Science.gov

Sample records for alkylating agent methyl

  1. Alkylating agent methyl methanesulfonate (MMS) induces a wave of global protein hyperacetylation: Implications in cancer cell death

    SciTech Connect

    Lee, Min-Young; Kim, Myoung-Ae; Kim, Hyun-Ju; Bae, Yoe-Sik; Park, Joo-In; Kwak, Jong-Young; Chung, Jay H.; Yun, Jeanho . E-mail: yunj@dau.ac.kr

    2007-08-24

    Protein acetylation modification has been implicated in many cellular processes but the direct evidence for the involvement of protein acetylation in signal transduction is very limited. In the present study, we found that an alkylating agent methyl methanesulfonate (MMS) induces a robust and reversible hyperacetylation of both cytoplasmic and nuclear proteins during the early phase of the cellular response to MMS. Notably, the acetylation level upon MMS treatment was strongly correlated with the susceptibility of cancer cells, and the enhancement of MMS-induced acetylation by histone deacetylase (HDAC) inhibitors was shown to increase the cellular susceptibility. These results suggest protein acetylation is important for the cell death signal transduction pathway and indicate that the use of HDAC inhibitors for the treatment of cancer is relevant.

  2. O6-methylguanine-DNA methyltransferase activity is associated with response to alkylating agent therapy and with MGMT promoter methylation in glioblastoma and anaplastic glioma

    PubMed Central

    Bobola, Michael S.; Alnoor, Mohammad; Chen, John Y.-S.; Kolstoe, Douglas D.; Silbergeld, Daniel L.; Rostomily, Robert C.; Blank, A.; Chamberlain, Marc C.; Silber, John R.

    2014-01-01

    Background CpG methylation in the O6-methylguanine-DNA methyltransferase (MGMT) promoter is associated with better outcome following alkylating agent chemotherapy in glioblastoma (GBM) and anaplastic glioma (AG). To what extent improved response reflects low or absent MGMT activity in glioma tissue has not been unequivocally assessed. This information is central to developing anti-resistance therapies. Methods We examined the relationship of MGMT activity in 91 GBMs and 84 AGs with progression-free survival (PFS) following alkylator therapy and with promoter methylation status determined by methylation-specific PCR (MSP). Results Cox regression analysis revealed that GBMs with high activity had a significantly greater risk for progression in dichotomous (P ≤ 0.001) and continuous (P ≤ 0.003) models, an association observed for different alkylator regimens, including concurrent chemo-radiation with temozolomide. Analysis of MGMT promoter methylation status in 47 of the GBMs revealed that methylated tumors had significantly lower activity (P ≤ 0.005) and longer PFS (P ≤ 0.036) compared to unmethylated tumors, despite overlapping activities. PFS was also significantly greater in methylated vs. unmethylated GBMs with comparable activity (P ≤ 0.005), and among unmethylated tumors with less than median activity (P ≤ 0.026), suggesting that mechanisms in addition to MGMT promote alkylator resistance. Similar associations of MGMT activity with PFS and promoter methylation status were observed for AGs. Conclusions Our results provide strong support for the hypotheses that MGMT activity promotes alkylator resistance and reflects promoter methylation status in malignant gliomas. General significance MGMT activity is an attractive target for anti-resistance therapy regardless of methylation status. PMID:25558448

  3. Stabilized dialkyl aluminum complexes as alkylating agents

    SciTech Connect

    Blum, J.; Baidossi, W.; Rosenfeld, A.

    1995-12-31

    Although trialkylaluminum derivatives are widely used as Ziegler-Natta polymerization co-catalysts, their application as routine alkylating agents is limited owing to their pyrophoric nature. The authors have now found that substitution of one of the alkyl moieties by a chelating group reduces the sensitivity of the organoaluminum compounds to air, and enables one to utilize them under normal laboratory conditions.

  4. Escherichia coli gene that controls sensitivity to alkylating agents.

    PubMed Central

    Yamamoto, Y; Katsuki, M; Sekiguchi, M; Otsuji, N

    1978-01-01

    A new type of Escherichia coli mutant which shows increased sensitivity to methyl methane sulfonate but not to UV light or to gamma rays was isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. The mutant is unable to reactivate phage lambdavir or double-stranded phiX174 DNA (replicative form) that had been treated with methyl methane sulfonate. The mutant is sensitive to other alkylating agents, such as ethyl methane sulfonate, mitomycin C, and N-methyl-N'-nitro-N-nitrosoguanidine, as well. It grows normally and exhibits almost normal recombination proficiency. The mutant possesses normal levels of DNA polymerase I, exonuclease I, exonuclease V, endonuclease specific for methyl methane sulfonate-treated DNA, and 3-methyladenine-DNA glycosidase activities. The genetic locus responsible has been named alk and is located near his on the chromosome. PMID:353028

  5. MGMT Promoter Methylation Correlates with an Overall Survival Benefit in Chinese High-Grade Glioblastoma Patients Treated with Radiotherapy and Alkylating Agent-Based Chemotherapy: A Single-Institution Study

    PubMed Central

    Shen, Dong; Liu, Tao; Lin, Qingfen; Lu, Xiangdong; Wang, Qiong; Lin, Feng; Mao, Weidong

    2014-01-01

    Promoter methylation of the O6-methylguanine-DNA-methyltransferase (MGMT) gene has been considered a prognostic marker and has become more important in the treatment of glioblastoma. However, reports on the correlation between MGMT and clinical outcomes in Chinese glioblastoma patients are very scarce. In this study, quantitative methylation data were obtained by the pyrosequencing of tumor tissues from 128 GBM patients. The median overall survival (OS) was 13.1 months, with a 1-year survival of 45.3%. The pyrosequencing data were reproducible based on archived samples yielding data for all glioblastomas. MGMT promoter methylation was detected in 75/128 cases (58.6%), whereas 53/128 (41.4%) cases were unmethylated. Further survival analysis also revealed that methylation was an independent prognostic factor associated with prolonged OS but not with progression-free survival (PFS) (p = 0.029 and p = 0.112, respectively); the hazard radios were 0.63 (95% CI: 0.42–0.96) and 0.72 (95% CI: 0.48–1.09), respectively. These data indicated that MGMT methylation has prognostic significance in patients with newly diagnosed high-grade glioblastoma undergoing alkylating agent-based chemotherapy after surgical resection. PMID:25211033

  6. Clinical applications of quinone-containing alkylating agents.

    PubMed

    Begleiter, A

    2000-11-01

    Quinone-containing alkylating agents are a class of chemical agents that have received considerable interest as anticancer drugs. These agents contain a quinone moiety that can be reduced and an alkylating group that can form covalent bonds with a variety of cellular components. The oxidation state of the quinone element can modulate the activity of the alkylating element, and reduction of the quinone is required for activation of the alkylating activity of many of these agents. The quinone element may also contribute to the cytotoxic activity of quinone-containing alkylating agents through the formation of reactive oxygen species during redox cycling. The natural product, mitomycin C, has been the most widely used quinone-containing alkylating agent in the clinic, but other quinone-containing alkylating agents like porfiromycin, diaziquone, carbazilquinone, triaziquone and EO9 have also been used in the clinic for the treatment of cancer. In addition, many other quinone-containing alkylating agents have been tested in preclinical studies and the development of new agents is being actively pursued. This chapter describes the current and past clinical uses of these agents in the treatment of cancer and discusses new agents that are currently in clinical trials. PMID:11056078

  7. Detection of Alkylating Agents using Electrical and Mechanical Means

    NASA Astrophysics Data System (ADS)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Tal, Shay; Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir; Eichen, Yoav

    2011-08-01

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  8. Alcohols as alkylating agents in heteroarene C–H functionalization

    PubMed Central

    Jin, Jian; MacMillan, David W. C.

    2015-01-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage1. One of the core principles that underlies DNA biosynthesis is the radical-mediated elimnation of H2O to deoxygenate ribonucleotides, an example of ‘spin-center shift’ (SCS)2, during which an alcohol C–O bond is cleaved, resulting in a carbon-centered radical intermediate. While SCS is a well-understood biochemical process, it is underutilized by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylations using alcohols as radical precursors. Considering traditional radical-based alkylation methods require the use of stoichiometric oxidants, elevated temperatures, or peroxides3–7, the development of a mild protocol using simple and abundant alkylating agents would have significant utility in the synthesis of diversely functionalized pharmacophores. In this manuscript, we describe the successful execution of this idea via the development of a dual catalytic alkylation of heteroarenes using alcohols as mild alkylating reagents. This method represents the first broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer (HAT) catalysis. The utility of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone. PMID:26308895

  9. Alcohols as alkylating agents in heteroarene C-H functionalization

    NASA Astrophysics Data System (ADS)

    Jin, Jian; MacMillan, David W. C.

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  10. Alcohols as alkylating agents in heteroarene C-H functionalization.

    PubMed

    Jin, Jian; MacMillan, David W C

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of 'spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone. PMID:26308895

  11. The effect of alkylating agents on model supported metal clusters

    SciTech Connect

    Erdem-Senatalar, A.; Blackmond, D.G.; Wender, I. . Dept. of Chemical and Petroleum Engineering); Oukaci, R. )

    1988-01-01

    Interactions between model supported metal clusters and alkylating agents were studied in an effort to understand a novel chemical trapping technique developed for identifying species adsorbed on catalyst surfaces. It was found that these interactions are more complex than had previously been suggested. Studies were completed using deuterium-labeled dimethyl sulfate (DMS), (CH{sub 3}){sub 2}SO{sub 4}, as a trapping agent to interact with the supported metal cluster ethylidyne tricobalt enneacarbonyl. Results showed that oxygenated products formed during the trapping reaction contained {minus}OCD{sub 3} groups from the DMS, indicating that the interaction was not a simple alkylation. 18 refs., 1 fig., 3 tabs.

  12. Synthesis and Performance of a Biomimetic Indicator for Alkylating Agents.

    PubMed

    Provencher, Philip A; Love, Jennifer A

    2015-10-01

    4-(4-Nitrobenzyl)pyridine (NBP) is a colorimetric indicator compound for many types of carcinogenic alkylating agents. Because of the similar reactivity of NBP and guanine in DNA, NBP serves as a DNA model. NBP assays are used in the toxicological screening of pharmaceutical compounds, detection of chemical warfare agents, environmental hygiene technology, preliminary toxicology tests, mutagenicity of medicinal compounds, and other chemical analyses. Nevertheless, the use of NBP as a DNA model suffers from the compound's low water solubility, its lack of reactive oxygen sites, and dissimilar steric encumbrance compared to DNA. We report herein the design and synthesis of NBP derivatives that address some of these issues. These derivatives have been tested in solution and found to be superior in the colorimetric assay of the alkylating anticancer drug cyclophosphamide. The derivatives have also been integrated into a polymeric silica material which changes color upon the exposure to dangerous alkylating agents, such as iodomethane vapor, without the need for an exogenous base. This material modernizes the NBP assay from a time-consuming laboratory analysis to a real-time solid state sensor, which requires neither solvent nor additional reagents and can detect both gas- and solution-phase alkylating agents. PMID:26393809

  13. Structure-activity studies on organoselenium alkylating agents.

    PubMed

    Kang, S I; Spears, C P

    1990-01-01

    A variety of organoselenium alkylating agents were synthesized, using 2-hydroxyethyl and 3-hydroxypropyl selenocyanate intermediates, and studied to determine their chemical reactivities with 4-(4-nitrobenzyl)pyridine (NBP) and cytotoxicities against CCRF-CEM, L1210/0, and L1210/L-PAM cells. The comparison between the 2-chloroethyl sulfides and selenides 1-4 revealed the markedly enhanced nucleophilicity of selenium (Se) over sulfur (S) by two or more orders of magnitude. This finding indicates that a major consideration in the design of antitumor alkylating organoselenides is the reactivity of selenium. A Taft plot of the experimental first-order rate constant, knbp, and sigma* in a series of 2-chloroethylseleno compounds gave a slope of -1.73 (rho*), with the exception of 2-chloroethyl 2-nitrophenyl selenide (10). The anomalous behavior of 10 is explained in terms of the ortho-nitro stabilization effect directly interacting with the selenium atom of ethyleneselenonium ion to form a 5-membered cyclic intermediate. In the same series, a 5000-fold difference in alkylating reactivity offered only a sixfold variation in cytotoxicity against CCRF-CEM cells. Increasing the alkylating chain length from ethlene to propylene units markedly reduced alkylating reactivities. In the CH3Se(CH2)n Cl series, 16 (n = 3) was 1.5 X 10(5) times slower than 2 (n = 2) in NBP alkylation, revealing that 3-chloro-n-propyl selenides are not chemically reactive enough to be biological alkylating agents despite the presence of the highly nucleophilic selenium atom. Replacement of chloride with mesylate in 3-substituted propyl selenides, such as 17 and 20, restored desirable reactivities and cytotoxicities. PMID:2313578

  14. Leukemia after therapy with alkylating agents for childhood cancer

    SciTech Connect

    Tucker, M.A.; Meadows, A.T.; Boice, J.D. Jr.; Stovall, M.; Oberlin, O.; Stone, B.J.; Birch, J.; Voute, P.A.; Hoover, R.N.; Fraumeni, J.F. Jr.

    1987-03-01

    The risk of leukemia was evaluated in 9,170 2-or-more-year survivors of childhood cancer in the 13 institutions of the Late Effects Study Group. Secondary leukemia occurred in 22 nonreferred individuals compared to 1.52 expected, based on general population rates (relative risk (RR) = 14; 95% confidence interval (CI), 9-22). The influence of therapy for the first cancer on subsequent leukemia risk was determined by a case-control study conducted on 25 cases and 90 matched controls. Treatment with alkylating agents was associated with a significantly elevated risk of leukemia (RR = 4.8; 95% CI, 1.2-18.9). A strong dose-response relationship was also observed between leukemia risk and total dose of alkylating agents, estimated by an alkylator score. The RR of leukemia reached 23 in the highest dose category. Radiation therapy, however, did not increase risk. Although doxorubicin was also identified as a possible risk factor, the excess risk of leukemia following treatment for childhood cancer appears almost entirely due to alkylating agents.

  15. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    PubMed

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents. PMID:25497573

  16. Cytotoxicity of alkylating agents towards sensitive and resistant strains of Escherichia coli in relation to extent and mode of alkylation of cellular macromolecules and repair of alkylation lesions in deoxyribonucleic acids

    PubMed Central

    Lawley, P. D.; Brookes, P.

    1968-01-01

    1. A quantitative study was made of the relationship between survival of colony-forming ability in Escherichia coli strains B/r and Bs–1 and the extents of alkylation of cellular DNA, RNA and protein after treatment with mono- or di-functional sulphur mustards, methyl methanesulphonate or iodoacetamide. 2. The mustards and methyl methanesulphonate react with nucleic acids in the cells, in the same way as found previously from chemical studies in vitro, and with proteins. Iodoacetamide reacts only with protein, principally with the thiol groups of cysteine residues. 3. The extents of alkylation of cellular constituents required to prevent cell division vary widely according to the strain of bacteria and the nature of the alkylating agent. 4. The extents of alkylation of the sensitive and resistant strains at a given dose of alkylating agent do not differ significantly. 5. Removal of alkyl groups from DNA of cells of the resistant strains B/r and 15T− after alkylation with difunctional sulphur mustard was demonstrated; the product di(guanin-7-ylethyl) sulphide, characteristic of di- as opposed to mono-functional alkylation, was selectively removed; the time-scale of this effect suggests an enzymic rather than a chemical mechanism. 6. The sensitive strain Bs–1 removed alkyl groups from DNA in this way only at very low extents of alkylation. When sensitized to mustard action by treatment with iodoacetamide, acriflavine or caffeine, the extent of alkylation of cellular DNA corresponding to a mean lethal dose was decreased to approximately 3 molecules of di(guanin-7-ylethyl) sulphide in the genome of this strain. 7. Relatively large numbers of monofunctional alkylations per genome can be withstood by this sensitive strain. Iodoacetamide had the weakest cytotoxic action of the agents investigated; methyl methanesulphonate was significantly weaker in effect than the monofunctional sulphur mustard, which was in turn weaker than the difunctional sulphur mustard. 8

  17. [Clinical pharmacology of anticancer agents. (Part 1) Introduction, alkylating agents and platinum compounds].

    PubMed

    Fujita, H

    1991-11-01

    Pharmacokinetic concepts as to absorption, distribution, metabolism and excretion of anticancer agents, and how drugs reach to the site of action were reviewed. Then, roles of the liver and kidney to the excretion and metabolism, intracellular pharmacokinetics, and relationships between drug response and cell proliferation kinetics or cell cycle phase were explained. Drug development, mode of action and pharmacokinetics of alkylating agents and platinum compounds were reviewed. This includes: alkylating agents: nitrogen mustard, phenylalanine mustard, estracyte, cyclophosphamide, carboquone, busulfan, nitrosourea, etc., and platinum compounds: cisplatin, carboplatin, 254-S, DWA-2114 R, NK-121. PMID:1952967

  18. Nearest neighbor affects G:C to A:T transitions induced by alkylating agents.

    PubMed Central

    Glickman, B W; Horsfall, M J; Gordon, A J; Burns, P A

    1987-01-01

    The influence of local DNA sequence on the distribution of G:C to A:T transitions induced in the lacI gene of E. coli by a series of alkylating agents has been analyzed. In the case of nitrosoguanidine, two nitrosoureas and a nitrosamine, a strong preference for mutation at sites proceeded 5' by a purine base was noted. This preference was observed with both methyl and ethyl donors where the predicted common ultimate alkylating species is the alkyl diazonium ion. In contrast, this preference was not seen following treatment with ethylmethanesulfonate. The observed preference for 5'PuG-3' site over 5'-PyG-3' sites corresponds well with alterations observed in the Ha-ras oncogene recovered after treatment with NMU. This indicates that the mutations recovered in the oncogenes are likely the direct consequence of the alkylation treatment and that the local sequence effects seen in E. coli also appear to occur in mammalian cells. PMID:3329097

  19. Suppression of alkylating agent induced cell transformation and gastric ulceration by low-dose alkylating agent pretreatment

    SciTech Connect

    Onodera, Akira; Kawai, Yuichi; Kashimura, Asako; Ogita, Fumiya; Tsutsumi, Yasuo; Itoh, Norio

    2013-06-14

    Highlights: •Low-dose MNNG pretreatment suppresses high-dose MNNG induced in vitro transformation. •Gastric ulcers induced by high-dose MNNG decreased after low-dose MNNG pretreatment. •Efficacy of low-dose MNNG related to resistance of mutation and oxidative stress. -- Abstract: Exposure to mild stress by chemicals and radiation causes DNA damage and leads to acquired stress resistance. Although the linear no-threshold (LNT) model of safety assessment assumes risk from any dose, evidence from radiological research demonstrates a conflicting hormetic phenomenon known as the hormesis effect. However, the mechanisms underlying radiation hormesis have not yet been clarified, and little is known about the effects of low doses of chemical carcinogens. We analyzed the efficacy of pretreatment with low doses of the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) on the subsequent induction of cell transformation and gastric ulceration by high-dose MNNG. We used an in vitro Balb/3T3 A31-1-1 cell transformation test and monitored the formation of gastric ulcers in 5-week-old male ICR mice that were administered MNNG in drinking water. The treatment concentrations of MNNG were determined by the cell survival rate and past reports. For low-dose in vitro and in vivo experiments, MNNG was used at 0.028 μM, and 2.8 μg/mL, respectively. The frequency of cell transformation induced by 10 μm MNNG was decreased by low-dose MNNG pretreatment to levels similar to that of spontaneous transformation. In addition, reactive oxygen species (ROS) and mutation frequencies induced by 10 μm MNNG were decreased by low-dose MNNG pretreatment. Importantly, low-dose MNNG pretreatment had no effect on cell proliferation. In vivo studies showed that the number of gastric ulcers induced by 1 mg/mL MNNG decreased after low-dose MNNG pretreatment. These data indicate that low-dose pretreatment with carcinogens may play a beneficial role in the prevention of chemical toxicity

  20. Decreased stability of DNA in cells treated with alkylating agents

    SciTech Connect

    Frankfurt, O.S. )

    1990-12-01

    A modified highly sensitive procedure for the evaluation of DNA damage in individual cells treated with alkylating agents is reported. The new methodology is based on the amplification of single-strandedness in alkylated DNA by heating in the presence of Mg{sup 2+}. Human ovarian carcinoma cells A2780 were treated with nitrogen mustard (HN2), fixed in methanol, and stained with monoclonal antibody (MOAB) F7-26 generated against HN2-treated DNA. Binding of MOAB was measured by flow cytometry with indirect immunofluorescence. Intensive binding of MOAB to control and drug-treated cells was observed after heating in Tris buffer supplemented with MgCl{sub 2}. Thus, the presence of phosphates and MgCl{sub 2} during heating was necessary for the detection of HN2-induced changes in DNA stability. Fluorescence of HN2-treated cells decreased to background levels after treatment with single-strand-specific S{sub 1} nuclease. MOAB F7-26 interacted with single-stranded regions in DNA and did not bind to dsDNA or other cellular antigens. It is suggested that alkylation of guanines decreased the stability of the DNA molecule and increased the access of MOAB F7-26 to deoxycytidines on the opposite DNA strand.

  1. N-Methyl-N-nitrosourea as a mammary carcinogenic agent.

    PubMed

    Faustino-Rocha, Ana I; Ferreira, Rita; Oliveira, Paula A; Gama, Adelina; Ginja, Mário

    2015-12-01

    The administration of chemical carcinogens is one of the most commonly used methods to induce tumors in several organs in laboratory animals in order to study oncologic diseases of humans. The carcinogen agent N-methyl-N-nitrosourea (MNU) is the oldest member of the nitroso compounds that has the ability to alkylate DNA. MNU is classified as a complete, potent, and direct alkylating compound. Depending on the animals' species and strain, dose, route, and age at the administration, MNU may induce tumors' development in several organs. The aim of this manuscript was to review MNU as a carcinogenic agent, taking into account that this carcinogen agent has been frequently used in experimental protocols to study the carcinogenesis in several tissues, namely breast, ovary, uterus, prostate, liver, spleen, kidney, stomach, small intestine, colon, hematopoietic system, lung, skin, retina, and urinary bladder. In this paper, we also reviewed the experimental conditions to the chemical induction of tumors in different organs with this carcinogen agent, with a special emphasis in the mammary carcinogenesis. PMID:26386719

  2. Synthesis and Characterization of DNA Minor Groove Binding Alkylating Agents

    PubMed Central

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K.; Mascara, Gerard P.; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W.; Bobola, Michael S.; Silber, John R.; Gold, Barry

    2012-01-01

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases the N-terminus was appended with a O-methyl sulfonate ester while the C-terminus group was varied with non-polar and polar sidechains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) vs. major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is > 10-fold higher than the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells over-expressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization. PMID:23234400

  3. Synthesis and characterization of DNA minor groove binding alkylating agents.

    PubMed

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry

    2013-01-18

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization. PMID:23234400

  4. Structure-property Relationships for Methyl-terminated Alkyl Self-assembled Monolayers

    SciTech Connect

    F DelRio; D Rampulla; C Jaye; G Stan; R Gates; D Fischer; R Cook

    2011-12-31

    Structure-property relationships for methyl-terminated alkyl self-assembled monolayers (SAMs) are developed using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM). NEXAFS C K-edge spectra are used to compute the dichroic ratio, which provides a quantitative measure of the molecular structure. AFM data are analyzed with an elastic adhesive contact model, modified by a first-order elastic perturbation method to include substrate effects, to extract the monolayer mechanical properties. Using this approach, the measured mechanical properties are not influenced by the substrate, which allows universal structure-property relationships to be developed for methyl-terminated alkyl SAMs.

  5. Proteomic analysis of mismatch repair-mediated alkylating agent-induced DNA damage response

    PubMed Central

    2013-01-01

    Background Mediating DNA damage-induced apoptosis is an important genome-maintenance function of the mismatch repair (MMR) system. Defects in MMR not only cause carcinogenesis, but also render cancer cells highly resistant to chemotherapeutics, including alkylating agents. To understand the mechanisms of MMR-mediated apoptosis and MMR-deficiency-caused drug resistance, we analyze a model alkylating agent (N-methyl-N’-nitro-N-nitrosoguanidine, MNNG)-induced changes in protein phosphorylation and abundance in two cell lines, the MMR-proficient TK6 and its derivative MMR-deficient MT1. Results Under an experimental condition that MNNG-induced apoptosis was only observed in MutSα-proficient (TK6), but not in MutSα-deficient (MT1) cells, quantitative analysis of the proteomic data revealed differential expression and phosphorylation of numerous individual proteins and clusters of protein kinase substrates, as well differential activation of response pathways/networks in MNNG-treated TK6 and MT1 cells. Many alterations in TK6 cells are in favor of turning on the apoptotic machinery, while many of those in MT1 cells are to promote cell proliferation and anti-apoptosis. Conclusions Our work provides novel molecular insights into the mechanism of MMR-mediated DNA damage-induced apoptosis. PMID:24330662

  6. Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus

    PubMed Central

    O’Hanlon, Karen A.; Margison, Geoffrey P.; Hatch, Amy; Fitzpatrick, David A.; Owens, Rebecca A.; Doyle, Sean; Jones, Gary W.

    2012-01-01

    An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O6-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O6-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system. PMID:22669901

  7. 40 CFR 721.7620 - Alkyl(heterocyclicyl) phe-nyl-azohetero monocyclic polyone, ((alkylimidazolyl) methyl) derivative...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl(heterocyclicyl) phe-nyl-azohetero monocyclic polyone, ((alkylimidazolyl) methyl) derivative (generic name). 721.7620 Section 721... Alkyl(heterocyclicyl) phe-nyl-azohetero monocyclic polyone, ((alkylimidazolyl) methyl)...

  8. Alkyl phospholipid antihypertensive agents in method of lowering blood pressure

    DOEpatents

    Snyder, Fred L.; Blank, Merle L.; Muirhead, Ernest E.; Leach, deceased, Byron E.; Byers, Lawrence W.

    1988-01-01

    The composition of this invention is 1-O-alkyl-2-acetoyl-sn-glycero-3-phosphocholine, having the ionic structural formula; ##STR1## wherein R is saturated alkyl having 9-21 carbon atoms, or salts or hydrates of the composition. Preferably R has 13-19 carbon atoms and most preferably R has 15 carbon atoms. The composition of this invention is useful for reducing hypertension in warm-blooded animals, including humans, when administered either orally or by injection or innoculation, e.g., intravenous injection. The composition can be prepared from naturally occurring lipids or synthetically from commercially available material.

  9. Influence of anoxia and respiratory deficiency on the genotoxicity of some direct-acting alkylating agents in yeast.

    PubMed

    Deorukhakar, V V; Murthy, M S

    1991-01-01

    We have studied the influence of anoxia and respiratory deficiency (RD) in yeast on the cytotoxic and recombinogenic effects of 5 direct-acting alkylating agents, namely N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methylnitrosourea (MNU), ethylnitrosourea (ENU), methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS). We found that the effects of both conditions parallel each other for MMS, MNNG, MNU and ENU. Both anoxia and RD did not modify the effects of MMS to any significant extent. On the other hand, anoxic and respiratory-deficient cells were found to be more resistant than euoxic and respiratory-proficient cells respectively for MNNG, MNU and ENU. In the case of EMS, which is similar to MMS in its chemical reaction with DNA, the respiratory-deficient cells were found to be more sensitive than the respiratory-proficient ones. These studies indicate that the response of anoxic and respiratory-deficient cells cannot be predicted solely on the basis of the chemical reactivity pattern of the alkylating agents. The physiological state which exists under these conditions may exert considerable influence on the cellular response. PMID:1846028

  10. ATM regulates 3-Methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents

    PubMed Central

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A.; Clarke, Ian D.; Barszczyk, Mark S.; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W.; Taylor, Michael D; Rutka, James T.; Jones, Chris; Dirks, Peter B.; Zadeh, Gelareh; Hawkins, Cynthia

    2014-01-01

    Alkylating agents are a frontline therapy for the treatment of several aggressive cancers including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed; increasing therapeutic response while minimizing toxicity. Using a siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM) were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. PMID:25100205

  11. Mutagenesis by Cytostatic Alkylating Agents in Yeast Strains of Differing Repair Capacities

    PubMed Central

    Ruhland, Axel; Brendel, Martin

    1979-01-01

    Reversion of two nuclear ochre nonsense alleles and cell inactivation induced by mono-, bi-, and tri-functional alkylating agents and by UV has been investigated in stationary-phase haploid cells of yeast strains with differing capacities for DNA repair. The ability to survive alkylation damage is correlated with UV repair capacity, a UV-resistant and UV-mutable strain (RAD REV) being least and a UV-sensitive and UV-nonmutable strain (rad1 rev3) most sensitive. Mutagenicity of alkylating agents is highest in the former and is abolished in the latter strain. Deficiency in excision repair (rad1 rad2) or in the RAD18 function does not lead to enhanced mutability. Mutagenesis by the various agents is characterized by a common pattern of induction of locus-specific revertants and suppressor mutants. Induction kinetics are mostly linear, but UV-induced reversion in the RAD REV strain follows higher-than-linear (probably "quadratic") kinetics. The alkylating agent cyclophosphamide, usually considered inactive without metabolic conversion, reduces colony-forming ability and induces revertants in a manner similar but not identical to the other chemicals tested. These findings are taken to support the concept of mutagenesis by misrepair after alkylation, which albeit sharing common features with the mechanism of UV-induced reversion, can be distinguished therefrom. PMID:387518

  12. Influence of Mikania laevigata Extract over the Genotoxicity Induced by Alkylating Agents

    PubMed Central

    Nicolau, Vanessa; de Aguiar Amaral, Patrícia; de Andrade, Vanessa Moraes

    2013-01-01

    Medicinal plants are still widely used worldwide; yet for some species, little or no information is available concerning their biological activity, specially their genotoxic and antimutagenic potential. Mikania laevigata (Asteraceae) is a native plant from South America, and its extracts are largely used to treat respiratory complaints. The aim of the present work was then to evaluate, in vivo, the potential biological activity of M. laevigata on the genotoxicity induced by methyl methanesulfonate (MMS) and cyclophosphamide (CP), using the comet assay. Male CF1 mice were divided into groups of 5-6 animals, received by gavage 0.1 mL/10 g body wt of water, Mikania laevigata extract (MLE), MMS, and CP. Results showed that treatment with 200 mg/kg of the MLE previously to MMS and CP administration, respectively, reduced the damage index (DI) in 52% and 60%, when compared to DI at 24 h. Pretreatment also reduced the damage frequency (DF) in 56% (MMS) and 58% (CP), compared to DF at 24 h. MLE administration has been shown to protect mouse DNA from damage induced by alkylating agents; this corroborates to the biological activities of M. laevigata and points towards the need of plant compounds isolation to proceed with further studies. PMID:23724299

  13. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methyl imidazolium tartrate on Scenedesmus obliquus.

    PubMed

    Liu, Huijun; Zhang, Xiaoqiang; Dong, Ying; Chen, Caidong; Zhu, Shimin; Ma, Xiangjuan

    2015-12-01

    Ionic liquids (ILs) are being used in various industries during the last few decades, while the good solubility and high stability of ILs may pose a potential threat to the aquatic environment. Effect of chiral ionic liquids (CILs) 1-alkyl-3-methyl imidazolium tartrate (RMIM T) on Scenedesmus obliquus (S.obliquus) was studied. The growth rate inhibition and cell membrane permeability increased with increasing RMIM T concentration and increasing alkyl chain lengths. The IC50 values of D-(-)-tartrate 1-hexyl-3-methyl imidazolium (D-(-)-HMIM T) were 28.30, 12.23,10.15 and 14.41 mg/L, respectively, at 24, 48, 72 and 96h. While that of L-(+)-tartrate 1-hexyl-3-methyl imidazolium (L-(+)-HMIM T) were 15.97, 7.91, 9.43 and 12.04 mg/L respectively. The concentration of chl a, chl b and chl (a+b) decreased with increasing RMIM T concentration. The chlorophyll fluorescence parameters (F0, Fv/Fm, Fv/F0, Y(II), ETR and NPQ) were affected by RMIM T, indicating that the RMIM T will damage the PSII, inhibit the transmission of excitation energy, decrease the efficiency of photosynthesis. The results showed that there were enantioselective toxicity of RMIM T to algae, and the toxicity of L-(+)-RMIM T was greater than that of D-(-)-RMIM T, but the enantioselective difference becomes smaller with increasing exposure time, and with the increasing carbon chain length of cation, indicating that cation properties may have a larger effect on toxicity than anion properties. PMID:26554523

  14. Design and in vitro activities of N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, novel small molecule Hypoxia Inducible Factor-1 (HIF-1) pathway inhibitors and anti-cancer agents

    PubMed Central

    Mun, Jiyoung; Jabbar, Adnan Abdul; Devi, Narra Sarojini; Yin, Shaoman; Wang, Yingzhe; Tan, Chalet; Culver, Deborah; Snyder, James P.; Van Meir, Erwin G.; Goodman, Mark M.

    2013-01-01

    The Hypoxia Inducible Factor (HIF) pathway is an attractive target for cancer as it controls tumor adaptation to growth under hypoxia and mediates chemo- and radiation resistance. We previously discovered 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, as a novel small molecule HIF-1 pathway inhibitor in a high-throughput cell-based assay, but its in vivo delivery is hampered by poor aqueous solubility (0.009 μM in water; logP7.4: 3.7). Here we describe the synthesis of twelve N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, which were designed to possess optimal lipophilicities and aqueous solubilities by in silico calculations. Experimental logP7.4 values of 8 of the 12 new analogs ranged from 1.2 ∼ 3.1. Aqueous solubilities of 3 analogs were measured, among which the most soluble N-[(8-methoxy-2,2-dimethyl-2H-chromen-6-yl)methyl]-N-(propan-2-yl)pyridine-2-sulfonamide had an aqueous solubility of 80 μM, e.g. a solubility improvement of ∼9,000-fold. The pharmacological optimization had minimal impact on drug efficacy as the compounds retained IC50 values at or below 5 μM in our HIF-dependent reporter assay. PMID:22746274

  15. Evidence for abasic site sugar phosphate-mediated cytotoxicity in alkylating agent treated Saccharomyces cerevisiae.

    PubMed

    Heacock, Michelle; Poltoratsky, Vladimir; Prasad, Rajendra; Wilson, Samuel H

    2012-01-01

    To better understand alkylating agent-induced cytotoxicity and the base lesion DNA repair process in Saccharomyces cerevisiae, we replaced the RAD27(FEN1) open reading frame (ORF) with the ORF of the bifunctional human repair enzyme DNA polymerase (Pol) β. The aim was to probe the effect of removal of the incised abasic site 5'-sugar phosphate group (i.e., 5'-deoxyribose phosphate or 5'-dRP) in protection against methyl methanesulfonate (MMS)-induced cytotoxicity. In S. cerevisiae, Rad27(Fen1) was suggested to protect against MMS-induced cytotoxicity by excising multinucleotide flaps generated during repair. However, we proposed that the repair intermediate with a blocked 5'-end, i.e., 5'-dRP group, is the actual cytotoxic lesion. In providing a 5'-dRP group removal function mediated by dRP lyase activity of Pol β, the effects of the 5'-dRP group were separated from those of the multinucleotide flap itself. Human Pol β was expressed in S. cerevisiae, and this partially rescued the MMS hypersensitivity observed with rad27(fen1)-null cells. To explore this rescue effect, altered forms of Pol β with site-directed eliminations of either the 5'-dRP lyase or polymerase activity were expressed in rad27(fen1)-null cells. The 5'-dRP lyase, but not the polymerase activity, conferred the resistance to MMS. These results suggest that after MMS exposure, the 5'-dRP group in the repair intermediate is cytotoxic and that Rad27(Fen1) protection against MMS in wild-type cells is due to elimination of the 5'-dRP group. PMID:23144716

  16. 3-methyladenine-DNA-glycosylase and O6-alkyl guanine-DNA-alkyltransferase activities and sensitivity to alkylating agents in human cancer cell lines.

    PubMed Central

    Damia, G.; Imperatori, L.; Citti, L.; Mariani, L.; D'Incalci, M.

    1996-01-01

    The activities and the expression of 3-methyladenine glycosylase (3-meAde gly) and O6-alkylguanine-DNA-alkyltransferase (O6 ATase) were investigated in ten human cancer cell lines. Both 3-meAde gly and O6 ATase activities were variable among different cell lines. mRNA levels of the O6 ATase gene, appeared to be related to the content of O6 ATase in different cell lines, whereas no apparent correlation was found between mRNA of 3-meAde gly and the enzyme activity. No correlation was found between the activity of the two enzymes and the sensitivity to alkylating agents of different structures such as CC-1065, tallimustine, dimethylsulphate (DMSO), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), cis-diamminedichloroplatinum (cDDP) and melphalan (L-PAM). The most striking finding of this study is that a correlation exists between the activity of O6 ATase and 3-meAde gly in the various cell lines investigated (P<0.01), suggesting a common mechanism of regulation of two DNA repair enzymes. Images Figure 2 PMID:8611396

  17. 40 CFR 721.7620 - Alkyl(heterocyclicyl) phe-nyl-azohetero monocyclic polyone, ((alkylimidazolyl) methyl) derivative...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substance alkyl (heter-o-cyc-licyl) phenyl-azo-het-ero mono-cyc-lic polyone, ((al-kyli-mi-da-zolyl) methyl... in paragraph (a)(2) of this section. (2) The significant new uses are: (i) Protection in the... communication program. Requirements as specified in § 721.72 (b)(2), (d), (e) (concentration set at 1.0...

  18. Motor fuel alkylation process utilizing low acid

    SciTech Connect

    Kocal, J.A.; Imai, T.

    1987-01-06

    A process is described for the alkylation of an isoparaffin with an olefin acting agent comprising contacting the isoparaffin with the olefin acting agent at alkylation conditions in the presence of a catalyst. The catalyst consists essentially of an anhydrous, nonalcoholic mixture of from about 5 to 15 wt. % methyl tert-butyl ether and from 85 to 95 wt. % hydrofluoric acid. The volumetric ratio of hydrofluoric acid to isoparaffin and olefin acting agent is less than 0.75.

  19. Delineation of G-Quadruplex Alkylation Sites Mediated by 3,6-Bis(1-methyl-4-vinylpyridinium iodide)carbazole-Aniline Mustard Conjugates.

    PubMed

    Chen, Chien-Han; Hu, Tsung-Hao; Huang, Tzu-Chiao; Chen, Ying-Lan; Chen, Yet-Ran; Cheng, Chien-Chung; Chen, Chao-Tsen

    2015-11-23

    A new G-quadruplex (G-4)-directing alkylating agent BMVC-C3M was designed and synthesized to integrate 3,6-bis(1-methyl-4-vinylpyridinium iodide)carbazole (BMVC) with aniline mustard. Various telomeric G-4 structures (hybrid-2 type and antiparallel) and an oncogene promoter, c-MYC (parallel), were constructed to react with BMVC-C3M, yielding 35 % alkylation yield toward G-4 DNA over other DNA categories (<6 %) and high specificity under competition conditions. Analysis of the intact alkylation adducts by electrospray ionization mass spectroscopy (ESI-MS) revealed the stepwise DNA alkylation mechanism of aniline mustard for the first time. Furthermore, the monoalkylation sites and intrastrand cross-linking sites were determined and found to be dependent on G-4 topology based on the results of footprinting analysis in combination with mass spectroscopic techniques and in silico modeling. The results indicated that BMVC-C3M preferentially alkylated at A15 (H26), G12 (H24), and G2 (c-MYC), respectively, as monoalkylated adducts and formed A15-C3M-A21 (H26), G12-C3M-G4 (H24), and G2-C3M-G4/G17 (c-MYC), respectively, as cross-linked dialkylated adducts. Collectively, the stability and site-selective cross-linking capacity of BMVC-C3M provides a credible tool for the structural and functional characterization of G-4 DNAs in biological systems. PMID:26769627

  20. Alkylation of Methyl Linoleate with Propene in Ionic Liquids in the Presence of Metal Salts.

    PubMed

    Pomelli, Christian Silvio; Ghilardi, Tiziana; Chiappe, Cinzia; de Angelis, Alberto Renato; Calemma, Vincenzo

    2015-01-01

    Vegetable oils and fatty acid esters are suitable precursor molecules for the production of a variety of bio-based products and materials, such as paints and coatings, plastics, soaps, lubricants, cosmetics, pharmaceuticals, printing inks, surfactants, and biofuels. Here, we report the possibility of using Lewis acidic ionic liquids (ILs) to obtain polyunsaturated ester dimerization-oligomerization and/or, in the presence of another terminal alkene (propene), co-polymerization. In particular, we have tested the Lewis acidic mixtures arising from the addition of a proper amount of GaCl₃ (Χ > 0.5) to two chloride-based (1-butyl-3-methylimidazolium chloride, [bmim]Cl, and 1-butylisoquinolium chloride, [BuIsoq]Cl) or by dissolution of a smaller amount of Al(Tf₂N)₃ (Χ = 0.1) in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][Tf₂N]. On the basis of product distribution studies, [bmim][Tf₂N]/Al(Tf₂N)₃ appears the most suitable medium in which methyl linoleate alkylation with propene can compete with methyl linoleate or propene oligomerization. PMID:26690107

  1. Sites of Alkylation of Human Keap1 by Natural Chemoprevention Agents

    PubMed Central

    Luo, Yan; Eggler, Aimee L.; Liu, Dongting; Liu, Guowen; Mesecar, Andrew D.; van Breemen, Richard B.

    2007-01-01

    Under basal conditions, the interaction of the cytosolic protein Keap1 with the transcription factor Nrf2 results in a low level of expression of cytoprotective genes whose promoter region contains the antioxidant response element (ARE). Alkylation of one or more of the 27 cysteine sulfhydryl groups of human Keap1 is proposed to lead to Nrf2 nuclear accumulation, to upregulation of cytoprotective gene expression via the ARE, and to prevention of degenerative diseases, such as cancer. Therefore, identification of the most reactive of these cysteine residues towards specific electrophiles should help clarify this mechanism of cancer prevention, also known as chemoprevention. To address this issue, preliminary analyses of tryptic digests of Keap1 alkylated by the model electrophile 1-biotinamido-4-(4′-[maleimidoethyl-cyclohexane]-carboxamido) butane were carried out using LC-MS/MS with a cylindrical ion trap mass spectrometer and also using LC-MS/MS with a hybrid linear ion trap FT ICR mass spectrometer. Since the FT ICR instrument provided more complete peptide sequencing coverage and enabled the identification of more alkylated cysteine residues, only this instrument was used in subsequent studies of Keap1 alkylation by three electrophilic natural products that can up-regulate the ARE, xanthohumol, isoliquiritigenin and 10-shogaol. Among the various cysteine residues of Keap1, C151 was most reactive towards these three electrophiles. These in vitro results agree with evidence from in vivo experiments, and indicate that C151 is the most important site of alkylation on Keap1 by chemoprevention agents that function by activating the ARE through Nrf2. PMID:17980616

  2. Contribution of artifacts to N-methylated piperazine cyanide adduct formation in vitro from N-alkyl piperazine analogs.

    PubMed

    Zhang, Minli; Resuello, Christina M; Guo, Jian; Powell, Mark E; Elmore, Charles S; Hu, Jun; Vishwanathan, Karthick

    2013-05-01

    In the liver microsome cyanide (CN)-trapping assays, piperazine-containing compounds formed significant N-methyl piperazine CN adducts. Two pathways for the N-methyl piperazine CN adduct formation were proposed: 1) The α-carbon in the N-methyl piperazine is oxidized to form a reactive iminium ion that can react with cyanide ion; 2) N-dealkylation occurs followed by condensation with formaldehyde and dehydration to produce N-methylenepiperazine iminium ion, which then reacts with cyanide ion to form the N-methyl CN adduct. The CN adduct from the second pathway was believed to be an artifact or metabonate. In the present study, a group of 4'-N-alkyl piperazines and 4'-N-[¹³C]methyl-labeled piperazines were used to determine which pathway was predominant. Following microsomal incubations in the presence of cyanide ions, a significant percentage of 4'-N-[¹³C]methyl group in the CN adduct was replaced by an unlabeled natural methyl group, suggesting that the second pathway was predominant. For 4'-N-alkyl piperazine, the level of 4'-N-methyl piperazine CN adduct formation was limited by the extent of prior 4'-N-dealkylation. In a separate study, when 4'-NH-piperaziens were incubated with potassium cyanide and [¹³C]-labeled formaldehyde, 4'-N-[¹³C]methyl piperazine CN-adduct was formed without NADPH or liver microsome suggesting a direct Mannich reaction is involved. However, when [¹³C]-labeled methanol or potassium carbonate was used as the one-carbon donor, 4'-N-[¹³C]methyl piperazine CN adduct was not detected without liver microsome or NADPH present. The biologic and toxicological implications of bioactivation via the second pathway necessitate further investigation because these one-carbon donors for the formation of reactive iminium ions could be endogenous and readily available in vivo. PMID:23431111

  3. Methylating agents and DNA repair responses: methylated bases and sources of strand breaks

    PubMed Central

    Wyatt, Michael D.; Pittman, Douglas L.

    2008-01-01

    The chemical methylating agents methylmethane sulfonate (MMS) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) have been used for decades as classical DNA damaging agents. These agents have been utilized to uncover and explore pathways of DNA repair, DNA damage response, and mutagenesis. MMS and MNNG modify DNA by adding methyl groups to a number of nucleophilic sites on the DNA bases, although MNNG produces a greater percentage of O-methyl adducts. There has been substantial progress elucidating direct reversal proteins that remove methyl groups and base excision repair (BER), which removes and replaces methylated bases. Direct reversal proteins and BER thus counteract the toxic, mutagenic and clastogenic effects of methylating agents. Despite recent progress, the complexity of DNA damage responses to methylating agents is still being discovered. In particular, there is growing understanding of pathways such as homologous recombination, lesion bypass, and mismatch repair that react when the response of direct reversal proteins and BER is insufficient. Furthermore, the importance of proper balance within the steps in BER has been uncovered with the knowledge that DNA structural intermediates during BER are deleterious. A number of issues complicate elucidating the downstream responses when direct reversal is insufficient or BER is imbalanced. These include inter-species differences, cell-type specific differences within mammals and between cancer cell lines, and the type of methyl damage or BER intermediate encountered. MMS also carries a misleading reputation of being a ‘radiomimetic,’ i.e., capable of directly producing strand breaks. This review focuses on the DNA methyl damage caused by MMS and MNNG for each site of potential methylation to summarize what is known about the repair of such damage and the downstream responses and consequences if not repaired. PMID:17173371

  4. Covalent binding to glutathione of the DNA-alkylating antitumor agent, S23906-1.

    PubMed

    David-Cordonnier, Marie-Hélène; Laine, William; Joubert, Alexandra; Tardy, Christelle; Goossens, Jean-François; Kouach, Mostafa; Briand, Gilbert; Thi Mai, Huong Doan; Michel, Sylvie; Tillequin, Francois; Koch, Michel; Leonce, Stéphane; Pierre, Alain; Bailly, Christian

    2003-07-01

    The benzoacronycine derivative, S23906-1, was characterized recently as a novel potent antitumor agent through alkylation of the N2 position of guanines in DNA. We show here that its reactivity towards DNA can be modulated by glutathione (GSH). The formation of covalent adducts between GSH and S23906-1 was evidenced by EI-MS, and the use of different GSH derivatives, amino acids and dipeptides revealed that the cysteine thiol group is absolutely required for complex formation because glutathione disulfide (GSSG) and other S-blocked derivatives failed to react covalently with S23906-1. Gel shift assays and fluorescence measurements indicated that the binding of S23906-1 to DNA and to GSH are mutually exclusive. Binding of S23906-1 to an excess of GSH prevents DNA alkylation. Additional EI-MS measurements performed with the mixed diester, S28053-1, showed that the acetate leaving group at the C1 position is the main reactive site in the drug: a reaction scheme common to GSH and guanines is presented. At the cellular level, the presence of GSH slightly reduces the cytotoxic potential of S23906-1 towards KB-3-1 epidermoid carcinoma cells. The GSH-induced threefold reduction of the cytotoxicity of S23906-1 is attributed to the reduced formation of lethal drug-DNA covalent complexes in cells. Treatment of the cells with buthionine sulfoximine, an inhibitor of GSH biosynthesis, facilitates the formation of drug-DNA adducts and promotes the cytotoxic activity. This study identifies GSH as a reactant for the antitumor drug, S23906-1, and illustrates a pathway by which GSH may modulate the cellular sensitivity to this DNA alkylating agent. The results presented here, using GSH as a biological nucleophile, fully support our initial hypothesis that DNA alkylation is the major mechanism of action of the promising anticancer drug S23906-1. PMID:12823555

  5. VP-16 and alkylating agents activate a common metabolic pathway for suppression of DNA replication

    SciTech Connect

    Das, S.K.; Berger, N.A.

    1986-05-01

    The cytotoxic effects of etoposide (VP-16) are mediated by topoisomerase II production of protein crosslinked DNA strand breaks. Previous studies have shown that alkylating agent induced DNA damage results in expansion of dTTP pools and reduction of dCTP pools and DNA replication. Studies were conducted with V79 cells to determine whether the metabolic consequences of VP-16 treatment were similar to those induced by alkylating agents. Treatment with 0.5..mu..M VP-16 prolonged the doubling time of V79 cells from 12 to 18 hrs and caused cell volume to increase from 1.1 to 1.6 x 10/sup -12/l. 2mM caffeine completely blocked the volume increase and substantially prevented the prolongation of doubling time. 5..mu..M VP-16 reduced the rate of (/sup 3/H)TdR incorporation by 70%, whereas in the presence of 2mM caffeine, VP-16 caused only a 10% decrease in the rate of (/sup 3/H)TdR incorporation. 4 hr treatment with 5.0..mu..M VP-16 increased dTTP levels from 65 +/- 10 pmol/10/sup 6/ cells to 80 +/- 13 pmol/10/sup 6/ cells and caused dCTP level to decline from 113 +/- 23 pmol/10/sup 6/ cells to 92 +/- 17 pmol/10/sup 6/ cells. These results indicate that the metabolic consequences of VP-16 treatment are similar to alkylating agent treatment and that an increase in dTTP pools with a subsequent effect on ribonucleotide reductase may be a final common pathway by which many cytotoxic agents suppress DNA synthesis.

  6. Activation of the chemosensing transient receptor potential channel A1 (TRPA1) by alkylating agents.

    PubMed

    Stenger, Bernhard; Zehfuss, Franziska; Mückter, Harald; Schmidt, Annette; Balszuweit, Frank; Schäfer, Eva; Büch, Thomas; Gudermann, Thomas; Thiermann, Horst; Steinritz, Dirk

    2015-09-01

    The transient receptor potential ankyrin 1 (TRPA1) cation channel is expressed in different tissues including skin, lung and neuronal tissue. Recent reports identified TRPA1 as a sensor for noxious substances, implicating a functional role in the molecular toxicology. TRPA1 is activated by various potentially harmful electrophilic substances. The chemical warfare agent sulfur mustard (SM) is a highly reactive alkylating agent that binds to numerous biological targets. Although SM is known for almost 200 years, detailed knowledge about the pathophysiology resulting from exposure is lacking. A specific therapy is not available. In this study, we investigated whether the alkylating agent 2-chloroethyl-ethylsulfide (CEES, a model substance for SM-promoted effects) and SM are able to activate TRPA1 channels. CEES induced a marked increase in the intracellular calcium concentration ([Ca(2+)]i) in TRPA1-expressing but not in TRPA1-negative cells. The TRP-channel blocker AP18 diminished the CEES-induced calcium influx. HEK293 cells permanently expressing TRPA1 were more sensitive toward cytotoxic effects of CEES compared with wild-type cells. At low CEES concentrations, CEES-induced cytotoxicity was prevented by AP18. Proof-of-concept experiments using SM resulted in a pronounced increase in [Ca(2+)]i in HEK293-A1-E cells. Human A549 lung epithelial cells, which express TRPA1 endogenously, reacted with a transient calcium influx in response to CEES exposure. The CEES-dependent calcium response was diminished by AP18. In summary, our results demonstrate that alkylating agents are able to activate TRPA1. Inhibition of TRPA1 counteracted cellular toxicity and could thus represent a feasible approach to mitigate SM-induced cell damage. PMID:25395009

  7. 75 FR 50926 - 2-propenoic acid, 2-methyl-, C12-16-alkyl esters, telomers with 1-dodecanethiol, polyethylene...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ...This regulation establishes an exemption from the requirement of a tolerance for residues of 2-propenoic acid, 2-methyl-, C12-16- alkyl esters, telomers with 1-dodecanethiol, polyethylene-polypropylene glycol ether with propylene glycol monomethacrylate (1:1), and styrene 2,2'-(1,2-diazenediyl)bis[2-methylbutanenitrile]-initiated, number average molecular weight (in AMU) 4000; when used as an......

  8. 40 CFR 721.10556 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers (PMN P-06-450; CAS...

  9. 40 CFR 721.10557 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers (PMN P-06-451; CAS...

  10. 40 CFR 721.10556 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers (PMN P-06-450; CAS...

  11. 40 CFR 721.10558 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS...

  12. 40 CFR 721.10557 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers (PMN P-06-451; CAS...

  13. 40 CFR 721.10558 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.- (2...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. (a) Chemical substance...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS...

  14. Genomic Phenotyping by Barcode Sequencing Broadly Distinguishes between Alkylating Agents, Oxidizing Agents, and Non-Genotoxic Agents, and Reveals a Role for Aromatic Amino Acids in Cellular Recovery after Quinone Exposure

    PubMed Central

    Svensson, J. Peter; Quirós Pesudo, Laia; McRee, Siobhan K.; Adeleye, Yeyejide; Carmichael, Paul; Samson, Leona D.

    2013-01-01

    Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N′-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised. PMID:24040048

  15. Synthesis of methyl (13(2)R/S)-alkyl-pyropheophorbide a and a non-epimerized chlorophyll a mimic.

    PubMed

    Ogasawara, Shin; Tamiaki, Hitoshi

    2015-10-15

    The (13(2)R/S)-methoxycarbonyl group of methyl pheophorbides a/a' (chlorophyll a/a' derivatives) was converted to methyl, ethyl, propyl, and isopropyl groups through the C13(2)-alkylation under basic conditions followed by pyrolysis in 2,4,6-collidine with lithium iodide. All the resulting products, methyl 13(2)-alkyl-pyropheophorbides a, predominantly gave the (13(2)R)-stereoisomers with about one tenth of the (13(2)S)-epimers. Their stereochemistry was determined by 1D/2D NMR and their optical properties were characterized by visible absorption and circular dichroism spectroscopy. Methyl (13(2)R)-propyl-pyropheophorbide a was converted to (13(2)R)-propyl-pyrochlorophyll a by ester exchanging and magnesium chelating reactions. The synthetic chlorophyll a analogue showed non-epimerization at the 13(2)-position in pyridine-d5 at 40°C, while naturally occurring chlorophyll a was easily epimerized under the same conditions to give its epimeric mixture. PMID:26404409

  16. Relative kinetic measurements of rate coefficients for the gas-phase reactions of Cl atoms and OH radicals with a series of methyl alkyl esters

    NASA Astrophysics Data System (ADS)

    Schütze, Nicole; Zhong, Xiaoyin; Kirschbaum, Stefan; Bejan, Iustinian; Barnes, Ian; Benter, Thorsten

    2010-12-01

    Relative kinetic studies have been performed on the reactions of Cl atoms with a series of methyl alkyl esters in a 405-liter borosilicate glass chamber at (298 ± 3) K and one atmosphere of synthetic air using in situ FTIR spectroscopy to monitor the reactants. Rate coefficients (in units of cm 3 molecule -1 s -1) were determined for the following compounds: methyl acetate (2.48 ± 0.58) × 10 -12; methyl propanoate (1.68 ± 0.36) × 10 -11; methyl butanoate (4.77 ± 0.87) × 10 -11; methyl pentanoate (7.84 ± 1.15) × 10 -11; methyl hexanoate (1.09 ± 0.31) × 10 -10; methyl heptanoate (1.56 ± 0.37) × 10 -10; methyl cyclohexane carboxylate (3.32 ± 0.76) × 10 -10; methyl-2-methyl butanoate (9.41 ± 1.39) × 10 -11. In addition rate coefficients (in units of 10 -11 cm 3 molecule -1 s -1) have been obtained for the reactions of OH radicals with the following compounds: methyl butanoate (3.55 ± 0.71), methyl pentanoate (5.41 ± 1.08), and methyl-2-methyl butanoate (4.08 ± 0.82). Using the kinetic rate data tropospheric lifetimes for the methyl alkyl esters with respect to their reactions with OH, and Cl have been estimated for typical ambient air concentrations of these oxidants.

  17. 40 CFR 721.10526 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, telomers with C18-26-alkyl acrylate, 1...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, telomers with C18-26-alkyl acrylate, 1-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate and vinylidene chloride, 2,2'- hydrochloride (1:2)-initiated (generic). 721.10526 Section 721.10526...

  18. 40 CFR 721.10526 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, telomers with C18-26-alkyl acrylate, 1...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, telomers with C18-26-alkyl acrylate, 1-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate and vinylidene chloride, 2,2'- hydrochloride (1:2)-initiated (generic). 721.10526 Section 721.10526...

  19. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-01

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells. PMID:27551077

  20. A comparison of the antifertility effects of alkylating agents and vinca alkaloids in male rats.

    PubMed Central

    Cooke, R A; Nikles, A; Roeser, H P

    1978-01-01

    1 The anti-fertility effects of cyclophosphamide, nitrogen mustard, vincristine and vinblastine were studied and compared in male rats. 2 The effects of the drugs on body weight and haematological values were used to monitor the pharmacological actions of the drugs. 3 All four drugs impaired fertility, the severity of the impairment depending on dose and duration of treatment. 4 Testicular size and histological appearances remained mostly normal, even in infertile animals, but seminiferous tubules were fewer in number and maturation arrest at the spermatid level was evident in some sections. 5 Recovery of drug-induced infertility occurred in 64% of treated animals, 9 to 40 weeks after cessation of treatment. 6 Morbidity and mortality were much higher with alkylating agents than with vinca alkaloids for approximately similar degrees of impairment in fertility. PMID:687878

  1. Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase.

    PubMed

    Rodrigues-Ferreira, Clara; da Silva, Ana Paula Pereira; Galina, Antonio

    2012-02-01

    The alkylating agent 3-Bromopyruvate (3-BrPA) has been used as an anti-tumoral drug due to its anti-proliferative property in hepatomas cells. This propriety is believed to disturb glycolysis and respiration, which leads to a decreased rate of ATP synthesis. In this study, we evaluated the effects of the alkylating agent 3-BrPA on the respiratory states and the metabolic steps of the mitochondria of mice liver, brain and in human hepatocarcinoma cell line HepG2. The mitochondrial membrane potential (ΔΨ(m)), O(2) consumption and dehydrogenase activities were rapidly dissipated/or inhibited by 3-BrPA in respiration medium containing ADP and succinate as respiratory substrate. 3-BrPA inhibition was reverted by reduced glutathione (GSH). Respiration induced by yeast soluble hexokinase (HK) was rapidly inhibited by 3-BrPA. Similar results were observed using mice brain mitochondria that present HK naturally bound to the outer mitochondrial membrane. When the adenine nucleotide transporter (ANT) was blocked by the carboxyatractiloside, the 3-BrPA effect was significantly delayed. In permeabilized human hepatoma HepG2 cells that present HK type II bound to mitochondria (mt-HK II), the inhibiting effect occurred faster when the endogenous HK activity was activated by 2-deoxyglucose (2-DOG). Inhibition of mt-HK II by glucose-6-phosphate retards the mitochondria to react with 3-BrPA. The HK activities recovered in HepG2 cells treated or not with 3-BrPA were practically the same. These results suggest that mitochondrially bound HK supporting the ADP/ATP exchange activity levels facilitates the 3-BrPA inhibition reaction in tumors mitochondria by a proton motive force-dependent dynamic equilibrium between sensitive and less sensitive SDH in the electron transport system. PMID:22322891

  2. Epipodophyllotoxins, alkylating agents, and radiation and risk of secondary leukaemia after childhood cancer.

    PubMed Central

    Hawkins, M. M.; Wilson, L. M.; Stovall, M. A.; Marsden, H. B.; Potok, M. H.; Kingston, J. E.; Chessells, J. M.

