPORT No. 2 Reactions of Tributylstannyl Anionoids with Alkyl

  3. Comparison of Doxorubicin and Cyclophosphamide Versus Single-Agent Paclitaxel As Adjuvant Therapy for Breast Cancer in Women With 0 to 3 Positive Axillary Nodes: CALGB 40101 (Alliance)

    PubMed Central

    Shulman, Lawrence N.; Berry, Donald A.; Cirrincione, Constance T.; Becker, Heather P.; Perez, Edith A.; O'Regan, Ruth; Martino, Silvana; Shapiro, Charles L.; Schneider, Charles J.; Kimmick, Gretchen; Burstein, Harold J.; Norton, Larry; Muss, Hyman; Hudis, Clifford A.; Winer, Eric P.

    2014-01-01

    Purpose Optimal adjuvant chemotherapy for early-stage breast cancer balances efficacy and toxicity. We sought to determine whether single-agent paclitaxel (T) was inferior to doxorubicin and cyclophosphamide (AC), when each was administered for four or six cycles of therapy, and whether it offered less toxicity. Patients and Methods Patients with operable breast cancer with 0 to 3 positive nodes were enrolled onto the study to address the noninferiority of single-agent T to AC, defined as the one-sided 95% upper-bound CI (UCB) of hazard ratio (HR) of T versus AC less than 1.30 for the primary end point of relapse-free survival (RFS). As a 2 × 2 factorial design, duration of therapy was also addressed and was previously reported. Results With 3,871 patients enrolled onto the trial, a median follow-up period of 6.1 years, and 437 RFS events, we achieved an HR of 1.26 (one sided 95% UCB, 1.48; favoring AC does not allow a conclusion of noninferiority of T with AC; UCB > 1.3). With 266 patient deaths, the HR for overall survival (OS) was 1.27 favoring AC (UCB, 1.56). The estimated absolute advantage of AC at 5 years is 3% for RFS (91 v 88%) and 1% for OS (95 v 94%). All nine treatment-related deaths were patients receiving AC and are included in the analyses of both RFS and OS. Hematologic toxicity was more common in patients treated with AC, and neuropathy was more common in patients treated with T. Conclusion This trial did not show noninferiority of T to AC, a conclusion that is unlikely to change with additional events and follow-up. T was less toxic than AC. PMID:24934787

  4. Protective Effect of Chitosan Oligosaccharides Against Cyclophosphamide-Induced Immunosuppression and Irradiation Injury in Mice.

    PubMed

    Zhai, Xingchen; Yang, Xin; Zou, Pan; Shao, Yong; Yuan, Shoujun; Abd El-Aty, A M; Wang, Jing

    2018-02-01

    Chitosan oligosaccharides (COS), hydrolyzed products of chitosan, was found to display various biological activities. Herein, we assessed the immunostimulatory activity of COS both in in vitro and in vivo studies. In vitro cytotoxicity studies to murine macrophage RAW264.7 revealed that COS is safe even at the maximum tested concentration of 1000 μg/mL. It also stimulates the production of nitric oxide (NO) and tumor necrosis factor (TNF-α) and enhances the phagocytosis in COS-stimulated RAW264.7. We have shown that the COS could significantly (P < 0.05) restore the reduced immune organs indices, phagocytic index, lymphocyte proliferation, natural killer cell activity, and antioxidant enzyme activities in a cyclophosphamide-induced immunosuppressed mice model. COS can also improve the survival rate in irradiation injury mice and significantly (P < 0.05) increased the spleen indices and up-regulates the CD4+/CD8+ ratio in splenocytes. In sum, the aforementioned results suggest that COS might has the potential to be used as an immunostimulatory agent in patients with immune dysfunctions or be a model for functional food development. COS might has the potential to be used as an immunostimulatory agent in patients with immune dysfunctions or be a model for functional food development. © 2018 Institute of Food Technologists®.

  5. Development of polyimide foams with blowing agents

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Sorathia, Usman A. K. (Inventor); Lee, Raymond (Inventor)

    1985-01-01

    A method of preparing a polyimide foam which includes the steps of: preparing, foaming, and curing a precursor containing at least one alkyl ester of 3,3'4,4'-benzophenonetetracarboxylic acid; a meta- or para-substituted aromatic diamine; a heterocyclic diamine; an aliphatic diamine; and a solid blowing agent. The blowing agent is added to said precursor in a concentration which is sufficient to effect at least one of the following attributes of the foam: cell size, proportion of open cells, cell density, and indentation load deflection.

  6. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    PubMed Central

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  7. Comparative toxicity of mono- and bifunctional alkylating homologues of sulphur mustard in human skin keratinocytes.

    PubMed

    Sawyer, Thomas W; McNeely, Karin; Louis, Kristen; Lecavalier, Pierre; Song, Yanfeng; Villanueva, Mercy; Clewley, Robin

    2017-05-01

    Sulphur mustard (bis(2-chloroethyl) sulphide; agent H) is a vesicant chemical warfare (CW) agent whose mechanism of action is not known with any certainty and for which there are no effective antidotes. It has a pronounced latent period before signs and symptoms of poisoning appear which it shares with the nitrogen mustards, and that differentiates it from other classes of vesicant agents. Sulphur mustard, the sulphur mustard CW agents Q (1,2-bis(2-chloroethylthio) ethane) and T (1,1 bis(2-chloroethylthioethyl) ether), the H partial hydrolysis product hemi-sulphur mustard (2-chloroethyl 2-hydroxyethyl sulphide; HSM), and the commercially available 2-chloroethyl ethyl sulphide (CEES) were characterized with respect to their toxicity in first passage cultures of proliferating human skin keratinocytes, the target cell of H-induced skin vesication. Agents H and T were equitoxic and half as toxic as agent Q. Hemi-sulphur mustard and CEES were approximately six times and seventeen times, respectively less cytotoxic than H. 2-Chloroethyl ethyl sulphide was only slightly less toxic in confluent cultures compared to actively proliferating cells. In contrast, the toxicity of H, Q, T and HSM significantly decreased as the cultures became confluent, paralleling the decreasing sensitivity of skin keratinocytes to H as they leave the basement membrane of the skin. The toxicity of CEES was maximal by 24h. In contrast, the maximal toxicity of the other four agents occurred at 48h, mirroring the latent period observed for these agents in vivo. The markedly different characteristics of toxicity between CEES and the other four test compounds indicate that it is likely that different mechanisms of action are operative between them. Caution should therefore be taken when interpreting the results of studies utilizing CEES as a simulant for the mechanistic study of H, or in the elucidation of medical countermeasures against this CW agent. It is also notable that the toxicity

  8. Exposure to a First World War blistering agent.

    PubMed

    Le, H Q; Knudsen, S J

    2006-04-01

    Sulfur mustards act as vesicants and alkylating agents. They have been used as chemical warfare since 1917 during the first world war. This brief report illustrates the progression of injury on a primary exposed patient to a first world war blistering agent. This case documents the rapid timeline and progression of symptoms. It emphasises the importance of appropriate personal protective equipment and immediate medical response plan with rapid decontamination and proper action from military and civilian medical treatment facilities. This case reports the first US active duty military exposure to a blistering agent in the age of global terrorism.

  9. Ovarian function and reproductive outcomes of female patients with systemic lupus erythematosus and the strategies to preserve their fertility.

    PubMed

    Oktem, Ozgur; Guzel, Yılmaz; Aksoy, Senai; Aydin, Elvin; Urman, Bulent

    2015-03-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune systemic disease that mainly affects women of reproductive age. Emerging data from recent molecular studies show us that estrogen hormone plays a central role in the development of this disease. By acting via its cognate receptors ERα and ERβ expressed on immune cells, estrogen can modulate immune function in both the innate and adaptive immune responses. Interestingly, estrogen may also evoke autoimmune responses after binding to B lymphocytes leading to the generation of high-affinity autoantibodies and proinflammatory cytokines (so-called estrogen-induced autoimmunity). Unfortunately, reproductive function of young female patients with this disease is commonly compromised by different pathophysiologic processes. First, ovarian reserve is diminished even in the presence of mild disease suggesting a direct impact of the disease itself on ovarian function possibly due to ovarian involvement in the form of autoimmune oophoritis. Second, SLE patients with severe manifestations of the disease are treated with alkylating chemotherapy agent cyclophosphamide. Cyclophosphamide and other drugs of alkylating category have the highest gonadotoxicity. Therefore, SLE patients exposed to cyclophosphamide have a much higher risk of developing infertility and premature ovarian failure than do the counterparts who are treated with other less toxic treatments. Third, the functions of the hypothalamic pituitary ovarian axis are perturbed by chronic inflammatory state. And finally adverse pregnancy outcomes are more commonly observed in SLE patients such as fetal loss, preterm birth, intrauterine fetal growth restriction, preeclampsia-eclampsia, and fetal congenital heart block. We aimed in this review article to provide the readers an update on how estrogen hormone closely interacts with and induces lupus-prone changes in the immune system. We also discuss ovarian function and other reproductive outcomes in SLE patients

  10. Protective effects of D-Trp6-luteinising hormone-releasing hormone microcapsules against cyclophosphamide-induced gonadotoxicity in female rats.

    PubMed

    Bokser, L; Szende, B; Schally, A V

    1990-06-01

    The possible protective effect of an agonist of luteinising hormone-releasing hormone (LH-RH) against the ovarian damage caused by cyclophosphamide was investigated in rats. D-Trp6-LH-RH microcapsules were injected once a month for 3 months, in a dose calculated to release 25 micrograms day-1. Control animals received the injection vehicle. Sixty days after the first injection of microcapsules, cyclophosphamide was given at a loading dose of 50 mg kg-1 followed by 5 mg kg-1 day-1 for 30 days, while the treatment with D-Trp6-LH-RH was continued. When the ovaries were examined 3 months and 5 months after discontinuation of treatment, a significant reduction in the total number of follicles (P less than 0.01) was found in non-pretreated animals given cyclophosphamide. This reduction affected mainly follicles larger than 100 microns. An irreversible disintegration and destruction of granulosa cells was also observed in this group. In animals pretreated with D-Trp6-LH-RH, administration of cyclophosphamide caused no reduction in the number and diameter of follicles. Thus, the treatment with D-Trp6-LH-RH microcapsules before and during chemotherapy prevented the ovarian injury inflicted by cyclophosphamide. The suppression of gonadal function by LH-RH analogues could be possibly utilised for the protection of the ovaries against damage caused by cytotoxic drugs.

  11. Protective effects of D-Trp6-luteinising hormone-releasing hormone microcapsules against cyclophosphamide-induced gonadotoxicity in female rats.

    PubMed Central

    Bokser, L.; Szende, B.; Schally, A. V.

    1990-01-01

    The possible protective effect of an agonist of luteinising hormone-releasing hormone (LH-RH) against the ovarian damage caused by cyclophosphamide was investigated in rats. D-Trp6-LH-RH microcapsules were injected once a month for 3 months, in a dose calculated to release 25 micrograms day-1. Control animals received the injection vehicle. Sixty days after the first injection of microcapsules, cyclophosphamide was given at a loading dose of 50 mg kg-1 followed by 5 mg kg-1 day-1 for 30 days, while the treatment with D-Trp6-LH-RH was continued. When the ovaries were examined 3 months and 5 months after discontinuation of treatment, a significant reduction in the total number of follicles (P less than 0.01) was found in non-pretreated animals given cyclophosphamide. This reduction affected mainly follicles larger than 100 microns. An irreversible disintegration and destruction of granulosa cells was also observed in this group. In animals pretreated with D-Trp6-LH-RH, administration of cyclophosphamide caused no reduction in the number and diameter of follicles. Thus, the treatment with D-Trp6-LH-RH microcapsules before and during chemotherapy prevented the ovarian injury inflicted by cyclophosphamide. The suppression of gonadal function by LH-RH analogues could be possibly utilised for the protection of the ovaries against damage caused by cytotoxic drugs. Images Figure 2 PMID:2142603

  12. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  13. Drilling fluid containing a copolymer filtration control agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, J. M.

    1985-10-15

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: a (meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and N, N-dialkyl (meth) acrylamide. The copolymer may be cross-linked with N,N'-methylenebisacrylamide or other appropriate cross-linking agent.

  14. Alkyl ammonium cation stabilized biocidal polyiodides with adaptable high density and low pressure.

    PubMed

    He, Chunlin; Parrish, Damon A; Shreeve, Jean'ne M

    2014-05-26

    The effective application of biocidal species requires building the active moiety into a molecular back bone that can be delivered and decomposed on demand under conditions of low pressure and prolonged high-temperature detonation. The goal is to destroy storage facilities and their contents while utilizing the biocidal products arising from the released energy to destroy any remaining harmful airborne agents. Decomposition of carefully selected iodine-rich compounds can produce large amounts of the very active biocides, hydroiodic acid (HI) and iodine (I2). Polyiodide anions, namely, I3(-), I5(-), which are excellent sources of such biocides, can be stabilized through interactions with large, symmetric cations, such as alkyl ammonium salts. We have designed and synthesized suitable compounds of adaptable high density up to 3.33 g cm(-3) that are low-pressure polyiodides with various alkyl ammonium cations, deliverable iodine contents of which range between 58.0-90.9%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Solubility, ionization, and partitioning behavior of unsymmetrical disulfide compounds: alkyl 2-imidazolyl disulfides.

    PubMed

    Hashash, Ahmad; Kirkpatrick, D Lynn; Lazo, John S; Block, Lawrence H

    2002-07-01

    Alkyl 2-imidazolyl disulfide compounds are novel antitumor agents, one of which is currently being evaluated in Phase I clinical trials. These molecules contain an unsymmetrical disulfide fragment, the lipophilic and electronic contributions of which are still not defined in the literature. Lipophilicity, ionization, and solubility of a number of alkyl 2-imidazolyl disulfides were studied. Based on the additivity of lipophilicity and ionization properties, the contribution of the unsymmetrical disulfide fragment to lipophilicity and ionization was elucidated. The unsymmetrical disulfide fragment contributed a Rekker's hydrophobic constant of 0.761 to the lipophilicity of these compounds and an approximated Hammett constant (sigma) of 0.30 to their ionization. The applicability of the general solubility equation (GSE) proposed by Jain and Yalkowsky in predicting the aqueous solubility of these analogs was evaluated. The GSE correctly ranked the aqueous solubilities of these compounds and estimated their log molar solubilities with an average absolute error of 0.35. Copyright 2002 Wiley-Liss Inc.

  16. Impact of closed-system drug transfer device on exposure of environment and healthcare provider to cyclophosphamide in Japanese hospital.

    PubMed

    Miyake, Tomohiro; Iwamoto, Takuya; Tanimura, Manabu; Okuda, Masahiro

    2013-12-01

    In spite of current recommended safe handling procedures, the potential for the exposure of healthcare providers to hazardous drugs exists in the workplace. A reliance on biological safety cabinets to provide total protection against the exposure to hazardous drugs is insufficient. Preventing workplace contamination is the best strategy to minimize cytotoxic drug exposure in healthcare providers. This study was conducted to compare surface contamination and personnel exposure to cyclophosphamide before and after the implementation of a closed-system drug transfer device, PhaSeal, under the influence of cleaning according to the Japanese guidelines. Personnel exposure was evaluated by collecting 24 h urine samples from 4 pharmacists. Surface contamination was assessed by the wiping test. Four of 6 wipe samples collected before PhaSeal indicated a detectable level of cyclophosphamide. About 7 months after the initiation of PhaSeal, only one of 6 wipe samples indicated a detectable level of cyclophosphamide. Although all 4 employees who provided urine samples had positive results for the urinary excretion of cyclophosphamide before PhaSeal, these levels returned to minimal levels in 2 pharmacists after PhaSeal. In combination with the biological safety cabinet and cleaning according to the Japanese guidelines, PhaSeal further reduces surface contamination and healthcare providers exposure to cyclophosphamide to almost undetectable levels.

  17. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  18. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  19. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  20. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  1. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  2. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  3. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  4. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  5. Tocotrienol preserves ovarian function in cyclophosphamide therapy.

    PubMed

    Saleh, H S; Omar, E; Froemming, G R A; Said, R M

    2015-10-01

    Cyclophosphamide (CPA) chemotherapy leads to ovarian failure and infertility. Tocotrienol (T3) is an antioxidant and anti-inflammatory agent. The role of T3 in ovarian protection throughout chemotherapy remains unclear. To investigate the role of T3 in the preservation of female fertility in CPA treatment. Sixty female mice were divided into five treatment groups, namely, normal saline, corn oil only, T3 only, CPA and CPA + T3. The treatment was given for 30 days, followed by administration of gonadotrophin to induce ovulation. After killing, both ovaries were collected and examined histologically. There was significant reduction in ovarian size in the CPA group compared with the normal group (CPA versus normal, mean area ± SD; 0.118 ± 0.018 vs. 0.423 ± 0.024 cm(2); p ≤ 0.005), whilst concurrent administration of T3 with CPA leads to conservation of ovarian size (CPA + T3 vs. CPA, mean area ± SD; 0.285 ± 0.032 vs. 0.118 ± 0.018 cm(2); p ≤ 0.005). Ovaries in CPA group showed abnormal folliculogenesis with accompanied reduced ovulation rate, follicular oedema, increased vascularity and inflammatory cell infiltration. These changes were reversed by concurrent T3 administration. Co-administration of T3 with CPA confers protection of ovarian morphology and function in vivo. These findings contribute to the further elucidation of CPA effect on ovary and suggest the potential of T3 use in preserving fertility in chemotherapy. © The Author(s) 2015.

  6. Interactive effects of saffron with garlic and curcumin against cyclophosphamide induced genotoxicity in mice.

    PubMed

    Premkumar, Kumpati; Kavitha, Sundramoorthy; Santhiya, Sathiyavedu T; Ramesh, A-Rabandi; Suwanteerangkul, Jiraporn

    2004-01-01

    Saffron is a well-known spice and food colorant commonly consumed in different parts of the world. Recently, much attention has been focused on the biological and medicinal properties of saffron. In the present study the interactive effects of saffron with two commonly consumed dietary agents, garlic and curcumin was evaluated for anti-genotoxic effects against cyclophosphamide (CPH) in the mouse bone marrow micronucleus test. Experimental animals were orally pretreated with saffron (100 mg/kg body weight), garlic (250 mg/kg body weight) and curcumin (10 mg/kg body weight), either alone or in combination for five consecutive days, 2h prior to the administration of CPH. Maximum reduction in the frequencies of micronucleated polychromatic erythrocytes (Mn PCEs) induced by CPH was observed when all the three test compounds were administered together. Furthermore, the protective effects were more pronounced in the garlic-administered groups compared to curcumin and/or saffron administered groups.

  7. Polymerization of Conducting Polymers Confined to Free Surfaces: A comparison of the Langmuir-Blodgett Polymerization of 3-Alkyl Pyrroles and 2- Alkyl Anilines

    DTIC Science & Technology

    1992-05-19

    Confined to Free Surfaces: A Comparison of the Langmuir-Blodgett Polymerization of 3- Alkyl Pyrroles and 2- Alkyl Anilines Submitted for Publication in...Surfaces: A Comparison of the Langmuir Blodgett Polymerizations of 3- alkyl pyrroles and 2- alkyl anilines R. S. Duran and H.C. Zhou Dept. of Chemistry...polymerization reactions in more detail and compare them. To do this, the polymerization reactions were run under two conditions. In the first case

  8. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section. (a) The alkyl ketene dimers are manufactured by the dehydrohalogenation of the acyl halides derived from the fatty acids of animal or vegetable fats and oils. (b) The alkyl ketene dimers are used as...

