Science.gov

Sample records for alkylating agent nitrogen

  1. Synthesis and alkylation activity of a nitrogen mustard agent to penetrate the blood-brain barrier.

    PubMed

    Bartzatt, Ronald L

    2004-01-01

    Nitrogen mustard agents are widely used for the clinical treatment of cancers. A nitrogen mustard (N-mustard) agent was synthesized utilizing nicotinic acid as the carrier of the alkylating substituent (-OCH2CH2N(CH2CH2Cl)2) that forms an ester group (R-C(O)-OR) on a heterocyclic ring. The N-mustard agent is a solid at room temperature and is stable for more than 6 weeks when stored at -10 degrees C. To determine the kinetics of alkylation activity a nucleophilic primary amine compound (4-chloroaniline) was placed in aqueous solution with the mustard agent at physiological pH 7.4 (pH of blood) and 37 degrees C. The alkylation reaction was found to be second-order with rate equation: rate = k2[N-mustard][Nu], where Nu = nucleophile and k2 = 0.0415 L/(mol x min). Pharmacological descriptors calculated showed values indicating a strong potential of penetrating the blood-brain barrier. The partition coefficient (Log P) of the mustard agent is 1.95 compared with 0.58 for nicotinic acid. Values of descriptors such as dipole, polar surface area, Log BB, molar refractivity, parachor, and violations of Rule of 5 were found to be 5.057 Debye, 42.44 A2, 0.662, 72.7 cm3, 607.7 cm3, and 0.0 for the N-mustard agent. Value of polar surface area for the mustard agent (42.44 A2) predicts that >90% of any amount present in the intestinal tract will be absorbed.

  2. DRDE-07 and its analogues as promising cytoprotectants to nitrogen mustard (HN-2)--an alkylating anticancer and chemical warfare agent.

    PubMed

    Sharma, Manoj; Vijayaraghavan, R; Gautam, Anshoo

    2009-08-10

    Nitrogen mustard (HN-2), also known as mechlorethamine, is an alkylating anticancer agent as well as blister inducing chemical warfare agent. We evaluated the cytoprotective efficacy of amifostine, DRDE-07 and their analogues, and other antidotes of mustard agents against HN-2. Administration of 1 LD(50) of HN-2 (20mg/kg) percutaneously, decreased WBC count from 24h onwards. Liver glutathione (GSH) level decreased prominently and the maximum depletion was observed on 7th day post-HN-2 administration. Oxidised glutathione (GSSG) level increased significantly at 24h post-administration and subsequently showed a progressive decrease. Hepatic malondialdehyde (MDA) level and percent DNA damage increased progressively following HN-2 administration. The spleen weight decreased progressively and reached a minimum on 3-4 days with subsequent increase. The antidotes were administered repeatedly for 4 and 8 days after percutaneous administration of single sublethal dose (0.5 and 0.25 LD(50)) of HN-2. Treatment with DRDE-07, DRDE-30 and DRDE-35 significantly protected the changes in spleen weight, WBC count, GSH, GSSG, MDA and DNA damage following HN-2 administration (0.5 and 0.25 LD(50)). There was no alteration in the transaminases (AST and ALT), and alkaline phosphatase (ALP) activities, neither with HN-2 nor with antidotes. The present study shows that HN-2 is highly toxic by percutaneous route and DRDE-07, DRDE-30 and DRDE-35 can partially protect it.

  3. Decreased stability of DNA in cells treated with alkylating agents

    SciTech Connect

    Frankfurt, O.S. )

    1990-12-01

    A modified highly sensitive procedure for the evaluation of DNA damage in individual cells treated with alkylating agents is reported. The new methodology is based on the amplification of single-strandedness in alkylated DNA by heating in the presence of Mg{sup 2+}. Human ovarian carcinoma cells A2780 were treated with nitrogen mustard (HN2), fixed in methanol, and stained with monoclonal antibody (MOAB) F7-26 generated against HN2-treated DNA. Binding of MOAB was measured by flow cytometry with indirect immunofluorescence. Intensive binding of MOAB to control and drug-treated cells was observed after heating in Tris buffer supplemented with MgCl{sub 2}. Thus, the presence of phosphates and MgCl{sub 2} during heating was necessary for the detection of HN2-induced changes in DNA stability. Fluorescence of HN2-treated cells decreased to background levels after treatment with single-strand-specific S{sub 1} nuclease. MOAB F7-26 interacted with single-stranded regions in DNA and did not bind to dsDNA or other cellular antigens. It is suggested that alkylation of guanines decreased the stability of the DNA molecule and increased the access of MOAB F7-26 to deoxycytidines on the opposite DNA strand.

  4. Comparison of the Lonidamine Potentiated Effect of Nitrogen Mustard Alkylating Agents on the Systemic Treatment of DB-1 Human Melanoma Xenografts in Mice

    PubMed Central

    Nath, Kavindra; Nelson, David S.; Putt, Mary E.; Leeper, Dennis B.; Garman, Bradley; Nathanson, Katherine L.; Glickson, Jerry D.

    2016-01-01

    Previous NMR studies demonstrated that lonidamine (LND) selectively diminishes the intracellular pH (pHi) of DB-1 melanoma and mouse xenografts of a variety of other prevalent human cancers while decreasing their bioenergetic status (tumor βNTP/Pi ratio) and enhancing the activities of melphalan and doxorubicin in these cancer models. Since melphalan and doxorubicin are highly toxic agents, we have examined three other nitrogen (N)-mustards, chlorambucil, cyclophosphamide and bendamustine, to determine if they exhibit similar potentiation by LND. As single agents LND, melphalan and these N-mustards exhibited the following activities in DB-1 melanoma xenografts; LND: 100% tumor surviving fraction (SF); chlorambucil: 100% SF; cyclophosphamide: 100% SF; bendamustine: 79% SF; melphalan: 41% SF. When combined with LND administered 40 min prior to administration of the N-mustard (to maximize intracellular acidification) the following responses were obtained; chlorambucil: 62% SF; cyclophosphamide: 42% SF; bendamustine: 36% SF; melphalan: 10% SF. The effect of LND on the activities of these N-mustards is generally attributed to acid stabilization of the aziridinium active intermediate, acid inhibition of glutathione-S-transferase, which acts as a scavenger of aziridinium, and acid inhibition of DNA repair by O6-alkyltransferase. Depletion of ATP by LND may also decrease multidrug resistance and increase tumor response. At similar maximum tolerated doses, our data indicate that melphalan is the most effective N-mustard in combination with LND when treating DB-1 melanoma in mice, but the choice of N-mustard for coadministration with LND will also depend on the relative toxicities of these agents, and remains to be determined. PMID:27285585

  5. Alcohols as alkylating agents in heteroarene C-H functionalization

    NASA Astrophysics Data System (ADS)

    Jin, Jian; MacMillan, David W. C.

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  6. The effect of alkylating agents on model supported metal clusters

    SciTech Connect

    Erdem-Senatalar, A.; Blackmond, D.G.; Wender, I. . Dept. of Chemical and Petroleum Engineering); Oukaci, R. )

    1988-01-01

    Interactions between model supported metal clusters and alkylating agents were studied in an effort to understand a novel chemical trapping technique developed for identifying species adsorbed on catalyst surfaces. It was found that these interactions are more complex than had previously been suggested. Studies were completed using deuterium-labeled dimethyl sulfate (DMS), (CH{sub 3}){sub 2}SO{sub 4}, as a trapping agent to interact with the supported metal cluster ethylidyne tricobalt enneacarbonyl. Results showed that oxygenated products formed during the trapping reaction contained {minus}OCD{sub 3} groups from the DMS, indicating that the interaction was not a simple alkylation. 18 refs., 1 fig., 3 tabs.

  7. Palladium-Catalyzed Cross Coupling of Secondary and Tertiary Alkyl Bromides with a Nitrogen Nucleophile

    PubMed Central

    2016-01-01

    We report a new class of catalytic reaction: the thermal substitution of a secondary and or tertiary alkyl halide with a nitrogen nucleophile. The alkylation of a nitrogen nucleophile with an alkyl halide is a classical method for the construction of C–N bonds, but traditional substitution reactions are challenging to achieve with a secondary and or tertiary alkyl electrophile due to competing elimination reactions. A catalytic process could address this limitation, but thermal, catalytic coupling of alkyl halides with a nitrogen nucleophile and any type of catalytic coupling of an unactivated tertiary alkyl halide with a nitrogen nucleophile are unknown. We report the coupling of unactivated secondary and tertiary alkyl bromides with benzophenone imines to produce protected primary amines in the presence of palladium ligated by the hindered trialkylphosphine Cy2t-BuP. Mechanistic studies indicate that this amination of alkyl halides occurs by a reversible reaction to form a free alkyl radical. PMID:27725963

  8. Synthesis and Performance of a Biomimetic Indicator for Alkylating Agents.

    PubMed

    Provencher, Philip A; Love, Jennifer A

    2015-10-01

    4-(4-Nitrobenzyl)pyridine (NBP) is a colorimetric indicator compound for many types of carcinogenic alkylating agents. Because of the similar reactivity of NBP and guanine in DNA, NBP serves as a DNA model. NBP assays are used in the toxicological screening of pharmaceutical compounds, detection of chemical warfare agents, environmental hygiene technology, preliminary toxicology tests, mutagenicity of medicinal compounds, and other chemical analyses. Nevertheless, the use of NBP as a DNA model suffers from the compound's low water solubility, its lack of reactive oxygen sites, and dissimilar steric encumbrance compared to DNA. We report herein the design and synthesis of NBP derivatives that address some of these issues. These derivatives have been tested in solution and found to be superior in the colorimetric assay of the alkylating anticancer drug cyclophosphamide. The derivatives have also been integrated into a polymeric silica material which changes color upon the exposure to dangerous alkylating agents, such as iodomethane vapor, without the need for an exogenous base. This material modernizes the NBP assay from a time-consuming laboratory analysis to a real-time solid state sensor, which requires neither solvent nor additional reagents and can detect both gas- and solution-phase alkylating agents.

  9. Synthesis and Performance of a Biomimetic Indicator for Alkylating Agents.

    PubMed

    Provencher, Philip A; Love, Jennifer A

    2015-10-01

    4-(4-Nitrobenzyl)pyridine (NBP) is a colorimetric indicator compound for many types of carcinogenic alkylating agents. Because of the similar reactivity of NBP and guanine in DNA, NBP serves as a DNA model. NBP assays are used in the toxicological screening of pharmaceutical compounds, detection of chemical warfare agents, environmental hygiene technology, preliminary toxicology tests, mutagenicity of medicinal compounds, and other chemical analyses. Nevertheless, the use of NBP as a DNA model suffers from the compound's low water solubility, its lack of reactive oxygen sites, and dissimilar steric encumbrance compared to DNA. We report herein the design and synthesis of NBP derivatives that address some of these issues. These derivatives have been tested in solution and found to be superior in the colorimetric assay of the alkylating anticancer drug cyclophosphamide. The derivatives have also been integrated into a polymeric silica material which changes color upon the exposure to dangerous alkylating agents, such as iodomethane vapor, without the need for an exogenous base. This material modernizes the NBP assay from a time-consuming laboratory analysis to a real-time solid state sensor, which requires neither solvent nor additional reagents and can detect both gas- and solution-phase alkylating agents. PMID:26393809

  10. Leukemia after therapy with alkylating agents for childhood cancer

    SciTech Connect

    Tucker, M.A.; Meadows, A.T.; Boice, J.D. Jr.; Stovall, M.; Oberlin, O.; Stone, B.J.; Birch, J.; Voute, P.A.; Hoover, R.N.; Fraumeni, J.F. Jr.

    1987-03-01

    The risk of leukemia was evaluated in 9,170 2-or-more-year survivors of childhood cancer in the 13 institutions of the Late Effects Study Group. Secondary leukemia occurred in 22 nonreferred individuals compared to 1.52 expected, based on general population rates (relative risk (RR) = 14; 95% confidence interval (CI), 9-22). The influence of therapy for the first cancer on subsequent leukemia risk was determined by a case-control study conducted on 25 cases and 90 matched controls. Treatment with alkylating agents was associated with a significantly elevated risk of leukemia (RR = 4.8; 95% CI, 1.2-18.9). A strong dose-response relationship was also observed between leukemia risk and total dose of alkylating agents, estimated by an alkylator score. The RR of leukemia reached 23 in the highest dose category. Radiation therapy, however, did not increase risk. Although doxorubicin was also identified as a possible risk factor, the excess risk of leukemia following treatment for childhood cancer appears almost entirely due to alkylating agents.

  11. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    PubMed

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents. PMID:25497573

  12. Determination of reaction rate constants for alkylation of 4-(p-nitrobenzyl) pyridine by different alkylating agents.

    PubMed

    Walles, S A

    1980-02-01

    The rate constants have been determined for the reaction between some different alkylating agents and 4-(p-nitrobenzyl) pyridine (NBP) in methanol. These constants have been compared with those for alkylation of aniline in water. All the constants were lower in methanol than in water but in different degrees. The rate constants of the different alkylating agents have been calculated at a nucleophilic strength n=2. The genetic risk defined as the degree of alkylation of a nucleophile (n=2) is equivalent to the rate constant kn=2 and the target dose. The dependence of the genetic risk on the rate constant (kn=2) is discussed.

  13. Alkylating agent (MNU)-induced mutation in space environment.

    PubMed

    Ohnishi, T; Takahashi, A; Ohnishi, K; Takahashi, S; Masukawa, M; Sekikawa, K; Amano, T; Nakano, T; Nagaoka, S

    2001-01-01

    In recent years, some contradictory data about the effects of microgravity on radiation-induced biological responses in space experiments have been reported. We prepared a damaged template DNA produced with an alkylating agent (N-methyl-N-nitroso urea; MNU) to measure incorrect base-incorporation during DNA replication in microgravity. We examined whether mutation frequency is affected by microgravity during DNA replication for a DNA template damaged by an alkylating agent. Using an in vitro enzymatic reaction system, DNA synthesis by Taq polymerase or polymerase III was done during a US space shuttle mission (Discovery, STS-91). After the flight, DNA replication and mutation frequencies were measured. We found that there was almost no effect of microgravity on DNA replication and mutation frequency. It is suggested that microgravity might not affect at the stage of substrate incorporation in induced-mutation frequency.

  14. Activity of quinone alkylating agents in quinone-resistant cells.

    PubMed

    Begleiter, A; Leith, M K

    1990-05-15

    The role of the quinone group in the antitumor activity of quinone alkylating agents, such as mitomycin C and 2,5-diaziridinyl-3,5-bis(carboethoxyamino)-1,4-benzoquinone, is still uncertain. The quinone group may contribute to antitumor activity by inducing DNA strand breaks through the formation of free radicals and/or by influencing the alkylating activity of the quinone alkylators. The cytotoxic activity and DNA damage produced by the model quinone alkylating agents, benzoquinone mustard and benzoquinone dimustard, were compared in L5178Y murine lymphoblasts sensitive and resistant to the model quinone antitumor agent, hydrolyzed benzoquinone mustard. The resistant cell lines, L5178Y/HBM2 and L5178Y/HBM10, have increased concentrations of glutathione and elevated catalase, superoxide dismutase, glutathione S-transferase, and DT-diaphorase activity. L5178Y/HBM2 and L5178Y/HBM10 cells were 7.4- and 8.5-fold less sensitive to benzoquinone mustard and 1.7- and 4.3-fold less sensitive to benzoquinone dimustard, respectively, compared with sensitive cells, but showed no resistance to the non-quinone alkylating agent, aniline mustard. The formation of DNA double strand breaks by benzoquinone mustard was reduced by 2- and 8-fold in L5178Y/HBM2 and L5178Y/HBM10 cells, respectively, while double strand break formation by benzoquinone dimustard was reduced only in the L5178Y/HBM10 cells. The number of DNA-DNA cross-links produced by benzoquinone mustard was 3- and 6-fold lower, and the number produced by benzoquinone dimustard was 35% and 2-fold lower in L5178Y/HBM2 and L5178Y/HBM10 cells, respectively, compared with L5178Y parental cells. In contrast, cross-linking by aniline mustard was unchanged in sensitive and resistant cells. Dicoumarol, an inhibitor of DT-diaphorase, increased the cytotoxic activity of both benzoquinone mustard and benzoquinone dimustard in L5178Y/HBM10 cells. This study provides evidence that elevated DT-diaphorase activity in the resistant cells

  15. DNA sequence-specific adenine alkylation by the novel antitumor drug tallimustine (FCE 24517), a benzoyl nitrogen mustard derivative of distamycin.

    PubMed Central

    Broggini, M; Coley, H M; Mongelli, N; Pesenti, E; Wyatt, M D; Hartley, J A; D'Incalci, M

    1995-01-01

    FCE 24517, a novel distamycin derivative possessing potent antitumor activity, is under initial clinical investigation in Europe. In spite of the presence of a benzoyl nitrogen mustard group this compound fails to alkylate the N7 position of guanine, the major site of alkylation by conventional nitrogen mustards. Characterisation of DNA-drug adducts revealed only a very low level of adenine adduct formation. Using a modified Maxam-Gilbert sequencing method the consensus sequence for FCE 24517-adenine adduct formation was found to be 5'-TTTTGA-3'. A single base modification in the hexamer completely abolishes the alkylation of adenine. Using a Taq polymerase stop assay alkylations were confirmed at the A present in the hexamer TTTTGA and, in addition, in one out of three TTTTAA sequences present in the plasmid utilized. The sequence specificity of alkylation by FCE 24517 is therefore the most striking yet observed for an alkylating agent of small molecular weight. Images PMID:7870593

  16. In vivo formation and persistence of modified nucleosides resulting from alkylating agents.

    PubMed Central

    Singer, B

    1985-01-01

    Alkylating agents are ubiquitous in the human environment and are continuously synthesized in vivo. Although many classes exist, interest has been focused on the N-nitroso compounds, since many are mutagens for bacteria, phage, and cells, and carcinogens for mammals. In contrast to aromatic amines and polyaromatic hydrocarbons which can react at carbons, simple alkylating agents react with nitrogens and oxygens: 13 sites are possible, including the internucleotide phosphodiester. However, only the N-nitroso compounds react extensively with oxygens. In vivo, most possible derivatives have been found after administration of methyl and ethyl nitroso compounds. The ethylating agents are more reactive toward oxygens than are the methylating agents and are more carcinogenic in terms of total alkylation. This is true regardless of whether or not the compounds require metabolic activation. It has been hypothesized that the level and persistence of specific derivatives in a "target" cell correlates with oncogenesis. However, no single derivative can be solely responsible for this complex process, since correlations cannot be made for even a single carcinogen acting on various species or cell types. Some derivatives are chemically unstable, and the glycosyl bond is broken (3- and 7-alkylpurines), leaving apurinic sites which may be mutagenic. These, as well as most adducts, are recognized by different enzymatic activities which remove/repair at various rates and efficiencies depending on the number of alkyl derivatives, as well as enzyme content in the cell and recognition of the enzyme. Evaluation of human exposure requires early and sensitive methods to detect the initial damage and the extent of repair of each of the many promutagenic adducts. PMID:4085444

  17. Cu(I)-Catalyzed Enantioselective Friedel-Crafts Alkylation of Indoles with 2-Aryl-N-sulfonylaziridines as Alkylating Agents.

    PubMed

    Ge, Chen; Liu, Ren-Rong; Gao, Jian-Rong; Jia, Yi-Xia

    2016-07-01

    A highly enantioselective Friedel-Crafts alkylation of indoles with N-sulfonylaziridines as alkylating agents has been developed by utilizing the complex of Cu(CH3CN)4BF4/(S)-Segphos as a catalyst. A range of optically active tryptamine derivatives are obtained in good to excellent yields and enantioselectivities (up to >99% ee) via a kinetic resolution process. PMID:27309541

  18. DNA minor groove targeted alkylating agents based on bisbenzimidazole carriers: synthesis, cytotoxicity and sequence-specificity of DNA alkylation.

    PubMed

    Smaill, J B; Fan, J Y; Denny, W A

    1998-12-01

    A series of bisbenzimidazoles bearing a variety of alkylating agents [ortho- and meta-mustards, imidazolebis(hydroxymethyl), imidazolebis(methylcarbamate) and pyrrolebis(hydroxymethyl)], appended by a propyl linker chain, were prepared and investigated for sequence-specificity of DNA alkylation and their cytotoxicity. Previous work has shown that, for para-aniline mustards, a propyl linker is optimal for cytotoxicity. Alkaline cleavage assays using a variety of different labelled oligonucleotides showed that the preferred sequences for adenine alkylation were 5'-TTTANANAANN and 5'-ATTANANAANN (underlined bases show the drug alkylation sites), with AT-rich sequences required on both the 5' and 3' sides of the alkylated adenine. The different aniline mustards showed little variation in alkylation pattern and similar efficiencies of DNA cross-link formation despite the changes in orientation and positioning of the mustard, suggesting that the propyl linker has some flexibility. The imidazole- and pyrrolebis(hydroxymethyl) alkylators showed no DNA strand cleavage following base treatment, indicating that no guanine or adenine N3 or N7 adducts were formed. Using the PCR-based polymerase stop assay, these alkylators showed PCR blocks at 5'-C*G sites (the * nucleotide indicates the blocked site), particularly at 5'-TAC*GA 5'-AGC*GGA, and 5'-AGCC*GGT sequences, caused by guanine 2-NH2 lesions on the opposite strand. Only the (more reactive) imidazolebis(methylcarbamoyl) and pyrrolebis(hydroxymethyl) alkylators demonstrated interstrand cross-linking ability. All of the bifunctional mustards showed large (approximately 100-fold) increases in cytotoxicity over chlorambucil, with the corresponding monofunctional mustards being 20- to 60-fold less cytotoxic. These results suggest that in the mustards the propyl linker provides sufficient flexibility to achieve delivery of the alkylator to favoured (adenine N3) sites in the minor groove, regardless of its exact geometry with

  19. Alkyl phospholipid antihypertensive agents in method of lowering blood pressure

    DOEpatents

    Snyder, Fred L.; Blank, Merle L.; Muirhead, Ernest E.; Leach, deceased, Byron E.; Byers, Lawrence W.