    1992-01-01

    OBJECTIVE--To investigate the incidence and aetiology of secondary leukaemia after childhood cancer in Britain. DESIGN--Cohort study and a case-control study. SETTING--Britain and population based National Register of Childhood Tumours. SUBJECTS--Cohort of 16,422 one year survivors of childhood cancer diagnosed in Britain between 1962 and 1983, among whom 22 secondary leukaemias were observed. A case-control study of 26 secondary leukaemias observed among survivors of childhood cancer diagnosed in Britain between 1940 and 1983; 96 controls were selected matched for sex, type of first cancer, age at first cancer, and interval to diagnosis of secondary leukaemia. MAIN OUTCOME MEASURES--Dose of radiation averaged over patients' active bone marrow and total accumulated dose of epipodophyllotoxins, alkylating agents, vinca alkaloids, antimetabolites, and antibiotics (mg/m2) given for the original cancer. RESULTS--Cumulative risk of secondary leukaemia within the cohort did not exceed 0.5% over the initial five years beyond one year survival, except that after non-Hodgkin's lymphomas 1.4% of patients developed secondary leukaemia. Corresponding figure for patients treated for non-Hodgkin's lymphomas in the early 1980s was 4%. The relative risk of secondary leukaemia increased significantly with exposure to epipodophyllotoxins and dose of radiation averaged over patients' active bone marrow. Ten patients developed leukaemia after having an epipodophyllotoxin-teniposide in nine cases, etoposide in one. Chromosomal translocations involving 11q23 were observed relating to two secondary leukaemias from a total of six for which there were successful cytogenetic studies after administration of an epipodophyllotoxin. CONCLUSIONS--Epipodophyllotoxins acting alone or together with alkylating agents or radiation seem to be involved in secondary leukaemia after childhood cancer. PMID:1581717

  3. Kinetics of micronucleus induction and cytotoxicity caused by distinct antineoplastics and alkylating agents in vivo.

    PubMed

    Morales-Ramírez, Pedro; Vallarino-Kelly, Teresita; Cruz-Vallejo, Virginia

    2014-01-30

    This mini-review aims to compare the differences in the kinetics of the induction of micronucleated polychromatic erythrocytes (MN-PCE) and cytotoxicity by distinct antineoplastic and genotoxic agents in murine peripheral blood in vivo and to correlate these kinetics with the underlying processes. Comparisons were carried out using our previously obtained data with nominal doses causing similar levels of cytotoxicity, as measured in terms reduction of PCE. The aneuploidogens caused the most rapid induction of MN-PCEs and had the highest rates of cytotoxicity and genotoxicity. The promutagens cyclophosphamide and dimethylnitrosamine showed the most delayed responses and had the lowest genotoxic and cytotoxic efficiencies. DNA crosslinking agents had a similar delay of 4-5 h, greater than those of aneuploidogens, but differed in their cytotoxic and genotoxic efficiencies. Methylnitrosourea and 5-aza-cytidine caused greater delays than crosslinking agents. These delays can be due to the methylnitrosourea-mediated induction of formation of mono alkyl adducts which are interpreted as mismatches during DNA duplication, whereas 5-aza-cytidine requires incorporation into the DNA to induce breakage. This review allows us to conclude that the requirement for metabolic activation and the mechanisms of DNA breakage and of micronucleus induction are the main factors that affect the time of maximal MN-PCE induction. PMID:24269717

  4. Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents.

    PubMed

    Wang, Pu; Wu, Jing; Ma, Shenghong; Zhang, Lei; Yao, Jun; Hoadley, Katherine A; Wilkerson, Matthew D; Perou, Charles M; Guan, Kun-Liang; Ye, Dan; Xiong, Yue

    2015-12-22

    Chemotherapy of a combination of DNA alkylating agents, procarbazine and lomustine (CCNU), and a microtubule poison, vincristine, offers a significant benefit to a subset of glioma patients. The benefit of this regimen, known as PCV, was recently linked to IDH mutation that occurs frequently in glioma and produces D-2-hydroxyglutarate (D-2-HG), a competitive inhibitor of α-ketoglutarate (α-KG). We report here that D-2-HG inhibits the α-KG-dependent alkB homolog (ALKBH) DNA repair enzymes. Cells expressing mutant IDH display reduced repair kinetics, accumulate more DNA damages, and are sensitized to alkylating agents. The observed sensitization to alkylating agents requires the catalytic activity of mutant IDH to produce D-2-HG and can be reversed by the deletion of mutant IDH allele or overexpression of ALKBH2 or AKLBH3. Our results suggest that impairment of DNA repair may contribute to tumorigenesis driven by IDH mutations and that alkylating agents may merit exploration for treating IDH-mutated cancer patients. PMID:26686626

  5. Lewis Acid Assisted Nickel-Catalyzed Cross-Coupling of Aryl Methyl Ethers by C-O Bond-Cleaving Alkylation: Prevention of Undesired β-Hydride Elimination.

    PubMed

    Liu, Xiangqian; Hsiao, Chien-Chi; Kalvet, Indrek; Leiendecker, Matthias; Guo, Lin; Schoenebeck, Franziska; Rueping, Magnus

    2016-05-10

    In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C-O bond-cleaving alkylation, for the first time without the limiting β-hydride elimination. This new nickel-catalyzed dealkoxylative alkylation method enables powerful orthogonal synthetic strategies for the transformation of a variety of naturally occurring and easily accessible anisole derivatives. The directing and/or activating properties of aromatic methoxy groups are utilized first, before they are replaced by alkyl chains in a subsequent coupling process. PMID:27062726

  6. A Phase I Study of DMS612, a Novel Bi-functional Alkylating Agent

    PubMed Central

    Appleman, Leonard J.; Balasubramaniam, Sanjeeve; Parise, Robert A; Bryla, Christine; Redon, Christophe E.; Nakamura, Asako J.; Bonner, William M.; Wright, John J; Piekarz, Richard; Kohler, David R; Jiang, Yixing; Belani, Chandra P.; Eiseman, Julie; Chu, Edward; Beumer, Jan H.; Bates, Susan E.

    2016-01-01

    Purpose DMS612 is a dimethane sulfonate analog with bifunctional alkylating activity and preferential cytotoxicity to human renal cell carcinoma (RCC) in the NCI-60 cell panel. This first-in-human phase I study aimed to determine dose-limiting toxicity (DLT), maximum tolerated dose (MTD), pharmacokinetics (PK), and pharmacodynamics (PD) of DMS612 administered by 10-min intravenous infusion on days 1, 8, and 15 of an every 28-day schedule. Experimental Design Patients with advanced solid malignancies were eligible. Enrollment followed a 3+3 design. Pharmacokinetics of DMS612 and metabolites were assessed by mass spectroscopy and pharmacodynamics by γ-H2AX immunofluorescence. Results A total of 31 patients with colorectal (11), RCC (4), cervical (2), and urothelial (1) cancers were enrolled. Six dose levels were studied, from 1.5 mg/m2 to 12 mg/m2. DLTs of grade 4 neutropenia and prolonged grade 3 thrombocytopenia were observed at 12 mg/m2. The MTD was determined to be 9 mg/m2 with a single DLT of grade 4 thrombocytopenia in 1 of 12 patients. Two patients had a confirmed partial response at the 9 mg/m2 dose level, in renal (1) and cervical (1) cancer. DMS612 was rapidly converted into active metabolites. γ-H2AX immunofluorescence revealed dose-dependent DNA damage in both peripheral blood lymphocytes and scalp hairs. Conclusions The MTD of DMS12 on days 1, 8, and 15 every 28 days was 9 mg/m2. DMS612 appears to be an alkylating agent with unique tissue specificities. Dose-dependent pharmacodynamic signals and 2 partial responses at the MTD support further evaluation of DMS612 in phase II trials. PMID:25467180

  7. N4-methylation changes the conformation of (3S,6S)-3-alkyl-6-benzylpiperazine-2,5-diones from folded to extended

    NASA Astrophysics Data System (ADS)

    Nakao, Michiyasu; Hiroyama, Yuta; Fukayama, Shintaro; Sano, Shigeki

    2016-07-01

    N4-methylation of (3S,6S)-3-alkyl-6-benzylpiperazine-2,5-diones (S,S)-1a-c was found to change their folded conformation to an extended conformation. Conformational aspects of N1- and/or N4-methylated (S,S)-1a-c were revealed by single crystal X-ray crystallography and 1H NMR spectroscopy.

  8. Re-Directing an Alkylating Agent to Mitochondria Alters Drug Target and Cell Death Mechanism

    PubMed Central

    Wisnovsky, Simon P.; Pereira, Mark P.; Wang, Xiaoming; Hurren, Rose; Parfitt, Jeremy; Larsen, Lesley; Smith, Robin A. J.; Murphy, Michael P.; Schimmer, Aaron D.; Kelley, Shana O.

    2013-01-01

    We have successfully delivered a reactive alkylating agent, chlorambucil (Cbl), to the mitochondria of mammalian cells. Here, we characterize the mechanism of cell death for mitochondria-targeted chlorambucil (mt-Cbl) in vitro and assess its efficacy in a xenograft mouse model of leukemia. Using a ρ° cell model, we show that mt-Cbl toxicity is not dependent on mitochondrial DNA damage. We also illustrate that re-targeting Cbl to mitochondria results in a shift in the cell death mechanism from apoptosis to necrosis, and that this behavior is a general feature of mitochondria-targeted Cbl. Despite the change in cell death mechanisms, we show that mt-Cbl is still effective in vivo and has an improved pharmacokinetic profile compared to the parent drug. These findings illustrate that mitochondrial rerouting changes the site of action of Cbl and also alters the cell death mechanism drastically without compromising in vivo efficacy. Thus, mitochondrial delivery allows the exploitation of Cbl as a promiscuous mitochondrial protein inhibitor with promising therapeutic potential. PMID:23585833

  9. Alkylating reactivity and herbicidal activity of chloroacetamides.

    PubMed

    Jablonkai, Istvan

    2003-04-01

    The relationship between S- and N-alkylating reactivity and herbicidal activity within a series of chloroacetamides, including several commercial herbicides and newly synthesised analogues was studied. The S-alkylating reactivity of selected chloroacetamides, as well as those of atrazine and chlorfenprop-methyl, was determined by in vitro GSH conjugation at a ratio of GSH to alkylating agent of 25:1. A spectrophotometric reaction using 4-(4-nitrobenzyl)pyridine was used to characterise the N-alkylating reactivity of the chemicals. Our results indicate that a reduced level of N-alkylating reactivity correlates with an improved herbicidal efficacy at a practical rate. However, the phytoxicity of the molecules is not simply dependent on chemical reactivities, but strictly related to the molecular structure, indicating that lipophilicity, uptake, mobility and induction of detoxifying enzymes may also be decisive factors in the mode of action. PMID:12701706

  10. Acute dosing and p53-deficiency promote cellular sensitivity to DNA methylating agents.

    PubMed

    Chapman, Katherine E; Doak, Shareen H; Jenkins, Gareth J S

    2015-04-01

    Risk assessment of human exposure to chemicals is crucial for understanding whether such agents can cause cancer. The current emphasis on avoidance of animal testing has placed greater importance on in vitro tests for the identification of genotoxicants. Selection of an appropriate in vitro dosing regime is imperative in determining the genotoxic effects of test chemicals. Here, the issue of dosing approaches was addressed by comparing acute and chronic dosing, uniquely using low-dose experiments. Acute 24 h exposures were compared with equivalent dosing every 24 h over 5-day, fractionated treatment periods. The in vitro micronucleus assay was used to measure clastogenicity induced by methyl methanesulfonate (MMS) and N-methyl-N-nitrosourea (MNU) in human lymphoblastoid cell line, TK6. Quantitative real-time (qRT) PCR was used to measure mRNA level induction of DNA repair enzymes. Lowest observed genotoxic effect levels (LOGELs) for MMS were obtained at 0.7 µg/ml for the acute study and 1.0 µg/ml for the chronic study. For acute MNU dosing, a LOGEL was observed at 0.46 µg/ml, yet genotoxicity was completely removed following the chronic study. Interestingly, acute MNU dosing demonstrated a statistically significant decrease at 0.009 µg/ml. Levels of selected DNA repair enzymes did not change significantly following doses tested. However, p53 deficiency (using the TK6-isogenic cell line, NH32) increased sensitivity to MMS during chronic dosing, causing this LOGEL to equate to the acute treatment LOGEL. In the context of the present data for 2 alkylating agents, chronic dosing could be a valuable in vitro supplement to acute dosing and could contribute to reduction of unnecessary in vivo follow-up tests. PMID:25595616

  11. Chemotherapeutic attack of hypoxic tumor cells by the bioreductive alkylating agent mitomycin C.

    PubMed

    Keyes, S R; Heimbrook, D C; Fracasso, P M; Rockwell, S; Sligar, S G; Sartorelli, A C

    1985-01-01

    Since the cure of solid tumors is limited by the presence of cells with low oxygen contents, we have approached the development of treatment regimens and of new drugs for these tumors by investigating agents which are preferentially bioactivated under hypoxia. Major emphasis has been directed at studying the mode of action of the mitomycin antibiotics, as bioreductive alkylating agents. Using primarily the EMT6 mouse mammary carcinoma as a solid tumor model, we have found that mitomycin C and porfiromycin are preferentially toxic to cells with low oxygen contents. The mitomycin analog BMY-25282 is more toxic to hypoxic cells than are mitomycin C and porfiromycin; however, unlike these antibiotics, BMY-25282 is preferentially toxic to well-oxygenated cells. With these three mitomycins, we have observed a correlation between cytotoxicity to hypoxic cells, the rate of generation of reactive products, and the redox potentials of the drugs. Investigations of the enzymes in EMT6 cells that could possibly activate mitomycin C have revealed that cytochrome P-450 and xanthine oxidase are not present in measurable quantities and therefore are not responsible for activation of mitomycin C. Activities representative of NADPH-cytochrome c reductase and DT-diaphorase are present in these neoplastic cells. Comparison of these enzymatic activities in EMT6, CHO, and V79 cells with the rate of generation of reactive products under hypoxia shows a direct correlation between these two parameters, but there is no quantitative correlation between these two parameters and the amount of cytotoxicity. Use of purified NADPH-cytochrome c reductase and inhibitors of this enzyme demonstrated that NADPH-cytochrome c reductase can activate mitomycin C, but that it is probably not the only enzyme participating in this bioactivation in EMT6 cells. The DT-diaphorase inhibitor dicoumarol was employed to show that this enzyme is not involved in the activation of mitomycin C to a cytotoxic agent

  12. Cyclooxygenase inhibitors - invitro and invivo effects on antitumor alkylating-agents in the emt-6 murine mammary-carcinoma.

    PubMed

    Teicher, B; Holden, S; Ara, G; Liu, J; Robinson, M; Flodgren, P; Dupuis, N; Northey, D

    1993-02-01

    The nonsteroidal antiinflammatory drugs that inhibit cyclooxygenase block the formation of prostanoids in vivo. These agents may be useful as modulators of cytotoxic anticancer therapies. EMT-6 mouse mammary carcinoma cells growing in culture were exposed for 1 h or 24 h to eleven different nonsteroidal antiinflammatory agents or acetaminophen. None of these drugs was very cytotoxic. A concentration of 50muM of the nonsteroidal antiinflammatory drugs or acetaminophen was chosen for modulator combination studies with the antitumor alkylating agents CDDP, L-PAM, BCNU and 4-HC in cell culture. Several of the modulators protected the EMT-6 cells from the cytotoxicity of the antitumor alkylating agents; however, diflunisal, sulindac, indomethacin, acetaminophen and in some cases ibuprofen and tolmetin were positive modulators of the antitumor alkylating agents under the cell culture conditions tested. EMT-6 tumor cell survival studies and bone marrow CFU-GM survival studies were carried out with seven of the modulators and various doses of cyclophosphamide. Tolmetin, ibuprofen, sulindac, piroxicam and diflunisal in combination with cyclophosphamide produced increased tumor cell killing compared with cyclophosphamide alone without marked changes in toxicity to the bone marrow derived CFU-GM. In EMT-6 tumor growth delay experiments, none of the six modulators tested affected the growth of the tumors; however, tolmetin, ibuprofen, diflunisal and sulindac increased the tumor growth delay obtained with standard dose-schedules of cyclophosphamide or CDDP. When minocycline, a collagenase inhibitor, was added to treatment regimens including diflunisal or sulindac and either cyclophosphamide, CDDP or L-PAM further increases in tumor growth delay were obtained especially when L-PAM was the cytotoxic therapeutic agent. The number of lung metastases and the percentage lung metastases with diameters >3 mm were reduced by treatment with the modulator combinations alone and further

  13. A novel alkylating agent Melflufen induces irreversible DNA damage and cytotoxicity in multiple myeloma cells.

    PubMed

    Ray, Arghya; Ravillah, Durgadevi; Das, Deepika S; Song, Yan; Nordström, Eva; Gullbo, Joachim; Richardson, Paul G; Chauhan, Dharminder; Anderson, Kenneth C

    2016-08-01

    Our prior study utilized both in vitro and in vivo multiple myeloma (MM) xenograft models to show that a novel alkylator melphalan-flufenamide (Melflufen) is a more potent anti-MM agent than melphalan and overcomes conventional drug resistance. Here we examined whether this potent anti-MM activity of melflufen versus melphalan is due to their differential effect on DNA damage and repair signalling pathways via γ-H2AX/ATR/CHK1/Ku80. Melflufen-induced apoptosis was associated with dose- and time-dependent rapid phosphorylation of γ-H2AX. Melflufen induces γ-H2AX, ATR, and CHK1 as early as after 2 h exposure in both melphalan-sensitive and -resistant cells. However, melphalan induces γ-H2AX in melphalan-sensitive cells at 6 h and 24 h; no γ-H2AX induction was observed in melphalan-resistant cells even after 24 h exposure. Similar kinetics was observed for ATR and CHK1 in meflufen- versus melphalan-treated cells. DNA repair is linked to melphalan-resistance; and importantly, we found that melphalan, but not melflufen, upregulates Ku80 that repairs DNA double-strand breaks. Washout experiments showed that a brief (2 h) exposure of MM cells to melflufen is sufficient to initiate an irreversible DNA damage and cytotoxicity. Our data therefore suggest that melflufen triggers a rapid, robust, and an irreversible DNA damage which may account for its ability to overcome melphalan-resistance in MM cells. PMID:27098276

  14. Indolequinone antitumor agents: reductive activation and elimination from (5-methoxy-1-methyl-4,7-dioxoindol-3-yl)methyl derivatives and hypoxia-selective cytotoxicity in vitro.

    PubMed

    Naylor, M A; Swann, E; Everett, S A; Jaffar, M; Nolan, J; Robertson, N; Lockyer, S D; Patel, K B; Dennis, M F; Stratford, M R; Wardman, P; Adams, G E; Moody, C J; Stratford, I J

    1998-07-16

    A series of indolequinones bearing a variety of leaving groups at the (indol-3-yl)methyl position was synthesized by functionalization of the corresponding 3-(hydroxymethyl)indolequinone, and the resulting compounds were evaluated in vitro as bioreductively activated cytotoxins. The elimination of a range of functional groups-carboxylate, phenol, and thiol-was demonstrated upon reductive activation under both chemical and quantitative radiolytic conditions. Only those compounds which eliminated such groups under both sets of conditions exhibited significant hypoxia selectivity, with anoxic:oxic toxicity ratios in the range 10-200. With the exception of the 3-hydroxymethyl derivative, radiolytic generation of semiquinone radicals and HPLC analysis indicated that efficient elimination of the leaving group occurred following one-electron reduction of the parent compound. The active species in leaving group elimination was predominantly the hydroquinone rather than the semiquinone radical. The resulting iminium derivative acted as an alkylating agent and was efficiently trapped by added thiol following chemical reduction and by either water or 2-propanol following radiolytic reduction. A chain reaction in the radical-initiated reduction of these indolequinones (not seen in a simpler benzoquinone) in the presence of a hydrogen donor (2-propanol) was observed. Compounds that were unsubstituted at C-2 were found to be up to 300 times more potent as cytotoxins than their 2-alkyl-substituted analogues in V79-379A cells, but with lower hypoxic cytotoxicity ratios. PMID:9667963

  15. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    PubMed

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  16. 40 CFR 721.5960 - N,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt (generic name). 721.5960 Section 721.5960...,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt... methyl sulfate double salt (PMN P-84-913) is subject to reporting under this section for the...

  17. 40 CFR 721.5960 - N,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt (generic name). 721.5960 Section 721.5960...,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt... methyl sulfate double salt (PMN P-84-913) is subject to reporting under this section for the...

  18. 40 CFR 721.5960 - N,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt (generic name). 721.5960 Section 721.5960...,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt... methyl sulfate double salt (PMN P-84-913) is subject to reporting under this section for the...

  19. 40 CFR 721.5960 - N,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt (generic name). 721.5960 Section 721.5960...,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt... methyl sulfate double salt (PMN P-84-913) is subject to reporting under this section for the...

  20. 40 CFR 721.5960 - N,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt (generic name). 721.5960 Section 721.5960...,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt... methyl sulfate double salt (PMN P-84-913) is subject to reporting under this section for the...

  1. 5-(1-Substituted) alkyl pyrimidine nucleosides as antiviral (herpes) agents.

    PubMed

    Kumar, Rakesh

    2004-10-01

    -substituent of pyrimidine nucleosides have been well established for anti-herpes activity. However, there is little qualitative or mechanistic knowledge of the derivatives with substitution at the C-1 carbon of the 5-substituent of pyrimidine nucleosides. During the last few years of our research, we have investigated a variety of C-1 functionalized substituents at the 5-position of the pyrimidine nucleosides to determine their usefulness as antiviral (herpes) agents. In the 5-(1-substituted) group of pyrimidine nucleosides, we demonstrated that novel substituents present at the C-1 carbon of the 5-side chain of the pyrimidine nucleosides are important determinants of potent and broad spectrum antiviral (herpes) activity including EBV and HCMV. In this article the work on design, synthesis and structure activity relationships of several 5-[(1-substituted) alkyl (or vinyl)] pyrimidine nucleoside derivatives as potential inhibitors of herpes viruses is reviewed. PMID:15544474

  2. Quantum molecular modeling of the interaction between guanine and alkylating agents--1--sulfur mustard.

    PubMed

    Broch, H; Hamza, A; Vasilescu, D

    1996-06-01

    Interaction between Guanine and the episulfonium form of Sulfur mustard (HD) was studied using the ab initio LCAO-MO method at the HF/6-31G level. The alkylation mechanism on guanine-N7 was analyzed by using a supermolecular modeling. Our stereostructural results associated with the molecular electrostatic potentials and HOMO-LUMO properties, show that in vacuum the alkylation of the N7 of guanine by HD in the aggressive episulfonium form is a direct process without transition state and of which the pathway is determined. PMID:8832373

  3. The Cyclophosphamide Equivalent Dose as an Approach for Quantifying Alkylating Agent Exposure. A Report from the Childhood Cancer Survivor Study

    PubMed Central

    Green, Daniel M.; Nolan, Vikki G.; Goodman, Pamela J.; Whitton, John A.; Srivastava, DeoKumar; Leisenring, Wendy M.; Neglia, Joseph P.; Sklar, Charles A.; Kaste, Sue C.; Hudson, Melissa M.; Diller, Lisa R.; Stovall, Marilyn; Donaldson, Sarah S.; Robison, Leslie L.

    2014-01-01

    BACKGROUND Estimation of the risk of adverse long-term outcomes such as second malignant neoplasms and infertility often requires reproducible quantification of exposures. The method for quantification should be easily utilized and valid across different study populations. The widely used Alkylating Agent Dose (AAD) score is derived from the drug dose distribution of the study population and thus cannot be used for comparisons across populations as each will have a unique distribution of drug doses. METHODS We compared the performance of the Cyclophosphamide Equivalent Dose (CED), a unit for quantifying alkylating agent exposure independent of study population, to the AAD. Comparisons included associations from three Childhood Cancer Survivor Study (CCSS)outcome analyses, receiver operator characteristic (ROC) curves and goodness of fit based on the Akaike’s Information Criterion (AIC). RESULTS The CED and AAD performed essentially identically in analyses of risk for pregnancy among the partners of male CCSS participants, risk for adverse dental outcomes among all CCSS participants and risk for premature menopause among female CCSS participants, based on similar associations, lack of statistically significant differences between the areas under the ROC curves and similar model fit values for the AIC between models including the two measures of exposure. CONCLUSION The CED is easily calculated, facilitating its use for patient counseling. It is independent of the drug dose distribution of a particular patient population, a characteristic that will allow direct comparisons of outcomes among epidemiological cohorts. We recommend the use of the CED in future research assessing cumulative alkylating agent exposure. PMID:23940101

  4. Physicochemical and thermal properties for a series of 1-alkyl-4-methyl-1,2,4-triazolium bis(trifluoromethylsulfonyl)imide ionic liquids.

    PubMed

    De La Hoz, Andreah T; Brauer, Ulises G; Miller, Kevin M

    2014-08-21

    Physicochemical properties and long-term thermal stabilities are reported for a series of 1-alkyl-4-methyl-1,2,4-triazolium [NTf2] ionic liquids, and a Walden plot analysis was conducted in order to determine the ionicity of these materials. In general, viscosities were found to increase with increasing alkyl chain length while densities and molar conductivities were found to decrease. The 1,2,4-triazolium ionic liquids were classified as "good" ionic liquids after analysis of the Walden plot; however, they did not perform as well as the standard imidazolium ionic liquid [bmim][NTf2]. Thermal properties from DSC and TGA experiments were also completed. 1,2,4-Triazolium ionic liquids with an alkyl chain length of octyl (C8) or less exhibited a single Tg transition below -70 °C; however, the decyl (C10) and dodecyl (C12) systems exhibited a Tm value. No correlation between Tonset or Td5% and alkyl chain length was observed during short-term, temperature-ramped TGA experiments. However, long-term, isothermal TGA studies indicated a general increase in T0.01/10 value as the alkyl chain length increased. Both short- and long-term TGA studies indicated that the 1,2,4-triazolium ionic liquids were not as thermally stable as the model imidazolium ionic liquid [bmim][NTf2]. PMID:25079782

  5. The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents.

    PubMed Central

    Wilhelm, D; Bender, K; Knebel, A; Angel, P

    1997-01-01

    Monofunctional alkylating agents like methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) are potent inducers of cellular stress leading to chromosomal aberrations, point mutations, and cell killing. We show that these agents induce a specific cellular stress response program which includes the activation of Jun N-terminal kinases/stress-activated protein kinases (JNK/SAPKs), p38 mitogen-activated protein kinase, and the upstream kinase SEK1/MKK4 and which depends on the reaction mechanism of the alkylating agent in question. Similar to another inducer of cellular stress, UV irradiation, damage of nuclear DNA by alkylation is not involved in the MMS-induced response. However, in contrast to UV and other inducers of the JNK/SAPKs and p38 pathways, activation of growth factor and G-protein-coupled receptors does not play a role in the MMS response. We identified the intracellular glutathione (GSH) level as critical for JNK/SAPK activation by MMS: enhancing the GSH level by pretreatment of the cells with GSH or N-acetylcysteine inhibits, whereas depletion of the cellular GSH pool causes hyperinduction of JNK/SAPK activity by MMS. In light of the JNK/SAPK-dependent induction of c-jun and c-fos transcription, and the Jun/Fos-induced transcription of xenobiotic-metabolizing enzymes, these data provide a potential critical role of JNK/SAPK and p38 in the induction of a cellular defense program against cytotoxic xenobiotics such as MMS. PMID:9234735

  6. Mismatch repair-dependent G2 checkpoint induced by low doses of SN1 type methylating agents requires the ATR kinase.

    PubMed

    Stojic, Lovorka; Mojas, Nina; Cejka, Petr; Di Pietro, Massimiliano; Ferrari, Stefano; Marra, Giancarlo; Jiricny, Josef

    2004-06-01

    S(N)1-type alkylating agents represent an important class of chemotherapeutics, but the molecular mechanisms underlying their cytotoxicity are unknown. Thus, although these substances modify predominantly purine nitrogen atoms, their toxicity appears to result from the processing of O(6)-methylguanine ((6Me)G)-containing mispairs by the mismatch repair (MMR) system, because cells with defective MMR are highly resistant to killing by these agents. In an attempt to understand the role of the MMR system in the molecular transactions underlying the toxicity of alkylating agents, we studied the response of human MMR-proficient and MMR-deficient cells to low concentrations of the prototypic methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We now show that MNNG treatment induced a cell cycle arrest that was absolutely dependent on functional MMR. Unusually, the cells arrested only in the second G(2) phase after treatment. Downstream targets of both ATM (Ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) kinases were modified, but only the ablation of ATR, or the inhibition of CHK1, attenuated the arrest. The checkpoint activation was accompanied by the formation of nuclear foci containing the signaling and repair proteins ATR, the S(*)/T(*)Q substrate, gamma-H2AX, and replication protein A (RPA). The persistence of these foci implied that they may represent sites of irreparable damage. PMID:15175264

  7. Asymmetric Total Synthesis of (+)- and (−)-Clusianone and (+)- and (−)Clusianone Methyl Enol Ether via ACC Alkylation and Evaluation of their Anti-HIV Activity

    PubMed Central

    Garnsey, Michelle R.; Matous, James A.; Kwiek, Jesse J.; Coltart, Don M.

    2011-01-01

    The total asymmetric synthesis of (+)- and (−)-clusianone and (+)- and (−)-clusianone methyl enol ether is reported. Asymmetric induction is achieved through the use of ACC alkylation, providing the key intermediates with an er of 99:1. The four synthetic compounds were evaluated for their anti-HIV activity. Both (+)- and (−)-clusianone displayed significant anti-HIV activity. PMID:21414776

  8. Introduction of Peripheral Carboxylates to Decrease the Charge on Tm(3+) DOTAM-Alkyl Complexes: Implications for Detection Sensitivity and in Vivo Toxicity of PARACEST MRI Contrast Agents.

    PubMed

    Suchý, Mojmír; Milne, Mark; Elmehriki, Adam A H; McVicar, Nevin; Li, Alex X; Bartha, Robert; Hudson, Robert H E

    2015-08-27

    A series of structurally modified Tm(3+) DOTAM-alkyl complexes as potential PARACEST MRI contrast agents has been synthesized with the aim to decrease the overall positive charge associated with these molecules and increase their biocompatibility. Two types of structural modification have been performed, an introduction of terminal carboxylate arms to the alkyl side chains and a conjugation of one of the alkyl side chains with aspartic acid. Detailed evaluation of the magnetic resonance imaging chemical exchange contrast associated with the structurally modified contrast agents has been performed. In contrast to the acutely toxic Tm(3+) DOTAM-alkyl complexes, the structurally modified compounds were found to be tolerated well during in vivo MRI studies in mice; however, only the aspartic acid modified chelates produced an amide proton-based PARACEST signal. PMID:26214576

  9. Gas chromatography with tandem differential mobility spectrometry of fatty acid alkyl esters and the selective detection of methyl linolenate in biodiesels by dual-stage ion filtering.

    PubMed

    Pasupuleti, D; Pierce, K; Eiceman, G A

    2015-11-20

    Alkyl esters of fatty acids (FAAEs) with carbon numbers from 8 to 20 formed protonated monomers and proton bound dimers through atmospheric pressure chemical ionization reactions and these gas ions were characterized for their field dependent mobility coefficients using differential mobility spectrometry (DMS). Separation of ion peaks with a vapor modifier was achieved for ions with masses of 317-1033 Da though the differences in these coefficients and the resolution of ion peaks decreased proportionally with increased ion mass. Differences in dispersion curves were sufficient to isolate ions from specific FAAEs in the effluent of a gas chromatograph by dual stage ion filtering using a tandem DMS detector. Methyl linolenate was isolated from nearby eluting methyl oleate, methyl stearate and methyl linoleate within analysis times of 10s without measureable complications from charge suppression in the ion source or leakage in filtering of ions with close proximity of dispersion behavior. PMID:26427321

  10. Stability of solutions of antineoplastic agents during preparation and storage for in vitro assays. General considerations, the nitrosoureas and alkylating agents.

    PubMed

    Bosanquet, A G

    1985-01-01

    In vitro drug sensitivity of tumour biopsies is currently being determined using a variety of methods. For these chemosensitivity assays many drugs are required at short notice, and this in turn means that the drugs must generally be stored in solution. There are, however, a number of potential problems associated with dissolving and storing drugs for in vitro use, which include (a) drug adsorption; (b) effects of freezing; (c) drug stability under the normal conditions of dilution and setting up of an in vitro assay; and (d) insolubility of drugs in normal saline (NS) or phosphate-buffered saline (PBS). These problems are considered in general, and some recommendations for use of solutions of drugs in in vitro assays are suggested. The nitrosoureas and alkylating agents are also investigated in greater detail in this respect. The nitrosoureas are found to be very labile in PBS at pH 7, with 5% degradation (t0.95) occurring in 10-50 min at room temperature. These values are increased about 10-fold on refrigeration and about 5- to 10-fold on reduction of the pH of the medium to pH 4-5. At pH 7 and room temperature, t0.95 is observed in under 1 h with the alkylating agents nitrogen mustard, chlorambucil, melphalan, 2,5-diaziridinyl-3,6-bis(2-hydroxyethylamino)-1,4-benzoquinone (BZQ), dibromodulcitol, dibromomannitol, treosulphan, and procarbazine. Of the other alkylating agents, 4-hydroperoxycylophosphamide (sometimes used in vitro in place of cyclophosphamide), busulphan, dianhydrogalactitol, aziridinylbenzoquinone (AZQ), and dacarbazine have a t0.95 of between 2 and 24 h, while ifosfamide and pentamethylmelamine are both stable in aqueous solution for greater than 7 days. About half the drugs studied in detail have been stored frozen in solution for in vitro use, although very little is known about their stability under these conditions. PMID:3882257

  11. Influence of promoter/enhancer region haplotypes on MGMT transcriptional regulation: a potential biomarker for human sensitivity to alkylating agents

    PubMed Central

    Abdel-Rahman, Sherif Z.

    2014-01-01

    The O 6-methylguanine-DNA methyltransferase gene (MGMT) encodes the direct reversal DNA repair protein that removes alkyl adducts from the O 6 position of guanine. Several single-nucleotide polymorphisms (SNPs) exist in the MGMT promoter/enhancer (P/E) region. However, the haplotype structure encompassing these SNPs and their functional/biological significance are currently unknown. We hypothesized that MGMT P/E haplotypes, rather than individual SNPs, alter MGMT transcription and can thus alter human sensitivity to alkylating agents. To identify the haplotype structure encompassing the MGMT P/E region SNPs, we sequenced 104 DNA samples from healthy individuals and inferred the haplotypes using the data generated. We identified eight SNPs in this region, namely T7C (rs180989103), T135G (rs1711646), G290A (rs61859810), C485A (rs1625649), C575A (rs113813075), G666A (rs34180180), C777A (rs34138162) and C1099T (rs16906252). Phylogenetics and Sequence Evolution analysis predicted 21 potential haplotypes that encompass these SNPs ranging in frequencies from 0.000048 to 0.39. Of these, 10 were identified in our study population as 20 paired haplotype combinations. To determine the functional significance of these haplotypes, luciferase reporter constructs representing these haplotypes were transfected into glioblastoma cells and their effect on MGMT promoter activity was determined. Compared with the most common (reference) haplotype 1, seven haplotypes significantly upregulated MGMT promoter activity (18–119% increase; P < 0.05), six significantly downregulated MGMT promoter activity (29–97% decrease; P < 0.05) and one haplotype had no effect. Mechanistic studies conducted support the conclusion that MGMT P/E haplotypes, rather than individual SNPs, differentially regulate MGMT transcription and could thus play a significant role in human sensitivity to environmental and therapeutic alkylating agents. PMID:24163400

  12. The influence of oxazaphosphorines alkylating agents on autonomic nervous system activity in rat experimental cystitis model.

    PubMed

    Dobrek, Łukasz; Baranowska, Agnieszka; Thor, Piotr J

    2013-01-01

    The oxazaphosphorines alkylating agents (cyclophosphamide; CP and ifosfamide; IF) are often used in common clinical practice. However, treatment with CP/IF is burdened with the risk of many adverse drug reactions, especially including hemorrhagic cystitis (HC) that is associated with bladder overactivity symptoms (OAB). The HC pathophysiology is still not fully displayed; it seems that autonomic nervous system (ANS) functional abnormalities play important role in this disturbance. The aim of our study was to reveal the potential ANS differences in rat experimental HC model, evoked by CP and IF by an indirect ANS assessment--heart rate variability (HRV) study. We carried out our experimental research in three essential groups: control group (group 1), cyclophosphamide-induced HC (CP-HC; group 2) one and ifosfamide-induced HC (IF-HC; group 3) one. CP was i.p. administrated four times in dose of 75 mg/kg body weight while IF-treated rats received i.p. five drug doses; 50 mg/kg body weight. Control rats were administrated i.p. vehicle in appropriate volumes as CP/IF treated animals. HRV studies were performed the next day after the last oxazaphosphorines dose. Standard time- and spectral (frequency) domain parameters were estimated. We confirmed the HC development after both CP/IF in macroscopic assessment and bladder wet weight measurement; however, it was more aggravated in CP-HC group. Moreover, we demonstrated HRV disturbances, suggesting ANS impairment after both studied oxazaphosphorines, however, consistent with the findings mentioned above, the autonomic dysfunction was more emphasized after CP. CP treatment was also associated with changes of non-normalized HRV spectral components percentage distribution--a marked very low frequency--VLF [%] increase together with low frequency--LF [%] and high frequency--HF [%] decrease were observed. Taking into consideration the next findings, demonstrating the lack of both normalized power spectral components (nLF and n

  13. Correlation of clinical features and methylation status of MGMT gene promoter in glioblastomas.

    PubMed

    Blanc, J L; Wager, M; Guilhot, J; Kusy, S; Bataille, B; Chantereau, T; Lapierre, F; Larsen, C J; Karayan-Tapon, L

    2004-07-01

    In an effort to extend the potential relationship between the methylation status of MGMT promoter and response to CENU therapy, we examined the methylation status of MGMT promoter in 44 patients with glioblastomas. Tumor specimens were obtained during surgery before adjuvant treatment, frozen and stored at -80 degrees C until for DNA extraction process. DNA methylation patterns in the CpG island of the MGMT gene were determined in every tumor by methylation specific PCR (MSP). These results were then related to overall survival and response to alkylating agents using statistical analysis. Methylation of the MGMT promoter was detected in 68% of tumors, and 96.7% of methylated tumors exhibited also an unmethylated status. There was no relationship between the methylation status of the MGMT promoter and overall survival and response to alkylating agents. Our observations do not lead us to consider promoter methylation of MGMT gene as a prognostic factor of responsiveness to alkylating agents in glioblastomas. PMID:15332332

  14. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells.

    PubMed

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-08-15

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. PMID:27342729

  15. Induction of resistance to alkylating agents in E. coli: the ada+ gene product serves both as a regulatory protein and as an enzyme for repair of mutagenic damage.

    PubMed Central

    Teo, I; Sedgwick, B; Demple, B; Li, B; Lindahl, T

    1984-01-01

    The expression of several inducible enzymes for repair of alkylated DNA in Escherichia coli is controlled by the ada+ gene. This regulatory gene has been cloned into a multicopy plasmid and shown to code for a 37-kd protein. Antibodies raised against homogeneous O6-methylguanine-DNA methyltransferase (the main repair activity for mutagenic damage in alkylated DNA) were found to cross-react with this 37-kd protein. Cell extracts from several independently derived ada mutants contain variable amounts of an altered 37-kd protein after an inducing alkylation treatment. In addition, an 18-kd protein identical with the previously isolated O6-methyl-guanine-DNA methyltransferase has been identified as a product of the ada+ gene. The smaller polypeptide is derived from the 37-kd protein by proteolytic processing. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:6092060

  16. Somatic reversion of some copia-like induced mutations, at the white locus of Drosophila melanogaster, after treatment with alkylating agents.

    PubMed

    Soriano, S; Creus, A; Marcos, R; Xamena, N

    1995-01-01

    It has been suggested that transposable elements can be associated with different types of genotoxic effects. For this reason it seems appropriate to outline suitable systems to detect changes in the phenotypic expression of the loci containing transposable elements, as well as those agents that induce such changes. The sex-linked white locus offers a suitable experimental system for studying such events because most of the spontaneous mutations at the white locus are the result of insertions of repeated mobile sequences, and it is easy to follow mutational changes of the locus due to the possibility of detecting even slight changes in eye color. Here we report the results obtained in different strains of Drosophila melanogaster with copia-like induced mutations at the white locus, after treatment with three alkylating agents: ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), and N-nitroso-N-ethylurea (ENU). The three insertional white mutants used in this work were wa4, wbf, and wsp55, with the wa2 mutation used as control because its mutant phenotype is the result of a point mutation instead of the insertion of a DNA fragment. Our data constitute evidence that EMS, MMS, and ENU induce a clear increase in the frequencies of somatic-revertant sectors in the three strains carrying a white allele with an inserted copia-like element. For the wa2 strain, whose mutant phenotype is the result of a point mutation, only ENU at the highest concentration tested is able to induce a significant increase in the somatic reversion frequency. In addition, our results indicate that the use of D. melanogaster strains with transposable elements in the white locus is suitable for detecting genotoxic damage induced by chemicals. PMID:7698106

  17. Dose-Response for Multiple Biomarkers of Exposure and Genotoxic Effect Following Repeated Treatment of Rats with the Alkylating Agents, MMS and MNU.

    PubMed

    Ji, Zhiying; LeBaron, Matthew J; Schisler, Melissa R; Zhang, Fagen; Bartels, Michael J; Gollapudi, B Bhaskar; Pottenger, Lynn H

    2016-05-01

    The nature of the dose-response relationship for various in vivo endpoints of exposure and effect were investigated using the alkylating agents, methyl methanesulfonate (MMS) and methylnitrosourea (MNU). Six male F344 rats/group were dosed orally with 0, 0.5, 1, 5, 25 or 50mg/kg bw/day (mkd) of MMS, or 0, 0.01, 0.1, 1, 5, 10, 25 or 50 mkd of MNU, for 4 consecutive days and sacrificed 24h after the last dose. The dose-responses for multiple biomarkers of exposure and genotoxic effect were investigated. In MMS-treated rats, the hemoglobin adduct level, a systemic exposure biomarker, increased linearly with dose (r (2) = 0.9990, P < 0.05), indicating the systemic availability of MMS; however, the N7MeG DNA adduct, a target exposure biomarker, exhibited a non-linear dose-response in blood and liver tissues. Blood reticulocyte micronuclei (MN), a genotoxic effect biomarker, exhibited a clear no-observed-genotoxic-effect-level (NOGEL) of 5 mkd as a point of departure (PoD) for MMS. Two separate dose-response models, the Lutz and Lutz model and the stepwise approach using PROC REG both supported a bilinear/threshold dose-response for MN induction. Liver gene expression, a mechanistic endpoint, also exhibited a bilinear dose-response. Similarly, in MNU-treated rats, hepatic DNA adducts, gene expression changes and MN all exhibited clear PoDs, with a NOGEL of 1 mkd for MN induction, although dose-response modeling of the MNU-induced MN data showed a better statistical fit for a linear dose-response. In summary, these results provide in vivo data that support the existence of clear non-linear dose-responses for a number of biologically significant events along the pathway for genotoxicity induced by DNA-reactive agents. PMID:26040483

  18. Universal charge quenching and stability of proteins in 1-methyl-3-alkyl (hexyl/octyl) imidazolium chloride ionic liquid solutions.

    PubMed

    Rawat, Kamla; Bohidar, H B

    2012-09-13

    This study reports pH dependent stability of protein dispersions of five common proteins, bovine serum albumin (BSA), human serum albumin (HSA), immunoglobulin (IgG), β-lactoglobulin (β-Lg), and gelatin-B (Gel-B), all having isoelectric pH, pI ≈ 5, in room temperature ionic liquid solutions of 1-methyl-3-alkyl (hexyl/octyl) imidazolium chloride (concentration 0-0.2% w/v). Molecular hydrophobicity index, (H-index = hydrophobicity/hydrophilicity) of these molecules spanned the range 0.43-0.87. Electrophoretic characteristics, surface tension data and hydrodynamic size information revealed that IL solutions provide dispersion stability owing to specific protein-IL binding which did not alter their pI values though their surface charge was considerably screened. Change in maximum (ζ(max)) and minimum (ζ(min)) zeta potential values observed at pH ~3 (maximum protonated state) and pH ~8 (maximum deprotonated state) could be described universally as function of IL concentration, c as Δζ(x) = [1 - exp(-ac)] where Δζ(x) is either |(ζ(max) - ζ(w))|/ζ(w) or |(ζ(min) - ζ(w))|/ζ(w), and ζ(w) is the corresponding value in water. Tensiometry data showed two major stages of protein-IL interactions: (i) for c < cmc of IL, the IL molecules selectively bind with imidazolium cation through electrostatic forces forming protein-IL (complex) and (ii) for c> cmc free IL-aggregates begin to form. Similarly, we can define Δγ(x) as either |(γ(max) - γ(w))|/γ(w) at pH 3 or |(γ(min) - γ(w))|/γ(w) at pH 8. Both Δζ(x) and Δγ(x) showed linear dependence with c, Δγ(min, max) (or Δζ(min, max)) = (1 - K(γ) (or K(ζ)) H-index), where the slopes K(ζ) and K(γ) defined intermolecular interactions. Hydrodynamic radii data revealed protein stabilization, circular dichroism spectra implied retention of secondary structures, and Raman spectra confirmed a marginal increase in water structure. Results concluded that selective binding of IL molecules to protein surface in

  19. Isolation and characterization of BHK cells sensitive to ionizing radiation and alkylating agents

    SciTech Connect

    Evans, H.H.; Horng, M.F.; Weber, M.C.; Glazier, K.G.

    1984-07-01

    A host-cell viral suicide enrichment procedure was used to isolate BHK strains sensitive to ionizing radiation. Of six strains surviving infection with irradiated herpes simplex virus (HSV), three were found to be more sensitive to ionizing radiation than the parental BHK cells. Strains V1 and V2 were studied in more detail and found to exhibit hypersensitivity to ethyl methanesulfonate (EMS), methyl methanesulfonate, and N-methyl-N'-nitro-N-nitrosoguanidine, but not to uv radiation. Susceptibility to mutation in response to EMS was also compared in BHK and strains V1 and V2. The frequency of induction of ouabain-resistant cells was 140% of the parental strain in the case of strain V1 and 58% of the parental strain in the case of strain V2.

  20. Alkyl and aryl sulfonyl p-pyridine ethanone oximes are efficient DNA photo-cleavage agents.

    PubMed

    Andreou, Nicolaos-Panagiotis; Dafnopoulos, Konstantinos; Tortopidis, Christos; Koumbis, Alexandros E; Koffa, Maria; Psomas, George; Fylaktakidou, Konstantina C

    2016-05-01

    Sulfonyloxyl radicals, readily generated upon UV irradiation of p-pyridine sulfonyl ethanone oxime derivatives, effectively cleave DNA, in a pH independent manner, and under either aerobic or anaerobic conditions. p-Pyridine sulfonyl ethanone oxime derivatives were synthesized from the reaction of p-pyridine ethanone oxime with the corresponding sulfonyl chlorides in good to excellent yields. All compounds, at a concentration of 100μM, were irradiated at 312nm for 15min, after incubation with supercoiled circular pBluescript KS II DNA and resulted in extended single- and double- strand cleavages. The cleavage ability was found to be concentration dependent, with some derivatives exhibiting activity even at nanomolar levels. Besides that, p-pyridine sulfonyl ethanone oxime derivatives showed good affinity to DNA, as it was observed with UV interaction and viscosity experiments with CT DNA and competitive studies with ethidium bromide. The compounds interact to CT DNA probably by non-classical intercalation (i.e. groove-binding) and at a second step they may intercalate within the DNA base pairs. The fluorescence emission spectra of pre-treated EB-DNA exhibited a significant or moderate quenching. Comparing with the known aryl carbonyloxyl radicals the sulfonyloxyl ones are more powerful, with both aryl and alkyl sulfonyl substituted derivatives to exhibit DNA photo-cleaving ability, in significantly lower concentrations. These properties may serve in the discovery of new leads for "on demand" biotechnological and medical applications. PMID:26945644

  1. Potentiation of cytotoxicity by 3-aminobenzamide in DNA repair-deficient human tumor cell lines following exposure to methylating agents or anti-neoplastic drugs.

    PubMed

    Babich, M A; Day, R S

    1988-04-01

    We studied the potentiation by 3-aminobenzamide (3AB) of killing of nine human cell lines exposed to alkylating agents. Cell lines included normal, transformed and DNA repair-proficient and -deficient phenotypes. 3AB potentiated cell killing by the methylating agents methylmethanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in all lines tested. The degree of potentiation ranged from 1.7- to 3.8-fold, based on the LD99. The average potentiation observed with MMS (2.7-fold) was greater than with MNNG (2.2-fold). On average the potentiation of MMS and MNNG killing of repair-deficient Mer- lines (2.4-fold) was similar to that of repair-proficient Mer+ lines. The degree of 3AB potentiation of MNNG killing (2.0-fold) was similar in Mer+ Rem- lines and in Mer+ Rem+ lines. Mer+ Rem+, Mer+ Rem-, Mer- Rem+, and Mer- Rem- strains all appeared proficient in a 3AB-sensitive DNA repair pathway. Within experimental error, 20 mM 3AB did not inhibit the removal of the MNNG-induced methylpurines 7-methylguanine, O6-methylguanine and 3-methyladenine from the DNA of repair-proficient Mer+ Rem+ HT29 cells, consistent with evidence that 3AB inhibits the ligation step of excision repair. 3AB potentiated cell killing by the bifunctional alkylating agents 1-(2-chlorethyl)-1-nitrosourea or busulfan, two anti-neoplastic drugs, by only 0.9- to 1.5-fold. These drugs therefore produce DNA damage which is not efficiently repaired by the pathways that repair methylated bases. PMID:3356063

  2. Synthesis, spectral and structural studies of alkyl 2-(3-alkyl-2,6-diarylpiperidin-4-ylidene)hydrazinecarboxylate derivatives: Crystal and molecular structure of methyl 2-(3-methyl-2,6-diphenylpiperidin-4-ylidene)hydrazinecarboxylate

    NASA Astrophysics Data System (ADS)

    Udhaya Kumar, C.; Sethukumar, A.; Velayutham Pillai, M.; Arul Prakasam, B.; Ramalingan, C.; Vidhyasagar, T.

    2016-05-01

    An efficient synthetic route with good overall yields to synthesize alkyl 2-(3-alkyl-2,6-diarylpiperidin-4-ylidene)hydrazinecarboxylates (7-14) is reported. All the synthesized compounds were characterized by their analytical and spectral (IR, 1H, 13C and 2D NMR) data. Single crystal X-ray structural analysis of compound 7, evidences that the configuration about Cdbnd N double bond is syn to C5 carbon (E-form) and exists in normal chair conformation with equatorial orientations of all the substituents.

  3. Synthesis of 1-methyl-2-phenylcarbamoylpyrazolidines as potential anticonvulsant agents.

    PubMed

    Kornet, M J

    1978-10-01

    Lithium aluminum hydride reduction of 1,4-dimethyl-3-pyrazolidinone yielded 1,4-dimethylpyrazolidine. The latter compound and 1-methylpyrazolidine reacted with aryl isocyanates to produce 1-methyl-2-phenylcarbamoylpyrazolidines. Several of these adducts displayed significant anticonvulsant activity in the maximal electroshock seizure and pentylenetetrazol seizure threshold tests. PMID:702307

  4. Properties and Applications of Sodium (5-methyl-2-alkyl-1,3-dioxane-5-yl)-Carboxylate Synthesized with Nanosolid Superacid.

    PubMed

    Yuan, Lin; Jia, Guo Kai; Li, Zhong Yan; Zhang, Min; Yuan, Xian You

    2016-01-01

    A series of novel sodium (5-methyl-2-alkyl-1,3-dioxane-5-yl) carboxylate surfactants were synthesized using nanosolid superacid SO₄²⁻/Fe₂O₃as a catalyst and characterized by ¹H NMR, IR and elemental analysis. The critical micelle concentration (CMC) of surfactants was determined and the results showed that the CMC values were less than 2.0 x 10⁻³ mol/L. Other relevant surface properties (Krafft point, emulsion stability, foam ability, degradability) were also evaluated. It was suggested that with respect to emulsion formation, foam stability and the range of application temperature, compared with traditional surfactants, the new surfactants could give better results and showed better properties when used as an emulsifier in emulsion polymerization. In addition, the surfactants were stable under neutral and alkaline conditions, and could form solid under acid condition. The solid will generate the original surfactants for reuse with alkali. Sodium (5-methyl-2-alkyl-1,3-dioxane-5-yl) carboxylate is likely to be a new type of 'environmentally friendly' surfactant. PMID:27398572

  5. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response

    PubMed Central

    2011-01-01

    Background 1-{4-[Bis(2-chloroethyl)amino]phenyl}-3-[2-methyl-5-(4-methylacridin-9-ylamino)phenyl]urea (BO-1051) is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects of this compound on radiation responses of human gliomas, which are notorious for the high resistance to radiotherapy. Methods The clonogenic assay was used to determine the IC50 and radiosensitivity of human glioma cell lines (U87MG, U251MG and GBM-3) following BO-1051. DNA histogram and propidium iodide-Annexin V staining were used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were determined by γ-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors were measured with a caliper, and the survival rate was determined using Kaplan-Meier method. Results BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage at IC50, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G2/M population was raised by BO-1051, whereas apoptosis and mitotic catastrophe were not affected. γ-H2AX foci was greatly increased and sustained by combined BO-1051 and γ-rays, suggested that DNA damage or repair capacity was impaired during treatment. In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also increased accordingly. Conclusions These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells. PMID:21244709

  6. MLH1 mediates PARP-dependent cell death in response to the methylating agent N-methyl-N-nitrosourea

    PubMed Central

    McDaid, J R; Loughery, J; Dunne, P; Boyer, J C; Downes, C S; Farber, R A; Walsh, C P

    2009-01-01

    Background: Methylating agents such as N-methyl-N-nitrosourea (MNU) can cause cell cycle arrest and death either via caspase-dependent apoptosis or via a poly(ADP-ribose) polymerase (PARP)-dependent form of apoptosis. We wished to investigate the possible role of MLH1 in signalling cell death through PARP. Methods: Fibroblasts are particularly dependent on a PARP-mediated cell death response to methylating agents. We used hTERT-immortalised normal human fibroblasts (WT) to generate isogenic MLH1-depleted cells, confirmed by quantitative PCR and western blotting. Drug resistance was measured by clonogenic and cell viability assays and effects on the cell cycle by cell sorting. Damage signalling was additionally investigated using immunostaining. Results: MLH1-depleted cells were more resistant to MNU, as expected. Despite having an intact G2/M checkpoint, the WT cells did not initially undergo cell cycle arrest but instead triggered cell death directly by PARP overactivation and nuclear translocation of apoptosis-inducing factor (AIF). The MLH1-depleted cells showed defects in this pathway, with decreased staining for phosphorylated H2AX, altered PARP activity and reduced AIF translocation. Inhibitors of PARP, but not of caspases, blocked AIF translocation and greatly decreased short-term cell death in both WT and MLH1-depleted cells. This MLH1-dependent response to MNU was not blocked by inhibitors of ATM/ATR or p53. Conclusion: These novel data indicate an important role for MLH1 in signalling PARP-dependent cell death in response to the methylating agent MNU. PMID:19623177

  7. Alkylating agent melphalan augments the efficacy of adoptive immunotherapy using tumor-specific CD4+ T cells

    PubMed Central

    Lu, Xiaoyun; Ding, Zhi-Chun; Cao, Yang; Liu, Chufeng; Habtetsion, Tsadik; Yu, Miao; Lemos, Henrique; Salman, Huda; Xu, Hongyan; Mellor, Andrew L.; Zhou, Gang

    2014-01-01

    In recent years the immune-potentiating effects of some widely used chemotherapeutic agents have been increasingly appreciated. This provides a rationale for combining conventional chemotherapy with immunotherapy strategies to achieve durable therapeutic benefits. Previous studies have implicated the immunomodulatory effects of melphalan, an alkylating agent commonly used to treat multiple myeloma, but the underlying mechanisms remain obscure. In the current study, we investigated the impact of melphalan on endogenous immune cells as well as adoptively transferred tumor-specific CD4+ T cells in tumor-bearing mice. We showed that melphalan treatment resulted in a rapid burst of inflammatory cytokines and chemokines during the cellular recovery phase after melphalan-induced myelo-leukodepletion. After melphalan treatment, tumor cells exhibited characteristics of immunogenic cell death, including membrane translocation of the endoplasmic reticulum resident calreticulin (CRT), and extracellular release of high-mobility group box 1 (HMGB1). In addition, there was enhanced tumor antigen uptake by dendritic cells in the tumor-draining lymph node. Consistent with these immunomodulatory effects, melphalan treatment of tumor-bearing mice led to the activation of the endogenous CD8+ T cells, and more importantly, effectively drove the clonal expansion and effector differentiation of adoptively transferred tumor-specific CD4+ T cells. Notably, the combination of melphalan and CD4+ T-cell adoptive cell therapy (ACT) was more efficacious than either treatment alone in prolonging the survival of mice with advanced B-cell lymphomas or colorectal tumors. These findings provide mechanistic insights into melphalan’s immunostimulatory effects, and demonstrate the therapeutic potential of combining melphalan with adoptive cell therapy utilizing antitumor CD4+ T cells. PMID:25560408

  8. Preferential kill of hypoxic EMT6 mammary tumor cells by the bioreductive alkylating agent porfiromycin.

    PubMed

    Sartorelli, A C; Belcourt, M F; Hodnick, W F; Keyes, S R; Pritsos, C A; Rockwell, S

    1995-01-01

    Hypoxic cells in solid tumors represent a therapeutically resistant population that limits the curability of many solid tumors by irradiation and by most chemotherapeutic agents. The oxygen deficit, however, creates an environment conducive to reductive processes; this results in a major exploitable difference between normal and neoplastic tissues. The mitomycin antibiotics can be reductively activated by a number of oxidoreductases, in a process required for the production of their therapeutic effects. Preferential activation of these drugs under hypoxia and greater toxicity to oxygen-deficient cells than to their oxygenated counterparts are obtained in most instances. The demonstration that mitomycin C and porfiromycin, used to kill the hypoxic fraction, in combination with irradiation, to eradicate the oxygenated portion of the tumor, produced enhanced cytodestructive effects on solid tumors in animals has led to the clinical evaluation of the mitomycins in combination with radiation therapy in patients with head and neck cancer. The findings from these clinical trials have demonstrated the value of directing a concerted therapeutic attack on the hypoxic fraction of solid tumors as an approach toward enhancing the curability of localized neoplasms by irradiation. PMID:7572339

  9. Exposure of E. coli to DNA-Methylating Agents Impairs Biofilm Formation and Invasion of Eukaryotic Cells via Down Regulation of the N-Acetylneuraminate Lyase NanA.