  9. Cyclophosphamide induced stomach and duodenal lesions as a NO-system disturbance in rats: L-NAME, L-arginine, stable gastric pentadecapeptide BPC 157.

    PubMed

    Luetic, Krešimir; Sucic, Mario; Vlainic, Josipa; Halle, Zeljka Belosic; Strinic, Dean; Vidovic, Tinka; Luetic, Franka; Marusic, Marinko; Gulic, Sasa; Pavelic, Tatjana Turudic; Kokot, Antonio; Seiwerth, Ranka Serventi; Drmic, Domagoj; Batelja, Lovorka; Seiwerth, Sven; Sikiric, Predrag

    2017-04-01

    We revealed a new point with cyclophosphamide (150 mg/kg/day intraperitoneally for 7 days): we counteracted both rat stomach and duodenal ulcers and increased NO- and MDA-levels in these tissues. As a NO-system effect, BPC 157 therapy (10 µg/kg, 10 ng/kg, intraperitoneally once a day or in drinking water, till the sacrifice) attenuated the increased NO- and MDA-levels and nullified, in rats, severe cyclophosphamide-ulcers and even stronger stomach and duodenal lesions after cyclophosphamide + L-NAME (5 mg/kg intraperitoneally once a day). L-arginine (100 mg/kg intraperitoneally once a day not effective alone) led L-NAME-values only to the control values (cyclophosphamide + L-NAME + L-arginine-rats). Briefly, rats were sacrificed at 24 h after last administration on days 1, 2, 3, or 7, and assessment included sum of longest lesions diameters (mm) in the stomach and duodenum, oxidative stress by quantifying thiobarbituric acid reactivity as malondialdehyde equivalents (MDA), NO in stomach and duodenal tissue samples using the Griess reaction. All these parameters were highly exaggerated in rats who underwent cyclophosphamide treatment. We identified high MDA-tissue values, high NO-tissue values, ulcerogenic and beneficial potential in cyclophosphamide-L-NAME-L-arginine-BPC 157 relationships. This suggests that in cyclophosphamide damaged rats, NO excessive release generated by the inducible isozyme, damages the vascular wall and other tissue cells, especially in combination with reactive oxygen intermediates, while failing endothelial production and resulting in further aggravation by L-NAME which was inhibited by L-arginine. Finally, BPC 157, due to its special relations with NO-system, may both lessen increased MDA- and NO-tissues values and counteract effects of both cyclophosphamide and L-NAME on stomach and duodenal lesions.

  10. A Concentration-Dependent Insulin Immobilization Behavior of Alkyl-Modified Silica Vesicles: The Impact of Alkyl Chain Length.

    PubMed

    Zhang, Jun; Zhang, Long; Lei, Chang; Huang, Xiaodan; Yang, Yannan; Yu, Chengzhong

    2018-05-01

    The insulin immobilization behaviors of silica vesicles (SV) before and after modification with hydrophobic alkyl -C 8 and -C 18 groups have been studied and correlated to the grafted alkyl chain length. In order to minimize the influence from the other structural parameters, monolayered -C 8 or -C 18 groups are grafted onto SV with controlled density. The insulin immobilization capacity of SV is dependent on the initial insulin concentrations (IIC). At high IIC (2.6-3.0 mg/mL), the trend of insulin immobilization capacity of SV is SV-OH > SV-C 8 > SV-C 18 , which is determined mainly by the surface area of SV. At medium IIC (0.6-1.9 mg/mL), the trend changes to SV-C 8 ≥ SV-C 18 > SV-OH as both the surface area and alkyl chain length contribute to the insulin immobilization. At an extremely low IIC, the hydrophobic-hydrophobic interaction between the alkyl group and insulin molecules plays the most significant role. Consequently, SV-C 18 with longer alkyl groups and the highest hydrophobicity show the best insulin enrichment performance compared to SV-C 8 and SV-OH, as evidenced by an insulin detection limit of 0.001 ng/mL in phosphate buffered saline (PBS) and 0.05 ng/mL in artficial urine determined by mass spectrometry (MS).

  11. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    EPA Science Inventory

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  12. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  13. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  14. Extended 3{beta}-alkyl steranes and 3-alkyl triaromatic steroids in crude oils and rock extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, J.; Moldowan, J.M.; Summons, R.E.

    1995-09-01

    In oils and Precambian- to Miocene-age source rocks from varying depositional environments, we have conclusively identified several novel 3-alkyl sterane and triaromatic steroid series, including (1) 3{beta}-n-pentyl steranes, (2) 3{beta}-isopentyl steranes, (3) 3{beta}-n-hexyl steranes, (4) 3{beta}-n-hepatyl steranes, (5) 3,4-dimethyl steranes, (6) 3{beta}-butyl,4-methyl steranes, (7) triaromatic 3-n-pentyl steroids, and (8) triaromatic 3-isopentyl steroids. We have also tentatively identified additional homologs with 3-alkyl substituents as large as C{sub 11}. The relative abundances of these compounds vary substantially between samples, as indicated by (1) the ratio of 3{beta}-n-pentyl steranes to 3{beta}-isopentyl steranes and (2) the ratio of 3-n-pentyl triaromatic steroids to 3-isopentyl triaromaticmore » steroids. These data suggest possible utility for these parameters as tools for oil-source rock correlations and reconstruction of depositional environments. Although no 3-alkyl steroid natural products are currently known, several lines of evidence suggest that 3{beta}-alkyl steroids result from bacterial side-chain additions to diagenetic {delta}{sup 2}-sterenes.« less

  15. Polyimide characterization studies - Effect of pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1984-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  16. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    PubMed Central

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  17. The use of anthracycline at first-line compared to alkylating agents or nucleoside analogs improves the outcome of salvage treatments after relapse in follicular lymphoma The REFOLL study by the Fondazione Italiana Linfomi.

    PubMed

    Rossi, Giuseppe; Marcheselli, Luigi; Dondi, Alessandra; Bottelli, Chiara; Tucci, Alessandra; Luminari, Stefano; Arcaini, Luca; Merli, Michele; Pulsoni, Alessandro; Boccomini, Carola; Puccini, Benedetta; Micheletti, Moira; Martinelli, Giovanni; Rossi, Andrea; Zilioli, Vittorio Ruggero; Bozzoli, Valentina; Balzarotti, Monica; Bolis, Silvia; Cabras, Maria Giuseppina; Federico, Massimo

    2015-01-01

    Follicular lymphoma (FL) patients experience multiple remissions and relapses and commonly receive multiple treatment lines. A crucial question is whether anthracyclines should be used at first-line or whether they would be better "reserved" for relapse and whether FL outcome can be optimized by definite sequences of treatments. Randomized trials can be hardly designed to address this question. In this retrospective multi-institutional study, time-to-next-treatment after first relapse was analyzed in 510 patients who had received either alkylating agents- or anthracycline- or nucleoside analogs-based chemotherapy with/without rituximab at first-line and different second-line therapies. After a median of 42 months, median time-to-next-treatment after relapse was 41 months (CI95%:34-47 months). After adjustment for covariates, first-line anthracycline-based chemotherapy with/without rituximab was associated with better time-to-next-treatment after any salvage than alkylating agents-based chemotherapy with/without rituximab or nucleoside analogs-based chemotherapy with/without rituximab (HR:0.74, P = 0.027). The addition of rituximab to first-line chemotherapy had no significant impact (HR:1.22, P = 0.140). Autologs stem cell transplantation performed better than any other salvage treatment (HR:0.53, P < 0.001). First-line anthracycline-based chemotherapy significantly improved time-to-next-treatment even in patients receiving salvage autologs stem cell transplantation (P = 0.041). This study supports the concept that in FL previous treatments significantly impact on the outcome of subsequent therapies. The outcome of second-line treatments, either with salvage chemoimmunotherapy or with autologs stem cell transplantation, was better when an anthracycline-containing regimen was used at first-line. © 2014 Wiley Periodicals, Inc.

  18. Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Alkyl Grignard Reagents and Identification of Selective Anti-Breast Cancer Agents**

    PubMed Central

    Osborne, Charlotte A.; Moore, Curtis E.; Morrissette, Naomi S.; Jarvo, Elizabeth R.

    2014-01-01

    β-Hydrogen-containing alkyl Grignard reagents were used in a stereospecific nickel-catalyzed cross-coupling reaction to form sp3–sp3 carbon–carbon bonds. Aryl Grignard reagents were also utilized to synthesize 1,1-diarylalkanes. Several compounds synthesized by this method exhibited selective inhibition of proliferation of MCF-7 breast cancer cells. PMID:24478275

  19. 40 CFR 721.10677 - Alkyl phosphonate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10677 Alkyl phosphonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl phosphonate (PMN P-12-584...

  20. DNA Alkylating Agent Protects Against Spontaneous Hepatocellular Carcinoma Regardless of O6-Methylguanine-DNA Methyltransferase Status.

    PubMed

    Herzig, Maryanne C S; Zavadil, Jessica A; Street, Karah; Hildreth, Kim; Drinkwater, Norman R; Reddick, Traci; Herbert, Damon C; Hanes, Martha A; McMahan, C Alex; Reddick, Robert L; Walter, Christi A

    2016-03-01

    Hepatocellular carcinoma is increasingly important in the United States as the incidence rate rose over the last 30 years. C3HeB/FeJ mice serve as a unique model to study hepatocellular carcinoma tumorigenesis because they mimic human hepatocellular carcinoma with delayed onset, male gender bias, approximately 50% incidence, and susceptibility to tumorigenesis is mediated through multiple genetic loci. Because a human O(6)-methylguanine-DNA methyltransferase (hMGMT) transgene reduces spontaneous tumorigenesis in this model, we hypothesized that hMGMT would also protect from methylation-induced hepatocarcinogenesis. To test this hypothesis, wild-type and hMGMT transgenic C3HeB/FeJ male mice were treated with two monofunctional alkylating agents: diethylnitrosamine (DEN; 0.025 μmol/g body weight) on day 12 of life with evaluation for glucose-6-phosphatase-deficient (G6PD) foci at 16, 24, and 32 weeks or N-methyl-N-nitrosurea (MNU; 25 mg MNU/kg body weight) once monthly for 7 months starting at 3 months of age with evaluation for liver tumors at 12 to 15 months of age. No difference in abundance or size of G6PD foci was measured with DEN treatment. In contrast, it was unexpectedly found that MNU reduces liver tumor prevalence in wild-type and hMGMT transgenic mice despite increased tumor prevalence in other tissues. hMGMT and MNU protections were additive, suggesting that MNU protects through a different mechanism, perhaps through the cytotoxic N7-alkylguanine and N3-alkyladenine lesions which have low mutagenic potential compared with O(6)-alkylguanine lesions. Together, these results suggest that targeting the repair of cytotoxic lesions may be a good preventative for patients at high risk of developing hepatocellular carcinoma. ©2015 American Association for Cancer Research.

  1. PREPARATION OF ALKYL PYROPHOSPHATE EXTRACTANTS

    DOEpatents

    Levine, C.A.; Skiens, W.E.; Moore, G.R.

    1960-08-01

    A process for providing superior solvent extractants for metal recovery processes is given wherein the extractant comprises an alkyl pyrophosphoric acid ester dissolved in an organic solvent diluent. Finely divided solid P/sub 2/O/ sub 5/ is slurried in an organic solvent-diluent selected from organic solvents such as kerosene, benzene, chlorobenzene, toluene, etc. An alcohol selected from the higher alcohols having 4 to 17 carbon atoms. e.g.. hexanol-1. heptanol-3, octanol-1. 2.6-dimethyl-heptanol-4, and decanol-1, is rapidly added to the P/sub 2/O/sub 5/ slurry in the amount of about 2 moles of alcohol to 1 mole of P/sub 2/ O/sub 5/. The temperature is maintained below about 110 deg C during the course of the P/sub 2/O/sub 5/-alcohol reaction. An alkyl pyrophosphate extractant compound is formed as a consequence of the reaction process. The alkyl pyrophosphate solvent-diluent extractant phase is useful in solvent extraction metal recovery processes.

  2. Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: relevance of their surface active properties and of the type of emulsifier.

    PubMed

    González, María J; Medina, Isabel; Maldonado, Olivia S; Lucas, Ricardo; Morales, Juan C

    2015-09-15

    The antioxidant activity of gallic acid and a series of alkyl gallates (C4-C18) and glycosylated alkyl gallates (C4-C18) on fish oil-in-water emulsions was studied. Three types of emulsifiers, lecithin, Tween-20 and sodium dodecyl sulphate (SDS) were tested. A nonlinear behavior of the antioxidant activity of alkyl gallates when increasing alkyl chain length was observed for emulsions prepared with lecithin. Medium-size alkyl gallates (C6-C12) were the best antioxidants. In contrast, for emulsions prepared with Tween-20, the antioxidants seem to follow the polar paradox. Glucosyl alkyl gallates were shown previously to be better surfactants than alkyl gallates. Nevertheless, they exhibited a worse antioxidant capacity than their corresponding alkyl gallates, in emulsions prepared with lecithin or Tween-20, indicating the greater relevance of having three OH groups at the polar head in comparison with having improved surfactant properties but just a di-ortho phenolic structure in the antioxidant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Cyclophosphamide's addition in relapsed/refractory multiple myeloma patients with biochemical progression during lenalidomide-dexamethasone treatment.

    PubMed

    Cesini, Laura; Siniscalchi, Agostina; Grammatico, Sara; Andriani, Alessandro; Fiorini, Alessia; De Rosa, Luca; Za, Tommaso; Rago, Angela; Caravita, Tommaso; Petrucci, Maria Teresa

    2018-05-02

    The aim of this study was to evaluate the addition of cyclophosphamide in relapsed-refractory multiple myeloma patients (RRMM) who experienced biochemical relapse or progression without CRAB, during treatment with lenalidomide and dexamethasone (Rd), to slow down the progression in active relapse. This analysis included 31 patients with RRMM treated with Rd who received cyclophosphamide (CRd) at biochemical relapse. The CRd regimen was continued until disease progression. The median number of CRd cycles administered was 8 (range: 1-35). A response was observed in 9 (29%) patients. After a median observation time of 11 months, the median overall survival (OS) from the beginning of CRd was 17.7 months. The median progression-free survival (PFS) from the beginning of CRd was 13.1 months. The addition of cyclophosphamide delays the progression in patients who present a biochemical relapse during Rd treatment. The response rate and the duration of PFS obtained with minimal toxicities and low costs induced us to setting up a randomized clinical trial. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Effect of the C-2 hydroxyl group on the mesomorphism of alkyl glycosides: synthesis and thermotropic behavior of alkyl 2-deoxy-D-arabino-hexopyranosides.

    PubMed

    Singh, Madan Kumar; Jayaraman, Narayanaswamy; Rao, D S Shankar; Prasad, S Krishna

    2008-10-01

    A homologous series of alkyl 2-deoxy-alpha-d-arabino-hexopyranosides and alkyl 2-deoxy-beta-d-arabino-hexopyranosides were synthesized, upon glycosylation of 1-alkanols (from C8 to C18 alkanols) with ethyl 2-deoxy-3,4,6-tri-O-acetyl-1-thio-d-arabino-hexopyranoside, followed by a deprotection. The thermotropic behavior of these new types of alkyl glycosides was investigated. It was observed that the beta-anomers of these alkyl glycosides, bearing nonyl to tetradecyl alkyl chain are mesomorphic, exhibiting monotropic smectic A phase. In contrast, the alpha-anomers are all non-mesomorphic. An effort to identify the liquid crystalline behavior of binary mixtures of the alpha- and beta-anomers was undertaken and it was found that mixtures containing equimolar amounts of the anomers exhibited mesomorphic behavior. A fine balance of the hydrophilic and hydrophobic components within the molecule is also found to be important for the alkyl 2-deoxy glycosides to form the mesophase.

  5. Direct N-alkylation of unprotected amino acids with alcohols

    PubMed Central

    Yan, Tao; Feringa, Ben L.; Barta, Katalin

    2017-01-01

    N-alkyl amino acids find widespread application as highly valuable, renewable building blocks. However, traditional synthesis methodologies to obtain these suffer from serious limitations, providing a major challenge to develop sustainable alternatives. We report the first powerful catalytic strategy for the direct N-alkylation of unprotected α-amino acids with alcohols. This method is highly selective, produces water as the only side product leading to a simple purification procedure, and a variety of α-amino acids are mono- or di-N-alkylated, in most cases with excellent retention of optical purity. The hydrophobicity of the products is tunable, and even simple peptides are selectively alkylated. An iron-catalyzed route to mono-N-alkyl amino acids using renewable fatty alcohols is also described that represents an ideal green transformation for obtaining fully bio-based surfactants. PMID:29226249

  6. Anti-cancer agents based on N-acyl-2, 3-dihydro-1H-pyrrolo[2,3-b] quinoline derivatives and a method of making

    DOEpatents

    Gakh, Andrei; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V

    2013-04-16

    The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. In particular, the invention relates to N-acyl derivatives of 2,3-dihydro-1H-pyrrolo[2,3-b]quinolines having the structural Formula (I), ##STR00001## stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. The meaning of R1 is independently selected from H; C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl substituents; R2 is selected from C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl; substituted or non-substituted, fused or non-fused to substituted or non-substituted aromatic ring, aryl or heteroaryl groups. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  7. Salvage of failed protein targets by reductive alkylation.

    PubMed

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.

  8. Salvage of Failed Protein Targets by Reductive Alkylation

    PubMed Central

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719

  9. 21 CFR 178.3400 - Emulsifiers and/or surface-active agents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... paperboard. α-[p-(1,1,3,3-Tetramethylbutyl)phenyl] omega-hydroxypoly(oxyethylene) produced by the... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Emulsifiers and/or surface-active agents. 178.3400... substances: List of substances Limitations α-Alkyl-, α-alkenyl-, and α-alkylaryl-omega-hydroxypoly...

  10. Cyclophosphamide priming reduces intestinal damage in man following high dose melphalan chemotherapy.

    PubMed Central

    Selby, P. J.; Lopes, N.; Mundy, J.; Crofts, M.; Millar, J. L.; McElwain, T. J.

    1987-01-01

    A small pre-treatment 'priming' dose of cyclophosphamide will reduce gut damage due to high dose i.v. melphalan in mice and sheep but efforts to demonstrate this effect in man have been hampered by difficulty in the measurement of gut damage. We have evaluated the 51CR EDTA absorption test, a new method for measuring intestinal permeability, as a means of assessing damage due to high dose melphalan. The test was reliable, with a narrow normal range, easy to use and well tolerated. It detected an increase in intestinal permeability after high dose melphalan with a maximum occurring between 9 and 15 days after treatment and subsequently returning to normal. It was shown in 19 patients that a pre-treatment dose of cyclophosphamide was capable of significantly reducing the abnormalities in intestinal permeability which resulted from high dose melphalan. PMID:3111515

  11. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  12. Pilot Study of Adding Vincristine, Topotecan, and Cyclophosphamide to Interval-Compressed Chemotherapy in Newly Diagnosed Patients With Localized Ewing Sarcoma: A Report From the Children's Oncology Group.