    1988-01-01

    The composition of this invention is 1-O-alkyl-2-acetoyl-sn-glycero-3-phosphocholine, having the ionic structural formula; ##STR1## wherein R is saturated alkyl having 9-21 carbon atoms, or salts or hydrates of the composition. Preferably R has 13-19 carbon atoms and most preferably R has 15 carbon atoms. The composition of this invention is useful for reducing hypertension in warm-blooded animals, including humans, when administered either orally or by injection or innoculation, e.g., intravenous injection. The composition can be prepared from naturally occurring lipids or synthetically from commercially available material.

  20. Suppression of alkylating agent induced cell transformation and gastric ulceration by low-dose alkylating agent pretreatment

    SciTech Connect

    Onodera, Akira; Kawai, Yuichi; Kashimura, Asako; Ogita, Fumiya; Tsutsumi, Yasuo; Itoh, Norio

    2013-06-14

    Highlights: •Low-dose MNNG pretreatment suppresses high-dose MNNG induced in vitro transformation. •Gastric ulcers induced by high-dose MNNG decreased after low-dose MNNG pretreatment. •Efficacy of low-dose MNNG related to resistance of mutation and oxidative stress. -- Abstract: Exposure to mild stress by chemicals and radiation causes DNA damage and leads to acquired stress resistance. Although the linear no-threshold (LNT) model of safety assessment assumes risk from any dose, evidence from radiological research demonstrates a conflicting hormetic phenomenon known as the hormesis effect. However, the mechanisms underlying radiation hormesis have not yet been clarified, and little is known about the effects of low doses of chemical carcinogens. We analyzed the efficacy of pretreatment with low doses of the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) on the subsequent induction of cell transformation and gastric ulceration by high-dose MNNG. We used an in vitro Balb/3T3 A31-1-1 cell transformation test and monitored the formation of gastric ulcers in 5-week-old male ICR mice that were administered MNNG in drinking water. The treatment concentrations of MNNG were determined by the cell survival rate and past reports. For low-dose in vitro and in vivo experiments, MNNG was used at 0.028 μM, and 2.8 μg/mL, respectively. The frequency of cell transformation induced by 10 μm MNNG was decreased by low-dose MNNG pretreatment to levels similar to that of spontaneous transformation. In addition, reactive oxygen species (ROS) and mutation frequencies induced by 10 μm MNNG were decreased by low-dose MNNG pretreatment. Importantly, low-dose MNNG pretreatment had no effect on cell proliferation. In vivo studies showed that the number of gastric ulcers induced by 1 mg/mL MNNG decreased after low-dose MNNG pretreatment. These data indicate that low-dose pretreatment with carcinogens may play a beneficial role in the prevention of chemical toxicity

  1. ATM regulates 3-Methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents

    PubMed Central

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A.; Clarke, Ian D.; Barszczyk, Mark S.; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W.; Taylor, Michael D; Rutka, James T.; Jones, Chris; Dirks, Peter B.; Zadeh, Gelareh; Hawkins, Cynthia

    2014-01-01

    Alkylating agents are a frontline therapy for the treatment of several aggressive cancers including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed; increasing therapeutic response while minimizing toxicity. Using a siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM) were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. PMID:25100205

  2. Mutagenesis by Cytostatic Alkylating Agents in Yeast Strains of Differing Repair Capacities

    PubMed Central

    Ruhland, Axel; Brendel, Martin

    1979-01-01

    Reversion of two nuclear ochre nonsense alleles and cell inactivation induced by mono-, bi-, and tri-functional alkylating agents and by UV has been investigated in stationary-phase haploid cells of yeast strains with differing capacities for DNA repair. The ability to survive alkylation damage is correlated with UV repair capacity, a UV-resistant and UV-mutable strain (RAD REV) being least and a UV-sensitive and UV-nonmutable strain (rad1 rev3) most sensitive. Mutagenicity of alkylating agents is highest in the former and is abolished in the latter strain. Deficiency in excision repair (rad1 rad2) or in the RAD18 function does not lead to enhanced mutability. Mutagenesis by the various agents is characterized by a common pattern of induction of locus-specific revertants and suppressor mutants. Induction kinetics are mostly linear, but UV-induced reversion in the RAD REV strain follows higher-than-linear (probably "quadratic") kinetics. The alkylating agent cyclophosphamide, usually considered inactive without metabolic conversion, reduces colony-forming ability and induces revertants in a manner similar but not identical to the other chemicals tested. These findings are taken to support the concept of mutagenesis by misrepair after alkylation, which albeit sharing common features with the mechanism of UV-induced reversion, can be distinguished therefrom. PMID:387518

  3. Alkyl esters of gallic acid as anticancer agents: a review.

    PubMed

    Locatelli, Claudriana; Filippin-Monteiro, Fabíola Branco; Creczynski-Pasa, Tânia Beatriz

    2013-02-01

    The current review presents the antitumoral properties of gallic acid and its ester derivatives. Numerous studies have indicated that the alkyl esters are more effective against tumor cell lines than gallic acid, and that this activity is related to their hydrophobic moiety. All related studies have shown that the antitumor activity is interconnected to the induction of apoptosis by different mechanisms and it depends on the cell type. The results presented in this review may help to emphasize that these compounds could be promising as a new alternative for the treatment of cancer, either alone or in combination with other antitumor drugs to potentiate their effects.

  4. Alkylating agents and immunotoxins exert synergistic cytotoxic activity against ovarian cancer cells. Mechanism of action.

    PubMed Central

    Lidor, Y J; O'Briant, K C; Xu, F J; Hamilton, T C; Ozols, R F; Bast, R C

    1993-01-01

    Alkylating agents can be administered in high dosage to patients with ovarian cancer using autologous bone marrow support, but drug-resistant tumor cells can still persist. Immunotoxins provide reagents that might eliminate drug resistant cells. In the present study, concurrent treatment with alkylators and immunotoxins proved superior to treatment with each agent alone. Toxin immunoconjugates prepared from different monoclonal antibodies and recombinant ricin A chain (rRTA) inhibited clonogenic growth of ovarian cancer cell lines in limiting dilution assays. When alkylating agents and toxin conjugates were used in combination, the addition of the immunotoxins to cisplatin, or to cisplatin and thiotepa, produced synergistic cytotoxic activity against the OVCA 432 and OVCAR III cell lines. Studies performed to clarify the mechanism of action showed that cisplatin and thiotepa had no influence on internalization and binding of the 317G5-rRTA immunotoxin. Intracellular uptake of [195m]Pt-cisplatin was not affected by the immunoconjugate and thiotepa. The combination of the 317G5-rRTA and thiotepa, as well as 317G5-rRTA alone, increased [195m]Pt cisplatin-DNA adduct levels. The immunotoxin alone and in combination with the alkylators decreased intracellular glutathione levels and reduced glutathione-S-transferase activity. Repair of DNA damage induced by the combination of alkylators and 317G5-rRTA was significantly reduced when compared to repair after damage with alkylators alone. These findings suggest that immunotoxins affect levels and activity of enzymes required for the prevention and repair of alkylator damage. Images PMID:8227359

  5. Synthesis and evaluation of 1,2-trans alkyl galactofuranoside mimetics as mycobacteriostatic agents.

    PubMed

    Dureau, Rémy; Gicquel, Maxime; Artur, Isabelle; Guégan, Jean-Paul; Carboni, Bertrand; Ferrières, Vincent; Berrée, Fabienne; Legentil, Laurent

    2015-05-01

    The simple octyl β-D-galactofuranoside was previously described as a good bacteriostatic agent against Mycobacterium smegmatis, a non-pathogenic model of M. tuberculosis. In order to decipher its mechanism of action, STD NMR on whole M. smegmatis cells was implemented. It outlined the crucial role of the alkyl chain and the possibility of modulation on the furanosyl entity. Then, 16 new alkyl furanosides were synthesized in order to optimize the mycobacteriostatic activity. They all present the pending alkyl chain in a 1,2-trans configuration relative to the sugar ring. Three families were studied that differ by a substituent on the primary position of the galactofuranose ring, the series or the pending alkyl chain. Four of these neofuranosides showed growth inhibition inferior to the parent octyl β-D-galactofuranoside. Double alkyl chains at C-1 and a polar substituent on the primary position of the furanoside significantly favored the activity. Finally, a mixed biantennary alkyl/aryl β-D-galactofuranoside exhibited the best growth inhibition concentration at 90 μM.

  6. 'Petite' mutagenesis and mitotic crossing-over in yeast by DNA-targeted alkylating agents.

    PubMed

    Ferguson, L R; Turner, P M; Gourdie, T A; Valu, K K; Denny, W A

    1989-12-01

    Although the biological properties (cytotoxicity, mutagenicity and carcinogenicity) of alkylating agents result from their bonding interactions with DNA, such compounds generally do not show any special binding affinity for DNA. A series of acridine-linked aniline mustards of widely-varying alkylator reactivity have been designed as DNA-directed alkylating agents. We have considered whether such DNA targeting has an effect on mutagenic properties by evaluating this series of drugs in comparison with their untargeted counterparts for toxic, recombinogenic and mutagenic properties in Saccharomyces cerevisiae strain D5. The simple untargeted aniline mustards are effective inducers of mitotic crossing-over in this strain, but resemble other reported alkylators in being rather inefficient inducers of the "petite" or mitochondrial mutation in yeast. However, the majority of the DNA-targeted mustards were very efficient petite mutagens, while showing little evidence of mitotic crossing-over or other nuclear events. The 100% conversion of cells into petites and the lack of a differential between growing and non-growing cells are similar to the effects of the well characterised mitochondrial mutagen ethidium bromide. These data suggest very different modes of action between the DNA-targeted alkylators and their non-targeted counterparts.

  7. Stability of solutions of antineoplastic agents during preparation and storage for in vitro assays. General considerations, the nitrosoureas and alkylating agents.

    PubMed

    Bosanquet, A G

    1985-01-01

    In vitro drug sensitivity of tumour biopsies is currently being determined using a variety of methods. For these chemosensitivity assays many drugs are required at short notice, and this in turn means that the drugs must generally be stored in solution. There are, however, a number of potential problems associated with dissolving and storing drugs for in vitro use, which include (a) drug adsorption; (b) effects of freezing; (c) drug stability under the normal conditions of dilution and setting up of an in vitro assay; and (d) insolubility of drugs in normal saline (NS) or phosphate-buffered saline (PBS). These problems are considered in general, and some recommendations for use of solutions of drugs in in vitro assays are suggested. The nitrosoureas and alkylating agents are also investigated in greater detail in this respect. The nitrosoureas are found to be very labile in PBS at pH 7, with 5% degradation (t0.95) occurring in 10-50 min at room temperature. These values are increased about 10-fold on refrigeration and about 5- to 10-fold on reduction of the pH of the medium to pH 4-5. At pH 7 and room temperature, t0.95 is observed in under 1 h with the alkylating agents nitrogen mustard, chlorambucil, melphalan, 2,5-diaziridinyl-3,6-bis(2-hydroxyethylamino)-1,4-benzoquinone (BZQ), dibromodulcitol, dibromomannitol, treosulphan, and procarbazine. Of the other alkylating agents, 4-hydroperoxycylophosphamide (sometimes used in vitro in place of cyclophosphamide), busulphan, dianhydrogalactitol, aziridinylbenzoquinone (AZQ), and dacarbazine have a t0.95 of between 2 and 24 h, while ifosfamide and pentamethylmelamine are both stable in aqueous solution for greater than 7 days. About half the drugs studied in detail have been stored frozen in solution for in vitro use, although very little is known about their stability under these conditions.

  8. DNA-directed alkylating ligands as potential antitumor agents: sequence specificity of alkylation by intercalating aniline mustards.

    PubMed

    Prakash, A S; Denny, W A; Gourdie, T A; Valu, K K; Woodgate, P D; Wakelin, L P

    1990-10-23

    The sequence preferences for alkylation of a series of novel parasubstituted aniline mustards linked to the DNA-intercalating chromophore 9-aminoacridine by an alkyl chain of variable length were studied by using procedures analogous to Maxam-Gilbert reactions. The compounds alkylate DNA at both guanine and adenine sites. For mustards linked to the acridine by a short alkyl chain through a para O- or S-link group, 5'-GT sequences are the most preferred sites at which N7-guanine alkylation occurs. For analogues with longer chain lengths, the preference of 5'-GT sequences diminishes in favor of N7-adenine alkylation at the complementary 5'-AC sequence. Magnesium ions are shown to selectively inhibit alkylation at the N7 of adenine (in the major groove) by these compounds but not the alkylation at the N3 of adenine (in the minor groove) by the antitumor antibiotic CC-1065. Effects of chromophore variation were also studied by using aniline mustards linked to quinazoline and sterically hindered tert-butyl-9-aminoacridine chromophores. The results demonstrate that in this series of DNA-directed mustards the noncovalent interactions of the carrier chromophores with DNA significantly modify the sequence selectivity of alkylation by the mustard. Relationships between the DNA alkylation patterns of these compounds and their biological activities are discussed.

  9. Synthesis and characterization of DNA minor groove binding alkylating agents.

    PubMed

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry

    2013-01-18

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization.

  10. Synthesis and Characterization of DNA Minor Groove Binding Alkylating Agents

    PubMed Central

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K.; Mascara, Gerard P.; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W.; Bobola, Michael S.; Silber, John R.; Gold, Barry

    2012-01-01

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases the N-terminus was appended with a O-methyl sulfonate ester while the C-terminus group was varied with non-polar and polar sidechains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) vs. major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is > 10-fold higher than the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells over-expressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization. PMID:23234400

  11. Synthesis and characterization of DNA minor groove binding alkylating agents.

    PubMed

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry

    2013-01-18

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization. PMID:23234400

  12. A quantitative structure activity/dose response relationship for contact allergic potential of alkyl group transfer agents.

    PubMed

    Roberts, D W; Basketter, D A

    1990-11-01

    As part of the investigation of structure activity relationships in contact allergy, it has been shown that methyl transfer agents are capable of acting as skin sensitizers. This work has now been extended to a more general examination of alkyl transfer reactions. The modified single injection adjuvant test has been used to investigate the sensitization potential of C12, C16 and unsaturated C18 alkyl transfer agents. Dose responses to challenge and the patterns of cross-reactivity between these materials and methyl transfer agents have been studied. All alkyl transfer agents examined were potent sensitizers in the guinea pig. There was evidence of mutual cross-reactivity between all alkyl transfer agents examined (including methyl transfer agents). Analysis of the data in terms of a modified relative alkylation index showed evidence of an overload effect. The sensitization data has been accurately modelled using a mathematical equation. These results emphasize the possibilities for relating physicochemical parameters and skin sensitization potential. Further studies with alkyl transfer agents are in progress of amplify the observations and conclusions presented in this report. No in vitro model is available for the prediction of skin sensitization potential. Therefore an approach based on a model using physicochemical criteria is the most likely route to a reduced requirement for animal testing. PMID:1965716

  13. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells.

    PubMed

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-08-15

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. PMID:27342729

  14. VP-16 and alkylating agents activate a common metabolic pathway for suppression of DNA replication

    SciTech Connect

    Das, S.K.; Berger, N.A.

    1986-05-01

    The cytotoxic effects of etoposide (VP-16) are mediated by topoisomerase II production of protein crosslinked DNA strand breaks. Previous studies have shown that alkylating agent induced DNA damage results in expansion of dTTP pools and reduction of dCTP pools and DNA replication. Studies were conducted with V79 cells to determine whether the metabolic consequences of VP-16 treatment were similar to those induced by alkylating agents. Treatment with 0.5..mu..M VP-16 prolonged the doubling time of V79 cells from 12 to 18 hrs and caused cell volume to increase from 1.1 to 1.6 x 10/sup -12/l. 2mM caffeine completely blocked the volume increase and substantially prevented the prolongation of doubling time. 5..mu..M VP-16 reduced the rate of (/sup 3/H)TdR incorporation by 70%, whereas in the presence of 2mM caffeine, VP-16 caused only a 10% decrease in the rate of (/sup 3/H)TdR incorporation. 4 hr treatment with 5.0..mu..M VP-16 increased dTTP levels from 65 +/- 10 pmol/10/sup 6/ cells to 80 +/- 13 pmol/10/sup 6/ cells and caused dCTP level to decline from 113 +/- 23 pmol/10/sup 6/ cells to 92 +/- 17 pmol/10/sup 6/ cells. These results indicate that the metabolic consequences of VP-16 treatment are similar to alkylating agent treatment and that an increase in dTTP pools with a subsequent effect on ribonucleotide reductase may be a final common pathway by which many cytotoxic agents suppress DNA synthesis.

  15. Photo-triggered fluorescent theranostic prodrugs as DNA alkylating agents for mechlorethamine release and spatiotemporal monitoring.

    PubMed

    Cao, Yanting; Pan, Rong; Xuan, Weimin; Wei, Yongyi; Liu, Kejian; Zhou, Jiahong; Wang, Wei

    2015-06-28

    We describe a new theranostic strategy for selective delivery and spatiotemporal monitoring of mechlorethamine, a DNA alkylating agent. A photo-responsive prodrug is designed and composed of a photolabile o-nitrophenylethyl group, a DNA alkylating mechlorethamine drug and a coumarin fluorophore. Masking of the "N" in mechlorethamine in a positively charged state in the prodrug renders it inactive, non-toxic, selective and non-fluorescent. Indeed, the stable prodrug shows negligible cytotoxicity towards normal cells with and without UV activation and is completely non-fluorescent. However, upon photo-irradiation, the active mechlorethamine is released and induces efficient DNA cross-links, accompanied by a strong fluorescence enhancement (152 fold). Furthermore, DNA cross-linking activity from the release can be transformed into anticancer activity observed in in vitro studies of tumor cells. Importantly, the drug release progress and the movement can be conveniently monitored by fluorescence spectroscopy. The mechanistic study proves that the DNA cross-linking activity is mainly due to the release of DNA alkylating mechlorethamine. Altogether, the studies show the power of the theranostic strategy for efficient therapy in cancer treatment. PMID:25997534

  16. Downregulation of hPMC2 imparts chemotherapeutic sensitivity to alkylating agents in breast cancer cells

    PubMed Central

    Krishnamurthy, Nirmala; Liu, Lili; Xiong, Xiahui; Zhang, Junran; Montano, Monica M

    2015-01-01

    Triple negative breast cancer cell lines have been reported to be resistant to the cyotoxic effects of temozolomide (TMZ). We have shown previously that a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2) has a role in the repair of estrogen-induced abasic sites. Our present study provides evidence that downregulation of hPMC2 in MDA-MB-231 and MDA-MB-468 breast cancer cells treated with temozolomide (TMZ) decreases cell survival. This increased sensitivity to TMZ is associated with an increase in number of apurinic/apyrimidinic (AP) sites in the DNA. We also show that treatment with another alkylating agent, BCNU, results in an increase in AP sites and decrease in cell survival. Quantification of western blot analyses and immunofluorescence experiments reveal that treatment of hPMC2 downregulated cells with TMZ results in an increase in γ-H2AX levels, suggesting an increase in double strand DNA breaks. The enhancement of DNA double strand breaks in TMZ treated cells upon downregulation of hPCM2 is also revealed by the comet assay. Overall, we provide evidence that downregulation of hPMC2 in breast cancer cells increases cytotoxicity of alkylating agents, representing a novel mechanism of treatment for breast cancer. Our data thus has important clinical implications in the management of breast cancer and brings forth potentially new therapeutic strategies. PMID:25849309

  17. Overexpressed human metallothionein IIA gene protects Chinese hamster ovary cells from killing by alkylating agents

    SciTech Connect

    Kaina, B.; Lohrer, H.; Karin, M.; Herrlich, P. )

    1990-04-01

    Experiments were designed to detect survival advantages that cells gain by overexpressing metallothionein (MT). Chinese hamster ovary K1-2 cells and an x-ray-sensitive derivative were transfected with a bovine papillomavirus (BPV)-linked construct carrying the human metallothionein IIA (hMT-IIA) gene. Transfectants survived 40-fold higher levels of cadmium chloride, harbored at least 30 copies of hMT-IIA, and contained 25- to 166-fold more MT than the parent cells. Even under conditions of reduced glutathione synthesis, the transfectants were not more resistant to the lethal effects of ionizing radiation and bleomycin than the parent cells. Thus free radicals generated by these agents cannot be scavenged efficiently by MT in vivo. The hMT-IIA transfectants, however, but not control transfectants harboring a BPV-MT promoter-neo construct, tolerated significantly higher doses of the alkylating agents N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine. Resistance and MT overexpression occurred irrespective of selection and cultivation in cadmium and zinc. There was no increase in resistance to methyl methanesulfonate and N-hydroxyethyl-N-chloroethylnitrosourea. MT did not affect the degree of overall DNA methylation after N-methyl-N-nitrosourea treatment nor the level of O6-methylguanine-DNA methyltransferase. The results suggest that MT participates as a cofactor or regulatory element in repair or tolerance of toxic alkylation lesions.