    PubMed

    Di Pasquale, Pamela; Caterino, Marianna; Di Somma, Angela; Squillace, Marta; Rossi, Elio; Landini, Paolo; Iebba, Valerio; Schippa, Serena; Papa, Rosanna; Selan, Laura; Artini, Marco; Palamara, Anna Teresa; Palamara, Annateresa; Duilio, Angela

    2016-01-01

    DNA methylation damage can be induced by endogenous and exogenous chemical agents, which has led every living organism to develop suitable response strategies. We investigated protein expression profiles of Escherichia coli upon exposure to the alkylating agent methyl-methane sulfonate (MMS) by differential proteomics. Quantitative proteomic data showed a massive downregulation of enzymes belonging to the glycolytic pathway and fatty acids degradation, strongly suggesting a decrease of energy production. A strong reduction in the expression of the N-acetylneuraminate lyases (NanA) involved in the sialic acid metabolism was also observed. Using a null NanA mutant and DANA, a substrate analog acting as competitive inhibitor, we demonstrated that down regulation of NanA affects biofilm formation and adhesion properties of E. coli MV1161. Exposure to alkylating agents also decreased biofilm formation and bacterial adhesion to Caco-2 eukaryotic cell line by the adherent invasive E. coli (AIEC) strain LF82. Our data showed that methylation stress impairs E. coli adhesion properties and suggest a possible role of NanA in biofilm formation and bacteria host interactions. PMID:26904018

  10. Exposure of E. coli to DNA-Methylating Agents Impairs Biofilm Formation and Invasion of Eukaryotic Cells via Down Regulation of the N-Acetylneuraminate Lyase NanA

    PubMed Central

    Di Pasquale, Pamela; Caterino, Marianna; Di Somma, Angela; Squillace, Marta; Rossi, Elio; Landini, Paolo; Iebba, Valerio; Schippa, Serena; Papa, Rosanna; Selan, Laura; Artini, Marco; Palamara, Anna Teresa; Duilio, Angela

    2016-01-01

    DNA methylation damage can be induced by endogenous and exogenous chemical agents, which has led every living organism to develop suitable response strategies. We investigated protein expression profiles of Escherichia coli upon exposure to the alkylating agent methyl-methane sulfonate (MMS) by differential proteomics. Quantitative proteomic data showed a massive downregulation of enzymes belonging to the glycolytic pathway and fatty acids degradation, strongly suggesting a decrease of energy production. A strong reduction in the expression of the N-acetylneuraminate lyases (NanA) involved in the sialic acid metabolism was also observed. Using a null NanA mutant and DANA, a substrate analog acting as competitive inhibitor, we demonstrated that down regulation of NanA affects biofilm formation and adhesion properties of E. coli MV1161. Exposure to alkylating agents also decreased biofilm formation and bacterial adhesion to Caco-2 eukaryotic cell line by the adherent invasive E. coli (AIEC) strain LF82. Our data showed that methylation stress impairs E. coli adhesion properties and suggest a possible role of NanA in biofilm formation and bacteria host interactions. PMID:26904018

  11. Bioreductive alkylating agent porfiromycin in combination with radiation therapy for the management of squamous cell carcinoma of the head and neck.

    PubMed

    Haffty, B G; Son, Y H; Wilson, L D; Papac, R; Fischer, D; Rockwell, S; Sartorelli, A C; Ross, D; Sasaki, C T; Fischer, J J

    1997-01-01

    statistically significant differences between the two arms with respect to white blood cell count (WBC), platelet, or hemoglobin nadirs. Acute nonhematological toxicities including mucositis, epidermitis, odynophagia, and nausea have also been comparable. Two patients in this current randomized trial died during treatment, apparently of nondrug-related causes. We conclude that the bioreductive alkylating agent porfiromycin has demonstrated an acceptable toxicity profile to date. Final analysis of the phase I trial, which revealed a 5-year no evidence of disease survival rate of 32% in patients with locally advanced disease and a low probability of cure, appears encouraging. We anticipate completion of the current ongoing trial comparing mitomycin C to porfiromycin in the next 2 years. Further investigations, including large-scale multiinstitutional trials employing bioreductive alkylating agents or other hypoxic cell cytotoxins as adjuncts to RT, are warranted. PMID:9372546

  12. Methyl methacrylate as a healing agent for self-healing cementitious materials

    NASA Astrophysics Data System (ADS)

    Van Tittelboom, K.; Adesanya, K.; Dubruel, P.; Van Puyvelde, P.; De Belie, N.

    2011-12-01

    Different types of healing agents have already been tested on their efficiency for use in self-healing cementitious materials. Generally, commercial healing agents are used while their properties are adjusted for manual crack repair and not for autonomous crack healing. Consequently, the amount of regain in properties due to self-healing of cracks is limited. In this research, a methyl methacrylate (MMA)-based healing agent was developed specifically for use in self-healing cementitious materials. Various parameters were optimized including the viscosity, curing time, strength, etc. After the desired properties were obtained, the healing agent was encapsulated and screened for its self-healing efficiency. The decrease in water permeability due to autonomous crack healing using MMA as a healing agent was similar to the results obtained for manually healed cracks. First results seem promising: however, further research needs to be undertaken in order to obtain an optimal healing agent ready for use in practice.

  13. 'Remote' adiabatic photoinduced deprotonation and aggregate formation of amphiphilic N-alkyl-N-methyl-3-(pyren-1-yl)propan-1-ammonium chloride salts.

    PubMed

    Abraham, Shibu; Weiss, Richard G

    2011-11-30

    The absorption and emission properties of a series of amphiphilic N-alkyl-N-methyl-3-(pyren-1-yl)propan-1-ammonium chloride salts were investigated in solvents of different polarities and over a wide concentration range. For example, at 10(-5) M concentrations in tetrahydrofuran (THF), salts with at least one N-H bond exhibited broad, structureless emissions even though time-correlated single photon counting (TCSPC) experiments indicated negligible static or dynamic intermolecular interactions. Salts with a butylene spacer or lacking an N-H bond showed no discernible structureless emission; their emission spectra were dominated by the normal monomeric fluorescence of a pyrenyl group and the TCSPC histograms could be interpreted on the basis of intramolecular photophysics. The broad, structureless emission is attributed to an unprecedented, rapid, adiabatic proton-transfer to the medium, followed by the formation of an intramolecular exciplex consisting of amine and pyrenyl groups. The proposed mechanism involves excitation of a ground-state conformer of the salts in which the ammonium group sits over the pyrenyl ring due to electrostatic stabilization. At higher concentrations, with longer N-alkyl groups, or in selected solvents, electronic excitation of the salts led to dynamic and static excimeric emissions. For example, whereas the emission spectrum of 10(-3) M N-hexyl-N-methyl-3-(pyren-1-yl)propan-1-ammonium chloride in THF consisted of comparable amounts of monomeric and excimeric emission, the emission from 10(-5) M N-dodecyl-N-methyl-3-(pyren-1-yl)propan-1-ammonium chloride in 1:9 (v:v) ethanol/water solutions was dominated by excimeric emission, and discrete particles near micrometer size were discernible from confocal microscopy and dynamic light scattering experiments. Comparison of the static and dynamic emission characteristics of the particles and of the neat solid of N-dodecyl-N-methyl-3-(pyren-1-yl)propan-1-ammonium chloride indicate that molecular

  14. In vitro and In vivo Antitumor Activity of a Novel Alkylating Agent Melphalan-flufenamide Against Multiple Myeloma Cells

    PubMed Central

    Chauhan, Dharminder; Ray, Arghya; Viktorsson, Kristina; Spira, Jack; Paba-Prada, Claudia; Munshi, Nikhil; Richardson, Paul; Lewensohn, Rolf; Anderson, Kenneth C.

    2014-01-01

    Purpose The alkylating agent melphalan prolongs survival in multiple myeloma (MM) patients; however, it is associated with toxicities and development of drug-resistance. Here, we evaluated the efficacy of melphalan-flufenamide (Mel-flufen), a novel dipeptide prodrug of melphalan in MM. Experimental Design MM cell lines, primary patient cells, and the human MM xenograft animal model were utilized to study the antitumor activity of mel-flufen. Results Low doses of mel-flufen triggers a more rapid and higher intracellular concentrations of melphalan in MM cells than is achievable by free melphalan. Cytotoxicity analysis showed significantly lower IC50 of mel-flufen than melphalan in MM cells. Importantly, mel-flufen induces apoptosis even in melphalan-, and bortezomib-resistant MM cells. Mechanistic studies show that siRNA knockdown of aminopeptidase N, a key enzyme mediating intracellular conversion of mel-flufen to melphalan, attenuates anti-MM activity of mel-flufen. Furthermore, mel-flufen-induced apoptosis was associated with: 1) activation of caspases and PARP cleavage; 2) ROS generation; 3) mitochondrial dysfunction and release of cytochrome-c; and 4) induction of DNA damage. Moreover, mel-flufen inhibits MM cell migration and tumor-associated angiogenesis. Human MM xenograft studies showed a more potent inhibition of tumor growth in mice treated with mel-flufen than mice receiving equimolar doses of melphalan. Finally, combining mel-flufen with lenalidomide, bortezomib, or dexamethasone triggers synergistic anti-MM activity. Conclusion Our preclinical study supports clinical evaluation of mel-flufen to enhance therapeutic potential of melphalan, overcome drug-resistance, and improve MM patient outcome. PMID:23584492

  15. ESCHERICHIA COLI Gene Induction by Alkylation Treatment

    PubMed Central

    Volkert, Michael R.; Nguyen, Dinh C.; Beard, K. Christopher

    1986-01-01

    Searches for alkylation-inducible (aid) genes of Escherichia coli have been conducted by screening random fusions of the Mu-dl(ApR lac) phage for fusions showing increased β-galactosidase activity after treatment with methylating agents, but not after treatments with UV-irradiation. In this report we describe gene fusions that are specifically induced by alkylation treatments. Nine new mutants are described, and their properties are compared with the five mutants described previously. The total of 14 fusion mutants map at five distinct genetic loci. They can be further subdivided on the basis of their induction by methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). alkA, aidB and aidD are induced by both agents and appear to be regulated by ada. Neither aidC nor aidI is regulated by ada. Moreover, since aidC is induced only by MNNG and aidI is induced only by MMS, these two genes are likely to be individually regulated. Thus, there appear to be at least three different regulatory mechanisms controlling aid genes. PMID:3080354

  16. Increased sensitivity of lymphocytes from patients with systemic autoimmune diseases to DNA alkylation by the methylating carcinogen N-methyl-N-nitrosourea.

    PubMed Central

    Lawley, P D; Topper, R; Denman, A M; Hylton, W; Hill, I D; Harris, G

    1988-01-01

    Lymphocytes from patients with various diseases associated with autoimmunity showed both impaired capacity to repair O6-methylguanine (a powerful, promutagenic, directly miscoding base lesion) and increased sensitivity to the cytocidal effects of cellular methylation by N-methyl-N-nitrosourea (MNU) compared with normal controls and patients with other disorders. Defective repair of O6-methylguanine was significantly associated with arthritis and myositis in the group with systemic lupus erythematosus (SLE), and increased sensitivity to the toxic action of MNU was associated with the presence of immune complexes and the administration of steroids to patients with Behçet's syndrome. The results indicate that lymphocytes from patients with the autoimmune diseases studied are more susceptible to DNA damage with possible relevance to aetiopathogenesis. PMID:3382263

  17. Alterations in Bacillus subtilis transforming DNA induced by beta-propiolactone and 1,3-propane sultone, two mutagenic and carcinogenic alkylating agents.

    PubMed Central

    Kubinski, Z O; Kubinski, H

    1978-01-01

    than did some of the apparently smaller molecules which sedimented more slowly through the gradient. An increase in cotransformation of distant markers was evident in DNA molecules after a short exposure to an alkylating agent, but cotransformation of such markers was absent in DNA treated for longer periods. The observed changes in the transforming and cotransforming activities of the alkylated DNA can be explained by what is known about the physicochemistry of such DNA and in particular about the propensity of the alkylated and broken molecules to form complexes with themselves and with other macromolecules. PMID:102637

  18. Reactions of 4-nitro-1,2,3-triazole with alkylating agents and compounds with activated multiple bonds

    SciTech Connect

    Vereshchagin, L.I.; Kuznetsova, N.I.; Kirillova, L.P.; Shcherbakov, V.V.; Sukhanov, G.T.; Gareev, G.A.

    1987-01-01

    When 4-nitro-1,2,3-triazole is alkylated, a mixture of N1- and N2-isomers is formed, with the latter usually predominating. The same behavior is also observed in addition reactions of 4-nitrotriazole to activated multiple bonds.

  19. Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study

    PubMed Central

    Green, Daniel M; Liu, Wei; Kutteh, William H; Ke, Raymond W; Shelton, Kyla C; Sklar, Charles A; Chemaitilly, Wassim; Pui, Ching-Hon; Klosky, James L; Spunt, Sheri L; Metzger, Monika L; Srivastava, DeoKumar; Ness, Kirsten K; Robison, Leslie L; Hudson, Melissa M

    2014-01-01

    Summary Background Few data define the dose-specific relation between alkylating agent exposure and semen variables in adult survivors of childhood cancer. We undertook this study to test the hypothesis that increased exposure to alkylating agents would be associated with decreased sperm concentration in a cohort of adult male survivors of childhood cancer who were not exposed to radiation therapy for their childhood cancer. Methods We did semen analysis on 214 adult male survivors of childhood cancer (median age 7·7 years [range 0·01–20·3] at diagnosis, 29·0 years [18·4–56·1] at assessment, and a median of 21·0 years [10·5–41·6] since diagnosis) who had received alkylating agent chemotherapy but no radiation therapy. Alkylating agent exposure was estimated using the cyclophosphamide equivalent dose (CED). Odds ratios (ORs) and 95% CIs for oligospermia (sperm concentration >0 and <15 million per mL) and azoospermia were calculated with logistic regression modelling. Findings Azoospermia was noted in 53 (25%) of 214 participants, oligospermia in 59 (28%), and normospermia (sperm concentration ≥15 million per mL) in 102 (48%) participants. 31 (89%) of 35 participants who received CED less than 4000 mg/m2 were normospermic. CED was negatively correlated with sperm concentration (correlation coefficient=–0·37, p<0·0001). Mean CED was 10 830 mg/m2 (SD 7274) in patients with azoospermia, 8480 mg/m2 (4264) in patients with oligospermia, and 6626 mg/m2 (3576) in patients with normospermia. In multivariable analysis, CED was significantly associated with an increased risk per 1000 mg/m2 CED for azoospermia (OR 1·22, 95% CI 1·11–1·34), and for oligospermia (1·14, 1·04–1·25), but age at diagnosis and age at assessment were not. Interpretation Impaired spermatogenesis was unlikely when the CED was less than 4000 mg/m2. Although sperm concentration decreases with increasing CED, there was substantial overlap of CED associated with normospermia

  20. N,N'-(Hexane-1,6-diyl)bis(4-methyl-N-(oxiran-2-ylmethyl)benzenesulfonamide): Synthesis via cyclodextrin mediated N-alkylation in aqueous solution and further Prilezhaev epoxidation

    PubMed Central

    Fischer, Julian; Millan, Simon

    2013-01-01

    Summary N-alkylation of N,N'-(hexane-1,6-diyl)bis(4-methylbenzenesulfonamide) with allyl bromide and subsequent Prilezhaev reaction with m-chloroperbenzoic acid to give N,N'-(hexane-1,6-diyl)bis(4-methyl-N-(oxiran-2-ylmethyl)benzenesulfonamide) is described. This twofold alkylation was performed in aqueous solution, whereby α-, and randomly methylated β-cyclodextrin were used as adequate phase transfer catalysts and the cyclodextrin–guest complexes were characterized by 1H NMR and 2D NMR ROESY spectroscopy. Finally, the curing properties of the diepoxide with lysine-based α-amino-ε-caprolactam were analyzed by rheological measurements. PMID:24367447

  1. mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy

    PubMed Central

    Weiler, Markus; Blaes, Jonas; Pusch, Stefan; Sahm, Felix; Czabanka, Marcus; Luger, Sebastian; Bunse, Lukas; Solecki, Gergely; Eichwald, Viktoria; Jugold, Manfred; Hodecker, Sibylle; Osswald, Matthias; Meisner, Christoph; Hielscher, Thomas; Rübmann, Petra; Pfenning, Philipp-Niklas; Ronellenfitsch, Michael; Kempf, Tore; Schnölzer, Martina; Abdollahi, Amir; Lang, Florian; Bendszus, Martin; von Deimling, Andreas; Winkler, Frank; Weller, Michael; Vajkoczy, Peter; Platten, Michael; Wick, Wolfgang

    2014-01-01

    A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O6-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids. PMID:24367102

  2. Alkylating potential of oxetanes.

    PubMed

    Gómez-Bombarelli, Rafael; Palma, Bernardo Brito; Martins, Célia; Kranendonk, Michel; Rodrigues, Antonio S; Calle, Emilio; Rueff, José; Casado, Julio

    2010-07-19

    Small, highly strained heterocycles are archetypical alkylating agents (oxiranes, beta-lactones, aziridinium, and thiirinium ions). Oxetanes, which are tetragonal ethers, are higher homologues of oxiranes and reduced counterparts of beta-lactones, and would therefore be expected to be active alkylating agents. Oxetanes are widely used in the manufacture of polymers, especially in organic light-emitting diodes (OLEDs), and are present, as a substructure, in compounds such as the widely used antimitotic taxol. Whereas the results of animal tests suggest that trimethylene oxide (TMO), the parent compound, and beta,beta-dimethyloxetane (DMOX) are active carcinogens at the site of injection, no studies have explored the alkylating ability and genotoxicity of oxetanes. This work addresses the issue using a mixed methodology: a kinetic study of the alkylation reaction of 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilicity similar to that of DNA bases, by three oxetanes (TMO, DMOX, and methyloxetanemethanol), and a mutagenicity, genotoxicity, and cell viability study (Salmonella microsome test, BTC E. coli test, alkaline comet assay, and MTT assay). The results suggest either that oxetanes lack genotoxic capacity or that their mode of action is very different from that of epoxides and beta-lactones. PMID:20550097

  3. A STUDY OF FUNDAMENTAL REACTION PATHWAYS FOR TRANSITION METAL ALKYL COMPLEXES. I. THE REACTION OF A NICKEL METHYL COMPLEX WITH ALKYNES. II. THE MECHANISM OF ALDEHYDE FORMATION IN THE REACTION OF A MOLYBDENUM HYDRIDE WITH MOLYBDENUM ALKYLS

    SciTech Connect

    Huggins, John Mitchell

    1980-06-01

    I. This study reports the rapid reaction under mild conditions of internal or terminal alkynes with methyl (acetyl~ acetonato) (triphenylphosphine) nickel (1) in either aromatic or ether solvents. In all cases vinylnickel products 2 are formed by insertion of the alkyne into the nickel=methyl bond. These complexes may be converted into a variety of organic products (e.g. alkenes, esters, vinyl halides) by treatment with appropriate reagents. Unsymmetrical alkynes give selectively the one regioisomer with the sterically largest substituent next to the nickel atom. In order to investigate the stereochemistry of the initial insertion, a x-ray diffraction study of the reaction of 1 with diphenylacetylene was carried out. This showed that the vinylnickel complex formed by overall trans insertion was the product of the reaction. Furthermore, subsequent slow isomerization of this complex, to a mixture of it and the corresponding cis isomer, demonstrated that this trans addition product is the kinetic product of the reaction. In studies with other alkynes, the product of trans addition was not always exclusively (or even predominantly) formed, but the ratio of the stereoisomers formed kinetically was substantially different from the thermodynamic ratio. Isotope labeling, added phosphine, and other experiments have allowed us to conclude that the mechanism of this reaction does involve initial cis addition. However, a coordinatively unsaturated vinylnickel complex is initially formed which can undergo rapid, phosphine-catalyzed cis-trans isomerization in competition with its conversion to the isolable phosphine-substituted kinetic reaction products. II. The reaction of CpMo(CO){sub 3}H (1a) with CpMo(CO){sub 3}R (2, R= CH{sub 3}, C{sub 2}H{sub 5}) at 50{degrees} C in THF gives the aldehyde RCHO and the dimers [CpMo(CO){sub 3}]{sub 2} (3a) and [CpMo(CO){sub 2}]{sub 2} (4a). Labeling one of the reactants with a methylcyclopentadienyl ligand it was possible to show that the

  4. Why Do Enolate Anions Favor O-Alkylation over C-Alkylation in the Gas Phase? The Roles of Resonance and Inductive Effects in the Gas-Phase SN2 Reaction between the Acetaldehyde Enolate Anion and Methyl Fluoride.

    PubMed

    Seitz, Christian G; Zhang, Huaiyu; Mo, Yirong; Karty, Joel M

    2016-05-01

    Contributions by resonance and inductive effects toward the net activation barrier were determined computationally for the gas-phase SN2 reaction between the acetaldehyde enolate anion and methyl fluoride, for both O-methylation and C-methylation, in order to understand why this reaction favors O-methylation. With the use of the vinylogue extrapolation methodology, resonance effects were determined to contribute toward increasing the size of the barrier by about 9.5 kcal/mol for O-methylation and by about 21.2 kcal/mol for C-methylation. Inductive effects were determined to contribute toward increasing the size of the barrier by about 1.7 kcal/mol for O-methylation and 4.2 kcal/mol for C-methylation. Employing our block-localized wave function methodology, we determined the contributions by resonance to be 12.8 kcal/mol for O-methylation and 22.3 kcal/mol for C-methylation. Thus, whereas inductive effects have significant contributions, resonance is the dominant factor that leads to O-methylation being favored. More specifically, resonance serves to increase the size the barrier for C-methylation significantly more than it does for O-methylation. PMID:27011344

  5. Characterization of potential NMDA and cholecystokinin antagonists. II. Lipophilicity studies on 2-methyl-4-oxo-3H-quinazoline-3-alkyl-carboxylic acid derivatives.

    PubMed

    Almási, J; Takács-Novák, K; Kökösi, J; Vámos, J

    1999-03-25

    The lipophilicity of 17 newly synthesized potential NMDA and cholecystokinin antagonist 2-methyl-4-oxo-3H-quinazoline-3-alkyl-carboxylic acid derivatives has been investigated. The apparent partition coefficients of two amphoteric compounds of overlapping protonation (Q1 and Q2) were determined by shake-flask method and converted into true log P values using the protonation microconstants. The difference between their lipophilicity expressed with the true partition coefficients was less, than it could be expected from the 2D structures and was explained with conformational preferences and formation of intramolecular interactions. Out of the other 15 monoprotic quinazolone compounds the lipophilicity of ten molecules (Q8-Q17, experimental set) was determined by TLC method with the help of a calibration set consisting of 12 standard molecules, five quinazolones (Q3-Q7) and seven pyrido[1,2-a]pyrimidines (PP1-PP7). In order to justify the suitability of pyrido-pyrimidines as standards for the chromatographic log P determination of quinazolones, first Q3-Q7 were examined by TLC and HPLC using PP1-PP7 for calibration. Data showed good agreement of results obtained by shake-flask and two different chromatographic methods indicating the similar chromatographic behavior of the two bicyclic systems and the relevance of PP1-PP7 to extend the calibration set of quinazolones. The obtained log P values proved mostly the expected structure-activity relationships. Some findings, however, have revealed specific partition behavior of the compounds providing useful information in the estimation of their pharmacokinetics, and these are discussed in the paper. PMID:10089287

  6. Quantitative comparison of carcinogenicity, mutagenicity and electrophilicity of 10 direct-acting alkylating agents and of the initial O6:7-alkylguanine ratio in DNA with carcinogenic potency in rodents.

    PubMed

    Bartsch, H; Terracini, B; Malaveille, C; Tomatis, L; Wahrendorf, J; Brun, G; Dodet, B

    1983-08-01

    The quantitative relationship between carcinogenicity in rodents and mutagenicity in Salmonella typhimurium was examined, by using 10 monofunctional alkylating agents, including N-nitrosamides, alkyl methanesulfonates, epoxides, beta-propiolactone and 1,3-propane sultone. The compounds were assayed for mutagenicity in two S. typhimurium strains (TA1535 and TA100) and in plate and liquid assays. The mutagenic activity of the agents was compared with their alkylating activity towards 4-(4'-nitrobenzyl)pyridine and with their half-lives (solvolysis constants) in an aqueous medium. No correlations between these variables were found, nor was mutagenic activity correlated with estimates of carcinogenicity in rodents. There was a positive relationship between carcinogenicity and the initial ratios of 7-:O6-alkylguanine formed or expected after their reaction with double-stranded DNA in vitro. The results suggest that alkylation of guanine at position O6 (or at other O atoms of DNA bases) may be a critical DNA-base modification that determines the overall carcinogenicity of these alkylating agents in rodents. PMID:6348521

  7. Polyimides with pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1982-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  8. A role for Saccharomyces cerevisiae Tpa1 protein in direct alkylation repair.

    PubMed

    Shivange, Gururaj; Kodipelli, Naveena; Monisha, Mohan; Anindya, Roy

    2014-12-26

    Alkylating agents induce cytotoxic DNA base adducts. In this work, we provide evidence to suggest, for the first time, that Saccharomyces cerevisiae Tpa1 protein is involved in DNA alkylation repair. Little is known about Tpa1 as a repair protein beyond the initial observation from a high-throughput analysis indicating that deletion of TPA1 causes methyl methane sulfonate sensitivity in S. cerevisiae. Using purified Tpa1, we demonstrate that Tpa1 repairs both single- and double-stranded methylated DNA. Tpa1 is a member of the Fe(II) and 2-oxoglutarate-dependent dioxygenase family, and we show that mutation of the amino acid residues involved in cofactor binding abolishes the Tpa1 DNA repair activity. Deletion of TPA1 along with the base excision repair pathway DNA glycosylase MAG1 renders the tpa1Δmag1Δ double mutant highly susceptible to methylation-induced toxicity. We further demonstrate that the trans-lesion synthesis DNA polymerase Polζ (REV3) plays a key role in tolerating DNA methyl-base lesions and that tpa1Δmag1revΔ3 triple mutant is extremely susceptible to methylation-induced toxicity. Our results indicate a synergism between the base excision repair pathway and direct alkylation repair by Tpa1 in S. cerevisiae. We conclude that Tpa1 is a hitherto unidentified DNA repair protein in yeast and that it plays a crucial role in reverting alkylated DNA base lesions and cytotoxicity. PMID:25381260

  9. A Role for Saccharomyces cerevisiae Tpa1 Protein in Direct Alkylation Repair*

    PubMed Central

    Shivange, Gururaj; Kodipelli, Naveena; Monisha, Mohan; Anindya, Roy

    2014-01-01

    Alkylating agents induce cytotoxic DNA base adducts. In this work, we provide evidence to suggest, for the first time, that Saccharomyces cerevisiae Tpa1 protein is involved in DNA alkylation repair. Little is known about Tpa1 as a repair protein beyond the initial observation from a high-throughput analysis indicating that deletion of TPA1 causes methyl methane sulfonate sensitivity in S. cerevisiae. Using purified Tpa1, we demonstrate that Tpa1 repairs both single- and double-stranded methylated DNA. Tpa1 is a member of the Fe(II) and 2-oxoglutarate-dependent dioxygenase family, and we show that mutation of the amino acid residues involved in cofactor binding abolishes the Tpa1 DNA repair activity. Deletion of TPA1 along with the base excision repair pathway DNA glycosylase MAG1 renders the tpa1Δmag1Δ double mutant highly susceptible to methylation-induced toxicity. We further demonstrate that the trans-lesion synthesis DNA polymerase Polζ (REV3) plays a key role in tolerating DNA methyl-base lesions and that tpa1Δmag1revΔ3 triple mutant is extremely susceptible to methylation-induced toxicity. Our results indicate a synergism between the base excision repair pathway and direct alkylation repair by Tpa1 in S. cerevisiae. We conclude that Tpa1 is a hitherto unidentified DNA repair protein in yeast and that it plays a crucial role in reverting alkylated DNA base lesions and cytotoxicity. PMID:25381260

  10. Aryl-Alkyl-Lysines: Agents That Kill Planktonic Cells, Persister Cells, Biofilms of MRSA and Protect Mice from Skin-Infection

    PubMed Central

    Ghosh, Chandradhish; Manjunath, Goutham B.; Konai, Mohini M.; Uppu, Divakara S. S. M.; Hoque, Jiaul; Paramanandham, Krishnamoorthy; Shome, Bibek R.; Haldar, Jayanta

    2015-01-01

    Development of synthetic strategies to combat Staphylococcal infections, especially those caused by methicillin resistant Staphyloccus aureus (MRSA), needs immediate attention. In this manuscript we report the ability of aryl-alkyl-lysines, simple membrane active small molecules, to treat infections caused by planktonic cells, persister cells and biofilms of MRSA. A representative compound, NCK-10, did not induce development of resistance in planktonic cells in multiple passages and retained activity in varying environments of pH and salinity. At low concentrations the compound was able to depolarize and permeabilize the membranes of S. aureus persister cells rapidly. Treatment with the compound not only eradicated pre-formed MRSA biofilms, but also brought down viable counts in bacterial biofilms. In a murine model of MRSA skin infection, the compound was more effective than fusidic acid in bringing down the bacterial burden. Overall, this class of molecules bears potential as antibacterial agents against skin-infections. PMID:26669634

  11. In vitro study of cytotoxicity by U. V. radiation and differential sensitivity in combination with alkylating agents on established cell systems

    SciTech Connect

    Ramudu, K. )

    1991-01-01

    The effect of U.V. radiation or alkylating agents, such as actinomycin-D, cycloheximide and mitomycin-C (MMC), was studied on CHO, BHK and HeLa cells. U.V. radiation caused DNA ssb and dsb and were prevented by cycloheximide and actinomycin-D. MMC is known to be cytotoxic in CHO/BHK cells by forming free radical generation. MMC in combination with U.V. radiation enhanced DNA ssb dsb in these cell types. However, HeLa cells were insensitive to U.V. radiation. This insensitivity to U.V. radiation could be ascribed to the presence of glutathione transferase which is absent in CHO/BHK cell line.

  12. Rhodium-Catalyzed Ketone Methylation Using Methanol Under Mild Conditions: Formation of α-Branched Products**

    PubMed Central

    Chan, Louis K M; Poole, Darren L; Shen, Di; Healy, Mark P; Donohoe, Timothy J

    2014-01-01

    The rhodium-catalyzed methylation of ketones has been accomplished using methanol as the methylating agent and the hydrogen-borrowing method. The sequence is notable for the relatively low temperatures that are required and for the ability of the reaction system to form α-branched products with ease. Doubly alkylated ketones can be prepared from methyl ketones and two different alcohols by using a sequential one-pot iridium- and rhodium-catalyzed process. PMID:24288297

  13. Alkylation and acylation of cyclotriphosphazenes.

    PubMed

    Benson, Mark A; Zacchini, Stefano; Boomishankar, Ramamoorthy; Chan, Yuri; Steiner, Alexander

    2007-08-20

    Phosphazenes (RNH)6P3N3 (R = n-propyl, isobutyl, isopropyl, cyclohexyl, tert-butyl, benzyl) are readily alkylated at ring N sites by alkyl halides forming N-alkyl phosphazenium cations. Alkylation of two ring N sites occurred after prolonged heating in the presence of methyl iodide or immediately at room temperature with methyl triflate yielding N,N'-dimethyl phosphazenium dications. Geminal dichloro derivatives Cl2(RNH)4P3N3 are methylated by methyl iodide at the ring N site adjacent to both P centers carrying four RNH groups. X-ray crystal structures showed that the alkylation of ring N sites leads to substantial elongation of the associated P-N bonds. Both N-alkyl and N,N'-dialkyl phosphazenium salts form complex supramolecular networks in the solid state via NH...X interactions. Systems carrying less-bulky RNH groups show additional NH...N bonds between N-alkyl phosphazenium ions. N-Alkyl phosphazenium halides form complexes with silver ions upon treatment with silver nitrate. Depending on the steric demand of RNH substituents, either one or both of the vacant ring N sites engage in coordination to silver ions. Treatment of (RNH)6P3N3 (R = isopropyl) with acetyl chloride and benzoyl chloride, respectively, yielded N-acyl phosphazenium ions. X-ray crystal structures revealed that elongation of P-N bonds adjacent to the acylated ring N site is more pronounced than it is in the case of N-alkylated species. Salts containing N-alkyl phosphazenium ions are stable toward water and other mild nucleophiles, while N,N'-dialkyl and N-acyl phosphazenium salts are readily hydrolyzed. The reaction of (RNH)6P3N3 with bromoacetic acid led to N-alkylation at one ring N site in addition to formation of an amide via condensation of an adjacent RNH substituent with the carboxylic acid group. The resulting bromide salt contains mono cations of composition (RNH)5P3N3CH2CONR in which a CH2-C(O) unit is embedded between a ring N and an exocyclic N site of the phosphazene. PMID

  14. Spiro-fused carbohydrate oxazoline ligands: Synthesis and application as enantio-discrimination agents in asymmetric allylic alkylation.

    PubMed

    Kraft, Jochen; Golkowski, Martin; Ziegler, Thomas

    2016-01-01

    In the present work, we describe a convenient synthesis of spiro-fused D-fructo- and D-psico-configurated oxazoline ligands and their application in asymmetric catalysis. The ligands were synthesized from readily available 3,4,5-tri-O-benzyl-1,2-O-isopropylidene-β-D-fructopyranose and 3,4,5-tri-O-benzyl-1,2-O-isopropylidene-β-D-psicopyranose, respectively. The latter compounds were partially deprotected under acidic conditions followed by condensation with thiocyanic acid to give an anomeric mixture of the corresponding 1,3-oxazolidine-2-thiones. The anomeric 1,3-oxazolidine-2-thiones were separated after successive benzylation, fully characterized and subjected to palladium catalyzed Suzuki-Miyaura coupling with 2-pyridineboronic acid N-phenyldiethanolamine ester to give the corresponding 2-pyridyl spiro-oxazoline (PyOx) ligands. The spiro-oxazoline ligands showed high asymmetric induction (up to 93% ee) when applied as chiral ligands in palladium-catalyzed allylic alkylation of 1,3-diphenylallyl acetate with dimethyl malonate. The D-fructo-PyOx ligand provided mainly the (R)-enantiomer while the D-psico-configurated ligand gave the (S)-enantiomer with a lower enantiomeric excess. PMID:26877819

  15. Spiro-fused carbohydrate oxazoline ligands: Synthesis and application as enantio-discrimination agents in asymmetric allylic alkylation

    PubMed Central

    Kraft, Jochen; Golkowski, Martin

    2016-01-01

    Summary In the present work, we describe a convenient synthesis of spiro-fused D-fructo- and D-psico-configurated oxazoline ligands and their application in asymmetric catalysis. The ligands were synthesized from readily available 3,4,5-tri-O-benzyl-1,2-O-isopropylidene-β-D-fructopyranose and 3,4,5-tri-O-benzyl-1,2-O-isopropylidene-β-D-psicopyranose, respectively. The latter compounds were partially deprotected under acidic conditions followed by condensation with thiocyanic acid to give an anomeric mixture of the corresponding 1,3-oxazolidine-2-thiones. The anomeric 1,3-oxazolidine-2-thiones were separated after successive benzylation, fully characterized and subjected to palladium catalyzed Suzuki–Miyaura coupling with 2-pyridineboronic acid N-phenyldiethanolamine ester to give the corresponding 2-pyridyl spiro-oxazoline (PyOx) ligands. The spiro-oxazoline ligands showed high asymmetric induction (up to 93% ee) when applied as chiral ligands in palladium-catalyzed allylic alkylation of 1,3-diphenylallyl acetate with dimethyl malonate. The D-fructo-PyOx ligand provided mainly the (R)-enantiomer while the D-psico-configurated ligand gave the (S)-enantiomer with a lower enantiomeric excess. PMID:26877819

  16. Hot foam for weed control-Do alkyl polyglucoside surfactants used as foaming agents affect the mobility of organic contaminants in soil?

    PubMed

    Cederlund, H; Börjesson, E

    2016-08-15

    Use of alkyl polyglucosides (APGs) as a foaming agent during hot water weed control may influence the environmental fate of organic contaminants in soil. We studied the effects of the APG-based foaming agent NCC Spuma (C8-C10) on leaching of diuron, glyphosate, and polycyclic aromatic hydrocarbons (PAHs) in sand columns. We also examined how APG concentration affected the apparent water solubility and adsorption of the herbicides and of the PAHs acenaphthene, acenaphthylene and fluorene. Application of APGs at the recommended concentration of 0.3% did not significantly affect leaching of any of the compounds studied. However, at a concentration of 1.5%, leaching of both diuron and glyphosate was significantly increased. The increased leaching corresponded to an increase in apparent water solubility of diuron and a decrease in glyphosate adsorption to the sand. However, APG addition did not significantly affect the mobility of PAHs even though their apparent water solubility was increased. These results suggest that application of APG-based foam during hot water weed control does not significantly affect the mobility of organic contaminants in soil if used according to recommendations. Moreover, they suggest that APGs could be useful for soil bioremediation purposes if higher concentrations are used. PMID:27149400

  17. Potential use of Folate-appended Methyl-β-Cyclodextrin as an Anticancer Agent

    PubMed Central

    Onodera, Risako; Motoyama, Keiichi; Okamatsu, Ayaka; Higashi, Taishi; Arima, Hidetoshi

    2013-01-01

    To obtain a tumor cell-selectivity of methyl-β-cyclodextrin (M-β-CyD), we newly synthesized folate-appended M-β-CyD (FA-M-β-CyD), and evaluated the potential of FA-M-β-CyD as a novel anticancer agent in vitro and in vivo. Potent antitumor activity and cellular association of FA-M-β-CyD were higher than those of M-β-CyD in KB cells, folate receptor (FR)-positive cells. FA-M-β-CyD drastically inhibited the tumor growth after intratumoral or intravenous injection to FR-positive Colon-26 cells-bearing mice. The antitumor activity of FA-M-β-CyD was comparable and superior to that of doxorubicin after both intratumoral and intravenous administrations, respectively, at the same dose, in the tumor-bearing mice. All of the tumor-bearing mice after an intravenous injection of FA-M-β-CyD survived for at least more than 140 days. Importantly, an intravenous administration of FA-M-β-CyD to tumor-bearing mice did not show any significant change in blood chemistry values. These results strongly suggest that FA-M-β-CyD has the potential as a novel anticancer agent. PMID:23346361

  18. Toward Hypoxia-Selective DNA-Alkylating Agents Built by Grafting Nitrogen Mustards onto the Bioreductively Activated, Hypoxia-Selective DNA-Oxidizing Agent 3-Amino-1,2,4-benzotriazine 1,4-Dioxide (Tirapazamine)

    PubMed Central

    2015-01-01

    Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) is a heterocyclic di-N-oxide that undergoes enzymatic deoxygenation selectively in the oxygen-poor (hypoxic) cells found in solid tumors to generate a mono-N-oxide metabolite. This work explored the idea that the electronic changes resulting from the metabolic deoxygenation of tirapazamine analogues might be exploited to activate a DNA-alkylating species selectively in hypoxic tissue. Toward this end, tirapazamine analogues bearing nitrogen mustard units were prepared. In the case of the tirapazamine analogue 18a bearing a nitrogen mustard unit at the 6-position, it was found that removal of the 4-oxide from the parent di-N-oxide to generate the mono-N-oxide analogue 17a did indeed cause a substantial increase in reactivity of the mustard unit, as measured by hydrolysis rates and DNA-alkylation yields. Hammett sigma values were measured to quantitatively assess the magnitude of the electronic changes induced by metabolic deoxygenation of the 3-amino-1,2,4-benzotriazine 1,4-dioxide heterocycle. The results provide evidence that the 1,2,4-benzotiazine 1,4-dioxide unit can serve as an oxygen-sensing prodrug platform for the selective unmasking of bioactive agents in hypoxic cells. PMID:25029663

  19. Gadolinium(III) Complexes with N-Alkyl-N-methylglucamine Surfactants Incorporated into Liposomes as Potential MRI Contrast Agents

    PubMed Central

    Silva, Simone Rodrigues; Duarte, Érica Correia; Ramos, Guilherme Santos; Kock, Flávio Vinícius Crizóstomo; Andrade, Fabiana Diuk; Frézard, Frédéric; Colnago, Luiz Alberto; Demicheli, Cynthia

    2015-01-01

    Complexes of gadolinium(III) with N-octanoyl-N-methylglucamine (L8) and N-decanoyl-N-methylglucamine (L10) with 1 : 2 stoichiometry were synthesized and characterized by elemental analysis, electrospray ionization-tandem mass spectrometry (ESI-MS), infrared (IR) spectroscopy, and molar conductivity measurements. The transverse (r2) and longitudinal (r1) relaxivity protons were measured at 20 MHz and compared with those of the commercial contrasts. These complexes were incorporated in liposomes, resulting in the increase of the vesicle zeta potential. Both the free and liposome-incorporated gadolinium complexes showed high relaxation effectiveness, compared to commercial contrast agent gadopentetate dimeglumine (Magnevist). The high relaxivity of these complexes was attributed to the molecular rotation that occurs more slowly, because of the elevated molecular weight and incorporation in liposomes. The results establish that these paramagnetic complexes are highly potent contrast agents, making them excellent candidates for various applications in molecular MR imaging. PMID:26347596

  20. Porfiromycin as a bioreductive alkylating agent with selective toxicity to hypoxic EMT6 tumor cells in vivo and in vitro.

    PubMed

    Keyes, S R; Rockwell, S; Sartorelli, A C

    1985-08-01

    Hypoxic cells may limit the curability of solid tumors by conventional chemotherapeutic agents and radiotherapy. Agents which are preferentially toxic to cells with low oxygen contents could therefore be useful as adjuncts to the regimens now used to treat these cancers. To date, the best agent of this type that we have tested is porfiromycin. Porfiromycin is similar to mitomycin C in its toxicity to hypoxic EMT6 cells in vitro but has much less toxicity than mitomycin C to well-oxygenated EMT6 cells. EMT6 cell sonicates reduce mitomycin C and porfiromycin to reactive electrophiles at similar rates under hypoxic conditions, a finding that correlates with cytotoxicity, whereas the rate of production of reactive species from both drugs is very slow under aerobic conditions. We also show that porfiromycin is capable of killing hypoxic radiation-resistant cells in solid EMT6 tumors. Appropriate regimens combining porfiromycin (which preferentially kills hypoxic cells) and radiation (which preferentially kills aerated cells) may therefore be especially efficacious for the treatment of solid tumors. PMID:3926306

  1. Design, synthesis and pharmacological evaluation of N-[4-(4-(alkyl/aryl/heteroaryl)-piperazin-1-yl)-phenyl]-carbamic acid ethyl ester derivatives as novel anticonvulsant agents.

    PubMed

    Kumari, Shikha; Mishra, Chandra Bhushan; Tiwari, Manisha

    2015-03-01

    A series of alkyl/aryl/heteroaryl piperazine derivatives (37-54) were designed and synthesized as potential anticonvulsant agents. The target compounds are endowed with satisfactory physicochemical as well as pharmacokinetic properties. The synthesized compounds were screened for their in vivo anticonvulsant activity in maximal electroshock (MES) and subcutaneous pentylenetetrazole (sc-PTZ) seizure tests. Further, neurotoxicity evaluation was carried out using rotarod method. Structure activity relationship studies showed that compounds possessing aromatic group at the piperazine ring displayed potent anticonvulsant activity. Majority of the compounds showed anti-MES activity whereas compounds 39, 41, 42, 43, 44, 50, 52, and 53 exhibited anticonvulsant activity in both seizure tests. All the compounds except 42, 46, 47, and 50 did not show neurotoxicity. The most active derivative, 45 demonstrated potent anticonvulsant activity in MES test at the dose of 30mg/kg (0.5h) and 100mg/kg (4h) and also delivered excellent protection in sc-PTZ test (100mg/kg) at both time intervals. Therefore, compound 45 was further assessed in PTZ-kindling model of epilepsy which is widely used model for studying epileptogenesis. This compound was effective in delaying onset of PTZ-evoked seizures at the dose of 5mg/kg in kindled animals and significantly reduced oxidative stress better than standard drug phenobarbital (PB). In result, compound 45 emerged as a most potent and safer anticonvulsant lead molecule. PMID:25619635

  2. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  3. Modification of the metabolism and cytotoxicity of bioreductive alkylating agents by dicoumarol in aerobic and hypoxic murine tumor cells.

    PubMed

    Keyes, S R; Rockwell, S; Sartorelli, A C

    1989-06-15

    We have demonstrated previously that dicoumarol (DIC) increased the generation of reactive metabolites from mitomycin C (MC) in EMT6 cells under hypoxic conditions in vitro. This increased reaction rate was associated with an increased toxicity of MC to hypoxic EMT6 cells. In contrast, aerobic cells treated with DIC in vitro were protected from MC toxicity. We now demonstrate that DIC sensitizes EMT6 cells to two MC analogues, porfiromycin (POR) and the 7-N-dimethylaminomethylene analogue of mitomycin C (BMY-25282), in hypoxia and protects cells from these agents in air, despite the fact that POR is preferentially toxic to hypoxic cells and BMY-25282 is preferentially toxic to aerobic cells. In contrast, DIC increases menadione cytotoxicity in both air and hypoxia and has no effect on the cytotoxicity of Adriamycin. We have also shown previously that the preferential toxicity of POR to hypoxic cells is associated with an increased rate of drug uptake. In the present study, DIC had no measurable effect on the uptake of [3H]POR but increased the extent of efflux of this agent. MC-induced DNA cross-links, which have been proposed as the lesions responsible for the lethality of MC, are decreased by DIC in air and increased by DIC in hypoxia, in concert with the observed modifications of MC cytotoxicity by DIC. However, in aerobic cells treated with DIC and MC, the decrease in DNA interstrand cross-links is not directly associated with a decrease in cytotoxicity. L1210 cells, which have no measurable quinone reductase activity, demonstrate increased toxicity when treated with DIC and MC in hypoxia, as observed with EMT6 cells. Unlike EMT6 cells, however, L1210 cells are not protected by DIC from MC toxicity in air. Taken together, these findings suggest that DIC is altering the intracellular metabolism of MC and that quinone reductase or another, unidentified, enzyme sensitive to DIC may be involved in activating MC to a toxic product in aerobic EMT6 cells. PMID:2470504

  4. Safety assessment of Salicylic Acid, Butyloctyl Salicylate, Calcium Salicylate, C12-15 Alkyl Salicylate, Capryloyl Salicylic Acid, Hexyldodecyl Salicylate, Isocetyl Salicylate, Isodecyl Salicylate, Magnesium Salicylate, MEA-Salicylate, Ethylhexyl Salicylate, Potassium Salicylate, Methyl Salicylate, Myristyl Salicylate, Sodium Salicylate, TEA-Salicylate, and Tridecyl Salicylate.

    PubMed

    2003-01-01

    Salicylic Acid is an aromatic acid used in cosmetic formulations as a denaturant, hair-conditioning agent, and skin-conditioning agent--miscellaneous in a wide range of cosmetic products at concentrations ranging from 0.0008% to 3%. The Calcium, Magnesium, and MEA salts are preservatives, and Potassium Salicylate is a cosmetic biocide and preservative, not currently in use. Sodium Salicylate is used as a denaturant and preservative (0.09% to 2%). The TEA salt of Salicylic Acid is used as an ultraviolet (UV) light absorber (0.0001% to 0.75%). Several Salicylic Acid esters are used as skin conditioning agents--miscellaneous (Capryloyl, 0.1% to 1%; C12-15 Alkyl, no current use; Isocetyl, 3% to 5%; Isodecyl, no current use; and Tridecyl, no current use). Butyloctyl Salicylate (0.5% to 5%) and Hexyldodecyl Salicylate (no current use) are hair-conditioning agents and skin-conditioning agents--miscellaneous. Ethylhexyl Salicylate (formerly known as Octyl Salicylate) is used as a fragrance ingredient, sunscreen agent, and UV light absorber (0.001% to 8%), and Methyl Salicylate is used as a denaturant and flavoring agent (0.0001% to 0.6%). Myristyl Salicylate has no reported function. Isodecyl Salicylate is used in three formulations, but no concentration of use information was reported. Salicylates are absorbed percutaneously. Around 10% of applied salicylates can remain in the skin. Salicylic Acid is reported to enhance percutaneous penetration of some agents (e.g., vitamin A), but not others (e.g., hydrocortisone). Little acute toxicity (LD(50) in rats; >2 g/kg) via a dermal exposure route is seen for Salicylic Acid, Methyl Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate. Short-term oral, inhalation, and parenteral exposures to salicylates sufficient to produce high blood concentrations are associated primarily with liver and kidney damage. Subchronic dermal exposures to undiluted Methyl Salicylate were associated with kidney damage. Chronic oral exposure to

  5. Mutagenic and alkylating activities of 3-methyl-1-phenyltriazenes and their possible role as carcinogenic metabolites of the parent dimethyl compounds.

    PubMed

    Malaveille, C; Brun, G; Kolar, G; Bartsch, H

    1982-04-01

    3-Methyl-1-phenyltriazene and a series of ring-substituted derivatives (4-methylphenyl, 4-chlorophenyl, and 2,4,6-trichlorophenyl), structurally related benzenediazonium fluoborates and phenyl azides, as well as the recently isolated [1-methyl-3-(2,4,6-trichlorophenyl)-2-triazeno]methyl-beta-D-glucopyranoside uronic acid, were studied for their mutagenic activity in Salmonella typhimurium strains. Of these compounds, the 3-methyl-1-phenyltriazene derivatives and 2,4,6-trichlorobenzenediazonium fluoborate were found to be direct-acting mutagens; the glucuronide was active in strain TA 1530 only after deconjugation with beta-glucuronidase. The half-lives of the monomethylphenyltriazenes in vitro were determined and compared with their methylating activity towards 4-(4-nitrobenzyl)pyridine and their mutagenicity. The results are discussed in relation to the possible mechanism of action of the N,N-dimethylphenyltriazenes and their monomethyl derivatives as mutagens and organ-specific carcinogens. PMID:7060018

  6. Inhibition of excision-repair of ultraviolet damage in human cells by exposure to methyl methanesulfonate.

    PubMed

    Park, S D; Choi, K H; Hong, S W; Cleaver, J E

    1981-07-01

    Unscheduled DNA synthesis and excision of pyrimidine dimers in human cells exposed to ultraviolet let were inhibited by exposure to methyl methanesulfonate (MMS, 1-2 mM), but repair of MMS damage was not inhibited by UV light. Because the pathways for excision of pyrimidine dimers and alkylation damage have previously been shown to be different, this observation implies a direct effect of alkylation on repair enzymes. We estimate that if inhibition is due to protein alkylation, the UV repair system must present an extremely large target to alkylation and may involve a complex of protein subunits in the order of 1 million daltons such that 1 or more alkylations occur per complex at the concentrations used. These results also indicate that the method of exposing cells to 2 DNA-damaging agents to determine whether they are repaired by common or different pathways can be quite unreliable because of other effects on the repair systems themselves. PMID:7196494

  7. EG-15THE METHYLATION STATUS OF MGMT IN MEDULLOBLASTOMA

    PubMed Central

    Shimizu, Yuzaburo; Kurimoto, Tomoko; Kondo, Akihide; Arai, Hajime

    2014-01-01

    BACKGROUND: Medulloblastoma is a highly malignant brain tumor in childhood. Some studies reported that alkylating chemotherapeutic drugs are effective agents in the treatment of patients with medulloblastoma. O6-methylguanine-DNA methyltransferase (MGMT) is one of the DNA repair enzymes and plays a significant role in tumor resistance to alkylating agents. Low MGMT expression or MGMT promoter methylation have been found to be associated with favorable outcomes in malignant glioma patients treated with alkylating agents such as temozolomide. However, impact of MGMT status on clinical outcomes in medulloblastoma patients is not fully evaluated. OBJECTIVE: The objective of this study is to investigate the association between MGMT status and the response for chemotherapy in pediatric patients with medulloblastoma. METHODS: Patients with medulloblastoma treated at our institution between 1995 and 2012 were reviewed retrospectively. Relevant clinical information including current disease status, tumor response to chemotherapy was obtained from the hospital charts. To evaluate the MGMT status, we performed bisulfite sequencing analysis to determine the methylation status of the MGMT promoter. RESULTS: Tumor material and detailed clinical information were available in 22 patients. Of them, 13 patients were alive (11 in CR), seven died of disease and two were lost to follow up. Five patients were with dissemination at diagnosis. We succeeded to evaluate both the MGMT status of tumors and the number of methylation sites in MGMT promoter. CONCLUSIONS: We studied the prognostic value of MGMT promoter methylation in medulloblastoma children.

  8. N-(/sup 11/C)-methyl-p-substituted phentermine analogs as potential brain blood flow agents for positron tomography

    SciTech Connect

    Kizuka, H.; Elmaleh, D.R.; Boudreaux, G.J.; Anderton, K.D.; Strauss, H.W.; Ackerman, R.H.; Brownell, G.L.

    1984-01-01

    The addition of a methyl group to the ..cap alpha..-position of amphetamine increases both the lipophilicity of the agent and its resistance to metabolism by monoamine oxidase. In addition, since tritium substituted phenteramine analog studies suggested that the p-halo phentermines had a greater concentration in the brain and prolonged retention time, the authors evaluated the biological behavior of positron labeled ..cap alpha..-methylamphetamine (phenteramine) in rats, dogs and monkeys. The N-(/sup 11/C) methyl analogs of p-chloro (I) and p-fluoro (II) phentermines were prepared by methylation of their primary amines using /sup 11/Ch/sub 3/I. Biodistribution studies in rats shows brain uptake is in the range of 1% dose/gr at 5 and 15 min for both agents. The activity in blood and eyes is low. Sequential images of the dogs' brain over 1 hour revealed a clearance of <15%. Images of the monkey brain were also obtained using a MGH positron camera PCR-I.

  9. Mass spectrometry of analytical derivatives. 1. Cyanide cations in the spectra of N- alkyl-N-perfluoroacyl- α-amino acids and their methyl esters.

    PubMed

    Todua, Nino G; Tretyakov, Kirill V; Mikaia, Anzor I

    2015-01-01

    The central mission for the development of the National Institute of Standards and Technology/National Institutes of Health/Environmental Protection Agency Mass Spectral Library is the acquisition of reference gas chromatography-mass spectrometry data for important compounds and their chemical modification products. The addition of reliable reference data of various derivatives of amino acids to The Library, and the study of their behavior under electron ionization conditions may be useful for their identification, structure elucidation and a better understanding of the data obtained when the same derivatives are subjected to other ionization methods. N-Alkyl-N-perfluoroacyl derivatives of amino acids readily produce previously unreported alkylnitrilium cations of composition [HC≡N-alkyl](+). Homologous [HC≡N-aryl](+) cations are typical for corresponding N-aryl analogs. The formation of other ions characteristic for these derivatives involves oxygen rearrangement giving rise to ions [C(n)F(2n+1)-C≡N(+)C(n)H(2n+1)] and [CnF(2n+1)-C≡N(+)-aryl]. The introduction of an N-benzyl substituent in a molecule favors a process producing benzylidene iminium cations. L-Threonine and L-cysteine derivatives exhibit more fragmentation pathways not typical for other α-amino acids; additionally, the N(ω)- amino group in L-lysine directs the dissociation process and provides structural information on the substitution at the amino functions in the molecule. PMID:26307698

  10. Effects of methyl acetyl phosphate, a covalent antisickling agent, on the density profiles of sickle erythrocytes.

    PubMed

    Ueno, H; Yatco, E; Benjamin, L J; Manning, J M

    1992-07-01

    Methyl acetyl phosphate specifically acetylates valine-1, lysine-82, and lysine-144 in the 2,3-diphosphoglycerate binding cleft of hemoglobin S, thereby inhibiting its gelation (greater than 32 gm/dl) at pH 7.4. To extend these findings, the effect of methyl acetyl phosphate on the density of sickle cells has been evaluated by phthalate ester gradient centrifugation and by Larex-Percoll density centrifugation. After treatment with methyl acetyl phosphate (40% modification of the intracellular hemoglobin S), oxygenated sickle erythrocytes had a lowered density profile, as measured in a phthalate ester gradient. Thus 83% of untreated oxygenated sickle cells had densities greater than 1.098 gm/ml, whereas after treatment with methyl acetyl phosphate, 52% of the cells were in this density range. Under anaerobic conditions, methyl acetyl phosphate was even more effective in lowering cell density. For example, 50% of untreated deoxygenated cells had densities greater than 1.098 gm/ml, but none of the cells treated with methyl acetyl phosphate were this dense. For studies with Larex-Percoll density gradients, sickle erythrocytes were first separated into two fractions (densities greater than and less than 1.1 gm/ml) by Percoll-Hypaque centrifugation. The amount of oxygenated sickle cells exhibiting densities greater than 1.074 gm/ml decreased by about 32% on treatment with methyl acetyl phosphate. For deoxygenated sickle cells, treatment with methyl acetyl phosphate resulted in an average decrease of approximately 24% in the number of cells with densities greater than 1.074 gm/ml.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1613320

  11. Mild Catalytic methods for Alkyl-Alkyl Bond Formation

    SciTech Connect

    Vicic, David A

    2009-08-10

    Overview of Research Goals and Accomplishments for the Period 07/01/06 – 06/30/07: Our overall research goal is to transform the rapidly emerging synthetic chemistry involving alkyl-alkyl cross-couplings into more of a mechanism-based field so that that new, rationally-designed catalysts can be performed under energy efficient conditions. Our specific objectives for the previous year were 1) to obtain a proper electronic description of an active catalyst for alkyl-alkyl cross-coupling reactions and 2) to determine the effect of ligand structure on the rate, scope, selectivity, and functional group compatibility of C(sp3)-C(sp3) cross-coupling catalysis. We have completed both of these initial objectives and established a firm base for further studies. The specific significant achievements of the current grant period include: 1) we have performed magnetic and computational studies on (terpyridine)NiMe, an active catalyst for alkyl-alkyl cross couplings, and have discovered that the unpaired electron resides heavily on the terpyridine ligand and that the proper electronic description of this nickel complex is a Ni(II)-methyl cation bound to a reduced terpyridine ligand; 2) we have for the first time shown that alkyl halide reduction by terpyridyl nickel catalysts is substantially ligand based; 3) we have shown by isotopic labeling studies that the active catalyst (terpyridine)NiMe is not produced via a mechanism that involves the formation of methyl radicals when (TMEDA)NiMe2 is used as the catalyst precursor; 4) we have performed an extensive ligand survey for the alkyl-alkyl cross-coupling reactions and have found that electronic factors only moderately influence reactivity in the terpyridine-based catalysis and that the most dramatic effects arise from steric and solubility factors; 5) we have found that the use of bis(dialkylphosphino)methanes as ligands for nickel does not produce active catalysts for cross-coupling but rather leads to bridging hydride

  12. C-Alkylation by Hydrogen Autotransfer Reactions.

    PubMed

    Obora, Yasushi

    2016-04-01

    The development of practical, efficient, and atom-economical methods for the formation of carbon-carbon bonds remains a topic of considerable interest in current synthetic organic chemistry. In this review, we have summarized selected topics from the recent literature with particular emphasis on C-alkylation processes involving hydrogen transfer using alcohols as alkylation reagents. This review includes selected highlights concerning recent progress towards the modification of catalytic systems for the α-alkylation of ketones, nitriles, and esters. Furthermore, we have devoted a significant portion of this review to the methylation of ketones, alcohols, and indoles using methanol. Lastly, we have also documented recent advances in β-alkylation methods involving the dimerization of alcohols (Guerbet reaction), as well as new developments in C-alkylation methods based on sp (3) C-H activation. PMID:27573136

  13. HPLC and TLC characterisation of ecdysteroid alkyl ethers.

    PubMed

    Lapenna, Silvia; Dinan, Laurence

    2009-10-01

    Semi-synthetic ecdysteroid alkyl ethers have increased potential over natural ecdysteroids as actuators of ligand-inducible gene-expression systems based on the ecdysteroid receptor for in vivo applications. However, a scalable synthesis of these compounds has yet to be developed. We report a set of reversed-phase (RP; C(18) and C(6)) and normal-phase (NP; diol) HPLC systems which can be used to analyse and separate ecdysteroid ethers with single or multiple O-methyl substitutions at the 2alpha-, 3beta-, 14alpha-, 22- and 25-positions. The elution order of methyl ether analogues of the prototypical ecdysteroid 20-hydroxyecdysone (20E) was 3-methyl<2-methyl<14-methyl<25-methyl<22-methyl with both C(18)- and C(6)-RP-HPLC, when eluted with methanol/water mixtures. Further, the elution order of 20E 22-O-alkyl ethers was methylalkyl ethers can also be adequately resolved by NP-HPLC and silica HPTLC. On the latter, detection of ecdysteroid O-alkyl ethers with the p-anisaldehyde/sulphuric acid reagent distinguishes 22-O-alkyl ethers from non-22-O-alkyl ether analogues by the colour of the resulting spot. PMID:19648067

  14. Acute environmental toxicity and persistence of methyl salicylate: A chemical agent simulant. Final report

    SciTech Connect

    Cataldo, D.A.; Ligotke, M.W.; Harvey, S.D.; Fellows, R.J.; Li, S.W.

    1994-06-01

    The interactions of methyl salicylate with plant foliage and soils were assessed using aerosol/vapor exposure methods. Measurements of deposition velocity and residence times for soils and foliar surfaces are reported. Severe plant contact toxicity was observed at foliar mass-loading levels above 4 {mu}g/cm{sup 2} leaf; however, recovery was noted after four to fourteen days. Methyl salicylate has a short-term effect on soil dehydrogenase activity, but not phosphatase activity. Results of the earthworm bioassay indicated only minimal effects on survival.