    PubMed

    Mascarenhas, Leo; Felgenhauer, Judy L; Bond, Mason C; Villaluna, Doojduen; Femino, Joseph Dominic; Laack, Nadia N; Ranganathan, Sarangarajan; Meyer, James; Womer, Richard B; Gorlick, Richard; Krailo, Mark D; Marina, Neyssa

    2016-03-01

    The combination of topotecan and cyclophosphamide is active in relapsed Ewing sarcoma family of tumors (ESFT). The feasibility of adding these agents combined with vincristine (vincristine-topotecan-cyclophosphamide [VTc]) to standard five-drug chemotherapy with vincristine-doxorubicin-cyclophosphamide (VDC) and ifosfamide-etoposide (IE) administered in an interval-compressed (2-week instead of 3-week intervals) schedule was investigated. Newly diagnosed patients with localized ESFT < 31 years, with good performance status and adequate organ function were eligible. Seventeen alternating cycles of chemotherapy with VTc, VDC, and IE were administered at 2-week intervals. Local control (LC) of the primary tumor occurred following six cycles. Primary endpoints were the ability to deliver chemotherapy in an interval-compressed schedule, and the rate of grade 3 or greater nonhematologic toxicity and grade 4 hematologic toxicity, which delayed chemotherapy by ≥2 weeks. Secondary endpoints were event-free survival (EFS) and overall survival (OS). Thirty-five patients with a median age of 11 years were enrolled. The mean time to last dose of chemotherapy prior to LC was 12.6 ± 1.4 weeks and 45.5% of patients received intended chemotherapy without any delay prior to LC. There were no toxic deaths or unexpected toxicities. Five-year EFS was 79.6% (95% confidence interval [CI]: 61.8-89.7%) and 5-year OS was 88% (95% CI: 71.4-95.3%). The addition of VTc to standard therapy was tolerable with sufficient interval compression compared to historical standard 3-week cycles. © 2015 Wiley Periodicals, Inc.

  13. Identification of alkyl carbazoles and alkyl benzocarbazoles in Brazilian petroleum derivatives.

    PubMed

    Oliveira, Eniz Conceição; Vaz de Campos, Maria Cecília; Rodrigues, Maria Regina Alves; Pérez, Valéria Flores; Melecchi, Maria Inês Soares; Vale, Maria Goreti Rodrigues; Zini, Cláudia Alcaraz; Caramão, Elina Bastos

    2006-02-10

    Carbozoles are important compounds in crude oils, as they may be used as geochemical tracers, being the major type of nitrogen compounds in petroleum. At the same time, they are regarded as undesirable due to the problems they may cause in the refining process, such as catalyst poisoning, corrosion, gum or color formation in final products. As separation and identification of carbazoles are challenging goals, this work presents a chromatographic method, made of a pre-fractionation on neutral alumina followed by the separation and identification of two classes of carbazoles using FeCl(3)/Chromossorb W and gas chromatograph with mass spectrometer (GC/MS) (SIM-single ion monitoring mode) analysis. For the first time, a series of alkyl carbazoles and alkyl benzocarbazoles were identified in heavy gas oil (HGO) and atmospheric residue of distillation (ARD) obtained from Brazilian petroleum.

  14. Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice

    PubMed Central

    Ganguly, Sudipto; Ross, Duncan B.; Panoskaltsis-Mortari, Angela; Kanakry, Christopher G.; Blazar, Bruce R.; Levy, Robert B.

    2014-01-01

    Posttransplantation cyclophosphamide (PTCy) is an effective prophylaxis against graft-versus-host disease (GVHD). However, it is unknown whether PTCy works singularly by eliminating alloreactive T cells via DNA alkylation or also by restoring the conventional (Tcon)/regulatory (Treg) T-cell balance. We studied the role of Tregs in PTCy-mediated GVHD prophylaxis in murine models of allogeneic blood or marrow transplantation (alloBMT). In 2 distinct MHC-matched alloBMT models, infusing Treg-depleted allografts abrogated the GVHD-prophylactic activity of PTCy. Using allografts in which Foxp3+ Tregs could be selectively depleted in vivo, either pre- or post-PTCy ablation of donor thymus–derived Tregs (tTregs) abolished PTCy protection against GVHD. PTCy treatment was associated with relative preservation of donor Tregs. Experiments using combinations of Foxp3– Tcons and Foxp3+ Tregs sorted from different Foxp3 reporter mice indicated that donor Treg persistence after PTCy treatment was predominantly caused by survival of functional tTregs that retained Treg-specific demethylation and also induction of peripherally derived Tregs. Finally, adoptive transfer of tTregs retrieved from PTCy-treated chimeras rescued PTCy-treated, Treg-depleted recipients from lethal GVHD. Our findings indicate that PTCy-mediated protection against GVHD is not singularly dependent on depletion of donor alloreactive T cells but also requires rapidly recovering donor Tregs to initiate and maintain alloimmune regulation. PMID:25139358

  15. 40 CFR 721.10548 - Mixed alkyl phosphate esters alkoxylated (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed alkyl phosphate esters... Specific Chemical Substances § 721.10548 Mixed alkyl phosphate esters alkoxylated (generic). (a) Chemical... as mixed alkyl phosphate esters alkoxylated (PMN P-04-624) is subject to reporting under this section...

  16. 40 CFR 721.10548 - Mixed alkyl phosphate esters alkoxylated (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed alkyl phosphate esters... Specific Chemical Substances § 721.10548 Mixed alkyl phosphate esters alkoxylated (generic). (a) Chemical... as mixed alkyl phosphate esters alkoxylated (PMN P-04-624) is subject to reporting under this section...

  17. Fetal cyclophosphamide exposure induces testicular cancer and reduced spermatogenesis and ovarian follicle numbers in mice.

    PubMed

    Comish, Paul B; Drumond, Ana Luiza; Kinnell, Hazel L; Anderson, Richard A; Matin, Angabin; Meistrich, Marvin L; Shetty, Gunapala

    2014-01-01

    Exposure to radiation during fetal development induces testicular germ cell tumors (TGCT) and reduces spermatogenesis in mice. However, whether DNA damaging chemotherapeutic agents elicit these effects in mice remains unclear. Among such agents, cyclophosphamide (CP) is currently used to treat breast cancer in pregnant women, and the effects of fetal exposure to this drug manifested in the offspring must be better understood to offer such patients suitable counseling. The present study was designed to determine whether fetal exposure to CP induces testicular cancer and/or gonadal toxicity in 129 and in 129.MOLF congenic (L1) mice. Exposure to CP on embryonic days 10.5 and 11.5 dramatically increased TGCT incidence to 28% in offspring of 129 mice (control value, 2%) and to 80% in the male offspring of L1 (control value 33%). These increases are similar to those observed in both lines of mice by radiation. In utero exposure to CP also significantly reduced testis weights at 4 weeks of age to ∼ 70% of control and induced atrophic seminiferous tubules in ∼ 30% of the testes. When the in utero CP-exposed 129 mice reached adulthood, there were significant reductions in testicular and epididymal sperm counts to 62% and 70%, respectively, of controls. In female offspring, CP caused the loss of 77% of primordial follicles and increased follicle growth activation. The results indicate that i) DNA damage is a common mechanism leading to induction of testicular cancer, ii) increased induction of testis cancer by external agents is proportional to the spontaneous incidence due to inherent genetic susceptibility, and iii) children exposed to radiation or DNA damaging chemotherapeutic agents in utero may have increased risks of developing testis cancer and having reduced spermatogenic potential or diminished reproductive lifespan.

  18. Fetal Cyclophosphamide Exposure Induces Testicular Cancer and Reduced Spermatogenesis and Ovarian Follicle Numbers in Mice

    PubMed Central

    Comish, Paul B.; Drumond, Ana Luiza; Kinnell, Hazel L.; Anderson, Richard A.; Matin, Angabin; Meistrich, Marvin L.; Shetty, Gunapala

    2014-01-01

    Exposure to radiation during fetal development induces testicular germ cell tumors (TGCT) and reduces spermatogenesis in mice. However, whether DNA damaging chemotherapeutic agents elicit these effects in mice remains unclear. Among such agents, cyclophosphamide (CP) is currently used to treat breast cancer in pregnant women, and the effects of fetal exposure to this drug manifested in the offspring must be better understood to offer such patients suitable counseling. The present study was designed to determine whether fetal exposure to CP induces testicular cancer and/or gonadal toxicity in 129 and in 129.MOLF congenic (L1) mice. Exposure to CP on embryonic days 10.5 and 11.5 dramatically increased TGCT incidence to 28% in offspring of 129 mice (control value, 2%) and to 80% in the male offspring of L1 (control value 33%). These increases are similar to those observed in both lines of mice by radiation. In utero exposure to CP also significantly reduced testis weights at 4 weeks of age to ∼70% of control and induced atrophic seminiferous tubules in ∼30% of the testes. When the in utero CP-exposed 129 mice reached adulthood, there were significant reductions in testicular and epididymal sperm counts to 62% and 70%, respectively, of controls. In female offspring, CP caused the loss of 77% of primordial follicles and increased follicle growth activation. The results indicate that i) DNA damage is a common mechanism leading to induction of testicular cancer, ii) increased induction of testis cancer by external agents is proportional to the spontaneous incidence due to inherent genetic susceptibility, and iii) children exposed to radiation or DNA damaging chemotherapeutic agents in utero may have increased risks of developing testis cancer and having reduced spermatogenic potential or diminished reproductive lifespan. PMID:24691397

  19. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  20. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  1. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  2. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  3. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  4. 40 CFR 721.10493 - Tris-alkyl-alkoxy melamine polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tris-alkyl-alkoxy melamine polymer... Specific Chemical Substances § 721.10493 Tris-alkyl-alkoxy melamine polymer (generic). (a) Chemical... as tris-alkyl-alkoxy melamine polymer (PMN P-05-417) is subject to reporting under this section for...

  5. 40 CFR 721.10493 - Tris-alkyl-alkoxy melamine polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tris-alkyl-alkoxy melamine polymer... Specific Chemical Substances § 721.10493 Tris-alkyl-alkoxy melamine polymer (generic). (a) Chemical... as tris-alkyl-alkoxy melamine polymer (PMN P-05-417) is subject to reporting under this section for...

  6. Selective alkylation of T–T mismatched DNA using vinyldiaminotriazine–acridine conjugate

    PubMed Central

    Onizuka, Kazumitsu; Usami, Akira; Yamaoki, Yudai; Kobayashi, Tomohito; Hazemi, Madoka E; Chikuni, Tomoko; Sato, Norihiro; Sasaki, Kaname; Katahira, Masato

    2018-01-01

    Abstract The alkylation of the specific higher-order nucleic acid structures is of great significance in order to control its function and gene expression. In this report, we have described the T–T mismatch selective alkylation with a vinyldiaminotriazine (VDAT)–acridine conjugate. The alkylation selectively proceeded at the N3 position of thymidine on the T–T mismatch. Interestingly, the alkylated thymidine induced base flipping of the complementary base in the duplex. In a model experiment for the alkylation of the CTG repeats DNA which causes myotonic dystrophy type 1 (DM1), the observed reaction rate for one alkylation increased in proportion to the number of T–T mismatches. In addition, we showed that primer extension reactions with DNA polymerase and transcription with RNA polymerase were stopped by the alkylation. The alkylation of the repeat DNA will efficiently work for the inhibition of replication and transcription reactions. These functions of the VDAT–acridine conjugate would be useful as a new biochemical tool for the study of CTG repeats and may provide a new strategy for the molecular therapy of DM1. PMID:29309639

  7. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl Grignard reagents and identification of selective anti-breast-cancer agents.

    PubMed

    Yonova, Ivelina M; Johnson, A George; Osborne, Charlotte A; Moore, Curtis E; Morrissette, Naomi S; Jarvo, Elizabeth R

    2014-02-24

    Alkyl Grignard reagents that contain β-hydrogen atoms were used in a stereospecific nickel-catalyzed cross-coupling reaction to form C(sp(3))-C(sp(3)) bonds. Aryl Grignard reagents were also utilized to synthesize 1,1-diarylalkanes. Several compounds synthesized by this method exhibited selective inhibition of proliferation of MCF-7 breast cancer cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  9. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  10. BOT-4-one attenuates NLRP3 inflammasome activation: NLRP3 alkylation leading to the regulation of its ATPase activity and ubiquitination.

    PubMed

    Shim, Do-Wan; Shin, Woo-Young; Yu, Sang-Hyeun; Kim, Byung-Hak; Ye, Sang-Kyu; Koppula, Sushruta; Won, Hyung-Sik; Kang, Tae-Bong; Lee, Kwang-Ho

    2017-11-08

    The ATPase activity of NLRP3 has pivotal role in inflammasome activation and is recognized as a good target for the development of the NLRP3 inflammasome-specific inhibitor. However, signals in the vicinity of the ATPase activity of NLRP3 have not been fully elucidated. Here, we demonstrate NLRP3 inflammasome-specific action of a benzoxathiole derivative, BOT-4-one. BOT-4-one exhibited an inhibition of NLRP3 inflammasome activation, which was attributable to its alkylating capability to NLRP3. In particular, the NLRP3 alkylation by BOT-4-one led to an impaired ATPase activity of NLRP3, thereby obstructing the assembly of the NLRP3 inflammasome. Additionally, we found that NLRP3 alkylators, including BOT-4-one, enhance the ubiquitination level of NLRP3, which might also contribute to the inhibition of NLRP3 inflammasome activation. Finally, BOT-4-one appeared to be superior to other known NLRP3 alkylators in inhibiting the functionality of the NLRP3 inflammasome and its resulting anti-inflammatory activity was confirmed in vivo using a monosodium urate-induced peritonitis mouse model. Collectively, the results suggest that NLRP3 alkylators function by inhibiting ATPase activity and increasing the ubiquitination level of NLRP3, and BOT-4-one could be the type of NLRP3 inhibitor that may be potentially useful for the novel development of a therapeutic agent in controlling NLRP3 inflammasome-related diseases.

  11. Structure-biocompatibility and transfection activity relationships of cationic polyaspartamides with (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups.

    PubMed

    Salakhieva, Diana; Shevchenko, Vesta; Németh, Csaba; Gyarmati, Benjámin; Szilágyi, András; Abdullin, Timur

    2017-01-30

    A series of 14 cationic derivatives of poly(aspartic acid) i.e. cationic polyaspartamides with different (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups was synthesized by nucleophilic addition on polysuccinimide. The resulting polyaspartamides have moderate amphiphilic properties. Relationships between the structure and ratio of side groups and in vitro properties of polyaspartamides, including their cytotoxic and membrane-damaging activity towards human cell lines, primary skin fibroblasts and erythrocytes, were established and discussed. Cationic polyaspartamides vary in their DNA-binding, condensing and nuclease-protecting characteristics depending on the concentration ratio of (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups. Effective cell transfection was achieved upon polyaspartamide-mediated plasmid DNA delivery in serum-free medium in the presence of chloroquine. Effect of serum proteins adsorption onto polyaspartamide based polyplexes, and the role of concentration of polyplexes in culture medium in their colloidal stability and transfection process were demonstrated. Synthesized polyaspartamides are biocompatible and long-acting gene carriers, which are applied to cells after dilution and without washing, thus providing transfection level comparable to that of commercial transfection reagent. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. 40 CFR 721.10711 - Alkyl substituted catechol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10711 Alkyl substituted catechol (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  13. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this section...

  14. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this section...

  15. Effect of alkyl chain length on the rotational diffusion of nonpolar and ionic solutes in 1-alkyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imides.

    PubMed

    Gangamallaiah, V; Dutt, G B

    2013-10-10

    Rotational diffusion of a nonpolar solute 9-phenylanthracene (9-PA) and a cationic solute rhodamine 110 (R110) has been examined in a series of 1-alkyl-3-methylimidazolium (alkyl = octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl) bis(trifluoromethylsulfonyl)imides to understand the influence of alkyl chain length on solute rotation. In this study, reorientation times (τr) have been measured as a function of viscosity (η) by varying the temperature (T) of the solvents. These results have been analyzed using the Stokes-Einstein-Debye (SED) hydrodynamic theory along with the ones obtained for the same solutes in 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides (Gangamallaiah and Dutt, J. Phys. Chem. B 2012, 116, 12819-12825). It has been noticed that the data for 9-PA and R110 follows the relation τr = A(η/T)(n) with A being the ratio of hydrodynamic volume of the solute to the Boltzmann constant and n = 1 as envisaged by the SED theory. However, upon increasing the alkyl chain length from methyl to octadecyl significant deviations from the SED theory have been observed especially from the octyl derivative onward. From methyl to octadecyl derivatives, the value of A decreases by a factor of 3 for both the solutes and n by a factor of 1.4 and 1.6 for 9-PA and R110, respectively. These observations have been rationalized by taking into consideration the organized structure of the ionic liquids, whose influence appears to be pronounced when the number of carbon atoms in the alkyl chain attached to the imidazolium cation exceeds eight.

  16. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    PubMed

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Lithium perchlorate-nitromethane-promoted alkylation of anilines with arylmethanols.

    PubMed

    Zhou, Jun; Mao, Hai-Feng; Wang, Lu; Zou, Jian-Ping; Zhang, Wei

    2011-11-01

    A new application of lithium perchlorate-nitromethane (LPNM) for the formation of aromatic C-N and C-C bonds is introduced. LPNM-promoted reactions of anilines with diarylmethanols selectively generate N-alkylated anilines or mono and double Friedel-Crafts alkylation products under different conditions by changing the reaction time, reaction temperature, and the ratio of the reactants. This method does not require the use of transition metal catalysts to prepare alkylated aniline derivatives.

  18. Nature of the Elimination of the Penicillinase Plasmid from Staphylococcus aureus by Surface-Active Agents

    PubMed Central

    Sonstein, Stephen A.; Baldwin, J. N.

    1972-01-01

    Growth of Stapylococcus aureus in various ionic surface-active agents resulted in loss of the ability to produce penicillinase, whereas growth in nonionic surface-active agents had no effect on penicillinase production. The curing effect of various alkyl sulfates was found to be dependent upon the chain length. Curing by surface-active agents could be inhibited by magnesium. Reciprocal transduction experiments showed that curing by a surface-active agent was a property of the plasmid, not of the bacterial strain in which the plasmic resides. PMID:4204903

  19. Chiral Brønsted Base-Promoted Nitroalkane Alkylation: Enantioselective Synthesis of sec-Alkyl-3-Substituted Indoles

    PubMed Central

    Dobish, Mark C.; Johnston, Jeffrey N.

    2010-01-01

    A Brønsted base-catalyzed reaction of nitroalkanes with alkyl electrophiles provides indole heterocycles substituted at C3 bearing a sec-alkyl group with good enantioselectivity (up to 90% ee). Denitration by hydrogenolysis provides a product with equally high ee. An indolenine intermediate is implicated in the addition step, and surprisingly, water cosolvent was found to have a beneficial effect in this step, leading to a one-pot protocol for elimination/enantioselective addition using PBAM, a bis(amidine) chiral nonracemic base. PMID:21090654

  20. Distinct pathways for repairing mutagenic lesions induced by methylating and ethylating agents

    PubMed Central

    Negishi, Tomoe

    2013-01-01

    DNA alkylation damage can be repaired by nucleotide excision repair (NER), base excision repair (BER) or by direct removal of alkyl groups from modified bases by O 6-alkylguanine DNA alkyltransferase (AGT; E.C. 2.1.1.63). DNA mismatch repair (MMR) is also likely involved in this repair. We have investigated alkylation-induced mutagenesis in a series of NER- or AGT-deficient Escherichia coli strains, alone or in combination with defects in the MutS, MutL or MutH components of MMR. All strains used contained the Fʹprolac from strain CC102 (FʹCC102) episome capable of detecting specifically lac GC to AT reverse mutations resulting from O 6-alkylguanine. The results showed the repair of O 6-methylguanine to be performed by AGT ≫ MMR > NER in order of importance, whereas the repair of O 6-ethylguanine followed the order NER > AGT > MMR. Studies with double mutants showed that in the absence of AGT or NER repair pathways, the lack of MutS protein generally increased mutant frequencies for both methylating and ethylating agents, suggesting a repair or mutation avoidance role for this protein. However, lack of MutL or MutH protein did not increase alkylation-induced mutagenesis under these conditions and, in fact, reduced mutagenesis by the N-alkyl-N-nitrosoureas MNU and ENU. The combined results suggest that little or no alkylation damage is actually corrected by the mutHLS MMR system; instead, an as yet unspecified interaction of MutS protein with alkylated DNA may promote the involvement of a repair system other than MMR to avoid a mutagenic outcome. Furthermore, both mutagenic and antimutagenic effects of MMR were detected, revealing a dual function of the MMR system in alkylation-exposed cells. PMID:23446177

  1. New validated LC-MS/MS method for the determination of three alkylated adenines in human urine and its application to the monitoring of alkylating agents in cigarette smoke.