  18. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-01

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  19. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-01

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells. PMID:27551077

  20. Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase.

    PubMed

    Rodrigues-Ferreira, Clara; da Silva, Ana Paula Pereira; Galina, Antonio

    2012-02-01

    The alkylating agent 3-Bromopyruvate (3-BrPA) has been used as an anti-tumoral drug due to its anti-proliferative property in hepatomas cells. This propriety is believed to disturb glycolysis and respiration, which leads to a decreased rate of ATP synthesis. In this study, we evaluated the effects of the alkylating agent 3-BrPA on the respiratory states and the metabolic steps of the mitochondria of mice liver, brain and in human hepatocarcinoma cell line HepG2. The mitochondrial membrane potential (ΔΨ(m)), O(2) consumption and dehydrogenase activities were rapidly dissipated/or inhibited by 3-BrPA in respiration medium containing ADP and succinate as respiratory substrate. 3-BrPA inhibition was reverted by reduced glutathione (GSH). Respiration induced by yeast soluble hexokinase (HK) was rapidly inhibited by 3-BrPA. Similar results were observed using mice brain mitochondria that present HK naturally bound to the outer mitochondrial membrane. When the adenine nucleotide transporter (ANT) was blocked by the carboxyatractiloside, the 3-BrPA effect was significantly delayed. In permeabilized human hepatoma HepG2 cells that present HK type II bound to mitochondria (mt-HK II), the inhibiting effect occurred faster when the endogenous HK activity was activated by 2-deoxyglucose (2-DOG). Inhibition of mt-HK II by glucose-6-phosphate retards the mitochondria to react with 3-BrPA. The HK activities recovered in HepG2 cells treated or not with 3-BrPA were practically the same. These results suggest that mitochondrially bound HK supporting the ADP/ATP exchange activity levels facilitates the 3-BrPA inhibition reaction in tumors mitochondria by a proton motive force-dependent dynamic equilibrium between sensitive and less sensitive SDH in the electron transport system.

  1. Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase.

    PubMed

    Rodrigues-Ferreira, Clara; da Silva, Ana Paula Pereira; Galina, Antonio

    2012-02-01

    The alkylating agent 3-Bromopyruvate (3-BrPA) has been used as an anti-tumoral drug due to its anti-proliferative property in hepatomas cells. This propriety is believed to disturb glycolysis and respiration, which leads to a decreased rate of ATP synthesis. In this study, we evaluated the effects of the alkylating agent 3-BrPA on the respiratory states and the metabolic steps of the mitochondria of mice liver, brain and in human hepatocarcinoma cell line HepG2. The mitochondrial membrane potential (ΔΨ(m)), O(2) consumption and dehydrogenase activities were rapidly dissipated/or inhibited by 3-BrPA in respiration medium containing ADP and succinate as respiratory substrate. 3-BrPA inhibition was reverted by reduced glutathione (GSH). Respiration induced by yeast soluble hexokinase (HK) was rapidly inhibited by 3-BrPA. Similar results were observed using mice brain mitochondria that present HK naturally bound to the outer mitochondrial membrane. When the adenine nucleotide transporter (ANT) was blocked by the carboxyatractiloside, the 3-BrPA effect was significantly delayed. In permeabilized human hepatoma HepG2 cells that present HK type II bound to mitochondria (mt-HK II), the inhibiting effect occurred faster when the endogenous HK activity was activated by 2-deoxyglucose (2-DOG). Inhibition of mt-HK II by glucose-6-phosphate retards the mitochondria to react with 3-BrPA. The HK activities recovered in HepG2 cells treated or not with 3-BrPA were practically the same. These results suggest that mitochondrially bound HK supporting the ADP/ATP exchange activity levels facilitates the 3-BrPA inhibition reaction in tumors mitochondria by a proton motive force-dependent dynamic equilibrium between sensitive and less sensitive SDH in the electron transport system. PMID:22322891

  2. Epipodophyllotoxins, alkylating agents, and radiation and risk of secondary leukaemia after childhood cancer.

    PubMed Central

    Hawkins, M. M.; Wilson, L. M.; Stovall, M. A.; Marsden, H. B.; Potok, M. H.; Kingston, J. E.; Chessells, J. M.

    1992-01-01

    OBJECTIVE--To investigate the incidence and aetiology of secondary leukaemia after childhood cancer in Britain. DESIGN--Cohort study and a case-control study. SETTING--Britain and population based National Register of Childhood Tumours. SUBJECTS--Cohort of 16,422 one year survivors of childhood cancer diagnosed in Britain between 1962 and 1983, among whom 22 secondary leukaemias were observed. A case-control study of 26 secondary leukaemias observed among survivors of childhood cancer diagnosed in Britain between 1940 and 1983; 96 controls were selected matched for sex, type of first cancer, age at first cancer, and interval to diagnosis of secondary leukaemia. MAIN OUTCOME MEASURES--Dose of radiation averaged over patients' active bone marrow and total accumulated dose of epipodophyllotoxins, alkylating agents, vinca alkaloids, antimetabolites, and antibiotics (mg/m2) given for the original cancer. RESULTS--Cumulative risk of secondary leukaemia within the cohort did not exceed 0.5% over the initial five years beyond one year survival, except that after non-Hodgkin's lymphomas 1.4% of patients developed secondary leukaemia. Corresponding figure for patients treated for non-Hodgkin's lymphomas in the early 1980s was 4%. The relative risk of secondary leukaemia increased significantly with exposure to epipodophyllotoxins and dose of radiation averaged over patients' active bone marrow. Ten patients developed leukaemia after having an epipodophyllotoxin-teniposide in nine cases, etoposide in one. Chromosomal translocations involving 11q23 were observed relating to two secondary leukaemias from a total of six for which there were successful cytogenetic studies after administration of an epipodophyllotoxin. CONCLUSIONS--Epipodophyllotoxins acting alone or together with alkylating agents or radiation seem to be involved in secondary leukaemia after childhood cancer. PMID:1581717

  3. A Phase I Study of DMS612, a Novel Bi-functional Alkylating Agent

    PubMed Central

    Appleman, Leonard J.; Balasubramaniam, Sanjeeve; Parise, Robert A; Bryla, Christine; Redon, Christophe E.; Nakamura, Asako J.; Bonner, William M.; Wright, John J; Piekarz, Richard; Kohler, David R; Jiang, Yixing; Belani, Chandra P.; Eiseman, Julie; Chu, Edward; Beumer, Jan H.; Bates, Susan E.

    2016-01-01

    Purpose DMS612 is a dimethane sulfonate analog with bifunctional alkylating activity and preferential cytotoxicity to human renal cell carcinoma (RCC) in the NCI-60 cell panel. This first-in-human phase I study aimed to determine dose-limiting toxicity (DLT), maximum tolerated dose (MTD), pharmacokinetics (PK), and pharmacodynamics (PD) of DMS612 administered by 10-min intravenous infusion on days 1, 8, and 15 of an every 28-day schedule. Experimental Design Patients with advanced solid malignancies were eligible. Enrollment followed a 3+3 design. Pharmacokinetics of DMS612 and metabolites were assessed by mass spectroscopy and pharmacodynamics by γ-H2AX immunofluorescence. Results A total of 31 patients with colorectal (11), RCC (4), cervical (2), and urothelial (1) cancers were enrolled. Six dose levels were studied, from 1.5 mg/m2 to 12 mg/m2. DLTs of grade 4 neutropenia and prolonged grade 3 thrombocytopenia were observed at 12 mg/m2. The MTD was determined to be 9 mg/m2 with a single DLT of grade 4 thrombocytopenia in 1 of 12 patients. Two patients had a confirmed partial response at the 9 mg/m2 dose level, in renal (1) and cervical (1) cancer. DMS612 was rapidly converted into active metabolites. γ-H2AX immunofluorescence revealed dose-dependent DNA damage in both peripheral blood lymphocytes and scalp hairs. Conclusions The MTD of DMS12 on days 1, 8, and 15 every 28 days was 9 mg/m2. DMS612 appears to be an alkylating agent with unique tissue specificities. Dose-dependent pharmacodynamic signals and 2 partial responses at the MTD support further evaluation of DMS612 in phase II trials. PMID:25467180

  4. Design, synthesis, and evaluation of latent alkylating agents activated by glutathione S-transferase.

    PubMed

    Satyam, A; Hocker, M D; Kane-Maguire, K A; Morgan, A S; Villar, H O; Lyttle, M H

    1996-04-12

    In search of compounds with improved specificity for targeting the important cancer-associated P1-1 glutathione S-transferase (GST) isozyme, new analogs 4 and 5 of the previously reported glutathione S-transferase (GST)-activated latent alkylating agent gamma-glutamyl-alpha-amino-beta-[[[2-[[bis[bis(2-chloroethyl)amino]ph osp horyl]oxy]ethyl]sulfonyl]propionyl]-(R)-(-)-phenylglycine (3) have been designed, synthesized, and evaluated. One of the diastereomers of 4 exhibited good selectivity for GST P1-1. The tetrabromo analog 5 of the tetrachloro compound 3 maintained its specificity and was found to be more readily activated by GSTs than 3. The GST activation concept was further broadened through design, synthesis, and evaluation of a novel latent urethane mustard 8 and its diethyl ester 9. Interestingly, 8 showed very good specificity for P1-1 GST. Cell culture studies were carried out on 4, 5, 8, and 9 using cell lines engineered to have varying levels of GST P1-1 isozyme. New analogs 4 and 5 exhibited increased toxicity to cell lines with overexpressed GST P1-1 isozyme. The urethane mustard 8 and its diethyl ester 9 were found to be not as toxic. However, they too exhibited more toxicity to a cell line engineered to have elevated P1-1 levels, which was in agreement with the observed in vitro specificity of 8 for P1-1 GST isozyme. Mechanistic studies on alkaline as well as enzyme-catalyzed decomposition of latent mustard 3 provided experimental proof for the hypothesis that 3 breaks down into an active phosphoramidate mustard and a reactive vinyl sulfone. The alkylating nature of the decomposition products was further demonstrated by trapping those transient species as relatively stable diethyldithiocarbamic acid adducts. These results substantially extend previous efforts to develop drugs targeting GST and provide a paradigm for development of other latent drugs. PMID:8648613

  5. Nitrogen Oxides from Biogenic Alkyl Nitrates: A Natural Source of Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Neu, J. L.; Lawler, M. J.; Saltzman, E. S.; Prather, M. J.

    2007-12-01

    Observations indicate that the tropical and southern oceans are source regions for biogenic emissions of alkyl nitrates. These compounds have lifetimes of several days to a month and are a significant source of reactive odd nitrogen (NOx) in remote regions of the atmosphere. These biogenically produced NOx precursors represent a natural control on atmospheric composition, including the important greenhouse gases methane (CH4) and tropospheric ozone (O3). We present simulations from the UCI global chemical transport model (CTM) using measurement-based fluxes of methyl and ethyl nitrate from their oceanic source regions and examine the contribution of these gases to global atmospheric composition. We also discuss the sensitivity of our results to our representation of two sub-gridscale processes: wet scavenging and photolysis in the presence of broken cloud fields. Quantification of the transport and chemistry of these compounds improves our understanding of natural tropospheric ozone production as well as hydroxyl radical (OH) chemistry in both the remote regions of the modern atmosphere and the pre-industrial atmosphere.

  6. N-alkylated nitrogen-in-the-ring sugars: conformational basis of inhibition of glycosidases and HIV-1 replication.

    PubMed

    Asano, N; Kizu, H; Oseki, K; Tomioka, E; Matsui, K; Okamoto, M; Baba, M

    1995-06-23

    The conformations of nitrogen-in-the-ring sugars and their N-alkyl derivatives were studied from 1H NMR analyses, mainly using 3J(H,H) coupling constants and quantitative NOE experiments. No significant difference was seen in the ring conformation of 1-deoxynojirimycin (1), N-methyl-1-deoxynojirimycin (2), and N-butyl-1-deoxynojirimycin (3). However, it was shown that the C6 OH group in 1 is predominantly equatorial to the piperidine ring, while that in 2 or 3 is predominantly axial, and its N-alkyl group is oriented equatorially. In the furanose analogues 1,4-dideoxy-1,4-imino-D-arabinitol (4) and its N-methyl (5) and N-butyl (6) derivatives, the five-membered ring conformation differed significantly by the presence or absence of the N-substituted group and the length of the N-alkyl chain. Compound 3 reduced its inhibitory effect on almost all glycosidases, resulting in an extremely specific inhibitor for processing alpha-glucosidase I since N-alkylation of 1 is known to enhance both the potency and specificity of this enzyme in vitro and in vivo. This preferred (C6 OH axial) conformation in 2 and 3 appears to be responsible for their strong alpha-glucosidase I activity. Compound 4 is a good inhibitor of intestinal alpha-glucohydrolases, alpha-glucosidase II, and Golgi alpha-mannosidases I and II, but its N-alkyl derivatives 5 and 6 markedly decreased inhibitory potential for all enzymes tested. In the case of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP, 7), which is a potent beta-galactosidase inhibitor, its N-methyl (8) and N-butyl (9) derivatives completely lost potency toward beta-galactosidase as well. N-Alkylation of compounds 4 and 7, known well as potent yeast alpha-glucosidase inhibitors, resulted in a serious loss of inhibitory activity toward yeast alpha-glucohydrolases. Activity of these nine analogues against HIV-1 replication was determined, based on the inhibition of virus-induced cytopathogenicity in MT-4 and MOLT-4 cells. Compounds 2 and 3, which are

  7. Influence of Mikania laevigata Extract over the Genotoxicity Induced by Alkylating Agents

    PubMed Central

    Nicolau, Vanessa; de Aguiar Amaral, Patrícia; de Andrade, Vanessa Moraes

    2013-01-01

    Medicinal plants are still widely used worldwide; yet for some species, little or no information is available concerning their biological activity, specially their genotoxic and antimutagenic potential. Mikania laevigata (Asteraceae) is a native plant from South America, and its extracts are largely used to treat respiratory complaints. The aim of the present work was then to evaluate, in vivo, the potential biological activity of M. laevigata on the genotoxicity induced by methyl methanesulfonate (MMS) and cyclophosphamide (CP), using the comet assay. Male CF1 mice were divided into groups of 5-6 animals, received by gavage 0.1 mL/10 g body wt of water, Mikania laevigata extract (MLE), MMS, and CP. Results showed that treatment with 200 mg/kg of the MLE previously to MMS and CP administration, respectively, reduced the damage index (DI) in 52% and 60%, when compared to DI at 24 h. Pretreatment also reduced the damage frequency (DF) in 56% (MMS) and 58% (CP), compared to DF at 24 h. MLE administration has been shown to protect mouse DNA from damage induced by alkylating agents; this corroborates to the biological activities of M. laevigata and points towards the need of plant compounds isolation to proceed with further studies. PMID:23724299

  8. Glycidol-carbohydrate hybrids: a new family of DNA alkylating agents.

    PubMed

    Toshima, Kazunobu; Okuno, Yukiko; Matsumura, Shuichi

    2003-10-01

    Novel and chiral glycidol-carbohydrate hybrids possessing an epoxy group as a DNA alkylating moiety were designed and synthesized. These artificial hybrids selectively alkylated DNA at the N-7 sites of the guanines and cleaved DNA without any additives. The binding ability of the glycidol was significantly enhanced by the attachment of the carbohydrate.

  9. DNA-directed alkylating agents. 6. Synthesis and antitumor activity of DNA minor groove-targeted aniline mustard analogues of pibenzimol (Hoechst 33258)

    PubMed

    Gravatt, G L; Baguley, B C; Wilson, W R; Denny, W A

    1994-12-01

    A series of nitrogen mustard analogues of the DNA minor groove binding fluorophore pibenzimol (Hoechst 33258) have been synthesized and evaluated for antitumor activity. Conventional construction of the bisbenzimidazole ring system from the piperazinyl terminus, via two consecutive Pinner-type reactions, gave low yields of products contaminated with the 2-methyl analogue which proved difficult to separate. An alternative synthesis was developed, involving construction of the bisbenzimidazole from the mustard terminus, via Cu(2+)-promoted oxidative coupling of the mustard aldehydes with 3,4-diaminobenzonitrile to form the monobenzimidazoles, followed by a Pinner-type reaction and condensation with 4-(1-methyl-4-piperazinyl)-o-phenylenediamine. This process gives higher yields and pure products. The mustard analogues showed high hypersensitivity factors (IC50AA8/IC50 UV4), typical of DNA alkylating agents. There was a large increase in cytotoxicity (85-fold) across the homologous series which cannot be explained entirely by changes in mustard reactivity and may be related to altering orientation of the mustard with respect to the DNA resulting in different patterns of alkylation. Pibenzimol itself (which has been evaluated clinically as an anticancer drug) was inactive against P388 in vivo using a single-dose protocol, but the short-chain mustard homologues were highly effective, eliciting a proportion of long-term survivors.

  10. Inoculation with nitrogen turnover bacterial agent appropriately increasing nitrogen and promoting maturity in pig manure composting.

    PubMed

    Jiang, Jishao; Liu, Xueling; Huang, Yimei; Huang, Hua

    2015-05-01

    The nitrogen turnover bacterial (NTB) agent, which is closely related to nitrogen turnover, was comprised of a bacterial consortium of ammonifiers, nitrobacteria and Azotobacter in this study. The three constituents of the bacterial consortium were added to pig manure and wheat straw mixtures in different doses and at different times, and subsequently composted to investigate their effects on nitrogen transformation and maturity. Throughout the period, the total N loss was 35-56%, 10.7-22.7% of which consisted of NH3, and 18-35% of the initial organic carbon was degraded. Adding the NTB agent prolonged the thermophilic stage by one to six days compared to the control. The lowest N loss (35%), the highest degradation rate of organic carbon (35%) and the greatest increase in total nitrogen content (36.1%) occurred in the inoculation with 1% NTB agent at the beginning of composting. However, adding 1% NTB agent after the thermophilic stage and 3% NTB agent at the beginning of composting had no positive effect with respect to retaining nitrogen or accelerating the maturation process. Therefore, the inoculation with 1% NTB agent at the beginning of composting was effective for reducing N loss and promoting maturity.

  11. Evidence for abasic site sugar phosphate-mediated cytotoxicity in alkylating agent treated Saccharomyces cerevisiae.

    PubMed

    Heacock, Michelle; Poltoratsky, Vladimir; Prasad, Rajendra; Wilson, Samuel H

    2012-01-01

    To better understand alkylating agent-induced cytotoxicity and the base lesion DNA repair process in Saccharomyces cerevisiae, we replaced the RAD27(FEN1) open reading frame (ORF) with the ORF of the bifunctional human repair enzyme DNA polymerase (Pol) β. The aim was to probe the effect of removal of the incised abasic site 5'-sugar phosphate group (i.e., 5'-deoxyribose phosphate or 5'-dRP) in protection against methyl methanesulfonate (MMS)-induced cytotoxicity. In S. cerevisiae, Rad27(Fen1) was suggested to protect against MMS-induced cytotoxicity by excising multinucleotide flaps generated during repair. However, we proposed that the repair intermediate with a blocked 5'-end, i.e., 5'-dRP group, is the actual cytotoxic lesion. In providing a 5'-dRP group removal function mediated by dRP lyase activity of Pol β, the effects of the 5'-dRP group were separated from those of the multinucleotide flap itself. Human Pol β was expressed in S. cerevisiae, and this partially rescued the MMS hypersensitivity observed with rad27(fen1)-null cells. To explore this rescue effect, altered forms of Pol β with site-directed eliminations of either the 5'-dRP lyase or polymerase activity were expressed in rad27(fen1)-null cells. The 5'-dRP lyase, but not the polymerase activity, conferred the resistance to MMS. These results suggest that after MMS exposure, the 5'-dRP group in the repair intermediate is cytotoxic and that Rad27(Fen1) protection against MMS in wild-type cells is due to elimination of the 5'-dRP group. PMID:23144716

  12. Synthesis of fused imidazoles, pyrroles, and indoles with a defined stereocenter α to nitrogen utilizing Mitsunobu alkylation followed by palladium-catalyzed cyclization.

    PubMed

    Laha, Joydev K; Cuny, Gregory D

    2011-10-21

    Nitrogen-containing fused heterocycles comprise many compounds that demonstrate interesting biological activities. A new synthetic approach involving Mitsunobu alkylation of imidazoles, pyrroles, and indoles followed by palladium-catalyzed cyclization has been developed providing access to fused heterocycles with a defined stereochemistry α to nitrogen. While ethyl imidazole or indole carboxylates are good substrates for Mitsunobu alkylation with optically pure secondary benzylic alcohols, the corresponding pyrroles are poor substrates presumably due to the increased pK(a) of the NH. The presence of a synthetically versatile trichloroacetyl functional group on the pyrroles significantly reduces the pK(a) and thereby facilitates Mitsunobu alkylation. Subsequent cyclization of the alkylated products mediated by palladium in the presence or absence of a ligand gave fused heterocycles in good to excellent yields. PMID:21913645

  13. Synthesis of fused imidazoles, pyrroles, and indoles with a defined stereocenter α to nitrogen utilizing Mitsunobu alkylation followed by palladium-catalyzed cyclization.