  15. Repair-deficient 3-methyladenine DNA glycosylase homozygous mutant mouse cells have increased sensitivity to alkylation-induced chromosome damage and cell killing.

    PubMed Central

    Engelward, B P; Dreslin, A; Christensen, J; Huszar, D; Kurahara, C; Samson, L

    1996-01-01

    In Escherichia coli, the repair of 3-methyladenine (3MeA) DNA lesions prevents alkylation-induced cell death because unrepaired 3MeA blocks DNA replication. Whether this lesion is cytotoxic to mammalian cells has been difficult to establish in the absence of 3MeA repair-deficient cell lines. We previously isolated and characterized a mouse 3MeA DNA glycosylase cDNA (Aag) that provides resistance to killing by alkylating agents in E. coli. To determine the in vivo role of Aag, we cloned a large fragment of the Aag gene and used it to create Aag-deficient mouse cells by targeted homologous recombination. Aag null cells have no detectable Aag transcripts or 3MeA DNA glycosylase activity. The loss of Aag renders cells significantly more sensitive to methyl methanesulfonate-induced chromosome damage, and to cell killing induced by two methylating agents, one of which produces almost exclusively 3MeAs. Aag null embryonic stem cells become sensitive to two cancer chemotherapeutic alkylating agents, namely 1,3-bis(2-chloroethyl)-1-nitrosourea and mitomycin C, indicating that Aag status is an important determinant of cellular resistance to these agents. We conclude that this mammalian 3MeA DNA glycosylase plays a pivotal role in preventing alkylation-induced chromosome damage and cytotoxicity. Images PMID:8631315

  16. 1,2-bis(arylsulfonyl)hydrazines. 2. The influence of arylsulfonyl and aralkylsulfonyl substituents on antitumor and alkylating activity.

    PubMed

    Shyam, K; Furubayashi, R; Hrubiec, R T; Cosby, L A; Sartorelli, A C

    1986-07-01

    Several 1,2-bis(arylsulfonyl)-1-methylhydrazines were synthesized and evaluated for antineoplastic activity against the L1210 leukemia. The most active compound to emerge from this study, 2-[(4-chlorophenyl)sulfonyl]-1-methyl-1-(4-tolylsulfonyl)hydrazine , increased the survival time of tumor-bearing mice by 88%. The alkylating activity of the synthesized analogues and several compounds reported earlier was determined by measuring the absorbance at 540 nm of the alkylated product of 4-(4-nitrobenzyl)pyridine. The results obtained support the concept that the ability to alkylate is a necessary but not a sufficient condition for the expression of antitumor activity by agents of this class. PMID:3806585

  17. 2 D - QSAR studies on CYP26A1 inhibitory activity of 1-[benzofuran-2-yl-(4-alkyl/aryl-phenyl)-methyl]- 1 H-triazoles.

    PubMed

    Yadav, Madhu

    2011-01-01

    The Quantitative Structure Activity Relationship (QSAR) study is performed over a set of 15, 4-alkyl/aryl-substituted 1- [benzofuran-2-yl-phenylmethyl]-1 H-triazoles derivatives. This study is based on the application of physicochemical parameters in QSAR. The parameters include (MR (molar refractivity), MW (molecular weight), Pc (parachor), St (surface tension), D (density), Ir (index of refraction) and log P (partition coefficient). The parameters describing physiochemical properties are used as independent variables and the biological activity (IC(50)) is considered as dependent variable in multiple regression analysis. Different models were generated with high co-efficient of determination (R(2)). The 2D-QSAR study identified compounds capable of inhibiting the metabolic breakdown of the retinoid (trans-retinoic acid (ATRA)) involved in the activation of specific nuclear Retinoic acid receptors (RARs). This study identifies R115866 as a potential inhibitor of the cytochrome P450 (CYP) mediated metabolism with increased RA levels for retinoid actions. PMID:22347780

  18. Catalytic alkylation apparatus

    SciTech Connect

    Hann, P.D.; VanPool, J.

    1989-09-05

    This patent describes an apparatus. It comprises alkylation reactor means for producing alkylate product; acid catalyst settler means having an upper portion, an intermediate portion and a lower portion; means for withdrawing alkylate product from the alkylation reactor means and for providing alkylate product from the alkylation reactor means to a point of introduction in the intermediate portion of the acid catalyst settler means; and means for establishing a temperature gradient in the upper the gas lines to the detector so that a flow rate of a sample gas passing through the detector is constant.

  19. Poly(methyl methacrylate) synthetic grit formulations sustain the delivery of nicarbazin, a contraceptive agent, in pest waterfowl.

    PubMed

    Hurley, Jerome C; Johnston, John J

    2002-12-13

    Sixty-three mallards were fed one of ten poly(methyl methacrylate) based synthetic grit formulations containing varying concentrations of a proposed wildlife contraceptive (nicarbazin), plasticizer (acetyl tributylcitrate) and/or cross-linking agent (1,4-butanediol diacrylate). Release characteristics of the contraceptive agent were monitored for the purpose of developing a contraceptive formulation for control of pest waterfowl in urban settings. The addition of plasticizer increased the erosion rate (t(1/2)=0.97-2.85 days), cross-linking the polymer matrix slightly decreased the erosion rate (t(1/2)=4.45-5.05 days) and increasing the concentration of the contraceptive agent increased the erosion rate (t(1/2)=3.3 and 9.9 days at 60% and 7.5% active ingredient, respectively). The larger and smaller grit pieces had longer half lives at 11.0 and 11.6 days, respectively while the mid sized grit had a half life of 4.95 days. Control grit had a half life of 12.7 days based on weight loss. Analysis of blood and feces for monitoring release from the grit and approximate indirect plasma levels of the active ingredient proved feasible. PMID:12480319

  20. Synthesis and preclinical evaluation of a new C-6 alkylated pyrimidine derivative as a PET imaging agent for HSV1-tk gene expression

    PubMed Central

    Müller, Ursina; Ross, Tobias L; Ranadheera, Charlene; Slavik, Roger; Müller, Adrienne; Born, Mariana; Trauffer, Evelyn; Sephton, Selena Milicevic; Scapozza, Leonardo; Krämer, Stefanie D; Ametamey, Simon M

    2013-01-01

    [18F]FHOMP (6-((1-[18F]-fluoro-3-hydroxypropan-2-yloxy)methyl)-5-methylpyrimidine-2,4(1H,3H)-dione), a C-6 substituted pyrimidine derivative, has been synthesized and evaluated as a potential PET agent for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene expression. [18F]FHOMP was prepared by the reaction of the tosylated precursor with tetrabutylammonium [18F]-fluoride followed by acidic cleavage of the protecting groups. In vitro cell accumulation of [18F]FHOMP and [18F]FHBG (reference) was studied with HSV1-tk transfected HEK293 (HEK293TK+) cells. Small animal PET and biodistribution studies were performed with HEK293TK+ xenograft-bearing nude mice. The role of equilibrative nucleoside transporter 1 (ENT1) in the transport and uptake of [18F] FHOMP was also examined in nude mice after treatment with ENT1 inhibitor nitrobenzylmercaptopurine ribonucleoside phosphate (NBMPR-P). [18F]FHOMP was obtained in a radiochemical yield of ~25% (decay corrected) and the radiochemical purity was greater than 95%. The uptake of [18F]FHOMP in HSV1-TK containing HEK293TK+ cells was 52 times (at 30 min) and 244 times (at 180 min) higher than in control HEK293 cells. The uptake ratios between HEK293TK+ and HEK293 control cells for [18F]FHBG were significantly lower i.e. 5 (at 30 min) and 81 (240 min). In vivo, [18F]FHOMP accumulated to a similar extend in HEK293TK+ xenografts as [18F]FHBG but with a higher general background. Blocking of ENT1 reduced [18F]FHOMP uptake into brain from a standardized uptake value (SUV) of 0.10±0.01 to 0.06±0.02, but did not reduce the general background signal in PET. Although [18F]FHOMP does not outperform [18F]FHBG in its in vivo performance, this novel C-6 pyrimidine derivative may be a useful probe for monitoring HSV1-tk gene expression in vivo. PMID:23342302

  1. Synthesis and Evaluation of Isosteres of N-Methyl Indolo[3, 2-b]-quinoline (Cryptolepine) as New Antiinfective Agents.

    PubMed Central

    Zhu, Xue Y.; Mardenborough, Leroy G.; Li, Shouming; Khan, Abdul; Zhang, Wang; Fan, Pincheng; Jacob, Melissa; Khan, Shabana; Walker, Larry; Ablordeppey, Seth Y.

    2007-01-01

    Isosteres of cryptolepine (1) were synthesized and evaluated for their antiinfective activities. Overall, the sulfur isostere, 5-methyl benzothieno[3,2-b]quinoline (5b) was equipotent to 1 and has shown no cytotoxicity at 23.8 μg/ml. Compound 5b was also found to have a broad spectrum of activity. Both the carbon and oxygen isosteres were less potent than cryptolepine. A limited library of 2-substituted analogs of 5b has been synthesized and evaluated in antifungal screens but did not show increase in potency compared to the unsubstituted 5b. Similarly, evaluation of tricyclic benzothieno[3,2-b]pyridines while showing promise in individual screens did not produce an overall increase in potency. Overall, the evaluation of the activities of 5b compared with standard antifungal/anti-protozoal agents suggests that the benzothienoquinoline scaffold could serve as a lead for optimization. PMID:17134906

  2. Preliminary evaluation of military, commercial and novel skin decontamination products against a chemical warfare agent simulant (methyl salicylate).

    PubMed

    Matar, Hazem; Guerreiro, Antonio; Piletsky, Sergey A; Price, Shirley C; Chilcott, Robert P

    2016-01-01

    Rapid decontamination is vital to alleviate adverse health effects following dermal exposure to hazardous materials. There is an abundance of materials and products which can be utilised to remove hazardous materials from the skin. In this study, a total of 15 products were evaluated, 10 of which were commercial or military products and five were novel (molecular imprinted) polymers. The efficacies of these products were evaluated against a 10 µl droplet of (14)C-methyl salicylate applied to the surface of porcine skin mounted on static diffusion cells. The current UK military decontaminant (Fuller's earth) performed well, retaining 83% of the dose over 24 h and served as a benchmark to compare with the other test products. The five most effective test products were Fuller's earth (the current UK military decontaminant), Fast-Act® and three novel polymers [based on itaconic acid, 2-trifluoromethylacrylic acid and N,N-methylenebis(acrylamide)]. Five products (medical moist-free wipes, 5% FloraFree™ solution, normal baby wipes, baby wipes for sensitive skin and Diphotérine™) enhanced the dermal absorption of (14)C-methyl salicylate. Further work is required to establish the performance of the most effective products identified in this study against chemical warfare agents. PMID:26339920

  3. Pretreatment drugs against organophosphorus agents based on azabicyclic n-alkyl oximino o-carbamates. Annual report, 24 September 1991-23 September 1992

    SciTech Connect

    Moriarty, R.M.

    1992-11-11

    During the past year, 27 compounds of azabicyclic and carbocyclic oximino carbamate structural types have been prepared and submitted for biological testing as pretreatment agents against organophosphorus nerve agent poisoning. Biological data has been tabulated and has shown that the carbocyclic norbornanone derived oximino carbamates offer potential as pretreatment agents.

  4. The molecular basis for biological inactivation of nucleic acids. The action of methylating agents on the ribonucleic acid-containing bacteriophage R17

    PubMed Central

    Shooter, Kenneth V.; Howse, Ruth; Shah, Sudhikumar A.; Lawley, Philip D.

    1974-01-01

    1. The inactivation of an RNA-containing bacteriophage after reaction with four methylating agents was studied. Measurements of the extent of methylation of the RNA and of the nature and amounts of the various reaction products were made. In experiments with dimethyl sulphate and methyl methanesulphonate inactivation can be quantitatively accounted for by methylation at two of the positions involved in hydrogen bonding: N-1 of adenine and N-3 of cytosine. In experiments with N-methyl-N-nitrosourea and N-methyl-N′-nitro-N-nitrosoguanidine methylation at N-1 of adenine and N-3 of cytosine accounts for only about one-half of the observed inactivation. Scission of the RNA chain during reaction accounts for a further 20% of the inactivation. To account for the remainder it seems necessary to postulate that formation of O6-methylguanine constitutes a lethal lesion. 2. Breaks in the RNA chain formed on reaction with the nitroso derivatives presumably result from methylation of the phosphate diester group followed by hydrolysis of the unstable triester thus formed. PMID:4363111

  5. Alkyl rearrangement processes in organozirconium complexes. Observation of internal alkyl complexes during hydrozirconation

    SciTech Connect

    Chirik, P.J.; Day, M.W.; Labinger, J.A.; Bercaw, J.E.

    1999-11-10

    Isotopically labeled alkyl zirconocene complexes of the form (CpR{sub n}){sub 2}Zr(CH{sub 2}CDR{sub 2}{prime})(X) (CpR{sub n} = alkyl-substituted cyclopentadienyl; R{prime} = H, alkyl group; X = H, D, Me) undergo isomerization of the alkyl ligand as well as exchange with free olefin in solution under ambient conditions. Increasing the substitution on the Cp ring results in slower isomerization reactions, but these steric effects are small. In contrast, changing X has a very large effect on the rate of isomerization. Pure {sigma}-bonding ligands such as methyl and hydride promote rapid isomerization, whereas {pi}-donor ligands inhibit {beta}-H elimination and hence alkyl isomerization. For ({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}Zr(R)(Cl), internal alkyl complexes have been observed for the first time. The rate of isomerization depends on the length of the alkyl group: longer alkyl chains (heptyl, hexyl) isomerize faster than shorter chains (butyl). The transient intermediate species have been identified by a combination of isotopic labeling and {sup 1}H, {sup 2}H, and {sup 13}C NMR experiments. The solid-state structure of the zirconocene cyclopentyl chloride complex, Cp{sub 2}Zr(cyclo-C{sub 5}H{sub 9})(Cl), has been determined by X-ray diffraction.

  6. Design, Synthesis, and Preclinical Evaluation of 4-Substituted-5-methyl-furo[2,3-d]pyrimidines as Microtubule Targeting Agents That Are Effective against Multidrug Resistant Cancer Cells.

    PubMed

    Devambatla, Ravi Kumar Vyas; Namjoshi, Ojas A; Choudhary, Shruti; Hamel, Ernest; Shaffer, Corena V; Rohena, Cristina C; Mooberry, Susan L; Gangjee, Aleem

    2016-06-23

    The design, synthesis, and biological evaluations of eight 4-substituted 5-methyl-furo[2,3-d]pyrimidines are reported. Synthesis involved N(4)-alkylation of N-aryl-5-methylfuro[2,3-d]pyrimidin-4-amines, obtained from Ullmann coupling of 4-amino-5-methylfuro[2,3-d]pyrimidine and appropriate aryl iodides. Compounds 3, 4, and 9 showed potent microtubule depolymerizing activities, while compounds 6-8 had slightly lower potency. Compounds 4, 6, 7, and 9 inhibited tubulin assembly with IC50 values comparable to that of combretastatin A-4 (CA-4). Compounds 3, 4, and 6-9 circumvented Pgp and βIII-tubulin mediated drug resistance, mechanisms that can limit the efficacy of paclitaxel, docetaxel, and the vinca alkaloids. In the NCI 60-cell line panel, compound 3 exhibited GI50 values less than 10 nM in 47 of the cell lines. In an MDA-MB-435 xenograft model, compound 3 had statistically significant antitumor effects. The biological effects of 3 identify it as a novel, potent microtubule depolymerizing agent with antitumor activity. PMID:27213719

  7. 2′-(2-((dimethylamino)methyl)-4′-(2-fluoroalkoxy)-phenylthio)benzenamine Derivatives as Serotonin Transporter Imaging Agents

    PubMed Central

    Parhi, Ajit K.; Wang, Julie L.; Oya, Shunichi; Choi, Seok-Rye; Kung, Mei-Ping; Kung, Hank F.

    2008-01-01

    A novel series of ligands with substitutions at the 5-position on phenyl ring A and at the 4′-position on phenyl ring B of 2′-(2-((dimethylamino)methyl)-4′-(2-fluoro- alkoxy)phenylthio)benzenamine (4′-2-fluoroethoxy derivatives, 28–31 and 4′-3-fluoro propoxy derivatives, 40–42) were prepared and tested as serotonin transporter (SERT) imaging agents. The new ligands displayed high binding affinities to SERT (Ki ranging from 0.07 to 1.5 nM). The corresponding 18F labeled compounds, which can be prepared readily, showed excellent brain uptake and retention after iv injection in rats. The hypothalamus region showed high uptake values between 0.74 to 2.2 % dose/g at 120 min post iv injection. Significantly, the hypothalamus to cerebellum ratios (target to non-target ratios) at 120 min were 7.8 and 7.7 for [18F]28 and [18F]40, respectively. The selective uptake and retention in the hypothalamus, which has a high concentration of SERT binding sites, demonstrated that [18F]28 and [18F]40 are promising PET (positron emission computed tomography) imaging agents for mapping SERT binding sites in the brain. PMID:18052090

  8. Masked N-Heterocyclic Carbene-Catalyzed Alkylation of Phenols with Organic Carbonates.

    PubMed

    Lui, Matthew Y; Yuen, Alexander K L; Masters, Anthony F; Maschmeyer, Thomas

    2016-09-01

    An easily prepared masked N-heterocyclic carbene, 1,3-dimethylimidazolium-2-carboxylate (DMI-CO2 ), was investigated as a "green" and inexpensive organocatalyst for the alkylation of phenols. The process made use of various low-toxicity and renewable alkylating agents, such as dimethyl- and diethyl carbonate, in a focused microwave reactor. DMI-CO2 was found to be a very active catalyst and excellent yields of a range of aryl alkyl ethers were obtained under relatively benign conditions. The observed difference in the conversion behavior of phenol methylation, in the presence of either the carbene or 1,8-diazabicycloundec-7-ene (DBU) catalyst, was rationalized on the basis of mechanistic investigations. The primary mode of action for the N-heterocyclic carbene is nucleophilic catalysis. Activation of the dialkyl carbonate electrophile results in concomitant evolution of an organo-soluble alkoxide, which deprotonates the phenolic starting material. In contrast, DBU is initially protonated by the phenol and thus consumed. Subsequent regeneration and participation in nucleophilic catalysis only becomes significant after some phenolate alkylation occurs. PMID:27528488

  9. When alcohol is the answer: Trapping, identifying and quantifying simple alkylating species in aqueous environments.

    PubMed

    Penketh, Philip G; Shyam, Krishnamurthy; Baumann, Raymond P; Zhu, Rui; Ishiguro, Kimiko; Sartorelli, Alan C; Ratner, Elena S

    2016-09-01

    Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties. PMID:27188264

  10. 1H and 13C NMR spectra, structure and physicochemical features of phenyl acridine-9-carboxylates and 10-methyl-9-(phenoxycarbonyl)acridinium trifluoromethanesulphonates--alkyl substituted in the phenyl fragment.

    PubMed

    Krzymiński, K; Malecha, P; Zadykowicz, B; Wróblewska, A; Błażejowski, J

    2011-01-01

    The 1H and 13C NMR spectra of twelve phenyl acridine-9-carboxylates--alkyl-substituted in the phenyl fragment--and their 10-methyl-9-(phenoxycarbonyl)acridinium salts dissolved in CD3CN, CD3OD, CDCl3 and DMSO-d6 were recorded in order to examine the influence of the structure of these compounds and the properties of the solvents on chemical shifts and 1H-(1)H coupling constants. Experimental data were compared with 1H and 13C chemical shifts predicted at the GIAO/DFT level of theory for DFT(B3LYP)/6-31G** optimised geometries of molecules, as well as with values of 1H chemical shifts and 1H-(1)H coupling constants, estimated using ACD/HNMR database software to ensure that the assignment was correct. To investigate the relations between chemical shifts and selected structural or physicochemical characteristics of the target compounds, the values of several of these parameters were determined at the DFT or HF levels of theory. The HOMO and LUMO energies obtained at the HF level yielded the ionisation potentials and electron affinities of molecules. The DFT method provided atomic partial charges, dipole moments, LCAO coefficients of pz LUMO of selected C atoms, and angles reflecting characteristic structural features of the compounds. It was found that the experimentally determined 1H and 13C chemical shifts of certain atoms relate to the predicted dipole moments, the angles between the acridine and phenyl moieties, and the LCAO coefficients of the pz LUMO of the C atoms believed to participate in the initial step of the oxidation of the target compounds. The spectral and physicochemical characteristics of the target compounds were investigated in the context of their chemiluminogenic ability. PMID:21134782

  11. Pretreatment drugs against organophosphorus agents based on azabicyclic n-alkyl oximino o-carbamates. Annual report, 24 September 1990-23 September 1991

    SciTech Connect

    Moriarty, R.M.

    1991-11-12

    During the past year, a number of purely carbocyclic norbonanone derived oximino carbamates and their methiodide salts have been synthesized and submitted for biological evaluation as pretreatment agents against organophosphorus agents. Additionally, a synthetic route has been devised and employed for the preparation of 2-tropinone, a key precursor for the synthesis of structurally important oximino carbamate derivatives.

  12. Effective methylation of phosphonic acids related to chemical warfare agents mediated by trimethyloxonium tetrafluoroborate for their qualitative detection and identification by gas chromatography-mass spectrometry.

    PubMed

    Valdez, Carlos A; Leif, Roald N; Alcaraz, Armando

    2016-08-24

    The effective methylation of phosphonic acids related to chemical warfare agents (CWAs) employing trimethyloxonium tetrafluoroborate (TMO·BF4) for their qualitative detection and identification by gas chromatography-mass spectrometry (GC-MS) is presented. The methylation occurs in rapid fashion (1 h) and can be conveniently carried out at ambient temperature, thus providing a safer alternative to the universally employed diazomethane-based methylation protocols. Optimization of the methylation parameters led us to conclude that methylene chloride was the ideal solvent to carry out the derivatization, and that even though methylated products can be observed surfacing after only 1 h, additional time was not found to be detrimental but beneficial to the process particularly when dealing with analytes at low concentrations (∼10 μg mL(-1)). Due to its insolubility in methylene chloride, TMO·BF4 conveniently settles to the bottom during the reaction and does not produce additional interfering by-products that may further complicate the GC-MS analysis. The method was demonstrated to successfully methylate a variety of Schedule 2 phosphonic acids, including their half esters, resulting in derivatives that were readily detected and identified using the instrument's spectral library. Most importantly, the method was shown to simultaneously methylate a mixture of the organophosphorus-based nerve agent hydrolysis products: pinacolyl methylphosphonate (PMPA), cyclohexyl methylphosphonate (CyMPA) and ethyl methylphosphonate (EMPA) (at a 10 μg mL(-1) concentration each) in a fatty acid ester-rich organic matrix (OPCW-PT-O3) featured in the 38th Organisation for the Prohibition of Chemical Weapons (OPCW) Proficiency Test. In addition, the protocol was found to effectively methylate N,N-diethylamino ethanesulfonic acid and N,N-diisopropylamino ethanesulfonic acid that are products arising from the oxidative degradation of the V-series agents VR and VX respectively. The

  13. Detection of MGMT promoter methylation in glioblastoma using pyrosequencing

    PubMed Central

    Xie, Hao; Tubbs, Raymond; Yang, Bin

    2015-01-01

    Recent clinical trials on patients with glioblastoma revealed that O6-Methylguanine-DNA methyltransferase (MGMT) methylation status significantly predicts patient’s response to alkylating agents. In this study, we sought to develop and validate a quantitative MGMT methylation assay using pyrosequencing on glioblastoma. We quantified promoter methylation of MGMT using pyrosequencing on paraffin-embedded fine needle aspiration biopsy tissues from 43 glioblastoma. Using a 10% cutoff, MGMT methylation was identified in 37% cases of glioblastoma and 0% of the non-neoplastic epileptic tissue. Methylation of any individual CpG island in MGMT promoter ranged between 33% and 95%, with a mean of 65%. By a serial dilution of genomic DNA of a homogenously methylated cancer cell line with an unmethylated cell line, the analytical sensitivity is at 5% for pyrosequencing to detect MGMT methylation. The minimal amount of genomic DNA required is 100 ng (approximately 3,000 cells) in small fine needle biopsy specimens. Compared with methylation-specific PCR, pyrosequencing is comparably sensitive, relatively specific, and also provides quantitative information for each CpG methylation. PMID:25755756

  14. Detection of MGMT promoter methylation in glioblastoma using pyrosequencing

    PubMed Central

    Xie, Hao; Tubbs, Raymond; Yang, Bin

    2015-01-01

    Recent clinical trials on patients with glioblastoma revealed that O6-Methylguanine-DNA methyltransferase (MGMT) methylation status significantly predicts patient’s response to alkylating agents. In this study, we sought to develop and validate a quantitative MGMT methylation assay using pyrosequencing on glioblastoma. We quantified promoter methylation of MGMT using pyrosequencing on paraffin-embedded fine needle aspiration biopsy tissues from 43 glioblastoma. Using a 10% cutoff, MGMT methylation was identified in 37% cases of glioblastoma and 0% of the non-neoplastic epileptic tissue. Methylation of any individual CpG island in MGMT promoter ranged between 33% and 95%, with a mean of 65%. By a serial dilution of genomic DNA of a homogenously methylated cancer cell line with an unmethylated cell line, the analytical sensitivity is at 5% for pyrosequencing to detect MGMT methylation. The minimal amount of genomic DNA required is 100 ng (approximately 3,000 cells) in small fine needle biopsy specimens. Compared with methylation-specific PCR, pyrosequencing is comparably sensitive, relatively specific, and also provides quantitative information for each CpG methylation. PMID:25973069

  15. Signal transducer and activator of transcription 3 (STAT3) inhibitor, S3I-201, acts as a potent and non-selective alkylating agent

    PubMed Central

    Williams, Declan; Resetca, Diana; Wilson, Derek J.; Gunning, Patrick T.

    2016-01-01

    The Signal Transducer and Activator of Transcription 3 (STAT3) oncogene is a master regulator of many human cancers, and a well-recognized target for therapeutic intervention. A well known STAT3 inhibitor, S3I-201 (NSC 74859), is hypothesized to block STAT3 function in cancer cells by binding the STAT3 SH2 domain and disrupt STAT3 protein complexation events. In this study, liquid chromatography tandem mass spectrometry analysis revealed that STAT3, in the presence of S3I-201, showed a minimum of five specific sites of modification, cysteine's 108, 259, 367, 542, and 687. Moreover, a prepared fluorescently labeled chemical probe of S3I-201 (DB-6-055) revealed that S3I-201 non-specifically and globally alkylated intracellular proteins at concentrations consistent with S3I-201's reported IC50. These data are consistent with the hypothesis that S3I-201 is a sub-optimal probe for interrogating STAT3-related cell biology. PMID:26942696

  16. Labelling of living mammalian spermatozoa with the fluorescent thiol alkylating agent, monobromobimane (MB): immobilization upon exposure to ultraviolet light and analysis of acrosomal status

    SciTech Connect

    Cummins, J.M.; Fleming, A.D.; Crozet, N.; Kuehl, T.J.; Kosower, N.S.; Yanagimachi, R.

    1986-03-01

    Living spermatozoa of seven mammalian species were treated with the thiol-alkylating fluorescent labelling compound, monobromobimane (MBBR). MB-labelling alone had no effect on sperm motility, nor on the time course or ability of golden hamster spermatozoa to undergo the acrosome reaction when capacitated in vitro. Exposure of MB-labelled spermatozoa to ultraviolet (UV) light and excitation of the MB fluorochrome resulted in virtually immediate immobilization of the spermatozoa without affecting acrosomal status. UV exposure of unlabelled spermatozoa for up to 30 sec had no effect upon motility. Immobilization of MB-labelled spermatozoa depended on the midpiece being irradiated, as irradiation of the head alone, or of the more distal parts of the principal piece, had little or no effect upon motility. Labelling with MB followed by immobilization of individually selected spermatozoa was most useful for detailing the course and site of occurrence of the acrosome reaction during penetration of the cumulus oophorus by golden hamster spermatozoa in vitro. In these often hyperactivated spermatozoa, precise determination of the acrosomal status could not often otherwise be made due to the difficulty in visualizing the acrosomal region of a vigorously thrashing, hyperactivated spermatozoon. This technique should prove valuable in a variety of studies on sperm motility, capacitation and fertilization, and could also be extended to other cell systems.

  17. Design and synthesis of some new 1-phenyl-3/4-[4-(aryl/heteroaryl/alkyl-piperazine1-yl)-phenyl-ureas as potent anticonvulsant and antidepressant agents.

    PubMed

    Mishra, Chandra Bhushan; Kumari, Shikha; Tiwari, Manisha

    2016-05-01

    A series of 1-phenyl-3/4-[4-(aryl/heteroaryl/alkyl-piperazine1-yl)-phenyl-urea derivatives (29-42) were designed, synthesized and evaluated for their anticonvulsant activity by using maximal electroshock (MES), subcutaneous pentylenetetrazole (scPTZ) seizure tests. The acute neurotoxicity was checked by rotarod assay. Most of the test compounds were found effective in both seizure tests. Compound 30 (1-{4-[4-(4-chloro-phenyl)-piperazin-1-yl]-phenyl}-3-phenyl-urea) exhibited marked anticonvulsant activity in MES as well as scPTZ tests. The phase II anticonvulsant quantification study of compound 30 indicates the ED50 value of 28.5 mg/kg against MES induced seizures. In addition, this compound also showed considerable protection against pilocarpine induced status epilepticus in rats. Seizures induced by 3-mercaptopropionic acid model and thiosemicarbazide were significantly attenuated by compound 30, which suggested its broad spectrum of anticonvulsant activity. Interestingly, compound 30 displayed better antidepressant activity than standard drug fluoxetine. Moreover, compound 30 appeared as a non-toxic chemical entity in sub-acute toxicity studies. PMID:26891908

  18. Salvage of failed protein targets by reductive alkylation.

    PubMed

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719

  19. Molecular mechanisms of alkylation sensitivity in Indian muntjac cell lines.

    PubMed

    Musk, S R; Hatton, D H; Bouffler, S D; Margison, G P; Johnson, R T

    1989-07-01

    The responses of two Indian muntjac cell lines to two monofunctional alkylating agents were investigated. An SV40-transformed line (SVM) had an increased sensitivity to cell killing when compared to the other, euploid line (DM) after exposure both to methyl nitrosourea (MNU) and to dimethylsulphate (DMS) and also exhibited higher frequencies of sister chromatid exchanges (SCEs) following alkylation. The hypersensitivity of SVM to DMS correlates with the defective repair of single-strand breaks that results in the generation of long-lived breaks in the DNA following exposure, leading eventually to the formation of chromosome aberrations. In contrast no difference is seen in the formation of long-lived breaks in the DNA of SVM and DM after treatment with biologically relevant doses of MNU; in this case hypersensitivity may be due to the loss of O6-alkylguanine-DNA-alkyltransferase activity. The conclusion that the hypersensitivites of SVM to MNU and to DMS have different molecular bases is supported by transfection of SVM with plasmids containing the protein coding region of the Escherichia coli ada+ gene; subsequent expression within the cell corrects its hypersensitivity to the cytotoxic and SCE-inducing effects of MNU but has very little influence upon the lethality, SCE induction or the repair of long-lived DNA strand breaks after exposure to DMS. PMID:2544312

  20. 1-vinyl-4-alkyl-1,2,4-triazolium salts

    SciTech Connect

    Ermakova, T.G.; Chipanina, N.N.; Gritza, A.I.; Kuznetsova, N.P.; Lopyrev, V.A.; Tatarova, L.A.

    1985-04-01

    Quaternary salts based on 1-vinyl-1,2,4-triazole have been synthesized. Alkyl iodides and bromides and dimethyl sulfate served as the quaternizing agent. Polymeric quaternary salts of 1-vinyl-1,2,4-triazole have been obtained by alkylation of its polymer.

  1. Synthesis and characterization of chitosan alkyl urea.

    PubMed

    Wang, Jing; Jiang, Ji-Zhou; Chen, Wei; Bai, Zheng-Wu

    2016-07-10

    Chitosan is a versatile material employed for various purposes in many fields including the development of chiral stationary phases for enantioseparation. Chitosan alkyl urea is a kind of intermediate used to prepare enantioseparation materials. In order to synthesize the intermediates, in the present work, a new way to prepare chitosan alkyl urea has been established: chitosan was first reacted with methyl chloroformate yielding N-methoxyformylated chitosan, which was then converted to chitosan alkyl urea through amine-ester exchange reaction. With a large excess of methyl chloroformate and primary amine of low stereohindrance, the amino group in chitosan could be almost completely converted to ureido group. The as-prepared chitosan alkyl urea derivatives were characterized by IR, (1)H NMR, (13)C NMR,(1)H-(1)H COSY and (1)H-(13)C HSQC NMR spectra. The chemical shifts of hydrogen and carbon atoms of glucose unit were assigned. It was found that the degree of substitution was obviously lower if cyclopropyl amine, aniline, tert-butyl amine and diethyl amine were used as reactants for the amine-ester exchange reaction. The reason was explained with the aid of theoretical calculations. PMID:27106154

  2. Molecular structures of antiviral agents, 2,3-dihydroxybenzaldehyde 2,4-dinitrophenylhydrazone and 4-[(4-methylpiperazin-1-yl)imino]methyl-1,2-benzodiol

    SciTech Connect

    Gurskaya, G. V.; Zavodnik, V. E.; Zhukhlistova, N. E.; Kozlov, M. V.

    2008-07-15

    Two antiviral agents, namely, 2,3-dihydroxybenzaldehyde 2,4-dinitrophenylhydrazone and 4-[(4-methylpiperazin-1-yl)imino]methyl-1,2-benzodiol, are studied by X-ray diffraction. The stereochemical features of the molecular structures of the compounds under investigation are discussed, and the possible correlation between the structure and biological activity with respect to hepatitis C virus RNA-dependent RNA polymerase is analyzed.

  3. Immunochemical analysis of poly(ADP-ribosyl)ation in HaCaT keratinocytes induced by the mono-alkylating agent 2-chloroethyl ethyl sulfide (CEES): Impact of experimental conditions.

    PubMed

    Debiak, Malgorzata; Lex, Kirsten; Ponath, Viviane; Burckhardt-Boer, Waltraud; Thiermann, Horst; Steinritz, Dirk; Schmidt, Annette; Mangerich, Aswin; Bürkle, Alexander

    2016-02-26

    Sulfur mustard (SM) is a bifunctional alkylating agent with a long history of use as a chemical weapon. Although its last military use is dated for the eighties of the last century, a potential use in terroristic attacks against civilians remains a significant threat. Thus, improving medical therapy of mustard exposed individuals is still of particular interest. PARP inhibitors were recently brought into the focus as a potential countermeasure for mustard-induced pathologies, supported by the availability of efficient compounds successfully tested in cancer therapy. PARP activation after SM treatment was reported in several cell types and tissues under various conditions; however, a detailed characterization of this phenomenon is still missing. This study provides the basis for such studies by developing and optimizing experimental conditions to investigate poly(ADP-ribosyl)ation (PARylation) in HaCaT keratinocytes upon treatment with the monofunctional alkylating agent 2-chloroethyl ethyl sulfide ("half mustard", CEES). By using an immunofluorescence-based approach, we show that optimization of experimental conditions with regards to the type of solvent, dilution factors and treatment procedure is essential to obtain a homogenous PAR staining in HaCaT cell cultures. Furthermore, we demonstrate that different CEES treatment protocols significantly influence the cytotoxicity profiles of treated cells. Using an optimized treatment protocol, our data reveals that CEES induces a dose- and time-dependent dynamic PARylation response in HaCaT cells that could be completely blocked by treating cells with the clinically relevant pharmacological PARP inhibitor ABT888 (also known as veliparib). Finally, siRNA experiments show that CEES-induced PAR formation is predominantly due to the activation of PARP1. In conclusion, this study provides a detailed analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to study the

  4. Hair analysis as a useful procedure for detection of vapour exposure to chemical warfare agents: simulation of sulphur mustard with methyl salicylate.

    PubMed

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Josse, Denis; Doumenq, Pierre

    2014-06-01

    Chemical warfare agents (CWA) are highly toxic compounds which have been produced to kill or hurt people during conflicts or terrorist attacks. Despite the fact that their use is strictly prohibited according to international convention, populations' exposure still recently occurred. Development of markers of exposure to CWA is necessary to distinguish exposed victims from unexposed ones. We present the first study of hair usage as passive sampler to assess contamination by chemicals in vapour form. This work presents more particularly the hair adsorption capacity for methyl salicylate used as a surrogate of the vesicant sulphur mustard. Chemical vapours toxicity through the respiratory route has historically been defined through Haber's law's concentration-time (Ct) product, and vapour exposure of hair to methyl salicylate was conducted with various times or doses of exposure in the range of incapacitating and lethal Ct products corresponding to sulphur mustard. Following exposure, extraction of methyl salicylate from hair was conducted by simple soaking in dichloromethane. Methyl salicylate could be detected on hair for vapour concentration corresponding to about one fifth of the sulphur mustard concentration that would kill 50% of exposed individuals (LCt50). The amount of methyl salicylate recovered from hair increased with time or dose of exposure. It showed a good correlation with the concentration-time product, suggesting that hair could be used like a passive sampler to assess vapour exposure to chemical compounds. It introduces great perspectives concerning the use of hair as a marker of exposure to CWA. PMID:24817050

  5. Polyimide characterization studies - Effect of pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1984-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  6. N-(2-methyl-indol-1H-5-yl)-1-naphthalenesulfonamide: A novel reversible antimitotic agent inhibiting cancer cell motility.

    PubMed

    Aceves-Luquero, Clara; Galiana-Roselló, Cristina; Ramis, Guillem; Villalonga-Planells, Ruth; García-España, Enrique; Fernández de Mattos, Silvia; Peláez, Rafael; Llinares, José M; González-Rosende, M Eugenia; Villalonga, Priam

    2016-09-01

    A series of compounds containing the sulfonamide scaffold were synthesized and screened for their in vitro anticancer activity against a representative panel of human cancer cell lines, leading to the identification of N-(2-methyl-1H-indol-5-yl)-1-naphthalenesulfonamide (8e) as a compound showing a remarkable activity across the panel, with IC50 values in the nanomolar-to-low micromolar range. Cell cycle distribution analysis revealed that 8e promoted a severe G2/M arrest, which was followed by cellular senescence as indicated by the detection of senescence-associated β-galactosidase (SA-β-gal) in 8e-treated cells. Prolonged 8e treatment also led to the onset of apoptosis, in correlation with the detection of increased Caspase 3/7 activities. Despite increasing γ-H2A.X levels, a well-established readout for DNA double-strand breaks, in vitro DNA binding studies with 8e did not support interaction with DNA. In agreement with this, 8e failed to activate the cellular DNA damage checkpoint. Importantly, tubulin staining showed that 8e promoted a severe disorganization of microtubules and mitotic spindle formation was not detected in 8e-treated cells. Accordingly, 8e inhibited tubulin polymerization in vitro in a dose-dependent manner and was also able to robustly inhibit cancer cell motility. Docking analysis revealed a compatible interaction with the colchicine-binding site of tubulin. Remarkably, these cellular effects were reversible since disruption of treatment resulted in the reorganization of microtubules, cell cycle re-entry and loss of senescent markers. Collectively, our data suggest that this compound may be a promising new anticancer agent capable of both reducing cancer cell growth and motility. PMID:27349984

  7. Antispasmodic and myorelaxant effects of the flavoring agent methyl cinnamate in gut: potential inhibition of tyrosine kinase.

    PubMed

    Lima, Francisco J B; Cosker, François; Brito, Teresinha S; Ribeiro-Filho, Hélder V; Silva, Camila M S; Aragão, Karoline S; Lahlou, Saad; Souza, Marcellus H L P; Santos, Armênio A; Magalhães, Pedro J C

    2014-10-01

    Methyl cinnamate (MC) is a safe flavoring agent useful to food industry. Although chemically analog to tyrosine kinase inhibitors, there is little information regarding its biological actions. Here, we aimed at assessing the MC effects on gastrointestinal contractility and the putative involvement of tyrosine kinase in the mediation of these effects. Isometric contractions were recorded in rat isolated strips from stomach, duodenum and colon segments. In gastric strips, MC (3-3000 µM) showed antispasmodic effects against carbachol-induced contractions, which remained unchanged by either l-NAME or tetraethylammonium pretreatment and occurred with potency similar to that obtained against contractions evoked by potassium or U-46619. In colon strips, MC was four times more potent than in gastric ones. MC and the positive control genistein inhibited phasic contractions induced by acetylcholine in Ca2+-free medium, an effect fully prevented by sodium orthovanadate. Both MC and genistein decreased the spontaneous contractions of duodenal strips and shortened the time necessary for gastric fundic tissues to reach 50% of maximal relaxation. In freshly isolated colon myocytes, MC decreased the basal levels of cytoplasmic Ca2+, but not the potassium-elicited cytoplasmic Ca2+ elevation. Colon strips obtained from rats subjected to intracolonic acetic acid instillation showed reduced contractility to potassium, which was partially recovered in MC-treated rats. Inhibitory effect of nifedipine against cholinergic contractions, blunted in acetic acid-induced colitis, was also recovered in MC-treated rats. In conclusion, MC inhibited the gastrointestinal contractility with a probable involvement of tyrosine kinase pathways. In vivo, it was effective to prevent the deleterious effects of colitis resulting from acetic acid injury. PMID:25046838

  8. Comparison of the Lonidamine Potentiated Effect of Nitrogen Mustard Alkylating Agents on the Systemic Treatment of DB-1 Human Melanoma Xenografts in Mice

    PubMed Central

    Nath, Kavindra; Nelson, David S.; Putt, Mary E.; Leeper, Dennis B.; Garman, Bradley; Nathanson, Katherine L.; Glickson, Jerry D.

    2016-01-01

    Previous NMR studies demonstrated that lonidamine (LND) selectively diminishes the intracellular pH (pHi) of DB-1 melanoma and mouse xenografts of a variety of other prevalent human cancers while decreasing their bioenergetic status (tumor βNTP/Pi ratio) and enhancing the activities of melphalan and doxorubicin in these cancer models. Since melphalan and doxorubicin are highly toxic agents, we have examined three other nitrogen (N)-mustards, chlorambucil, cyclophosphamide and bendamustine, to determine if they exhibit similar potentiation by LND. As single agents LND, melphalan and these N-mustards exhibited the following activities in DB-1 melanoma xenografts; LND: 100% tumor surviving fraction (SF); chlorambucil: 100% SF; cyclophosphamide: 100% SF; bendamustine: 79% SF; melphalan: 41% SF. When combined with LND administered 40 min prior to administration of the N-mustard (to maximize intracellular acidification) the following responses were obtained; chlorambucil: 62% SF; cyclophosphamide: 42% SF; bendamustine: 36% SF; melphalan: 10% SF. The effect of LND on the activities of these N-mustards is generally attributed to acid stabilization of the aziridinium active intermediate, acid inhibition of glutathione-S-transferase, which acts as a scavenger of aziridinium, and acid inhibition of DNA repair by O6-alkyltransferase. Depletion of ATP by LND may also decrease multidrug resistance and increase tumor response. At similar maximum tolerated doses, our data indicate that melphalan is the most effective N-mustard in combination with LND when treating DB-1 melanoma in mice, but the choice of N-mustard for coadministration with LND will also depend on the relative toxicities of these agents, and remains to be determined. PMID:27285585

  9. A sensitive gas chromatographic-tandem mass spectrometric method for detection of alkylating agents in water: application to acrylamide in drinking water, coffee and snuff.

    PubMed

    Pérez, Hermes Licea; Osterman-Golkar, Siv

    2003-08-01

    A sensitive analytical method for the analysis of acrylamide and other electrophilic agents in water has been developed. The amino acid L-valine served as a nucleophilic trapping agent. The method was applied to the analysis of acrylamide in 0.2-1 mL samples of drinking water or Millipore-filtered water, brewed coffee, or water extracts of snuff. The reaction product, N-(2-carbamoylethyl)valine, was incubated with pentafluorophenyl isothiocyanate to give a pentafluorophenylthiohydantoin (PFPTH) derivative. This derivative was extracted with diethyl ether, separated from excess reagent and impurities by a simple extraction procedure, and analyzed by gas chromatography-tandem mass spectrometry. (2H3)Acrylamide, added before the reaction with L-valine, was used as internal standard. Acrylamide and the related compound, N-methylolacrylamide, gave the same PFPTH derivative. The concentrations of acrylamides were < or = 0.4 nmol L(-1) (< or = 0.03 microg acrylamide L(-1)) in water, 200 to 350 nmol L(-1) in brewed coffee, and 10 to 34 nmol g(-1) snuff in portion bags, respectively. The precision (the coefficient of variation was 5%) and accuracy of the method were good. The detection limit was considerably lower than that of previously published methods for the analysis of acrylamide. PMID:12964603

  10. Molecular biology basis for the response of poly(ADP-rib) polymerase and NAD metabolism to dna damage caused by mustard alkylating agents. Final report, 30 April 1990-30 July 1994

    SciTech Connect

    Smulson, M.E.

    1994-08-30

    During the course of this contract, we have performed a variety of experiments whose intent has been to provide a strategy to modulate the nuclear enzyme poly(ADP-ribose) polymerase (PADPRP) in cultured keratinocytes. During this study, human keratinocyte lines were stably transfected with the cDNA for human PADPRP in the antisense orientation under an inducible promoter. Induction of this antisense RNA by dexamethasone in cultured cells selectively lowered levels of PADPRP in RNA, protein, and enzyme activity. Induction of antisense RNA led to a reduction in the levels of PADPRP in individual cell nuclei, as well as the loss of the ability of cells to synthesize and modify proteins by poly(ADP-ribose) polymer in response to an alkylating agent. When keratinocyte clones containing the antisense construct or empty vector alone were grafted onto nude mice they formed histologically normal human skin. The PADPRP antisense construct was also inducible in vivo by the topical application of dexamethasone to the reconstituted epidermis. In addition, poly(ADP-ribose) polymer could be induced and detected in vivo following the topical application of a sulfur mustard to the grafted transfected skin layers. Accordingly, a model system has been developed in which the levels of PADPRP can be selectively manipulated in human keratinocytes in cell culture, and potentially in reconstituted epidermis as well.

  11. Pharmacoepigenetics in gastrointestinal tumors: MGMT methylation and beyond.

    PubMed

    Fornaro, Lorenzo; Vivaldi, Caterina; Caparello, Chiara; Musettini, Gianna; Baldini, Editta; Masi, Gianluca; Falcone, Alfredo

    2016-01-01

    Epigenetic mechanisms are involved in gastrointestinal (GI) cancer pathogenesis. Insights into the molecular basis of GI carcinogenesis led to the identification of different epigenetic pathways and signatures that may play a role as therapeutic targets in metastatic colorectal cancer (mCRC) and non-colorectal GI tumors. Among these alterations, O6-methylguanine DNA methyltransferase (MGMT) gene promoter methylation is the most investigated biomarker and seems to be an early and frequent event, at least in CRC. Loss of expression of MGMT as a result of gene promoter methylation has been associated with interesting activity of alkylating agents in mCRC. However, the optimal methods for the definition of the MGMT status and additional predictive factors beyond MGMT in GI malignancies are lacking. Here we review the current role of MGMT methylation and other epigenetic alterations as potential treatment targets in GI tumors. PMID:26709653

  12. Method for reactivating solid catalysts used in alkylation reactions

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  13. Fragmentation of Electrospray-Produced Deprotonated Ions of Oligodeoxyribonucleotides Containing an Alkylated or Oxidized Thymidine

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Williams, Renee T.; Guerrero, Candace R.; Ji, Debin; Wang, Yinsheng

    2014-07-01

    Alkylation and oxidation constitute major routes of DNA damage induced by endogenous and exogenous genotoxic agents. Understanding the biological consequences of DNA lesions often necessitates the availability of oligodeoxyribonucleotide (ODN) substrates harboring these lesions, and sensitive and robust methods for validating the identities of these ODNs. Tandem mass spectrometry is well suited for meeting these latter analytical needs. In the present study, we evaluated how the incorporation of an ethyl group to different positions (i.e., O 2, N3, and O 4) of thymine and the oxidation of its 5-methyl carbon impact collisionally activated dissociation (CAD) pathways of electrospray-produced deprotonated ions of ODNs harboring these thymine modifications. Unlike an unmodified thymine, which often manifests poor cleavage of the C3'-O3' bond, the incorporation of an alkyl group to the O 2 position and, to a much lesser extent, the O 4 position, but not the N3 position of thymine, led to facile cleavage of the C3'-O3' bond on the 3' side of the modified thymine. Similar efficient chain cleavage was observed when thymine was oxidized to 5-formyluracil or 5-carboxyluracil, but not 5-hydroxymethyluracil. Additionally, with the support of computational modeling, we revealed that proton affinity and acidity of the modified nucleobases govern the fragmentation of ODNs containing the alkylated and oxidized thymidine derivatives, respectively. These results provided important insights into the effects of thymine modifications on ODN fragmentation.

  14. Synthesis of 5-methyl-5-deaza nonclassical antifolates as inhibitors of dihydrofolate reductases and as potential antipneumocystis, antitoxoplasma, and antitumor agents.

    PubMed

    Gangjee, A; Shi, J; Queener, S F; Barrows, L R; Kisliuk, R L

    1993-10-29

    A series of 2,4-diamino-5-methyl-6-(anilinomethyl)pyrido[2,3-d]pyrimidines 4-9 were synthesized as 5-deaza nonclassical antifolates containing trimethoxy, dichloro-, or trichlorophenyl substitutions and a N-H, N-CH3, or N-CHO at the 10-position. The compounds were evaluated as inhibitors of dihydrofolate reductases (DHFR) from Pneumocystis carinii (P. carinii), Toxoplasma gondii (T. gondii), rat liver (RL), and Lactobacillus casei (L. casei); as inhibitors of T. gondii and P. carinii cell growth in culture; and as antitumor agents. The compounds were prepared by modifications of procedures for classical 5-deaza folates. 2,4-Diamino-5-methyl-6-[(3',4',5'-trimethoxy-N- methylanilino)methyl]pyrido[2,3-d]pyrimidine (5a) exhibited high potency as well as selectivity (compared to RL DHFR) for P. carinii and T. gondii DHFR. Compound 5a is one of the most potent and selective nonclassical folate inhibitors of T. gondii DHFR known. The N-10 formyl analogue 2,4-diamino-5-methyl-6-[(N-formyl-3',4',5'-trimethoxyanilino) methyl]pyrido-[2,3-d]pyrimidine (6a) had decreased potency, but it maintained high selectivity for T. gondii DHFR. The corresponding chloro-substituted analogues maintained potency or had decreased potency; N-10 substitution did not increase potency or selectivity to the extent observed in the 3',4',5'-trimethoxy series. Partial reduction of the B ring to afford the dihydro analogue 2,4-diamino-5-methyl-6-[(N-formyl-3',4',5'-trimethoxyanilino) methyl]-5,8-dihydropyrido[2,3-d]pyrimidine (7), its 5,6,7,8-tetrahydropyrido[2,3-d]pyrimidine analogue 8, and 2,4-diamino-5-methyl-6-[(3',4',5'-trimethoxyanilino)methyl]-5,6,7, 8- tetrahydropyrido[2,3-d]pyrimidine (9) resulted in a significant decrease in potency. In T. gondii cell culture inhibitory studies, 2,4-diamino-5-methyl-6-[(3',4',5'- trimethoxyanilino)methyl]pyrido[2,3-d]pyrimidine (4a), 5a, and 6a were less potent compared to their DHFR inhibitory potencies. Against P. carinii cells in culture, 4a and 5a at 10

  15. The synthesis and biological evaluation of new DNA-directed alkylating agents, phenyl N-mustard-4-anilinoquinoline conjugates containing a urea linker.

    PubMed

    Marvania, Bhavin; Kakadiya, Rajesh; Christian, Wilson; Chen, Tai-Lin; Wu, Ming-Hsi; Suman, Sharda; Tala, Kiran; Lee, Te-Chang; Shah, Anamik; Su, Tsann-Long

    2014-08-18

    We synthesized a series of phenyl N-mustard-4-anilinoquinoline conjugates to study their antitumorigenic effects. These agents were prepared by the condensation of 4-[N,N-bis(2-chloroethyl)amino]phenyl isocyanate with 6-amino-4-methylamino or 4-anilinoquinolines. The structure-activity relationship (SAR) studies revealed that the C2-methylquinoline derivatives (18a-o) were generally more cytotoxic than the C2-phenylquinoline conjugates (23a-d) in inhibiting the cell growth of various human tumor cell lines in vitro. However, the methylamino or aniline substituents at C4 of quinoline did not influence the cytotoxic effects. The title conjugates were capable of inducing DNA cross-linking and promoting cell-cycle arrest at the G2/M phase. This study demonstrates that phenyl N-mustard-4-anilinoquinoline conjugates are generally more potent than phenyl N-mustard-4-anilinoquinazoline conjugates against the cell growth of various tumor cell-lines. PMID:25014640

  16. Low density lipoprotein for delivery of a water-insoluble alkylating agent to malignant cells. In vitro and in vivo studies of a drug-lipoprotein complex.

    PubMed Central

    Vitols, S.; Söderberg-Reid, K.; Masquelier, M.; Sjöström, B.; Peterson, C.

    1990-01-01

    Previous studies have shown that human leukaemic cells and certain tumour tissues have a higher receptor-mediated uptake of low density lipoprotein (LDL) than the corresponding normal cells or tissues. LDL has therefore been proposed as a carrier for anti-cancer agents. In the current study, a water-insoluble mitoclomine derivative (WB 4291) was incorporated into LDL. The WB 4291-LDL complex contained about 1,500 drug molecules per LDL particle and showed receptor-mediated toxicity in vitro as judged from the difference in growth inhibitory effect on normal and mutant (LDL-receptor-negative) cultured Chinese hamster ovary cells. However, cellular drug uptake did not exclusively occur by the receptor pathway since mutant cells were also affected to some extent. The LDL part of the complex had the same plasma clearance and organ distribution as native LDL after i.v. injection in mice and rabbits. Therapeutic effects were observed when Balb-C mice with experimental leukaemia were treated with the complex. After i.p. administration to mice with i.p. leukaemia median survival time was prolonged 2.5-fold and 40% became long time survivors. The effect was weaker (42% increase in life span) after i.v. injections of the complex to mice with i.v. leukaemia. Images Figure 3 PMID:2245164

  17. Transition-Metal-Free Regioselective Alkylation of Pyridine N-Oxides Using 1,1-Diborylalkanes as Alkylating Reagents.

    PubMed

    Jo, Woohyun; Kim, Junghoon; Choi, Seoyoung; Cho, Seung Hwan

    2016-08-01

    Reported herein is an unprecedented base-promoted deborylative alkylation of pyridine N-oxides using 1,1-diborylalkanes as alkyl sources. The reaction proceeds efficiently for a wide range of pyridine N-oxides and 1,1-diborylalkanes with excellent regioselectivity. The utility of the developed method is demonstrated by the sequential C-H arylation and methylation of pyridine N-oxides. The reaction also can be applied for the direct introduction of a methyl group to 9-O-methylquinine N-oxide, thus it can serve as a powerful method for late-stage functionalization. PMID:27351367

  18. Polygas spells relief from alkylation ills

    SciTech Connect

    Weismantel, G.E.

    1980-06-16

    Tight supplies and soaring prices of isobutane (for olefin alkylation), are causing renewed interest in the olefin ''polymerization'' (i.e., dimerization), route to high-octane gasoline-blending components. Modern polymerization processes, intended to supplement rather than replace alkylation offer considerable energy and capital savings, compared with alkylation-only schemes. In addition to the Institut Francais du Petrole's Dimersol ''polymerization'' tecnique which is already being used or will be used by 1981 in at least five U.S. refineries, with six more units in the planning stage, a low-cost process to ''polymerize'' excess refinery olefins, developed by International Energy Consultants Inc., is nearing commercialization. A third route to process C/sub 3//C/sub 4/ refinery streams with high conversion rates has been proposed by UOP Inc. The low motor octane number (MON) of the product gasoline (approx. 13 numbers lower than a typical alkylate), was recently confirmed in Total Petroleum Inc.'s studies, but Good Hope Refineries Inc. plans to increase its polymer gasoline MON by adding methyl tert.-butyl ether.

  19. A New Family of Ionic Liquids 1-amino-3-alkyl-1,2,3-Triazolium Nitrates

    NASA Technical Reports Server (NTRS)

    Drake, Greg; Kaplan, Greg; Hall, Leslie; Hawkins, Tommy; Larue, Joann

    2004-01-01

    A new class of ionic liquids based upon 1-amino-3-alkyl-1,2,3-triazolium nitrates (alkyl = methyl, ethyl, n-propyl, 2-propeny1, and n-butyl) have been synthesized and characterized by vibrational spectra, multinuclear NMR, elemental analysis, and DSC studies. A single crystal x-ray study was carried out for 1-amino-3-methyl-1,2,3-triazolium nitrate and the details will be presented.

  20. The Sarin-like Organophosphorus Agent bis (isopropyl methyl)phosphonate Induces Apoptotic Cell Death and COX-2 Expression in SK-N-SH Cells.

    PubMed

    Arima, Yosuke; Yoshimoto, Kanji; Namera, Akira; Makita, Ryosuke; Murata, Kazuhiro; Nagao, Masataka

    2016-03-01

    Organophosphorus compounds, such as sarin, are highly toxic nerve agents that inhibit acetylcholinesterase (AChE), but not cholinesterase, via multiple mechanisms. Recent studies have shown that organophosphorus compounds increase cyclooxygenase-2 (COX-2) expression and induce neurotoxicity. In this study, we examined the toxicity of the sarin-like organophosphorus agent bis(isopropyl methyl)phosphonate (BIMP) and the effects of BIMP on COX-2 expression in SK-N-SH human neuroblastoma cells. Exposure to BIMP changed cell morphology and induced caspase-dependent apoptotic cell death accompanied by cleavage of caspase 3, caspase 9, and poly (ADP-ribose) polymerase (PARP). It also increased COX-2 expression, while pretreatment with a COX inhibitor, ibuprofen, decreased BIMP-dependent cell death and COX-2 expression in SK-N-SH cells. Thus, our findings suggest that BIMP induces apoptotic cell death and upregulates COX-2 expression. PMID:27348899

  1. Design, Synthesis, and Biological Evaluation of 1-Methyl-1,4-dihydroindeno[1,2-c]pyrazole Analogues as Potential Anticancer Agents Targeting Tubulin Colchicine Binding Site.

    PubMed

    Liu, Yan-Na; Wang, Jing-Jing; Ji, Ya-Ting; Zhao, Guo-Dong; Tang, Long-Qian; Zhang, Cheng-Mei; Guo, Xiu-Li; Liu, Zhao-Peng

    2016-06-01

    By targeting a new binding region at the interface between αβ-tubulin heterodimers at the colchicine binding site, we designed a series of 7-substituted 1-methyl-1,4-dihydroindeno[1,2-c]pyrazoles as potential tubulin polymerization inhibitors. Among the compounds synthesized, 2-(6-ethoxy-3-(3-ethoxyphenylamino)-1-methyl-1,4-dihydroindeno[1,2-c]pyrazol-7-yloxy)acetamide 6a and 2-(6-ethoxy-3-(3-ethoxyphenylamino)-1-methyl-1,4-dihydroindeno[1,2-c]pyrazol-7-yloxy)-N-hydroxyacetamide 6n showed noteworthy low nanomolar potency against HepG2, Hela, PC3, and MCF-7 cancer cell lines. In mechanism studies, 6a inhibited tubulin polymerization and disorganized microtubule in A549 cells by binding to tubulin colchicine binding site. 6a arrested A549 cells in G2/M phase that was related to the alterations in the expression of cyclin B1 and p-cdc2. 6a induced A549 cells apoptosis through the activation of caspase-3 and PARP. In addition, 6a inhibited capillary tube formation in a concentration-dependent manner. In nonsmall cell lung cancer xenografts mouse model, 6a suppressed tumor growth by 59.1% at a dose of 50 mg/kg (ip) without obvious toxicity, indicating its in vivo potential as anticancer agent. PMID:27172319

  2. Benzyl and Methyl Fatty Hydroxamic Acids Based on Palm Kernel Oil as Chelating Agent for Liquid-Liquid Iron(III) Extraction

    PubMed Central

    Haron, Md Jelas; Jahangirian, Hossein; Silong, Sidik; Yusof, Nor Azah; Kassim, Anuar; Rafiee-Moghaddam, Roshanak; Mahdavi, Behnam; Peyda, Mazyar; Abdollahi, Yadollah; Amin, Jamileh

    2012-01-01

    Liquid-liquid iron(III) extraction was investigated using benzyl fatty hydroxamic acids (BFHAs) and methyl fatty hydroxamic acids (MFHAs) as chelating agents through the formation of iron(III) methyl fatty hydroxamate (Fe-MFHs) or iron(III) benzyl fatty hydroxamate (Fe-BFHs) in the organic phase. The results obtained under optimized conditions, showed that the chelating agents in hexane extract iron(III) at pH 1.9 were realized effectively with a high percentage of extraction (97.2% and 98.1% for MFHAs and BFHAs, respectively). The presence of a large amount of Mg(II), Ni(II), Al(III), Mn(II) and Co(II) ions did affect the iron(III) extraction. Finally stripping studies for recovering iron(III) from organic phase (Fe-MFHs or Fe-BFHs dissolved in hexane) were carried out at various concentrations of HCl, HNO3 and H2SO4. The results showed that the desired acid for recovery of iron(III) was 5 M HCl and quantitative recovery of iron(III) was achieved from Fe(III)-MFHs and Fe(III)-BFHs solutions in hexane containing 5 mg/L of Fe(III). PMID:22408444

  3. ALKYL PYROPHOSPHATE METAL SOLVENT EXTRACTANTS AND PROCESS

    DOEpatents

    Long, R.L.