    PubMed

    Tian, Yongfeng; Hou, Hongwei; Zhang, Xiaotao; Wang, An; Liu, Yong; Hu, Qingyuan

    2014-09-01

    A highly specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for simultaneous determination of urinary N(3)-methyladenine (N(3)-MeA), N(3)-ethyladenine (N(3)-EtA), and N(3)-(2-hydroxyethyl)adenine (N(3)-HOEtA). Chromatographic separation was achieved on a hydrophilic interaction liquid chromatography column, with a mobile phase gradient prepared from aqueous 10 mM ammonium formate-acetonitrile (5:95 v/v, pH 4.0). Quantification of the analytes was done by multiple reaction monitoring using a triple-quadrupole mass spectrometer in positive-ionization mode. The limits of quantification were 0.13, 0.02, and 0.03 ng/mL for N(3)-MeA, N(3)-EtA, and N(3)-HOEtA, respectively. Intraday and interday variations (relative standard deviations) ranged from 0.6 to 1.3 % and from 3.7 to 7.5 %. The recovery ranges of N(3)-MeA, N(3)-EtA, and N(3)-HOEtA in urine were 80.1-97.3 %, 83.3-90.0 %, and 100.0-110.0 %, respectively. The proposed method was successfully applied to urine samples from 251 volunteers including 193 regular smokers and 58 nonsmokers. The results showed that the levels of urinary N(3)-MeA, N(3)-EtA, and N(3)-HOEtA in smokers were significantly higher than those in nonsmokers. Furthermore, the level of urinary N(3)-MeA in smokers was found to be positively correlated with the level of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (r = 0.48, P < 0.001, N = 192). This method is appropriate for routine analysis and accurate quantification of N(3)-MeA, N(3)-EtA, and N(3)-HOEtA. It is also a useful tool for the surveillance of alkylating agent exposure.

  2. Molecular evolution of Theta-class glutathione transferase for enhanced activity with the anticancer drug 1,3-bis-(2-chloroethyl)-1-nitrosourea and other alkylating agents.

    PubMed

    Larsson, Anna-Karin; Shokeer, Abeer; Mannervik, Bengt

    2010-05-01

    Glutathione transferase (GST) displaying enhanced activity with the cytostatic drug 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) and structurally related alkylating agents was obtained by molecular evolution. Mutant libraries created by recursive recombination of cDNA coding for human and rodent Theta-class GSTs were heterologously expressed in Escherichia coli and screened with the surrogate substrate 4-nitrophenethyl bromide (NPB) for enhanced alkyltransferase activity. A mutant with a 70-fold increased catalytic efficiency with NPB, compared to human GST T1-1, was isolated. The efficiency in degrading BCNU had improved 170-fold, significantly more than with the model substrate NPB. The enhanced catalytic activity of the mutant GST was also 2-fold higher with BCNU than wild-type mouse GST T1-1, which is 80-fold more efficient than wild-type human GST T1-1. We propose that GSTs catalyzing inactivation of anticancer drugs may find clinical use in protecting sensitive normal tissues to toxic side-effects in treated patients, and as selectable markers in gene therapy. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Imipenem and normal saline with cyclophosphamide have positive effects on the intestinal barrier in rats with sepsis.

    PubMed

    Yang, Junting; Zhang, Shunwen; Wu, Jiangdong; Zhang, Jie; Dong, Jiangtao; Guo, Peng; Tang, Suyu; Zhang, Wanjiang; Wu, Fang

    2018-06-12

    Sepsis is a life-threatening organ dysfunction caused the dysregulation of host inflammatory response and immunosuppression to infection Early recognition and intervention are hence of paramount importance. In this respect the "sepsis bundle" was proposed in 2004 to be instituted in cases of suspected sepsis. We hypothesised that a combination treatment of the sepsis bundle with cyclophosphamide would improve the function of the intestinal mucosa and enhance survival in rats with induced sepsis. Sprague-Dawley rats were divided into 5 different groups: sham, cecal ligation and puncture (CLP), cyclophosphamide (CTX), imipenem+normal saline (NS) and imipenem+NS+CTX. Cecal ligation and puncture were used for inducing the polymicrobial sepsis. Western-blot was used to measure the occludin protein, and ELISA for examining the plasma level of cytokines IL-6, IL-10 and TNF-α. TUNEL assay for testing the intestinal mucosal apoptosis, and hematoxylin-eosin staining for observing the intestinal mucosal changes. The permeability of intestinal mucosa was determined by the plasma level of FD-70. The results showed that the combination treatment of the sepsis bundle with cyclophosphamide attenuated cytokine levels, inhibited epithelial cell apoptosis and improved the function of the intestinal barrier. The survival rate of the group treated with the combined therapy was significantly higher than that of the other groups. The combination treatment of sepsis bundle with cyclophosphamide improves the function of the intestinal barrier and enhances survival in septic rats.

  4. Antimicrobial activity of N-alkoxycarbonylmethyl-N-alkyl-piperidinium chlorides.

    PubMed

    Woźniak, Edyta; Mozrzymas, Anna; Czarny, Anna; Kocieba, Maja; Rózycka-Roszak, Bozenna; Dega-Szafran, Zofia; Dulewicz, Ewa; Petryna, Magdalena

    2004-01-01

    The aim of the study was to assay antibacterial and antifungal activity of newly synthesised N-alkoxycarbonylmethyl-N-alkyl-piperidinium chlorides. The compounds tested were found to inhibit the growth of some Gram-negative bacteria, Gram-positive strains and some representatives of yeast-type Candida. From microbiological experiments two of the compounds tested, N-dodecyloxycarbonylmethyl-N-methyl-piperidinium chloride (3) and N-dodecyl-N-ethoxycarbonylmethyl-piperidinium chloride (6), emerged as more active than the other compounds. Since the resistance of biofilms to biocides should be noted during the design and testing of new antimicrobial agents therefore, we have analysed antibacterial properties of the most active compounds towards biofilms. Our study focused on strains of Pseudomonas aeruginosa and Staphylococcus aureus that served as main model organisms for the biofilm studies.

  5. Photodegradation of the antineoplastic cyclophosphamide: a comparative study of the efficiencies of UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2 processes.

    PubMed

    Lutterbeck, Carlos Alexandre; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-02-01

    Anticancer drugs are harmful substances that can have carcinogenic, mutagenic, teratogenic, genotoxic, and cytotoxic effects even at low concentrations. More than 50 years after its introduction, the alkylating agent cyclophosphamide (CP) is still one of the most consumed anticancer drug worldwide. CP has been detected in water bodies in several studies and is known as being persistent in the aquatic environment. As the traditional water and wastewater treatment technologies are not able to remove CP from the water, different treatment options such as advanced oxidation processes (AOPs) are under discussion to eliminate these compounds. The present study investigated the degradation of CP by three different AOPs: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. The light source was a Hg medium-pressure lamp. Prescreening tests were carried out and afterwards experiments based on the optimized conditions were performed. The primary elimination of the parent compounds and the detection of transformation products (TPs) were monitored with LC-UV-MS/MS analysis, whereas the degree of mineralization was monitored by measuring the dissolved organic carbon (DOC). Ecotoxicological assays were carried out with the luminescent bacteria Vibrio fischeri. CP was completely degraded in all treatments and UV/Fe(2+)/H2O2 was the fastest process, followed by UV/H2O2 and UV/TiO2. All the reactions obeyed pseudo-first order kinetics. Considering the mineralization UV/Fe(2+)/H2O2 and UV/TiO2 were the most efficient process with mineralization degrees higher than 85%, whereas UV/H2O2 achieved 72.5% of DOC removal. Five transformation products were formed during the reactions and identified. None of them showed significant toxicity against V. fischeri. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Fucoidan and Fucosylated Chondroitin Sulfate Stimulate Hematopoiesis in Cyclophosphamide-Induced Mice.

    PubMed

    Anisimova, Natalia; Ustyuzhanina, Nadezhda; Bilan, Maria; Donenko, Fedor; Usov, Anatolii; Kiselevskiy, Mikhail; Nifantiev, Nikolay

    2017-09-30

    Application of cytostatics in cancer patients' chemotherapy results in a number of side effects, including the inhibition of various parts of hematopoiesis. Two sulfated polysaccharides, fucoidan from the seaweed Chordaria flagelliformis ( PS-Fuc ) and fucosylated chondroitin sulfate from the sea cucumber Massinium magnum ( PS-FCS ), were studied as stimulators of hematopoiesis after cyclophosphamide immunosuppression in mice. Recombinant granulocyte colony-stimulating factor ( r G-CSF ) was applied as a reference. Both tested polysaccharides PS-Fuc and PS-FCS have a similar activity to r G-CSF , causing pronounced neutropoiesis stimulation in animals with myelosuppression induced by cyclophosphamide ( CPh ). Moreover, these compounds are also capable to enhance thrombopoiesis and erythropoiesis. It should be noted that PS-FCS demonstrated a greater activity than r G-CSF . The results indicate the perspective of further studies of PS-Fuc and PS-FCS , since these compounds can be considered as potentially promising stimulators of hematopoiesis. Such drugs are in demand for the accompanying treatment of cancer patients who suffer from hematological toxicity during chemo and/or radiation therapy.

  7. Fragmentation of Electrospray-produced Deprotonated Ions of Oligodeoxyribonucleotides Containing an Alkylated or Oxidized Thymidine

    PubMed Central

    Wang, Pengcheng; Williams, Renee T.; Guerrero, Candace R.; Ji, Debin; Wang, Yinsheng

    2014-01-01

    Alkylation and oxidation constitute major routes of DNA damage induced by endogenous and exogenous genotoxic agents. Understanding the biological consequences of DNA lesions often necessitates the availability of oligodeoxyribonucleotide (ODN) substrates harboring these lesions, and sensitive and robust methods for validating the identities of these ODNs. Tandem mass spectrometry is well suited for meeting these latter analytical needs. In the present study, we evaluated how the incorporation of an ethyl group to different positions (i.e., O2, N3 and O4) of thymine and the oxidation of its 5-methyl carbon impact collisionally activated dissociation (CAD) pathways of electrospray-produced deprotonated ions of ODNs harboring these thymine modifications. Unlike an unmodified thymine, which often manifests poor cleavage of the C3′-O3′ bond, the incorporation of an alkyl group to the O2 position and, to a much lesser extent, the O4 position, but not the N3 position of thymine, led to facile cleavage of the C3′-O3′ bond on the 3′ side of the modified thymine. Similar efficient chain cleavage was observed when thymine was oxidized to 5-formyluracil or 5-carboxyluracil, but not 5-hydroxymethyluracil. Additionally, with the support of computational modeling, we revealed that proton affinity and acidity of the modified nucleobases govern the fragmentation of ODNs containing the alkylated and oxidized thymidine derivatives, respectively. These results provided important insights into the effects of thymine modifications on ODN fragmentation. PMID:24664806

  8. Direct Aldehyde C-H Arylation and Alkylation via the Combination of Nickel, Hydrogen Atom Transfer, and Photoredox Catalysis.

    PubMed

    Zhang, Xiaheng; MacMillan, David W C

    2017-08-23

    A mechanism that enables direct aldehyde C-H functionalization has been achieved via the synergistic merger of photoredox, nickel, and hydrogen atom transfer catalysis. This mild, operationally simple protocol transforms a wide variety of commercially available aldehydes, along with aryl or alkyl bromides, into the corresponding ketones in excellent yield. This C-H abstraction coupling technology has been successfully applied to the expedient synthesis of the medicinal agent haloperidol.

  9. Sleep-inducing N-alkyl-5-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinones and N-alkyl-3-(trifluoromethyl)cinnamamides.

    PubMed

    Houlihan, W J; Gogerty, J H; Ryan, E A; Schmitt, G

    1985-01-01

    A series of N-alkyl-3-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinones and N-alkyl-3-(trifluoromethyl)-cinnamamides were prepared and screened in a series of tests designed to detect potential sleep inducers. The more active members of the series were evaluated for their ability to induce sleep in Cebus monkeys. The most active compound, N-methyl-5-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinone, was equal to methaqualone.

  10. Synthesis and characterization of chitosan alkyl urea.

    PubMed

    Wang, Jing; Jiang, Ji-Zhou; Chen, Wei; Bai, Zheng-Wu

    2016-07-10

    Chitosan is a versatile material employed for various purposes in many fields including the development of chiral stationary phases for enantioseparation. Chitosan alkyl urea is a kind of intermediate used to prepare enantioseparation materials. In order to synthesize the intermediates, in the present work, a new way to prepare chitosan alkyl urea has been established: chitosan was first reacted with methyl chloroformate yielding N-methoxyformylated chitosan, which was then converted to chitosan alkyl urea through amine-ester exchange reaction. With a large excess of methyl chloroformate and primary amine of low stereohindrance, the amino group in chitosan could be almost completely converted to ureido group. The as-prepared chitosan alkyl urea derivatives were characterized by IR, (1)H NMR, (13)C NMR,(1)H-(1)H COSY and (1)H-(13)C HSQC NMR spectra. The chemical shifts of hydrogen and carbon atoms of glucose unit were assigned. It was found that the degree of substitution was obviously lower if cyclopropyl amine, aniline, tert-butyl amine and diethyl amine were used as reactants for the amine-ester exchange reaction. The reason was explained with the aid of theoretical calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Marked improvement of Churg–Strauss syndrome neuropathy by intravenous immunoglobulin and cyclophosphamide

    PubMed Central

    Umeda, Akira; Yamane, Tateki; Takeuchi, Jin; Imai, Yasuo; Suzuki, Keisuke; Yumura, Wako

    2014-01-01

    A 42-year-old Japanese man developed Churg–Strauss syndrome 7 years after being diagnosed with chronic eosinophilic pneumonia. Prominent eosinophilia, subcutaneous nodules, and neuropathy in the left leg were seen. A pathological diagnosis of necrotizing vasculitis was determined by a biopsy of a subcutaneous nodule. The leg pain was severe and there was prominent atrophy of the thigh and calf, but the muscle weakness was mild. Serum anti-myeloperoxidase anti-neutrophil cytoplasmic antibody was positive. Because the initial treatment with an intravenous methylprednisolone pulse at 1 g/day for 3 days was not sufficient, a onetime treatment with intravenous cyclophosphamide at 15 mg/kg and intravenous immunoglobulin therapy (IVIG) at 400 mg/kg/day for 5 days were administered. Peripheral eosinophilia improved and the leg pain significantly improved. IVIG was repeated 1 month later and symptoms gradually improved further. The early diagnosis of Churg–Strauss syndrome and the early initiation of IVIG with cyclophosphamide were thought to be important. PMID:25473575

  12. Influence of nicotine on doxorubicin and cyclophosphamide combination treatment-induced spatial cognitive impairment and anxiety-like behavior in rats.

    PubMed

    Kitamura, Yoshihisa; Kanemoto, Erika; Sugimoto, Misaki; Machida, Ayumi; Nakamura, Yuka; Naito, Nanami; Kanzaki, Hirotaka; Miyazaki, Ikuko; Asanuma, Masato; Sendo, Toshiaki

    2017-04-01

    In the present study, we examined the effects of nicotine on cognitive impairment, anxiety-like behavior, and hippocampal cell proliferation in rats treated with a combination of doxorubicin and cyclophosphamide. Combined treatment with doxorubicin and cyclophosphamide produced cognitive impairment and anxiety-like behavior in rats. Nicotine treatment reversed the inhibition of novel location recognition induced by the combination treatment. This effect of nicotine was blocked by methyllycaconitine, a selective α7 nicotinic acetylcholine receptor (nAChR) antagonist, and dihydro-β-erythroidine, a selective α4β2 nAChR antagonist. In addition, nicotine normalized the amount of spontaneous alternation seen during the Y-maze task, which had been reduced by the combination treatment. This effect of nicotine was inhibited by dihydro-β-erythroidine. In comparison, nicotine did not affect the anxiety-like behavior induced by the combination treatment. Furthermore, the combination treatment reduced the number of proliferating cells in the subgranular zone of the hippocampal dentate gyrus, and this was also prevented by nicotine. Finally, the combination of doxorubicin and cyclophosphamide significantly reduced hippocampal α7 nAChR mRNA expression. These results suggest that nicotine inhibits doxorubicin and cyclophosphamide-induced cognitive impairment via α7 nAChR and α4β2 nAChR, and also enhances hippocampal neurogenesis.

  13. Assessment of murine bladder permeability with fluorescein: validation with cyclophosphamide and protamine.

    PubMed

    Eichel, L; Scheidweiler, K; Kost, J; Shojaie, J; Schwarz, E; Messing, E; Wood, R

    2001-07-01

    Bladder hyperpermeability should result in elevated blood levels of intravesically administered agents. Reabsorption from a hyperpermeable bladder should result in prolonged urinary excretion of an agent after parenteral administration. To test these hypotheses, urinary clearance and plasma levels of sodium fluorescein (NaF) were measured in mice before and during cyclophosphamide (CYP) and protamine-induced hemorrhagic cystitis. To measure the plasma uptake of NaF from the bladder, 10 mg/mL NaF was instilled, either by catheter or retrograde urethral infusion, 15 minutes before retro-orbital or ventricular sampling. The plasma levels were measured 24 hours and 14 days after exposure to CYP 300 mg/kg or 15 minutes after instillation of protamine 10 mg/mL. Hourly urine concentrations were measured immediately after intraperitoneal administration of 10 mg/kg NaF. Pretreatment samples were compared with those obtained 24 hours after intraperitoneal administration of 300 mg/kg CYP. Urinary NaF excretion was delayed in CYP-exposed mice. A bi-exponential model provided an appropriate fit of the data, both before and after CYP administration. The plasma levels of NaF were significantly elevated at 24 hours and 14 days after CYP exposure when sampled by ventricular nick or retro-orbitally. The median concentration of fluorescein in the protamine-treated mice was significantly higher than in the control mice. Fluorescein can be used to measure alterations in bladder permeability after bladder mucosal injury in mice. Urinary excretion of NaF is a bi-exponential process that is delayed after bladder mucosal injury, presumably because of increased mucosal permeability and resorption from the urine into the bloodstream.

  14. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C.-P.; Fang, W.-H.; Lin, L.-I.