    PubMed

    Laha, Joydev K; Cuny, Gregory D

    2011-10-21

    Nitrogen-containing fused heterocycles comprise many compounds that demonstrate interesting biological activities. A new synthetic approach involving Mitsunobu alkylation of imidazoles, pyrroles, and indoles followed by palladium-catalyzed cyclization has been developed providing access to fused heterocycles with a defined stereochemistry α to nitrogen. While ethyl imidazole or indole carboxylates are good substrates for Mitsunobu alkylation with optically pure secondary benzylic alcohols, the corresponding pyrroles are poor substrates presumably due to the increased pK(a) of the NH. The presence of a synthetically versatile trichloroacetyl functional group on the pyrroles significantly reduces the pK(a) and thereby facilitates Mitsunobu alkylation. Subsequent cyclization of the alkylated products mediated by palladium in the presence or absence of a ligand gave fused heterocycles in good to excellent yields.

  14. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    PubMed

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  15. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    PubMed

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations.

  16. Bifunctional rhodium intercalator conjugates as mismatch-directing DNA alkylating agents.

    PubMed

    Schatzschneider, Ulrich; Barton, Jacqueline K

    2004-07-21

    A conjugate of a DNA mismatch-specific rhodium intercalator, containing the bulky chrysenediimine ligand, and an aniline mustard has been prepared, and targeting of mismatches in DNA by this conjugate has been examined. The preferential alkylation of mismatched over fully matched DNA is found by a mobility shift assay at concentrations where untethered organic mustards show little reaction. The binding site of the Rh intercalator was determined by DNA photocleavage, and the position of covalent modification was established on the basis of the enhanced depurination associated with N-alkylation. The site-selective alkylation at mismatched DNA renders these conjugates useful tools for the covalent tagging of DNA base pair mismatches and new chemotherapeutic design.

  17. Introduction of Peripheral Carboxylates to Decrease the Charge on Tm(3+) DOTAM-Alkyl Complexes: Implications for Detection Sensitivity and in Vivo Toxicity of PARACEST MRI Contrast Agents.

    PubMed

    Suchý, Mojmír; Milne, Mark; Elmehriki, Adam A H; McVicar, Nevin; Li, Alex X; Bartha, Robert; Hudson, Robert H E

    2015-08-27

    A series of structurally modified Tm(3+) DOTAM-alkyl complexes as potential PARACEST MRI contrast agents has been synthesized with the aim to decrease the overall positive charge associated with these molecules and increase their biocompatibility. Two types of structural modification have been performed, an introduction of terminal carboxylate arms to the alkyl side chains and a conjugation of one of the alkyl side chains with aspartic acid. Detailed evaluation of the magnetic resonance imaging chemical exchange contrast associated with the structurally modified contrast agents has been performed. In contrast to the acutely toxic Tm(3+) DOTAM-alkyl complexes, the structurally modified compounds were found to be tolerated well during in vivo MRI studies in mice; however, only the aspartic acid modified chelates produced an amide proton-based PARACEST signal. PMID:26214576

  18. The influence of oxazaphosphorines alkylating agents on autonomic nervous system activity in rat experimental cystitis model.

    PubMed

    Dobrek, Łukasz; Baranowska, Agnieszka; Thor, Piotr J

    2013-01-01

    The oxazaphosphorines alkylating agents (cyclophosphamide; CP and ifosfamide; IF) are often used in common clinical practice. However, treatment with CP/IF is burdened with the risk of many adverse drug reactions, especially including hemorrhagic cystitis (HC) that is associated with bladder overactivity symptoms (OAB). The HC pathophysiology is still not fully displayed; it seems that autonomic nervous system (ANS) functional abnormalities play important role in this disturbance. The aim of our study was to reveal the potential ANS differences in rat experimental HC model, evoked by CP and IF by an indirect ANS assessment--heart rate variability (HRV) study. We carried out our experimental research in three essential groups: control group (group 1), cyclophosphamide-induced HC (CP-HC; group 2) one and ifosfamide-induced HC (IF-HC; group 3) one. CP was i.p. administrated four times in dose of 75 mg/kg body weight while IF-treated rats received i.p. five drug doses; 50 mg/kg body weight. Control rats were administrated i.p. vehicle in appropriate volumes as CP/IF treated animals. HRV studies were performed the next day after the last oxazaphosphorines dose. Standard time- and spectral (frequency) domain parameters were estimated. We confirmed the HC development after both CP/IF in macroscopic assessment and bladder wet weight measurement; however, it was more aggravated in CP-HC group. Moreover, we demonstrated HRV disturbances, suggesting ANS impairment after both studied oxazaphosphorines, however, consistent with the findings mentioned above, the autonomic dysfunction was more emphasized after CP. CP treatment was also associated with changes of non-normalized HRV spectral components percentage distribution--a marked very low frequency--VLF [%] increase together with low frequency--LF [%] and high frequency--HF [%] decrease were observed. Taking into consideration the next findings, demonstrating the lack of both normalized power spectral components (nLF and n

  19. Transcriptional blockages in a cell-free system by sequence-selective DNA alkylating agents.

    PubMed

    Ferguson, L R; Liu, A P; Denny, W A; Cullinane, C; Talarico, T; Phillips, D R

    2000-04-14

    There is considerable interest in DNA sequence-selective DNA-binding drugs as potential inhibitors of gene expression. Five compounds with distinctly different base pair specificities were compared in their effects on the formation and elongation of the transcription complex from the lac UV5 promoter in a cell-free system. All were tested at drug levels which killed 90% of cells in a clonogenic survival assay. Cisplatin, a selective alkylator at purine residues, inhibited transcription, decreasing the full-length transcript, and causing blockage at a number of GG or AG sequences, making it probable that intrastrand crosslinks are the blocking lesions. A cyclopropylindoline known to be an A-specific alkylator also inhibited transcription, with blocks at adenines. The aniline mustard chlorambucil, that targets primarily G but also A sequences, was also effective in blocking the formation of full-length transcripts. It produced transcription blocks either at, or one base prior to, AA or GG sequences, suggesting that intrastrand crosslinks could again be involved. The non-alkylating DNA minor groove binder Hoechst 33342 (a bisbenzimidazole) blocked formation of the full-length transcript, but without creating specific blockage sites. A bisbenzimidazole-linked aniline mustard analogue was a more effective transcription inhibitor than either chlorambucil or Hoechst 33342, with different blockage sites occurring immediately as compared with 2 h after incubation. The blockages were either immediately prior to AA or GG residues, or four to five base pairs prior to such sites, a pattern not predicted from in vitro DNA-binding studies. Minor groove DNA-binding ligands are of particular interest as inhibitors of gene expression, since they have the potential ability to bind selectively to long sequences of DNA. The results suggest that the bisbenzimidazole-linked mustard does cause alkylation and transcription blockage at novel DNA sites. in addition to sites characteristic of

  20. Aqueous aerobic oxidation of alkyl arenes and alcohols catalyzed by copper(II) phthalocyanine supported on three-dimensional nitrogen-doped graphene at room temperature.

    PubMed

    Mahyari, Mojtaba; Laeini, Mohammad Sadegh; Shaabani, Ahmad

    2014-07-25

    Copper(ii) tetrasulfophthalocyanine supported on three-dimensional nitrogen-doped graphene-based frameworks was synthesized and introduced as a bifunctional catalyst for selective aerobic oxidation of alkyl arenes and alcohols to the corresponding carbonyl compounds. The ease of catalyst separation, high turnover, low catalyst loading and recyclability could potentially render it applicable in industrial setting. PMID:24912023

  1. Evaluation of protective ointments used against dermal effects of nitrogen mustard, a vesicant warfare agent.

    PubMed

    Kenar, Levent; Karayilanoğlu, Turan; Yuksel, Altan; Gunhan, Omer; Kose, Songul; Kurt, Bulent

    2005-01-01

    Mustard, a vesicant warfare agent, has cytotoxic, mutagenic, and cytostatic effects via alkylation of DNA and inhibition of DNA replication. Since symptoms appear following a latent period, it can cause some subacute and chronic effects to occur and delay in the treatment. Therefore, the main approach should be the use of protective preparation to reduce the skin toxicity. Thus, this study was conducted in guinea pigs (350-400 g) shaved in areas of 10 x 10 cm. Mechlorethamine HCl (100 mg), a nitrogen mustard derivative, in ethanol was applied by spraying on hairless regions where previously prepared pharmaceutical topical formulations were medicated before. The experimental regions of the animals were kept preserved from environmental factors. Forty-eight hours after the application of the protective ointments and mechlorethamine consecutively, skin-damaging effects were macroscopically evaluated in terms of erythema formation, ulceration, necrosis, and inflammation occurrences. Then, punch biopsy was performed from these damaged sites for histopathological evaluation. Although numerous topical formulations were prepared and tested for protection, according to microscopic examination of the pathologic sections, tissue specimen treated with the ointment containing the mixture of zinc oxide, zinc chloride, dimethylpolysiloxane in a base of petroleum jelly was determined as being the most effective protective against skin injury caused by the vesicant agent.

  2. HeLa Cells Containing a Truncated Form of DNA Polymerase Beta are More Sensitized to Alkylating Agents than to Agents Inducing Oxidative Stress.

    PubMed

    Khanra, Kalyani; Chakraborty, Anindita; Bhattacharyya, Nandan

    2015-01-01

    The present study was aimed at determining the effects of alkylating and oxidative stress inducing agents on a newly identified variant of DNA polymerase beta (polβ Δ208-304) specific for ovarian cancer. Pol β Δ208-304 has a deletion of exons 11-13 which lie in the catalytic part of enzyme. We compared the effect of these chemicals on HeLa cells and HeLa cells stably transfected with this variant cloned into in pcDNAI/neo vector by MTT, colony forming and apoptosis assays. Polβ Δ208-304 cells exhibited greater sensitivity to an alkylating agent and less sensitivity towards H2O2 and UV when compared with HeLa cells alone. It has been shown that cell death in Pol β Δ208-304 transfected HeLa cells is mediated by the caspase 9 cascade. Exon 11 has nucleotidyl selection activity, while exons 12 and 13 have dNTP selection activity. Hence deletion of this part may affect polymerizing activity although single strand binding and double strand binding activity may remain same. The lack of this part may adversely affect catalytic activity of DNA polymerase beta so that the variant may act as a dominant negative mutant. This would represent clinical significance if translated into a clinical setting because resistance to radiation or chemotherapy during the relapse of the disease could be potentially overcome by this approach.

  3. Optimization of alkylating agent prodrugs derived from phenol and aniline mustards: a new clinical candidate prodrug (ZD2767) for antibody-directed enzyme prodrug therapy (ADEPT).

    PubMed

    Springer, C J; Dowell, R; Burke, P J; Hadley, E; Davis, D H; Blakey, D C; Melton, R G; Niculescu-Duvaz, I

    1995-12-22

    Sixteen novel potential prodrugs derived from phenol or aniline mustards and their 16 corresponding drugs with ring substitution and/or different alkylating functionalities were designed. The [[[4-]bis(2-bromoethyl)-(1a), [[[4-[bis(2-iodoethyl)-(1b), and [[[4-[(2-chloroethyl)-[2-(mesyloxy)ethyl]amino]phenyl]oxy] carbonyl]-L-glutamic acids (1c), their [[[2- and 3-substituted-4-[bis(2-chloroethyl)amino]phenyl]oxy]carbonyl]-L- glutamic acids (1e-1), and the [[3-substituted-4-[bis(2-chloroethyl)amino]phenyl]carbamoyl]-L- glutamic acids (1o-r) were synthesized. They are bifunctional alkylating agents in which the activating effect of the phenolic hydroxyl or amino function is masked through an oxycarbonyl or a carbamoyl bond to a glutamic acid. These prodrugs were designed to be activated to their corresponding phenol and aniline nitrogen mustard drugs at a tumor site by prior administration of a monoclonal antibody conjugated to the bacterial enzyme carboxypeptidase G2 (CPG2) in antibody-directed enzyme prodrug therapy (ADEPT). The synthesis of the analogous novel parent drugs (2a-r) is also described. The viability of a colorectal cell line (LoVo) was monitored with the potential prodrugs and the parent drugs. The differential in the cytotoxicity between the potential prodrugs and their corresponding active drugs ranged between 12 and > 195 fold. Compounds 1b-d,f,o exhibited substantial prodrug activity, since a cytotoxicity differential of > 100 was achieved compared to 2b-d,f,o respectively. The ability of the potential prodrugs to act as substrates for CPG2 was determined (kinetic parameters KM and kcat), and the chemical stability was measured for all the compounds. The unsubstituted phenols with different alkylating functionalities (1a-c) proved to have the highest ratio of the substrates kcat:KM. From these studies [[[4-[bis(2-iodoethyl)amino]phenyl]oxy]carbonyl]-L-glutamic acid (1b) emerges as a new ADEPT clinical trial candidate due to its physicochemical and

  4. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents.

    PubMed

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-01-01

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents. PMID:26158513

  5. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents

    PubMed Central

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-01-01

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents. PMID:26158513

  6. Alkylating agent methyl methanesulfonate (MMS) induces a wave of global protein hyperacetylation: Implications in cancer cell death

    SciTech Connect

    Lee, Min-Young; Kim, Myoung-Ae; Kim, Hyun-Ju; Bae, Yoe-Sik; Park, Joo-In; Kwak, Jong-Young; Chung, Jay H.; Yun, Jeanho . E-mail: yunj@dau.ac.kr

    2007-08-24

    Protein acetylation modification has been implicated in many cellular processes but the direct evidence for the involvement of protein acetylation in signal transduction is very limited. In the present study, we found that an alkylating agent methyl methanesulfonate (MMS) induces a robust and reversible hyperacetylation of both cytoplasmic and nuclear proteins during the early phase of the cellular response to MMS. Notably, the acetylation level upon MMS treatment was strongly correlated with the susceptibility of cancer cells, and the enhancement of MMS-induced acetylation by histone deacetylase (HDAC) inhibitors was shown to increase the cellular susceptibility. These results suggest protein acetylation is important for the cell death signal transduction pathway and indicate that the use of HDAC inhibitors for the treatment of cancer is relevant.

  7. The alkaline single cell electrophoresis assay with eight mouse organs: results with 22 mono-functional alkylating agents (including 9 dialkyl N-nitrosoamines) and 10 DNA crosslinkers.

    PubMed

    Tsuda, S; Matsusaka, N; Madarame, H; Miyamae, Y; Ishida, K; Satoh, M; Sekihashi, K; Sasaki, Y F

    2000-04-13

    The genotoxicity of 22 mono-functional alkylating agents (including 9 dialkyl N-nitrosoamines) and 10 DNA crosslinkers selected from IARC (International Agency for Research on Cancer) groups 1, 2A, and 2B was evaluated in eight mouse organs with the alkaline single cell gel electrophoresis (SCGE) (comet) assay. Groups of four mice were treated once intraperitoneally at the dose at which micronucleus tests had been conducted, and the stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow were sampled 3, 8, and/or 24 h later. All chemicals were positive in the SCGE assay in at least one organ. Of the 22 mono-functional alkylating agents, over 50% were positive in all organs except the brain and bone marrow. The two subsets of mono-functional alkylating agents differed in their bone marrow genotoxicity: only 1 of the 9 dialkyl N-nitrosoamines was positive in bone marrow as opposed to 8 of the 13 other alkylating agents, reflecting the fact that dialkyl N-nitrosoamines are poor micronucleus inducers in hematopoietic cells. The two groups of mono-functional alkylating agents also differ in hepatic carcinogenicity in spite of the fact that they are similar in hepatic genotoxicity. While dialkyl N-nitrosoamines produce tumors primarily in mouse liver, only one (styrene-7,8-oxide) out of 10 of the other type of mono-functional alkylating agents is a mouse hepatic carcinogen. Taking into consideration our previous results showing high concordance between hepatic genotoxicity and carcinogenicity for aromatic amines and azo compounds, a possible explanation for the discrepancy might be that chemicals that require metabolic activation show high concordance between genotoxicity and carcinogenicity in the liver. A high percent of the 10 DNA crosslinkers were positive in the SCGE assay in the gastrointestinal mucosa, but less than 50% were positive in the liver and lung. In this study, we allowed 10 min alkali-unwinding to obtain low and stable control values

  8. Carbon and nitrogen isotopic compositions of alkyl porphyrins from the Triassic Serpiano oil shale

    NASA Technical Reports Server (NTRS)

    Chicarelli, M. I.; Hayes, J. M.; Popp, B. N.; Eckardt, C. B.; Maxwell, J. R.

    1993-01-01

    The carbon and nitrogen isotopic compositions of seven of the most abundant alkylporphyrins from the Serpiano oil shale (marine, Triassic) were determined. For the C31 and C32 butanoporphyrins, values of delta 13CPDB and delta 15NAIR averaged -24.0% and -3.1%. In contrast, the C31 and C32 methylpropanoporphyrins, DPEP, and a C30 13-nor etioporphyrin had delta 13C and delta 15N values averaging -27.5 and -3.3%, respectively. Carbon and nitrogen isotopic values for kerogen averaged -30.8 and -0.9, whereas those for total extract averaged -31.6, and -4.0%. The butanoporphyrins apparently derive from a biological source different from that giving rise to the other porphyrins, their 13C enrichment not being related to carbon isotopic fractionation accompanying diagenetic reactions. The delta 15N values for all the porphyrins indicate that the depletion of 15N observed in the kerogen is of primary origin. Consistent with the very high abundance of hopanoids and methyl hopanoids in the aliphatic hydrocarbon fraction, it is suggested that cyanobacterial fixation of N2 may have been the main cause of 15N depletion.

  9. Effect of nitroreduction on the alkylating reactivity and cytotoxicity of the 2,4-dinitrobenzamide-5-aziridine CB 1954 and the corresponding nitrogen mustard SN 23862: distinct mechanisms of bioreductive activation.

    PubMed

    Helsby, Nuala A; Wheeler, S James; Pruijn, Frederik B; Palmer, Brian D; Yang, Shangjin; Denny, William A; Wilson, William R

    2003-04-01

    The dinitrobenzamide aziridine CB 1954 (1) and its nitrogen mustard analogue SN 23862 (6) are prodrugs that are activated by enzymatic nitroreduction in tumors. Bioactivation of 1 is considered to be due to reduction of its 4-nitro group to the hydroxylamine and subsequent formation of the N-acetoxy derivative; this acts as a reactive center, in concert with the aziridine moiety, to provide a bifunctional DNA cross-linking agent (Knox model). It is currently unclear whether bioactivation of 6 occurs by the same mechanism or results from the electronic effects of nitroreduction on reactivity of the nitrogen mustard moiety. To discriminate between these mechanisms, we have synthesized the hydroxylamine and amine derivatives of 1 and 6, plus related compounds, and determined their alkylating reactivities in aqueous solution, using LC/MS to identify reaction pathways. The relationships between substituent electronic effects, reactivity, and cytotoxicity were determined using the UV4 cell line, which is defective in nucleotide excision repair (thus avoiding differences in repair kinetics). Alkylating reactivity correlated with the electron-donating character of the ortho or para substituent in the case of the mustards, with a less marked electronic effect for the aziridines. Importantly, there was a highly significant linear relationship between cytotoxic potency and alkylating reactivity in both the aziridine and the mustard series, with the notable exception of 4, the 4-hydroxylamine of 1, which was 300-fold more toxic than predicted by this relationship. This demonstrates that the high potency of 4 does not result from activation of the aziridine ring, supporting the Knox model. The single-step bioactivation of 6, to amino or hydroxylamine metabolites with similar potency to 4, is a potential advantage in the use of dinitrobenzamide mustards as prodrugs for activation by nitroreductases.

  10. Analysis of alkyl phosphates in petroleum samples by comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection and post-column Deans switching.