    1958-09-30

    A process is presented for the recovery of uranium from aqueous mineral acidic solutions by solvent extraction. The extractant is a synmmetrical dialkyl pyrophosphate in which the alkyl substituents have a chain length of from 4 to 17 carbon atoms. Mentioned as a preferred extractant is dioctyl pyrophosphate. The uranium is precipitated irom the organic extractant phase with an agent such as HF, fluoride salts. alcohol, or ammonia.

  4. Inhibitory Activities of Alkyl Syringates and Related Compounds on Aflatoxin Production.

    PubMed

    Furukawa, Tomohiro; Iimura, Kurin; Kimura, Taichi; Yamamoto, Toshiyoshi; Sakuda, Shohei

    2016-01-01

    Inhibitors of aflatoxin production of aflatoxigenic fungi are useful for preventing aflatoxin contamination in crops. As methyl syringate weakly inhibits aflatoxin production, aflatoxin production inhibitory activities of additional alkyl syringates with alkyl chains from ethyl to octyl were examined. Inhibitory activity toward aflatoxin production of Aspergillus flavus became stronger as the length of the alkyl chains on the esters became longer. Pentyl, hexyl, heptyl, and octyl syringates showed strong activity at 0.05 mM. Heptyl and octyl parabens, and octyl gallate also inhibited aflatoxin production as strongly as octyl syringate. Alkyl parabens and alkyl gallates inhibit the complex II activity of the mitochondrial respiration chain; thus, whether alkyl syringates inhibit complex II activity was examined. Inhibitory activities of alkyl syringates toward complex II also became stronger as the length of the alkyl chains increased. The complex II inhibitory activity of octyl syringate was comparable to that of octyl paraben and octyl gallate. These results suggest that alkyl syringates, alkyl parabens, and alkyl gallates, including commonly used food additives, are useful for aflatoxin control. PMID:27338472

  5. Inhibitory Activities of Alkyl Syringates and Related Compounds on Aflatoxin Production

    PubMed Central

    Furukawa, Tomohiro; Iimura, Kurin; Kimura, Taichi; Yamamoto, Toshiyoshi; Sakuda, Shohei

    2016-01-01

    Inhibitors of aflatoxin production of aflatoxigenic fungi are useful for preventing aflatoxin contamination in crops. As methyl syringate weakly inhibits aflatoxin production, aflatoxin production inhibitory activities of additional alkyl syringates with alkyl chains from ethyl to octyl were examined. Inhibitory activity toward aflatoxin production of Aspergillus flavus became stronger as the length of the alkyl chains on the esters became longer. Pentyl, hexyl, heptyl, and octyl syringates showed strong activity at 0.05 mM. Heptyl and octyl parabens, and octyl gallate also inhibited aflatoxin production as strongly as octyl syringate. Alkyl parabens and alkyl gallates inhibit the complex II activity of the mitochondrial respiration chain; thus, whether alkyl syringates inhibit complex II activity was examined. Inhibitory activities of alkyl syringates toward complex II also became stronger as the length of the alkyl chains increased. The complex II inhibitory activity of octyl syringate was comparable to that of octyl paraben and octyl gallate. These results suggest that alkyl syringates, alkyl parabens, and alkyl gallates, including commonly used food additives, are useful for aflatoxin control. PMID:27338472

  6. Determining methylation status of methylguanine DNA methyl transferase (MGMT) from formalin-fixed, paraffin embedded tumor tissue

    PubMed Central

    de Abreu, Francine B.; Gallagher, Torrey L.; Liu, Emmeline Z.; Tsongalis, Gregory J.

    2014-01-01

    O-6-methylguanine-DNA methyltransferase (MGMT) has been associated with resistance to alkylating agent cancer therapy in Glioblastoma (GBM), the most common and aggressive primary brain tumor in adults. Lower expression or silencing of the MGMT protein by promoter methylation has been reported to improve survival in patients with GBM [1]. This protocol describes bisulfite conversion, methylation sensitive PCR amplification and data analysis/interpretation. This protocol differs from published protocols in that it:•Describes a detailed method to measure MGMT using DNA extracted from solid tumor tissue. We have optimized the DNA extraction by using FFPE tissue blocks that contain greater than 50% tumor tissue, when non-tumor tissue was also present. Performance of this assay is compromised when lower quantities of tumor cells are used as the methylation status of tumor cells is diluted out by methylation status of normal cells.•The measurement of MGMT could be further (enhanced) optimized using a percentage of methylation ration cutoff of 2 as methylated.•The machine specifications detailed here are specific to measuring MGMT from PPFE tumor tissue. PMID:26150933

  7. Mössbauer study of novel iron(II)-dioxime complexes with branched alkyl chains

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Lengyel, A.; Homonnay, Z.; Várhelyi, Cs.; Klencsár, Z.; Kubuki, S.; Szalay, R.

    2014-04-01

    Novel iron(II) oxime complexes with dimethyl-glyoxime, methyl-ethyl-glyoxime, methyl-isopropyl-glyoxime, [Fe(DioxH)2L2] with and without axial ligands have been synthesized. 57Fe Mössbauer spectroscopy showed different spin states in complexes with short alkyl chain and with branched alkyl chain, respectively. It was shown that the asymmetry observed in the doublet line intensity of iron-bis-glyoximes is due to the texture effect. The effect of back-coordination was also studied in the case of iron-bis-dioxime complexes with branched alkyl chains, having different axial ligands.

  8. Alkyl nitrate distributions and seasonal variation over the Pacific Ocean during HIPPO

    NASA Astrophysics Data System (ADS)

    Atlas, E. L.; Smith, K.; Zhu, X.; Pope, L.; Lueb, R.; Hendershot, R.; Moore, F. L.; Miller, B. R.; Montzka, S. A.; Elkins, J. W.; Wofsy, S. C.

    2012-12-01

    Alkyl nitrates are produced in both the atmosphere and in the ocean by photochemical oxidation of organic precursors. Past studies have shown that low molecular weight alkyl nitrates, particularly methyl and ethyl nitrate, have high production rates and air-sea fluxes from equatorial ocean waters. In addition, high concentrations of these organic nitrates have been found in the atmosphere of the Southern Ocean. Measurements during the HIPPO campaign were able to characterize the tropospheric distribution of these alkyl nitrates over all seasons, and from virtually pole to pole over the Central Pacific Ocean. The measurements from HIPPO confirm the strong equatorial source and in addition show a strong asymmetry in methyl nitrate concentrations between hemispheres, with the Southern Hemisphere having consistently higher concentrations compared to the Northern Hemisphere. This presentation will discuss the alkyl nitrate distributions, sources, and variations observed during the HIPPO campaign and examine relationships to other trace gases of oceanic origin, such as DMS and methyl iodide.

  9. DNA Polymerase α (swi7) and the Flap Endonuclease Fen1 (rad2) Act Together in the S-Phase Alkylation Damage Response in S. pombe

    PubMed Central

    Koulintchenko, Milana; Vengrova, Sonya; Eydmann, Trevor; Arumugam, Prakash; Dalgaard, Jacob Z.

    2012-01-01

    Polymerase α is an essential enzyme mainly mediating Okazaki fragment synthesis during lagging strand replication. A specific point mutation in Schizosaccharomyces pombe polymerase α named swi7-1, abolishes imprinting required for mating-type switching. Here we investigate whether this mutation confers any genome-wide defects. We show that the swi7-1 mutation renders cells hypersensitive to the DNA damaging agents methyl methansulfonate (MMS), hydroxyurea (HU) and UV and incapacitates activation of the intra-S checkpoint in response to DNA damage. In addition we show that, in the swi7-1 background, cells are characterized by an elevated level of repair foci and recombination, indicative of increased genetic instability. Furthermore, we detect novel Swi1-, -Swi3- and Pol α- dependent alkylation damage repair intermediates with mobility on 2D-gel that suggests presence of single-stranded regions. Genetic interaction studies showed that the flap endonuclease Fen1 works in the same pathway as Pol α in terms of alkylation damage response. Fen1 was also required for formation of alkylation- damage specific repair intermediates. We propose a model to explain how Pol α, Swi1, Swi3 and Fen1 might act together to detect and repair alkylation damage during S-phase. PMID:23071723

  10. Structural features of a series of S-alkylated and non-S-alkylated aminothiolate nickel(II) complexes

    NASA Astrophysics Data System (ADS)

    Chohan, B. S.

    2014-12-01

    The structural aspects of a family of S-alkylated complexes, generated by reacting iodoacetamide or iodoethanol with two mononuclear Ni(II) diaminodithiolate complexes are discussed. The S-alkylation reactions were investigated with particular attention paid to the size of the chelate ring that straps the N,N'-methylamine donors. In one complex the N-methyl groups are cis to each other and in the other they are trans. Both complexes undergo S-alkylation with two equivalents of either reagent, that coordinates through the pendant oxygen to the Ni(II), forming dications with an N2S2O2 ligand donor set. Crystal structures of [NiC12H26N4O2S2]I2 · MeOH, [NiC12H28N2O2S2]I2, and [NiC13H30N2O2S2]I2 · 1/2 MeOH, are determined by single crystal X-ray analysis. The N-methyl groups in each of the alkylated derivatives are trans to each other, suggesting that the cis configuration is highly unfavored for such complexes in octahedral conformation. Crystal packing data shows that each of the alkylated complexes interacts closely with the iodide counterions, and with solvent if present; some of these interactions include H-bonds. Only the iodoacetamide derivative shows any significant interaction with a neighboring molecule.

  11. Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-07-01

    The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety. PMID:27383199

  12. PRMT6 increases cytoplasmic localization of p21CDKN1A in cancer cells through arginine methylation and makes more resistant to cytotoxic agents

    PubMed Central

    Suzuki, Takehiro; Dohmae, Naoshi; Nakamura, Yusuke; Hamamoto, Ryuji

    2015-01-01

    p21CDKN1A is known as a potent inhibitor of cyclin-dependent kinase (CDK), which regulates cell cycle in response to various stimuli, including DNA damage, on the p53-dependent manner. Here we demonstrate that protein arginine methyltransferase 6 (PRMT6) methylates p21 at arginine 156 and promotes phosphorylation of threonine 145 on p21, resulting in the increase of cytoplasmic localization of p21. The cytoplasmic presence of p21 makes cancer cells more resistant to cytotoxic agents. Our results indicate that PRMT6 appears to be one of the key proteins to dysregulate p21 functions in human cancer, and targeting this pathway may be an appropriate strategy for development of anticancer drugs. PMID:26436589

  13. An Innovative Fluorescent Semi-quantitative Methylation-specific PCR Method for the Determination of MGMT Promoter Methylation is Reflecting Intra-tumor Heterogeneity.

    PubMed

    Nguyen, Aurelia; Legrain, Michele; Noel, Georges; Coca, Andres; Meyer Ea, Nicolos; Schott, Roland; Lasthaus, Christelle; Chenard, Marie Pierrette; Gaub, Marie Pierre; Lessinger, Jean Marc; Guenot, Dominique; Entz-Werle, Natacha

    2015-01-01

    High grade gliomas (HGG) are usually associated with a very dismal prognosis, which was moderately improving in the last decade with the introduction of the alkylating agent temozolomide in their treatment. The methylation status of MGMT (O6 methylguanine DNA-methyltransferase) promoter is one of the strongest predictive and prognostic factors for the patient chemoresponse. For instance, the molecular method of assessment for MGMT promoter status is not standardized. In this background, we developed a fluorescent capillary gel electrophoresis-based methylation specific-PCR. This technique allowed a semi-quantitative estimate of the relative ratio between methylated and unmethylated alleles. The efficacy and accuracy of the technique was assessed in a retrospective cohort of 178 newly diagnosed adult HGGs, who were homogeneously treated. First, we analyzed the impact on survival of different cut-off points in the MGMT promoter methylation and, to go further, we correlated these different rates to other well-known prognostic molecular factors involved in adult HGGs. This strategy allowed to validate our technique as a very sensitive technique (detection of a low methylation percentage, < 5%), which was feasible in fresh-frozen as well as in FFPE samples and had the propensity to detect intra-tumor heterogeneity. This technique identified a new sub-group of anaplastic oligodendrogliomas or oligoastrocytomas defined by a minor methylation and a worse outcome and, therefore, will help to substratify accurately into more homogeneous subgroups of methylated tumors. PMID:26118907

  14. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    PubMed

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. PMID:26150397

  15. In vivo kinetics of micronuclei induction by bifunctional alkylating antineoplastics.

    PubMed

    Morales-Ramírez, Pedro; Vallarino-Kelly, Teresita; Cruz-Vallejo, Virginia L; López-Iturbe, Rosario; Alvaro-Delgadillo, Horacio

    2004-05-01

    The aim of the present study was to determine in vivo the kinetics of micronucleated polychromatic erythrocyte (MN-PCE) induction in mice, as an approach for studying the mechanism of micronuclei induction by mitomycin C, cis-diamine dichloroplatinum, busulfan and bis-chloroethylnitrosourea, bifuctional alkylating antineoplastic agents having different patterns of crosslink induction. The kinetics of MN-PCE induction was established by scoring the frequency of MN-PCE in 2000 PCE in peripheral blood, for periods of 8 or 10 h after acute treatment and up to 80 h, with different doses of the agent. The kinetics of MN-PCE induction and particularly the times of maximal induction by different bifunctional alkylating agents were compared with the kinetics previously obtained for ethylnitrosourea, methylnitrosourea and 6-mercaptopurine, agents that cause MN-PCE mainly in the first, second and third divisions after exposure, respectively. The results obtained in the present study allow us to conclude that: (i) bifunctional alkylating agents have very different efficiencies of genotoxic and cytotoxic action; (ii) all assayed bifunctional alkylating agents induced micronuclei during the first cell division, owing to the mistaken repair of primary lesions, e.g. excision; (iii) busulfan and bis-chloroethylnitrosourea showed an additional late mechanism of micronuclei induction, which is expressed at the third division and seems to be related to the mismatch repair process. PMID:15123786

  16. Enzymatic Methylation and Structure-Activity-Relationship Studies on Polycarcin V, a Gilvocarcin-Type Antitumor Agent

    PubMed Central

    Chen, Jhong-Min; Shepherd, Micah D.; Horn, Jamie; Leggas, Markos; Rohr, Jürgen

    2014-01-01

    Polycarcin V, a polyketide natural product of Streptomyces polyformus, was chosen to study structure-activity-relationships of the gilvocarcin group of antitumor antibiotics, because of a similar chemical structure and comparable bioactivity with gilvocarcin V, the principle compound of this group, and the feasibility of enzymatic modifications of its sugar moiety by auxiliary O-methyltransferases. Such enzymes were used to modify the interaction of the drug with histone H3, the biological target that interacts with the sugar moiety. Cytotoxicity assays revealed that a free 2’-OH group of the sugar moiety is essential to maintain the bioactivity of polycarcin V, apparently an important H-bond donor for the interaction with histone H3, while converting 3'-OH into an OCH3 group improved the bioactivity. Bis-methylated polycarcin derivatives revealed weaker activity than the parent compound, indicating that at least two H-bond donors in the sugar are necessary for optimal binding. PMID:25366963

  17. Radical-based alkylation of guanine derivatives in aqueous medium.

    PubMed

    Chatgilialoglu, Chryssostomos; Caminal, Clara; Mulazzani, Quinto G

    2011-05-01

    The radical-based alkylation of 8-bromoguanosine (1a) and 8-bromo-2'-deoxyguanosine (1b) at the C8 position has been investigated in aqueous solutions. Alkyl radicals were generated by scavenging of the primary species of γ-radiolysis by the alcohol substrate. These reactions result in the efficient formation of intermolecular C-C bonds in aqueous media, by using the reactivity of α-hydroxyalkyl radicals derived from alcohols with 1a and 1b. A mechanism for the formation of C8 guanine alkylated adducts has been proposed, based on the quantification of radiation chemical yields for the disappearance of starting material and the formation of all products. Two α-hydroxyalkyl radicals are needed to form an alkylated guanine, the first one adding to C8 followed by ejection of Br(-) with formation of guanyl adduct and the second one acting as reducing agent of the guanyl adduct. PMID:21431230

  18. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  19. Synthesis and evaluation of substituted 4-methyl-2-oxo-2H-chromen-7-yl phenyl carbamates as potent acetylcholinesterase inhibitors and anti- amnestic agents.

    PubMed

    Anand, Preet; Singh, Baldev

    2013-08-01

    The study aimed to synthesize and evaluate substituted 4-methyl-2-oxo-2H-chromen-7-yl phenylcarbamates as potent acetylcholinesterase (AChE) inhibitors and anti-amnestic agents. The compounds were evaluated for AChE and butyrylcholinesterase (BuChE) inhibitory activity in rat brain homogenate and plasma, respectively. The most potent test compound 4d was evaluated for memory testing in scopolamine-induced amnesia. The phenylcarbamate substituted coumarins (4a-4h) demonstrated more potent AChE inhibitory as compared to parent 7-hydroxy-4-methylcoumarin. The introduction of phenylcarbamate moiety to coumarin template also significantly increased BuChE inhibitory activity, albeit less than AChE inhibitory activity with approximate BuChE/AChE selectivity ratio of 20. The compound 4d displayed the most potent AChE inhibitory activity with IC50 = 13.5 ± 1.7 nM, along with amelioration of amnesia in mice in terms of restoration of time spent in target quadrant and escap latency time. It is concluded that carbamate derivatives of coumarin may be employed as potential AChE inhibitors and anti-amnestic agents. PMID:23072555

  20. 1-Benzyl-2-methyl-3-indolylmethylene barbituric acid derivatives: Anti-cancer agents that target nucleophosmin 1 (NPM1).

    PubMed

    Penthala, Narsimha Reddy; Ketkar, Amit; Sekhar, Konjeti R; Freeman, Michael L; Eoff, Robert L; Balusu, Ramesh; Crooks, Peter A

    2015-11-15

    In the present study, we have designed and synthesized a series of 1-benzyl-2-methyl-3-indolylmethylene barbituric acid analogs (7a-7h) and 1-benzyl-2-methyl-3-indolylmethylene thiobarbituric acid analogs (7 i-7 l) as nucleophosmin 1 (NPM1) inhibitors and have evaluated them for their anti-cancer activity against a panel of 60 different human cancer cell lines. Among these analogs 7 i, 7 j, and 7 k demonstrated potent growth inhibitory effects in various cancer cell types with GI50 values <2 μM. Compound 7 k exhibited growth inhibitory effects on a sub-panel of six leukemia cell lines with GI50 values in the range 0.22-0.35 μM. Analog 7 i also exhibited GI50 values <0.35 μM against three of the leukemia cell lines in the sub-panel. Analogs 7 i, 7 j, 7 k and 7 l were also evaluated against the mutant NPM1 expressing OCI-AML3 cell line and compounds 7 k and 7 l were found to cause dose-dependent apoptosis (AP50 = 1.75 μM and 3.3 μM, respectively). Compound 7k also exhibited potent growth inhibition against a wide variety of solid tumor cell lines: that is, A498 renal cancer (GI50 = 0.19 μM), HOP-92 and NCI-H522 lung cancer (GI50 = 0.25 μM), COLO 205 and HCT-116 colon cancer (GI50 = 0.20 and 0.26 μM, respectively), CNS cancer SF-539 (GI50 = 0.22 μM), melanoma MDA-MB-435 (GI50 = 0.22 μM), and breast cancer HS 578T (GI50 = 0.22 μM) cell lines. Molecular docking studies suggest that compounds 7 k and 7 l exert their anti-leukemic activity by binding to a pocket in the central channel of the NPM1 pentameric structure. These results indicate that the small molecule inhibitors 7 i, 7 j, 7 k, and 7 l could be potentially developed into anti-NPM1 drugs for the treatment of a variety of hematologic malignancies and solid tumors. PMID:26602084

  1. Detection of a nerve agent simulant using single-walled carbon nanotube networks: dimethyl-methyl-phosphonate.

    PubMed

    Kim, Yeonju; Lee, Seunghyun; Choi, Hyang Hee; Noh, Jin-Seo; Lee, Wooyoung

    2010-12-10

    Single-walled carbon nanotube (SWNT) networks were used to detect hazardous dimethyl-methyl-phosphonate (DMMP) gas in real time, employing two different metals as electrodes. Random networks of SWNTs were simply obtained by drop-casting a SWNT-containing solution onto a surface-oxidized Si substrate. Although the electrical responses to DMMP at room temperature were reversible for both metals, the Pd-contacting SWNT network sensors exhibited a higher response and a shorter response time than those of the Au-contacting SWNT network sensors at the same DMMP concentration, due to the stronger interactions between the SWNTs and Pd surface atoms. In Pd-contacting SWNT network sensors, the response increased linearly with increasing DMMP concentration and reproducible response curves were obtained for DMMP levels as low as 1 ppm. These results indicate that SWNT networks in contact with Pd electrodes can function as good DMMP sensors at room temperature with scalable and fast response and excellent recovery. PMID:21079292

  2. Detection of a nerve agent simulant using single-walled carbon nanotube networks: dimethyl-methyl-phosphonate

    NASA Astrophysics Data System (ADS)

    Kim, Yeonju; Lee, Seunghyun; Choi, Hyang Hee; Noh, Jin-Seo; Lee, Wooyoung

    2010-12-01

    Single-walled carbon nanotube (SWNT) networks were used to detect hazardous dimethyl-methyl-phosphonate (DMMP) gas in real time, employing two different metals as electrodes. Random networks of SWNTs were simply obtained by drop-casting a SWNT-containing solution onto a surface-oxidized Si substrate. Although the electrical responses to DMMP at room temperature were reversible for both metals, the Pd-contacting SWNT network sensors exhibited a higher response and a shorter response time than those of the Au-contacting SWNT network sensors at the same DMMP concentration, due to the stronger interactions between the SWNTs and Pd surface atoms. In Pd-contacting SWNT network sensors, the response increased linearly with increasing DMMP concentration and reproducible response curves were obtained for DMMP levels as low as 1 ppm. These results indicate that SWNT networks in contact with Pd electrodes can function as good DMMP sensors at room temperature with scalable and fast response and excellent recovery.

  3. Renoprotection and the Bardoxolone Methyl Story - Is This the Right Way Forward? A Novel View of Renoprotection in CKD Trials: A New Classification Scheme for Renoprotective Agents.

    PubMed

    Onuigbo, Macaulay

    2013-01-01

    In the June 2011 issue of the New England Journal of Medicine, the BEAM (Bardoxolone Methyl Treatment: Renal Function in CKD/Type 2 Diabetes) trial investigators rekindled new interest and also some controversy regarding the concept of renoprotection and the role of renoprotective agents, when they reported significant increases in the mean estimated glomerular filtration rate (eGFR) in diabetic chronic kidney disease (CKD) patients with an eGFR of 20-45 ml/min/1.73 m(2) of body surface area at enrollment who received the trial drug bardoxolone methyl versus placebo. Unfortunately, subsequent phase IIIb trials failed to show that the drug is a safe alternative renoprotective agent. Current renoprotection paradigms depend wholly and entirely on angiotensin blockade; however, these agents [angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs)] have proved to be imperfect renoprotective agents. In this review, we examine the mechanistic limitations of the various previous randomized controlled trials on CKD renoprotection, including the paucity of veritable, elaborate and systematic assessment methods for the documentation and reporting of individual patient-level, drug-related adverse events. We review the evidence base for the presence of putative, multiple independent and unrelated pathogenetic mechanisms that drive (diabetic and non-diabetic) CKD progression. Furthermore, we examine the validity, or lack thereof, of the hyped notion that the blockade of a single molecule (angiotensin II), which can only antagonize the angiotensin cascade, would veritably successfully, consistently and unfailingly deliver adequate and qualitative renoprotection results in (diabetic and non-diabetic) CKD patients. We clearly posit that there is this overarching impetus to arrive at the inference that multiple, disparately diverse and independent pathways, including any veritable combination of the mechanisms that we examine in this review, and many

  4. Renoprotection and the Bardoxolone Methyl Story – Is This the Right Way Forward? A Novel View of Renoprotection in CKD Trials: A New Classification Scheme for Renoprotective Agents

    PubMed Central

    Onuigbo, Macaulay

    2013-01-01

    In the June 2011 issue of the New England Journal of Medicine, the BEAM (Bardoxolone Methyl Treatment: Renal Function in CKD/Type 2 Diabetes) trial investigators rekindled new interest and also some controversy regarding the concept of renoprotection and the role of renoprotective agents, when they reported significant increases in the mean estimated glomerular filtration rate (eGFR) in diabetic chronic kidney disease (CKD) patients with an eGFR of 20-45 ml/min/1.73 m2 of body surface area at enrollment who received the trial drug bardoxolone methyl versus placebo. Unfortunately, subsequent phase IIIb trials failed to show that the drug is a safe alternative renoprotective agent. Current renoprotection paradigms depend wholly and entirely on angiotensin blockade; however, these agents [angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs)] have proved to be imperfect renoprotective agents. In this review, we examine the mechanistic limitations of the various previous randomized controlled trials on CKD renoprotection, including the paucity of veritable, elaborate and systematic assessment methods for the documentation and reporting of individual patient-level, drug-related adverse events. We review the evidence base for the presence of putative, multiple independent and unrelated pathogenetic mechanisms that drive (diabetic and non-diabetic) CKD progression. Furthermore, we examine the validity, or lack thereof, of the hyped notion that the blockade of a single molecule (angiotensin II), which can only antagonize the angiotensin cascade, would veritably successfully, consistently and unfailingly deliver adequate and qualitative renoprotection results in (diabetic and non-diabetic) CKD patients. We clearly posit that there is this overarching impetus to arrive at the inference that multiple, disparately diverse and independent pathways, including any veritable combination of the mechanisms that we examine in this review, and many

  5. Synthesis and properties of phosphono-derivatives of methyl stearate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of phosphono-derivatives of methyl stearate (PhDMS) were synthesized from methyl oleate and dialkyl H-phosphonates (dialkyl-phosphites). The alkyl groups in the phosphonates were methyl, ethyl, and butyl. The reaction can be carried to 98+% completion with a radical initiator. It is possibl...

  6. Preparation and reactivity of macrocyclic rhodium(III) alkyl complexes

    SciTech Connect

    Carraher, Jack M.; Ellern, Arkady; Bakac, Andreja

    2013-09-21

    Macrocyclic rhodium(II) complexes LRh(H2O)(2+) (L = L-1 = cyclam and L-2 = meso-Me-6-cyclam) react with alkyl hydroperoxides RC(CH3)(2)OOH to generate the corresponding rhodium(III) alkyls L(H2O)RhR2+ (R = CH3, C2H5, PhCH2). Methyl and benzyl complexes can also be prepared by bimolecular group transfer from alkyl cobaloximes (dmgH)(2)(H2O) CoR and (dmgBF(2))(2)(H2O) CoR (R = CH3, PhCH2) to LRh(H2O)(2+). The new complexes were characterized by solution NMR and by crystal structure analysis. They exhibit great stability in aqueous solution at room temperature, but undergo efficient Rh-C bond cleavage upon photolysis. (C) 2013 Elsevier B.V. All rights reserved.

  7. Sensitivity Analysis of the MGMT-STP27 Model and Impact of Genetic and Epigenetic Context to Predict the MGMT Methylation Status in Gliomas and Other Tumors.

    PubMed

    Bady, Pierre; Delorenzi, Mauro; Hegi, Monika E

    2016-05-01

    The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Our model MGMT-STP27 allows prediction of the methylation status of the MGMT promoter using data from the Illumina's Human Methylation BeadChips (HM-27K and HM-450K) that is publically available for many cancer data sets. Here, we investigate the impact of the context of genetic and epigenetic alterations and tumor type on the classification and report on technical aspects, such as robustness of cutoff definition and preprocessing of the data. The association between gene copy number variation, predicted MGMT methylation, and MGMT expression revealed a gene dosage effect on MGMT expression in lower grade glioma (World Health Organization grade II/III) that in contrast to glioblastoma usually carry two copies of chromosome 10 on which MGMT resides (10q26.3). This implies some MGMT expression, potentially conferring residual repair function blunting the therapeutic effect of alkylating agents. A sensitivity analyses corroborated the performance of the original cutoff for various optimization criteria and for most data preprocessing methods. Finally, we propose an R package mgmtstp27 that allows prediction of the methylation status of the MGMT promoter and calculation of appropriate confidence and/or prediction intervals. Overall, MGMT-STP27 is a robust model for MGMT classification that is independent of tumor type and is adapted for single sample prediction. PMID:26927331

  8. N-O Chemistry for Antibiotics: Discovery of N-Alkyl-N-(pyridin-2-yl)hydroxylamine Scaffolds as Selective Antibacterial Agents Using Nitroso Diels-Alder and Ene Chemistry

    PubMed Central

    Wencewicz, Timothy A.; Yang, Baiyuan; Rudloff, James R.; Oliver, Allen G.; Miller, Marvin J.

    2011-01-01

    The discovery, syntheses, and structure-activity relationships (SAR) of a new family of heterocyclic antibacterial compounds based on N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds are described. A structurally diverse library of ~100 heterocyclic molecules generated from Lewis acid-mediated nucleophilic ring opening reactions with nitroso Diels-Alder cycloadducts and nitroso ene reactions with substituted alkenes was evaluated in whole cell antibacterial assays. Compounds containing the N-alkyl-N-(pyridin-2-yl)hydroxylamine structure demonstrated selective and potent antibacterial activity against the Gram-positive bacterium Micrococcus luteus ATCC 10240 (MIC90 = 2.0 μM or 0.41 μg/mL) and moderate activity against other Gram-positive strains including antibiotic resistant strains of Staphylococcus aureus (MRSA) and Enterococcus faecalis (VRE). A new synthetic route to the active core was developed using palladium-catalyzed Buchwald-Hartwig amination reactions of N-alkyl-O-(4-methoxybenzyl)hydroxylamines with 2-halo-pyridines that facilitated SAR studies and revealed the simplest active structural fragment. This work shows the value of using a combination of diversity-oriented synthesis (DOS) and parallel synthesis for identifying new antibacterial scaffolds. PMID:21859126

  9. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  10. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  11. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  12. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  13. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  14. Evaluation of 2-methyl-3-hydroxy-4-pyridinecarboxylic acid as a possible chelating agent for iron and aluminium.

    PubMed

    Dean, Annalisa; Ferlin, Maria Grazia; Brun, Paola; Castagliuolo, Ignazio; Badocco, Denis; Pastore, Paolo; Venzo, Alfonso; Bombi, G Giorgio; Di Marco, Valerio B

    2008-04-01

    In view of a possible application to Fe and Al chelation therapy, 2-methyl-3-hydroxy-4-pyridinecarboxylic acid (DT2) was synthesised, and its complex formation, electrochemical and cytotoxic properties were studied. The complexing properties of DT2 towards Fe(III) and Al(III) were investigated in aqueous 0.6 m (Na)Cl at 25 degrees C by means of potentiometric titrations, UV-vis spectrophotometry, and 1H NMR spectroscopy. DT2 is a triprotic acid (H3L+) having pKa1 = 0.47, pKa2 = 5.64 and pKa3 = 11.18. The metal-ligand complexes observed in solution and their corresponding stability constants (log beta values) are the following: FeLH (19.38), FeL (16.01), FeLH(-1) (12.28), FeL2H2 (37.29), FeL3H3 (53.41), FeL3H2 (47.99), FeL3H (41.21) and FeL3 (34.1); AlLH (17.43), AlL2H2 (33.74), AlL2H (27.6), AlL3H3 (48.72), AlL3H2 (42.67), AlL3H (35.8) and AlL3 (27.92). The complex formation between DT2 and Fe(II) was studied by UV-vis: the weak complex FeLH (log beta = 15.8) was detected. DT2 shows a lower complexation efficiency with Fe(III) and Al(III) than that of other available chelators, but higher than that of its non-methylated analogue 3-hydroxy-4-pyridinecarboxylic acid (DT0). The electrochemical behaviour of DT2 was investigated by means of cyclic voltammetry, indicating that the oxidation of the ligand proceeds through a two electron process with a CECE mechanism. Voltammetric curves suggest that the oxidation or the reduction of DT2 in vivo is unlikely. According to the thermodynamic data, also the Fe(III)-DT2 complexes do not undergo redox cycling at physiological pH. Amperometric titrations of solutions containing Fe(III) and DT2 at pH = 5 indicated the same Fe(III) : ligand stoichiometric ratio as calculated from potentiometric data. The toxicity of DT2 and of other simple hydroxypyridinecarboxylic acids was investigated in vitro and no cytotoxic activity was observed (IC50 > 0.1 mM) on cancer cell lines and also on primary human cells, following a three day

  15. Induction of innate immune gene expression following methyl methanesulfonate-induced DNA damage in sea urchins.

    PubMed

    Reinardy, H C; Chapman, J; Bodnar, A G

    2016-02-01

    Sea urchins are noted for the absence of neoplastic disease and represent a novel model to investigate cellular and systemic cancer protection mechanisms. Following intracoelomic injection of the DNA alkylating agent methyl methanesulfonate, DNA damage was detected in sea urchin cells and tissues (coelomocytes, muscle, oesophagus, ampullae and gonad) by the alkaline unwinding, fast micromethod. Gene expression analyses of the coelomocytes indicated upregulation of innate immune markers, including genes involved in NF-κB signalling. Results suggest that activation of the innate immune system following DNA damage may contribute to the naturally occurring resistance to neoplastic disease observed in sea urchins. PMID:26911343

  16. The synthesis of 2-nitro-1-((2-hydroxyethoxy)methyl)imidazole (azomycin acyclonucleoside)

    SciTech Connect

    Srivastava, P.C.; Hasan, A. )

    1990-01-01

    Synthesis of acyclonucleosides as analogues of naturally occurring ribonucleosides has been the subject of major research investigations since the advent of the chemotherapeutic agent acyclovir (Zovirax), an acyclic analogue of guanosine. The intensity of research interest in this area is obvious from the fact that almost every conceivable acyclic analogue of naturally occurring or biologically active synthetic nucleosides have been prepared during the past decade. The synthesis of 2-nitro-1-((2-hydroxyethoxy)methyl)imidazole, the acyclonucleoside analogue of antibiotic azomycin (azomycin acyclonucleoside), is accomplished via alkylation of azomycin with 2-benzoyloxyethoxymethylene chloride followed by debenzoylation.

  17. 32P-postlabeling test for covalent DNA binding of chemicals in vivo: application to a variety of aromatic carcinogens and methylating agents.

    PubMed

    Reddy, M V; Gupta, R C; Randerath, E; Randerath, K

    1984-02-01

    Carcinogen--DNA adducts were detected and determined by 32P-postlabeling assay after exposure of mouse or rat tissues in vivo to a total of 28 compounds comprising 7 arylamines and derivatives, 3 azo compounds, 2 nitroaromatics, 12 polycyclic aromatic hydrocarbons, and 4 methylating agents. DNA was isolated from mouse skin, mouse liver, and rat liver after treatment with the individual carcinogens, then digested enzymatically to deoxyribonucleoside 3'-monophosphates, which were converted to 5'-32P-labeled deoxyribonucleoside 3',5'-bisphosphates by T4 polynucleotide kinase-catalyzed [32P]phosphate transfer from [gamma-32P]ATP. The nucleotides were resolved by anion-exchange t.l.c. on polyethyleneimine-cellulose and detected by autoradiography. The determination of low levels of DNA binding of the aromatic carcinogens entailed the removal of normal nucleotides prior to the resolution of adduct nucleotides. For this purpose, an alternative procedure employing reversed-phase t.l.c. was devised which offered advantages for the detection of quantitatively minor adducts. The procedures described enabled the detection of 1 aromatic DNA adduct in approximately 10(8) normal nucleotides, while the limit of detection of methylated adducts was 1 adduct in approximately 6 X 10(5) nucleotides. The results show that a great number of carcinogen-DNA adducts of diverse structure are substrates for 32P-labeling by polynucleotide kinase-catalyzed phosphorylation. Because covalent DNA adduct formation in vivo appears to be an essential property of the majority of chemical carcinogens, 32P-postlabeling analysis of carcinogen--DNA adducts in mammalian tissues may serve as a test for the screening of chemicals for potential carcinogenicity. PMID:6697441

  18. Vibrational Spectroscopic Study of Imidazolium Dicationic Ionic Liquids: Effect of Cation Alkyl Chain Length

    NASA Astrophysics Data System (ADS)

    Moumene, T.; Belarbi, E. H.; Haddad, B.; Villemin, D.; Abbas, O.; Khelifa, B.; Bresson, S.

    2016-05-01

    Two new dicationic ionic liquids were synthesized: bis-methyl imidazolium methylidene hexafluorophosphate [M(CH2)IM2 +][2PF 6 - ] and bis-methyl imidazolium propylidene hexafluorophosphate [M(CH2)3IM2 +][2PF 6 - ]. Their structures were identified by H, C, P, F NMR, FTIR/ATR, and FT-Raman spectroscopies in order to study the effect of cation alkyl chain length on vibration behaviors. Several changes were recorded, which were related to alkyl chain length. A frequency shift was observed in some modes while others remained insensitive. A greater number of peaks was found in the FTIR/ATR spectra and the FT-Raman spectra with increasing alkyl chain length, which indicated that chain length influences the N-C connection twisting. More peaks with strong intensity appeared for longer alkyl chain lengths.

  19. Vibrational Spectroscopic Study of Imidazolium Dicationic Ionic Liquids: Effect of Cation Alkyl Chain Length

    NASA Astrophysics Data System (ADS)

    Moumene, T.; Belarbi, E. H.; Haddad, B.; Villemin, D.; Abbas, O.; Khelifa, B.; Bresson, S.

    2016-05-01

    Two new dicationic ionic liquids were synthesized: bis-methyl imidazolium methylidene hexafluorophosphate [M(CH2)IM2 +][2PF{6/-}] and bis-methyl imidazolium propylidene hexafluorophosphate [M(CH2)3IM2 +][2PF{6/-}]. Their structures were identified by H, C, P, F NMR, FTIR/ATR, and FT-Raman spectroscopies in order to study the effect of cation alkyl chain length on vibration behaviors. Several changes were recorded, which were related to alkyl chain length. A frequency shift was observed in some modes while others remained insensitive. A greater number of peaks was found in the FTIR/ATR spectra and the FT-Raman spectra with increasing alkyl chain length, which indicated that chain length influences the N-C connection twisting. More peaks with strong intensity appeared for longer alkyl chain lengths.

  20. Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase

    PubMed Central

    Zhao, Yu; Majid, Mona C; Soll, Jennifer M; Brickner, Joshua R; Dango, Sebastian; Mosammaparast, Nima

    2015-01-01

    Repair of DNA alkylation damage is critical for genomic stability and involves multiple conserved enzymatic pathways. Alkylation damage resistance, which is critical in cancer chemotherapy, depends on the overexpression of alkylation repair proteins. However, the mechanisms responsible for this upregulation are unknown. Here, we show that an OTU domain deubiquitinase, OTUD4, is a positive regulator of ALKBH2 and ALKBH3, two DNA demethylases critical for alkylation repair. Remarkably, we find that OTUD4 catalytic activity is completely dispensable for this function. Rather, OTUD4 is a scaffold for USP7 and USP9X, two deubiquitinases that act directly on the AlkB proteins. Moreover, we show that loss of OTUD4, USP7, or USP9X in tumor cells makes them significantly more sensitive to alkylating agents. Taken together, this work reveals a novel, noncanonical mechanism by which an OTU family deubiquitinase regulates its substrates, and provides multiple new targets for alkylation chemotherapy sensitization of tumors. PMID:25944111

  1. Achievements in uranium alkyl chemistry: celebrating sixty years of synthetic pursuits.

    PubMed

    Johnson, Sara A; Bart, Suzanne C

    2015-05-01

    Organouranium complexes containing uranium-carbon σ-bonds have been highly sought after since the initial exploration of these complexes during the 1950s. Since this time, a variety of uranium starting materials have been developed and alkylating reagents used in order to generate such species. Trivalent uranium alkyl compounds have recently moved past using the bis(trimethylsilyl)methyl ligand with the use of larger ancillary hydrotris(pyrazolyl)borate ligands. The uranium(iv) congeners are dominated by cyclopentadienyl ligands, but recent developments have shown that amides, alkoxides, and phosphines are also suitable ligand frameworks for supporting such species. A family of uranium(iv) alkyls formed via cyclometallation and neutral homoleptics have also been described. Highly reactive uranium(v) and (vi) alkyl complexes have recently been synthesized at low temperatures. The representative studies highlighted herein have helped to pioneer the field of organouranium alkyl chemistry. PMID:25283733

  2. A Review of the Role of the Sequence-Dependent Electrostatic Landscape in DNA Alkylation Patterns

    PubMed Central

    Gold, Barry; Marky, Luis M.; Stone, Michael P.; Williams, Loren D.

    2008-01-01

    Alkylating agents, including environmental and endogenous carcinogens, and DNA targeting antineoplastic agents, that adduct DNA via intermediates with significant cationic charge show a sequence selectively in their covalent bonding to nucleobases. The resulting patterns of alkylation eventually contribute to the agent-dependent distributions and types of mutations. The origin of the regioselective modification of DNA by electrophiles has been attributed to steric and/or electronic factors, but attempts to mechanistically model and predict alkylation patterns have had limited success. In this review, we present data consistent with the role of the intrinsic sequence-dependent electrostatic landscape (SDEL) in DNA that modulates the equilibrium binding of cations and the bonding of reactive charged alkylating agents to atoms that line the floor of the major groove of DNA. PMID:17112226

  3. Acute effects of a sarin-like organophosphorus agent, bis(isopropyl methyl)phosphonate, on cardiovascular parameters in anaesthetized, artificially ventilated rats

    SciTech Connect

    Watanabe, Yoshimasa; Itoh, Takeo; Shiraishi, Hiroaki; Maeno, Yoshitaka; Arima, Yosuke; Torikoshi, Aiko; Namera, Akira; Makita, Ryosuke; Yoshizumi, Masao; Nagao, Masataka

    2013-10-01

    The organophosphorus compound sarin irreversibly inhibits acetylcholinesterase. We examined the acute cardiovascular effects of a sarin-like organophosphorus agent, bis(isopropyl methyl)phosphonate (BIMP), in anaesthetized, artificially ventilated rats. Intravenous administration of BIMP (0.8 mg/kg; the LD50 value) induced a long-lasting increase in blood pressure and tended to increase heart rate. In rats pretreated with the non-selective muscarinic-receptor antagonist atropine, BIMP significantly increased both heart rate and blood pressure. In atropine-treated rats, hexamethonium (antagonist of ganglionic nicotinic receptors) greatly attenuated the BIMP-induced increase in blood pressure without changing the BIMP-induced increase in heart rate. In rats treated with atropine plus hexamethonium, intravenous phentolamine (non-selective α-adrenergic receptor antagonist) plus propranolol (non-selective β-adrenergic receptor antagonist) completely blocked the BIMP-induced increases in blood pressure and heart rate. In atropine-treated rats, the reversible acetylcholinesterase inhibitor neostigmine (1 mg/kg) induced a transient increase in blood pressure, but had no effect on heart rate. These results suggest that in anaesthetized rats, BIMP induces powerful stimulation of sympathetic as well as parasympathetic nerves and thereby modulates heart rate and blood pressure. They may also indicate that an action independent of acetylcholinesterase inhibition contributes to the acute cardiovascular responses induced by BIMP. - Highlights: • A sarin-like agent BIMP markedly increased blood pressure in anaesthetized rats. • Muscarinic receptor blockade enhanced the BIMP-induced increase in blood pressure. • Ganglionic nicotinic receptor blockade attenuated the BIMP-induced response. • Blockade of α- as well as β-receptors attenuated the BIMP-induced response.

  4. Design, synthesis, and in vitro biological evaluation of novel 6-methyl-7-substituted-7-deaza purine nucleoside analogs as anti-influenza A agents.

    PubMed

    Lin, Cai; Sun, Chenghai; Liu, Xiao; Zhou, Yiqian; Hussain, Muzammal; Wan, Junting; Li, Minke; Li, Xue; Jin, Ruiliang; Tu, Zhengchao; Zhang, Jiancun

    2016-05-01

    Among many subtypes of influenza A viruses, influenza A(H1N1) and A(H3N2) subtypes are currently circulating among humans (WHO report 2014-15). Therapeutically, the emergence of viral resistance to currently available drugs (adamantanes and neuraminidase inhibitors) has heightened alarms for developing novel drugs that could address diverse targets in the viral replication cycle in order to improve treatment outcomes. To this regard, the design and synthesis of nucleoside analog inhibitors as potential anti-influenza A agents is a very active field of research nowadays. In this study, we designed and synthesized a series of hitherto unknown 6-methyl-7-substituted-7-deaza purine nucleoside analogs, and evaluated for their biological activities against influenza A virus strains, H1N1 and H3N2. From the viral inhibition assay, we identified some effective compounds, among which, compounds 5x (IC50 = 5.88 μM and 6.95 μM for H1N1 and H3N2, respectively) and 5z (IC50 = 3.95 μM and 3.61 μM for H1N1 and H3N2, respectively) demonstrated potent anti-influenza A activity. On the basis of selectivity index, we conceive that compound 5x may serve as a chemical probe of interest for further lead optimization studies with a general aim of developing novel and effective anti-influenza A virus agents. PMID:26802557

  5. C-Alkylation of Ketones and Related Compounds by Alcohols: Transition-Metal-Catalyzed Dehydrogenation.

    PubMed

    Huang, Fei; Liu, Zhuqing; Yu, Zhengkun

    2016-01-18

    Transition-metal-catalyzed C-alkylation of ketones and secondary alcohols, with alcohols, avoids use of organometallic or environmentally unfriendly alkylating agents by means of borrowing hydrogen (BH) or hydrogen autotransfer (HA) activation of the alcohol substrates. Water is formed as the only by-product, thus making the BH process atom-economical and environmentally benign. Diverse homogeneous and heterogeneous transition-metal catalysts, ketones, and alcohols can be used for this transformation, thus rendering the BH process promising for replacing those procedures that use traditional alkylating agents. This Minireview summarizes the advances during the last five years in transition-metal-catalyzed BH α-alkylation of ketones, and β-alkylation of secondary alcohols with alcohols. A discussion on the application of the BH strategy for C-C bond formation is included. PMID:26639633

  6. One-Pot Three-Component Synthesis of Novel Diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(arylamino)methyl)phosphonate as Potential Anticancer Agents.

    PubMed

    Fang, Yi-Lin; Wu, Zhi-Lin; Xiao, Meng-Wu; Tang, Yu-Ting; Li, Kang-Ming; Ye, Jiao; Xiang, Jian-Nan; Hu, Ai-Xi

    2016-01-01

    With the aim of discovering new anticancer agents, we have designed and synthesized novel α-aminophosphonate derivatives containing a 2-oxoquinoline structure using a convenient one-pot three-component method. The newly synthesized compounds were evaluated for antitumor activities against the A549 (human lung adenocarcinoma cell), HeLa (human cervical carcinoma cell), MCF-7 (human breast cancer cell), and U2OS (human osteosarcoma cell) cancer cell lines in vitro, employing a standard 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The results of pharmacological screening indicated that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most compounds showed more potent inhibitory activities comparable to 5-fluorouracil (5-FU) which was used as a positive control. The mechanism of representative compound 4u (diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(phenyl-amino)methyl)phosphonate) indicated that the compound mainly arrested HeLa cells in S and G2 stages and was accompanied by apoptosis in HeLa cells. This action was confirmed by acridine orange/ethidium bromide staining, Hoechst 33342 staining, and flow cytometry. PMID:27136538

  7. One-Pot Three-Component Synthesis of Novel Diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(arylamino)methyl)phosphonate as Potential Anticancer Agents

    PubMed Central

    Fang, Yi-Lin; Wu, Zhi-Lin; Xiao, Meng-Wu; Tang, Yu-Ting; Li, Kang-Ming; Ye, Jiao; Xiang, Jian-Nan; Hu, Ai-Xi

    2016-01-01

    With the aim of discovering new anticancer agents, we have designed and synthesized novel α-aminophosphonate derivatives containing a 2-oxoquinoline structure using a convenient one-pot three-component method. The newly synthesized compounds were evaluated for antitumor activities against the A549 (human lung adenocarcinoma cell), HeLa (human cervical carcinoma cell), MCF-7 (human breast cancer cell), and U2OS (human osteosarcoma cell) cancer cell lines in vitro, employing a standard 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The results of pharmacological screening indicated that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most compounds showed more potent inhibitory activities comparable to 5-fluorouracil (5-FU) which was used as a positive control. The mechanism of representative compound 4u (diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(phenyl-amino)methyl)phosphonate) indicated that the compound mainly arrested HeLa cells in S and G2 stages and was accompanied by apoptosis in HeLa cells. This action was confirmed by acridine orange/ethidium bromide staining, Hoechst 33342 staining, and flow cytometry. PMID:27136538

  8. Polycyclic Aromatic Acids Are Primary Metabolites of Alkyl-PAHs-A Case Study with Nereis diversicolor.

    PubMed

    Malmquist, Linus M V; Selck, Henriette; Jørgensen, Kåre B; Christensen, Jan H

    2015-05-01

    Although concentrations of alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) in oil-contaminated sediments are higher than those of unsubstituted PAHs, only little attention has been given to metabolism and ecotoxicity of alkyl-PAHs. In this study we demonstrated that metabolism of alkyl-PAHs primarily forms polycyclic aromatic acids (PAAs). We generalize this to other alkyl-PAHs, based on literature and the present study of the metabolism of 1-methylphenanthrene, 3,6-dimethylphenanthrene, and 1-, 2-, 3-, and 6-methylchrysene related to their unsubstituted parent PAHs. Also, we observed that body burdens and production of PAAs was related to the position of the methyl group, showing the same isomer specific preferences as for microbial degradation of alkyl-PAHs. We detected a high production of PAAs, and larger metabolism of alkyl-PAHs than their unsubstituted parent PAHs. We therefore propose that carboxylic acid metabolites of alkyl-PAHs have the potential of constituting a new class of contaminants in marine waters that needs attention in relation to ecological risk assessments. PMID:25827176

  9. Effects of changes in intracellular iron pool on AlkB-dependent and AlkB-independent mechanisms protecting E.coli cells against mutagenic action of alkylating agent.

    PubMed

    Sikora, Anna; Maciejewska, Agnieszka M; Poznański, Jarosław; Pilżys, Tomasz; Marcinkowski, Michał; Dylewska, Małgorzata; Piwowarski, Jan; Jakubczak, Wioletta; Pawlak, Katarzyna; Grzesiuk, Elżbieta

    2015-08-01

    An Escherichia coli hemH mutant accumulates protoporphyrin IX, causing photosensitivity of cells to visible light. Here, we have shown that intracellular free iron in hemH mutants is double that observed in hemH(+) strain. The aim of this study was to recognize the influence of this increased free iron concentration on AlkB-directed repair of alkylated DNA by analyzing survival and argE3 → Arg(+) reversion induction after λ>320 nm light irradiation and MMS-treatment in E. coli AB1157 hemH and alkB mutants. E.coli AlkB dioxygenase constitutes a direct single-protein repair system using non-hem Fe(II) and cofactors 2-oxoglutarate (2OG) and oxygen (O2) to initiate oxidative dealkylation of DNA/RNA bases. We have established that the frequency of MMS-induced Arg(+) revertants in AB1157 alkB(+)hemH(-)/pMW1 strain was 40 and 26% reduced comparing to the alkB(+)hemH(-) and alkB(+)hemH(+)/pMW1, respectively. It is noteworthy that the effect was observed only when bacteria were irradiated with λ>320 nm light prior MMS-treatment. This finding indicates efficient repair of alkylated DNA in photosensibilized cells in the presence of higher free iron pool and AlkB concentrations. Interestingly, a 31% decrease in the level of Arg(+) reversion was observed in irradiated and MMS-treated hemH(-)alkB(-) cells comparing to the hemH(+)alkB(-) strain. Also, the level of Arg(+) revertants in the irradiated and MMS treated hemH(-) alkB(-) mutant was significantly lower (by 34%) in comparison to the same strain but MMS-treated only. These indicate AlkB-independent repair involving Fe ions and reactive oxygen species. According to our hypothesis it may be caused by non-enzymatic dealkylation of alkylated dNTPs in E. coli cells. In in vitro studies, the absence of AlkB protein in the presence of iron ions allowed etheno(ϵ) dATP and ϵdCTP to spontaneously convert to dAMP and dCMP, respectively. Thus, hemH(-) intra-cellular conditions may favor Fe-dependent dealkylation of modified d

  10. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  11. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  12. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  13. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  14. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  15. Safety Assessment of Alkyl PEG Sulfosuccinates as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of alkyl polyethylene glycol (PEG) sulfosuccinates, which function in cosmetics mostly as surfactants/cleansing agents. Although these ingredients may cause ocular and skin irritation, dermal penetration is unlikely because of the substantial polarity and molecular size of these ingredients. The Panel considered the negative oral carcinogenicity and reproductive and developmental toxicity data on chemically related laureths (PEG lauryl ethers) and negative repeated dose toxicity and skin sensitization data on disodium laureth sulfosuccinate supported the safety of these alkyl PEG sulfosuccinates in cosmetic products, but. The CIR Expert Panel concluded that the alkyl PEG sulfosuccinates are safe in the present practices of use and concentration when formulated to be nonirritating. PMID:26362121

  16. Safety Assessment of Alkyl Ethylhexanoates as Used in Cosmetics.

    PubMed

    Fiume, Monice; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 16 alkyl ethylhexanoates for use in cosmetics, concluding that these ingredients are safe in cosmetic formulations in the present practices of use and concentrations when formulated to be nonirritating. The alkyl ethylhexanoates primarily function as skin-conditioning agents in cosmetics. The highest concentration of use reported for any of the alkyl ethylhexanoates is 77.3% cetyl ethylhexanoate in rinse-off formulations used near the eye, and the highest leave-on use reported is 52% cetyl ethylhexanoate in lipstick formulations. The Panel reviewed available animal and clinical data related to these ingredients, and the similarities in structure, properties, functions, and uses of ingredients from previous CIR assessments on constituent alcohols that allowed for extrapolation of the available toxicological data to assess the safety of the entire group. PMID:26684798

  17. Implication of a chromosome 15q15.2 locus in regulating UBR1 and predisposing smokers to MGMT methylation in lung

    PubMed Central

    Leng, Shuguang; Wu, Guodong; Collins, Leonard B.; Thomas, Cynthia L.; Tellez, Carmen S.; Jauregui, Andrew R.; Picchi, Maria A.; Zhang, Xiequn; Juri, Daniel E.; Desai, Dhimant; Amin, Shantu G.; Crowell, Richard E.; Stidley, Christine A.; Liu, Yushi; Swenberg, James A.; Lin, Yong; Wathelet, Marc G.; Gilliland, Frank D.; Belinsky, Steven A.