    2008-03-15

    Cytotoxic alkyl hydroquinone compounds have been isolated from many plants. We previously isolated 3 structurally similar cytotoxic alkyl hydroquinone compounds from the sap of the lacquer tree Rhus succedanea L. belonging to the sumac family, which have a long history of medicinal use in Asia. Each has an unsaturated alkyl chain attached to the 2-position of a hydroquinone ring. One of these isolates, 10'(Z),13'(E),15'(E)-heptadecatrienylhydroquinone [HQ17(3)], being the most cytotoxic, was chosen for studying the anticancer mechanism of these compounds. We found that HQ17(3) was a topoisomerase (Topo) II poison. It irreversibly inhibited Topo II{alpha} activity through the accumulation of Topomore » II-DNA cleavable complexes. A cell-based assay showed that HQ17(3) inhibited the growth of leukemia HL-60 cells with an EC{sub 50} of 0.9 {mu}M, inhibited the topoisomerase-II-deficient cells HL-60/MX2 with an EC{sub 50} of 9.6 {mu}M, and exerted no effect on peripheral blood mononuclear cells at concentrations up to 50 {mu}M. These results suggest that Topo II is the cellular drug target. In HL-60 cells, HQ17(3) promptly inhibited DNA synthesis, induced chromosomal breakage, and led to cell death with an EC{sub 50} about one-tenth that of hydroquinone. Pretreatment of the cells with N-acetylcysteine could not attenuate the cytotoxicity and DNA damage induced by HQ17(3). However, N-acetylcysteine did significantly reduce the cytotoxicity of hydroquinone. In F344 rats, intraperitoneal injection of HQ17(3) for 28 days induced no clinical signs of toxicity. These results indicated that HQ17(3) is a potential anticancer agent, and its structural features could be a model for anticancer drug design.« less

  15. 78 FR 47321 - Determination That CYTOXAN (Cyclophosphamide) for Injection Was Not Withdrawn From Sale for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ..., Hodgkin's disease, lymphocytic lymphoma, mixed-cell type lymphoma, histiocytic lymphoma, Burkitt's... marketing for reasons other than safety or effectiveness. ANDAs that refer to CYTOXAN (cyclophosphamide) for...

  16. Fever after peripheral blood stem cell infusion in haploidentical transplantation with post-transplant cyclophosphamide.

    PubMed

    Arango, Marcos; Combariza, Juan F

    2017-06-01

    Noninfection-related fever can occur after peripheral blood stem cell infusion in haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide. The objective of this study was to analyze the incidence of fever and characterize some clinical features of affected patients. A retrospective case-series study with 40 patients who received haploidentical hematopoietic stem cell transplantation was carried out. Thirty-three patients (82.5%) developed fever; no baseline characteristic was associated with its development. Median time to fever onset was 25.5h (range, 9.5-100h) and median peak temperature was 39.0°C (range, 38.1-40.5°C). Not a single patient developed hemodynamic or respiratory compromise that required admission to the intensive care unit. Fever was not explained by infection in any case. Ninety-one percent of the febrile episodes resolved within 96h of cyclophosphamide administration. No significant difference in overall survival, event-free survival, or graft versus host disease-free/relapse-free survival was found in the group of febrile individuals after peripheral blood stem cell infusion. Fever after peripheral blood stem cell infusion in this clinical setting was common; it usually subsides with cyclophosphamide administration. The development of fever was not associated with an adverse prognosis. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  17. INCREASE IN THE CHEMOTHERAPEUTIC COEFFICIENT OF MECHLORETHAMINE BY THE ACTION OF THE RADIOPROTECTIVE AGENT SODIUM DIETHYLDITHIOCARBAMATE (in Italian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cima, L; Pozza, F

    1963-01-01

    In mice of the SMZ strain the protective effect of various kinds of radioprotectant agents against the toxicity of the alkylating agent mechiorethamine (HN2) was investigated. HN2 was injected subcutaneously in doses of 6 mg/kg, corresponding to the LD/sub 99/6/. The most effective protective agent tested was the chelating agent Na diethyldithiocarbamate (DEDTC), which when injected intraperitoneally in doses of 335 mg/kg raised the 4-day survival rate to 90% from a control value of 20%. Other chelating agents were less effective, showing the specific action of the dithiocarbamate anion: tetraethylthiuram disulfide (disulfiram), 2-guanidinothiazolidone, and diethylamine. Moderately effective against the toxicitymore » of HN2 were (in decreasing order): reserpine, chlorpromazine, propylene glycol, malononitrile, glutathione, cysteamine, oxytocin, and Na ethylenediaminetatraacetate. Tryptamine was ineffective and cysteine augmented the toxicity of HN2. DEDTC did not modify the carcinostatic effect of HN2 against Ehrlich ascites tumor and thus, by markedly reducing the toxicity of HN2, enhances the therapeutic index of HN2 3 fold. The protective effect of DEDTC and the other radioprotectant agents against HN2 suggest that alkylating agents and ionizing radiation have analogous effects on tissue constituents. (H.H.D.)« less

  18. Disseminated cytomegalovirus infection complicating active treatment of systemic lupus erythematosus: an emerging problem.

    PubMed

    Berman, N; Belmont, H M

    2017-04-01

    Patients with systemic lupus erythematosus (SLE) often require immunosuppression to induce remission of active disease exacerbations. Over the past two decades, treatment modalities for this condition have emerged leading to improved morbidity from disease related outcomes. However, as a result, infection risks and patterns have changed, leading to higher rates of opportunistic infections among this population. We report four cases of cytomegalovirus (CMV) in patients with SLE who received immunosuppressive therapy, including pulse steroids, antimetabolites such as mycophenolate mofetil, and alkylating agents such as cyclophosphamide. We propose that given the rise in prevalence of CMV, there is a need for appropriate screening for this opportunistic pathogen and studies to determine the risks and benefits of prophylactic or preemptive treatment for this virus.

  19. Alkylation of 6-mercaptopurine (6-MP) with N-alkyl-N-alkoxycarbonylaminomethyl chlorides: S6-(N-alkyl-N-alkoxycarbonyl)aminomethyl-6-MP prodrug structure effect on the dermal delivery of 6-MP.

    PubMed

    Siver, K G; Sloan, K B

    1990-01-01

    The S6-(N-alkyl-N-alkoxycarbonyl)aminomethyl-6-MP (6-CARB-6-MP) prodrugs 5-20 were synthesized from the reaction of 6-MP with N-alkyl-N-alkyoxycarbonylaminomethyl chlorides (4) in dimethyl sulfoxide in overall yields of 5-62%, depending on the N-alkyl and the alkoxy groups involved. The derivatives were fully characterized by spectral and microanalyses. The assignment of the substitution pattern as S6-alkyl was based on comparisons of the UV, 1H NMR and 13C NMR spectra with model compounds. A S6, 9-bis-alkyl derivative was obtained from the reaction of 2 equivalents of 4 with 6-MP but the product was unstable and decomposed on standing to a 9-alkyl derivative. The 6-CARB-6-MP prodrugs reverted to 6-MP in water by an SN1-type mechanism involving unimolecular charge separation in the transition state of the rate determining step. There was no effect of dermal enzymes on the rate of hydrolysis. The solubilities in isopropyl myristate (IPM) for all of the 6-CARB-6-MP prodrugs were significantly greater than the solubility of 6-MP in IPM but only one prodrug (5) was apparently even as soluble as 6-MP in water. Selected 6-CARB-6-MP prodrugs were examined in diffusion cell experiments. Only the N-methyl-N-methoxycarbonyl derivative 5 gave a steady-state rate of delivery of 6-MP from IPM that was significantly greater than the steady-state rate of delivery of 6-MP from 6-MP in IPM. All the other derivatives gave steady-state rates of delivery of 6-MP from IPM that were either not significantly different, or were significantly lower than the rate obtained from 6-MP in IPM. In all cases, the effect of the 6-CARB-6-MP:IPM suspensions on the permeability of the skin, as determined by the second application flux of theophylline:propylene glycol, was of the same magnitude as the effect of IPM alone.

  20. Incorporation of metabolic activation potentiates cyclophosphamide-induced DNA damage response in isogenic DT40 mutant cells

    PubMed Central

    Hashimoto, Kiyohiro; Takeda, Shunichi; Swenberg, James A.; Nakamura, Jun

    2015-01-01

    Elucidating the DNA repair pathways that are activated in the presence of genotoxic agents is critical to understand their modes of action. Although the DT40 cell-based DNA damage response (DDR) assay provides rapid and sensitive results, the assay cannot be used on genotoxic compounds that require metabolic activation to be reactive. Here, we applied the metabolic activation system to a DDR and micronucleus (MN) assays in DT40 cells. Cyclophosphamide (CP), a well-known cross-linking agent requiring metabolic activation, was preincubated with liver S9 fractions. When DT40 cells and mutant cells were exposed to the preactivated CP, CP caused increased cytotoxicity in FANC-, RAD9-, REV3- and RAD18-mutant cells compared to isogenic wild-type cells. We then performed a MN assay on DT40 cells treated with preactivated CP. An increase in the MN was observed in REV3- and FANC-mutant cells at lower concentrations of activated CP than in the parental DT40 cells. These results demonstrated that the incorporation of metabolic preactivation system using S9 fractions significantly potentiates DDR caused by CP in DT40 cells and their mutants. In addition, our data suggest that the metabolic preactivation system for DDR and MN assays has a potential to increase the relevance of this assay to screening various compounds for potential genotoxicity. PMID:26085549

  1. Quality of life and toxicity in breast cancer patients using adjuvant TAC (docetaxel, doxorubicin, cyclophosphamide), in comparison with FAC (doxorubicin, cyclophosphamide, 5-fluorouracil).

    PubMed

    Hatam, N; Ahmadloo, N; Ahmad Kia Daliri, A; Bastani, P; Askarian, M

    2011-07-01

    The aim of this study was to compare two regimens of chemotherapy in patients with breast cancer, including FAC (doxorubicin, cyclophosphamide, and 5-fluorouracil) and TAC (docetaxel, doxorubicin and cyclophosphamide); and analyze the toxicity of these treatments and observe patient's health-related quality of life. Health-related quality of life was assessed for up to 4 months (from the beginning to the end of chemotherapy cycles), using European organization and cancer treatment quality of life questionnaire (EORTC) QLQ-C30. A group of 100 patients, with node-positive breast cancer were studied in order to compare the toxicity of adjuvant therapy TAC with FAC and the subsequent effects on the patient's quality of life. After a 4-month follow-up of patients, our findings showed that despite having the same mean score of QOL at the start of adjuvant chemotherapy, the QOL in TAC arm was decreased more as a result of the higher range of toxicity in TAC regimen. In spite of increase in disease-free patients who received TAC regimen and increase their survival rate, there is significant toxicity and decrease in QOL in TAC protocol compare to FAC protocol. Using prophylactic granulocyte colony stimulating factor (G-CSF) along with increased education aimed at improving patient's knowledge and also the provision of a supportive group involving psychiatrics and patients that have successfully experienced the same treatment may be helpful.

  2. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.N.; Xu, J.

    1997-04-29

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities. 2 figs.

  3. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide

    1997-01-01

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of said chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to said 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities.

  4. Ultrasound promoted N-alkylation of pyrrole using potassium superoxide as base in crown ether.

    PubMed

    Yim, E S; Park, M K; Han, B H

    1997-04-01

    Ultrasound accelerates the N-alkylation of pyrrole by alkylating reagents using potassium superoxide as base in the presence of 18-crown-6. A much lower yield of N-alkylated pyrrole was realized in the absence of ultrasound. N-alkylating reagents employed for pyrrole are methyl iodide, ethyl bromide, benzyl bromide, as well as acrylonitrile allyl cyanide and methyl acrylate. In an extension of this work, we have found that ultrasound was not necessary for the N-alkylation of indole and alkyl amine, such as diphenyl amine and piperidine with alkyl halides using our reagents. In all cases we observed that the 18-crown-6 catalyzed N-alkylation reaction gives higher yields of N-alkylated products than that without crown ether, when potassium superoxide was used as base. These observations are probably due to the potassium-crown complex which can be released when the reaction goes to completion.

  5. Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics.

    PubMed

    Anderson, Eric; Crisci, Anthony; Murugappan, Karthick; Román-Leshkov, Yuriy

    2017-05-22

    Reductive catalytic fractionation of biomass has recently emerged as a powerful lignin extraction and depolymerization method to produce monomeric aromatic oxygenates in high yields. Here, bifunctional molybdenum-based polyoxometalates supported on titania (POM/TiO 2 ) are shown to promote tandem hydrodeoxygenation (HDO) and alkylation reactions, converting lignin-derived oxygenated aromatics into alkylated benzenes and alkylated phenols in high yields. In particular, anisole and 4-propylguaiacol were used as model compounds for this gas-phase study using a packed-bed flow reactor. For anisole, 30 % selectivity for alkylated aromatic compounds (54 % C-alkylation of the methoxy groups by methyl balance) with an overall 72 % selectivity for HDO at 82 % anisole conversion was observed over H 3 PMo 12 O 40 /TiO 2 at 7 h on stream. Under similar conditions, 4-propylguaiacol was mainly converted into 4-propylphenol and alkylated 4-propylphenols with a selectivity to alkylated 4-propylphenols of 42 % (77 % C-alkylation) with a total HDO selectivity to 4-propylbenzene and alkylated 4-propylbenzenes of 4 % at 92 % conversion (7 h on stream). Higher catalyst loadings pushed the 4-propylguaiacol conversion to 100 % and resulted in a higher selectivity to propylbenzene of 41 %, alkylated aromatics of 21 % and alkylated phenols of 17 % (51 % C-alkylation). The reactivity studies coupled with catalyst characterization revealed that Lewis acid sites act synergistically with neighboring Brønsted acid sites to simultaneously promote alkylation and hydrodeoxygenation activity. A reaction mechanism is proposed involving activation of the ether bond on a Lewis acid site, followed by methyl transfer and C-alkylation. Mo-based POMs represent a versatile catalytic platform to simultaneously upgrade lignin-derived oxygenated aromatics into alkylated arenes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  7. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  8. 40 CFR 721.2094 - N,N′-di(alkyl heteromonocycle)amino chlorotriazine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false N,Nâ²-di(alkyl heteromonocycle)amino... Specific Chemical Substances § 721.2094 N,N′-di(alkyl heteromonocycle)amino chlorotriazine. (a) Chemical... as N,N′-di(alkyl heteromonocycle)amino chlorotriazine (PMN P-93-1369) is subject to reporting under...

  9. 40 CFR 721.2094 - N,N′-di(alkyl heteromonocycle)amino chlorotriazine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false N,Nâ²-di(alkyl heteromonocycle)amino... Specific Chemical Substances § 721.2094 N,N′-di(alkyl heteromonocycle)amino chlorotriazine. (a) Chemical... as N,N′-di(alkyl heteromonocycle)amino chlorotriazine (PMN P-93-1369) is subject to reporting under...

  10. Emerging Drugs for Uveitis

    PubMed Central

    Larson, Theresa; Nussenblatt, Robert B.; Sen, H. Nida

    2010-01-01

    Importance of the Field Uveitis is a challenging disease covering both infectious and noninfectious conditions. The current treatment strategies are hampered by the paucity of randomized controlled trials (RCTs) and few trials comparing efficacy of different agents. Areas Covered in this Review This review describes the current and future treatments of uveitis. A literature search was performed in PUBMED from 1965 to 2010 on drugs treating ocular inflammation with emphasis placed on more recent, larger studies. What the Reader Will Gain Readers should gain a basic understanding of current treatment strategies beginning with corticosteroids and transitioning to steroid sparing agents. Steroid sparing agents include the antimetabolites which include methotrexate, azathioprine, and mycophenolate mofetil; the calcineurin inhibitors which include cyclosporine, tacrolimus; alkylating agents which include cyclophosphamide and chlorambucil; and biologics which include the TNF-α inhibitors infliximab, adalimumab, and etanercept; daclizumab, interferon α2a, and rituximab. Take Home Message Newer agents are typically formulated from existing drugs or developed based on new advances in immunology. Future treatment will require a better understanding of the mechanisms involved in autoimmune diseases and better delivery systems in order to provide targeted treatment with minimal side effects. PMID:21210752

  11. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for the...

  12. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for the...

  13. 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy.

    PubMed

    Ganapathy-Kanniappan, S; Vali, M; Kunjithapatham, R; Buijs, M; Syed, L H; Rao, P P; Ota, S; Kwak, B K; Loffroy, R; Geschwind, J F

    2010-08-01

    The pyruvate analog, 3-bromopyruvate, is an alkylating agent and a potent inhibitor of glycolysis. This antiglycolytic property of 3-bromopyruvate has recently been exploited to target cancer cells, as most tumors depend on glycolysis for their energy requirements. The anticancer effect of 3-bromopyruvate is achieved by depleting intracellular energy (ATP) resulting in tumor cell death. In this review, we will discuss the principal mechanism of action and primary targets of 3-bromopyruvate, and report the impressive antitumor effects of 3-bromopyruvate in multiple animal tumor models. We describe that the primary mechanism of 3-bromopyruvate is via preferential alkylation of GAPDH and that 3-bromopyruvate mediated cell death is linked to generation of free radicals. Research in our laboratory also revealed that 3-bromopyruvate induces endoplasmic reticulum stress, inhibits global protein synthesis further contributing to cancer cell death. Therefore, these and other studies reveal the tremendous potential of 3-bromopyruvate as an anticancer agent.

  14. 40 CFR 721.644 - Amines, C12-14-tert-alkyl, sulfonates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amines, C12-14-tert-alkyl, sulfonates... Substances § 721.644 Amines, C12-14-tert-alkyl, sulfonates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amines, C12-14-tert-alkyl, sulfonates (PMN...

  15. 40 CFR 721.644 - Amines, C12-14-tert-alkyl, sulfonates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amines, C12-14-tert-alkyl, sulfonates... Substances § 721.644 Amines, C12-14-tert-alkyl, sulfonates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amines, C12-14-tert-alkyl, sulfonates (PMN...

  16. Immunosuppression for Membranous Nephropathy: A Systematic Review and Meta-Analysis of 36 Clinical Trials

    PubMed Central

    Chen, Yizhi; Schieppati, Arrigo; Cai, Guangyan; Zamora, Javier; Giuliano, Giovanni A.; Braun, Norbert

    2013-01-01

    Summary Background and objectives The efficacy and safety of immunosuppression for idiopathic membranous nephropathy (IMN) with nephrotic syndrome are still controversial. A systematic review and meta-analysis of randomized controlled trials (RCTs) was performed. Design, setting, participants, & measurements The Cochrane Library, PUBMED, EMBASE, Chinese Database, and Clinical Trial Registries (June 2012) were searched to identify RCTs investigating the effect of immunosuppression on adults with IMN and nephrotic syndrome. Results This review was an update (36 RCTs, 1762 participants) of the 2004 version (18 RCTs, 1025 participants). Immunosuppression significantly reduced all-cause mortality or ESRD (15 RCTs, 791 participants; risk ratio, 0.58 [95% confidence interval, 0.36–0.95]; P=0.03). However, the result was not consistent when prespecified subgroup analyses were undertaken. Immunosuppression increased complete or partial remission (CR + PR) (16 RCTs, 864 participants; 1.31 [1.01–1.70]; P=0.04) but resulted in more withdrawals or hospitalizations (16 RCTs, 880 participants; 5.35 [2.19–13.02]; P=0.002). Corticosteroids combined with alkylating agents significantly reduced all-cause mortality or ESRD (8 RCTs, 448 participants; 0.44 [0.26–0.75]; P=0.002) and increased CR + PR (7 RCTs, 422 participants; 1.46 [1.13–1.89]; P=0.004) but led to more adverse events (4 RCTs, 303 participants; 4.20 [1.15–15.32]; P=0.03). Cyclophosphamide was safer than chlorambucil (3 RCTs, 147 participants; 0.48 [0.26–0.90]; P=0.02). Cyclosporine and mycophenolate mofetil failed to show superiority over alkylating agents. Tacrolimus and adrenocorticotropic hormone significantly reduced proteinuria. Conclusions Alkylating agents plus corticosteroids had long-term and short-term benefits for adult IMN, but resulted in more withdrawals or hospitalizations. PMID:23449768

  17. Effect of cyclophosphamide exposure on the migration of primordial germ cells in rat fetuses.

    PubMed

    Ray, B; D'Souza, A S; Potu, B K; Saxena, A

    2012-01-01

    Effect of a single dose of cyclophosphamide on migration of the primordial germ cells (PGC), when they are about to reach gonadal ridge was investigated histochemically by staining for alkaline phosphatase. This may throw some light on the fate of gonadal ridge when exposed to the drug itself or its breakdown products such as acrolein, which is present as an environmental pollutant. Twelve pregnant Charles foster rats were divided in to control and treatment groups and kept in separate cages. In the experimental group, Cyclophosphamide 20 mg/kg/body weight was injected intraperitoneally on day 12 of gestation. Transverse sections of fetuses collected on day 16 of gestation were stained for alkaline phosphatase activity. Outcome of the study was analysed by scanning the photomicrographs and represented by photomicrographs. An unique finding in experimental group in the gonadal ridge consisted of homogeneously distributed pale staining cells. The gonadal ridge-mesonephros junction showed a single big cluster of the PGC. Under higher magnification, the PGC could be identified by oval or circular shape with well-defined cell membranes and very distinct dark brown staining. There were no signs of degeneration or disintegration of these cells. Cyclophosphamide exposure led to failure of PGC to spread inwards from the gonadal ridge-mesonephros junction giving rise to a situation so far not reported in literature. The presented phenomenon will result in improper development of the gonads leading to infertility in an affected individual in future generation (Fig. 4, Ref. 18).