    PubMed

    Nizio, Katie D; Harynuk, James J

    2012-08-24

    Alkyl phosphate based gellants used as viscosity builders for fracturing fluids used in the process of hydraulic fracturing have been implicated in numerous refinery-fouling incidents in North America. In response, industry developed an inductively coupled plasma optical emission spectroscopy (ICP-OES) based method for the analysis of total volatile phosphorus in distillate fractions of crude oil; however, this method is plagued by poor precision and a high limit of detection (0.5±1μg phosphorus mL(-1)). Furthermore this method cannot provide speciation information, which is critical for developing an understanding of the challenge of alkyl phosphates at a molecular level. An approach using comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection (GC×GC-NPD) and post-column Deans switching is presented. This method provides qualitative and quantitative profiles of alkyl phosphates in industrial petroleum samples with increased precision and at levels comparable to or below those achievable by ICP-OES. A recovery study in a fracturing fluid sample and a profiling study of alkyl phosphates in four recovered fracturing fluid/crude oil mixtures (flowback) are also presented. PMID:22776725

  11. Alkylating agent melphalan augments the efficacy of adoptive immunotherapy using tumor-specific CD4+ T cells

    PubMed Central

    Lu, Xiaoyun; Ding, Zhi-Chun; Cao, Yang; Liu, Chufeng; Habtetsion, Tsadik; Yu, Miao; Lemos, Henrique; Salman, Huda; Xu, Hongyan; Mellor, Andrew L.; Zhou, Gang

    2014-01-01

    In recent years the immune-potentiating effects of some widely used chemotherapeutic agents have been increasingly appreciated. This provides a rationale for combining conventional chemotherapy with immunotherapy strategies to achieve durable therapeutic benefits. Previous studies have implicated the immunomodulatory effects of melphalan, an alkylating agent commonly used to treat multiple myeloma, but the underlying mechanisms remain obscure. In the current study, we investigated the impact of melphalan on endogenous immune cells as well as adoptively transferred tumor-specific CD4+ T cells in tumor-bearing mice. We showed that melphalan treatment resulted in a rapid burst of inflammatory cytokines and chemokines during the cellular recovery phase after melphalan-induced myelo-leukodepletion. After melphalan treatment, tumor cells exhibited characteristics of immunogenic cell death, including membrane translocation of the endoplasmic reticulum resident calreticulin (CRT), and extracellular release of high-mobility group box 1 (HMGB1). In addition, there was enhanced tumor antigen uptake by dendritic cells in the tumor-draining lymph node. Consistent with these immunomodulatory effects, melphalan treatment of tumor-bearing mice led to the activation of the endogenous CD8+ T cells, and more importantly, effectively drove the clonal expansion and effector differentiation of adoptively transferred tumor-specific CD4+ T cells. Notably, the combination of melphalan and CD4+ T-cell adoptive cell therapy (ACT) was more efficacious than either treatment alone in prolonging the survival of mice with advanced B-cell lymphomas or colorectal tumors. These findings provide mechanistic insights into melphalan’s immunostimulatory effects, and demonstrate the therapeutic potential of combining melphalan with adoptive cell therapy utilizing antitumor CD4+ T cells. PMID:25560408

  12. Expression of mammalian O6-alkylguanine-DNA alkyltransferase in a cell line sensitive to alkylating agents.

    PubMed

    Dolan, M E; Norbeck, L; Clyde, C; Hora, N K; Erickson, L C; Pegg, A E

    1989-09-01

    Chinese hamster ovary cells (CHO) were co-transfected with pSV2neo and sheared DNA from either a human cell line (HT29) expressing high levels of O6-alkylguanine-DNA alkyltransferase (AGT) or from a cell line (BE) deficient in this activity. Cells expressing the selectable marker were obtained by exposure to G418 and colonies resistant to alkylation damage isolated by growth in the presence of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU). The number of colonies of cells expressing AGT activity arising after transfection with DNA from BE cells was similar to the number arising from cells exposed to HT29 DNA. Although the amount of AGT repair protein expressed in the transfectant colonies from this experiment was relatively low, these results indicate that repair of alkylation damage can be restored in AGT-deficient cells by transfection of human DNA from both repair-deficient and proficient cells. A separate transfection of CHOMG cells [a mutant of CHO cells resistant to the drug, methylglyoxal bis(guanylhydrazone) (MGBG)] with HT29 DNA and pSV2neo followed by selection of G418 and 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) resulted in three colonies with high AGT levels. These transfectants had different growth rates and expressed levels of the AGT protein between 230 and 300 fmol/mg protein. The transfectants were as resistant to the cytotoxic effects of BCNU, Clomesone, methylnitrosourea (MNU) and 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) as HT29 cells which were much more resistant than the parental CHOMG cells. Pretreatment of transfectant cells with 0.4 mM O6-methylguanine for 24 h reduced AGT activity to 14% basal levels, which upon removal of the base increased to approximately 74% basal level within 8 h. The sensitivity to the cytotoxic effects of both the chloroethylating and methylating agents was enhanced by treatment with O6-methylguanine. In the same manner, the number of BCNU-induced DNA interstrand cross-links increased in transfectant

  13. Modulation of mutagenic properties in a series of DNA-directed alkylating agents by variation of chain length and alkylator reactivity.

    PubMed

    Ferguson, L R; Turner, P M; Pogai, H; Denny, W A

    1992-02-01

    Four series of aniline mustards linked to a DNA-affinic acridine chromophore by alkyl chains of varying length (2-5 carbon atoms) have been studied for their mutagenic properties, as estimated in four strains of Salmonella typhimurium and in Saccharomyces cerevisiae strain D5. The four series have very different mustard reactivities, as determined by the aniline link group (-O-, -CH2-, -S- or -SO2-). Some of the derived compounds cause frameshift mutagenesis which can be detected in TA98 and also "petite" mutagenesis activity, neither of which occur to significant extents with the parent mustards or with 9-aminoacridine. None of the derived compounds are as effective as the parent mustards in mitotic crossing-over, nor do they show ability for frameshift mutagenesis in S. typhimurium TA1977 which is typical of acridines. Some of the compounds have comparable frameshift activity to compounds such as ICR-191, but appear to have a different base-pair preference. The results indicate clear structure-activity relationships for the spectrum of mutagenic activity, which relate to both chain length and alkylator reactivity, for these compounds.

  14. DNA-directed alkylating agents. 4. 4-anilinoquinoline-based minor groove directed aniline mustards.

    PubMed

    Gravatt, G L; Baguley, B C; Wilson, W R; Denny, W A

    1991-05-01

    A series of 4-anilinoquinoline-linked aniline mustards of widely varying mustard reactivity were prepared and evaluated for their antitumor activity. The compounds were designed as minor grove binding agents, where the aniline mustard ring is itself part of the DNA-binding ligand. While there was a general trend for cytotoxicity to correlate with mustard reactivity, this was much less pronounced than with untargeted mustards. The compounds were much more cytotoxic than the parent diols, and were also at least 10-fold more cytotoxic than the corresponding aniline mustards themselves. Comparative cell line studies suggested that the mechanism of cytotoxicity varied with mustard reactivity. The most reactive mustards cross-linked DNA, while cell killing by the less reactive compounds appeared to be by the formation of bulky monoadducts. The compounds were active but not particularly dose-potent against P388 leukemia in vivo. The modest potency may be related to their poor aqueous solubility, since the more soluble methyl quaternary salts were equally active at much lower doses.

  15. Synthesis and evaluation of DNA-targeted spatially separated bis(aniline mustards) as potential alkylating agents with enhanced DNA cross-linking capability.

    PubMed

    Gourdie, T A; Prakash, A S; Wakelin, L P; Woodgate, P D; Denny, W A

    1991-01-01

    DNA-targeted separated bis-mustards were synthesized by attaching aniline mono-mustards at the 4- and 9-positions of the DNA-intercalating ligand 9-aminoacridine-4-carboxamide, with the intention of improving the low cross-link to monoadduct ratio found with most alkylating agents. The geometry of these compounds requires that, when the acridine binds to DNA by intercalation, one alkylating moiety is delivered to each DNA groove. Gel electrophoretic studies show that only one arm of these compounds (probably that attached to the 9-position) alkylates DNA, such alkylation occurring specifically in the major groove at the N7 of guanines. Cell-line studies confirm that the mode of cytotoxicity of these compounds (unlike that of untargeted aniline bis-mustards of comparable reactivity) is due to bulky DNA monoadduct formation. It is concluded that more information is required about the exact orientation of the initial monoadducts before ligands with specific DNA cross-linking ability can be designed.

  16. In vitro and In vivo Antitumor Activity of a Novel Alkylating Agent Melphalan-flufenamide Against Multiple Myeloma Cells

    PubMed Central

    Chauhan, Dharminder; Ray, Arghya; Viktorsson, Kristina; Spira, Jack; Paba-Prada, Claudia; Munshi, Nikhil; Richardson, Paul; Lewensohn, Rolf; Anderson, Kenneth C.

    2014-01-01

    Purpose The alkylating agent melphalan prolongs survival in multiple myeloma (MM) patients; however, it is associated with toxicities and development of drug-resistance. Here, we evaluated the efficacy of melphalan-flufenamide (Mel-flufen), a novel dipeptide prodrug of melphalan in MM. Experimental Design MM cell lines, primary patient cells, and the human MM xenograft animal model were utilized to study the antitumor activity of mel-flufen. Results Low doses of mel-flufen triggers a more rapid and higher intracellular concentrations of melphalan in MM cells than is achievable by free melphalan. Cytotoxicity analysis showed significantly lower IC50 of mel-flufen than melphalan in MM cells. Importantly, mel-flufen induces apoptosis even in melphalan-, and bortezomib-resistant MM cells. Mechanistic studies show that siRNA knockdown of aminopeptidase N, a key enzyme mediating intracellular conversion of mel-flufen to melphalan, attenuates anti-MM activity of mel-flufen. Furthermore, mel-flufen-induced apoptosis was associated with: 1) activation of caspases and PARP cleavage; 2) ROS generation; 3) mitochondrial dysfunction and release of cytochrome-c; and 4) induction of DNA damage. Moreover, mel-flufen inhibits MM cell migration and tumor-associated angiogenesis. Human MM xenograft studies showed a more potent inhibition of tumor growth in mice treated with mel-flufen than mice receiving equimolar doses of melphalan. Finally, combining mel-flufen with lenalidomide, bortezomib, or dexamethasone triggers synergistic anti-MM activity. Conclusion Our preclinical study supports clinical evaluation of mel-flufen to enhance therapeutic potential of melphalan, overcome drug-resistance, and improve MM patient outcome. PMID:23584492

  17. DNA-directed alkylating agents. 1. Structure-activity relationships for acridine-linked aniline mustards: consequences of varying the reactivity of the mustard.

    PubMed

    Gourdie, T A; Valu, K K; Gravatt, G L; Boritzki, T J; Baguley, B C; Wakelin, L P; Wilson, W R; Woodgate, P D; Denny, W A

    1990-04-01

    A series of DNA-targeted aniline mustards have been prepared, and their chemical reactivity and in vitro and in vivo cytotoxicity have been evaluated and compared with that of the corresponding simple aniline mustards. The alkylating groups were anchored to the DNA-intercalating 9-aminoacridine chromophore by an alkyl chain of fixed length attached at the mustard 4-position through a link group X, while the corresponding simple mustards possessed an electronically identical small group at this position. The link group was varied to provide a series of compounds of similar geometry but widely differing mustard reactivity. Variation in biological activity should then largely be a consequence of this varying reactivity. Rates of mustard hydrolysis in the two series related only to the electronic properties of the link group, with attachment of the intercalating chromophore having no effect. The cytotoxicities of the simple mustards correlated well with group electronic properties (with a 200-300-fold range in IC50S). The corresponding DNA-targeted mustards were much more potent (up to 100-fold), but their IC50 values varied much less with linker group electronic properties. Most of the DNA-targeted mustards showed in vivo antitumor activity, being both more active and more dose-potent than either the corresponding untargeted mustards and chlorambucil. These results show that targeting alkylating agents to DNA by attachment to DNA-affinic units may be a useful strategy.

  18. Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study

    PubMed Central

    Green, Daniel M; Liu, Wei; Kutteh, William H; Ke, Raymond W; Shelton, Kyla C; Sklar, Charles A; Chemaitilly, Wassim; Pui, Ching-Hon; Klosky, James L; Spunt, Sheri L; Metzger, Monika L; Srivastava, DeoKumar; Ness, Kirsten K; Robison, Leslie L; Hudson, Melissa M

    2014-01-01

    Summary Background Few data define the dose-specific relation between alkylating agent exposure and semen variables in adult survivors of childhood cancer. We undertook this study to test the hypothesis that increased exposure to alkylating agents would be associated with decreased sperm concentration in a cohort of adult male survivors of childhood cancer who were not exposed to radiation therapy for their childhood cancer. Methods We did semen analysis on 214 adult male survivors of childhood cancer (median age 7·7 years [range 0·01–20·3] at diagnosis, 29·0 years [18·4–56·1] at assessment, and a median of 21·0 years [10·5–41·6] since diagnosis) who had received alkylating agent chemotherapy but no radiation therapy. Alkylating agent exposure was estimated using the cyclophosphamide equivalent dose (CED). Odds ratios (ORs) and 95% CIs for oligospermia (sperm concentration >0 and <15 million per mL) and azoospermia were calculated with logistic regression modelling. Findings Azoospermia was noted in 53 (25%) of 214 participants, oligospermia in 59 (28%), and normospermia (sperm concentration ≥15 million per mL) in 102 (48%) participants. 31 (89%) of 35 participants who received CED less than 4000 mg/m2 were normospermic. CED was negatively correlated with sperm concentration (correlation coefficient=–0·37, p<0·0001). Mean CED was 10 830 mg/m2 (SD 7274) in patients with azoospermia, 8480 mg/m2 (4264) in patients with oligospermia, and 6626 mg/m2 (3576) in patients with normospermia. In multivariable analysis, CED was significantly associated with an increased risk per 1000 mg/m2 CED for azoospermia (OR 1·22, 95% CI 1·11–1·34), and for oligospermia (1·14, 1·04–1·25), but age at diagnosis and age at assessment were not. Interpretation Impaired spermatogenesis was unlikely when the CED was less than 4000 mg/m2. Although sperm concentration decreases with increasing CED, there was substantial overlap of CED associated with normospermia

  19. Carbon, hydrogen, and nitrogen isotope fractionation associated with oxidative transformation of substituted aromatic N-alkyl amines.

    PubMed

    Skarpeli-Liati, Marita; Pati, Sarah G; Bolotin, Jakov; Eustis, Soren N; Hofstetter, Thomas B

    2012-07-01

    We investigated the mechanisms and isotope effects associated with the N-dealkylation and N-atom oxidation of substituted N-methyl- and N,N-dimethylanilines to identify isotope fractionation trends for the assessment of oxidations of aromatic N-alkyl moieties by compound-specific isotope analysis (CSIA). In laboratory batch model systems, we determined the C, H, and N isotope enrichment factors for the oxidation by MnO(2) and horseradish peroxidase (HRP), derived apparent (13)C-, (2)H-, and (15)N-kinetic isotope effects (AKIEs), and characterized reaction products. The N-atom oxidation pathway leading to radical coupling products typically exhibited inverse (15)N-AKIEs (up to 0.991) and only minor (13)C- and (2)H-AKIEs. Oxidative N-dealkylation, in contrast, was subject to large normal (13)C- and (2)H-AKIEs (up to 1.019 and 3.1, respectively) and small (15)N-AKIEs. Subtle changes of the compound's electronic properties due to different types of aromatic and/or N-alkyl substituents resulted in changes of reaction mechanisms, rate-limiting step(s), and thus isotope fractionation trends. The complex sequence of electron and proton transfers during the oxidative transformation of substituted aromatic N-alkyl amines suggests highly compound- and mechanism-dependent isotope effects precluding extrapolations to other organic micropollutants reacting along the same degradation pathways. PMID:22681573

  20. Carbon, hydrogen, and nitrogen isotope fractionation associated with oxidative transformation of substituted aromatic N-alkyl amines.

    PubMed

    Skarpeli-Liati, Marita; Pati, Sarah G; Bolotin, Jakov; Eustis, Soren N; Hofstetter, Thomas B

    2012-07-01

    We investigated the mechanisms and isotope effects associated with the N-dealkylation and N-atom oxidation of substituted N-methyl- and N,N-dimethylanilines to identify isotope fractionation trends for the assessment of oxidations of aromatic N-alkyl moieties by compound-specific isotope analysis (CSIA). In laboratory batch model systems, we determined the C, H, and N isotope enrichment factors for the oxidation by MnO(2) and horseradish peroxidase (HRP), derived apparent (13)C-, (2)H-, and (15)N-kinetic isotope effects (AKIEs), and characterized reaction products. The N-atom oxidation pathway leading to radical coupling products typically exhibited inverse (15)N-AKIEs (up to 0.991) and only minor (13)C- and (2)H-AKIEs. Oxidative N-dealkylation, in contrast, was subject to large normal (13)C- and (2)H-AKIEs (up to 1.019 and 3.1, respectively) and small (15)N-AKIEs. Subtle changes of the compound's electronic properties due to different types of aromatic and/or N-alkyl substituents resulted in changes of reaction mechanisms, rate-limiting step(s), and thus isotope fractionation trends. The complex sequence of electron and proton transfers during the oxidative transformation of substituted aromatic N-alkyl amines suggests highly compound- and mechanism-dependent isotope effects precluding extrapolations to other organic micropollutants reacting along the same degradation pathways.

  1. Effect of the salting-out agent anion nature on the phase separation of a potassium salt-potassium bis(alkyl polyoxyethylene)phosphate-water systems

    NASA Astrophysics Data System (ADS)

    Elokhov, A. M.; Lesnov, A. E.; Kudryashova, O. S.

    2016-10-01

    The effect the salting-out agent anion nature has on the temperature and concentration intervals of the existence of the separation area is established by analyzing the phase diagrams of pseudoternary KCl (KBr, KI, KNO3, K2SO4, K4P2O7)-potassium bis(alkyl polyoxyethylene)phosphate (oxyphos B)-water systems. It is concluded that the anionic salting-out capability is reduced in the order P2O 7 4- > SO 4 2- > Cl- > Br‒> NO 7 4- > SO 3 - > I-. The thermodynamic parameters of phase separation used to interpret the results are calculated. The observed pattern of a change in the salting-out ability of the investigated salts relative to aqueous solutions of the surfactants is in good agreement with the lyotropic (Hofmeister) series.

  2. Aryl-Alkyl-Lysines: Agents That Kill Planktonic Cells, Persister Cells, Biofilms of MRSA and Protect Mice from Skin-Infection

    PubMed Central

    Ghosh, Chandradhish; Manjunath, Goutham B.; Konai, Mohini M.; Uppu, Divakara S. S. M.; Hoque, Jiaul; Paramanandham, Krishnamoorthy; Shome, Bibek R.; Haldar, Jayanta

    2015-01-01

    Development of synthetic strategies to combat Staphylococcal infections, especially those caused by methicillin resistant Staphyloccus aureus (MRSA), needs immediate attention. In this manuscript we report the ability of aryl-alkyl-lysines, simple membrane active small molecules, to treat infections caused by planktonic cells, persister cells and biofilms of MRSA. A representative compound, NCK-10, did not induce development of resistance in planktonic cells in multiple passages and retained activity in varying environments of pH and salinity. At low concentrations the compound was able to depolarize and permeabilize the membranes of S. aureus persister cells rapidly. Treatment with the compound not only eradicated pre-formed MRSA biofilms, but also brought down viable counts in bacterial biofilms. In a murine model of MRSA skin infection, the compound was more effective than fusidic acid in bringing down the bacterial burden. Overall, this class of molecules bears potential as antibacterial agents against skin-infections. PMID:26669634

  3. Spiro-fused carbohydrate oxazoline ligands: Synthesis and application as enantio-discrimination agents in asymmetric allylic alkylation

    PubMed Central

    Kraft, Jochen; Golkowski, Martin

    2016-01-01

    Summary In the present work, we describe a convenient synthesis of spiro-fused D-fructo- and D-psico-configurated oxazoline ligands and their application in asymmetric catalysis. The ligands were synthesized from readily available 3,4,5-tri-O-benzyl-1,2-O-isopropylidene-β-D-fructopyranose and 3,4,5-tri-O-benzyl-1,2-O-isopropylidene-β-D-psicopyranose, respectively. The latter compounds were partially deprotected under acidic conditions followed by condensation with thiocyanic acid to give an anomeric mixture of the corresponding 1,3-oxazolidine-2-thiones. The anomeric 1,3-oxazolidine-2-thiones were separated after successive benzylation, fully characterized and subjected to palladium catalyzed Suzuki–Miyaura coupling with 2-pyridineboronic acid N-phenyldiethanolamine ester to give the corresponding 2-pyridyl spiro-oxazoline (PyOx) ligands. The spiro-oxazoline ligands showed high asymmetric induction (up to 93% ee) when applied as chiral ligands in palladium-catalyzed allylic alkylation of 1,3-diphenylallyl acetate with dimethyl malonate. The D-fructo-PyOx ligand provided mainly the (R)-enantiomer while the D-psico-configurated ligand gave the (S)-enantiomer with a lower enantiomeric excess. PMID:26877819

  4. Hot foam for weed control-Do alkyl polyglucoside surfactants used as foaming agents affect the mobility of organic contaminants in soil?

    PubMed

    Cederlund, H; Börjesson, E

    2016-08-15

    Use of alkyl polyglucosides (APGs) as a foaming agent during hot water weed control may influence the environmental fate of organic contaminants in soil. We studied the effects of the APG-based foaming agent NCC Spuma (C8-C10) on leaching of diuron, glyphosate, and polycyclic aromatic hydrocarbons (PAHs) in sand columns. We also examined how APG concentration affected the apparent water solubility and adsorption of the herbicides and of the PAHs acenaphthene, acenaphthylene and fluorene. Application of APGs at the recommended concentration of 0.3% did not significantly affect leaching of any of the compounds studied. However, at a concentration of 1.5%, leaching of both diuron and glyphosate was significantly increased. The increased leaching corresponded to an increase in apparent water solubility of diuron and a decrease in glyphosate adsorption to the sand. However, APG addition did not significantly affect the mobility of PAHs even though their apparent water solubility was increased. These results suggest that application of APG-based foam during hot water weed control does not significantly affect the mobility of organic contaminants in soil if used according to recommendations. Moreover, they suggest that APGs could be useful for soil bioremediation purposes if higher concentrations are used.