    2015-01-01

    O6-methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that protects cells from carcinogenic effects of alkylating agents; however, MGMT is silenced by promoter hypermethylation during carcinogenesis. A single nucleotide polymorphism (SNP) in an enhancer in the MGMT promoter was previously identified to be highly significantly associated with risk for MGMT methylation in lung cancer and sputum from smokers. To further genetic investigations, a genome-wide association and replication study was conducted in two smoker cohorts to identify novel loci for MGMT methylation in sputum that were independent of the MGMT enhancer polymorphism. Two novel trans-acting loci (15q15.2 and 17q24.3) that were identified acted together with the enhancer SNP to empower risk prediction for MGMT methylation. We found that the predisposition to MGMT methylation arising from the 15q15.2 locus involved regulation of the ubiquitin protein ligase E3 component UBR1. UBR1 attenuation reduced turnover of MGMT protein and increased repair of O6-methylguanine in nitrosomethylurea-treated human bronchial epithelial cells (HBEC), while also reducing MGMT promoter activity and abolishing MGMT induction. Overall, our results substantiate reduced gene transcription as a major mechanism for predisposition to MGMT methylation in the lungs of smokers, and support the importance of UBR1 in regulating MGMT homeostasis and DNA repair of alkylated DNA adducts in cells. PMID:26183928

  18. Implication of a Chromosome 15q15.2 Locus in Regulating UBR1 and Predisposing Smokers to MGMT Methylation in Lung.

    PubMed

    Leng, Shuguang; Wu, Guodong; Collins, Leonard B; Thomas, Cynthia L; Tellez, Carmen S; Jauregui, Andrew R; Picchi, Maria A; Zhang, Xiequn; Juri, Daniel E; Desai, Dhimant; Amin, Shantu G; Crowell, Richard E; Stidley, Christine A; Liu, Yushi; Swenberg, James A; Lin, Yong; Wathelet, Marc G; Gilliland, Frank D; Belinsky, Steven A

    2015-08-01

    O(6)-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that protects cells from carcinogenic effects of alkylating agents; however, MGMT is silenced by promoter hypermethylation during carcinogenesis. A single-nucleotide polymorphism (SNP) in an enhancer in the MGMT promoter was previously identified to be highly significantly associated with risk for MGMT methylation in lung cancer and sputum from smokers. To further genetic investigations, a genome-wide association and replication study was conducted in two smoker cohorts to identify novel loci for MGMT methylation in sputum that were independent of the MGMT enhancer polymorphism. Two novel trans-acting loci (15q15.2 and 17q24.3) that were identified acted together with the enhancer SNP to empower risk prediction for MGMT methylation. We found that the predisposition to MGMT methylation arising from the 15q15.2 locus involved regulation of the ubiquitin protein ligase E3 component UBR1. UBR1 attenuation reduced turnover of MGMT protein and increased repair of O6-methylguanine in nitrosomethylurea-treated human bronchial epithelial cells, while also reducing MGMT promoter activity and abolishing MGMT induction. Overall, our results substantiate reduced gene transcription as a major mechanism for predisposition to MGMT methylation in the lungs of smokers, and support the importance of UBR1 in regulating MGMT homeostasis and DNA repair of alkylated DNA adducts in cells. PMID:26183928

  19. Syntheses and analytical characterizations of N-alkyl-arylcyclohexylamines.

    PubMed

    Wallach, Jason; Colestock, Tristan; Cicali, Brian; Elliott, Simon P; Kavanagh, Pierce V; Adejare, Adeboye; Dempster, Nicola M; Brandt, Simon D

    2016-08-01

    The rise in new psychoactive substances that are available as 'research chemicals' (RCs) remains a significant forensic and legislative challenge. A number of arylcyclohexylamines have attracted attention as RCs and continue to be encountered, including 3-MeO-PCP, 3-MeO-PCE and 3-MeO-PCPr. These compounds are commonly perceived as ketamine-like dissociative substances and are believed to act predominantly via antagonism of the N-methyl-D-aspartate (NMDA) receptor. To aid in the identification of newly emerging substances of abuse, the current studies were performed. The syntheses of fifteen N-alkyl-arylcyclohexylamines are described. Analytical characterizations were performed via gas chromatography and high performance liquid chromatography coupled to multiple forms of mass spectrometry as well as nuclear magnetic resonance spectroscopy, ultraviolet diode array detection and infrared spectroscopy. The series consisted of the N-alkyl derivatives (N-methyl, N-ethyl, N-propyl) of phenyl-substituted and isomeric 2-, 3- and 4-methoxy phenylcyclohexylamines, as well as the N-alkyl derivatives obtained from 3-methylphenyl and 2-thienyl moieties. In addition to the presentation of a range of previously unreported data, it was also found that positional isomers of aryl methoxyl-substituted arylcyclohexylamines were readily distinguishable under a variety of analytical conditions. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26360516

  20. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound

    SciTech Connect

    Ohnuma, Tomokazu; Nakayama, Shinji; Anan, Eisaburo; Nishiyama, Takahito; Ogura, Kenichiro; Hiratsuka, Akira

    2010-04-01

    Under basal conditions, the interaction of the cytosolic protein Kelch-like ECH-associated protein 1 (Keap1) with the transcription factor nuclear factor-E2-related factor 2 (Nrf2) results in a low level of expression of cytoprotective genes whose promoter region contains the antioxidant response element (ARE). In response to oxidants and electrophiles, Nrf2 is stabilized and accumulates in the nucleus. The mechanism for this effect has been proposed to involve thiol-dependent modulation of Keap1, leading to loss of its ability to negatively regulate Nrf2. We previously reported that falcarindiol (heptadeca-1,9(Z)-diene-4,6-diyne-3,8-diol), which occurs in Apiaceae and the closely related Araliaceae plants, causes nuclear accumulation of Nrf2 and induces ARE-regulated enzymes. Here, we report the mechanism of Nrf2 induction by falcarindiol. NMR analysis revealed that the conjugated diacetylene carbons of falcarindiol acted as electrophilic moieties to form adducts with a cysteine (Cys) thiol. In addition, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and circular dichroism spectroscopy, it was demonstrated that falcarindiol alkylated Cys residues in Keap1 and altered the Keap1 secondary structure. Transfection studies using the purified Keap1 protein, a luciferase reporter construct, and an Nrf2-expressing plasmid indicated that the intact Keap1 protein suppressed Nrf2-mediated ARE-luciferase activity. On the other hand, the falcarindiol-alkylated Keap1 protein did not suppress such activity. Treatment of HEK293 cells overexpressing Keap1 with falcarindiol generated a high molecular weight (HMW) form of Keap1. Furthermore, the Cys151 residue in Keap1 was found to be uniquely required for not only the formation of HMW Keap1 but also an increase in ARE-luciferase activity by falcarindiol. Our results demonstrate that falcarindiol having conjugated diacetylene carbons covalently modifies the Cys151 residue in Keap1 and that the

  1. Defective processing of methylated single-stranded DNA by E. coli alkB mutants

    PubMed Central

    Dinglay, Suneet; Trewick, Sarah C.; Lindahl, Tomas; Sedgwick, Barbara

    2000-01-01

    Escherichia coli alkB mutants are very sensitive to DNA methylating agents. Despite these mutants being the subject of many studies, no DNA repair or other function has been assigned to the AlkB protein or to its human homolog. Here, we report that reactivation of methylmethanesulfonate (MMS)-treated single-stranded DNA phages, M13, f1, and G4, was decreased dramatically in alkB mutants. No such decrease occurred when using methylated λ phage or M13 duplex DNA. These data show that alkB mutants have a marked defect in processing methylation damage in single-stranded DNA. Recombinant AlkB protein bound more efficiently to single- than double-stranded DNA. The single-strand damage processed by AlkB was primarily cytotoxic and not mutagenic and was induced by SN2 methylating agents, MMS, DMS, and MeI but not by SN1 agent N-methyl-N-nitrosourea or by γ irradiation. Strains lacking other DNA repair activities, alkA tag, xth nfo, uvrA, mutS, and umuC, were not defective in reactivation of methylated M13 phage and did not enhance the defect of an alkB mutant. A recA mutation caused a small but additive defect. Thus, AlkB functions in a novel pathway independent of these activities. We propose that AlkB acts on alkylated single-stranded DNA in replication forks or at transcribed regions. Consistent with this theory, stationary phase alkB cells were less MMS sensitive than rapidly growing cells. PMID:10950872

  2. Manganese-Mediated C-H Alkylation of Unbiased Arenes Using Alkylboronic Acids.

    PubMed

    Castro, Susana; Fernández, Juan J; Fañanás, Francisco J; Vicente, Rubén; Rodríguez, Félix

    2016-06-27

    The alkylation of arenes is an essential synthetic step of interest not only from the academic point of view but also in the bulk chemical industry. Despite its limitations, the Friedel-Crafts reaction is still the method of choice for most of the arene alkylation processes. Thus, the development of new strategies to synthesize alkyl arenes is a highly desirable goal, and herein, we present an alternative method to those conventional reactions. Particularly, a simple protocol for the direct C-H alkylation of unbiased arenes with alkylboronic acids in the presence of Mn(OAc)3 ⋅2H2 O is reported. Primary or secondary unactivated alkylboronic acids served as alkylating agents for the direct functionalization of representative polyaromatic hydrocarbons (PAHs) or benzene. The results are consistent with a free-radical mechanism. PMID:27124250

  3. Extended 3{beta}-alkyl steranes and 3-alkyl triaromatic steroids in crude oils and rock extracts

    SciTech Connect

    Dahl, J.; Moldowan, J.M.; Summons, R.E.

    1995-09-01

    In oils and Precambian- to Miocene-age source rocks from varying depositional environments, we have conclusively identified several novel 3-alkyl sterane and triaromatic steroid series, including (1) 3{beta}-n-pentyl steranes, (2) 3{beta}-isopentyl steranes, (3) 3{beta}-n-hexyl steranes, (4) 3{beta}-n-hepatyl steranes, (5) 3,4-dimethyl steranes, (6) 3{beta}-butyl,4-methyl steranes, (7) triaromatic 3-n-pentyl steroids, and (8) triaromatic 3-isopentyl steroids. We have also tentatively identified additional homologs with 3-alkyl substituents as large as C{sub 11}. The relative abundances of these compounds vary substantially between samples, as indicated by (1) the ratio of 3{beta}-n-pentyl steranes to 3{beta}-isopentyl steranes and (2) the ratio of 3-n-pentyl triaromatic steroids to 3-isopentyl triaromatic steroids. These data suggest possible utility for these parameters as tools for oil-source rock correlations and reconstruction of depositional environments. Although no 3-alkyl steroid natural products are currently known, several lines of evidence suggest that 3{beta}-alkyl steroids result from bacterial side-chain additions to diagenetic {delta}{sup 2}-sterenes.

  4. In vitro induction of micronuclei by monofunctional methanesulphonic acid esters: possible role of alkylation mechanisms.

    PubMed

    Eder, Erwin; Kütt, Wolfgang; Deininger, Christoph

    2006-12-01

    Six monofunctional alkylating methanesulphonates of widely varying structures were investigated in the in vitro micronucleus assay with Syrian hamster embryo fibroblast cells. The results were compared with the alkylating activities measured in the 4-(nitrobenzyl)pyridine test (NBP-test) and the N-methyl mercaptoimidazole (MMI-test) as measures for S(N)2 reactivity as well as in the triflouoroacetic acid (TFA) solvolysis and the hydrolysis reaction as measures for S(N)1 reactivity in order to provide insights into the role of alkylation mechanisms on induction of micronuclei. Moreover we compared the results of micronucleus assay with those of the Ames tests in strain TA 100 and TA1535 and with those of the SOS chromotest with the strains PQ37, PQ243, PM21 and GC 4798. The potency of methanesulphonates to induce micronuclei depended only to a certain degree, on the total alkylating activity (S(N)1 and S(N)2 reactivity). An inverse, significant correlation between the Ames test and the micronucleus assay was observed and an inverse correlation between the micronucleus assay and the SOS chromotest with the different strains. The results indicate that the primary mechanism leading to induction of micronuclei is not O-alkylation in DNA as it is the case in the Ames test with the hisG46 strains TA1535 and TA100 and not N-alkylation as with the SOS chromotest. There is evidence that protein alkylation, e.g. in the spindle apparatus in mitosis is decisive for induction of micronuclei by alkylating compounds. The structurally voluminous methanesulphonates 2-phenyl ethyl methanesulphonate and 1-phenyl-2-propyl methanesulphonate show a clear higher micronuclei inducing potency than the other tested though the bulky methanesulphonates possess a lower total alkylating activity than the others. This effect can be explained by a higher disturbance during mitosis after alkylation of the spindle apparatus with the structurally more bulky methanesulphonates. PMID:17011536

  5. Electronic states of alkyl-radical-functionalized C20 fullerene using density functional theory

    NASA Astrophysics Data System (ADS)

    Abe, Shigeaki; Kawano, Shimpei; Toida, Yu; Nakamura, Mariko; Inoue, Satoshi; Sano, Hidehiko; Yoshida, Yasuhiro; Kawabata, Hiroshi; Tachikawa, Hiroto

    2016-03-01

    The structures and electronic states of alkyl-radical-functionalized C20 fullerenes (denoted by C20-R) have been investigated using density functional theory (DFT). The different alkyl radicals investigated were methyl, ethyl, propyl, and butyl radicals. The DFT calculation indicated that the alkyl radical binds to the carbon atom of C20 in the on-top site, thus forming a strong C-C single bond. The binding energies of the alkyl radicals to C20 were calculated to be 83.9-86.6 kcal/mol at the CAM-B3LYP/6-311G(d,p) level. The electronic states of the C20-R complex are discussed on the basis of the theoretical results.

  6. Addition reaction of alkyl radical to C60 fullerene: Density functional theory study

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2016-02-01

    Functionalized fullerenes are known as a high-performance molecules. In this study, the alkyl-functionalized fullerenes (denoted by R-C60) have been investigated by means of the density functional theory (DFT) method to elucidate the effects of functionalization on the electronic states of fullerene. Also, the reaction mechanism of alkyl radicals with C60 was investigated. The methyl, ethyl, propyl, and butyl radicals (denoted by n = 1-4, where n means the number of carbon atoms in the alkyl radical) were examined as alkyl radicals. The DFT calculation showed that the alkyl radical binds to the carbon atom of C60 at the on-top site, and a strong C-C single bond is formed. The binding energies of alkyl radicals to C60 were distributed in the range of 31.8-35.1 kcal mol-1 at the CAM-B3LYP/6-311G(d,p) level. It was found that the activation barrier exists before alkyl addition, the barrier heights were calculated to be 2.1-2.8 kcal mol-1. The electronic states of R-C60 complexes were discussed on the basis of the theoretical results.

  7. Alkylation of toluene with ethanol

    SciTech Connect

    Walendziewski, J.; Trawczynski, J.

    1996-10-01

    A series of Y and ZSM-5 zeolite based catalysts was prepared. Zeolites were cation exchanged and formed with 50% of aluminum hydroxide as a binder, and the obtained catalysts were finally thermally treated. Activity tests in alkylation of toluene with ethanol were carried out in the temperature range of 325--400 C, in nitrogen or hydrogen stream, and a pressure up to 3 MPa. The feed consisted of toluene and ethanol mixed in a mole ratio 1/1 or 2/1. The obtained results showed that among the studied catalysts the highest activity in the alkylation reaction was attained by ZSM-5 zeolite based catalyst with a moderate acidity and medium silica to alumina ratio, i.e., {approximately}50. Activity and selectivity of the most active catalyst as well as conversion of the feed components were similar to those reported in other papers. The content of p-ethyltoluene in alkylation products attained ca. 60%.

  8. Synthesis of alkyl-substituted 2-halo-4-aminomethyl-2-buten-4-olides

    SciTech Connect

    Tyvorskii, V.I.; Tishchenko, I.G.; Kukharev, A.S.; Yushkevich, E.V.; Vlasov, S.F.

    1986-05-01

    The reaction of esters of alkyl-substituted (E)-5-amino-4-hydroxy-2,3,epoxy-valeric acids with some hydrohalic acids gave the corresponding 2-halo-4-amino-methyl-2-buten-4-olides, the hydrochlorides of which have diuretic activity.

  9. A biological source of oceanic alkyl nitrates

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.; Lewis, C. B.; Velasco, F. L.; Escobar, C.; Kellogg, D.; Velcamp, M.

    2013-12-01

    Alkyl nitrates are an important component of reactive nitrogen in the troposphere. The oceans are a source of alkyl nitrates to the atmosphere, however the source of alkyl nitrates in the oceans is unknown. It has been demonstrated that the reaction of alkyl peroxy radicals (ROO) with nitric oxide (NO) produces alkyl nitrates in the aqueous phase. We hypothesize that alkyl nitrates may be formed by organisms through the same reaction and therefore biological production could be a source of alkyl nitrates to the troposphere. This work focuses on the production of alkyl nitrates by the diatoms Chaetoceros muelleri and Thalassiosira weisfloggi. Using chemostats, we measure alkyl nitrates formed under nitrate limited conditions. We also use triggers and inhibitors of nitric oxide formation to determine if alkyl nitrate formation is affected by changes in NO production. To date, the rates of production of alkyl nitrates in our cultures, lead us to estimate a production rate on the order of femtomolar/day for C1-C3 alkyl nitrates by diatom species in the equatorial Pacific Ocean. This suggests that diatoms may contribute to the overall ocean source of alkyl nitrates; however, it is possible that other types of phytoplankton, such as cyanobacteria, that are more abundant in the open ocean, may contribute to a greater extent.

  10. Both base excision repair and O6-methylguanine-DNA methyltransferase protect against methylation-induced colon carcinogenesis

    PubMed Central

    Wirtz, Stefan; Nagel, Georg; Eshkind, Leonid; Neurath, Markus F.; Samson, Leona D.; Kaina, Bernd

    2010-01-01

    Methylating agents are widely distributed environmental carcinogens. Moreover, they are being used in cancer chemotherapy. The primary target of methylating agents is DNA, and therefore, DNA repair is the first-line barrier in defense against their toxic and carcinogenic effects. Methylating agents induce in the DNA O6-methylguanine (O6MeG) and methylations of the ring nitrogens of purines. The lesions are repaired by O6-methylguanine-DNA methyltransferase (Mgmt) and by enzymes of the base excision repair (BER) pathway, respectively. Whereas O6MeG is well established as a pre-carcinogenic lesion, little is known about the carcinogenic potency of base N-alkylation products such as N3-methyladenine and N3-methylguanine. To determine their role in cancer formation and the role of BER in cancer protection, we checked the response of mice with a targeted gene disruption of Mgmt or N-alkylpurine-DNA glycosylase (Aag) or both Mgmt and Aag, to azoxymethane (AOM)-induced colon carcinogenesis, using non-invasive mini-colonoscopy. We demonstrate that both Mgmt- and Aag-null mice show a higher colon cancer frequency than the wild-type. With a single low dose of AOM (3 mg/kg) Aag-null mice showed an even stronger tumor response than Mgmt-null mice. The data provide evidence that both BER initiated by Aag and O6MeG reversal by Mgmt are required for protection against alkylation-induced colon carcinogenesis. Further, the data indicate that non-repaired N-methylpurines are not only pre-toxic but also pre-carcinogenic DNA lesions. PMID:20732909

  11. Combustion pathways of the alkylated heteroaromatics: bond dissociation enthalpies and alkyl group fragmentations

    SciTech Connect

    Hayes, C.J.; Hadad, C.M.

    2009-11-15

    The bond dissociation enthalpies (BDEs) of the alkyl groups of the alkyl-substituted heterocycles have been studied and compiled using DFT methodology, with the intent of modeling the larger heterocyclic functionalities found in coal. DFT results were calibrated against CBS-QB3 calculations, and qualitative trends were reproduced between these methods. Loss of hydrogen at the benzylic position provided the most favorable route to radical formation, for both the azabenzenes and five-membered heterocycles. The ethyl derivatives had lower BDE values than the methyl derivatives due to increased stabilization of the corresponding radicals. Calculated spin densities correlated well with bond dissociation enthalpies for these compounds, while geometric effects were minimal with respect to the heterocycles themselves. Temperature effects on the bond dissociation enthalpies were minor, ranging by about 5 kcal/mol from 298 to 2000 K; the free energies of reaction dropped significantly over the same range due to entropic effects. Monocyclic heteroaromatic rings were seen to replicate the chemistry of multicyclic heteroaromatic systems.

  12. Pd and Mo Catalyzed Asymmetric Allylic Alkylation

    PubMed Central

    Trost, Barry M.

    2012-01-01

    The ability to control the alkylation of organic substrates becomes ever more powerful by using metal catalysts. Among the major benefits of metal catalysis is the possibility to perform such processes asymmetrically using only catalytic amounts of the chiral inducing agent which is a ligand to the metal of the catalyst. A unique aspect of asymmetric metal catalyzed processes is the fact that many mechanisms exist for stereoinduction. Furthermore, using the same catalyst system, many types of bonds including but not limited to C-C, C-N, C-O, C-S, C-P, and C-H can be formed asymmetrically. An overview of this process using palladium and molybdenum based metals being developed in my laboratories and how they influence strategy in synthesizing bioactive molecular targets is presented. PMID:22736934

  13. Phosphine-alkene ligand-mediated alkyl-alkyl and alkyl-halide elimination processes from palladium(II).

    PubMed

    Tuxworth, Luke; Baiget, Lise; Phanopoulos, Andreas; Metters, Owen J; Batsanov, Andrei S; Fox, Mark A; Howard, Judith A K; Dyer, Philip W

    2012-10-28

    N-Diphenylphosphino-7-aza-benzobicyclo[2.2.1]hept-2-ene (2) behaves as a chelating phosphine-alkene ligand for Pd(0) and Pd(II), promoting direct alkyl-alkyl and indirect alkyl-halide reductive elimination reactions due to the stabilisation of the resulting bis(phosphine-alkene)Pd(0) complex. PMID:22986447

  14. New potential of the reductive alkylation of amines

    NASA Astrophysics Data System (ADS)

    Gusak, K. N.; Ignatovich, Zh V.; Koroleva, E. V.

    2015-03-01

    Available data on the reductive alkylation of amines with carbonyl compounds — a key method for the preparation of secondary and tertiary amines — are described systematically. The review provides information on the relevant reducing agents and catalysts and on the use of chiral catalysts in stereo- and enantiocontrolled reactions of amine synthesis. The effect of the reactant and catalyst structures on the reaction rates and chemo- and stereo(enantio)selectivity is considered. The bibliography includes 156 references.

  15. One-pot synthesis of 4′-alkyl-4-cyanobiaryls on the basis of the terephthalonitrile dianion and neutral aromatic nitrile cross-coupling

    PubMed Central

    Peshkov, Roman Yu; Chunyan, Wang; Tretyakov, Evgeny V; Shteingarts, Vitalij D

    2016-01-01

    Summary A convenient one-pot approach to alkylcyanobiaryls is described. The method is based on biaryl cross-coupling between the sodium salt of the terephthalonitrile dianion and a neutral aromatic nitrile in liquid ammonia, and successive alkylation of the long-lived anionic intermediate with alkyl bromides. The reaction is compatible with benzonitriles that contain methyl, methoxy and phenyl groups, fluorine atoms, and a 1-cyanonaphthalene residue. The variety of ω-substituted alkyl bromides, including an extra bromine atom, a double bond, cyano and ester groups, as well as a 1,3-dioxane fragment are suitable as alkylation reagents. PMID:27559409

  16. One-pot synthesis of 4'-alkyl-4-cyanobiaryls on the basis of the terephthalonitrile dianion and neutral aromatic nitrile cross-coupling.

    PubMed

    Peshkov, Roman Yu; Panteleeva, Elena V; Chunyan, Wang; Tretyakov, Evgeny V; Shteingarts, Vitalij D

    2016-01-01

    A convenient one-pot approach to alkylcyanobiaryls is described. The method is based on biaryl cross-coupling between the sodium salt of the terephthalonitrile dianion and a neutral aromatic nitrile in liquid ammonia, and successive alkylation of the long-lived anionic intermediate with alkyl bromides. The reaction is compatible with benzonitriles that contain methyl, methoxy and phenyl groups, fluorine atoms, and a 1-cyanonaphthalene residue. The variety of ω-substituted alkyl bromides, including an extra bromine atom, a double bond, cyano and ester groups, as well as a 1,3-dioxane fragment are suitable as alkylation reagents. PMID:27559409

  17. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  18. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  19. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  20. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  1. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  2. Oil compositions containing alkyl amine or alkyl mercaptan derivatives of copolymers of an alpha olefin or an alkyl vinyl ether

    SciTech Connect

    Le, H.T.

    1990-02-13

    This patent describes an oil composition. It comprises a major amount of an oil selected from a crude oil or fuel oil and a minor amount of an alkyl amine or alkyl mercaptan derivative of an alpha olefin or alkyl vinyl ether and an unsaturated alpha, beta-dicarboxylic compound copolymer having pour point depressant ;properties. The copolymer comprising the reaction product of an alpha olefin having from about 2 to about 30 carbon atoms or mixtures of alpha olefins having from about 2 to about 30 carbon atoms or an alkyl vinyl ether or mixture of alkyl vinyl ethers.

  3. Alkyl Caffeates Improve the Antioxidant Activity, Antitumor Property and Oxidation Stability of Edible Oil

    PubMed Central

    Wang, Jun; Gu, Shuang-Shuang; Pang, Na; Wang, Fang-Qin; Pang, Fei; Cui, Hong-Sheng; Wu, Xiang-Yang; Wu, Fu-An

    2014-01-01

    Caffeic acid (CA) is distributed widely in nature and possesses strong antioxidant activity. However, CA has lower solubility in non-polar media, which limits its application in fat-soluble food. To increase the lipophilicity of natural antioxidant CA, a series of alkyl caffeates were synthesized and their antioxidant and antitumor activities were investigated. The antioxidant parameters, including the induction period, acid value and unsaturated fatty acid content, of the alkyl caffeates in edible oil were firstly investigated. The results indicated that alkyl caffeates had a lower DPPH IC50 (14–23 µM) compared to CA, dibutyl hydroxy toluene (BHT) and Vitamin C (24–51 µM), and significantly inhibited four human cancer cells (SW620, SW480, SGC7901 and HepG2) with inhibition ratio of 71.4–78.0% by a MTT assay. With regard to the induction period and acid value assays, methyl and butyl caffeates had higher abilities than BHT to restrain the oxidation process and improve the stability of edible oil. The addition of ethyl caffeate to oil allowed maintenance of a higher unsaturated fatty acid methyl ester content (68.53%) at high temperatures. Overall, the alkyl caffeats with short chain length (n<5) assessed better oxidative stability than those with long chain length. To date, this is the first report to the correlations among the antioxidant activity, anticancer activity and oxidative stability of alkyl caffeates. PMID:24760050

  4. Retention behavior of alkyl-substituted polycyclic aromatic sulfur heterocycles in reversed-phase liquid chromatography.

    PubMed

    Wilson, Walter B; Sander, Lane C; de Alda, Miren Lopez; Lee, Milton L; Wise, Stephen A

    2016-08-26

    Retention indices for 79 alkyl-substituted polycyclic aromatic sulfur heterocycles (PASHs) were determined by using reversed-phase liquid chromatography (LC) on a monomeric and polymeric octadecylsilane (C18) stationary phase. Molecular shape parameters [length, breadth, thickness (T), and length-to-breadth ratio (L/B)] were calculated for all the compounds studied. Based on separations of isomeric methylated polycyclic aromatic hydrocarbons on polymeric C18 phases, alkyl-substituted PASHs are expected to elute based on increasing L/B ratios. However, the correlation coefficients had a wide range of values from r=0.43 to r=0.93. Several structural features besides L/B ratios were identified to play an important role in the separation mechanism of PASHs on polymeric C18 phases. First, the location of the sulfur atom in a bay-like-region results in alkylated-PASHs being more retentive than non-bay-like-region alkylated-PASHs, and they elute later than expected based on L/B value. Second, the placement of the alkyl group in the k region of the structure resulted in a later elution than predicted by L/B. Third, highly nonplanar methyl-PASHs (i.e., 1-Me and 11-MeBbN12T) elute prior to the parent PASH (BbN12T). PMID:27477517

  5. Structure-catalytic activity relationships of dicyclohexylcarboxamidine analogs in phosphorylation and alkylation of nucleosides by a two-step phosphorylating agent, 2-methylthio-4H-1,3,2-benzodioxaphosphorin 2-oxide (MTBO).

    PubMed

    Eto, M; Kawasaki, S

    1986-01-01

    Adenosine borate complex was phosphorylated and o-hydroxybenzylated by 2-methylthio-4H-1,3,2-benzodioxaphosphorin 2-oxide (MTBO) in the presence of 4-morpholine-N,N'-dicyclohexylcarboxamidine (MDC) at first to give 1-(o-hydroxybenzyl)adenosine derivative followed by the rearrangement of the benzyl group to the N-6 amino group to give N6-(o-hydroxybenzyl)adenosine 5'-S-methyl phosphorothiolate. More than 20 analogs of MDC were examined for their catalytic activity in phosphorylation and o-hydroxybenzylation of ribonucleoside by MTBO. Dicyclohexylformamidine (DCF) and n-alkylamino analogs of MDC had no effect on the o-hydroxybenzylation of ribonucleoside by MTBO, but had great effect on the phosphorylation. Dialkylamino and cyclic imino analogs of MDC had high catalytic activities to the both reaction. The dicyclohexylcarboxamidine structure of MDC gave the catalytic ability for phosphorylation by MTBO, while the morpholine moiety had great effect on the selectivity of o-hydroxybenzylation by MTBO. PMID:3562278

  6. Palladium-catalyzed direct α-arylation of methyl sulfones with aryl bromides.

    PubMed

    Zheng, Bing; Jia, Tiezheng; Walsh, Patrick J

    2013-04-01

    A direct and efficient approach for palladium-catalyzed arylation of aryl and alkyl methyl sulfones with aryl bromides has been developed. The catalytic system affords arylated sulfones in good to excellent yields (73-90%). PMID:23517309

  7. Preparation and reactivity of macrocyclic rhodium(III) alkyl complexes

    SciTech Connect

    Carraher, Jack M.; Ellern, Arkady; Bakac, Andreja

    2013-09-21

    We found that the macrocyclic rhodium(II) complexes LRh(H2O)2+ (L = L1 = cyclam and L2 = meso-Me-6-cyclam) react with alkyl hydroperoxides RC(CH3)2OOH to generate the corresponding rhodium(III) alkyls L(H2O)RhR2+ (R = CH3, C2H5, PhCH2). Methyl and benzyl complexes can also be prepared by bimolecular group transfer from alkyl cobaloximes (dmgH)2(H2O) CoR and (dmgBF2)2(H2O) CoR (R = CH3, PhCH2) to LRh(H2O)2+. Moreover, the new complexes were characterized by solution NMR and by crystal structure analysis. They exhibit great stability in aqueous solution at room temperature, but undergo efficient Rh-C bond cleavage upon photolysis.

  8. Methods of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-08-03

    A method comprising contacting an alcohol, a feed comprising one or more glycerides and equal to or greater than 2 wt % of one or more free fatty acids, and a solid acid catalyst, a nanostructured polymer catalyst, or a sulfated zirconia catalyst in one or more reactors, and recovering from the one or more reactors an effluent comprising equal to or greater than about 75 wt % alkyl ester and equal to or less than about 5 wt % glyceride.

  9. PREPARATION OF ALKYL PYROPHOSPHATE EXTRACTANTS

    DOEpatents

    Levine, C.A.; Skiens, W.E.; Moore, G.R.

    1960-08-01

    A process for providing superior solvent extractants for metal recovery processes is given wherein the extractant comprises an alkyl pyrophosphoric acid ester dissolved in an organic solvent diluent. Finely divided solid P/sub 2/O/ sub 5/ is slurried in an organic solvent-diluent selected from organic solvents such as kerosene, benzene, chlorobenzene, toluene, etc. An alcohol selected from the higher alcohols having 4 to 17 carbon atoms. e.g.. hexanol-1. heptanol-3, octanol-1. 2.6-dimethyl-heptanol-4, and decanol-1, is rapidly added to the P/sub 2/O/sub 5/ slurry in the amount of about 2 moles of alcohol to 1 mole of P/sub 2/ O/sub 5/. The temperature is maintained below about 110 deg C during the course of the P/sub 2/O/sub 5/-alcohol reaction. An alkyl pyrophosphate extractant compound is formed as a consequence of the reaction process. The alkyl pyrophosphate solvent-diluent extractant phase is useful in solvent extraction metal recovery processes.

  10. Fragrance material review on 2-methyl-4-phenyl-2-butanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-methyl-4-phenyl-2-butanol when used as a fragrance ingredient is presented. 2-methyl-4-phenyl-2-butanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a tertiary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-methyl-4-phenyl-2-butanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. assessment of aryl alkyl alcohols when used as fragrance ingredients. PMID:22036982

  11. Synthesis and biological screening of 2'-aryl/benzyl-2-aryl-4-methyl-4',5-bithiazolyls as possible anti-tubercular and antimicrobial agents.

    PubMed

    Abhale, Yogita K; Sasane, Amit V; Chavan, Abhijit P; Deshmukh, Keshav K; Kotapalli, Sudha Sravanti; Ummanni, Ramesh; Sayyad, Sadikali F; Mhaske, Pravin C

    2015-04-13

    A series of 2'-aryl/benzyl-2-aryl-4-methyl-4',5-bithiazolyl derivatives, 25-64 were synthesized and evaluated for inhibitory activity against Mycobacterium smegmatis MC(2) 155 strain and antimicrobial activities against four pathogenic bacteria Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Proteus vulgaris. Among them, compounds 40, 49, 50, and 54 exhibited moderate to good inhibition on the growth of the bacteria Mycobacterium smegmatis at the concentration of 30 μM. Compounds 26, 40, 44, 54 and 56 exhibited moderate to good antibacterial activity. Compound 5-(2'-(4-fluorobenzyl)thiazol-4'-yl)-2-(4-fluorophenyl)-4-methyl-thiazole (54) exhibited both antitubercular as well as antimicrobial activity against all tested strains. PMID:25778990

  12. Safety Assessment of Alkyl Esters as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart A; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of 237 alkyl esters for use in cosmetics. The alkyl esters included in this assessment have a variety of reported functions in cosmetics, with skin-conditioning agent being the most common function. The Panel reviewed available animal and clinical data in making its determination of safety on these ingredients, and where there were data gaps, similarity in structure, properties, functions, and uses of these ingredients allowed for extrapolation of the available toxicological data to assess the safety of the entire group. The Panel concluded that these ingredients are safe in cosmetic formulations in the present practices of use and concentration when formulated to be nonirritating. PMID:26362120

  13. Synthesis, crystal structure analysis, spectral investigations, DFT computations, Biological activities and molecular docking of methyl(2E)-2-{[N-(2-formylphenyl)(4-methylbenzene) sulfonamido]methyl}-3-(4-fluorophenyl)prop-2-enoate, a potential bioactive agent

    NASA Astrophysics Data System (ADS)

    Murugavel, S.; Vetri Velan, V.; Kannan, Damodharan; Bakthadoss, Manickam

    2016-03-01

    The title compound methyl(2E)-2-{[N-(2-formylphenyl) (4-methylbenzene)sulfonamido]methyl}-3-(4-fluorophenyl) prop-2-enoate (MFMSF) has been synthesized and single crystals were grown by slow evaporation solution growth technique at room temperature. The grown crystals were characterized by FTIR, 1H NMR, 13C NMR, and single crystal X-ray diffraction. In the crystal, molecules are linked by intermolecular C-H…O hydrogen bonds forming a two-dimensional supramolecular network along [110] direction. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G (d,p) basis set in ground state and compared with the experimental data. The entire vibrational assignments of wave numbers were made on the basis of potential energy distribution (PED) by VEDA 4 programme. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. In addition, NLO, MEP, Mulliken, thermodynamic properties, HOMO and LUMO energy gap were theoretically predicted. The global chemical reactivity descriptors are calculated for MFMSF and used to predict their relative stability and reactivity. The antibacterial activity of the compound was also tested against various pathogens. The molecular docking studies concede that title compound may exhibit PBP-2X inhibitor activity.

  14. Experimental and computational approaches of a novel methyl (2E)-2-{[N-(2-formylphenyl)(4-methylbenzene)sulfonamido]methyl}-3-(4-chlorophenyl)prop-2-enoate: A potential antimicrobial agent and an inhibition of penicillin-binding protein

    NASA Astrophysics Data System (ADS)

    Murugavel, S.; Vetri velan, V.; Kannan, Damodharan; Bakthadoss, Manickam

    2016-07-01

    The title compound methyl(2E)-2-{[N-(2-formylphenyl) (4-methylbenzene)sulfonamido]methyl}-3-(4-chlorophenyl) prop-2-enoate (MFMSC) has been synthesized and single crystals were grown by slow evaporation solution growth technique at room temperature. Structural and vibrational spectroscopic studies were carried out by using single crystal X-ray diffraction, FT-IR and NMR spectral analysis together with DFT method using GAUSSIAN'03 software. The detailed interpretation of the vibrational spectra has been carried out by VEDA program. NBO analysis, Mulliken charge analysis, HOMO-LUMO, MEP, Global chemical reactivity descriptors and thermodynamic properties have been analyzed. The hyperpolarisability calculation reveals the present material has a reasonably good propensity for nonlinear optical activity. The obtained antimicrobial activity results indicate that the compound shows good to moderate activity against all tested bacterial and fungal pathogens. A computational study was also carried out to predict the drug-likeness and ADMET properties of the title compound. Due to the different potential biological activity of the title compound, molecular docking study is also reported and the compound might exhibit inhibitory activity against penicillin-binding protein PBP-2X.

  15. Personalized treatment strategies in glioblastoma: MGMT promoter methylation status

    PubMed Central

    Thon, Niklas; Kreth, Simone; Kreth, Friedrich-Wilhelm

    2013-01-01

    The identification of molecular genetic biomarkers considerably increased our current understanding of glioma genesis, prognostic evaluation, and treatment planning. In glioblastoma, the most malignant intrinsic brain tumor entity in adults, the promoter methylation status of the gene encoding for the repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) indicates increased efficacy of current standard of care, which is concomitant and adjuvant chemoradiotherapy with the alkylating agent temozolomide. In the elderly, MGMT promoter methylation status has recently been introduced to be a predictive biomarker that can be used for stratification of treatment regimes. This review gives a short summery of epidemiological, clinical, diagnostic, and treatment aspects of patients who are currently diagnosed with glioblastoma. The most important molecular genetic markers and epigenetic alterations in glioblastoma are summarized. Special focus is given to the physiological function of DNA methylation–in particular, of the MGMT gene promoter, its clinical relevance, technical aspects of status assessment, its correlation with MGMT mRNA and protein expressions, and its place within the management cascade of glioblastoma patients. PMID:24109190

  16. Dielectric relaxation study of mixtures of alkyl methacrylates and 1-alcohols using time-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K.; Prabhakar Undre, B.; Khirade, P. W.; Mehrotra, S. C.

    2006-05-01

    Dielectric relaxation measurements on alkyl methacrylates (methyl methacrylate, ethyl methacrylate and butyl methacrylate) with 1-alcohols (1-propanol, 1-pentanol, 1-heptanol, 1-octanol and 1-decanol) have been carried out using time-domain reflectometry (TDR) over the frequency range 10 MHz to 20 GHz at 303 K for different concentrations of alcohols. The dielectric parameters, namely the static dielectric constant (ɛ0), the dielectric constant at microwave frequencies (ɛ∞) and the relaxation time (τ) were determined. The Kirkwood correlation factor, which contains information regarding solute-solvent interaction and corresponding structural information, the excess permittivity and the excess inverse relaxation time were also determined. The values of the static dielectric constant and the relaxation time increase with the percentage of alkyl methacrylates in the alcohol, whereas the static dielectric constant decreases and the relaxation time increases with an increase in the alkyl chain length of both the methacrylates and the alcohols.

  17. Synthesis of a large library of macrocyclic peptides containing multiple and diverse N-alkylated residues.

    PubMed

    Morimoto, Jumpei; Kodadek, Thomas

    2015-10-01

    Large combinatorial libraries of macrocyclic peptides are a useful source of bioactive compounds. However, peptides are not generally cell permeable, so there is great interest in the development of methods to create large libraries of modified peptides. In particular, N-alkylation of peptides is known to improve their bioavailability significantly. Incorporation of some level of N-methylated amino acids into peptide libraries has been accomplished with ribosome display or related methods, but the modest efficiency and the inability to employ more diverse N-alkylated amino acids in this type of system argue for the development of synthetic libraries. Here we present optimized procedures for synthesizing macrocyclic peptides containing multiple N-alkylated units and show that this chemistry is efficient enough for the creation of high quality combinatorial libraries by split and pool solid-phase synthesis. PMID:26067000

  18. N-methylpurine DNA glycosylase overexpression increases alkylation sensitivity by rapidly removing non-toxic 7-methylguanine adducts

    PubMed Central

    Rinne, M. L.; He, Y.; Pachkowski, B. F.; Nakamura, J.; Kelley, M. R.

    2005-01-01

    Previous studies indicate that overexpression of N-methylpurine DNA glycosylase (MPG) dramatically sensitizes cells to alkylating agent-induced cytotoxicity. We recently demonstrated that this sensitivity is preceded by an increased production of AP sites and strand breaks, confirming that overexpression of MPG disrupts normal base excision repair and causes cell death through overproduction of toxic repair intermediates. Here we establish through site-directed mutagenesis that MPG-induced sensitivity to alkylation is dependent on enzyme glycosylase activity. However, in contrast to the sensitivity seen to heterogeneous alkylating agents, MPG overexpression generates no cellular sensitivity to MeOSO2(CH2)2-lexitropsin, an alkylator which exclusively induces 3-meA lesions. Indeed, MPG overexpression has been shown to increase the toxicity of alkylating agents that produce 7-meG adducts, and here we demonstrate that MPG-overexpressing cells have dramatically increased removal of 7-meG from their DNA. These data suggest that the mechanism of MPG-induced cytotoxicity involves the conversion of non-toxic 7-meG lesions into highly toxic repair intermediates. This study establishes a mechanism by which a benign DNA modification can be made toxic through the overexpression of an otherwise well-tolerated gene product, and the application of this principle could lead to improved chemotherapeutic strategies that reduce the peripheral toxicity of alkylating agents. PMID:15905475

  19. 40 CFR 721.8673 - [(Disubstituted phenyl)]azo dihydro hydroxy alkyl oxo alkyl-substituted-pyridines (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false azo dihydro hydroxy alkyl oxo alkyl... Significant New Uses for Specific Chemical Substances § 721.8673 azo dihydro hydroxy alkyl oxo alkyl...) The chemical substances identified generically as azo dihydro hydroxy alkyl oxo...

  20. 40 CFR 721.8673 - [(Disubstituted phenyl)]azo dihydro hydroxy alkyl oxo alkyl-substituted-pyridines (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false azo dihydro hydroxy alkyl oxo alkyl... Significant New Uses for Specific Chemical Substances § 721.8673 azo dihydro hydroxy alkyl oxo alkyl...) The chemical substances identified generically as azo dihydro hydroxy alkyl oxo...

  1. 40 CFR 721.8673 - [(Disubstituted phenyl)]azo dihydro hydroxy alkyl oxo alkyl-substituted-pyridines (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false azo dihydro hydroxy alkyl oxo alkyl... Significant New Uses for Specific Chemical Substances § 721.8673 azo dihydro hydroxy alkyl oxo alkyl...) The chemical substances identified generically as azo dihydro hydroxy alkyl oxo...

  2. Crystal structure of creatininium 5-(2,4-di-nitro-phen-yl)-1,3-di-methyl-barbiturate monohydrate: a potential anti-convulsant agent.

    PubMed

    Poornima Devi, Ponnusamy; Kalaivani, Doraisamyraja

    2016-05-01

    In the anion of the title hydrated mol-ecular salt, C4H8N3O(+)·C12H9N4O7 (-)·H2O [systematic name: 2-amino-1-methyl-4-oxo-4,5-di-hydro-1H-imidazol-3-ium 5-(2,4-di-nitro-phen-yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetra-hydro-pyrimidin-4-olate monohydrate], the 2,4-di-nitro-phenyl ring is inclined to the mean plane of the pyrimidine ring [r.m.s. deviation = 0.37 Å] by 43.24 (8)°. The five-membered ring of the creatininium cation (2-amino-1-methyl-4-oxo-4,5-di-hydro-1H-imidazol-3-ium) is essentially planar with an r.m.s. deviation of 0.015 Å. In the crystal, the anions and cations are linked via N-H⋯O hydrogen bonds, forming sheets parallel to the ab plane. The sheets are linked via O-H⋯O hydrogen bonds involving the water mol-ecule, forming a three-dimensional framework. Within the framework, there are C-H⋯O hydrogen bonds present. The title mol-ecular salt displays anti-convulsant and hypnotic activities. PMID:27308003

  3. Mutagenic properties of allylic and alpha, beta-unsaturated compounds: consideration of alkylating mechanisms.

    PubMed

    Eder, E; Henschler, D; Neudecker, T

    1982-12-01

    1. Allyl and allylic compounds may exert alkylating activities by SN1, SN2 and SN2' mechanisms. This direct alkylating potential can be determined quantitatively by a modified 4-NBP (4-nitrobenzyl pyridine) test. 2. The alkylating activities in a systematically selected series of allyl and allylic compounds correlate well with the direct mutagenic potential as determined in the Ames test using Salmonella typhimurium TA 100 as tester strain. 3. The allylic structure is a prerequisite for these types of activities since structurally related molecules lacking the allylic moiety are inactive in this respect. 4. The potency of both the alkylating and mutagenic activity is determined by the strength of the leaving group: --OSO2CH3 greater than I greater than Br greater than Cl greater than--NCS. 5. Indirect mutagenicity, through metabolic activation of the olefinic bond (by addition of S9 mix to the tester medium), can be ruled out for practically all compounds, the only exception found being 2,3-dichloro-1-propene where an increase of mutagenicity is encountered after addition of S9 mix; mechanistic explanations for this exception are provided. 6. Analogous activation is demonstrated for benzyl halides, the alkylating potency of which is even higher than that of genuine allylic compounds. 7. A variety of methyl- and chlorine-substituted allyl compounds has been included in the study: both groups increase activity, either by +I (CH3) or by +M effects (Cl). 8. alpha, beta-Unsaturated carbonyl compounds, e.g. acrolein and crotonaldehyde, also display direct mutagenic activity which is due to a completely different mechanism: covalent binding to nucleophilic sites of DNA bases by Michael addition. Methyl and other alkyl substitutions decrease the mutagenic potential in this type of compound. The corresponding alcohols, also displaying mutagenic activity but to a lesser degree, are metabolically activated by ADH (alcohol dehydrogenase) of the tester strain microbes to the

  4. Measuring the toxicity of alkyl-phenanthrenes to early life stages of medaka (Oryzias latipes) using partition-controlled delivery.

    PubMed

    Turcotte, Dominique; Akhtar, Parveen; Bowerman, Michelle; Kiparissis, Yiannis; Brown, R Stephen; Hodson, Peter V

    2011-02-01

    Alkyl-phenanthrenes are a class of compounds present in crude oil and toxic to developing fish. Most research on alkyl-phenanthrenes has focused on retene (7-isopropyl-1-methyl-phenanthrene), but little is known about the chronic toxicity of related congeners to the early life stages of fish. This project is the first to describe the chronic toxicity of a series of alkyl-phenanthrenes to the embryos of Japanese medaka (Oryzias latipes) using the partition-controlled delivery (PCD) method of exposure and is the first to establish a relationship between toxicity of alkyl-phenanthrenes and log P. With PCD, test concentrations were maintained by equilibrium partitioning of test chemicals from polydimethylsiloxane (PDMS) films containing various concentrations of C1 to C4 phenanthrenes. Log film:solution partition constants (log K(fs)) and aqueous solubility limits were determined for each alkyl-phenanthrene. The prevalence of abnormalities in fish embryos increased in an exposure-dependent manner, with median effective concentration (EC50) values lower than experimental solubility limits of the compounds, and typical of environmental concentrations. Alkyl-phenanthrenes were more toxic to medaka embryos than unsubstituted phenanthrene, with effects resembling those of dioxin and indicating a specific receptor-based mechanism of toxicity. These results extend conclusions for the Exxon Valdez oil spill, suggest a specific mechanism of toxicity for alkyl-phenanthrenes, and provide a model for assessing the risks of mixture toxicity. PMID:21072839

  5. Vanillin as a modulator agent in SMART test: inhibition in the steps that precede N-methyl-N-nitrosourea-, N-ethyl-N-nitrosourea-, ethylmethanesulphonate- and bleomycin-genotoxicity.

    PubMed

    Sinigaglia, Marialva; Lehmann, Maurício; Baumgardt, Paula; do Amaral, Viviane Souza; Dihl, Rafael Rodrigues; Reguly, Maria Luíza; de Andrade, Heloísa Helena Rodrigues

    2006-09-01

    Vanillin (VA), the world's major flavoring compound used in food industry and confectionery products - that has antimutagenic and anticarcinogenic activity against a variety of mutagenic/carcinogenic agents - was tested for the interval between the formation of premutational lesion and it is finalization as a DNA lesion. The overall findings using co-treatment protocols in SMART test suggest that VA can lead to a significant protection against the general genotoxicity of ethylmethanesulphonate (EMS), N-ethyl-N-nitrosourea (ENU), N-methyl-N-nitrosourea (MNU) and bleomycin sulphate (BLEO). Considering MNU, ENU and EMS the desmutagenic activity observed could result from VA-stimulation of detoxification, via induction of glutathione S-transferase. However, the protector effect related to BLEO could be attributed to its powerful scavenger ability, which has the potential to prevent oxidative damage induced by BLEO. PMID:16777474

  6. The A/G Allele of Rs16906252 Predicts for MGMT Methylation and Is Selectively Silenced in Premalignant Lesions from Smokers and in Lung Adenocarcinomas

    PubMed Central

    Leng, Shuguang; Bernauer, Amanda M.; Hong, Chibo; Do, Kieu C.; Yingling, Christin M.; Flores, Kristina G.; Tessema, Mathewos; Tellez, Carmen S.; Willink, Randall P.; Burki, Elizabeth A.; Picchi, Maria A.; Stidley, Christine A.; Prados, Michael D.; Costello, Joseph F.; Gilliland, Frank D.; Crowell, Richard E.; Belinsky, Steven A.

    2011-01-01

    Purpose To address the association between sequence variants within the MGMT promoter-enhancer region and methylation of MGMT in premalignant lesions from smokers and lung adenocarcinomas, their biological effects on gene regulation, and targeting MGMT for therapy. Experimental Design SNPs identified through sequencing a 1.9kb fragment 5' of MGMT were examined in relation to MGMT methylation in 169 lung adenocarcinomas and 1731 sputum samples from smokers. The effect of promoter haplotypes on MGMT expression was tested using a luciferase reporter assay and cDNA expression analysis along with allele-specific sequencing for methylation. The response of MGMT methylated lung cancer cell lines to the alkylating agent temozolomide was assessed. Results The A allele of rs16906252 and the haplotype containing this SNP were strongly associated with increased risk for MGMT methylation in adenocarcinomas (ORs ≥ 94). This association was observed to a lesser extent in sputum samples in both smoker cohorts. The A allele was selectively methylated in primary lung tumors and cell lines heterozygous for rs16906252. With the most common haplotype as the reference, a 20–41% reduction in promoter activity was seen for the haplotype carrying the A allele that correlated with lower MGMT expression. The sensitivity of lung cancer cell lines to temozolamide was strongly correlated with levels of MGMT methylation and expression. Conclusions These studies provide strong evidence that the A allele of a MGMT promoter-enhancer SNP is a key determinant for MGMT methylation in lung carcinogenesis. Moreover, temozolamide treatment may benefit a subset of lung cancer patients methylated for MGMT. PMID:21355081

  7. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium

    USGS Publications Warehouse

    Visscher, P.T.; Taylor, B.F.

    1993-01-01

    A pure culture of a bacterium was obtained from a marine microbial mat by using an anoxic medium containing dimethyl sulfide (DMS) and nitrate. The isolate grew aerobically or anaerobically as a denitrifier on alkyl sulfides, including DMS, dimethyl disulfide, diethyl sulfide (DES), ethyl methyl sulfide, dipropyl sulfide, dibutyl sulfide, and dibutyl disulfide. Cells grown on an alkyl sulfide or disulfide also oxidized the corresponding thiols, namely, methanethiol, ethanethiol, propanethiol, or butanethiol. Alkyl sulfides were metabolized by induced or derepressed cells with oxygen, nitrate, or nitrite as electron acceptor. Cells grown on DMS immediately metabolized DMS, but there was a lag before DES was consumed; with DES-grown cells, DES was immediately used but DMS was used only after a lag. Chloramphenicol prevented the eventual use of DES by DMS-grown cells and DMS use by DES-grown cells, respectively, indicating separate enzymes for the metabolism of methyl and ethyl groups. Growth was rapid on formate, acetate, propionate, and butyrate but slow on methanol. The organism also grew chemolithotrophically on thiosulfate with a decrease in pH; growth required carbonate in the medium. Growth on sulfide was also carbonate dependent but slow. The isolate was identified as a Thiobacillus sp. and designated strain ASN-1. It may have utility for removing alkyl sulfides, and also nitrate, nitrite, and sulfide, from wastewaters.

  8. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium.

    PubMed Central

    Visscher, P T; Taylor, B F

    1993-01-01

    A pure culture of a bacterium was obtained from a marine microbial mat by using an anoxic medium containing dimethyl sulfide (DMS) and nitrate. The isolate grew aerobically or anaerobically as a denitrifier on alkyl sulfides, including DMS, dimethyl disulfide, diethyl sulfide (DES), ethyl methyl sulfide, dipropyl sulfide, dibutyl sulfide, and dibutyl disulfide. Cells grown on an alkyl sulfide or disulfide also oxidized the corresponding thiols, namely, methanethiol, ethanethiol, propanethiol, or butanethiol. Alkyl sulfides were metabolized by induced or derepressed cells with oxygen, nitrate, or nitrite as electron acceptor. Cells grown on DMS immediately metabolized DMS, but there was a lag before DES was consumed; with DES-grown cells, DES was immediately used but DMS was used only after a lag. Chloramphenicol prevented the eventual use of DES by DMS-grown cells and DMS use by DES-grown cells, respectively, indicating separate enzymes for the metabolism of methyl and ethyl groups. Growth was rapid on formate, acetate, propionate, and butyrate but slow on methanol. The organism also grew chemolithotrophically on thiosulfate with a decrease in pH; growth required carbonate in the medium. Growth on sulfide was also carbonate dependent but slow. The isolate was identified as a Thiobacillus sp. and designated strain ASN-1. It may have utility for removing alkyl sulfides, and also nitrate, nitrite, and sulfide, from wastewaters. PMID:8285707

  9. Radioiodinated methyl-branched fatty acids: Evaluation of catabolites formed in vivo

    SciTech Connect

    Knapp, F.F. Jr.; Reske, S.N.; Kirsch, G.; Ambrose, K.R.; Blystone, S.L.; Goodman, M.M.

    1987-01-01

    Radioiodinated terminal iodophenyl-substituted long-chain fatty acids containing either racemic mono-methyl or geminal dimethyl-branching in the alkyl chain have been shown to exhibit delayed myocardial clearance properties which make these agents useful for the SPECT evaluation of myocardial fatty acid uptake patterns. Although the myocardial clearance rate of 15-(p-iodophenyl)-3-R,S- methylpentadecanoic acid (BMIPP) is considerably delayed, in comparison with the IPPA straight-chain analogue, analysis of the radioiodinated lipids present in the outflow tract of isolated rat hearts administered BMIPP have clearly demonstrated the presence of a polar metabolite. The synthesis of ..beta..-hydroxy fatty acids has been developed to allow investigation of the possible formation of ..beta..-hydroxy catabolites in vivo. The preparation of ..beta..-hydroxy BMIPP and ..beta..-hydroxy IPPA are described, and the possible significance of their formation in vivo discussed. 4 figs.

  10. Occupational asthma due to alkyl cyanoacrylate

    SciTech Connect

    Nakazawa, T. )

    1990-08-01

    A case of bronchial asthma induced by occupational exposure to alkyl cyanoacrylate, an adhesive, occurred in an assembly operation. Provocative exposure testing induced immediate and delayed asthmatic responses. Alkyl cyanoacrylate seemed to act as an allergen or as an irritant, resulting in the development of asthma.

  11. QSAR study of some 5-methyl/trifluoromethoxy- 1H-indole-2,3-dione-3-thiosemicarbazone derivatives as anti-tubercular agents

    PubMed Central

    Shahlaei, M.; Fassihi, A.; Nezami, A.

    2009-01-01

    In the present study, quantitative relationships between molecular structure and anti-tubercular activity of some 5-methyl/trifluoromethoxy-1H-indole-2,3-dione-3-thiosemicarbazone derivatives were discovered. The detailed application of an efficient linear method and principal component regression (PCR) for the evaluation of quantitative structure activity relationships of the studied compounds is demonstrated. Components produced by principal component analysis were used as the input for a linear model development. Results indicate a linear relationship between the principal components obtained from molecular descriptors and the inhibitory activity of this set of molecules. The maximum variance in the activity of the molecules in PCR method was 73%. The performance of the developed model was tested by several validation methods. PMID:21589807

  12. MITOMYCIN C: CHEMICAL AND BIOLOGICAL STUDIES ON ALKYLATION.

    PubMed

    SCHWARTZ, H S; SODERGREN, J E; PHILIPS, F S

    1963-11-29

    The presence of an aziridine ring in mitomycin C suggests that the mechanism of action of the antibiotic is like that of the antitumor alkylating agents. However the compound is unexpectedly stable during aerobic incubation with rat liver homogenates although rapidly metabolized anaerobically. Mitomycin is not reactive with gamma-(4-nitrobenzyl) pyridine and reacts only slowly at acid p(H) with thiosulfate. It is proposed that mitomycin is activated in vivo, possibly by a reduction which "unmasks" the potential activity of the fused aziridine ring. PMID:14069241

  13. Synthesis and cytotoxic activity of some derivatives of alkyl piperidine.

    PubMed

    Jahan, Sarwat; Akhtar, Shamim; Saify, Zafar Saied; Mushtaq, Nousheen; Sial, Ali Akbar; Kamil, Arfa; Arif, Muhammed

    2013-05-01

    Synthesis of novel phenacyl derivatives of alkyl piperidine as cytotoxic agents via simple and single step reaction procedure is going to be reported here. Twelve new compounds were successfully synthesized in moderate yield and in solid form. Their synthesis was confirmed by TLC, melting point, CHN analysis and through different spectral studies such as UV, IR, Mass and proton NMR. The advantages of this synthetic route are simple operation, mild reaction conditions and good yields. These newly synthesized derivatives were extensively explored for their cytotoxicity by brine shrimp lethality assay. PMID:23625425

  14. Reactions in water: alkyl nitrile coupling reactions using Fenton's reagent.

    PubMed

    Keller, Christopher L; Dalessandro, James D; Hotz, Richard P; Pinhas, Allan R

    2008-05-01

    The coupling reaction of water-soluble alkyl nitriles using Fenton's reagent (Fe(II) and H2O2) is described. The best metal for the reaction is iron(II), and the greatest yields are obtained when the concentration of the metal is kept low. Hydrogen-atom abstraction is selective, preferentially producing the radical alpha to the nitrile. In order to increase the production of dinitrile, in situ reduction of iron(III) to iron(II), using a variety of reducing agents, was investigated. PMID:18363368

  15. Distribution coefficients of purine alkaloids in water-ammonium sulfate-alkyl acetate-dialkyl phthalate systems

    NASA Astrophysics Data System (ADS)

    Korenman, Ya. I.; Krivosheeva, O. A.; Mokshina, N. Ya.

    2012-12-01

    The distribution of purine alkaloids (caffeine, theobromine, theophylline) was studied in the systems: alkyl acetates-dialkyl phtalate-salting-out agent (ammonium sulfate). The quantitative characteristics of the extraction-distribution coefficients ( D) and the degree of extraction ( R, %) are calculated. The relationships between the distribution coefficients of alkaloids and the length of the hydrocarbon radical in the molecule of alkyl acetate (dialkyl phtalate) are determined. The possibility of predicting the distribution coefficients is demonstrated.

  16. Theory Of Alkyl Terminated Silicon Quantum Dots

    SciTech Connect

    Reboredo, F; Galli, G

    2004-08-19

    We have carried out a series of ab-initio calculations to investigate changes in the optical properties of Si quantum dots as a function of surface passivation. In particular, we have compared hydrogen passivated dots with those having alkyl groups at the surface. We find that, while on clusters with reconstructed surfaces a complete alkyl passivation is possible, steric repulsion prevents full passivation of Si dots with unreconstructed surfaces. In addition, our calculations show that steric repulsion may have a dominant effect in determining the surface structure, and eventually the stability of alkyl passivated clusters, with results dependent on the length of the carbon chain. Alkyl passivation weakly affects optical gaps of silicon quantum dots, while it substantially decreases ionization potentials and electron affinities and affect their excited state properties. On the basis of our results we propose that alkyl terminated quantum dots may be size selected taking advantage of the change in ionization potential as a function of the cluster size.

  17. Adsorption of alkyl-dimethyl-benzyl-ammonium chloride on differently pretreated nonwoven cotton substrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adsorption of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on greige, alkaline scoured, and bleached nonwoven cotton fabrics was investigated at varying surfactant concentrations and liquor ratios using UV-vis absorption spec...

  18. P04.10PREDICTIVE VALUE OF MGMT PROMOTER METHYLATION QUANTITATIVE ASSESSMENT IN GLIOBLASTOMA, WHICH OPTIMAL CUT-POINT?

    PubMed Central

    de Saint-Denis, T.; Lerhun, E.; Ramirez, C.; Devos, P.; Maurage, C.A.; Dubois, F.; Reyns, N.; Escande, F.

    2014-01-01

    BACKGROUND: The methylation in the promoter region of the MGMT gene encoding the DNA repair protein O6-methyl guanine-DNA methyl transferase is a predictive marker for benefit from alkylating agent therapy and a prognostic factor in glioblastoma. Pyrosequencing-based assessement of MGMT promoter status is of particularly interest, but analytical methods and cut-points may varied from one center to another. We intend to establish a correlation between quantitative methylation of MGMT promoter values and overall survival (OS) or progression-free survival (PFS). METHODS: The clinical and biological data of 159 newly diagnosed glioblastoma recruited in Lille University Hospital between 2008 and 2011 were retrospectively collected. For the patients, the methylation status has been assessed by pyrosequencing on 5 CpG islands. Statistical analyses were performed using SAS software V9.3. RESULTS: Median age of the patients was 61 years. Sixty three patients were male. Of 159 patients, 156 underwent a surgery (40,4% of complete resection), 3 patients were diagnosed only by biopsies. 123 received concomitant radiotherapy and temozolomide and adjuvant temozolomide. The median PFS and the median OS were 9,9 and 15,9. The most significant cut-off methylation determined on 5 sites mean methylaion value was 12% for both predictive and pronostic evaluations. Site 1 methylation status was the best predictive value for both PFS and OS compared to the other CpG islands. On this site 1, a >3% methylation status was a significant predictive factor for reponse to standard treatment for PFS and a >25% site 1 methylation status was a strong pronostic factor for 2 years survival (OS) (47%). CONCLUSIONS: Even a low MGMT methylation (>3%) status on selected CpG site can already be a predictive factor for response to treatment in glioblastoma and allow us to reduce the cut-off values. Highest methylations status are correlated with the longest overall survival and therefore confirm the

  19. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    SciTech Connect

    Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  20. Stereochemical influences upon the opioid ligand activities of 4-alkyl-4-arylpiperidine derivatives.