  18. Local irradiation does not enhance the effect of immunostimulatory AdCD40L gene therapy combined with low dose cyclophosphamide in melanoma patients

    PubMed Central

    Irenaeus, Sandra; Schiza, Aglaia; Mangsbo, Sara M.; Wenthe, Jessica; Eriksson, Emma; Krause, Johan; Sundin, Anders; Ahlström, Håkan; Tötterman, Thomas H.; Loskog, Angelica; Ullenhag, Gustav J.

    2017-01-01

    Background AdCD40L is an immunostimulatory gene therapy under evaluation for advanced melanoma, including ocular melanoma. Herein, we present the final data of a Phase I/IIa trial using AdCD40L alone or in combination with low dose cyclophosphamide +/- radiation therapy. Methods AdCD40L is a replication-deficient adenovirus carrying the gene for CD40 ligand (CD40L). Twenty-four patients with advanced melanoma were enrolled and treated with AdCD40L monotherapy, or combined with cyclophosphamide +/- single fraction radiotherapy. The patients were monitored for 10 weeks using immunological and radiological evaluations and thereafter for survival. Results AdCD40L treatment was safe and well tolerated both alone and in combination with cyclophosphamide as well as local radiotherapy. Four out of twenty-four patients had >1 year survival. Addition of cyclophosphamide was beneficial but adding radiotherapy did not further extend survival. High initial plasma levels of IL12 and MIP3b correlated to overall survival, whereas IL8 responses post-treatment correlated negatively with survival. Interestingly, antibody reactions to the virus correlated negatively with post IL6 and pre IL1b levels in blood. Conclusions AdCD40L was safely administered to patients and effect was improved by cyclophosphamide but not by radiotherapy. Immune activation profile at baseline may predict responders better than shortly after treatment. PMID:29108250

  19. Palladium-catalyzed Heck-type cross-couplings of unactivated alkyl iodides.

    PubMed

    McMahon, Caitlin M; Alexanian, Erik J

    2014-06-02

    A palladium-catalyzed, intermolecular Heck-type coupling of alkyl iodides and alkenes is described. This process is successful with a variety of primary and secondary unactivated alkyl iodides as reaction partners, including those with hydrogen atoms in the β position. The mild catalytic conditions enable intermolecular C-C bond formations with a diverse set of alkyl iodides and alkenes, including substrates containing base- or nucleophile-sensitive functionality. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gas chromatography-mass spectrometric studies of O-alkyl O-2-(N,N-dialkylamino) ethyl alkylphosphonites(phosphonates) for chemical weapons convention verification.

    PubMed

    Saeidian, Hamid; Babri, Mehran; Ramezani, Atefeh; Ashrafi, Davood; Sarabadani, Mansour; Naseri, Mohammad Taghi

    2013-01-01

    The electron ionization (EI) mass spectra of a series of O-alkyl O-2-(N,N-dialkylaminolethyl alkylphosphonites(phosphonates), which are precursors of nerve agents, were studied for Chemical Weapons Convention (CWC) verification. General El fragmentation pathways were constructed and discussed. Proposed fragment structures were confirmed through analyzing fragment ions of deuterated analogs and density functional theory (DFT) calculations. The observed fragment ions are due to different fragmentation pathways such as hydrogen and McLafferty+1 rearrangements, alkene, amine and alkoxy elimination by alpha- or beta-cleavage process. Fragment ions distinctly allow unequivocal identification of the interested compounds including those of isomeric compounds. The presence and abundance of fragment ions were found to depend on the size and structure of the alkyl group attached to nitrogen, phosphorus and oxygen atoms.

  1. Chiral Alkyl Halides: Underexplored Motifs in Medicine

    PubMed Central

    Gál, Bálint; Bucher, Cyril; Burns, Noah Z.

    2016-01-01

    While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation. PMID:27827902

  2. Assessment of temporal association of relapse of canine multicentric lymphoma with components of the CHOP protocol: Is cyclophosphamide the weakest link?

    PubMed

    Wang, Shang-Lin; Lee, Jih-Jong; Liao, Albert Taiching

    2016-07-01

    Combination chemotherapy, using cyclophosphamide, hydroxydaunorubicin, vincristine and prednisolone (CHOP), is the most commonly used treatment for canine lymphoma. Most affected dogs respond during the initial stages of chemotherapy, but many relapse. The aim of this study was to evaluate the relationship between the use of specific chemotherapy drugs and clinical relapse, using the modified Madison-Wisconsin, 25 week chemotherapy protocol. Forty-one of 68 dogs affected with multicentric lymphoma relapsed during the treatment period. Relapse occurred more frequently after the administration of cyclophosphamide (n = 24; P < 0.01), compared with vincristine (n = 9) or doxorubicin (n = 5). Therefore, the therapeutic outcome of traditional CHOP-based chemotherapy might be improved by replacing cyclophosphamide with other cytotoxic drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Selective sp3 C-H alkylation via polarity-match-based cross-coupling.

    PubMed

    Le, Chip; Liang, Yufan; Evans, Ryan W; Li, Ximing; MacMillan, David W C

    2017-07-06

    The functionalization of carbon-hydrogen (C-H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence. Although many C-H functionalization reactions involve C(sp 3 )-C(sp 2 ) coupling, there is a growing demand for C-H alkylation reactions, wherein sp 3 C-H bonds are replaced with sp 3 C-alkyl groups. Here we describe a polarity-match-based selective sp 3 C-H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C-H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl-alkyl fragment coupling. The sp 3 C-H alkylation is highly selective for the α-C-H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry.

  4. Selective sp3 C-H alkylation via polarity-match-based cross-coupling

    NASA Astrophysics Data System (ADS)

    Le, Chip; Liang, Yufan; Evans, Ryan W.; Li, Ximing; MacMillan, David W. C.

    2017-07-01

    The functionalization of carbon-hydrogen (C-H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence. Although many C-H functionalization reactions involve C(sp3)-C(sp2) coupling, there is a growing demand for C-H alkylation reactions, wherein sp3 C-H bonds are replaced with sp3 C-alkyl groups. Here we describe a polarity-match-based selective sp3 C-H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C-H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl-alkyl fragment coupling. The sp3 C-H alkylation is highly selective for the α-C-H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry.

  5. The self-organization and functional activity of binary system based on erucyl amidopropyl betaine - alkylated polyethyleneimine

    NASA Astrophysics Data System (ADS)

    Gaynanova, Gulnara A.; Valiakhmetova, Alsu R.; Kuryashov, Dmitry A.; Kudryashova, Yuliana R.; Lukashenko, Svetlana S.; Syakaev, Victor V.; Latypov, Shamil K.; Bukharov, Sergey V.; Bashkirtseva, Natalia Yu.; Zakharova, Lucia Ya.

    2013-11-01

    The self-organization in individual and binary aqueous solutions of a zwitterionic surfactant erucyl amidopropyl betaine and alkylated polyethyleneimine is carried out with a wide range of physical and chemical methods, including tensiometry, conductometry, dynamic light scattering, pH-metry, spectrophotometry, and fluorescence spectroscopy. The data obtained strongly support the formation of nanosized aggregates in the systems and provide information on their structure and probable morphological transitions. High solubilization capacity and data on the contact angle showed a possibility of the application of these systems as nanocontainers or oil wetting agents in the oil recovery.

  6. Cyclophosphamide/fludarabine nonmyeloablative allotransplant for acute myeloid leukemia.

    PubMed

    Khawaja, Muhammad Rizwan; Perkins, Susan M; Schwartz, Jennifer E; Robertson, Michael J; Kiel, Patrick J; Sayar, Hamid; Cox, Elizabeth A; Vance, Gail H; Farag, Sherif S; Cripe, Larry D; Nelson, Robert P

    2015-02-01

    We compared survival outcomes following myeloablative allotransplant (MAT) or cyclophosphamide/fludarabine (Cy/Flu) nonmyeloablative allotransplant (NMAT) for 165 patients with acute myelogenous leukemia (AML) in remission or without frank relapse. Patients who received NMAT were more likely to be older and have secondary AML and lower performance status. At a median follow-up of 61 months, median event-free survival and overall survival survival were not different between NMAT and MAT in univariate as well as multivariate analyses. Cy/Flu NMAT may provide similar disease control and survival when compared with MAT in patients with AML in remission or without frank relapse. © 2014 Wiley Periodicals, Inc.

  7. Pre-Treatment with Amifostine Protects against Cyclophosphamide-Induced Disruption of Taste in Mice

    PubMed Central

    Mukherjee, Nabanita; Carroll, Brittany L.; Spees, Jeffrey L.; Delay, Eugene R.

    2013-01-01

    Cyclophosphamide (CYP), a commonly prescribed chemotherapy drug, has multiple adverse side effects including alteration of taste. The effects on taste are a cause of concern for patients as changes in taste are often associated with loss of appetite, malnutrition, poor recovery and reduced quality of life. Amifostine is a cytoprotective agent that was previously shown to be effective in preventing chemotherapy-induced mucositis and nephrotoxicity. Here we determined its ability to protect against chemotherapy-induced damage to taste buds using a mouse model of CYP injury. We conducted detection threshold tests to measure changes in sucrose taste sensitivity and found that administration of amifostine 30 mins prior to CYP injection protected against CYP-induced loss in taste sensitivity. Morphological studies showed that pre-treatment with amifostine prevented CYP-induced reduction in the number of fungiform taste papillae and increased the number of taste buds. Immunohistochemical assays for markers of the cell cycle showed that amifostine administration prevented CYP-induced inhibition of cell proliferation and also protected against loss of mature taste cells after CYP exposure. Our results indicate that treatment of cancer patients with amifostine prior to chemotherapy may improve their sensitivity for taste stimuli and protect the taste system from the detrimental effects of chemotherapy. PMID:23626702

  8. Alkyl gallates, intensifiers of beta-lactam susceptibility in methicillin-resistant Staphylococcus aureus.

    PubMed

    Shibata, Hirofumi; Kondo, Kyoko; Katsuyama, Ryo; Kawazoe, Kazuyoshi; Sato, Yoichi; Murakami, Kotaro; Takaishi, Yoshihisa; Arakaki, Naokatu; Higuti, Tomihiko

    2005-02-01

    We found that ethyl gallate purified from a dried pod of tara (Caesalpinia spinosa) intensified beta-lactam susceptibility in methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus (MRSA and MSSA strains, respectively). This compound and several known alkyl gallates were tested with MRSA and MSSA strains to gain new insights into their structural functions in relation to antimicrobial and beta-lactam susceptibility-intensifying activities. The maximum activity of alkyl gallates against MRSA and MSSA strains occurred at 1-nonyl and 1-decyl gallate, with an MIC at which 90% of the isolates tested were inhibited of 15.6 microg/ml. At concentrations lower than the MIC, alkyl gallates synergistically elevated the susceptibility of MRSA and MSSA strains to beta-lactam antibiotics. Such a synergistic activity of the alkyl gallates appears to be specific for beta-lactam antibiotics, because no significant changes were observed in the MICs of other classes of antibiotics examined in this study. The length of the alkyl chain was also associated with the modifying activity of the alkyl gallates, and the optimum length was C5 to C6. The present work clearly demonstrates that the length of the alkyl chain has a key role in the elevation of susceptibility to beta-lactam antibiotics.

  9. 40 CFR 721.10517 - Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl methacrylates, polymer with... Substances § 721.10517 Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide... reporting. (1) The chemical substance identified generically as alkyl methacrylates, polymer with...

  10. Ultrasonic Relaxation Study of 1-Alkyl-3-methylimidazolium-Based Room-Temperature Ionic Liquids: Probing the Role of Alkyl Chain Length in the Cation.

    PubMed

    Zorębski, Michał; Zorębski, Edward; Dzida, Marzena; Skowronek, Justyna; Jężak, Sylwia; Goodrich, Peter; Jacquemin, Johan

    2016-04-14

    Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally, the speed of sound, density, and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e., relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single-Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.

  11. Activation of cathepsins B and L in mouse lymphosarcoma tissue under the effect of cyclophosphamide is associated with apoptosis induction and infiltration by mononuclear phagocytes.

    PubMed

    Zhanaeva, S Ya; Mel'nikova, E V; Trufakin, V A; Korolenko, T A

    2013-11-01

    We analyzed activities of lysosomal cystein cathepsins B and L in mouse LS lymphosarcoma and its drug-resistant RLS 40 strain and their correlations with the dynamics of the percentage of cells with fragmented DNA and CD14 (+) phagocytes over 3 days after cyclophosphamide injection. LS regression and inhibition of RLS 40 growth after cyclophosphamide injection were paralleled by an increase in cathepsins B and L activities in tumor tissues. The antitumor effect of cyclophosphamide associated with apoptosis intensity and protease activities were significantly higher in LS. Positive correlations between activities of cathepsins B and L and the LS tissue content of cells with fragmented DNA and CD14 (+) phagocytes and negative correlations thereof with tumor weight were detected. It seems that the increase in cathepsins B and L activities in LS tissues was caused by cyclophosphamide induction of apoptosis and depended on the level of tumor cell infiltration with mononuclear phagocytes.

  12. [Effect of epsilon-aminocaproic acid, cyclophosphamide and their combination on the growth of autochthonous sarcomas of mice induced by benzo(a)pyrene].

    PubMed

    Anikin, I V; Tyndyk, M L; Zabezhinskiĭ, M A; Popovich, I G; Anisimov, V N; Pliss, G B

    2014-01-01

    Antifibrinolytic drug epsilon-aminocaproic acid as a therapeutic form (5% solution in saline) was tested for antitumor activity in the autochthonous subcutaneous tumors of mice, induced by benzo (a) pyrene, in monotherapy mode (instead animals received drinking water) and in combination with cyclophosphamide, which was administered once intraperitoneally in the dose of 200 mg/kg. In the control groups, treated with drinking water and saline solution instead of water, there was no stabilization and reduction in tumor volume, while in the groups receiving epsilon-aminocaproic acid, cyclophosphamide and their combination statistically significantly in comparison with the control groups there was increased the proportion of tumors with not changed or reduced volume; epsilon-aminocaproic acid enhanced the antitumor effect of cyclophosphamide. The data obtained are for further study of the antitumor effect of epsilon-aminocaproic acid.

  13. Dose-Response for Multiple Biomarkers of Exposure and Genotoxic Effect Following Repeated Treatment of Rats with the Alkylating Agents, MMS and MNU.

    PubMed

    Ji, Zhiying; LeBaron, Matthew J; Schisler, Melissa R; Zhang, Fagen; Bartels, Michael J; Gollapudi, B Bhaskar; Pottenger, Lynn H

    2016-05-01

    The nature of the dose-response relationship for various in vivo endpoints of exposure and effect were investigated using the alkylating agents, methyl methanesulfonate (MMS) and methylnitrosourea (MNU). Six male F344 rats/group were dosed orally with 0, 0.5, 1, 5, 25 or 50mg/kg bw/day (mkd) of MMS, or 0, 0.01, 0.1, 1, 5, 10, 25 or 50 mkd of MNU, for 4 consecutive days and sacrificed 24h after the last dose. The dose-responses for multiple biomarkers of exposure and genotoxic effect were investigated. In MMS-treated rats, the hemoglobin adduct level, a systemic exposure biomarker, increased linearly with dose (r (2) = 0.9990, P < 0.05), indicating the systemic availability of MMS; however, the N7MeG DNA adduct, a target exposure biomarker, exhibited a non-linear dose-response in blood and liver tissues. Blood reticulocyte micronuclei (MN), a genotoxic effect biomarker, exhibited a clear no-observed-genotoxic-effect-level (NOGEL) of 5 mkd as a point of departure (PoD) for MMS. Two separate dose-response models, the Lutz and Lutz model and the stepwise approach using PROC REG both supported a bilinear/threshold dose-response for MN induction. Liver gene expression, a mechanistic endpoint, also exhibited a bilinear dose-response. Similarly, in MNU-treated rats, hepatic DNA adducts, gene expression changes and MN all exhibited clear PoDs, with a NOGEL of 1 mkd for MN induction, although dose-response modeling of the MNU-induced MN data showed a better statistical fit for a linear dose-response. In summary, these results provide in vivo data that support the existence of clear non-linear dose-responses for a number of biologically significant events along the pathway for genotoxicity induced by DNA-reactive agents. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Effect of cyclophosphamide on the solid form of mannitol during lyophilization.

    PubMed

    Patel, Krupaliben; Munjal, Bhushan; Bansal, Arvind K

    2017-04-01

    Mannitol is a commonly used bulking agent in lyophilized formulations. It can crystallize into multiple solid forms during lyophilization thereby exhibiting phase heterogeneity and variability in product performance. In this manuscript, we studied the effect of cyclophosphamide (CPA), an anticancer drug, on the solid form of mannitol during lyophilization from aqueous solutions. Freeze-concentration studies were performed in the DSC while lyophilization was performed in a lab scale freeze dryer. DSC experiments revealed two-stage crystallization of mannitol (1.5% w/v) during freeze-concentration, evident as two distinct exothermic events (at -18.2°C and -30°C) in the cooling curve. This was complemented by two eutectic melting endotherms in the subsequent heating curve. Addition of CPA (4.0% w/v) completely inhibited the exotherm at -18.2°C, but enhanced the enthalpy of exotherm at -30°C by five folds. Likewise, only one eutectic melting endotherm was observed in the subsequent heating curve. Lyophilization of the solution containing only mannitol, yielded a mixture of β- (major) and δ- (minor) polymorphs of mannitol. However, in the presence of CPA, only δ-polymorph was observed in the lyophilized sample. This selective favoring of the metastable δ-polymorph over the stable β-polymorph, was explained by altered freezing kinetics of the solution in presence of CPA. The study provides mechanistic insights into solute crystallization behaviour during lyophilization of multi-component systems. Copyright © 2017. Published by Elsevier B.V.