  5. Hot foam for weed control-Do alkyl polyglucoside surfactants used as foaming agents affect the mobility of organic contaminants in soil?

    PubMed

    Cederlund, H; Börjesson, E

    2016-08-15

    Use of alkyl polyglucosides (APGs) as a foaming agent during hot water weed control may influence the environmental fate of organic contaminants in soil. We studied the effects of the APG-based foaming agent NCC Spuma (C8-C10) on leaching of diuron, glyphosate, and polycyclic aromatic hydrocarbons (PAHs) in sand columns. We also examined how APG concentration affected the apparent water solubility and adsorption of the herbicides and of the PAHs acenaphthene, acenaphthylene and fluorene. Application of APGs at the recommended concentration of 0.3% did not significantly affect leaching of any of the compounds studied. However, at a concentration of 1.5%, leaching of both diuron and glyphosate was significantly increased. The increased leaching corresponded to an increase in apparent water solubility of diuron and a decrease in glyphosate adsorption to the sand. However, APG addition did not significantly affect the mobility of PAHs even though their apparent water solubility was increased. These results suggest that application of APG-based foam during hot water weed control does not significantly affect the mobility of organic contaminants in soil if used according to recommendations. Moreover, they suggest that APGs could be useful for soil bioremediation purposes if higher concentrations are used. PMID:27149400

  6. Gadolinium(III) Complexes with N-Alkyl-N-methylglucamine Surfactants Incorporated into Liposomes as Potential MRI Contrast Agents

    PubMed Central

    Silva, Simone Rodrigues; Duarte, Érica Correia; Ramos, Guilherme Santos; Kock, Flávio Vinícius Crizóstomo; Andrade, Fabiana Diuk; Frézard, Frédéric; Colnago, Luiz Alberto; Demicheli, Cynthia

    2015-01-01

    Complexes of gadolinium(III) with N-octanoyl-N-methylglucamine (L8) and N-decanoyl-N-methylglucamine (L10) with 1 : 2 stoichiometry were synthesized and characterized by elemental analysis, electrospray ionization-tandem mass spectrometry (ESI-MS), infrared (IR) spectroscopy, and molar conductivity measurements. The transverse (r2) and longitudinal (r1) relaxivity protons were measured at 20 MHz and compared with those of the commercial contrasts. These complexes were incorporated in liposomes, resulting in the increase of the vesicle zeta potential. Both the free and liposome-incorporated gadolinium complexes showed high relaxation effectiveness, compared to commercial contrast agent gadopentetate dimeglumine (Magnevist). The high relaxivity of these complexes was attributed to the molecular rotation that occurs more slowly, because of the elevated molecular weight and incorporation in liposomes. The results establish that these paramagnetic complexes are highly potent contrast agents, making them excellent candidates for various applications in molecular MR imaging. PMID:26347596

  7. Somatic reversion of some copia-like induced mutations, at the white locus of Drosophila melanogaster, after treatment with alkylating agents.

    PubMed

    Soriano, S; Creus, A; Marcos, R; Xamena, N

    1995-01-01

    It has been suggested that transposable elements can be associated with different types of genotoxic effects. For this reason it seems appropriate to outline suitable systems to detect changes in the phenotypic expression of the loci containing transposable elements, as well as those agents that induce such changes. The sex-linked white locus offers a suitable experimental system for studying such events because most of the spontaneous mutations at the white locus are the result of insertions of repeated mobile sequences, and it is easy to follow mutational changes of the locus due to the possibility of detecting even slight changes in eye color. Here we report the results obtained in different strains of Drosophila melanogaster with copia-like induced mutations at the white locus, after treatment with three alkylating agents: ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), and N-nitroso-N-ethylurea (ENU). The three insertional white mutants used in this work were wa4, wbf, and wsp55, with the wa2 mutation used as control because its mutant phenotype is the result of a point mutation instead of the insertion of a DNA fragment. Our data constitute evidence that EMS, MMS, and ENU induce a clear increase in the frequencies of somatic-revertant sectors in the three strains carrying a white allele with an inserted copia-like element. For the wa2 strain, whose mutant phenotype is the result of a point mutation, only ENU at the highest concentration tested is able to induce a significant increase in the somatic reversion frequency. In addition, our results indicate that the use of D. melanogaster strains with transposable elements in the white locus is suitable for detecting genotoxic damage induced by chemicals. PMID:7698106

  8. Dose-Response for Multiple Biomarkers of Exposure and Genotoxic Effect Following Repeated Treatment of Rats with the Alkylating Agents, MMS and MNU.

    PubMed

    Ji, Zhiying; LeBaron, Matthew J; Schisler, Melissa R; Zhang, Fagen; Bartels, Michael J; Gollapudi, B Bhaskar; Pottenger, Lynn H

    2016-05-01

    The nature of the dose-response relationship for various in vivo endpoints of exposure and effect were investigated using the alkylating agents, methyl methanesulfonate (MMS) and methylnitrosourea (MNU). Six male F344 rats/group were dosed orally with 0, 0.5, 1, 5, 25 or 50mg/kg bw/day (mkd) of MMS, or 0, 0.01, 0.1, 1, 5, 10, 25 or 50 mkd of MNU, for 4 consecutive days and sacrificed 24h after the last dose. The dose-responses for multiple biomarkers of exposure and genotoxic effect were investigated. In MMS-treated rats, the hemoglobin adduct level, a systemic exposure biomarker, increased linearly with dose (r (2) = 0.9990, P < 0.05), indicating the systemic availability of MMS; however, the N7MeG DNA adduct, a target exposure biomarker, exhibited a non-linear dose-response in blood and liver tissues. Blood reticulocyte micronuclei (MN), a genotoxic effect biomarker, exhibited a clear no-observed-genotoxic-effect-level (NOGEL) of 5 mkd as a point of departure (PoD) for MMS. Two separate dose-response models, the Lutz and Lutz model and the stepwise approach using PROC REG both supported a bilinear/threshold dose-response for MN induction. Liver gene expression, a mechanistic endpoint, also exhibited a bilinear dose-response. Similarly, in MNU-treated rats, hepatic DNA adducts, gene expression changes and MN all exhibited clear PoDs, with a NOGEL of 1 mkd for MN induction, although dose-response modeling of the MNU-induced MN data showed a better statistical fit for a linear dose-response. In summary, these results provide in vivo data that support the existence of clear non-linear dose-responses for a number of biologically significant events along the pathway for genotoxicity induced by DNA-reactive agents.

  9. Alkylating enzymes.

    PubMed

    Wessjohann, Ludger A; Keim, Jeanette; Weigel, Benjamin; Dippe, Martin

    2013-04-01

    Chemospecific and regiospecific modifications of natural products by methyl, prenyl, or C-glycosyl moieties are a challenging and cumbersome task in organic synthesis. Because of the availability of an increasing number of stable and selective transferases and cofactor regeneration processes, enzyme-assisted strategies turn out to be promising alternatives to classical synthesis. Two categories of alkylating enzymes become increasingly relevant for applications: firstly prenyltransferases and terpene synthases (including terpene cyclases), which are used in the production of terpenoids such as artemisinin, or meroterpenoids like alkylated phenolics and indoles, and secondly methyltransferases, which modify flavonoids and alkaloids to yield products with a specific methylation pattern such as 7-O-methylaromadendrin and scopolamine.

  10. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response

    PubMed Central

    2011-01-01

    Background 1-{4-[Bis(2-chloroethyl)amino]phenyl}-3-[2-methyl-5-(4-methylacridin-9-ylamino)phenyl]urea (BO-1051) is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects of this compound on radiation responses of human gliomas, which are notorious for the high resistance to radiotherapy. Methods The clonogenic assay was used to determine the IC50 and radiosensitivity of human glioma cell lines (U87MG, U251MG and GBM-3) following BO-1051. DNA histogram and propidium iodide-Annexin V staining were used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were determined by γ-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors were measured with a caliper, and the survival rate was determined using Kaplan-Meier method. Results BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage at IC50, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G2/M population was raised by BO-1051, whereas apoptosis and mitotic catastrophe were not affected. γ-H2AX foci was greatly increased and sustained by combined BO-1051 and γ-rays, suggested that DNA damage or repair capacity was impaired during treatment. In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also increased accordingly. Conclusions These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells. PMID:21244709

  11. The use of [18F]4-fluorobenzyl iodide (FBI) in PET radiotracer synthesis: model alkylation studies and its application in the design of dopamine D1 and D2 receptor-based imaging agents.

    PubMed

    Mach, R H; Elder, S T; Morton, T E; Nowak, P A; Evora, P H; Scripko, J G; Luedtke, R R; Unsworth, C D; Filtz, T; Rao, A V

    1993-08-01

    [18F]4-Fluorobenzyl iodide ([18F]FBI) was prepared, and a series of model alkylation studies were conducted to determine its chemical reactivity toward nitrogen and sulfur nucleophiles of varying nucleophilicities. [18F]FBI was found to react rapidly with secondary amines and anilines to give the corresponding N-[18F]4-fluorobenzyl analogue in high yield. Amides and thiol groups required the use of a base catalyst. The utility of [18F]FBI was documented by investigation of dopamine D1 and D2 receptor-based radiotracers.

  12. Induction of resistance to alkylating agents in E. coli: the ada+ gene product serves both as a regulatory protein and as an enzyme for repair of mutagenic damage.

    PubMed Central

    Teo, I; Sedgwick, B; Demple, B; Li, B; Lindahl, T

    1984-01-01

    The expression of several inducible enzymes for repair of alkylated DNA in Escherichia coli is controlled by the ada+ gene. This regulatory gene has been cloned into a multicopy plasmid and shown to code for a 37-kd protein. Antibodies raised against homogeneous O6-methylguanine-DNA methyltransferase (the main repair activity for mutagenic damage in alkylated DNA) were found to cross-react with this 37-kd protein. Cell extracts from several independently derived ada mutants contain variable amounts of an altered 37-kd protein after an inducing alkylation treatment. In addition, an 18-kd protein identical with the previously isolated O6-methyl-guanine-DNA methyltransferase has been identified as a product of the ada+ gene. The smaller polypeptide is derived from the 37-kd protein by proteolytic processing. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:6092060

  13. The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents.

    PubMed Central

    Wilhelm, D; Bender, K; Knebel, A; Angel, P

    1997-01-01

    Monofunctional alkylating agents like methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) are potent inducers of cellular stress leading to chromosomal aberrations, point mutations, and cell killing. We show that these agents induce a specific cellular stress response program which includes the activation of Jun N-terminal kinases/stress-activated protein kinases (JNK/SAPKs), p38 mitogen-activated protein kinase, and the upstream kinase SEK1/MKK4 and which depends on the reaction mechanism of the alkylating agent in question. Similar to another inducer of cellular stress, UV irradiation, damage of nuclear DNA by alkylation is not involved in the MMS-induced response. However, in contrast to UV and other inducers of the JNK/SAPKs and p38 pathways, activation of growth factor and G-protein-coupled receptors does not play a role in the MMS response. We identified the intracellular glutathione (GSH) level as critical for JNK/SAPK activation by MMS: enhancing the GSH level by pretreatment of the cells with GSH or N-acetylcysteine inhibits, whereas depletion of the cellular GSH pool causes hyperinduction of JNK/SAPK activity by MMS. In light of the JNK/SAPK-dependent induction of c-jun and c-fos transcription, and the Jun/Fos-induced transcription of xenobiotic-metabolizing enzymes, these data provide a potential critical role of JNK/SAPK and p38 in the induction of a cellular defense program against cytotoxic xenobiotics such as MMS. PMID:9234735

  14. γ-Hydroxyethyl piperidine iminosugar and N-alkylated derivatives: a study of their activity as glycosidase inhibitors and as immunosuppressive agents.

    PubMed

    Markad, Pramod R; Sonawane, Dhiraj P; Ghosh, Sougata; Chopade, Balu A; Kumbhar, Navnath; Louat, Thierry; Herman, Jean; Waer, Mark; Herdewijn, Piet; Dhavale, Dilip D

    2014-11-01

    An efficient and practical strategy for the synthesis of (3R,4s,5S)-4-(2-hydroxyethyl) piperidine-3,4,5-triol and its N-alkyl derivatives 8a-f, starting from the D-glucose, is reported. The chiral pool methodology involves preparation of the C-3-allyl-α-D-ribofuranodialdose 10, which was converted to the C-5-amino derivative 11 by reductive amination. The presence of C-3-allyl group gives an easy access to the requisite hydroxyethyl substituted compound 13. Intramolecular reductive aminocyclization of C-5 amino group with C-1 aldehyde provided the γ-hydroxyethyl substituted piperidine iminosugar 8a that was N-alkylated to get N-alkyl derivatives 8b-f. Iminosugars 8a-f were screened against glycosidase enzymes. Amongst synthetic N-alkylated iminosugars, 8b and 8c were found to be α-galactosidase inhibitors while 8d and 8e were selective and moderate α-mannosidase inhibitors. In addition, immunomodulatory activity of compounds 8a-f was examined. These results were substantiated by molecular docking studies using AUTODOCK 4.2 programme.

  15. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl Grignard reagents and identification of selective anti-breast-cancer agents.

    PubMed

    Yonova, Ivelina M; Johnson, A George; Osborne, Charlotte A; Moore, Curtis E; Morrissette, Naomi S; Jarvo, Elizabeth R

    2014-02-24

    Alkyl Grignard reagents that contain β-hydrogen atoms were used in a stereospecific nickel-catalyzed cross-coupling reaction to form C(sp(3))-C(sp(3)) bonds. Aryl Grignard reagents were also utilized to synthesize 1,1-diarylalkanes. Several compounds synthesized by this method exhibited selective inhibition of proliferation of MCF-7 breast cancer cells. PMID:24478275

  16. Nitrogen

    USGS Publications Warehouse

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  17. DNA-directed alkylating agents. 3. Structure-activity relationships for acridine-linked aniline mustards: consequences of varying the length of the linker chain.

    PubMed

    Valu, K K; Gourdie, T A; Boritzki, T J; Gravatt, G L; Baguley, B C; Wilson, W R; Wakelin, L P; Woodgate, P D; Denny, W A

    1990-11-01

    Four series of acridine-linked aniline mustards have been prepared and evaluated for in vitro cytotoxicity, in vivo antitumor activity, and DNA cross-linking ability. The anilines were attached to the DNA-intercalating acridine chromophores by link groups (-O-, -CH2-, -S-, and -SO2-) of widely varying electronic properties, providing four series of widely differing mustard reactivity where the alkyl chain linking the acridine and mustard moieties was varied from two to five carbons. Relationships were sought between chain length and biological properties. Within each series, increasing the chain length did not alter the reactivity of the alkylating moiety but did appear to position it differently on the DNA, since cross-linking ability (measured by agarose gel assay) altered with chain length, being maximal with the C4 analogue. The in vivo antitumor activities of the compounds depended to some extent on the reactivity of the mustard, with the least reactive SO2 compounds being inactive. However, DNA-targeting did appear to allow the use of less reactive mustards, since the S-linked acridine mustards showed significant activity whereas the parent S-mustard did not. Within each active series, the most active compound was the C4 homologue, suggesting some relationship between activity and extent of DNA alkylation.

  18. Design and synthesis of novel hydroxyanthraquinone nitrogen mustard derivatives as potential anticancer agents via a bioisostere approach.

    PubMed

    Zhao, Li-Ming; Ma, Feng-Yan; Jin, Hai-Shan; Zheng, Shilong; Zhong, Qiu; Wang, Guangdi

    2015-09-18

    A series of hydroxyanthraquinones having an alkylating N-mustard pharmacophore at 1'-position were synthesized via a bioisostere approach to evaluate their cytotoxicity against four tumor cell lines (MDA-MB-231, HeLa, MCF-7 and A549). These compounds displayed significant in vitro cytotoxicity against MDA-MB-231 and MCF-7 cells, reflecting the excellent selectivity for the human breast cancer. Among them, compound 5k was the most cytotoxic with IC50 value of 0.263 nM and is more potent than DXR (IC50 = 0.294 nM) in inhibiting the growth of MCF-7 cells. The excellent cytotoxicity and good selectivity of compound 5k suggest that it could be a promising lead for further design and development of anticancer agents, especially for breast cancer.

  19. Molecular dosimetry of DNA damage caused by alkylation. II. The induction and repair of different classes of single-strand breaks in cultured mammalian cells treated with ethylating agents.

    PubMed

    Dogliotti, E; Lakhanisky, T; van der Schans, G P; Lohman, P H

    1984-01-01

    Cultured Chinese hamster ovary cells were treated with ethylating agents. DNA lesions giving rise to single-strand breaks (SSB) or alkali-labile sites were measured by elution through membrane filters at pH 12.0 and pH 12.6, and by centrifugation in alkaline sucrose gradients after 1 h and 21 h lysis in alkali. Two agents with different tendencies to ethylate preferentially either at N or O atoms were compared, namely N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG) and diethyl sulphate (DES). The compounds differed greatly in their potency to induce lesions, but the ratios of SSB, measured with different methods after a treatment for 30 min, did not differ significantly. This suggested that the spectrum of lesions induced by the two compounds is very similar. However, when both agents were studied with alkaline elution at pH 12.0 after a short treatment time (5 min) only ENNG was found to induce rapidly-repairable SSB. Most of these were rejoined already within 5 min after treatment. These results suggest that rapidly-repairable lesions occurring in DNA after treatment of mammalian cells with ethylating agents are due mainly to alkylation at O-atoms. PMID:6472317

  20. Alkyl-Substituted δ-Lactones Derived from Dihydrojasmone and Their Stereoselective Fungi-Mediated Conversion: Production of New Antifeedant Agents.

    PubMed

    Gliszczyńska, Anna; Semba, Damian; Szczepanik, Maryla; Dancewicz, Katarzyna; Gabryś, Beata

    2016-09-13

    A chemoenzymatic method was applied to obtain optically pure alkyl-substituted δ-lactones. First, chemical Baeyer-Villiger oxidation of dihydrojasmone (1) was carried out, affording two new alkyl-substituted δ-lactones: 3,4-dihydro-5-methyl-6-pentyl-2H-pyran-2-one (2) and 5-methyl-6-pentyl-1,13-dioxabicyclo[4.1.0]heptan-2-one (3). In the next step, fungal strains were investigated as biocatalysts to enantioselective conversion of δ-lactones (2) and (3). The fungal cultures: Fusarium culmorum AM10, Fusarium equiseti AM15 and Beauveria bassiana AM278 catalyzed the stereoselective hydration of the double bond of lactone (2) (ee = 20%-99%) while Didymosphaeria igniaria KCh6670 proved to be the best biocatalyst for the reduction of carbonyl group in the epoxylactone (3) (ee = 99%). In both cases, chiral oxyderivatives were obtained in low to high yields (7%-91%). The synthetic lactones (2), (3) and its derivatives (4), (5) were tested for their antifeedant activity towards larvae and adults of lesser mealworm (Alphitobius diaperinus Panzer) and peach potato aphid (Myzus persicae [Sulzer]) and some of them were active towards studied insects.

  1. Alkyl-Substituted δ-Lactones Derived from Dihydrojasmone and Their Stereoselective Fungi-Mediated Conversion: Production of New Antifeedant Agents.

    PubMed

    Gliszczyńska, Anna; Semba, Damian; Szczepanik, Maryla; Dancewicz, Katarzyna; Gabryś, Beata

    2016-01-01

    A chemoenzymatic method was applied to obtain optically pure alkyl-substituted δ-lactones. First, chemical Baeyer-Villiger oxidation of dihydrojasmone (1) was carried out, affording two new alkyl-substituted δ-lactones: 3,4-dihydro-5-methyl-6-pentyl-2H-pyran-2-one (2) and 5-methyl-6-pentyl-1,13-dioxabicyclo[4.1.0]heptan-2-one (3). In the next step, fungal strains were investigated as biocatalysts to enantioselective conversion of δ-lactones (2) and (3). The fungal cultures: Fusarium culmorum AM10, Fusarium equiseti AM15 and Beauveria bassiana AM278 catalyzed the stereoselective hydration of the double bond of lactone (2) (ee = 20%-99%) while Didymosphaeria igniaria KCh6670 proved to be the best biocatalyst for the reduction of carbonyl group in the epoxylactone (3) (ee = 99%). In both cases, chiral oxyderivatives were obtained in low to high yields (7%-91%). The synthetic lactones (2), (3) and its derivatives (4), (5) were tested for their antifeedant activity towards larvae and adults of lesser mealworm (Alphitobius diaperinus Panzer) and peach potato aphid (Myzus persicae [Sulzer]) and some of them were active towards studied insects. PMID:27649116

  2. Application of secondary alkyl halides to a domino aryl alkylation reaction for the synthesis of aromatic heterocycles.

    PubMed

    Rudolph, Alena; Rackelmann, Nils; Turcotte-Savard, Marc-Olivier; Lautens, Mark

    2009-01-01

    A palladium-catalyzed, norbornene-mediated ortho-alkylation reaction of aryl iodides with secondary alkyl halides is described. Intermolecular or intramolecular ortho-alkylation proceeds in a domino process with various termination steps, generating two new carbon-carbon or carbon-nitrogen bonds in one pot, to afford an array of polycyclic heterocycles. The use of enantioenriched substrates has shown that this palladium-catalyzed reaction is stereospecific, proceeding with minimal erosion of ee.