    PubMed

    Casy, A F; Dewar, G H; al Deeb, O A

    1989-01-01

    The synthesis and stereochemistry (configuration and preferred solute conformation) of some 4-alkyl (methyl, n-propyl, isobutyl)-4-(3-hydroxy-phenyl)-1-methylpiperidines and corresponding 3-methyl diastereoisomeric pairs are reported, together with their in vivo and in vitro activities as opioid ligands. All potent agonists exhibit a preference for axial 4-aryl chair conformations when protonated, and stereochemical analogies with rigid opioids of the benzomorphan class are discussed. Antagonist properties are found in compounds with preference for equatorial 4-aryl chairs, notably the cis 3,4-dimethyl derivative. PMID:2561991

  1. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    DOE PAGESBeta

    Wan, Shun; Jiang, Xueguang; Guo, Bingkun; Dai, Sheng; Goodenough, John B.; Sun, Xiao-Guang

    2015-04-27

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  2. Fragrance material review on 1-phenyl-3-methyl-3-pentanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1-phenyl-3-methyl-3-pentanol when used as a fragrance ingredient is presented. 1-Phenyl-3-methyl-3-pentanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a tertiary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-phenyl-3-methyl-3-pentanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. PMID:22033089

  3. Fragrance material review on 3-methyl-5-phenylpentanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 3-methyl-5-phenylpentanol when used as a fragrance ingredient is presented. 3-Methyl-5-phenylpentanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-methyl-5-phenylpentanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitisation, phototoxicity, and photoallergy data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. PMID:22033091

  4. Fragrance material review on 2-methyl-4-phenylpentanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-methyl-4-phenylpentanol when used as a fragrance ingredient is presented. 2-Methyl-4-phenylpentanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAAs fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-methyl-4-phenylpentanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, repeated dose, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. PMID:22036976

  5. 14 CFR 121.265 - Fire-extinguishing agents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-extinguishing agents. Only methyl bromide, carbon dioxide, or another agent that has been shown to provide equivalent extinguishing action may be used as a fire-extinguishing agent. If methyl bromide or any other... is a defect in the extinguishing system. If a methyl bromide system is used, the containers must...

  6. 14 CFR 125.163 - Fire-extinguishing agents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Requirements § 125.163 Fire-extinguishing agents. Only methyl bromide, carbon dioxide, or another agent that.... If methyl bromide or any other toxic extinguishing agent is used, provisions must be made to prevent... ground or in flight when there is a defect in the extinguishing system. If a methyl bromide system...

  7. 14 CFR 125.163 - Fire-extinguishing agents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Requirements § 125.163 Fire-extinguishing agents. Only methyl bromide, carbon dioxide, or another agent that.... If methyl bromide or any other toxic extinguishing agent is used, provisions must be made to prevent... ground or in flight when there is a defect in the extinguishing system. If a methyl bromide system...

  8. 14 CFR 125.163 - Fire-extinguishing agents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Requirements § 125.163 Fire-extinguishing agents. Only methyl bromide, carbon dioxide, or another agent that.... If methyl bromide or any other toxic extinguishing agent is used, provisions must be made to prevent... ground or in flight when there is a defect in the extinguishing system. If a methyl bromide system...

  9. 14 CFR 121.265 - Fire-extinguishing agents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-extinguishing agents. Only methyl bromide, carbon dioxide, or another agent that has been shown to provide equivalent extinguishing action may be used as a fire-extinguishing agent. If methyl bromide or any other... is a defect in the extinguishing system. If a methyl bromide system is used, the containers must...

  10. 14 CFR 121.265 - Fire-extinguishing agents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-extinguishing agents. Only methyl bromide, carbon dioxide, or another agent that has been shown to provide equivalent extinguishing action may be used as a fire-extinguishing agent. If methyl bromide or any other... is a defect in the extinguishing system. If a methyl bromide system is used, the containers must...

  11. 14 CFR 121.265 - Fire-extinguishing agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-extinguishing agents. Only methyl bromide, carbon dioxide, or another agent that has been shown to provide equivalent extinguishing action may be used as a fire-extinguishing agent. If methyl bromide or any other... is a defect in the extinguishing system. If a methyl bromide system is used, the containers must...

  12. 14 CFR 125.163 - Fire-extinguishing agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Requirements § 125.163 Fire-extinguishing agents. Only methyl bromide, carbon dioxide, or another agent that.... If methyl bromide or any other toxic extinguishing agent is used, provisions must be made to prevent... ground or in flight when there is a defect in the extinguishing system. If a methyl bromide system...

  13. 14 CFR 125.163 - Fire-extinguishing agents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Requirements § 125.163 Fire-extinguishing agents. Only methyl bromide, carbon dioxide, or another agent that.... If methyl bromide or any other toxic extinguishing agent is used, provisions must be made to prevent... ground or in flight when there is a defect in the extinguishing system. If a methyl bromide system...

  14. 14 CFR 121.265 - Fire-extinguishing agents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-extinguishing agents. Only methyl bromide, carbon dioxide, or another agent that has been shown to provide equivalent extinguishing action may be used as a fire-extinguishing agent. If methyl bromide or any other... is a defect in the extinguishing system. If a methyl bromide system is used, the containers must...

  15. Tris(thioimidazolyl)borate-zinc-thiolate complexes for the modeling of biological thiolate alkylations.

    PubMed

    Ibrahim, Mohamed M; Seebacher, Jan; Steinfeld, Gunther; Vahrenkamp, Heinrich

    2005-11-14

    The S3Zn-SR coordination of thiolate-alkylating enzymes such as the Ada DNA repair protein was reproduced in tris(thioimidazolyl)borate-zinc-thiolate complexes Tti(R)Zn-SR'. Four different Tti(R) ligands and nine different thiolates were employed, yielding a total of 12 new complexes. In addition, one Tti(R)Zn-SH complex and two thiolate-bridged [Tti(R)-SEt-Tti(R)]+ complexes were obtained. A selection of six thiolate complexes was converted with methyl iodide to the corresponding methyl thioethers and Tti(R)Zn-I. According to a kinetic analysis these reactions are second-order processes, which implies that the alkylations are likely to occur at the zinc-bound thiolates. They are much faster than the alkylations of zinc thiolates with N3 or N2S tripod ligands. The most reactive thiolate, Tti(Xyl)Zn-SEt, reacts slowly with trimethyl phosphate in a nonpolar medium at room temperature, yielding methyl-ethyl-thioether and Tti(Xyl)Zn-OPO(OMe)2 which can be converted back to the thiolate complex with NaSEt. This is the closest reproduction of the Ada repair process so far. PMID:16270993

  16. Methyl Iodide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl iodide (MeI, iodomethane, CH3I) was reported as a potential alternative to the stratospheric ozone-depleting fumigant methyl bromide (MeBr) in the mid-1990s (Sims et al., 1995; Ohr et al., 1996). It has since received significant research attention to determine its environmental fate and tran...

  17. Potent and sustained cellular inhibition of miR-122 by lysine-derivatized peptide nucleic acids (PNA) and phosphorothioate locked nucleic acid (LNA)/2'-O-methyl (OMe) mixmer anti-miRs in the absence of transfection agents

    PubMed Central

    Torres, Adrian G.; Threlfall, Richard N.

    2011-01-01

    Efficient cell delivery of antisense oligonucleotides (ONs) is a key issue for their potential therapeutic use. It has been shown recently that some ONs can be delivered into cells without the use of transfection agents (gymnosis), but this generally requires cell incubation over several days and high amounts of ONs (micromolar concentrations). Here we have targeted microRNA 122 (miR-122), a small non-coding RNA involved in regulation of lipid metabolism and in the replication of hepatitis C virus, with ONs of different chemistries (anti-miRs) by gymnotic delivery in cell culture. Using a sensitive dual-luciferase reporter assay, anti-miRs were screened for their ability to enter liver cells gymnotically and inhibit miR-122 activity. Efficient miR-122 inhibition was obtained with cationic PNAs and 2'-O-methyl (OMe) and Locked Nucleic Acids (LNA)/OMe mixmers containing either phosphodiester (PO) or phosphorothioate (PS) linkages at sub-micromolar concentrations when incubated with cells for just 4 hours. Furthermore, PNA and PS-containing anti-miRs were able to sustain miR-122 inhibitory effects for at least 4 days. LNA/OMe PS anti-miRs were the most potent anti-miR chemistry tested in this study, an ON chemistry that has been little exploited so far as anti-miR agents towards therapeutics. PMID:22567190

  18. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-01-05

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  19. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  20. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  1. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  2. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  3. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  4. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  5. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  6. Chemical Agents

    MedlinePlus

    ... glycol Hydrazine Hydrofluoric acid Hydrogen chloride Lewisite Melamine Mercury Methyl bromide Methyl isocyanate Nicotine Nitrogen mustard Opioids ... L-3) Long-acting anticoagulant (super warfarin) M Mercury Methyl bromide Methyl isocyanate Mustard gas (H) (sulfur ...

  7. Methyl chloroform

    SciTech Connect

    Wray, T.K.

    1994-04-01

    Methyl chloroform is identified as a Class 1 ozone-depleting substance under Title VI of the CAA Amendments. On Nov. 30, 1993, EPA ordered the phaseout of Class 1 ozone-depleting substances -- chlorofluorocarbons (CFCs), halons, carbon tetrachloride and methyl chloroform -- by Jan. 1, 1996. Methyl chloroform and other Class 1 substances may be used after the dead-line if sources can be found through recycling or existing inventories. Methyl chloroform is listed as a hazardous air pollutant under CAA. It also is a SARA Title III, Sec. 313 compound with a reportable quantity of 1,000 pounds. OSHA and the American Conference of Government Industrial Hygienists have set 350 ppm as the time-weighted average airborne exposure level for methyl chloroform. NIOSH lists its immediately dangerous to life or health'' concentration as 1,000 parts per million. DOT identifies the substance as a hazardous material, Class 6.1 (poison).

  8. Highly Selective Anti-Cancer Activity of Cholesterol-Interacting Agents Methyl-β-Cyclodextrin and Ostreolysin A/Pleurotolysin B Protein Complex on Urothelial Cancer Cells.

    PubMed

    Resnik, Nataša; Repnik, Urška; Kreft, Mateja Erdani; Sepčić, Kristina; Maček, Peter; Turk, Boris; Veranič, Peter

    2015-01-01

    Cholesterol content can vary distinctly between normal and cancer cells, with elevated levels in cancer cells. Here, we investigated cholesterol sequestration with methyl-β-cyclodextrin (MCD), and pore-formation with the ostreolysin A/pleurotolysin B (OlyA/PlyB) protein complex that binds to cholesterol/sphingomyelin-rich membrane domains. We evaluated the effects on viability of T24 invasive and RT4 noninvasive human urothelial cancer cells and normal porcine urothelial (NPU) cells. Cholesterol content strongly correlated with cancerous transformation, as highest in the T24 high-grade invasive urothelial cancer cells, and lowest in NPU cells. MCD treatment induced prominent cell death of T24 cells, whereas OlyA/PlyB treatment resulted in greatly decreased viability of the RT4 low-grade noninvasive carcinoma cells. Biochemical and transmission electron microscopy analyses revealed that MCD and OlyA/PlyB induce necrotic cell death in these cancer cells, while viability of NPU cells was not significantly affected by either treatment. We conclude that MCD is more toxic for T24 high-grade invasive urothelial cancer cells, and OlyA/PlyB for RT4 low-grade noninvasive urothelial cancer cells, and neither is toxic for NPU cells. The cholesterol and cholesterol/sphingomyelin-rich membrane domains in urothelial cancer cells thus constitute a selective therapeutic target for elimination of urothelial cancer cells. PMID:26361392

  9. Highly Selective Anti-Cancer Activity of Cholesterol-Interacting Agents Methyl-β-Cyclodextrin and Ostreolysin A/Pleurotolysin B Protein Complex on Urothelial Cancer Cells

    PubMed Central

    Resnik, Nataša; Repnik, Urška; Kreft, Mateja Erdani; Sepčić, Kristina; Maček, Peter; Turk, Boris; Veranič, Peter

    2015-01-01

    Cholesterol content can vary distinctly between normal and cancer cells, with elevated levels in cancer cells. Here, we investigated cholesterol sequestration with methyl-β-cyclodextrin (MCD), and pore-formation with the ostreolysin A/pleurotolysin B (OlyA/PlyB) protein complex that binds to cholesterol/sphingomyelin-rich membrane domains. We evaluated the effects on viability of T24 invasive and RT4 noninvasive human urothelial cancer cells and normal porcine urothelial (NPU) cells. Cholesterol content strongly correlated with cancerous transformation, as highest in the T24 high-grade invasive urothelial cancer cells, and lowest in NPU cells. MCD treatment induced prominent cell death of T24 cells, whereas OlyA/PlyB treatment resulted in greatly decreased viability of the RT4 low-grade noninvasive carcinoma cells. Biochemical and transmission electron microscopy analyses revealed that MCD and OlyA/PlyB induce necrotic cell death in these cancer cells, while viability of NPU cells was not significantly affected by either treatment. We conclude that MCD is more toxic for T24 high-grade invasive urothelial cancer cells, and OlyA/PlyB for RT4 low-grade noninvasive urothelial cancer cells, and neither is toxic for NPU cells. The cholesterol and cholesterol/sphingomyelin-rich membrane domains in urothelial cancer cells thus constitute a selective therapeutic target for elimination of urothelial cancer cells. PMID:26361392

  10. Preparation of 3R- and 3S-methyl isomers of the myocardial imaging agent 15-(p-IODOPHENYL)-3-methylpentadecanoic acid ({open_quotes}BMIPP{close_quotes})

    SciTech Connect

    Lin, Q. |; Luo, J.; Mokler, F.

    1996-10-01

    Iodine-123-labeled racemic BMIPP is used for clinical evaluation of heart disease. To evaluate the expected importance of configuration of the asymmetric C-3 center, we have synthesized the 3R-isomer. 6-Phenylhexanoyl chloride was condensed with thiophene (Friedel-Crafts), followed by Wolff-Kishner reduction and subsequent acylation with the ethyl-3-R-methylglutaroyl chloride, Wolff-Kishner reduction and Raney-Ni ring opening. Para Thallation (TTFA)/KI provided 3R-BMIPP, m.p. 51-52{degrees}C, [{alpha}{sub D}] = +0.74{degrees}. The diastereomeric amide mixture was prepared by reaction of racemic 3-R,S-BMIPP with (S)-(-)-{alpha}-methylbenzylamine. Chromatographic separation and HCl hydrolysis (at 175{degrees}C) provided the 3R- and 3S- (m.p. 45-46{degrees}C, [{alpha}{sub D}] = -1.67{degrees}) BMIPP isomers. The more polar amide (m.p. 93-94{degrees}C) was identical with the amide from the synthetic 3R-BMIPP (m.p., HPLC, NMR). Availability of the 3R- and 3S-BMIPP isomers will permit preparation of the radioiodinated isomers and animal evaluation to determine the effects of the methyl group configuration on myocardial uptake and metabolism.

  11. Composition of the wax fraction of bitumen from methylated brown coals

    SciTech Connect

    S.I. Zherebtsov; A.I. Moiseev

    2009-04-15

    Changes in the group and individual compositions of the wax fractions of bitumen in the course of brown coal methylation were studied. With the use of IR and NMR spectroscopy and chromatography-mass spectrometry, it was found that the esters of methylated coal waxes consisted of the native esters of fatty acids and the methyl esters of these acids formed as a result of an alkylation treatment. Esterification and transesterification were predominant among the reactions of aliphatic fraction components. A positive effect of methanol alkylation on an increase in the yield of the aliphatic fractions was found.

  12. Sequence-selective single-molecule alkylation with a pyrrole-imidazole polyamide visualized in a DNA nanoscaffold.

    PubMed

    Yoshidome, Tomofumi; Endo, Masayuki; Kashiwazaki, Gengo; Hidaka, Kumi; Bando, Toshikazu; Sugiyama, Hiroshi

    2012-03-14

    We demonstrate a novel strategy for visualizing sequence-selective alkylation of target double-stranded DNA (dsDNA) using a synthetic pyrrole-imidazole (PI) polyamide in a designed DNA origami scaffold. Doubly functionalized PI polyamide was designed by introduction of an alkylating agent 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI) and biotin for sequence-selective alkylation at the target sequence and subsequent streptavidin labeling, respectively. Selective alkylation of the target site in the substrate DNA was observed by analysis using sequencing gel electrophoresis. For the single-molecule observation of the alkylation by functionalized PI polyamide using atomic force microscopy (AFM), the target position in the dsDNA (∼200 base pairs) was alkylated and then visualized by labeling with streptavidin. Newly designed DNA origami scaffold named "five-well DNA frame" carrying five different dsDNA sequences in its cavities was used for the detailed analysis of the sequence-selectivity and alkylation. The 64-mer dsDNAs were introduced to five individual wells, in which target sequence AGTXCCA/TGGYACT (XY = AT, TA, GC, CG) was employed as fully matched (X = G) and one-base mismatched (X = A, T, C) sequences. The fully matched sequence was alkylated with 88% selectivity over other mismatched sequences. In addition, the PI polyamide failed to attach to the target sequence lacking the alkylation site after washing and streptavidin treatment. Therefore, the PI polyamide discriminated the one mismatched nucleotide at the single-molecule level, and alkylation anchored the PI polyamide to the target dsDNA. PMID:22320236

  13. Surface Modification of Polymers by Reaction of Alkyl Radicals.

    PubMed

    Hetemi, Dardan; Médard, Jérôme; Kanoufi, Frédéric; Combellas, Catherine; Pinson, Jean; Podvorica, Fetah I

    2016-01-19

    The surfaces of poly(methyl methacrylate) and polyethylene are modified either (i) by a two-step process including the thermal reaction of alkyl radicals derived from bromohexanoic acid in a mixture of 2,6-dimethylbenzene diazonium salt and neat isopentyl nitrite at 60 °C, followed by reaction with p-nitroaniline, anthraquinone, neutral red, and polyethylene glycol moieties, or (ii) by reaction of a previously anthraquinone-modified bromohexanoic acid. The modified surfaces are characterized by IR, XPS, UV, and water contact angles. A mechanism is proposed to rationalize the results. This approach is an efficient way to modify and pattern polymer surfaces with different organic groups and chemical functionalities under mild conditions. PMID:26653398

  14. The Scope of Direct Alkylation of Gold Surface with Solutions of C1–C4n-Alkylstannanes

    PubMed Central

    2015-01-01

    Treatment of cleaned gold surfaces with dilute tetrahydrofuran or chloroform solutions of tetraalkylstannanes (alkyl = methyl, ethyl, n-propyl, n-butyl) or di-n-butylmethylstannyl tosylate under ambient conditions causes a self-limited growth of disordered monolayers consisting of alkyls and tin oxide. Extensive use of deuterium labeling showed that the alkyls originate from the stannane and not from ambient impurities, and that trialkylstannyl groups are absent in the monolayers, contrary to previous proposals. Methyl groups attached to the Sn atom are not transferred to the surface. Ethyl groups are transferred slowly, and propyl and butyl rapidly. In all cases, tin oxide is codeposited in submonolayer amounts. The monolayers were characterized by ellipsometry, contact angle goniometry, polarization modulated IR reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy with ferrocyanide/ferricyanide, which revealed a very low charge-transfer resistance. The thermal stability of the monolayers and their resistance to solvents are comparable with those of an n-octadecanethiol monolayer. A preliminary examination of the kinetics of monolayer deposition from a THF solution of tetra-n-butylstannane revealed an approximately half-order dependence on the bulk solution concentration of the stannane, hinting that more than one alkyl can be transferred from a single stannane molecule. A detailed structure of the attachment of the alkyl groups is not known, and it is proposed that it involves direct single or multiple bonding of one or more C atoms to one or more Au atoms. PMID:26327466

  15. Effects of the novel anti-ulcer agent 1-(5'-oxohexyl)-3-methyl-7-propyl xanthine on experimental ulcers and gastric secretion in rats.

    PubMed

    Tanaka, T; Bickel, M; Herling, A W; Sakurai, M; Goto, M; Hayashi, S

    1989-06-01

    The effects of 1-(5'-oxohexyl)-3-methyl-7-propyl xanthine (HWA 285) on various experimentally induced ulcers and gastric acid secretion were investigated in rats. HWA 285 (10-50 mg/kg, p.o.) inhibited restraint and water-immersion-induced stress, ulcers, indometacin- and absolute ethanol-induced gastric ulcers and mepirizole-induced duodenal ulcers in rats in a dose-dependent manner. HWA 285 (10-25 mg/kg i.d.) had inhibitory effects on acetylsalicylic acid-induced ulcers. The healing of acetic acid-induced chronic ulcers was significantly accelerated by HWA 285 (25 mg/kg p.o.) when it was given twice daily for 7 consecutive days. When given orally (twice a day, 11 doses in total) before the induction of gastric ulcers by stress, cimetidine at 100 mg/kg aggravated the ulcers, whereas, HWA 285 at 25 mg/kg had not such an effect. In conscious pylorus-ligated rats, HWA 285 (10-100 mg/kg i.p.) showed a dose-dependent inhibition on basal and desglugastrin- and 2-deoxy-D-glucose (2-DG)-stimulated gastric acid secretion. In stomach-lumen perfused rats, HWA 285 (30 mg/kg i.v.) inhibited 2-DG-stimulated gastric acid secretion but not carbachol-stimulated gastric acid secretion. These results suggest that the anti-ulcer effects of HWA 285 are produced by cytoprotective and central anti-secretory activity without peripheral anti-cholinergic properties. Whether the central anti-secretory effects of HWA 285 play thereby the key role, have to be clarified in further investigation. PMID:2775336

  16. Methyl salicylate 2-O-β-D-lactoside, a novel salicylic acid analogue, acts as an anti-inflammatory agent on microglia and astrocytes

    PubMed Central

    2011-01-01

    Background Neuroinflammation has been known to play a critical role in the pathogenesis of Alzheimer's disease (AD). Activation of microglia and astrocytes is a characteristic of brain inflammation. Epidemiological studies have shown that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) delays the onset of AD and suppresses its progression. Methyl salicylate-2-O-β-D-lactoside (DL0309) is a new molecule chemically related to salicylic acid. The present study aimed to evaluate the anti-inflammatory effects of DL0309. Findings Our studies show that DL0309 significantly inhibits lipopolysaccharide (LPS)-induced release of the pro-inflammatory cytokines IL-6, IL-1β, and TNF-α; and the expression of the inflammation-related proteins iNOS, COX-1, and COX-2 by microglia and astrocytes. At a concentration of 10 μM, DL0309 prominently inhibited LPS-induced activation of NF-κB in glial cells by blocking phosphorylation of IKK and p65, and by blocking IκB degradation. Conclusions We demonstrate here for the first time that DL0309 exerts anti-inflammatory effects in glial cells by suppressing different pro-inflammatory cytokines and iNOS/NO. Furthermore, it also regulates the NF-κB signaling pathway by blocking IKK and p65 activation and IκB degradation. DL0309 also acts as a non-selective COX inhibitor in glial cells. These studies suggest that DL0309 may be effective in the treatment of neuroinflammatory disorders, including AD. PMID:21831328

  17. Photochemistry of alkyl bromides trapped in water ice films

    NASA Astrophysics Data System (ADS)

    Schrems, O.; Okaikwei, B.; Bluszcz, Th.

    2012-04-01

    Photochemical reactions of atmospheric trace gases taking place at the surface of atmospheric ice particles and in bulk ice are important in stratospheric and tropospheric chemistry but also in polar and alpine snowpack chemistry. Consequently, the understanding of the uptake und incorporation of atmospheric trace gases in water ice as well as their interactions with water molecules is very important for the understanding of processes which occur in ice particles and at the air/ice interface. Reactive atmospheric trace gases trapped in ice are subject of photochemical reactions when irradiated with solar UV radiation. Among such compounds bromine species are highly interesting due to their potential of depleting ozone both in the stratosphere and troposphere. Organic bromine gases can carry bromine to the stratosphere. Methyl bromide (CH3Br) is the largest bromine carrier to the stratosphere. It has both natural and anthropogenic sources. In this contribution we will present the results of our laboratory studies of alkyl bromides (methyl, bromide (CH3Br), dimethyl bromide (CH2Br2), n-propyl bromide (C3H7Br), 1,2-dibromoethane C2H4Br2)), trapped in water ice. We have simulated the UV photochemistry of these brominated alkanes isolated in ice films kept at 16 K and for comparison in solid argon matrices. The photoproducts formed in the ice have been identified by means of FTIR spectroscopy. Reflection absorption infrared spectroscopy (RAIRS) is especially useful to study nascent ice surfaces, kinetics of adsorption/decomposition, and heterogeneous catalysis. Among the observed photoproducts we could identify carbon monoxide and carbon dioxide for each alkyl bromide studied. The photoproduct HBr is dissociated in the bulk ice. Based on the experimental observations possible reaction mechanisms will be discussed.

  18. Design, synthesis and biological evaluation of novel 1,2,3-triazolyl [Formula: see text]-hydroxy alkyl/carbazole hybrid molecules.

    PubMed

    Rad, Mohammad Navid Soltani; Behrouz, Somayeh; Behrouz, Marzieh; Sami, Akram; Mardkhoshnood, Mehdi; Zarenezhad, Ali; Zarenezhad, Elham

    2016-08-01

    The design, synthesis and biological study of several novel 1,2,3-triazolyl [Formula: see text]-hydroxy alkyl/carbazole hybrid molecules as a new type of antifungal agent has been described. In this synthesis, the N-alkylation reaction of carbazol-9-ide potassium salt with 3-bromoprop-1-yne afforded 9-(prop-2-ynyl)-9H-carbazole. The 'Click' Huisgen cycloaddition reaction of 9-(prop-2-ynyl)-9H-carbazole with diverse [Formula: see text]-azido alcohols in the presence of copper-doped silica cuprous sulphate led to target molecules in excellent yields. The in vitro antifungal and antibacterial activities of title compounds were screened against various pathogenic fungal strains, Gram-positive and/or Gram-negative bacteria. In particular, 1-(4-((9H-carbazol-9-yl) methyl)-1H-1,2,3-triazol-1-yl)-3-butoxypropan-2-ol (10e) proved to have potent antifungal activity against all fungal tests compared with fluconazole and clotrimazole as studied reference drugs. Our molecular docking analysis revealed an appropriate fitting and a potential powerful interaction between compound 10e and an active site of the Mycobacterium P450DM enzyme. The strong hydrogen bondings between [Formula: see text]-hydroxyl and ether groups in 10e were found to be the main factors that drive the molecule to fit in the active site of enzyme. The in silico pharmacokinetic studies were used for a better description of 10a-10n as potential lead antifungal agents for future investigations. PMID:27278443

  19. Relationship between promoter methylation & tissue expression of MGMT gene in ovarian cancer

    PubMed Central

    Shilpa, V.; Bhagat, Rahul; Premalata, C.S.; Pallavi, V.R.; Ramesh, G.; Krishnamoorthy, Lakshmi

    2014-01-01

    Background & objectives: Epigenetic alterations, in addition to multiple gene abnormalities, are involved in the genesis and progression of human cancers. Aberrant methylation of CpG islands within promoter regions is associated with transcriptional inactivation of various tumour suppressor genes. O6-methyguanine-DNA methyltransferase (MGMT) is a DNA repair gene that removes mutagenic and cytotoxic adducts from the O6-position of guanine induced by alkylating agents. MGMT promoter hypermethylation and reduced expression has been found in some primary human carcinomas. We studied DNA methylation of CpG islands of the MGMT gene and its relation with MGMT protein expression in human epithelial ovarian carcinoma. Methods: A total of 88 epithelial ovarian cancer (EOC) tissue samples, 14 low malignant potential (LMP) tumours and 20 benign ovarian tissue samples were analysed for MGMT promoter methylation by nested methylation-specific polymerase chain reaction (MSP) after bisulphite modification of DNA. A subset of 64 EOC samples, 10 LMP and benign tumours and five normal ovarian tissue samples were analysed for protein expression by immunohistochemistry. Results: The methylation frequencies of the MGMT gene promoter were found to be 29.5, 28.6 and 20 per cent for EOC samples, LMP tumours and benign cases, respectively. Positive protein expression was observed in 93.8 per cent of EOC and 100 per cent in LMP, benign tumours and normal ovarian tissue samples. Promoter hypermethylation with loss of protein expression was seen only in one case of EOC. Interpretation & conclusions: Our results suggest that MGMT promoter hypermethylation does not always reflect gene expression. PMID:25579142

  20. CuO/SiO2 as a simple, effective and recoverable catalyst for alkylation of indole derivatives with diazo compounds.

    PubMed

    Fraile, José M; Le Jeune, Karel; Mayoral, José A; Ravasio, Nicoletta; Zaccheria, Federica

    2013-07-14

    The purely inorganic copper oxide on silica catalyzes the reaction of methyl phenyldiazoacetate with N-methyl indole under mild reaction conditions, giving the alkylation (formally a C-H insertion) in position 3, and the catalyst can be recovered and reused at least in 5 consecutive runs with only minor loss in activity. The scope of the reaction includes various diazo compounds and indole or pyrrole derivatives leading to alkylation or cyclopropanation depending on the heterocycle structure. An alternative mechanism, without reduction of Cu(II) to Cu(I), is proposed on the basis of the obtained results. PMID:23657431

  1. Design and Synthesis of Analogues of Marine Natural Product Galaxamide, an N-methylated Cyclic Pentapeptide, as Potential Anti-Tumor Agent in Vitro.

    PubMed

    Lunagariya, Jignesh; Zhong, Shenghui; Chen, Jianwei; Bai, Defa; Bhadja, Poonam; Long, Weili; Liao, Xiaojian; Tang, Xiaoli; Xu, Shihai

    2016-01-01

    Herein, we report design and synthesis of novel 26 galaxamide analogues with N-methylated cyclo-pentapeptide, and their in vitro anti-tumor activity towards the panel of human tumor cell line, such as, A549, A549/DPP, HepG2 and SMMC-7721 using MTT assay. We have also investigated the effect of galaxamide and its representative analogues on growth, cell-cycle phases, and induction of apoptosis in SMMC-7721 cells in vitro. Reckon with the significance of conformational space and N-Me aminoacid (aa) comprising this compound template, we designed the analogues with modification in N-Me-aa position, change in aa configuration from l to d aa and substitute one Leu-aa to d/l Phe-aa residue with respective to the parent structure. The efficient solid phase parallel synthesis approach is employed for the linear pentapeptide residue containing N-Me aa, followed by solution phase macrocyclisation to afford target cyclo pentapeptide compounds. In the present study, all galaxamide analogues exhibited growth inhibition in A549, A549/DPP, SMMC-7721 and HepG2 cell lines. Compounds 6, 18, and 22 exhibited interesting activities towards all cell line tested, while Compounds 1, 4, 15, and 22 showed strong activity towards SMMC-7221 cell line in the range of 1-2 μg/mL IC50. Flow cytometry experiment revealed that galaxamide analogues namely Compounds 6, 18, and 22 induced concentration dependent SMMC-7721 cell apoptosis after 48 h. These compounds induced G0/G1 phase cell-cycle arrest and morphological changes indicating induction of apoptosis. Thus, findings of our study suggest that the galaxamide and its analogues 6, 18 and 22 exerted growth inhibitory effect on SMMC-7721 cells by arresting the cell cycle in the G0/G1 phase and inducing apoptosis. Compound 1 showed promising anti-tumor activity towards SMMC-7721 cancer cell line, which is 9 and 10 fold higher than galaxamide and reference DPP (cisplatin), respectively. PMID:27598177

  2. Silica-Supported Oligomeric Benzyl Phosphate (Si-OBP) and Triazole Phosphate (Si-OTP) Alkylating Reagents.

    PubMed

    Maity, Pradip K; Faisal, Saqib; Rolfe, Alan; Stoianova, Diana; Hanson, Paul R

    2015-10-16

    The syntheses of silica-supported oligomeric benzyl phosphates (Si-OBP(n)) and triazole phosphates (Si-OTP(n)) using ring-opening metathesis polymerization (ROMP) for use as efficient alkylating reagents is reported. Ease of synthesis and grafting onto the surface of norbornenyl-tagged (Nb-tagged) silica particles has been demonstrated for benzyl phosphate and triazole phosphate monomers. It is shown that these silica polymer hybrid reagents, Si-OBP(n) and Si-OTP(n), can be used to carry out alkylation reactions with an array of different nucleophiles to afford the corresponding benzylated and (triazolyl)methylated products in good yield and high purity. PMID:26430955

  3. Process for recovering uranium using an alkyl pyrophosphoric acid and alkaline stripping solution

    SciTech Connect

    Worthington, R.E.; Magdics, A.

    1987-03-24

    A process is described for stripping uranium for a pregnant organic extractant comprising an alkyl pyrophosphoric acid dissolved in a substantially water-immiscible organic diluent. The organic extractant contains tetravalent uranium and an alcohol or phenol modifier in a quantity sufficient to retain substantially all the unhydrolyzed alkyl pyrophosphoric acid in solution in the diluent during stripping. The process comprises adding an oxidizing agent to the organic extractant and thereby oxidizing the tetravalent uranium to the +6 state in the organic extractant, and contacting the organic extractant containing the uranium in the +6 state with a stripping solution comprising an aqueous solution of an alkali metal or ammonium carbonate or hydroxide thereby stripping uranium from the organic extractant into the stripping solution. The resulting barren organic extractant containing substantially all of the unhydrolyzed alkyl pyrophosphoric acid dissolved in the diluent is separated from the stripping solution containing the stripped uranium, the barren extractant being suitable for recycle.

  4. Process for recovering uranium using an alkyl pyrophosphoric acid and alkaline stripping solution

    SciTech Connect

    Worthington, R.E.; Magdics, A.

    1987-03-24

    A process is described for stripping uranium from a pregnant organic extractant comprising an alkyl pyrophosphoric acid dissolved in a substantially water-immiscible organic diluent. The organic extractant contains tetravalent uranium and an alcohol or phenol modifier in a quantity sufficient to retain substantially all the unhydrolyzed alkyl pyrophosphoric acid in solution in the diluent during stripping. The process comprises adding an oxidizing agent to the organic extractant to and thereby oxidizing the tetravalent uranium to the +6 state in the organic extractant, and contacting the organic extractant containing the uranium in the +6 state with a stripping solution comprising an aqueous solution of an alkali metal or ammonium carbonate, nonsaturated in uranium. The uranium is stripped from, the organic extractant into the stripping solution, and the resulting barren organic extractant containing substantially all of the unhydrolyzed alkyl pyrophosphoric acid dissolved in the diluent is separated from the stripping solution containing the stripped uranium, the barren extractant being suitable for recycle.

  5. Thermally induced alkylation of diamond.

    PubMed

    Hoeb, Marco; Auernhammer, Marianne; Schoell, Sebastian J; Brandt, Martin S; Garrido, Jose A; Stutzmann, Martin; Sharp, Ian D

    2010-12-21

    We present an approach for the thermally activated formation of alkene-derived self-assembled monolayers on oxygen-terminated single and polycrystalline diamond surfaces. Chemical modification of the oxygen and hydrogen plasma-treated samples was achieved by heating in 1-octadecene. The resulting layers were characterized using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. This investigation reveals that alkenes selectively attach to the oxygen-terminated sites via covalent C-O-C bonds. The hydrophilic oxygen-terminated diamond is rendered strongly hydrophobic following this reaction. The nature of the process limits the organic layer growth to a single monolayer, and FTIR measurements reveal that such monolayers are dense and well ordered. In contrast, hydrogen-terminated diamond sites remain unaffected by this process. This method is thus complementary to the UV-initiated reaction of alkenes with diamond, which exhibits the opposite reactivity contrast. Thermal alkylation increases the range of available diamond functionalization strategies and provides a means of straightforwardly forming single organic layers in order to engineer the surface properties of diamond. PMID:21090790

  6. N-Alkylation by Hydrogen Autotransfer Reactions.

    PubMed

    Ma, Xiantao; Su, Chenliang; Xu, Qing

    2016-06-01

    Owing to the importance of amine/amide derivatives in all fields of chemistry, and also the green and environmentally benign features of using alcohols as alkylating reagents, the relatively high atom economic dehydrative N-alkylation reactions of amines/amides with alcohols through hydrogen autotransfer processes have received much attention and have developed rapidly in recent decades. Various efficient homogeneous and heterogeneous transition metal catalysts, nano materials, electrochemical methods, biomimetic methods, asymmetric N-alkylation reactions, aerobic oxidative methods, and even certain transition metal-free, catalyst-free, or autocatalyzed methods, have also been developed in recent years. With a brief introduction to the background and developments in this area of research, this chapter focuses mainly on recent progress and technical and conceptual advances contributing to the development of this research in the last decade. In addition to mainstream research on homogeneous and heterogeneous transition metal-catalyzed reactions, possible mechanistic routes for hydrogen transfer and alcohol activation, which are key processes in N-alkylation reactions but seldom discussed in the past, the recent reports on computational mechanistic studies of the N-alkylation reactions, and the newly emerged N-alkylation methods based on novel alcohol activation protocols such as air-promoted reactions and transition metal-free methods, are also reviewed in this chapter. Problems and bottlenecks that remained to be solved in the field, and promising new research that deserves greater future attention and effort, are also reviewed and discussed. PMID:27573267

  7. Cationic technetium-99m complexes of N-substituted pyridoxal derivatives as renal function agents

    SciTech Connect

    Karube, Yoshiharu; Iwamoto, Koji; Takata, Jiro

    1994-10-01

    New cationic technetium-chelating agents containing a pyridinium group have been synthesized and evaluated as potential renal radiopharmaceuticals. The pyridinium compounds used in the study are N-methyl pyridoxal chloride, N-ethyl pyridoxal chloride, N-propyl pyridoxal chloride, 1-methyl-3-hydroxy-4-formylpyridinium chloride, 1-methyl-2-formyl-3-hydroxpyridinium chloride and the Schiff`s bases of N-methyl pyridoxal chloride with amino acid, amino acid ester and amino acid amide. Complexes of these chelating agents with {sup 22m}Tc were prepared using a Na{sub 2}S{sub 2}O{sub 4} or a SnCl{sub 2} solution as a reducing agent. The purity of the {sup 99m}Tc complexes was determined by paper electrophoresis in 0.1 Mtris buffer. Electrophoresis indicates slightly positive-charged species. The log P values of these complexes showed a hydrophilic nature. Urinary excretion of the {sup 99m}Tc N-alkylated pyridoxal derivatives, {sup 99m}Tc-diethylenetriaminepentaacetic acid, {sup 99m}Tc-mercaptoacetylglycylglycylglycine (MAG3) and {sup 131}I-o-iodohippurate were determined in mice and rats at different time intervals. In a rat model, the pyridoxal-derived {sup 99m}Tc complexes are rapidly excreted in urine and provide clear renal scintigrams. Hepatobiliary excretion was negligible, reducing scan interference from the intestines. Total clearances were lower than that of {sup 131}I-hippurate and {sup 99m}Tc-MAG3. The rate of urinary clearance of the new tracers was not significantly faster than {sup 99m}Tc diethylenetriaminepentaacetic acid and the inhibitor N{sup 1}-methylnicotinamide had only a minimal effect on the renal behavior. Though the new tracers have cationic properties, the pyridinium group did not contribute largely to the excretion of active transport. 21 refs., 4 figs., 4 tabs.

  8. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    SciTech Connect

    Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu

    2013-04-12

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.

  9. On the origin of the stereoselectivity in the alkylation of oxazolopiperidone enolates.

    PubMed

    Soteras, Ignacio; Lozano, Oscar; Gómez-Esqué, Arantxa; Escolano, Carmen; Orozco, Modesto; Amat, Mercedes; Bosch, Joan; Luque, F Javier

    2006-05-24

    The origin of the diastereoselective alkylation of enolates of oxazolopiperidones is studied by means of theoretical calculations and experimental assays. For the unsubstituted oxazolopiperidone, the alkylation with methyl chloride is predicted to afford mainly the exo product, a finding further corroborated from the analysis of the experimental outcome obtained in the reaction of the racemic oxazolopiperidone. However, such a preference can be drastically altered by the presence of substituents attached to the fused ring. In particular, when the angular carbon adopts an R configuration in a phenylglycinol-derived oxazolopiperidone, the presence of a phenyl ring at position 3 forces the pseudo-planarity of the bicyclic lactam, and the diastereoselectivity is dictated by the internal torsional strain induced in the enolate. However, when the angular carbon adopts an S configuration, the preference for the exo alkylation stems from the intermolecular steric hindrance between the enolate and the alkylating reagent. Interestingly, the intramolecular hydrogen bond formed between the phenyl ring and the carbonyl oxygen in the enolate largely reduces the difference in stability of the two TSs compared to the unsubstituted oxazolopiperidone. PMID:16704257

  10. Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations.

    PubMed

    Urahata, Sérgio M; Ribeiro, Mauro C C

    2005-01-01

    Ionic dynamics in room temperature molten salts (ionic liquids) containing 1-alkyl-3-methylimidazolium cations is investigated by molecular-dynamics simulations. Calculations were performed with united atom models, which were used in a previous detailed study of the equilibrium structure of ionic liquids [S. M. Urahata and M. C. C. Ribeiro, J. Chem. Phys. 120, 1855 (2004)]. The models were used in a systematic study of the dependency of several single particle time correlation functions on anion size (F-, Cl-, Br-, and PF6-) and alkyl chain length (1-methyl-, 1-ethyl-, 1-butyl-, and 1-octyl-). Despite of large mass and size of imidazolium cations, they exhibit larger mean-square displacement than anions. A further detailed picture of ionic motions is obtained by using appropriate projections of displacements along the plane or perpendicular to the plane of the imidazolium ring. A clear anisotropy in ionic displacement is revealed, the motion on the ring plane and almost perpendicular to the 1-alkyl chain being the less hindered one. Similar projections were performed on velocity correlation functions, whose spectra were used to relate short time ionic rattling with the corresponding long time diffusive regime. Time correlation functions of cation reorientation and dihedral angles of the alkyl chains are discussed, the latter decaying much faster than the former. A comparative physical picture of time scales for distinct dynamical processes in ionic liquids is provided. PMID:15638602

  11. Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations

    NASA Astrophysics Data System (ADS)

    Urahata, Sérgio M.; Ribeiro, Mauro C. C.

    2005-01-01

    Ionic dynamics in room temperature molten salts (ionic liquids) containing 1-alkyl-3-methylimidazolium cations is investigated by molecular-dynamics simulations. Calculations were performed with united atom models, which were used in a previous detailed study of the equilibrium structure of ionic liquids [S. M. Urahata and M. C. C. Ribeiro, J. Chem. Phys. 120, 1855 (2004)]. The models were used in a systematic study of the dependency of several single particle time correlation functions on anion size (F-, Cl-, Br-, and PF6-) and alkyl chain length (1-methyl-, 1-ethyl-, 1-butyl-, and 1-octyl-). Despite of large mass and size of imidazolium cations, they exhibit larger mean-square displacement than anions. A further detailed picture of ionic motions is obtained by using appropriate projections of displacements along the plane or perpendicular to the plane of the imidazolium ring. A clear anisotropy in ionic displacement is revealed, the motion on the ring plane and almost perpendicular to the 1-alkyl chain being the less hindered one. Similar projections were performed on velocity correlation functions, whose spectra were used to relate short time ionic rattling with the corresponding long time diffusive regime. Time correlation functions of cation reorientation and dihedral angles of the alkyl chains are discussed, the latter decaying much faster than the former. A comparative physical picture of time scales for distinct dynamical processes in ionic liquids is provided.

  12. Alkyl isocyanates as active site-directed inactivators of guinea pig liver transglutaminase.

    PubMed

    Gross, M; Whetzel, N K; Folk, J E

    1975-10-10

    Alkyl isocyanates are effective inactivators of guinea pig liver transglutaminase. Based on the specificity of the reaction the protection against inactivation by glutamine substrate, and the essential nature of calcium for the inactivation reaction, it is concluded that these reagents act as amide substrate analogs and, thus function in an active site-specific manner. Support for the contention that inactivation results from alkyl thiocarbamate ester formation through the single active site sulfhydryl group of the enzyme is (a) the loss of one free--SH group and the incorporation of 1 mol of reagent/mol of enzyme in the reaction, (b) similarity in chemical properties of the inactive enzyme derivative formed to those previously reported for another alkyl thiocarbamoylenzyme and an alkyl thiocarbamoylcysteine derivative, and (c) the finding that labeled peptides from digests of [methyl-14C]thiocarbamoyltransglutaminase and those from digests of iodoacetamide-inactivated enzyme occupy similar positions on peptide maps. Transglutaminase was found to be inactivated neither by urethan anlogs of its active ester substrates nor by urea analogs of its amide substrates. It is concluded on the basis of these findings that inactive carbamoylenzyme derivatives are formed only by direct addition of the transglutaminase active--SH group to the isocyanate C--N double bond, and not, like several serine active site enzymes, by nucleophilic displacement with urethan analogs of substrate, or by nucleophilic displacement with urea analogs of substrate. PMID:240837

  13. DNA Methylation

    PubMed Central

    Marinus, M.G.; Løbner-Olesen, A.

    2014-01-01

    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential and in C. crescentus, it is important for temporal gene expression which, in turn, is required for coordinating chromosome initiation, replication and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage; decrease transformation frequency in certain bacteria; decrease the stability of short direct repeats; are necessary for site-directed mutagenesis; and to probe eukaryotic structure and function. PMID:26442938

  14. Microwave-assisted synthesis of 4'-azaflavones and their N-alkyl derivatives with biological activities.

    PubMed

    Yaşar, Ahmet; Akpinar, Kurtuluş; Burnaz, Nesibe Arslan; Küçük, Murat; Karaoğlu, Sengül Alpay; Doğan, Neşe; Yayli, Nurettin

    2008-05-01

    4'-Azaflavone (=2-(pyridin-4-yl)-4H-1-benzopyran-4-one; 4) and 3-[(pyridin-4-yl)methyl]-4'-azaflavone (5) were synthesized by a simple environmentally friendly microwave-assisted one-pot method through the cyclization of 3-hydroxy-1-(2-hydroxyphenyl)-3-(pyridin-4-yl)propan-1-one (1), (E)-2'-hydroxy-4-azachalcone (2; chalcone=1,3-diphenylprop-2-en-1-one), and 2'-hydroxy-2-[(hydroxy)(pyridin-4-yl)methyl]-4''-azachalcone (3) under solventless conditions using silica-supported NaHSO(4), followed by treatment with base. In addition, N-alkyl-substituted 4'-azaflavonium bromides 6 and 7 were prepared from compounds 4 and 5, respectively. The antimicrobial and antioxidant activities of compounds 1-7 were tested. The N-alkyl-substituted 4'-azaflavonium bromides 6 and 7 showed high antimicrobial activity against the Gram-positive bacteria and the fungus tested, with MIC values close to those of reference antimicrobials ampicilline and fluconazole. The alkylated compounds 6 and 7 also showed a good antioxidant character in the two antioxidant methods, DPPH (=1,1-diphenyl-2-picrylhydrazyl) radical-scavenging and ferric reducing/antioxidant power (FRAP) tests. PMID:18493968

  15. Blend of alkyl phenol ethoxylates and alkyl phenol glycoxylates and their use as surfactants

    SciTech Connect

    Grolitzer, M. A.

    1985-11-12

    Nonionic surfactant compositions useful in forming stable emulsions with oil in saline solutions comprising a blend of: at least one alkyl phenol ethoxylate and at least one alkyl phenol glycoxylate. These surfactant compositions may be employed in enhanced oil recovery processes and other applications where good emulsification and high salinity tolerances are required such as textiles, leather, dairy, concrete grinding aids and drilling muds.

  16. Alkylation of isobutane with light olefins: Yields of alkylates for different olefins

    SciTech Connect

    Albright, L.F.; Kranz, K.E.; Masters, K.R.

    1993-12-01

    For alkylation of isobutane with C{sub 3}-C{sub 5} olefins using sulfuric acid as the catalyst, the yields of alkylates with different olefins are compared as the operating conditions are changed. The results of recent pilot plant experiments with propylene, C{sub 4} olefins, and C{sub 5} olefins permit such comparisons. The yields expressed as weight of alkylate produced per 100 wt of olefin consumed varied from about 201:100 to 220:100. Weight ratios of the isobutane consumed per olefin consumed vary from about 101:100 to 120:100. differences of yield values are explained by the changes in the overall chemistry. The procedure employed to calculate yields with good accuracy is based on the analysis of the alkylate and the amount of conjunct polymers produced. Based on literature data, yields are also reported for alkylations using HF as the catalyst.

  17. Structure and DNA binding of alkylation response protein AidB

    SciTech Connect

    Bowles, Timothy; Metz, Audrey H.; O'Quin, Jami; Wawrzak, Zdzislaw; Eichman, Brandt F.

    2009-01-12

    Exposure of Escherichia coli to alkylating agents activates expression of AidB in addition to DNA repair proteins Ada, AlkA, and AlkB. AidB was recently shown to possess a flavin adenine dinucleotide (FAD) cofactor and to bind to dsDNA, implicating it as a flavin-dependent DNA repair enzyme. However, the molecular mechanism by which AidB acts to reduce the mutagenic effects of specific DNA alkylators is unknown. We present a 1.7-{angstrom} crystal structure of AidB, which bears superficial resemblance to the acyl-CoA dehydrogenase superfamily of flavoproteins. The structure reveals a unique quaternary organization and a distinctive FAD active site that provides a rationale for AidB's limited dehydrogenase activity. A highly electropositive C-terminal domain not present in structural homologs was identified by mutational analysis as the DNA binding site. Structural analysis of the DNA and FAD binding sites provides evidence against AidB-catalyzed DNA repair and supports a model in which AidB acts to prevent alkylation damage by protecting DNA and destroying alkylating agents that have yet to reach their DNA target.

  18. Fragrance material review on 2-methyl-5-phenylpentanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-methyl-5-phenylpentanol when used as a fragrance ingredient is presented. 2-Methyl-5-phenylpentanol is a member of the fragrance structural group aryl alkyl alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-methyl-5-phenylpentanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, repeated dose, and genotoxicity data. A safety assessment of the entire aryl alkyl alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances. PMID:22033092

  19. Enzyme mechanisms for sterol C-methylations.

    PubMed

    Nes, W David

    2003-09-01

    The mechanisms by which sterol methyl transferases (SMT) transform olefins into structurally different C-methylated products are complex, prompting over 50 years of intense research. Recent enzymological studies, together with the latest discoveries in the fossil record, functional analyses and gene cloning, establish new insights into the enzymatic mechanisms of sterol C-methylation and form a basis for understanding regulation and evolution of the sterol pathway. These studies suggest that SMTs, originated shortly after life appeared on planet earth. SMTs, including those which ultimately give rise to 24 alpha- and 24 beta-alkyl sterols, align the si(beta)-face pi-electrons of the Delta(24)-double bond with the S-methyl group of AdoMet relative to a set of deprotonation bases in the active site. From the orientation of the conformationally flexible side chain in the SMT Michaelis complex, it has been found that either a single product is formed or cationic intermediates are partitioned into multiple olefins. The product structure and stereochemistry of SMT action is phylogenetically distinct and physiologically significant. SMTs control phytosterol homeostasis and their activity is subject to feedback regulation by specific sterol inserts in the membrane. A unified conceptual framework has been formulated in the steric-electric plug model that posits SMT substrate acceptability on the generation of single or double 24-alkylated side chains, which is the basis for binding order, stereospecificity and product diversity in this class of AdoMet-dependent methyl transferase enzymes. The focus of this review is the mechanism of the C-methylation process which, as discussed, can be altered by point mutations in the enzyme to direct the shape of sterol structure to optimize function. PMID:12946407

  20. Antibacterial Activity of Alkyl Gallates against Xanthomonas citri subsp. citri

    PubMed Central

    Silva, I. C.; Regasini, L. O.; Petrônio, M. S.; Silva, D. H. S.; Bolzani, V. S.; Belasque, J.; Sacramento, L. V. S.

    2013-01-01

    The plant-pathogenic bacterium Xanthomonas citri subsp. citri is the causal agent of Asiatic citrus canker, a serious disease that affects all the cultivars of citrus in subtropical citrus-producing areas worldwide. There is no curative treatment for citrus canker; thus, the eradication of infected plants constitutes the only effective control of the spread of X. citri subsp. citri. Since the eradication program in the state of São Paulo, Brazil, is under threat, there is a clear risk of X. citri subsp. citri becoming endemic in the main orange-producing area in the world. Here we evaluated the potential use of alkyl gallates to prevent X. citri subsp. citri growth. These esters displayed a potent anti-X. citri subsp. citri activity similar to that of kanamycin (positive control), as evaluated by the resazurin microtiter assay (REMA). The treatment of X. citri subsp. citri cells with these compounds induced altered cell morphology, and investigations of the possible intracellular targets using X. citri subsp. citri strains labeled for the septum and centromere pointed to a common target involved in chromosome segregation and cell division. Finally, the artificial inoculation of citrus with X. citri subsp. citri cells pretreated with alkyl gallates showed that the bacterium loses the ability to colonize its host, which indicates the potential of these esters to protect citrus plants against X. citri subsp. citri infection. PMID:23104804

  1. Aerobic Copper-Catalyzed O-Methylation with Methylboronic Acid.

    PubMed

    Jacobson, Clare E; Martinez-Muñoz, Noelia; Gorin, David J

    2015-07-17

    The oxidative coupling of alkylboronic acids with oxygen nucleophiles offers a strategy for replacing toxic, electrophilic alkylating reagents. Although the Chan-Lam reaction has been widely applied in the arylation of heteroatom nucleophiles, O-alkylation with boronic acids is rare. We report a Cu-catalyzed nondecarboxylative methylation of carboxylic acids with methylboronic acid that proceeds in air with no additional oxidant. An isotope-labeling study supports an oxidative cross-coupling mechanism, in analogy to that proposed for Chan-Lam arylation. PMID:26111825

  2. Analytical application of poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane} as a QCM coating for DMMP detection.

    PubMed

    He, Wei; Liu, Zhongxiang; Du, Xiaosong; Jiang, Yadong; Xiao, Dan

    2008-07-30

    A new material-poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane}(PMDFPS) sensitive to toxic organophosphate vapor was synthesized with 2,3-difluorophenol, allyl bromide and poly (methyl hydrosiloxane) as raw materials, via O-alkylation, Claisen rearrange reaction and hydrosilylation reaction. This novel material was then coated on a quartz crystal microbalance (QCM) to investigate its gas sensitive properties to the nerve agent simulant dimethyl methylphosphonate (DMMP) vapor, as well as known interfering vapors. When tested with competing vapors, the sensor was more than 10 times sensitive to DMMP than to other interfering vapors. Thus, high selectivity of poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane} to DMMP was demonstrated. The poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane}-QCM sensor responded linearly to DMMP vapor with a slope of 14 Hz/ppm in the 1-50 ppm range with a detection limit of 0.21 ppm (S/N=3). PMID:18585342

  3. Synthesis, antimicrobial, and alkylating properties of 3-phosphonic derivatives of chromone.

    PubMed

    Budzisz, E; Nawrot, E; Malecka, M

    2001-12-01

    Dimethyl 2,6-dimethyl-4-oxo-4H-chromen-3-yl-phosphonate (1a) and dimethyl 6-methyl-2-phenyl-4-oxo-4H-chromen-3-yl-phosphonate (1b) were synthesized and reacted with primary aliphatic amines to yield title compounds 4-6. Their antibacterial properties against Gram-positive and Gram-negative bacteria strains were tested by the MIC method. Four of seventeen tested compounds (1d, 3, 4a, and 4b) exhibit detectable activity against S. aureus. Some representative examples of newly synthesized compounds were tested for their alkylating properties in vitro in the Preussmann test. Compounds 1a, 1c, 1d, 3, 5d, and 6a possess highly alkylating activity toward standard derivative 4-(4'-nitrobenzyl)pyridine (NBP). PMID:11852533

  4. The role of alkyl substituents in deazaadenine-based diarylethene photoswitches

    PubMed Central

    Sarter, Christopher; Heimes, Michael

    2016-01-01

    Summary Diarylethenes are an important class of reversible photoswitches and often claimed to require two alkyl substituents at the carbon atoms between which the bond is formed or broken in the electrocyclic rearrangement. Here we probe this claim by the synthesis and characterization of four pairs of deazaadenine-based diarylethene photoswitches with either one or two methyl groups at these positions. Depending on the substitution pattern, diarylethenes with one alkyl group can exhibit significant photochromism, but they generally show poor stability towards extended UV irradiation, low thermal stability, and decreased fatigue resistance. The results obtained provide an important direction for the design of new efficient DNA photoswitches for the application in bionanotechnology and synthetic biology. PMID:27340498

  5. The role of alkyl substituents in deazaadenine-based diarylethene photoswitches.

    PubMed

    Sarter, Christopher; Heimes, Michael; Jäschke, Andres

    2016-01-01

    Diarylethenes are an important class of reversible photoswitches and often claimed to require two alkyl substituents at the carbon atoms between which the bond is formed or broken in the electrocyclic rearrangement. Here we probe this claim by the synthesis and characterization of four pairs of deazaadenine-based diarylethene photoswitches with either one or two methyl groups at these positions. Depending on the substitution pattern, diarylethenes with one alkyl group can exhibit significant photochromism, but they generally show poor stability towards extended UV irradiation, low thermal stability, and decreased fatigue resistance. The results obtained provide an important direction for the design of new efficient DNA photoswitches for the application in bionanotechnology and synthetic biology. PMID:27340498

  6. Methyl chloride

    Integrated Risk Information System (IRIS)

    Methyl chloride ; CASRN 74 - 87 - 3 ( 07 / 17 / 2001 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  7. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  8. Methyl isocyanate

    Integrated Risk Information System (IRIS)

    Methyl isocyanate ; CASRN 624 - 83 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  9. Methyl iodide

    Integrated Risk Information System (IRIS)

    Methyl iodide ; CASRN 74 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  10. Methyl parathion

    Integrated Risk Information System (IRIS)

    Methyl parathion ; CASRN 298 - 00 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  11. Methyl chlorocarbonate

    Integrated Risk Information System (IRIS)

    Methyl chlorocarbonate ; CASRN 79 - 22 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  12. Methyl methacrylate

    Integrated Risk Information System (IRIS)

    Methyl methacrylate ; CASRN 80 - 62 - 6 ( 03 / 02 / 98 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  13. Quantitative Assessment of Protein Interaction with Methyl-Lysine Analogues by Hybrid Computational and Experimental Approaches

    PubMed Central

    2011-01-01

    In cases where binding ligands of proteins are not easily available, structural analogues are often used. For example, in the analysis of proteins recognizing different methyl-lysine residues in histones, methyl-lysine analogues based on methyl-amino-alkylated cysteine residues have been introduced. Whether these are close enough to justify quantitative interpretation of binding experiments is however questionable. To systematically address this issue, we developed, applied, and assessed a hybrid computational/experimental approach that extracts the binding free energy difference between the native ligand (methyl-lysine) and the analogue (methyl-amino-alkylated cysteine) from a thermodynamic cycle. Our results indicate that measured and calculated binding differences are in very good agreement and therefore allow the correction of measured affinities of the analogues. We suggest that quantitative binding parameters for defined ligands in general can be derived by this method with remarkable accuracy. PMID:21991995

  14. 21 CFR 173.250 - Methyl alcohol residues.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl alcohol residues. 173.250 Section 173.250... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.250 Methyl alcohol residues. Methyl alcohol may be present in the following foods under the conditions specified: (a) In...

  15. 21 CFR 173.250 - Methyl alcohol residues.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl alcohol residues. 173.250 Section 173.250... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.250 Methyl alcohol residues. Methyl alcohol may be present in the following foods under the conditions specified: (a) In...

  16. 21 CFR 173.250 - Methyl alcohol residues.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl alcohol residues. 173.250 Section 173.250... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.250 Methyl alcohol residues. Methyl alcohol may be present in the following foods under the conditions specified: (a) In...

  17. 21 CFR 173.250 - Methyl alcohol residues.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl alcohol residues. 173.250 Section 173.250... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.250 Methyl alcohol residues. Methyl alcohol may be present in the following foods under the conditions specified: (a) In...

  18. A genetic sensor for strong methylating compounds

    PubMed Central

    Moser, Felix; Horwitz, Andrew; Chen, Jacinto; Lim, Wendell A.; Voigt, Christopher A.