  15. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  16. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  17. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  18. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  19. Chronodependent effect of interleukin-2 on mouse spleen cells in the model of cyclophosphamide immunosuppression.

    PubMed

    Shurlygina, A V; Mel'nikova, E V; Trufakin, V A

    2015-02-01

    We studied the chronodependent effect of IL-2 in the experimental model of immunodeficiency, cyclophosphamide-induced immunosuppression in mice. IL-2 in a dose of 100 U/ mouse was administered at 10.00 and 16.00 for 3 days after injection of cyclophosphamide. In contrast to the morning treatment with the cytokine, evening administration produced antiapoptotic effect on splenocytes and stimulated proliferation to a greater extent. This was accompanied by an increase in the number of CD4(+), CD25(+) and CD4(+)25(+) cells in the spleen to a level of intact mice. More pronounced effect of the evening mode of IL-2 administration on the proliferation and subpopulation composition of mouse spleen cells in the studied model can be associated with high blood level of CD25(+) cells at this time of the day.

  20. Immunostimulatory AdCD40L gene therapy combined with low-dose cyclophosphamide in metastatic melanoma patients

    PubMed Central

    Loskog, Angelica; Maleka, Aglaia; Mangsbo, Sara; Svensson, Emma; Lundberg, Christina; Nilsson, Anders; Krause, Johan; Agnarsdóttir, Margrét; Sundin, Anders; Ahlström, Håkan; Tötterman, Thomas H; Ullenhag, Gustav

    2016-01-01

    Background: Current approaches for treating metastatic malignant melanoma (MM) are not effective enough and are associated with serious adverse events. Due to its immunogenicity, melanoma is an attractive target for immunostimulating therapy. In this phase I/IIa study, local AdCD40L immunostimulatory gene therapy was evaluated in patients with MM. Methods: AdCD40L is an adenovirus carrying the gene for CD40 ligand. Patients that failed standard treatments were enrolled. Six patients received four weekly intratumoral AdCD40L injections. Next, nine patients received low-dose cyclophosphamide conditioning before the first and fourth AdCD40L injection. The blood samples were collected at multiple time points for chemistry, haematology and immunology evaluations. Radiology was performed at enrolment and repeated twice after the treatment. Results: AdCD40L was safe with mild transient reactions. No objective responses were recorded by MRI, however, local and distant responses were seen on FDG-PET. The overall survival at 6 months was significantly better when cyclophosphamide was added to AdCD40L. The patients with the best survival developed the highest levels of activated T cells and experienced a pronounced decrease of intratumoral IL8. Conclusions: AdCD40L therapy for MM was well tolerated. Local and distant responses along with better survival in the low-dose cyclophosphamide group are encouraging. PMID:27031851

  1. Adjuvant fluorouracil, epirubicin and cyclophosphamide in early breast cancer: is it cost-effective?

    PubMed

    Norum, Jan; Holtmon, Mari

    2005-01-01

    Adjuvant chemotherapy (ACT) in breast cancer exposes patients to morbidity, but improves survival. The FEC (fluorouracil, epirubicin, cyclophosphamide) regimen has taken over the prior role of CMF (cyclophosphamide, methotrexate, fluorouracil). In this model, efficacy, tolerability and quality of life (QoL) data from the literature were incorporated with Norwegian practice and cost data in a cost-effectiveness approach. The FEC efficacy was calculated 3-7% superior CMF. There was no difference in quality of life. An 80-100% dose intensity range was employed, one Euro was calculated NOK 8.78 and a 3% discount rate was used. The total cost of FEC employing the friction cost method on production loss, including amount spent on drugs, administration and travelling ranged between 3,278-3,850 Euros (human capital approach 12,143-12,715 Euros). Money spent on drugs alone constituted 15-48%, depending on method chosen. A cost-effectiveness analysis revealed a cost per life year (LY) saved replacing FEC by CMF of 3,575-15,125 Euros. Adjuvant FEC is cost effective in Norway.

  2. BK virus-associated hemorrhagic cystitis in pediatric cancer patients receiving high-dose cyclophosphamide.

    PubMed

    Cheerva, Alexandra C; Raj, Ashok; Bertolone, Salvatore J; Bertolone, Kathy; Silverman, Craig L

    2007-09-01

    Hemorrhagic cystitis (HC) is a known complication of oxazophosphorine chemotherapy. BK virus (BKV) has been commonly found to be associated with hematuria in stem cell transplant patients; however, it has rarely been reported after cyclophosphamide chemotherapy alone. The authors present 3 cases of BK viruria with HC in nontransplant pediatric oncology patients. The 3 patients with BKV had more prolonged hematuria (14 to 16 wk) compared with 1 patient with BKV-negative HC (10 wk). The HC necessitated chemotherapy delays and also prolonged supportive care. One patient was treated with intravenous cidofovir with resolution of BK viruria and hematuria. BKV may have an association with the development of HC in nonstem cell transplant patients receiving high-dose oxazophosphorine chemotherapy. HC may present early and be more prolonged in patients with BK viruria. Patients with HC after cyclophosphamide or ifosfamide with negative bacterial cultures should be studied for BKV. Cidofovir may be beneficial in certain patients with BK viruria and HC; however, definitive data will require a clinical trial.

  3. Dose—response relationships for agents inhibiting the immune response

    PubMed Central

    Berenbaum, M. C.; Brown, I. N.

    1964-01-01

    Mice were injected with T.A.B. vaccine and, 2 days later, with various doses of different compounds. The relation between dose of compound, mortality and antibody production was studied, and therapeutic indices were calculated for a number of compounds. The most effective agent in suppressing antibody production at relatively non-toxic doses was cyclophosphamide, with next amethopterin (the effect of which was, however, inexplicably erratic), 6-thioguanine and 6-mercaptopurine, in that order. Vincaleukoblastine, triethylene melamine, triethylenethiophosphoramide, mannomustine and 5-fluorouracil were less effective. Compounds of a miscellaneous group (boric acid, caffeine, sodium nitrite, bacitracin, neomycin and polymyxin `B') were studied in the same way: they had no effect on antibody production, even in lethal doses. PMID:14113077

  4. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation

    NASA Astrophysics Data System (ADS)

    You, Hengzhi; Rideau, Emeline; Sidera, Mireia; Fletcher, Stephen P.

    2015-01-01

    The development of new reactions forming asymmetric carbon-carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers. Most strategies to obtain enantiomerically enriched molecules rely on either generating new stereogenic centres from prochiral substrates or resolving racemic mixtures of enantiomers. An alternative strategy--dynamic kinetic asymmetric transformation--involves the transformation of a racemic starting material into a single enantiomer product, with greater than 50 per cent maximum yield. The use of stabilized nucleophiles (pKa < 25, where Ka is the acid dissociation constant) in palladium-catalysed asymmetric allylic alkylation reactions has proved to be extremely versatile in these processes. Conversely, the use of non-stabilized nucleophiles in such reactions is difficult and remains a key challenge. Here we report a copper-catalysed dynamic kinetic asymmetric transformation using racemic substrates and alkyl nucleophiles. These nucleophiles have a pKa of >=50, more than 25 orders of magnitude more basic than the nucleophiles that are typically used in such transformations. Organometallic reagents are generated in situ from alkenes by hydrometallation and give highly enantioenriched products under mild reaction conditions. The method is used to synthesize natural products that possess activity against tuberculosis and leprosy, and an inhibitor of para-aminobenzoate biosynthesis. Mechanistic studies indicate that the reaction proceeds through a rapidly isomerizing intermediate. We anticipate that this approach will be a valuable complement to existing asymmetric catalytic methods.

  5. Alkyl Glucosides in Contact Dermatitis.

    PubMed

    Loranger, Camille; Alfalah, Maisa; Ferrier Le Bouedec, Marie-Christine; Sasseville, Denis

    Ecologically sound because they are synthesized from natural and renewable sources, the mild surfactants alkyl glucosides are being rediscovered by the cosmetic industry. They are currently found in rinse-off products such as shampoos, liquid cleansers, and shower gels, but also in leave-on products that include moisturizers, deodorants, and sunscreens. During the past 15 years, numerous cases of allergic contact dermatitis have been published, mostly to lauryl and decyl glucosides, and these compounds are considered emergent allergens. Interestingly, the sunscreen Tinosorb M contains decyl glucoside as a hidden allergen, and most cases of allergic contact dermatitis reported to this sunscreen ingredient are probably due to sensitization to decyl glucoside. This article will review the chemistry of alkyl glucosides, their sources of exposure, as well as their cutaneous adverse effects reported in the literature and encountered in various patch testing centers.

  6. Comparison of Decontamination Efficacy of Cleaning Solutions on a Biological Safety Cabinet Workbench Contaminated by Cyclophosphamide

    PubMed Central

    Adé, Apolline; Chauchat, Laure; Frève, Johann-François Ouellette; Gagné, Sébastien; Caron, Nicolas; Bussières, Jean-François

    2017-01-01

    Background Several studies have compared cleaning procedures for decontaminating surfaces exposed to antineoplastic drugs. All of the cleaning products tested were successful in reducing most of the antineoplastic drug quantities spilled on surfaces, but none of them completely removed residual traces. Objective To assess the efficacy of various cleaning solutions for decontaminating a biological safety cabinet workbench exposed to a defined amount of cyclophosphamide. Methods In this pilot study, specific areas of 2 biological safety cabinets (class II, type B2) were deliberately contaminated with a defined quantity of cyclophosphamide (10 μg or 107 pg). Three cleaning solutions were tested: quaternary ammonium, sodium hypochlorite 0.02%, and sodium hypochlorite 2%. After cleaning, the cyclophosphamide remaining on the areas was quantified by wipe sampling. Each cleaning solution was tested 3 times, with cleaning and wipe sampling being performed 5 times for each test. Results A total of 57 wipe samples were collected and analyzed. The average recovery efficiency was 121.690% (standard deviation 5.058%). The decontamination efficacy increased with the number of successive cleaning sessions: from 98.710% after session 1 to 99.997% after session 5 for quaternary ammonium; from 97.027% to 99.997% for sodium hypochlorite 0.02%; and from 98.008% to 100% for sodium hypochlorite 2%. Five additional cleaning sessions performed after the main study (with detergent and sodium hypochlorite 2%) were effective to complete the decontamination, leaving no detectable traces of the drug. Conclusions All of the cleaning solutions reduced contamination of biological safety cabinet workbenches exposed to a defined amount of cyclophosphamide. Quaternary ammonium and sodium hypochlorite (0.02% and 2%) had mean efficacy greater than 97% for removal of the initial quantity of the drug (107 pg) after the first cleaning session. When sodium hypochlorite 2% was used, fewer cleaning

  7. C2-Selective Branched Alkylation of Benzimidazoles by Rhodium(I)-Catalyzed C-H Activation.

    PubMed

    Tran, Gaël; Confair, Danielle; Hesp, Kevin D; Mascitti, Vincent; Ellman, Jonathan A

    2017-09-01

    Herein, we report a Rh(I)/bisphosphine/K 3 PO 4 catalytic system allowing for the first time the selective branched C-H alkylation of benzimidazoles with Michael acceptors. Branched alkylation with N,N-dimethyl acrylamide was successfully applied to the alkylation of a broad range of benzimidazoles incorporating a variety of N-substituents and with both electron-rich and -poor functionality displayed at different sites of the arene. Moreover, the introduction of a quaternary carbon was achieved by alkylation with ethyl methacrylate. The method was also shown to be applicable to the C2-selective branched alkylation of azabenzimidazoles.

  8. N-O chemistry for antibiotics: discovery of N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds as selective antibacterial agents using nitroso Diels-Alder and ene chemistry.

    PubMed

    Wencewicz, Timothy A; Yang, Baiyuan; Rudloff, James R; Oliver, Allen G; Miller, Marvin J

    2011-10-13

    The discovery, syntheses, and structure-activity relationships (SAR) of a new family of heterocyclic antibacterial compounds based on N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds are described. A structurally diverse library of ∼100 heterocyclic molecules generated from Lewis acid-mediated nucleophilic ring-opening reactions with nitroso Diels-Alder cycloadducts and nitroso ene reactions with substituted alkenes was evaluated in whole cell antibacterial assays. Compounds containing the N-alkyl-N-(pyridin-2-yl)hydroxylamine structure demonstrated selective and potent antibacterial activity against the Gram-positive bacterium Micrococcus luteus ATCC 10240 (MIC(90) = 2.0 μM or 0.41 μg/mL) and moderate activity against other Gram-positive strains including antibiotic resistant strains of Staphylococcus aureus (MRSA) and Enterococcus faecalis (VRE). A new synthetic route to the active core was developed using palladium-catalyzed Buchwald-Hartwig amination reactions of N-alkyl-O-(4-methoxybenzyl)hydroxylamines with 2-halo-pyridines that facilitated SAR studies and revealed the simplest active structural fragment. This work shows the value of using a combination of diversity-oriented synthesis (DOS) and parallel synthesis for identifying new antibacterial scaffolds.

  9. N-O Chemistry for Antibiotics: Discovery of N-Alkyl-N-(pyridin-2-yl)hydroxylamine Scaffolds as Selective Antibacterial Agents Using Nitroso Diels-Alder and Ene Chemistry

    PubMed Central

    Wencewicz, Timothy A.; Yang, Baiyuan; Rudloff, James R.; Oliver, Allen G.; Miller, Marvin J.

    2011-01-01

    The discovery, syntheses, and structure-activity relationships (SAR) of a new family of heterocyclic antibacterial compounds based on N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds are described. A structurally diverse library of ~100 heterocyclic molecules generated from Lewis acid-mediated nucleophilic ring opening reactions with nitroso Diels-Alder cycloadducts and nitroso ene reactions with substituted alkenes was evaluated in whole cell antibacterial assays. Compounds containing the N-alkyl-N-(pyridin-2-yl)hydroxylamine structure demonstrated selective and potent antibacterial activity against the Gram-positive bacterium Micrococcus luteus ATCC 10240 (MIC90 = 2.0 μM or 0.41 μg/mL) and moderate activity against other Gram-positive strains including antibiotic resistant strains of Staphylococcus aureus (MRSA) and Enterococcus faecalis (VRE). A new synthetic route to the active core was developed using palladium-catalyzed Buchwald-Hartwig amination reactions of N-alkyl-O-(4-methoxybenzyl)hydroxylamines with 2-halo-pyridines that facilitated SAR studies and revealed the simplest active structural fragment. This work shows the value of using a combination of diversity-oriented synthesis (DOS) and parallel synthesis for identifying new antibacterial scaffolds. PMID:21859126

  10. Cycles of Transient High-Dose Cyclophosphamide Administration and Oncolytic Adenovirus Vector Intratumoral Injection for Long Term Tumor Suppression in Syrian Hamsters

    PubMed Central

    Dhar, Debanjan; Toth, Karoly; Wold, William S.M.

    2014-01-01

    Immune responses against oncolytic adenovirus (Ad) vectors are thought to limit vector anti-tumor efficacy. In Syrian hamsters, which are immunocompetent and whose tumors and normal tissues are permissive for replication of Ad5-based oncolytic Ad vectors, treating with high-dose cyclophosphamide to suppress the immune system and exert chemotherapeutic effects enhances Ad vector anti-tumor efficacy. However, long term cyclophosphamide treatment and immunosuppression can lead to anemia and vector spread to normal tissues. Here we employed three cycles of transient high-dose cyclophosphamide administration plus intratumoral injection of the oncolytic Ad vector VRX-007 followed by withdrawal from cyclophosphamide. Each cycle lasted 4-6 weeks. This protocol allowed the hamsters to remain healthy so the study could be continued for ~100 days. The tumors were very well suppressed throughout the study. With immunocompetent hamsters, the vector retarded tumor growth initially, but after 3-4 weeks the tumors resumed rapid growth and further injections of vector were ineffective. Preimmunization of the hamsters with Ad5 prevented vector spillover from the tumor to the liver yet still allowed for effective long term anti-tumor efficacy. Our results suggest that a clinical protocol might be developed with cycles of transient chemotherapy plus intratumoral vector injection to achieve significant anti-tumor efficacy while minimizing the side effects of cytostatic treatment. PMID:24722357

  11. Selective sp3 C–H alkylation via polarity-match-based cross-coupling

    PubMed Central

    Le, Chip; Liang, Yufan; Evans, Ryan W.; Li, Ximing; MacMillan, David W. C.

    2017-01-01

    The functionalization of carbon–hydrogen (C–H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence1. Although many C–H functionalization reactions involve C(sp3)–C(sp2) coupling, there is a growing demand for C–H alkylation reactions, wherein sp3 C–H bonds are replaced with sp3 C–alkyl groups. Here we describe a polarity-match-based selective sp3 C–H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C–H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl–alkyl fragment coupling. The sp3 C–H alkylation is highly selective for the α-C–H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry. PMID:28636596

  12. Discovery and identification of a series of alkyl decalin isomers in petroleum geological samples.

    PubMed

    Wang, Huitong; Zhang, Shuichang; Weng, Na; Zhang, Bin; Zhu, Guangyou; Liu, Lingyan

    2015-07-07

    The comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS) has been used to characterize a crude oil and a source rock extract sample. During the process, a series of pairwise components between monocyclic alkanes and mono-aromatics have been discovered. After tentative assignments of decahydronaphthalene isomers, a series of alkyl decalin isomers have been synthesized and used for identification and validation of these petroleum compounds. From both the MS and chromatography information, these pairwise compounds were identified as 2-alkyl-decahydronaphthalenes and 1-alkyl-decahydronaphthalenes. The polarity of 1-alkyl-decahydronaphthalenes was stronger. Their long chain alkyl substituent groups may be due to bacterial transformation or different oil cracking events. This systematic profiling of alkyl-decahydronaphthalene isomers provides further understanding and recognition of these potential petroleum biomarkers.

  13. Immunotherapeutics in Pediatric Autoimmune Central Nervous System Disease: Agents and Mechanisms.

    PubMed

    Nosadini, Margherita; Sartori, Stefano; Sharma, Suvasini; Dale, Russell C

    2017-08-01

    Beyond the major advances produced by careful clinical-radiological phenotyping and biomarker development in autoimmune central nervous system disorders, a comprehensive knowledge of the range of available immune therapies and a deeper understanding of their action should benefit therapeutic decision-making. This review discusses the agents used in neuroimmunology and their mechanisms of action. First-line treatments typically include corticosteroids, intravenous immunoglobulin, and plasmapheresis, while for severe disease second-line "induction" agents such as rituximab or cyclophosphamide are used. Steroid-sparing agents such as mycophenolate, azathioprine, or methotrexate are often used in potentially relapsing or corticosteroid-dependent diseases. Lessons from adult neuroimmunology and rheumatology could be translated into pediatric autoimmune central nervous system disease in the future, including the potential utility of monoclonal antibodies targeting lymphocytes, adhesion molecules for lymphocytic migration, cytokines or their receptors, or complement. Finally, many agents used in other fields have multiple mechanisms of action, including immunomodulation, with potential usefulness in neuroimmunology, such as antibiotics, psychotropic drugs, probiotics, gut health, and ketogenic diet. All currently accepted and future potential agents have adverse effects, which can be severe; therefore, a "risk-versus-benefit" determination should guide therapeutic decision-making. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Nickel-Catalyzed Reductive Allylation of Tertiary Alkyl Halides with Allylic Carbonates.