  3. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  4. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    Ammonia was produced by 12 companies at 27 plants in 15 states in the United States during 2011. Sixty-one percent of total U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2011, U.S. producers operated at about 84 percent of their rated capacity (excluding plants that were idle for the entire year). Four companies — CF Industries Holdings Inc.; Koch Nitrogen Co.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 77 percent of the total U.S. ammonia production capacity.

  5. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Ammonia is the principal source of fixed nitrogen. It was produced by 17 companies at 34 plants in the United States during 2003. Fifty-three percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock.

  6. Labelling of living mammalian spermatozoa with the fluorescent thiol alkylating agent, monobromobimane (MB): immobilization upon exposure to ultraviolet light and analysis of acrosomal status

    SciTech Connect

    Cummins, J.M.; Fleming, A.D.; Crozet, N.; Kuehl, T.J.; Kosower, N.S.; Yanagimachi, R.

    1986-03-01

    Living spermatozoa of seven mammalian species were treated with the thiol-alkylating fluorescent labelling compound, monobromobimane (MBBR). MB-labelling alone had no effect on sperm motility, nor on the time course or ability of golden hamster spermatozoa to undergo the acrosome reaction when capacitated in vitro. Exposure of MB-labelled spermatozoa to ultraviolet (UV) light and excitation of the MB fluorochrome resulted in virtually immediate immobilization of the spermatozoa without affecting acrosomal status. UV exposure of unlabelled spermatozoa for up to 30 sec had no effect upon motility. Immobilization of MB-labelled spermatozoa depended on the midpiece being irradiated, as irradiation of the head alone, or of the more distal parts of the principal piece, had little or no effect upon motility. Labelling with MB followed by immobilization of individually selected spermatozoa was most useful for detailing the course and site of occurrence of the acrosome reaction during penetration of the cumulus oophorus by golden hamster spermatozoa in vitro. In these often hyperactivated spermatozoa, precise determination of the acrosomal status could not often otherwise be made due to the difficulty in visualizing the acrosomal region of a vigorously thrashing, hyperactivated spermatozoon. This technique should prove valuable in a variety of studies on sperm motility, capacitation and fertilization, and could also be extended to other cell systems.

  7. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Ammonia was produced by 15 companies at 25 plants in 16 states in the United States during 2006. Fifty-seven percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock. In 2006, U.S. producers operated at about 72 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies, Koch Nitrogen, Terra Industries, CF Industries, PCS Nitro-gen, and Agrium, in descending order, accounted for 79 percent U.S. ammonia production capacity. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  8. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  9. Immunochemical analysis of poly(ADP-ribosyl)ation in HaCaT keratinocytes induced by the mono-alkylating agent 2-chloroethyl ethyl sulfide (CEES): Impact of experimental conditions.

    PubMed

    Debiak, Malgorzata; Lex, Kirsten; Ponath, Viviane; Burckhardt-Boer, Waltraud; Thiermann, Horst; Steinritz, Dirk; Schmidt, Annette; Mangerich, Aswin; Bürkle, Alexander

    2016-02-26

    Sulfur mustard (SM) is a bifunctional alkylating agent with a long history of use as a chemical weapon. Although its last military use is dated for the eighties of the last century, a potential use in terroristic attacks against civilians remains a significant threat. Thus, improving medical therapy of mustard exposed individuals is still of particular interest. PARP inhibitors were recently brought into the focus as a potential countermeasure for mustard-induced pathologies, supported by the availability of efficient compounds successfully tested in cancer therapy. PARP activation after SM treatment was reported in several cell types and tissues under various conditions; however, a detailed characterization of this phenomenon is still missing. This study provides the basis for such studies by developing and optimizing experimental conditions to investigate poly(ADP-ribosyl)ation (PARylation) in HaCaT keratinocytes upon treatment with the monofunctional alkylating agent 2-chloroethyl ethyl sulfide ("half mustard", CEES). By using an immunofluorescence-based approach, we show that optimization of experimental conditions with regards to the type of solvent, dilution factors and treatment procedure is essential to obtain a homogenous PAR staining in HaCaT cell cultures. Furthermore, we demonstrate that different CEES treatment protocols significantly influence the cytotoxicity profiles of treated cells. Using an optimized treatment protocol, our data reveals that CEES induces a dose- and time-dependent dynamic PARylation response in HaCaT cells that could be completely blocked by treating cells with the clinically relevant pharmacological PARP inhibitor ABT888 (also known as veliparib). Finally, siRNA experiments show that CEES-induced PAR formation is predominantly due to the activation of PARP1. In conclusion, this study provides a detailed analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to study the

  10. A Mechanism for the Aqueous Phase Production of Alkyl Nitrates

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.; Saltzman, E. S.; DeBruyn, W. J.

    2002-05-01

    Measurements of alkyl nitrates in the surface ocean and marine boundary layer indicate that there is an oceanic source of alkyl nitrates to the marine troposphere. Alkyl nitrates make up a portion of the total reactive nitrogen in the troposphere. They can contribute significantly to the NOx budget in the remote marine atmosphere, affecting regional ozone formation. The origin of the alkyl nitrate in the surface ocean is unknown. One possible mechanism for aqueous alkyl nitrate formation is the reaction of alkyl peroxy radicals with NO (ROO + NO -> RONO2). Peroxy radicals and NO have been observed in seawater at levels that make this a viable reaction (Blough 1997) (Zafiriou and McFarland 1981). In this project, steady state irradiations of nitrite and alkane solutions were used to determine the yield of alkyl nitrates from this reaction. The yield for ethyl nitrate has been determined to be 101+/-12% and 102+/-8% total yield for propyl nitrates (n-propyl and iso-propyl) with no evident temperature dependence between 5 and 30° C. Alkyl nitrates were also generated by the irradiation of natural seawater and nitrite-spiked seawater. These results indicate that the proposed mechanism may be a viable source of alkyl nitrates in surface waters.

  11. Molecular biology basis for the response of poly(ADP-rib) polymerase and NAD metabolism to dna damage caused by mustard alkylating agents. Final report, 30 April 1990-30 July 1994

    SciTech Connect

    Smulson, M.E.

    1994-08-30

    During the course of this contract, we have performed a variety of experiments whose intent has been to provide a strategy to modulate the nuclear enzyme poly(ADP-ribose) polymerase (PADPRP) in cultured keratinocytes. During this study, human keratinocyte lines were stably transfected with the cDNA for human PADPRP in the antisense orientation under an inducible promoter. Induction of this antisense RNA by dexamethasone in cultured cells selectively lowered levels of PADPRP in RNA, protein, and enzyme activity. Induction of antisense RNA led to a reduction in the levels of PADPRP in individual cell nuclei, as well as the loss of the ability of cells to synthesize and modify proteins by poly(ADP-ribose) polymer in response to an alkylating agent. When keratinocyte clones containing the antisense construct or empty vector alone were grafted onto nude mice they formed histologically normal human skin. The PADPRP antisense construct was also inducible in vivo by the topical application of dexamethasone to the reconstituted epidermis. In addition, poly(ADP-ribose) polymer could be induced and detected in vivo following the topical application of a sulfur mustard to the grafted transfected skin layers. Accordingly, a model system has been developed in which the levels of PADPRP can be selectively manipulated in human keratinocytes in cell culture, and potentially in reconstituted epidermis as well.

  12. Synthesis and anticancer effects evaluation of 1-alkyl-3-(6-(2-methoxy-3-sulfonylaminopyridin-5-yl)benzo[d]thiazol-2-yl)urea as anticancer agents with low toxicity.

    PubMed

    Xie, Xiao-Xiao; Li, Huan; Wang, Juan; Mao, Shuai; Xin, Min-Hang; Lu, She-Min; Mei, Qi-Bing; Zhang, San-Qi

    2015-10-01

    As a PI3K and mTOR dual inhibitor, N-(2-chloro-5-(2-acetylaminobenzo[d]thiazol-6-yl)pyridin-3-yl)-4-fluorophenylsulfonamide displays toxicity when orally administrated. In the present study, alkylurea moiety replaced the acetamide group in the compound and a series of 1-alkyl-3-(6-(2,3-disubstituted pyridin-5-yl)benzo[d]thiazol-2-yl)urea derivatives were synthesized. The antiproliferative activities of the synthesized compounds in vitro were evaluated against HCT116, MCF-7, U87 MG and A549 cell lines. The compounds with potent antiproliferative activity were tested for their acute oral toxicity and inhibitory activity against PI3Ks and mTORC1. The results indicate that the compound attached a 2-(dialkylamino)ethylurea moiety at the 2-positeion of benzothiazole can retain the antiproliferative activity and inhibitory activity against PI3K and mTOR. In addition, their acute oral toxicity reduced dramatically. Moreover, compound 2f can effectively inhibit tumor growth in a mice S180 homograft model. These findings suggest that 1-(2-dialkylaminoethyl)-3-(6-(2-methoxy-3-sulfonylaminopyridin-5-yl)benzo[d]thiazol-2-yl)urea derivatives can serve as potent PI3K inhibitors and anticancer agents with low toxicity.

  13. Molecular dosimetry of DNA damage caused by alkylation. I. Single-strand breaks induced by ethylating agents in cultured mammalian cells in relation to survival.

    PubMed

    Abbondandolo, A; Dogliotti, E; Lohman, P H; Berends, F

    1982-02-22

    Cultured Chinese hamster ovary cells were treated with ethylating agents. DNA lesions giving rise to single-strand breaks (ssb) or alkali-labile sites were measured by centrifugation in alkaline sucrose gradients after lysis in alkali. 4 agents with different tendencies to ethylate preferentially either at N or O atoms were compared, namely N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG), N-ethyl-N-nitrosourea (ENU), ethyl methanesulphonate (EMS) and diethyl sulphonate (DES). The compounds differed greatly in their potency to induce the lesions measured when compared on a molar basis, but comparison at equicytotoxic doses showed relatively small differences. Upon prolonged incubation of the DNA in alkali, the number of ssb increased considerably. DNA from untreated cells showed biphasic kinetics: slow ssb formation for about 10 h, then the rate increased and remained constant for up to 40 h. Treated cells showed an accelerated, dose-dependent linear generation of ssb for 10 h, followed by a short plateau; then ssb were formed again at a constant rate, somewhat higher than that in controls. Ssb formed in the initial phase are ascribed to phosphotriester hydrolysis, those after the plateau to unidentified causes. Zero intercepts appeared to be a measure of apurinic sites generated intracellularly. A 24-h repair period preceding lysis reduced the ENNG intercept, but not that of DES. Rapid degradation of DES during the 1-h treatment occurred, so most "apurinic-site lesions" were induced in the beginning of exposure and possibly were already repaired at the end. The types of lesion distinguished (reparable and non-reparable apurinic sites, phosphotriesters) appeared of little consequence for cell survival. PMID:7201070

  14. Decarboxylative Alkyl-Alkyl Cross-Coupling Reactions.

    PubMed

    Konev, Mikhail O; Jarvo, Elizabeth R

    2016-09-12

    Alkyl with alkyl: A significant development in alkyl-alkyl cross-coupling reactions, namely the nickel-catalyzed decarboxylative Negishi coupling of N-hydroxyphthalimide esters, was recently reported by Baran and co-workers. This method enables the synthesis of various highly functionalized compounds, including natural product derivatives.

  15. Photochemical Production of Alkyl Nitrates in the Tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.; Yvon-Lewis, S. A.; Saltzman, E. S.

    2005-12-01

    Alkyl nitrates are important to the tropospheric NOx/ozone cycle because they represent a significant fraction of the reactive nitrogen (NOy). Previous work has shown that there is an oceanic source of alkyl nitrates. A photochemical mechanism for the formation of alkyl nitrates in seawater has been proposed. This mechanism involves the reaction of ROO and NO, where ROO is an alkyl peroxy radical. ROO and NO radicals in seawater are derived from the photolysis of DOM and nitrite, respectively. In this study, the photochemical production of low molecular weight alkyl nitrates (C1-C3) was observed in shipboard incubation experiments in the tropical Pacific during the PHASE 1 cruise. Seawater samples from several regions, including high and low-chlorophyll areas, were collected and incubated. Alkyl nitrate production rates as high as 2 nM/hour were observed. The production rate of alkyl nitrates was clearly dependent upon the initial concentration of nitrite, most likely as the source for NO radicals. While the magnitude of production varied between sample locations, the ratios of the production rates of the various alkyl nitrates remained relatively constant. The observed production ratios of methyl, ethyl, isopropyl, and n-propyl nitrate were 5.9:1.0:0.1:0.2. These ratios presumably reflect the speciation of peroxy radicals formed in seawater, and the yield of alkyl nitrates from the ROO+NO reaction. The observed production rate ratios are similar to the concentration ratios of alkyl nitrates observed in ambient seawater and the overlying atmosphere during the study. A comparison of the measured production rates and the observed concentrations, suggests that photochemically produced alkyl nitrates are a major source of atmospheric alkyl nitrates in the surface ocean and marine atmosphere.

  16. Design and synthesis of novel quinazoline nitrogen mustard derivatives as potential therapeutic agents for cancer.

    PubMed

    Li, Shilei; Wang, Xiao; He, Yong; Zhao, Mingxia; Chen, Yurong; Xu, Jingli; Feng, Man; Chang, Jin; Ning, Hongyu; Qi, Chuanmin

    2013-09-01

    Thirteen novel quinazoline nitrogen mustard derivatives were designed, synthesized and evaluated for their anticancer activities in vitro and in vivo. Cytotoxicity assays were carried out in five cancer cell lines (HepG2, SH-SY5Y, DU145, MCF-7 and A549) and one normal human cell line (GES-1), in which compound 22b showed very low IC50 to HepG2 (the IC50 value is 3.06 μM), which was lower than Sorafenib. Compound 22b could inhibit cell cycle at S and G2/M phase and induce cell apoptosis. In the HepG2 xenograft model, 22b exhibited significant cancer growth inhibition with low host toxicity in vivo.

  17. Method for reactivating solid catalysts used in alkylation reactions

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  18. The synthesis and biological evaluation of new DNA-directed alkylating agents, phenyl N-mustard-4-anilinoquinoline conjugates containing a urea linker.

    PubMed

    Marvania, Bhavin; Kakadiya, Rajesh; Christian, Wilson; Chen, Tai-Lin; Wu, Ming-Hsi; Suman, Sharda; Tala, Kiran; Lee, Te-Chang; Shah, Anamik; Su, Tsann-Long

    2014-08-18

    We synthesized a series of phenyl N-mustard-4-anilinoquinoline conjugates to study their antitumorigenic effects. These agents were prepared by the condensation of 4-[N,N-bis(2-chloroethyl)amino]phenyl isocyanate with 6-amino-4-methylamino or 4-anilinoquinolines. The structure-activity relationship (SAR) studies revealed that the C2-methylquinoline derivatives (18a-o) were generally more cytotoxic than the C2-phenylquinoline conjugates (23a-d) in inhibiting the cell growth of various human tumor cell lines in vitro. However, the methylamino or aniline substituents at C4 of quinoline did not influence the cytotoxic effects. The title conjugates were capable of inducing DNA cross-linking and promoting cell-cycle arrest at the G2/M phase. This study demonstrates that phenyl N-mustard-4-anilinoquinoline conjugates are generally more potent than phenyl N-mustard-4-anilinoquinazoline conjugates against the cell growth of various tumor cell-lines.

  19. Melatonin alleviates lung damage induced by the chemical warfare agent nitrogen mustard.

    PubMed

    Ucar, Muharrem; Korkmaz, Ahmet; Reiter, Russel J; Yaren, Hakan; Oter, Sükrü; Kurt, Bülent; Topal, Turgut

    2007-09-10

    The cytotoxic mechanism of mustards has not been fully elucidated; recently, we reported that reactive oxygen species, nitric oxide [produced by inducible nitric oxide synthase (iNOS)] and peroxynitrite are involved in the pathogenesis and responsible for mustard-induced toxicity. Melatonin, a potent antioxidant molecule, acts as an iNOS inhibitor and a peroxynitrite scavenger. Using the prototypic nitrogen mustard (mechlorethamine/HN2) as a model and based on its known cytotoxic mechanisms, the present study was performed to test melatonin for its capability in protecting the lungs of injured male Wistar rats. Lung mustard toxicity was induced via an intratracheally injection of HN2 (0.5mg/kg) dissolved in saline (100microl). Control animals were injected the same amount of saline only. Melatonin was administered intraperitoneally with two different doses (20mg/kg or 40mg/kg) beginning 1h before HN2 application and continued every 12h for six replications. Forty-eight hours after the last melatonin injection, the animals were sacrificed and their lungs were taken for further assay, i.e., malondialdehyde (MDA) levels, and superoxide dismutase (SOD), glutathione peroxidase (GPx) and iNOS activity. Additionally their urine was collected for nitrite-nitrate (NO(x)) analysis. HN2 injection caused increased iNOS activity and MDA levels in lung tissue and NO(x) values in urine; lung GPx activity was significantly depressed. Melatonin restored all of these oxidative and nitrosative stress markers in a dose-dependent manner. In conclusion, the results of study provide evidence that melatonin may have the ability to reduce mustard-induced toxicity in the lungs.

  20. Applying pattern recognition methods to analyze the molecular properties of a homologous series of nitrogen mustard agents.

    PubMed

    Bartzatt, Ronald; Donigan, Laura

    2006-01-01

    The purpose of this research was to analyze the pharmacological properties of a homologous series of nitrogen mustard (N-mustard) agents formed after inserting 1 to 9 methylene groups (-CH2-) between 2 -N(CH2CH2Cl)2 groups. These compounds were shown to have significant correlations and associations in their properties after analysis by pattern recognition methods including hierarchical classification, cluster analysis, nonmetric multi-dimensional scaling (MDS), detrended correspondence analysis, K-means cluster analysis, discriminant analysis, and self-organizing tree algorithm (SOTA) analysis. Detrended correspondence analysis showed a linear-like association of the 9 homologs, and hierarchical classification showed that each homolog had great similarity to at least one other member of the series-as did cluster analysis using paired-group distance measure. Nonmetric multi-dimensional scaling was able to discriminate homologs 2 and 3 (by number of methylene groups) from homologs 4, 5, and 6 as a group, and from homologs 7, 8, and 9 as a group. Discriminant analysis, K-means cluster analysis, and hierarchical classification distinguished the high molecular weight homologs from low molecular weight homologs. As the number of methylene groups increased the aqueous solubility decreased, dermal permeation coefficient increased, Log P increased, molar volume increased, parachor increased, and index of refraction decreased. Application of pattern recognition methods discerned useful interrelationships within the homologous series that will determine specific and beneficial clinical applications for each homolog and methods of administration. PMID:16796353

  1. ALKYL PYROPHOSPHATE METAL SOLVENT EXTRACTANTS AND PROCESS

    DOEpatents

    Long, R.L.

    1958-09-30

    A process is presented for the recovery of uranium from aqueous mineral acidic solutions by solvent extraction. The extractant is a synmmetrical dialkyl pyrophosphate in which the alkyl substituents have a chain length of from 4 to 17 carbon atoms. Mentioned as a preferred extractant is dioctyl pyrophosphate. The uranium is precipitated irom the organic extractant phase with an agent such as HF, fluoride salts. alcohol, or ammonia.

  2. Screening for DNA Alkylation Mono and Cross-Linked Adducts with a Comprehensive LC-MS(3) Adductomic Approach.

    PubMed

    Stornetta, Alessia; Villalta, Peter W; Hecht, Stephen S; Sturla, Shana J; Balbo, Silvia

    2015-12-01

    A high-resolution/accurate-mass DNA adductomic approach was developed to investigate anticipated and unknown DNA adducts induced by DNA alkylating agents in biological samples. Two new features were added to a previously developed approach to significantly broaden its scope, versatility, and selectivity. First, the neutral loss of a base (guanine, adenine, thymine, or cytosine) was added to the original methodology's neutral loss of the 2'-deoxyribose moiety to allow for the detection of all DNA base adducts. Second, targeted detection of anticipated DNA adducts based on the reactivity of the DNA alkylating agent was demonstrated by inclusion of an ion mass list for data dependent triggering of MS(2) fragmentation events and subsequent MS(3) fragmentation. Additionally, untargeted screening of the samples, based on triggering of an MS(2) fragmentation event for the most intense ions of the full scan, was included for detecting unknown DNA adducts. The approach was tested by screening for DNA mono and cross-linked adducts in purified DNA and in DNA extracted from cells treated with PR104A, an experimental DNA alkylating nitrogen mustard prodrug currently under investigation for the treatment of leukemia. The results revealed the ability of this new DNA adductomic approach to detect anticipated and unknown PR104A-induced mono and cross-linked DNA adducts in biological samples. This methodology is expected to be a powerful tool for screening for DNA adducts induced by endogenous or exogenous exposures.

  3. Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-07-01

    The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety.

  4. Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-07-01

    The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety. PMID:27383199

  5. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    PubMed

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. PMID:26150397

  6. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    PubMed

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts.

  7. Final Technical Report [Development of Catalytic Alkylation and Fluoroalkylation Methods

    SciTech Connect

    Vicic, David A.