    2013-01-01

    Methylating chemicals are common in industry and agriculture and are often toxic, partly due to their propensity to methylate DNA. The Escherichia coli Ada protein detects methylating compounds by sensing aberrant methyl adducts on the phosphoester backbone of DNA. We characterize this system as a genetic sensor and engineer it to lower the detection threshold. By overexpressing Ada from a plasmid, we improve the sensor’s dynamic range to 350-fold induction and lower its detection threshold to 40 µM for methyl iodide. In eukaryotes, there is no known sensor of methyl adducts on the phosphoester backbone of DNA. By fusing the N-terminal domain of Ada to the Gal4 transcriptional activation domain, we built a functional sensor for methyl phosphotriester adducts in Saccharomyces cerevisiae. This sensor can be tuned to variable specifications by altering the expression level of the chimeric sensor and changing the number of Ada operators upstream of the Gal4-sensitive reporter promoter. These changes result in a detection threshold of 28 µM and 5.2-fold induction in response to methyl iodide. When the yeast sensor is exposed to different SN1 and SN2 alkylating compounds, its response profile is similar to that observed for the native Ada protein in E. coli, indicating that its native function is retained in yeast. Finally, we demonstrate that the specifications achieved for the yeast sensor are suitable for detecting methylating compounds at relevant concentrations in environmental samples. This work demonstrates the movement of a sensor from a prokaryotic to eukaryotic system and its rational tuning to achieve desired specifications. PMID:24032656

  19. A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames

    SciTech Connect

    Westbrook, C K; Pitz, W J; Westmoreland, P R; Dryer, F L; Chaos, M; Osswald, P; Kohse-Hoinghaus, K; Cool, T A; Wang, J; Yang, B; Hansen, N; Kasper, T

    2008-02-08

    A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low pressure, premixed laminar flames. The model development employs a principle of similarity of functional groups in constraining the H atom abstraction and unimolecular decomposition reactions in each of these fuels. As a result, the reaction mechanism and formalism for mechanism development are suitable for extension to larger oxygenated hydrocarbon fuels, together with an improved kinetic understanding of the structure and chemical kinetics of alkyl ester fuels that can be extended to biodiesel fuels. Variations in concentrations of intermediate species levels in these flames are traced to differences in the molecular structure of the fuel molecules.

  20. Synthesis of Norbornane Bisether Antibiotics via Silver-mediated Alkylation

    PubMed Central

    Hickey, Shane M.; Ashton, Trent D.; White, Jonathan M.; Li, Jian; Nation, Roger L.; Yu, Heidi Y.; Elliott, Alysha G.; Butler, Mark S.; Huang, Johnny X.; Cooper, Matthew A.

    2015-01-01

    A small series of norbornane bisether diguanidines have been synthesized and evaluated as antibacterial agents. The key transformation—bisalkylation of norbornane diol 6—was not successful using Williamson methodology but has been accomplished using Ag2O mediated alkylation. Further functionalization to incorporate two guanidinium groups gave rise to a series of structurally rigid cationic amphiphiles; several of which (16d, 16g and 16h) exhibited antibiotic activity. For example, compound 16d was active against a broad range of bacteria including Pseudomonas aeruginosa (MIC = 8 µg/mL), Escherichia coli (MIC = 8 µg/mL) and methicillin-resistant Staphylococcus aureus (MIC = 8 µg/mL). PMID:26251697

  1. Palladium-Catalyzed, Ring-Forming Aromatic C–H Alkylations with Unactivated Alkyl Halides

    PubMed Central

    Venning, Alexander R. O.; Bohan, Patrick T.; Alexanian, Erik J.

    2015-01-01

    A catalytic C–H alkylation using unactivated alkyl halides and a variety of arenes and heteroarenes is described. This ring-forming process is successful with a variety of unactivated primary and secondary alkyl halides, including those with β-hydrogens. In contrast to standard polar or radical cyclizations of aromatic systems, electronic activation of the substrate is not required. The mild, catalytic reaction conditions are highly functional group tolerant and facilitate access to a diverse range of synthetically and medicinally important carbocyclic and heterocyclic systems. PMID:25746442

  2. 4-Alkylated Silver-N-Heterocyclic Carbene (NHC) Complexes with Cytotoxic Effects in Leukemia Cells.

    PubMed

    Sandtorv, Alexander H; Leitch, Calum; Bedringaas, Siv Lise; Gjertsen, Bjørn Tore; Bjørsvik, Hans-René

    2015-09-01

    Computational chemistry has shown that backbone-alkylated imidazoles ought to be efficient ligands for transition metal catalysts with improved carbene-to-metal donation. In this work, such alkylated imidazoles were synthesized and complexed with silver(I) by means of an eight/nine-step synthetic pathway we devised to access a new class of biologically active silver complexes. The synthesis involves selective iodination of the imidazole backbone, followed by Sonogashira coupling to replace the backbone iodine. The installed alkyne moiety is then subjected to reductive hydrogenation with Pearlman's catalyst. The imidazole N1 atom is arylated by the palladium-catalyzed Buchwald N-arylation method. The imidazole N3 position was then methylated with methyl iodine, whereupon the synthesis was terminated by complexation of the imidazolium salt with silver(I) oxide. The synthetic pathway provided an overall yield of ≈20 %. The resulting complexes were tested in vitro against HL60 and MOLM-13 leukemic cells, two human-derived cell lines that model acute myeloid leukemia. The most active compounds exhibiting low IC50 values of 14 and 27 μM, against HL60 and MOLM-13 cells, respectively. The imidazole side chain was found to be essential for high cytotoxicity, as the imidazole complex bearing a C7 side chain at the 4-position was four- to sixfold more potent than the corresponding imidazole elaborated with a methyl group. PMID:26250720

  3. Synthesis of prostaglandins by conjugate addition and alkylation of a directed enolate ion. 4,5-allenyl prostaglandins

    SciTech Connect

    Patterson, J.W. )

    1990-09-28

    Over the previous two decades many elegant syntheses of prostaglandins, which in more sophisticated forms, allow the stereospecific introduction of the various asymmetric carbons have been accomplished. However, among these approaches the cuprate addition/enolate alkylation of suitable cyclopentenone {sup 2} stands out because of brevity and convergence. The recent reports by Noyori{sup 3} and Corey{sup 4} and their colleagues have reduced to practice the conversion of 4-alkoxycyclopentenones to prostaglandin E{sub 2} (PGE{sub 2}) by conjugate addition of an organocopper derivative of the lower side chain followed by alkylation of the resulting carbanion with methyl 7-halohept-2-enoate. The subject of this paper is application of the Tardella tin enolate alkylation developed by Noyori to the synthesis of 4, 5-allenic prostaglandins, a pharmacologically important class of compounds. The authors results demonstrate that the tandem alkylation of an enone precursor with a cuprate reagent followed by alkylation of the corresponding tin enolate with bromide reagent is a viable synthetic method for 4,5-didehydro-PGE{sub 2}. Because the optically active forms of 1 and the vinyl iodide precursor of the PGE{sub 2} lower side chain have been employed to produce a single enantiomer of PGE{sub 2}, the extension of the methodology described here to the synthesis of single enantiomers of 4a awaits only the preparation of the separate enantiomers of allene 14.

  4. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  5. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  6. Peculiarities of the signals of the protons of the alkyl group at the boron atom in the PMR spectra

    SciTech Connect

    Kuznetsov, V.V.; Gren, A.I.; Zakharov, K.S.

    1985-05-01

    The authors note the peculiarities of the resonance signals of the alkyl group bonded to the boron atom. They present two charts of data gathered by the use of PMR spectroscopy. Analyzing these data, they conclude that observed peculiarities are probably due to chemical shifts of the protons of the methyl groups and of the methine proton, but they aver that a more profound analysis of the anomaly is impossible without a precise calculation of the spectra under discussion.

  7. Role of alkyl alcohol on viscosity of silica-based chemical gels for decontamination of highly radioactive nuclear facilities

    SciTech Connect

    Choi, B. S.; Yoon, S. B.; Jung, C. H.; Lee, K. W.; Moon, J. K.

    2012-07-01

    Silica-based chemical gel for the decontamination of nuclear facilities was prepared by using fumed silica as a viscosifier, a 0.5 M Ce (IV) solution dissolved in concentrated nitric acid as a chemical decontamination agent, and tripropylene glycol butyl ether (TPGBE) as a co-viscosifier. A new effective strategy for the preparation of the chemical gel was investigated by introducing the alkyl alcohols as organic solvents to effectively dissolve the co-viscosifier. The mixture solution of the co-viscosifier and alkyl alcohols was more effective in the control of viscosity than that of the co-viscosifier only in gel. Here, the alkyl alcohols played a key role as an effective dissolution solvent for the co-viscosifier in the preparation of the chemical gel, resulting in a reducing of the amount of the co-viscosifier and gel time compared with that of the chemical gel prepared without the alkyl alcohols. It was considered that the alkyl alcohols contributed to the effective dissolution of the co-viscosifier as well as the homogeneous mixing in the formation of the gel, while the co-viscosifier in an aqueous media of the chemical decontamination agent solution showed a lower solubility. The decontamination efficiency of the chemical gels prepared in this work using a multi-channel analyzer (MCA) showed a high decontamination efficiency of over ca. 94% and ca. 92% for Co-60 and Cs-137 contaminated on surface of the stainless steel 304, respectively. (authors)

  8. Methyl N-phenyl carbamate synthesis from aniline and methyl formate: carbon recycling to chemical products.

    PubMed

    Yalfani, Mohammad S; Lolli, Giulio; Müller, Thomas E; Wolf, Aurel; Mleczko, Leslaw

    2015-02-01

    Methyl N-phenyl carbamate was synthesized from aniline by using methyl formate as a green and efficient carbonylating agent. High yields were obtained at milder reaction conditions compared to the conventional CO/CH3 OH route. Studies on the reaction sequence led to suggest an alternative and more efficient route to the carbamate via formanilide as intermediate. PMID:25504838

  9. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  10. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  11. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  12. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  13. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  14. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  15. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  16. 40 CFR 721.555 - Alkyl amino nitriles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Substances § 721.555 Alkyl amino nitriles (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl amino nitriles (PMNs P-96... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino nitriles (generic)....

  17. 40 CFR 721.3485 - Hydrofluorocarbon alkyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluorocarbon alkyl ether. 721... Substances § 721.3485 Hydrofluorocarbon alkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydrofluorocarbon alkyl...

  18. 40 CFR 721.3485 - Hydrofluorocarbon alkyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluorocarbon alkyl ether. 721... Substances § 721.3485 Hydrofluorocarbon alkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydrofluorocarbon alkyl...

  19. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  20. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  1. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  2. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  3. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  4. 40 CFR 721.555 - Alkyl amino nitriles (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Substances § 721.555 Alkyl amino nitriles (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl amino nitriles (PMNs P-96... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl amino nitriles (generic)....

  5. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    EPA Science Inventory

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  6. 40 CFR 721.1852 - Di-alkyl borane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Di-alkyl borane (generic). 721.1852... Substances § 721.1852 Di-alkyl borane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as di-alkyl borane (PMN P-00-1087) is...

  7. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  8. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  9. 40 CFR 721.9720 - Disubstituted alkyl triazines (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted alkyl triazines (generic... Specific Chemical Substances § 721.9720 Disubstituted alkyl triazines (generic name). (a) Chemical... as disubstituted alkyl triazines (PMNs P-85-932 and P-85-933) are subject to reporting under...

  10. 40 CFR 721.10506 - Alkylated phenols (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkylated phenols (generic). 721.10506... Substances § 721.10506 Alkylated phenols (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkylated phenols (PMNs...

  11. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  12. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  13. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  14. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  15. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  16. 40 CFR 721.10506 - Alkylated phenols (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkylated phenols (generic). 721.10506... Substances § 721.10506 Alkylated phenols (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkylated phenols (PMNs...

  17. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  18. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  19. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  20. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  1. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  2. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  3. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  4. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  5. 40 CFR 721.2825 - Alkyl ester (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  6. 40 CFR 721.2825 - Alkyl ester (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  7. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  8. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  9. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  10. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  11. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  12. Synthesis, spectroscopy and computational studies of some novel π-conjugated vinyl N-alkylated quinolinium salts and their precursor's

    NASA Astrophysics Data System (ADS)

    Nycz, Jacek E.; Czyż, Karolina; Szala, Marcin; Malecki, Jan G.; Shaw, George; Gilmore, Brendan; Jon, Marek

    2016-02-01

    A series of π-conjugated vinyl N-methylated quinolinium salts (3) and their precursor's N-alkylated quinolinium salts (2) were prepared and characterized by NMR, IR, UV-Vis and MS spectroscopy. It was confirmed that the hydroxyl and amino derivatives of vinyl N-methylated quinolinium salts lead to spiro type compounds (4). The syntheses of N-alkylated quinolinium salts were successful, and even multigram scale was achievable. The structures of 1,2-dimethylquinolinium iodide (2a) and 1-ethyl-2-methylquinolinium iodide (2b) were determined by single crystal X-ray diffraction method. NMR spectra showed readily diagnostic H-1 and C-13 signals from methyl and N-alkyl groups for both 2 and 3. The geometries of the studied compounds were optimized in singlet states using the density functional theory (DFT) method with B3LYP functional. In general, the predicted bond lengths and angles are in a good agreement with the values based on the X-ray crystal structure data.

  13. Poly(ethyleneoxide) functionalization through alkylation

    SciTech Connect

    Sivanandan, Kulandaivelu; Eitouni, Hany Basam; Li, Yan; Pratt, Russell Clayton

    2015-04-21

    A new and efficient method of functionalizing high molecular weight polymers through alkylation using a metal amide base is described. This novel procedure can also be used to synthesize polymer-based macro-initiators containing radical initiating groups at the chain-ends for synthesis of block copolymers.

  14. Separate olefin processing in sulfuric acid alkylation

    SciTech Connect

    Imhoff, S.A.; Graves, D.C.

    1995-09-01

    This paper will discuss the effects of alkylating propylene, butylenes and amylenes together and suggest alternative processing schemes which will minimize the negative synergies, improve octane and/or minimize acid consumption. The first option will show the impact of segregating the propylene and amylenes. In the second option, the benefit of alkylating the individual olefins at their optimal acid strengths will be presented. Additionally, each olefin`s optimal reaction conditions will be examined. Unfortunately, many refiners may not have the existing flexibility to take advantage of separate olefin processing. First, the majority of the propylene, butylenes and amylenes must be separate upon entry to the alkylation unit. If the olefins cannot be segregated upstream, separate olefin processing will not be as beneficial. If this is the case, then the benefits of separate olefin processing will have to be weighed versus the capital and energy costs required to separate them. In addition, small units may not have sufficient numbers of Contactors and settlers to achieve adequate segregation. Later in this paper, the modifications required in the alkylation unit for separate olefin processing will be discussed.

  15. Drugs derived from cannabinoids. 4. Effect of alkyl substitution in sulfur and carbocyclic analogs.

    PubMed

    Razdan, R K; Handrick, G R; Dalzell, H C; Howes, J F; Winn, M; Plotnikoff, N P; Dodge, P W; Dren, A T

    1976-04-01

    Various CNS-active cannabinoids in which the alicyclic ring was thiopheno, cyclopenteno, or cyclohexeno with the alkyl substituent in various positions (structural types 1-6) were synthesized by procedures described previously. These compounds were compared in selected pharmacological tests in mice, rats, dogs, and cats. The results suggested that methyl substitution in the close proximity of the phenolic hydroxyl group strongly influenced the activity of some cannabinoids, particularly of those which had a planar five-membered alicyclic ring rather than a six-membered ring. PMID:944269

  16. Antiallergic activity of rosmarinic acid esters is modulated by hydrophobicity, and bulkiness of alkyl side chain.

    PubMed

    Zhu, Fengxian; Xu, Zhongming; Yonekura, Lina; Yang, Ronghua; Tamura, Hirotoshi

    2015-01-01

    Methyl, propyl and hexyl esters of rosmarinic, caffeic and p-coumaric acids were tested for antiallergic activity, and rosmarinic acid propyl ester exhibited the greatest β-hexosaminidase release suppression (IC50, 23.7 μM). Quadratic correlations between pIC50 and cLogP (r(2) = 0.94, 0.98, and 1.00, respectively) were observed in each acid ester series. The antiallergic activity is modulated by hydrophobicity, and alkyl chain bulkiness. PMID:25686361

  17. Anti-Aspergillus activity of green coffee 5-O-caffeoyl quinic acid and its alkyl esters.

    PubMed

    Suárez-Quiroz, M L; Alonso Campos, A; Valerio Alfaro, G; González-Ríos, O; Villeneuve, P; Figueroa-Espinoza, M C

    2013-01-01

    The antifungal activities of 5-O-caffeoyl quinic acid (5-CQA) and of methyl, butyl, octyl, and dodecyl esters or 5-CQA, were tested on five toxigenic moulds from the Aspergillus genus (Aspergillus flavus, Aspergillus nomius, Aspergillus ochraceus, Aspergillus parasiticus, Aspergillus westerdijkiae). These mycotoxin producers' moulds may contaminate many types of food crops throughout the food chain posing serious health hazard to animals and humans. The use of chemical methods to decrease mycotoxin producer moulds contamination on food crops in the field, during storage, and/or during processing, has been proved to be efficient. In this work, the antifungal effect of 5-CQA and a homologous series of 5-CQA esters (methyl, butyl, octyl, dodecyl), was investigated using the microdilution method and the minimum inhibitory concentrations (MIC50 and MIC80). All molecules presented antifungal activity, and two esters showed a MIC for all fungi: octyl (MIC50 ≤ 0.5-0.75 mg/mL, MIC80 = 1.0-1.5 mg/mL) and dodecyl (MIC50 = 0.75-1.25 mg/mL) chlorogenates. Dodecyl chlorogenate showed a MIC80 (1.5 mg/mL) only for A. parasiticus. The maximum percent of growth inhibition on aspergillii was observed with octyl (78.4-92.7%) and dodecyl (54.5-83.7%) chlorogenates, being octyl chlorogenate the most potent antifungal agent. It was thus concluded that lipophilization improved the antifungal properties of 5-CQA, which increased with the ester alkyl chain length, exhibiting a cut-off effect at 8 carbons. As far as we know, it is the first report demonstrating that lipophilization may improve the antifungal activity of 5-CQA on five toxigenic moulds from the Aspergillus genus. Lipophilization would be a novel way to synthesize a new kind of antifungal agents with a good therapeutic value or a potential use as preservative in food or cosmetics. PMID:23684728

  18. ROLE OF O6-METHYLATION IN THE INITIATION OF GGTASE-POSITIVE FOCI

    EPA Science Inventory

    The ability of seven methylating agents to form 7-methylguanine and O sup 6-methyl-guanine was compared to their ability to initiate carcinogenesis as measured by the initiation of GGTase-positive foci. The seven methylating agents studied were diazald, DMH, DMN, DMS, MMS, MNNG, ...

  19. Dichloromethyl alkyl ethers and sulfides in the Reformatskii reaction

    SciTech Connect

    Lapkin, I.I.; Fotin, V.V.

    1986-09-10

    A study was carried out on the reaction of dichloromethyl alkyl ethers and sulfides with ..cap alpha..-brominated esters in the presence of zinc resulting in the formation of either ..cap alpha..-alkyl-..beta..-alkoxyacrylates (or ..cap alpha..-alkyl-..beta..-alkylthioacrylates) or ..cap alpha..,..cap alpha..,..cap alpha..',..cap alpha..'-tetramethyl-..beta..-alkoxyglutaric acid (or ..cap alpha..,..cap alpha..,..cap alpha..',..cap alpha..'-tetramethyl-..beta..-alkylthioglutaric acid) depending on the structure of the starting bromoester. PMR and IR spectroscopy indicates the geometry of the ..cap alpha..-alkyl-..beta..-alkoxyacrylates and ..cap alpha..-alkyl-..beta..-alkylthioacrylates.

  20. Methyl gallate.

    PubMed

    Bebout, Deborah; Pagola, Silvina

    2009-01-01

    THE CRYSTAL STRUCTURE OF THE TITLE COMPOUND (SYSTEMATIC NAME: methyl 3,4,5-trihydroxy-benzoate), C(8)H(8)O(5), is composed of essentially planar mol-ecules [maximum departures from the mean carbon and oxygen skeleton plane of 0.0348 (10) Å]. The H atoms of the three hydroxyl groups, which function as hydrogen-bond donors and acceptors simultaneously, are oriented in the same direction around the aromatic ring. In addition to two intra-molecular hydrogen bonds, each mol-ecule is hydrogen bonded to six others, creating a three-dimensional hydrogen-bonded network. PMID:21581923

  1. Methyl gallate

    PubMed Central

    Bebout, Deborah; Pagola, Silvina

    2009-01-01

    The crystal structure of the title compound (systematic name: methyl 3,4,5-trihydroxy­benzoate), C8H8O5, is composed of essentially planar mol­ecules [maximum departures from the mean carbon and oxygen skeleton plane of 0.0348 (10) Å]. The H atoms of the three hydroxyl groups, which function as hydrogen-bond donors and acceptors simultaneously, are oriented in the same direction around the aromatic ring. In addition to two intra­molecular hydrogen bonds, each mol­ecule is hydrogen bonded to six others, creating a three-dimensional hydrogen-bonded network. PMID:21581923

  2. Ultra-bright alkylated graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Feng, Lan; Tang, Xing-Yan; Zhong, Yun-Xin; Liu, Yue-Wen; Song, Xue-Huan; Deng, Shun-Liu; Xie, Su-Yuan; Yan, Jia-Wei; Zheng, Lan-Sun

    2014-10-01

    Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy.Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The

  3. N-Alkylated dinitrones from isosorbide as cross-linkers for unsaturated bio-based polyesters.

    PubMed

    Goerz, Oliver; Ritter, Helmut

    2014-01-01

    Isosorbide was esterified with acryloyl chloride and crotonic acid yielding isosorbide diacrylate (9a) and isosorbide dicrotonate (9b), which were reacted with benzaldehyde oxime in the presence of zinc(II) iodide and boron triflouride etherate as catalysts to obtain N-alkylated dinitrones 10a/b. Poly(isosorbide itaconite -co- succinate) 13 as a bio-based unsaturated polyester was cross-linked by a 1,3-dipolar cycloaddition with the received dinitrones 10a/b. The 1,3-dipolar cycloaddition led to a strong change of the mechanical properties which were investigated by rheological measurements. Nitrones derived from methyl acrylate (3a) and methyl crotonate (3b) were used as model systems and reacted with dimethyl itaconate to further characterize the 1,3-dipolaric cycloaddition. PMID:24991239

  4. N-Alkylated dinitrones from isosorbide as cross-linkers for unsaturated bio-based polyesters

    PubMed Central

    Goerz, Oliver

    2014-01-01

    Summary Isosorbide was esterified with acryloyl chloride and crotonic acid yielding isosorbide diacrylate (9a) and isosorbide dicrotonate (9b), which were reacted with benzaldehyde oxime in the presence of zinc(II) iodide and boron triflouride etherate as catalysts to obtain N-alkylated dinitrones 10a/b. Poly(isosorbide itaconite -co- succinate) 13 as a bio-based unsaturated polyester was cross-linked by a 1,3-dipolar cycloaddition with the received dinitrones 10a/b. The 1,3-dipolar cycloaddition led to a strong change of the mechanical properties which were investigated by rheological measurements. Nitrones derived from methyl acrylate (3a) and methyl crotonate (3b) were used as model systems and reacted with dimethyl itaconate to further characterize the 1,3-dipolaric cycloaddition. PMID:24991239

  5. Regiocomplementary O-Methylation of Catechols by Using Three-Enzyme Cascades.

    PubMed

    Siegrist, Jutta; Aschwanden, Simon; Mordhorst, Silja; Thöny-Meyer, Linda; Richter, Michael; Andexer, Jennifer N

    2015-12-01

    S-Adenosylmethionine (SAM)-dependent enzymes have great potential for selective alkylation processes. In this study we investigated the regiocomplementary O-methylation of catechols. Enzymatic methylation is often hampered by the need for a stoichiometric supply of SAM and the inhibitory effect of the SAM-derived byproduct on most methyltransferases. To counteract these issues we set up an enzyme cascade. Firstly, SAM was generated from l-methionine and ATP by use of an archaeal methionine adenosyltransferase. Secondly, 4-O-methylation of the substrates dopamine and dihydrocaffeic acid was achieved by use of SafC from the saframycin biosynthesis pathway in 40-70 % yield and high selectivity. The regiocomplementary 3-O-methylation was catalysed by catechol O-methyltransferase from rat. Thirdly, the beneficial influence of a nucleosidase on the overall conversion was demonstrated. The results of this study are important milestones on the pathway to catalytic SAM-dependent alkylation processes. PMID:26437744

  6. Properties of Apolar Solutes in Alkyl Imidazolium-Based Ionic Liquids: The Importance of Local Interactions.

    PubMed

    Lesch, Volker; Heuer, Andreas; Holm, Christian; Smiatek, Jens

    2016-02-01

    The solvation and the dynamic properties of apolar model solutes in alkyl imidazolium-based ionic liquids (IL) are studied by using all-atom molecular dynamics simulations. In regards to specific IL effects, we focused on the often used 1-ethyl-3-methyl imidazolium cation in combination with the anions tetrafluoroborate, acetate, and bis(trifluoromethanesulfonyl)imide. Our findings reveal that the size of the anion crucially influences the accumulation behavior of the cations, which results in modified IL solvation properties. Deviations between the different alkyl imidazolium-based IL combinations can be also observed with regard to the results for the radial distribution functions, the number of surrounding molecules, and the molecular orientation. The analysis of the van Hove function further shows pronounced differences in the dynamic behavior of the solutes. The simulations verify that the solute mobilities are mainly influenced by the composition of the local solvent shell and the properties of the underlying Lennard-Jones interactions. Additional simulations with regard to modified short-range dispersion energies for alkyl imidazolium-based ILs validate our conclusions. PMID:26639367

  7. Alkyl substitution effects on the intercalation of carcinogenic hydrocarbon and hydrocarbon metabolites into DNA

    SciTech Connect

    LeBreton, P.R.

    1986-05-01

    A large number of carcinogenic hydrocarbons and hydrocarbon metabolites intercalate into DNA with binding constants in terms of PO/sub 4//sup -/ concentration which lie in the range 10/sup 3/-10/sup 4/ M/sup -1/. These binding constants are similar to those associated with base stacking and hydrogen bonding interactions that occur naturally in DNA. Previous studies show that different metabolites derived from the same parent hydrocarbon exhibit different binding properties. In recent studies the authors have examined the effects of alkyl substitution on hydrocarbon binding to calf thymus DNA. Such groups can enhance or inhibit carcinogenic activity. Studies of 1-alkyl BP/sup +/ derivatives and of their 7,8-dihydrodiols indicate that the alkyl groups ethyl, isopropyl and t-butyl inhibit intercalation. Methyl groups can either inhibit or enhance intercalation into DNA. The binding constants of DMBA and BA are nearly the same. However, DMA, which is a ..pi.. electron model compound of the bay region diol epoxide of DMBA, binds 6.7 times better than anthracene. Similarly, highly carcinogenic 5-methylchyrsene binds to DNA 3.9 times better than chrysene. /sup +/Abbreviations: BP, benzo(a)pyrene; DMBA, 7,12-dimethylbenz(a)anthracene; BA, benz(a)anthracene DMA, 9,10-dimethylanthracene.

  8. Modeling of alkyl quaternary ammonium cations intercalated into montmorillonite lattice

    SciTech Connect

    Daoudi, El Mehdi; Boughaleb, Yahia; El Gaini, Layla; Meghea, Irina; Bakasse, Mina

    2013-05-15

    Highlights: ► The modification of montmorillonites by three surfactants increases the basal spacing. ► The model proposed show a bilayer conformation for the surfactant ODTMA. ► The DODMA and TOMA surfactants adopt a paraffin type arrangement. ► Behavior of surfactants in interlayer space was confirmed by TGA and ATR analysis. - Abstract: The objective of this work was to study the conformation of the quaternary ammonium cations viz., octadecyl trimethyl ammonium (ODTMA), dioctadecyl dimethyl ammonium (DMDOA) and trioctadecyl methyl ammonium (TOMA) intercalated within montmorillonite. The modified montmorillonite was characterized by X-ray diffraction in small angle (SAXS), thermal analysis (TGA) and infrared spectroscopy of attenuated total reflection (ATR). The modification of organophilic montmorillonites by the three surfactants ODTMA, DMDOA and TOMA increases the basal spacing from their respective intercalated distances of 1.9 nm, 2.6 nm and 3.4 nm respectively. The increase in the spacing due to the basic organic modification was confirmed by the results of thermal analysis (TGA) and infrared spectroscopy (ATR), and also supported by theoretical calculations of longitudinal and transversal chain sizes of these alkyl quaternary ammonium cations.

  9. Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning

    NASA Astrophysics Data System (ADS)

    Cengiz, Ugur; Avci, Merih Z.; Erbil, H. Yildirim; Sarac, A. Sezai

    2012-05-01

    A new statistical terpolymer containing perfluoroethyl alkyl methacrylate (Zonyl-TM), methyl methacrylate and butyl acrylate, poly(Zonyl-TM-ran-MMA-ran-BA) was synthesized in supercritical carbon dioxide at 200 bar and 80 °C using AIBN as an initiator by heterogeneous free radical copolymerization. Nanofibers of this terpolymer were produced by electrospinning from its DMF solution. The structural and thermal properties of terpolymers and electrospun poly(Zonyl-TM-MMA-BA) nanofibers were analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and differential scanning calorimetry. Nanofiber morphology was investigated by scanning electron microscopy. Electrospun nanofiber layer was found to be superhydrophobic with a water contact angle of 172 ± 1° and highly oleophobic with hexadecane, glycerol and ethylene glycol contact angles of 70 ± 1°, 167 ± 1° and 163 ± 1° respectively. The change of the contact angle results on the electrospun fiber layer and flat terpolymer surfaces by varying feed monomer composition were compared and discussed in the text.

  10. Thiolate alkylation in tripod zinc complexes: a comparative kinetic study.

    PubMed

    Rombach, Michael; Seebacher, Jan; Ji, Mian; Zhang, Guofang; He, Guosen; Ibrahim, Mohamed M; Benkmil, Boumahdi; Vahrenkamp, Heinrich

    2006-05-29

    The biologically relevant alkylations of the thiolate ligands in tripod zinc thiolates by methyl iodide were studied kinetically. Five tripod ligands of the pyrazolyl/thioimidazolyl borate type were employed, offering N3, N2S, NS2, and S3 donor sets. For each of them, the ethyl-, benzyl-, phenyl-, and p-nitrophenylthiolate zinc complexes were investigated, yielding a total of 20 second-order rate constants. The comparison of these rate constants shows three effects: (1) the electronic effect among the thiolates, i.e., the ethanethiolates react about 3 orders of magnitude faster than the p-nitrophenylthiolates; (2) the steric effect among the pyrazolylborates, i.e., the phenyl-substituted ones react about 2 orders of magnitude faster than the tert-butyl-substituted ones; and (3) the strong acceleration by the sulfur donors in the tripods, reaching 4 orders of magnitude between the reaction times of the (N3)Zn-SR and (S3)Zn-SR complexes. PMID:16711708

  11. Synthesis of Substituted N-[4(5-Methyl/phenyl-1,3,4-oxadiazol-2-yl)-3,6-dihydropyridin-1(2H)-yl]benzamide/benzene Sulfonamides as Anti-Inflammatory and Anti-Cancer Agents

    PubMed Central

    Gangapuram, Madhavi; Redda, Kinfe K.

    2010-01-01

    Fourteen novel substituted N-[4(5-methyl/phenyl-1,3,4-oxadiazol-2-yl)-3,6-dihydropyridin-1(2H)-y1] benzamide/benzene sulfonamides (11a–n) were synthesized in fair to good yields via sodium borohydride reduction of the corresponding substituted N-(benzoylimino)-4-(5-methyl/5-phenyl-1,3,4-oxadiazol-2yl) pyridinium ylide (10a–n) in absolute ethanol. PMID:20526413

  12. PROCESS FOR PRODUCING ALKYL ORTHOPHOSPHORIC ACID EXTRACTANTS

    DOEpatents

    Grinstead, R.R.

    1962-01-23

    A process is given for producing superior alkyl orthophosphoric acid extractants for use in solvent extraction methods to recover and purify various metals such as uranium and vanadium. The process comprises slurrying P/sub 2/O/ sub 5/ in a solvent diluent such as kerosene, benzene, isopropyl ether, and the like. An alipbatic alcohol having from nine to seventeen carbon atoms, and w- hcrein ihc OH group is situated inward of the terminal carbon atoms, is added to the slurry while the reaction temperature is mainiained below 60 deg C. The alcohol is added in the mole ratio of about 2 to l, alcohol to P/sub 2/O/sub 5/. A pyrophosphate reaotion product is formed in the slurry-alcohol mixture. Subsequently, the pyrophosphate reaction product is hydrolyzed with dilute mineral acid to produce the desired alkyl orthophosphoric aeid extractant. The extraetant may then be separated and utilized in metal-recovery, solvent- extraction processes. (AEC)

  13. Synthesis, characterization and chemoprotective activity of polyoxovanadates against DNA alkylation.

    PubMed

    Nunes, Giovana G; Bonatto, Ana C; de Albuquerque, Carla G; Barison, Andersson; Ribeiro, Ronny R; Back, Davi F; Andrade, André Vitor C; de Sá, Eduardo L; Pedrosa, Fábio de O; Soares, Jaísa F; de Souza, Emanuel M

    2012-03-01

    The alkylation of pUC19 plasmid DNA has been employed as a model reaction for the first studies on chemoprotective action by a mixed-valence (+IV/+V) polyoxovanadate. A new, non-hydrothermal route for the high yield preparation of the test compound is described. The deep green, microcrystalline solid A was isolated after a three-day reaction in water at 80°C and 1 atm, while the reaction at 100°C gave green crystals of B. Both solids were structurally characterized by X-ray diffractometry and FTIR, EPR, NMR and Raman spectroscopies. Product A was identified as (NH(4))(2)V(3)O(8), while B corresponds to the spherical polyoxoanion [V(15)O(36)(Cl)](6-), isolated as the NMe(4)(+) salt. The lack of solubility of A in water and buffers prevented its use in DNA interaction studies, which were then carried out with B. Complex B was also tested for its ability to react with DNA alkylating agents by incubation with diethylsulphate (DES) and dimethylsulphate (DMS) in both the absence and presence of pUC19. For DMS, the best results were obtained with 10 mM of B (48% protection); with DES, this percentage increased to 70%. The direct reaction of B with increasing amounts of DMS in both buffered (PIPES 50 mM) and non-buffered aqueous solutions revealed the sequential formation of several vanadium(IV), vanadium(V) and mixed-valence aggregates of different nuclearities, whose relevance to the DNA-protecting activity is discussed. PMID:22265837

  14. In pursuit of homoleptic actinide alkyl complexes.

    PubMed

    Seaman, Lani A; Walensky, Justin R; Wu, Guang; Hayton, Trevor W

    2013-04-01

    This Forum Article describes the pursuit of isolable homoleptic actinide alkyl complexes, starting with the pioneering work of Gilman during the Manhattan project. The initial reports in this area suggested that homoleptic uranium alkyls were too unstable to be isolated, but Wilkinson demonstrated that tractable uranium alkyls could be generated by purposeful "ate" complex formation, which serves to saturate the uranium coordination sphere and provide the complexes with greater kinetic stability. More recently, we reported the solid-state molecular structures of several homoleptic uranium alkyl complexes, including [Li(THF)4][U(CH2(t)Bu)5], [Li(TMEDA)]2[UMe6], [K(THF)]3[K(THF)2][U(CH2Ph)6]2, and [Li(THF)4][U(CH2SiMe3)6], by employing Wilkinson's strategy. Herein, we describe our attempts to extend this chemistry to thorium. The treatment of ThCl4(DME)2 with 5 equiv of LiCH2(t)Bu or LiCH2SiMe3 at -25 °C in THF affords [Th(CH2(t)Bu)5] (1) and [Li(DME)2][Th(CH2SiMe3)5 (2), respectively, in moderate yields. Similarly, the treatment of ThCl4(DME)2 with 6 equiv of K(CH2Ph) produces [K(THF)]2[Th(CH2Ph)6] (3), in good yield. Complexes 1-3 have been fully characterized, while the structures of 1 and 3 were confirmed by X-ray crystallography. Additionally, the electronic properties of 1 and 3 were explored by density functional theory. PMID:22716022

  15. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human

    PubMed Central

    Zanotto-Filho, Alfeu; Dashnamoorthy, Ravi; Loranc, Eva; de Souza, Luis H. T.; Moreira, José C. F.; Suresh, Uthra; Chen, Yidong

    2016-01-01

    Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival. PMID:27100653

  16. Ultra-bright alkylated graphene quantum dots.

    PubMed

    Feng, Lan; Tang, Xing-Yan; Zhong, Yun-Xin; Liu, Yue-Wen; Song, Xue-Huan; Deng, Shun-Liu; Xie, Su-Yuan; Yan, Jia-Wei; Zheng, Lan-Sun

    2014-11-01

    Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy. PMID:25192187

  17. Photoinitiated electron transfer to selected physisorbed alkyl bromides: The effects of alkyl chain length on dissociation cross sections

    SciTech Connect

    Khan, K.A.; Camillone, N. III; Osgood, R.M. Jr.

    1999-06-01

    We report the results of measurements of the cross section as a function of wavelength (351, 248, and 193 nm) for photoinitiated dissociative electron attachment to three normal alkyl bromides [CH{sub 3}(CH{sub 2}){sub n{minus}1}Br, n=1, 2, and 3] physisorbed on GaAs(110). Upon UV exposure, the molecules undergo C{endash}Br bond cleavage due to a substrate-mediated electron-transfer process. The cross sections for all three molecules increase monotonically with decreasing wavelength. Our results suggest a {approximately}1 eV higher threshold for dissociation of ethyl and propyl bromide than for methyl bromide. A simple model of the electron-transfer process is employed to estimate the peak per-electron cross section for dissociative attachment in the monolayer. We find that the cross sections for the physisorbed molecules are approximately five times smaller than those for gas-phase molecules, due to a reduction in the lifetime of the molecular anion in the vicinity of the surface. In addition, we also find an increase in cross section with chain length very similar to that observed in the gas phase; the gas-phase behavior has been explained by an increase in the anion lifetime with chain length. Our results suggest that while quenching of the molecular anion at the surface is important, it does not eliminate the progression of anion lifetime with chain length. {copyright} {ital 1999 American Institute of Physics.}

  18. Hydrophilic interaction liquid chromatography-tandem mass spectrometry methylphosponic and alkyl methylphosphonic acids determination in environmental samples after pre-column derivatization with p-bromophenacyl bromide.

    PubMed

    Baygildiev, T M; Rodin, I A; Stavrianidi, A N; Braun, A V; Lebedev, A T; Rybalchenko, I V; Shpigun, O A

    2016-04-15

    Once exposed to the environment organophosphate nerve agents readily degrade by rapid hydrolysis to the corresponding alkyl methylphosphonic acids which do not exist in nature. These alkyl methylphosphonic acids are finally slowly hydrolyzed to methylphosphonic acid. Methylphosphonic acid is the most stable hydrolysis product of organophosphate nerve agents, persisting in environment for a long time. A highly sensitive method of methylphosphonic acid and alkyl methylphosphonic acids detection in dust and ground mixed samples has been developed and validated. The fact that alkyl methylphosphonic acids unlike methylphosphonic acid did not react with p-bromophenacyl bromide under chosen conditions was discovered. This allowed simultaneous chromatographic separation and mass spectrometric detection of derivatized methylphosphonic acid and underivatized alkyl methylphosphonic acids using HILIC-MS/MS method. Very simple sample pretreatment with high recoveries for each analyte was developed. Methylphosphonic acid pre-column derivate and alkyl methylphosphonic acids were detected using tandem mass spectrometry with electrospray ionization after hydrophilic interaction liquid chromatography separation. The developed approach allows achieving ultra-low detection limits: 200 pg mL(-1) for methylphosphonic acid, 70 pg mL(-1) for ethyl methylphosphonic acid, 8 pg mL(-1) for i-propyl methylphosphonic acid, 8 pg mL(-1) for i-butyl methylphosphonic acid, 5 pg mL(-1) for pinacolyl methylphosphonic acid in the extracts of dust and ground mixed samples. This approach was successfully applied to the dust and ground mixed samples from decommissioned plant for the production of chemical weapons. PMID:26965649

  19. THE VALENCE AND METHYLATION STATE OF ARSENIC DETERMINES ITS POTENCY IN INTERACTION WITH THE MITOTIC APPARATUS

    EPA Science Inventory

    We have previously shown that the cytotoxic and genotoxic potency of arsenicals is dependent upon their valence and methylation state. Trivalent methylated arsenicals are much more potent DNA damaging agents than are their inorganic and pentavalent counterparts. Furthermore, thei...

  20. Beneficiation of coal and metallic and non-metallic ores by froth flotation process using polyhydroxy alkyl xanthate depressants

    SciTech Connect

    Petrovich, V.

    1980-07-08

    In the concentration of metallic and non-metallic minerals by froth flotation with a high content of pyrite and the like iron sulfides, which includes the subjecting of such ores when finely ground and sized to substantially liberate particles of pyrite, to froth flotation process in the presence of any suitabl E and adeuqate collector and frother for desired metallic and non-metallic mineral for the recovery of the same, and in the presence of a polyhydroxy alkyl xanthate wetting and depressing agent for pyrite, the step of adding to a pulp of mineral slurry an amount of the order of 0.01 to 0.10 kg per metric ton of a non-collecting polyhydroxy alkyl xanthate, of which hydroxyl groups of said polyhydroxy alkyl xanthates contain from 3 to 4, and having the following general formula: HOCH/sub 2/(CHOH)mcH(CHO)OCSSK wherein M is an integer from 2 to 3; said polyhydroxy alkyl xanthates, react with pyrite and said iron sulfides of the pulp of mineral slurry to yield a water soluble or insoluble hydrophilic coating depressing the pyrite and said iron sulfides, said polyhydroxy alkyl xanthates being selected from the group consisting of potassium pentose, and potassium hexose xanthates, such as potassium arabinose xanthate, potassium xylose xanthate, potassium glucose xanthate, potassium fructose xanthate.

  1. S-adenosyl-L-methionine is able to reverse micronucleus formation induced by sodium arsenite and other cytoskeleton disrupting agents in cultured human cells.

    PubMed

    Ramírez, Tzutzuy; García-Montalvo, Verónica; Wise, Carolyn; Cea-Olivares, Raymundo; Poirier, Lionel A; Herrera, Luis A

    2003-07-25

    Deficiencies of folic acid and methionine, two of the major components of the methyl metabolism, correlate with an increment of chromosome breaks and micronuclei. It has been proposed that these effects may arise from a decrease of S-adenosyl-L-methionine (SAM), the universal methyl donor. Some xenobiotics, such as arsenic, originate a reduction of SAM levels, and this is believed to alter some methylation processes (e.g. DNA methylation). The aim of the present work was to analyze the effects of exogenous SAM on the micronucleus (MN) frequency induced by sodium arsenite in human lymphocytes treated in vitro and to investigate whether these effects are related to DNA methylation. Results showed a reduction in the MN frequency in cultures treated with sodium arsenite and SAM compared to those treated with arsenite alone. To understand the mechanism by which SAM reduced the number of micronucleated cells, its effect on MN induced by other xenobiotics was also analyzed. Results showed that SAM did not have any effect on the increase in MN frequency caused by alkylating (mitomycin C or cisplatin) or demethylating agents (5-azacytidine, hydralazine, ethionine and procainamide), but it reduced the number of micronucleated cells in those treated with agents that inhibit microtubule polymerization (albendazole sulphoxide and colcemid). Since albendazole sulphoxide and colcemid inhibit microtubule polymerization, we decided to evaluate the effect of SAM on microtubule integrity. Data obtained from these evaluations showed that sodium arsenite, albendazole sulphoxide, and colcemid affect the integrity and organization of microtubules and that these effects are significantly reduced when cultures were treated at the same time with SAM. The data taken all together point out that the positive effects of SAM could be due to its ability to protect microtubules through an unknown mechanism. PMID:12873724

  2. Catalytic synthesis of fatty acid methyl esters from extremely low quality greases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel (BD) is a renewable fuel for compression ignition engines that is composed of the simple alkyl esters, usually methyl-, of fatty acids (FAME). It is typically produced via base-catalyzed transesterification between refined vegetable oil or animal fat (e.g., soybean oil, tallow) and an alc...

  3. The thiostrepton A tryptophan methyltransferase TsrM catalyses a cob(II)alamin-dependent methyl transfer reaction.

    PubMed

    Benjdia, Alhosna; Pierre, Stéphane; Gherasim, Carmen; Guillot, Alain; Carmona, Manon; Amara, Patricia; Banerjee, Ruma; Berteau, Olivier

    2015-01-01

    Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a novel class of natural products including several antibiotics and bacterial toxins. In countless RiPP biosynthetic pathways, cobalamin-dependent radical SAM (B12/rSAM) enzymes play a pivotal role. In the biosynthetic pathway of the antibiotic and anti-cancer agent thiostrepton A, TsrM, a B12/rSAM enzyme, catalyses the transfer of a methyl group to an electrophilic carbon atom of tryptophan. Here we show that methylcob(III)alamin is the probable physiological enzyme cofactor, and cob(II)alamin rather than cob(I)alamin is a key reaction intermediate. Furthermore, we establish that TsrM and a triple-alanine mutant alkylate cob(II)alamin efficiently leading to the synthesis of MeCbl. Exploiting TsrM substrate ambiguity, we demonstrate that TsrM does not catalyse substrate H-atom abstraction like most radical SAM enzymes. Based on these data, we propose an unprecedented radical-based C-methylation mechanism, which further expands the chemical versatility of rSAM enzymes. PMID:26456915

  4. Lithium perchlorate-nitromethane-promoted alkylation of anilines with arylmethanols.

    PubMed

    Zhou, Jun; Mao, Hai-Feng; Wang, Lu; Zou, Jian-Ping; Zhang, Wei

    2011-11-01

    A new application of lithium perchlorate-nitromethane (LPNM) for the formation of aromatic C-N and C-C bonds is introduced. LPNM-promoted reactions of anilines with diarylmethanols selectively generate N-alkylated anilines or mono and double Friedel-Crafts alkylation products under different conditions by changing the reaction time, reaction temperature, and the ratio of the reactants. This method does not require the use of transition metal catalysts to prepare alkylated aniline derivatives. PMID:21547437

  5. Determining cysteine oxidation status using differential alkylation

    NASA Astrophysics Data System (ADS)

    Schilling, Birgit; Yoo, Chris B.; Collins, Christopher J.; Gibson, Bradford W.

    2004-08-01

    Oxidative damage to proteins plays a major role in aging and in the pathology of many degenerative diseases. Under conditions of oxidative stress, reactive oxygen and nitrogen species can modify key redox sensitive amino acid side chains leading to altered biological activities or structures of the targeted proteins. This in turn can affect signaling or regulatory control pathways as well as protein turnover and degradation efficiency in the proteasome. Cysteine residues are particularly susceptible to oxidation, primarily through reversible modifications (e.g., thiolation and nitrosylation), although irreversible oxidation can lead to products that cannot be repaired in vivo such as sulfonic acid. This report describes a strategy to determine the overall level of reversible cysteine oxidation using a stable isotope differential alkylation approach in combination with mass spectrometric analysis. This method employs 13C-labeled alkylating reagents, such as N-ethyl-[1,4-13C2]-maleimide, bromo-[1,2-13C2]-acetic acid and their non-labeled counterparts to quantitatively assess the level of cysteine oxidation at specific sites in oxidized proteins. The differential alkylation protocol was evaluated using standard peptides and proteins, and then applied to monitor and determine the level of oxidative damage induced by diamide, a mild oxidant. The formation and mass spectrometric analysis of irreversible cysteine acid modification will also be discussed as several such modifications have been identified in subunits of the mitochondrial electron transport chain complexes. This strategy will hopefully contribute to our understanding of the role that cysteine oxidation plays in such chronic diseases such as Parkinson's disease, where studies in animal and cell models have shown oxidative damage to mitochondrial Complex I to be a specific and early target.

  6. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect

    Nadas, Janos I; Vukovic, Sinisa; Hay, Benjamin

    2012-01-01

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  7. Gallic acid-based alkyl esters synthesis in a water-free system by celite-bound lipase of Bacillus licheniformis SCD11501.

    PubMed

    Sharma, Shivika; Kanwar, Shamsher S; Dogra, Priyanka; Chauhan, Ghanshyam S

    2015-01-01

    Gallic acid (3, 4, 5- trihydroxybenzoic acid) is an important antioxidant, anti-inflammatory, and radical scavenging agent. In the present study, a purified thermo-tolerant extra-cellular lipase of Bacillus licheniformis SCD11501 was successfully immobilized by adsorption on Celite 545 gel matrix followed by treatment with a cross-linking agent, glutaraldehyde. The celite-bound lipase treated with glutaraldehyde showed 94.8% binding/retention of enzyme activity (36 U/g; specific activity 16.8 U/g matrix; relative increase in enzyme activity 64.7%) while untreated matrix resulted in 88.1% binding/retention (28.0 U/g matrix; specific activity 8.5 U/g matrix) of lipase. The celite-bound lipase was successfully used to synthesis methyl gallate (58.2%), ethyl gallate (66.9%), n-propyl gallate (72.1%), and n-butyl gallate (63.8%) at 55(o) C in 10 h under shaking (150 g) in a water-free system by sequentially optimizing various reaction parameters. The low conversion of more polar alcohols such as methanol and ethanol into their respective gallate esters might be due to the ability of these alcohols to severely remove water from the protein hydration shell, leading to enzyme inactivation. Molecular sieves added to the reaction mixture resulted in enhanced yield of the alkyl ester(s). The characterization of synthesised esters was done through fourier transform infrared (FTIR) spectroscopy and (1) H NMR spectrum analysis. PMID:25737230

  8. DNA methylation contributes to natural human variation

    PubMed Central

    Heyn, Holger; Moran, Sebastian; Hernando-Herraez, Irene; Sayols, Sergi; Gomez, Antonio; Sandoval, Juan; Monk, Dave; Hata, Kenichiro; Marques-Bonet, Tomas; Wang, Liewei; Esteller, Manel

    2013-01-01

    DNA methylation patterns are important for establishing cell, tissue, and organism phenotypes, but little is known about their contribution to natural human variation. To determine their contribution to variability, we have generated genome-scale DNA methylation profiles of three human populations (Caucasian-American, African-American, and Han Chinese-American) and examined the differentially methylated CpG sites. The distinctly methylated genes identified suggest an influence of DNA methylation on phenotype differences, such as susceptibility to certain diseases and pathogens, and response to drugs and environmental agents. DNA methylation differences can be partially traced back to genetic variation, suggesting that differentially methylated CpG sites serve as evolutionarily established mediators between the genetic code and phenotypic variability. Notably, one-third of the DNA methylation differences were not associated with any genetic variation, suggesting that variation in population-specific sites takes place at the genetic and epigenetic levels, highlighting the contribution of epigenetic modification to natural human variation. PMID:23908385

  9. Epigenetic DNA Methylation Linked to Social Dominance

    PubMed Central

    Lenkov, Kapa; Lee, Mi H.; Lenkov, Olga D.; Swafford, Andrew; Fernald, Russell D.

    2015-01-01

    Social status hierarchies are ubiquitous in vertebrate social systems, including humans. It is well known that social rank can influence quality of life dramatically among members of social groups. For example, high-ranking individuals have greater access to resources, including food and mating prerogatives that, in turn, have a positive impact on their reproductive success and health. In contrast low ranking individuals typically have limited reproductive success and may experience lasting social and physiological costs. Ultimately, social rank and behavior are regulated by changes in gene expression. However, little is known about mechanisms that transduce social cues into transcriptional changes. Since social behavior is a dynamic process, we hypothesized that a molecular mechanism such as DNA methylation might play a role these changes. To test this hypothesis, we used an African cichlid fish, Astatotilapia burtoni, in which social rank dictates reproductive access. We show that manipulating global DNA methylation state strongly biases the outcomes of social encounters. Injecting DNA methylating and de-methylating agents in low status animals competing for status, we found that animals with chemically increased methylation states were statistically highly likely to ascend in rank. In contrast, those with inhibited methylation processes and thus lower methylation levels were statistically highly unlikely to ascend in rank. This suggests that among its many roles, DNA methylation may be linked to social status and more generally to social behavior. PMID:26717574

  10. Effect of alkyl chain length on the conformation and order of simple ionic surfactants adsorbed at the D{sub 2}O/CCl{sub 4} interface as studied by sum-frequency vibrational spectroscopy

    SciTech Connect

    Conboy, J.C.; Messmer, M.C.; Richmond, G.L.

    1998-11-10

    The conformational order of three alkanesulfonates, sodium hexanesulfonate (HS), sodium undecanesulfonate (UDS), and sodium dodecanesulfonate (DDS), adsorbed at the D{sub 2}O/CCl{sub 4} interface are examined in detail by sum-frequency vibrational spectroscopy. An increase in surfactant concentration at the interface results in the reduction of gauche defects in the hydrocarbon chains as determined from the intensity ratio of the methyl to methylene symmetric stretch vibrational modes. The degree of disorder in the alkyl chains varies greatly with alkyl chain length. The alkyl chain of HS displays the fewest gauche defects while DDS and UDS display more disorder in their hydrocarbon chains at similar surface concentrations. This observation is interpreted as a reduction in the possible number of gauche conformations for the shorter alkyl chain.

  11. Zinc-thiolate complexes of the bis(pyrazolyl)(thioimidazolyl)hydroborate tripods for the modeling of thiolate alkylating enzymes.

    PubMed

    Ji, Mian; Benkmil, Boumahdi; Vahrenkamp, Heinrich

    2005-05-16

    The new tripod ligands bis(pyrazolyl)(3-tert-butyl-2-thioimidazol-1-yl)hydroborate (L(1)) and bis(pyrazolyl)(3-isopropyl-2-thioimidazol-1-yl)hydroborate (L(2)), together with zinc nitrate or zinc chloride and the corresponding thiolates, have yielded a total of 17 zinc-thiolate complexes. These comprise aliphatic as well as aromatic thiolates and a cysteine derivative. Structure determinations have confirmed the tetrahedral ZnN(2)S(2) coordination in the complexes. Upon reaction with methyl iodide, the species L(1).Zn-SR are slowly converted to L(1).Zn-I and the free thioethers CH(3)SR. A kinetic analysis has shown these alkylations to be about 1 order of magnitude slower than those of the tris(pyrazolyl)borate complexes Tp(Ph,Me)Zn-SR. Alkylations with trimethyl phosphate were found to proceed very slowly even in DMSO at 80 degrees C. PMID:15877434

  12. Drilling fluid containing a copolymer filtration control agent

    SciTech Connect

    Enright, D.P.; Lucas, J.M.; Perricone, A.C.

    1981-10-06

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: (1) a (Meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and (2) a (Meth) acrylamide or n-alkyl (Meth) acrylamide. The copolymer may be cross-linked with a quaternary ammonium salt cross-linking agent.

  13. The toxic chemistry of methyl bromide.

    PubMed

    Bulathsinghala, A T; Shaw, I C

    2014-01-01

    Methyl bromide (MeBr) is a chemically reactive compound that has found use as a fire retardant and fumigant used for wood, soil, fruits and grains. Its use is banned in many countries because of its ozone-depleting properties. Despite this ban, the use of MeBr persists in some parts of the world (e.g. New Zealand) due to its important role in maintaining strict biosecurity of exported and imported products. Its high chemical reactivity leads to a broad toxicological profile ranging from acute respiratory toxicity following inhalation exposure, through carcinogenicity to neurotoxicty. In this article, we discuss the chemistry of MeBr in the context of its mechanisms of toxicity. The chemical reactivity of MeBr clearly underlies its toxicity. Bromine (Br) is electronegative and a good leaving group; the δ+ carbon thus facilitates electrophilic methylation of biological molecules including glutathione (GSH) via its δ- sulphur atom, leading to downstream effects due to GSH depletion. DNA alkylation, either directly by MeBr or indirectly due to reduction in GSH-mediated detoxification of reactive alkylating chemical species, might explain the carcinogenicity of MeBr. The neurotoxicity of MeBr is much more difficult to understand, but we speculate that methyl phosphates formed in cells might contribute to its neurone-specific toxicity via cholinesterase inhibition. Finally, evidence reviewed shows that it is unlikely for Br⁻ liberated by the metabolism of MeBr to have any toxicological effect because the Br⁻ dose is very low. PMID:23800997

  14. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218...-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated...

  15. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218...-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated...

  16. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218...-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated...

  17. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218...-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated...

  18. The photodissociation dynamics of alkyl radicals

    NASA Astrophysics Data System (ADS)

    Giegerich, Jens; Fischer, Ingo

    2015-01-01

    The photodisscociation dynamics of the alkyl radicals i-propyl (CH(CH3)2) and t-butyl (C(CH3)3) are investigated by H-atom photofragment imaging. While i-propyl is excited at 250 nm, the photodynamics of t-butyl are explored over a large energy range using excitation wavelengths between 347 nm and 233 nm. The results are compared to those obtained previously for ethyl, CH3CH2, and to those reported for t-butyl using 248 nm excitation. The translational energy (ET) distribution of the H-atom photofragments is bimodal and appears rather similar for all three radicals. The low ET part of the distribution shows an isotropic photofragment angular distribution, while the high ET part is associated with a considerable anisotropy. Thus, for t-butyl, two H-atom loss channels of roughly equal importance have been identified in addition to the CH3-loss channel reported previously. A mechanism for the photodissociation of alkyl radicals is suggested that is based on interactions between Rydberg- and valence states.

  19. The photodissociation dynamics of alkyl radicals

    SciTech Connect

    Giegerich, Jens; Fischer, Ingo

    2015-01-28

    The photodisscociation dynamics of the alkyl radicals i-propyl (CH(CH{sub 3}){sub 2}) and t-butyl (C(CH{sub 3}){sub 3}) are investigated by H-atom photofragment imaging. While i-propyl is excited at 250 nm, the photodynamics of t-butyl are explored over a large energy range using excitation wavelengths between 347 nm and 233 nm. The results are compared to those obtained previously for ethyl, CH{sub 3}CH{sub 2}, and to those reported for t-butyl using 248 nm excitation. The translational energy (E{sub T}) distribution of the H-atom photofragments is bimodal and appears rather similar for all three radicals. The low E{sub T} part of the distribution shows an isotropic photofragment angular distribution, while the high E{sub T} part is associated with a considerable anisotropy. Thus, for t-butyl, two H-atom loss channels of roughly equal importance have been identified in addition to the CH{sub 3}-loss channel reported previously. A mechanism for the photodissociation of alkyl radicals is suggested that is based on interactions between Rydberg- and valence states.

  20. Influence of alkyl chain length and temperature on thermophysical properties of ammonium-based ionic liquids with molecular solvent.

    PubMed

    Kavitha, T; Attri, Pankaj; Venkatesu, Pannuru; Devi, R S Rama; Hofman, T

    2012-04-19

    Mixing of ionic liquids (ILs) with molecular solvent can expand the range of structural properties and the scope of molecular interactions between the molecules of the solvents. Exploiting of these phenomena essentially require a basic fundamental understanding of mixing behavior of ILs with molecular solvents. In this context, a series of protic ILs possessing tetra-alkyl ammonium cation [R(4)N](+) with commonly used anion hydroxide [OH](-) were synthesized and characterized by temperature dependent thermophysical properties. The ILs [R(4)N](+)[OH](-) are varying only in the length of alkyl chain (R is methyl, ethyl, propyl, or butyl) of tetra-alkyl ammonium on the cationic part. The ILs used for the present study included tetramethyl ammonium hydroxide [(CH(3))(4)N](+)[OH](-) (TMAH), tetraethyl ammonium hydroxide [(C(2)H(5))(4)N](+)[OH](-) (TEAH), tetrapropyl ammonium hydroxide [(C(3)H(7))(4)N](+)[OH](-) (TPAH) and tetrabutyl ammonium hydroxide [(C(4)H(9))(4)N](+)[OH](-) (TBAH). The alkyl chain length effect has been analyzed by precise measurements such as densities (ρ), ultrasonic sound velocity (u), and viscosity (η) of these ILs with polar solvent, N-methyl-2-pyrrolidone (NMP), over the full composition range as a function of temperature. The excess molar volume (V(E)), the deviation in isentropic compressibility (Δκ(s)) and deviation in viscosity (Δη) were predicted using these properties as a function of the concentration of ILs. Redlich-Kister polynomial was used to correlate the results. A qualitative analysis of the results is discussed in terms of the ion-dipole, ion-pair interactions, and hydrogen bonding between ILs and NMP molecules. Later, the hydrogen bonding features between ILs and NMP were also analyzed using a molecular modeling program with the help of HyperChem 7. PMID:22443087