    PubMed

    Chen, Haifeng; Jia, Xiao; Yu, Yingying; Qian, Qun; Gong, Hegui

    2017-10-09

    The construction of all C(sp 3 ) quaternary centers has been successfully achieved under Ni-catalyzed cross-electrophile coupling of allylic carbonates with unactivated tertiary alkyl halides. For allylic carbonates bearing C1 or C3 substituents, the reaction affords excellent regioselectivity through the addition of alkyl groups to the unsubstituted allylic carbon terminus. The allylic alkylation method also exhibits excellent functional-group compatibility, and delivers the products with high E selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Gemcitabine and oxaliplatin or alkylating agents for neuroendocrine tumors: Comparison of efficacy and search for predictive factors guiding treatment choice.

    PubMed

    Dussol, Anne-Sophie; Joly, Marie-Odile; Vercherat, Cecile; Forestier, Julien; Hervieu, Valérie; Scoazec, Jean-Yves; Lombard-Bohas, Catherine; Walter, Thomas

    2015-10-01

    The alkylating agents (ALKYs) streptozotocin, dacarbazine, and temozolomide currently are the main drugs used in systemic chemotherapy for neuroendocrine tumors (NETs). The promising activity shown by gemcitabine and oxaliplatin (GEMOX) in previous studies prompted this study 1) to confirm the use of GEMOX in a larger population of NET patients, 2) to compare its efficacy with that of ALKYs, and 3) to explore whether the O(6) -methylguanine-DNA methyltransferase (MGMT) status could help in selecting the chemotherapy regimen. One hundred four patients with metastatic NETs (37 pancreatic NETs, 33 gastrointestinal NETs, 23 bronchial NETs, and 11 NETs of other/unknown origin) were treated with GEMOX between 2004 and 2014. Among these patients, 63 also received ALKYs. MGMT promoter gene methylation was assessed via pyrosequencing in 42 patients. Patients received a median of 6 courses of GEMOX. Twenty-four (23%) had an objective response (OR). The median progression-free survival (PFS) and overall survival were 7.8 and 31.6 months, respectively. In the 63 patients treated with both ALKYs and GEMOX, the ORs (22% and 22%) and the PFSs (7.5 and 7.3 months) were similar. The response was concordant in 53% of the patients. Promoter gene methylation of MGMT was associated with better outcomes with ALKYs (P = .03 for OR and P = .04 for PFS) but not GEMOX. GEMOX is effective against NETs; its activity is comparable to that of ALKYs, and it is not influenced by the MGMT status. Our data suggest that GEMOX might be preferred for patients with unmethylated MGMT tumors. Cancer 2015;121:3435-43. © 2015 American Cancer Society. © 2015 American Cancer Society.

  16. Alkyl Azides, Diazides, Haloazides and Bridged Polycyclic Diazides

    DTIC Science & Technology

    1991-05-16

    temperature. Most of the methyl ether was removed during this process. The ehtyl ether was distilled from the reaction mixture using a water aspirator into a...Street PROGRAM IPROJECT ITASK IWORK li1111? ArliiqIoh, VA 22217-5000 EILIMENT NO I NO. I oACCESSION P10) Alkyl Azides, Dlazides, laloazides and...REPRODUCE LEGIBLY. ALKYL AZIDES, DIAZIDES, HALOAZIDES AND BRIDGED POLYCYCLIC DIAZIDES Final REPORTe July 1, 1989-November 14, 1990 A6jd.%4gi0 F’or

  17. Complete remission of coronary vasculitis in Churg-Strauss Syndrome by prednisone and cyclophosphamide.

    PubMed

    Riksen, Niels P; Gehlmann, Helmut; Brouwer, Annemarie E; van Deuren, Marcel

    2013-03-01

    The heart is involved in up to 50% of all patients with Churg-Strauss syndrome, but vasculitis of the coronary arteries has only been rarely documented. We present a young patient with severe coronary aneurysms and stenotic lesions due to a Churg-Strauss vasculitis. Prompt therapy with prednisone and cyclophosphamide resulted in the complete resolution of all lesions.

  18. Immune response of mallard ducks treated with immunosuppressive agents: antibody response to erythrocytes and in vivo response to phytohemagglutinin-P.

    USGS Publications Warehouse

    Schrank, C.S.; Cook, M.E.; Hansen, W.R.

    1990-01-01

    The ability of two in vivo tests to assay immune competence of mallard ducks (Anas platyrhynchos) treated with various immunomodulatory agents was examined. Skin responses to phytohemagglutinin-P (PHA-P) injected intradermally and serum antibody levels produced in response to sheep red blood cells (SRBC) were measured. As measured by the skin response to PHA-P, ducks injected intramuscularly with cyclophosphamide or cyclosporine did not respond differently from control-injected ducks. Dexamethasone injected intramuscularly significantly suppressed the skin response to PHA-P. As measured by antibody levels in response to SRBC, ducks injected intramuscularly with cyclophosphamide responded with antibody titers similar to controls. Cyclosporine injected intramuscularly reduced the level of immunoglobulin (Ig) G significantly in one of two experiments. Dexamethasone injected intramuscularly reduced peak total and IgG titers. These experiments provide information on the viability of these two in vivo tests to reflect immune competence of mallard ducks.

  19. Synthesis of High-Load, Hybrid Silica-Immobilized Heterocyclic Benzyl Phosphate (Si–OHBP) and Triazolyl Phosphate (Si–OHTP) Alkylating Reagents

    PubMed Central

    2016-01-01

    The development of new ROMP-derived silica-immobilized heterocyclic phosphate reagents and their application in purification-free protocols is reported. Grafting of norbornenyl norbornenyl-functionalized (Nb-tagged) silica particles with functionalized Nb-tagged heterocyclic phosphate monomers efficiently yield high-load, hybrid silica-immobilized oligomeric heterobenzyl phosphates (Si–OHBP) and heterotriazolyl phosphates (Si–OHTP) as efficient alkylation agents. Applications of these reagents for the diversification of N-, O-, and S-nucleophilic species, for efficient heterobenzylation and hetero(triazolyl)methylation have been validated. PMID:27300761

  20. Ginseng alleviates cyclophosphamide-induced hepatotoxicity via reversing disordered homeostasis of glutathione and bile acid.

    PubMed

    Zhu, He; Long, Min-Hui; Wu, Jie; Wang, Meng-Meng; Li, Xiu-Yang; Shen, Hong; Xu, Jin-Di; Zhou, Li; Fang, Zhi-Jun; Luo, Yi; Li, Song-Lin

    2015-12-02

    Cyclophosphamide (CP), a chemotherapeutic agent, is restricted due to its side effects, especially hepatotoxicity. Ginseng has often been clinically used with CP in China, but whether and how ginseng reduces the hepatotoxicity is unknown. In this study, the hepatoprotective effects and mechanisms under the combined usage were investigated. It was found that ginseng could ameliorate CP-induced elevations of ALP, ALT, ALS, MDA and hepatic deterioration, enhance antioxidant enzymes' activities and GSH's level. Metabolomics study revealed that 33 endogenous metabolites were changed by CP, 19 of which were reversed when ginseng was co-administrated via two main pathways, i.e., GSH metabolism and primary bile acids synthesis. Furthermore, ginseng could induce expression of GCLC, GCLM, GS and GST, which associate with the disposition of GSH, and expression of FXR, CYP7A1, NTCP and MRP 3, which play important roles in the synthesis and transport of bile acids. In addition, NRF 2, one of regulatory elements on the expression of GCLC, GCLM, GS, GST, NTCP and MRP3, was up-regulated when ginseng was co-administrated. In conclusion, ginseng could alleviate CP-induced hepatotoxicity via modulating the disordered homeostasis of GSH and bile acid, which might be mediated by inducing the expression of NRF 2 in liver.

  1. Cyclophosphamide leads to persistent deficits in physical performance and in vivo mitochondria function in a mouse model of chemotherapy late effects.

    PubMed

    Crouch, Marie-Laure; Knowels, Gary; Stuppard, Rudolph; Ericson, Nolan G; Bielas, Jason H; Marcinek, David J; Syrjala, Karen L

    2017-01-01

    Fatigue is the symptom most commonly reported by long-term cancer survivors and is increasingly recognized as related to skeletal muscle dysfunction. Traditional chemotherapeutic agents can cause acute toxicities including cardiac and skeletal myopathies. To investigate the mechanism by which chemotherapy may lead to persistent skeletal muscle dysfunction, mature adult mice were injected with a single cyclophosphamide dose and evaluated for 6 weeks. We found that exposed mice developed a persistent decrease in treadmill running time compared to baseline (25.7±10.6 vs. 49.0±16.8 min, P = 0.0012). Further, 6 weeks after drug exposure, in vivo parameters of mitochondrial function remained below baseline including maximum ATP production (482.1 ± 48.6 vs. 696.2 ± 76.6, P = 0.029) and phosphocreatine to ATP ratio (3.243 ± 0.1 vs. 3.878 ± 0.1, P = 0.004). Immunoblotting of homogenized muscles from treated animals demonstrated a transient increase in HNE adducts 1 week after exposure that resolved by 6 weeks. However, there was no evidence of an oxidative stress response as measured by quantitation of SOD1, SOD2, and catalase protein levels. Examination of mtDNA demonstrated that the mutation frequency remained comparable between control and treated groups. Interestingly, there was evidence of a transient increase in NF-ĸB p65 protein 1 day after drug exposure as compared to saline controls (0.091±0.017 vs. 0.053±0.022, P = 0.033). These data suggest that continued impairment in muscle and mitochondria function in cyclophosphamide-treated animals is not linked to persistent oxidative stress and that alternative mechanisms need to be considered.

  2. 40 CFR 721.5860 - Methylphenol, bis(sub-sti-tuted)alkyl.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5860 Methylphenol, bis(sub-sti-tuted)alkyl. (a) Chemical substance and significant new uses...-ed)alkyl (P-84-417) is subject to reporting under this section for the significant new uses described...

  3. Direct β-Alkylation of Aldehydes via Photoredox Organocatalysis

    PubMed Central

    2015-01-01

    Direct β-alkylation of saturated aldehydes has been accomplished by synergistically combining photoredox catalysis and organocatalysis. Photon-induced enamine oxidation provides an activated β-enaminyl radical intermediate, which readily combines with a wide range of Michael acceptors to produce β-alkyl aldehydes in a highly efficient manner. Furthermore, this redox-neutral, atom-economical C–H functionalization protocol can be achieved both inter- and intramolecularly. Mechanistic studies by various spectroscopic methods suggest that a reductive quenching pathway is operable. PMID:24754456

  4. Potentiation of a p53-SLP vaccine by cyclophosphamide in ovarian cancer: a single-arm phase II study.

    PubMed

    Vermeij, Renee; Leffers, Ninke; Hoogeboom, Baukje-Nynke; Hamming, Ineke L E; Wolf, Rinze; Reyners, Anna K L; Molmans, Barbara H W; Hollema, Harry; Bart, Joost; Drijfhout, Jan W; Oostendorp, Jaap; van der Zee, Ate G J; Melief, Cornelis J; van der Burg, Sjoerd H; Daemen, Toos; Nijman, Hans W

    2012-09-01

    The purpose of the current phase II single-arm clinical trial was to evaluate whether pretreatment with low-dose cyclophosphamide improves immunogenicity of a p53-synthetic long peptide (SLP) vaccine in patients with recurrent ovarian cancer. Patients with ovarian cancer with elevated serum levels of CA-125 after primary treatment were immunized four times with the p53-SLP vaccine. Each immunization was preceded by administration of 300 mg/m2 intravenous cyclophosphamide as a means to affect regulatory T cells (Tregs). Vaccine-induced p53-specific interferon-gamma (IFN-γ)-producing T cells evaluated by IFN-γ ELISPOT were observed in 90% (9/10) and 87.5% (7/8) of evaluable patients after two and four immunizations, respectively. Proliferative p53-specific T cells, observed in 80.0% (8/10) and 62.5% (5/8) of patients, produced both T-helper 1 and T-helper-2 cytokines. Cyclophosphamide induced neither a quantitative reduction of Tregs determined by CD4+ FoxP3+ T cell levels nor a demonstrable qualitative difference in Treg function tested in vitro. Nonetheless, the number of vaccine-induced p53-specific IFN-γ-producing T cells was higher in our study compared to a study in which a similar patient group was treated with p53-SLP monotherapy (p≤0.012). Furthermore, the strong reduction in the number of circulating p53-specific T cells observed previously after four immunizations was currently absent. Stable disease was observed in 20.0% (2/10) of patients, and the remainder of patients (80.0%) showed clinical, biochemical and/or radiographic evidence of progressive disease. The outcome of this phase II trial warrants new studies on the use of low-dose cyclophosphamide to potentiate the immunogenicity of the p53-SLP vaccine or other antitumor vaccines. Copyright © 2011 UICC.

  5. Inflammasomes are important mediators of cyclophosphamide-induced bladder inflammation

    PubMed Central

    Vivar, Nivardo P.; Kennis, James G.; Pratt-Thomas, Jeffery D.; Lowe, Danielle W.; Shaner, Brooke E.; Nietert, Paul J.; Spruill, Laura S.; Purves, J. Todd

    2013-01-01

    Bladder inflammation (cystitis) underlies numerous bladder pathologies and is elicited by a plethora of agents such as urinary tract infections, bladder outlet obstruction, chemotherapies, and catheters. Pattern recognition receptors [Toll-like receptors (TLRs) and Nod-like receptors (NLRs)] that recognize pathogen- and/or damage-associated molecular patterns (PAMPs and/or DAMPs, respectively) are key components of the innate immune system that coordinates the production (TLRs) and maturation (NLRs) of proinflammatory IL-1β. Despite multiple studies of TLRs in the bladder, none have investigated NLRs beyond one small survey. We now demonstrate that NLRP3 and NLRC4, and their binding partners apoptosis-associated speck-like protein containing a COOH-terminal caspase recruitment domain (ASC) and NLR family apoptosis inhibitory protein (NAIP), are expressed in the bladder and localized predominantly to the urothelia. Activated NLRs form inflammasomes that activate caspase-1. Placement of a NLRP3- or NLRC4-activating PAMP or NLRP3-activating DAMPs into the lumen of the bladder stimulated caspase-1 activity. To investigate inflammasomes in vivo, we induced cystitis with cyclophosphamide (CP, 150 mg/kg ip) in the presence or absence of the inflammasome inhibitor glyburide. Glyburide completely blocked CP-induced activation of caspase-1 and the production of IL-1β at 4 h. At 24 h, glyburide reduced two markers of inflammation by 30–50% and reversed much of the inflammatory morphology. Furthermore, glyburide reversed changes in bladder physiology (cystometry) induced by CP. In conclusion, NLRs/inflammasomes are present in the bladder urothelia and respond to DAMPs and PAMPs, whereas NLRP3 inhibition blocks bladder dysfunction in the CP model. The coordinated response of NLRs and TLRs in the urothelia represents a first-line innate defense that may provide an important target for pharmacological intervention. PMID:24285499

  6. Replacing Conventional Carbon Nucleophiles with Electrophiles: Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides

    PubMed Central

    2012-01-01

    A general method is presented for the synthesis of alkylated arenes by the chemoselective combination of two electrophilic carbons. Under the optimized conditions, a variety of aryl and vinyl bromides are reductively coupled with alkyl bromides in high yields. Under similar conditions, activated aryl chlorides can also be coupled with bromoalkanes. The protocols are highly functional-group tolerant (−OH, −NHTs, −OAc, −OTs, −OTf, −COMe, −NHBoc, −NHCbz, −CN, −SO2Me), and the reactions are assembled on the benchtop with no special precautions to exclude air or moisture. The reaction displays different chemoselectivity than conventional cross-coupling reactions, such as the Suzuki–Miyaura, Stille, and Hiyama–Denmark reactions. Substrates bearing both an electrophilic and nucleophilic carbon result in selective coupling at the electrophilic carbon (R–X) and no reaction at the nucleophilic carbon (R–[M]) for organoboron (−Bpin), organotin (−SnMe3), and organosilicon (−SiMe2OH) containing organic halides (X–R–[M]). A Hammett study showed a linear correlation of σ and σ(−) parameters with the relative rate of reaction of substituted aryl bromides with bromoalkanes. The small ρ values for these correlations (1.2–1.7) indicate that oxidative addition of the bromoarene is not the turnover-frequency determining step. The rate of reaction has a positive dependence on the concentration of alkyl bromide and catalyst, no dependence upon the amount of zinc (reducing agent), and an inverse dependence upon aryl halide concentration. These results and studies with an organic reductant (TDAE) argue against the intermediacy of organozinc reagents. PMID:22463689

  7. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    DOEpatents

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  8. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  9. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  10. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  11. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  12. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  13. Alkylation Induced DNA Repair and Mutagenesis in Escherichia coli.

    DTIC Science & Technology

    1987-11-23

    III (Gates and inn, 1977), Micrococcus luteus UV endo- nuclease (Grossman et al, 1978) and bacteriophage T UV endonuclease (Warner et al, 1980) have DNA...34, Garland Publishing, Inc. New York & London USA. Ather, A., Z. Ahmed and S. Riazxxddin, 1984. Adaptive response of Micrococcus luteus to alkylating...Laval, J., 3. Pierre and F. Laval. 1981. Release of 7-nmthylguanine residues frain alkylated ENA by extracts of Micrococcus luteus and Escherichia

  14. 40 CFR 721.10621 - Distillation bottoms, alkylated benzene by-product (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene by-product (generic). 721.10621 Section 721.10621 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10621 Distillation bottoms, alkylated benzene by... substance identified generically as distillation bottoms, alkylated benzene by-product (PMN P-12-196) is...

  15. 40 CFR 721.10621 - Distillation bottoms, alkylated benzene by-product (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene by-product (generic). 721.10621 Section 721.10621 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10621 Distillation bottoms, alkylated benzene by... substance identified generically as distillation bottoms, alkylated benzene by-product (PMN P-12-196) is...

  16. 40 CFR 721.10702 - Polyfluorinated alkyl thio polyacrylic acid-acrylamide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... acid-acrylamide (generic). 721.10702 Section 721.10702 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10702 Polyfluorinated alkyl thio polyacrylic acid... substance identified generically as polyfluorinated alkyl thio polyacrylic acid-acrylamide (PMN P-11-534) is...

  17. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    PubMed

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  18. Poly(ethyleneoxide) functionalization through alkylation

    DOEpatents

    Sivanandan, Kulandaivelu; Eitouni, Hany Basam; Li, Yan; Pratt, Russell Clayton

    2015-04-21

    A new and efficient method of functionalizing high molecular weight polymers through alkylation using a metal amide base is described. This novel procedure can also be used to synthesize polymer-based macro-initiators containing radical initiating groups at the chain-ends for synthesis of block copolymers.

  19. Effects of melatonin on DNA damage induced by cyclophosphamide in rats

    PubMed Central

    Ferreira, S.G.; Peliciari-Garcia, R.A.; Takahashi-Hyodo, S.A.; Rodrigues, A.C.; Amaral, F.G.; Berra, C.M.; Bordin, S.; Curi, R.; Cipolla-Neto, J.

    2013-01-01

    The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy. PMID:23471360

  20. Versatile assembly of p-carboxylatocalix[4]arene-O-alkyl ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Stuart; Teat, Simon J.; Dalgarno, Scott J.

    Crystallisation of lower-rim tetra-O-alkylated p-carboxylatocalix[4]arenes from pyridine results in the formation of both bi-layer and pillar type supramolecular motifs. Full alkylation at the calixarene lower rim has significant influence over the supramolecular self-assembly motif, including preclusion of pyridine guest molecules from the calixarene cavity in the solid state.