    2014-05-01

    In the early stages of this DOE-funded research project, we sought to prepare and study a well-defined nickel-alkyl complex containing tridentate nitrogen donor ligands. We found that reaction of (TMEDA)NiMe2 (1) with terpyridine ligand cleanly led to the formation of (terpyridyl)NiMe (2), which we also determined to be an active alkylation catalyst. The thermal stability of 2 was unlike that seen for any of the active pybox ligands, and enabled a number of key studies on alkyl transfer reactions to be performed, providing new insights into the mechanism of nickel-mediated alkyl-alkyl cross-coupling reactions. In addition to the mechanistic studies, we showed that the terpyridyl nickel compounds can catalytically cross-couple alkyl iodides in yields up to 98% and bromides in yields up to 46 %. The yields for the bromides can be increased up to 67 % when the new palladium catalyst [(tpy’)Pd-Ph]I is used. The best route to the targeted [(tpy)NiBr] (1) was found to involve the comproportionation reaction of [(dme)NiBr{sub 2}] and [Ni(COD){sub 2}] in the presence of two equivalents of terpyridine. This reaction was driven to high yields of product formation (72 % isolated) by the precipitation of 1 from THF solvent.

  8. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  9. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    NASA Astrophysics Data System (ADS)

    Behenna, Douglas C.; Liu, Yiyang; Yurino, Taiga; Kim, Jimin; White, David E.; Virgil, Scott C.; Stoltz, Brian M.

    2012-02-01

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures.

  10. N-O Chemistry for Antibiotics: Discovery of N-Alkyl-N-(pyridin-2-yl)hydroxylamine Scaffolds as Selective Antibacterial Agents Using Nitroso Diels-Alder and Ene Chemistry

    PubMed Central

    Wencewicz, Timothy A.; Yang, Baiyuan; Rudloff, James R.; Oliver, Allen G.; Miller, Marvin J.

    2011-01-01

    The discovery, syntheses, and structure-activity relationships (SAR) of a new family of heterocyclic antibacterial compounds based on N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds are described. A structurally diverse library of ~100 heterocyclic molecules generated from Lewis acid-mediated nucleophilic ring opening reactions with nitroso Diels-Alder cycloadducts and nitroso ene reactions with substituted alkenes was evaluated in whole cell antibacterial assays. Compounds containing the N-alkyl-N-(pyridin-2-yl)hydroxylamine structure demonstrated selective and potent antibacterial activity against the Gram-positive bacterium Micrococcus luteus ATCC 10240 (MIC90 = 2.0 μM or 0.41 μg/mL) and moderate activity against other Gram-positive strains including antibiotic resistant strains of Staphylococcus aureus (MRSA) and Enterococcus faecalis (VRE). A new synthetic route to the active core was developed using palladium-catalyzed Buchwald-Hartwig amination reactions of N-alkyl-O-(4-methoxybenzyl)hydroxylamines with 2-halo-pyridines that facilitated SAR studies and revealed the simplest active structural fragment. This work shows the value of using a combination of diversity-oriented synthesis (DOS) and parallel synthesis for identifying new antibacterial scaffolds. PMID:21859126

  11. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  12. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  13. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  14. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  15. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  16. Identification of alkyl carbazoles and alkyl benzocarbazoles in Brazilian petroleum derivatives.

    PubMed

    Oliveira, Eniz Conceição; Vaz de Campos, Maria Cecília; Rodrigues, Maria Regina Alves; Pérez, Valéria Flores; Melecchi, Maria Inês Soares; Vale, Maria Goreti Rodrigues; Zini, Cláudia Alcaraz; Caramão, Elina Bastos

    2006-02-10

    Carbozoles are important compounds in crude oils, as they may be used as geochemical tracers, being the major type of nitrogen compounds in petroleum. At the same time, they are regarded as undesirable due to the problems they may cause in the refining process, such as catalyst poisoning, corrosion, gum or color formation in final products. As separation and identification of carbazoles are challenging goals, this work presents a chromatographic method, made of a pre-fractionation on neutral alumina followed by the separation and identification of two classes of carbazoles using FeCl(3)/Chromossorb W and gas chromatograph with mass spectrometer (GC/MS) (SIM-single ion monitoring mode) analysis. For the first time, a series of alkyl carbazoles and alkyl benzocarbazoles were identified in heavy gas oil (HGO) and atmospheric residue of distillation (ARD) obtained from Brazilian petroleum.

  17. Alkylation of complementary ribonucleotides in nanoreactors.

    PubMed

    Angelico, Ruggero; Losito, Ilario; Cuomo, Francesca; Ceglie, Andrea; Palmisano, Francesco

    2013-01-14

    The aim of the present study was to provide experimental evidence that base pairing, commonly occurring between nucleic bases in more complex supramolecular arrangements, may affect the reaction pathways associated with the alkylation of bases themselves. In pursuit of this aim, dilute aqueous solutions of Cytidine- (CMP) and Guanosine-Mono-Phosphate (GMP) as single reactants or in an equimolar mixture were treated with the electrophilic alkylating agent 1,2-Dodecyl-Epoxide (DE), which was preventively dispersed into micellar solutions prepared with the cationic surfactant hexadecyltrimethylammonium bromide (CTAB). In the early stage of the reaction, CTAB micelles acted as micro-heterogeneous nanoreactors, but as the reaction progressed the systems evolved toward the formation of polydisperse aggregates, whose size and surface-charge properties were monitored as a function of reaction time. From mass spectrometry analyses, it was found that the deamination of cytosine, a side reaction related to the alkylation of the amino group of CMP, was reduced when both the complementary ribonucleotides were present in the same reaction mixture. The involvement of specific sites able to establish C:G interactions (possibly via H-bonding or π-π stacking) could explain the reduced reactivity occurring at the level of some of the nucleophilic centers responsible for molecular recognition.

  18. Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase

    PubMed Central

    Zhao, Yu; Majid, Mona C; Soll, Jennifer M; Brickner, Joshua R; Dango, Sebastian; Mosammaparast, Nima

    2015-01-01

    Repair of DNA alkylation damage is critical for genomic stability and involves multiple conserved enzymatic pathways. Alkylation damage resistance, which is critical in cancer chemotherapy, depends on the overexpression of alkylation repair proteins. However, the mechanisms responsible for this upregulation are unknown. Here, we show that an OTU domain deubiquitinase, OTUD4, is a positive regulator of ALKBH2 and ALKBH3, two DNA demethylases critical for alkylation repair. Remarkably, we find that OTUD4 catalytic activity is completely dispensable for this function. Rather, OTUD4 is a scaffold for USP7 and USP9X, two deubiquitinases that act directly on the AlkB proteins. Moreover, we show that loss of OTUD4, USP7, or USP9X in tumor cells makes them significantly more sensitive to alkylating agents. Taken together, this work reveals a novel, noncanonical mechanism by which an OTU family deubiquitinase regulates its substrates, and provides multiple new targets for alkylation chemotherapy sensitization of tumors. PMID:25944111

  19. Potential of the NBP method for the study of alkylation mechanisms: NBP as a DNA-model.

    PubMed

    Gómez-Bombarelli, Rafael; González-Pérez, Marina; Calle, Emilio; Casado, Julio

    2012-06-18

    Alkylating agents are considered to be archetypal carcinogens. One suitable technique to evaluate the activity of alkylating compounds is the NBP assay. This method is based on the formation of a chromophore in the reaction between the alkylating agent and the nucleophile 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to those of DNA bases. NBP is known to react with strong and weak alkylating agents, and much insight into such alkylation mechanisms in vivo can be gained from kinetic study of some alkylation reactions in vitro. Since 1925, the NBP assay has evolved from being a qualitative, analytical tool to becoming a useful physicochemical method that not only allows the rules of chemical reactivity that govern electrophilicity and nucleophilicity to be applied to the reaction of DNA with alkylating agents but also helps to understand some significant relationships between the structure of many alkylation substrates (including DNA) and their chemical and biological responses. Given that advances in this area have the potential to yield both fundamental and practical advances in chemistry, biology, predictive toxicology, and anticancer drug development, this review is designed to provide an overview of the evolution of the NBP method from its early inception until its recent kinetic-mechanistic approach, which allows the pros and cons of NBP as a DNA-model to be analyzed. The validity of NBP as a nucleophilicity model for DNA in general and the position of guanosine at N7 in particular are discussed. PMID:22480281

  20. Polyimides with pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1982-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  1. Discovery of isoxazolinone antibacterial agents. Nitrogen as a replacement for the stereogenic center found in oxazolidinone antibacterials.

    PubMed

    Snyder, Lawrence B; Meng, Zhaoxing; Mate, Robert; D'Andrea, Stanley V; Marinier, Anne; Quesnelle, Claude A; Gill, Patrice; DenBleyker, Kenneth L; Fung-Tomc, Joan C; Frosco, MaryBeth; Martel, Alain; Barrett, John F; Bronson, Joanne J

    2004-09-20

    A series of potential antimicrobial derivatives possessing bioisosteric replacements for the central oxazolidinone ring found in oxazolidinone antibacterials have been prepared. The design concept involved replacement of the requisite sp(3)-hybridized stereogenic center found at the 5-position of the oxazolidinone with a nitrogen atom. The synthesis and antibacterial activity of three such ring systems, the benzisoxazolinones, pyrroles, and isoxazolinones is described.

  2. C-Alkylation of Ketones and Related Compounds by Alcohols: Transition-Metal-Catalyzed Dehydrogenation.

    PubMed

    Huang, Fei; Liu, Zhuqing; Yu, Zhengkun

    2016-01-18

    Transition-metal-catalyzed C-alkylation of ketones and secondary alcohols, with alcohols, avoids use of organometallic or environmentally unfriendly alkylating agents by means of borrowing hydrogen (BH) or hydrogen autotransfer (HA) activation of the alcohol substrates. Water is formed as the only by-product, thus making the BH process atom-economical and environmentally benign. Diverse homogeneous and heterogeneous transition-metal catalysts, ketones, and alcohols can be used for this transformation, thus rendering the BH process promising for replacing those procedures that use traditional alkylating agents. This Minireview summarizes the advances during the last five years in transition-metal-catalyzed BH α-alkylation of ketones, and β-alkylation of secondary alcohols with alcohols. A discussion on the application of the BH strategy for C-C bond formation is included. PMID:26639633

  3. Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    PubMed Central

    Calvo, Jennifer A.; Moroski-Erkul, Catherine A.; Lake, Annabelle; Eichinger, Lindsey W.; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T.; Christiani, David C.; Meira, Lisiane B.; Samson, Leona D.

    2013-01-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag−/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage. PMID:23593019

  4. Effects of changes in intracellular iron pool on AlkB-dependent and AlkB-independent mechanisms protecting E.coli cells against mutagenic action of alkylating agent.

    PubMed

    Sikora, Anna; Maciejewska, Agnieszka M; Poznański, Jarosław; Pilżys, Tomasz; Marcinkowski, Michał; Dylewska, Małgorzata; Piwowarski, Jan; Jakubczak, Wioletta; Pawlak, Katarzyna; Grzesiuk, Elżbieta

    2015-08-01

    An Escherichia coli hemH mutant accumulates protoporphyrin IX, causing photosensitivity of cells to visible light. Here, we have shown that intracellular free iron in hemH mutants is double that observed in hemH(+) strain. The aim of this study was to recognize the influence of this increased free iron concentration on AlkB-directed repair of alkylated DNA by analyzing survival and argE3 → Arg(+) reversion induction after λ>320 nm light irradiation and MMS-treatment in E. coli AB1157 hemH and alkB mutants. E.coli AlkB dioxygenase constitutes a direct single-protein repair system using non-hem Fe(II) and cofactors 2-oxoglutarate (2OG) and oxygen (O2) to initiate oxidative dealkylation of DNA/RNA bases. We have established that the frequency of MMS-induced Arg(+) revertants in AB1157 alkB(+)hemH(-)/pMW1 strain was 40 and 26% reduced comparing to the alkB(+)hemH(-) and alkB(+)hemH(+)/pMW1, respectively. It is noteworthy that the effect was observed only when bacteria were irradiated with λ>320 nm light prior MMS-treatment. This finding indicates efficient repair of alkylated DNA in photosensibilized cells in the presence of higher free iron pool and AlkB concentrations. Interestingly, a 31% decrease in the level of Arg(+) reversion was observed in irradiated and MMS-treated hemH(-)alkB(-) cells comparing to the hemH(+)alkB(-) strain. Also, the level of Arg(+) revertants in the irradiated and MMS treated hemH(-) alkB(-) mutant was significantly lower (by 34%) in comparison to the same strain but MMS-treated only. These indicate AlkB-independent repair involving Fe ions and reactive oxygen species. According to our hypothesis it may be caused by non-enzymatic dealkylation of alkylated dNTPs in E. coli cells. In in vitro studies, the absence of AlkB protein in the presence of iron ions allowed etheno(ϵ) dATP and ϵdCTP to spontaneously convert to dAMP and dCMP, respectively. Thus, hemH(-) intra-cellular conditions may favor Fe-dependent dealkylation of modified dNTPs.

  5. Design, microwave-mediated synthesis and biological evaluation of novel 4-aryl(alkyl)amino-3-nitroquinoline and 2,4-diaryl(dialkyl)amino-3-nitroquinolines as anticancer agents.

    PubMed

    Chauhan, Monika; Rana, Anil; Alex, Jimi Marin; Negi, Arvind; Singh, Sandeep; Kumar, Raj

    2015-02-01

    Design, microwave-assisted synthesis of novel 4-aryl (alkyl)amino-3-nitroquinoline (1a-1l) and 2,4-diaryl (dialkyl)amino-3-nitroquinolines (2a-2k and 3a) via regioselective and complete nucleophilic substitution of 2,4-dichloro-3-nitroquinoline, respectively in water are presented. The newly synthesized compounds were evaluated for the first time for antiproliferative activity against EGFR overexpressing human lung (A-549 and H-460) and colon (HCT-116-wild type and HCT-116-p53 null) cancer cell lines. Some notions about structure-activity relationships (SAR) are presented. Compounds 2e, 2f, 2j and 3a overall exhibited excellent anticancer activity comparable to erlotinib which was used as a positive control. Molecular modeling studies disclosed the recognition pattern of the compounds and also supported the observed SAR. PMID:25462621

  6. Differences in sequence selectivity of DNA alkylation by isomeric intercalating aniline mustards.

    PubMed

    Prakash, A S; Denny, W A; Wakelin, L P

    1990-01-01

    Two DNA-targeted mustard derivatives, N,N-bis(2-chloroethyl)-4-(5-[9-acridinylamino]-pentamido)aniline and 4-(9-[acridinylamino]butyl 4-(N,N-bis[2-chloroethyl]-aminobenzamide, which are isomeric compounds where the mustard is linked to the DNA-binding 9-aminoacridine moiety by either a -CONH- or a -NHCO- group, show significant differences in the sequence selectivity of their alkylation of DNA. The CONH isomer is a more efficient alxylating agent than the NHCO compound by an order of magnitude, consistent with the larger electron release of the CONH group to the aniline ring. However, the pattern of alkylation by the two compounds is also very different, with the CONH isomer preferring alkylation of guanines adjacent to 3'- or 5'-adenines and cytosines (for example those in sequences 5'-CGC, 5'-AGC, 5'-CGG and 5'-AGA) while the isomeric NHCO compound shows preference for guanines in runs of Gs. In addition, both isomers alkylate 3'-adenines in runs of adenines. Both compounds also show completely different patterns of alkylation to their untargeted mustard counterparts, since 4-MeCONH-aniline mustard alkylates all guanines and adenines in runs of adenines, while 4-Me2NCO-aniline mustard fails to alkylate DNA at all. These differences in alkylation patterns between the CONH- and its isomeric NHCO- compounds and their relationships between the alkylation patterns of the isomers and their biological activities are discussed.

  7. Safety assessment of alkyl PEG ethers as used in cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2012-01-01

    The CIR Expert Panel assessed the safety of Alkyl PEG Ethers as used in cosmetics. These ingredients primarily function in cosmetics as surfactants, and some have additional functions as skin-conditioning agents, fragrance ingredients, and emulsion stabilizers. The Panel reviewed available relevant animal and clinical data, as well as information from previous CIR reports; when data were not available for individual ingredients, the Panel extrapolated from the existing data to support safety. The Panel concluded that the Alkyl PEG ethers are safe as used when formulated to be nonirritating, and the same applies to future alkyl PEG ether cosmetic ingredients that vary from those ingredients recited herein only by the number of ethylene glycol repeat units.

  8. Safety Assessment of Alkyl PEG Sulfosuccinates as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of alkyl polyethylene glycol (PEG) sulfosuccinates, which function in cosmetics mostly as surfactants/cleansing agents. Although these ingredients may cause ocular and skin irritation, dermal penetration is unlikely because of the substantial polarity and molecular size of these ingredients. The Panel considered the negative oral carcinogenicity and reproductive and developmental toxicity data on chemically related laureths (PEG lauryl ethers) and negative repeated dose toxicity and skin sensitization data on disodium laureth sulfosuccinate supported the safety of these alkyl PEG sulfosuccinates in cosmetic products, but. The CIR Expert Panel concluded that the alkyl PEG sulfosuccinates are safe in the present practices of use and concentration when formulated to be nonirritating.

  9. Safety Assessment of Alkyl Ethylhexanoates as Used in Cosmetics.

    PubMed

    Fiume, Monice; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 16 alkyl ethylhexanoates for use in cosmetics, concluding that these ingredients are safe in cosmetic formulations in the present practices of use and concentrations when formulated to be nonirritating. The alkyl ethylhexanoates primarily function as skin-conditioning agents in cosmetics. The highest concentration of use reported for any of the alkyl ethylhexanoates is 77.3% cetyl ethylhexanoate in rinse-off formulations used near the eye, and the highest leave-on use reported is 52% cetyl ethylhexanoate in lipstick formulations. The Panel reviewed available animal and clinical data related to these ingredients, and the similarities in structure, properties, functions, and uses of ingredients from previous CIR assessments on constituent alcohols that allowed for extrapolation of the available toxicological data to assess the safety of the entire group.

  10. Safety Assessment of Alkyl Ethylhexanoates as Used in Cosmetics.

    PubMed

    Fiume, Monice; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 16 alkyl ethylhexanoates for use in cosmetics, concluding that these ingredients are safe in cosmetic formulations in the present practices of use and concentrations when formulated to be nonirritating. The alkyl ethylhexanoates primarily function as skin-conditioning agents in cosmetics. The highest concentration of use reported for any of the alkyl ethylhexanoates is 77.3% cetyl ethylhexanoate in rinse-off formulations used near the eye, and the highest leave-on use reported is 52% cetyl ethylhexanoate in lipstick formulations. The Panel reviewed available animal and clinical data related to these ingredients, and the similarities in structure, properties, functions, and uses of ingredients from previous CIR assessments on constituent alcohols that allowed for extrapolation of the available toxicological data to assess the safety of the entire group. PMID:26684798

  11. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-01

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride. PMID:26491957

  12. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-01

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride.

  13. Photoinduced, Copper-Catalyzed Carbon–Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature

    PubMed Central

    Ratani, Tanvi S.; Bachman, Shoshana; Fu, Gregory C.; Peters, Jonas C.

    2015-01-01

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C–N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C–C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand co-additive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2]− may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride. PMID:26491957

  14. Mild Catalytic methods for Alkyl-Alkyl Bond Formation

    SciTech Connect

    Vicic, David A

    2009-08-10

    Overview of Research Goals and Accomplishments for the Period 07/01/06 – 06/30/07: Our overall research goal is to transform the rapidly emerging synthetic chemistry involving alkyl-alkyl cross-couplings into more of a mechanism-based field so that that new, rationally-designed catalysts can be performed under energy efficient conditions. Our specific objectives for the previous year were 1) to obtain a proper electronic description of an active catalyst for alkyl-alkyl cross-coupling reactions and 2) to determine the effect of ligand structure on the rate, scope, selectivity, and functional group compatibility of C(sp3)-C(sp3) cross-coupling catalysis. We have completed both of these initial objectives and established a firm base for further studies. The specific significant achievements of the current grant period include: 1) we have performed magnetic and computational studies on (terpyridine)NiMe, an active catalyst for alkyl-alkyl cross couplings, and have discovered that the unpaired electron resides heavily on the terpyridine ligand and that the proper electronic description of this nickel complex is a Ni(II)-methyl cation bound to a reduced terpyridine ligand; 2) we have for the first time shown that alkyl halide reduction by terpyridyl nickel catalysts is substantially ligand based; 3) we have shown by isotopic labeling studies that the active catalyst (terpyridine)NiMe is not produced via a mechanism that involves the formation of methyl radicals when (TMEDA)NiMe2 is used as the catalyst precursor; 4) we have performed an extensive ligand survey for the alkyl-alkyl cross-coupling reactions and have found that electronic factors only moderately influence reactivity in the terpyridine-based catalysis and that the most dramatic effects arise from steric and solubility factors; 5) we have found that the use of bis(dialkylphosphino)methanes as ligands for nickel does not produce active catalysts for cross-coupling but rather leads to bridging hydride

  15. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound

    SciTech Connect

    Ohnuma, Tomokazu; Nakayama, Shinji; Anan, Eisaburo; Nishiyama, Takahito; Ogura, Kenichiro; Hiratsuka, Akira

    2010-04-01

    Under basal conditions, the interaction of the cytosolic protein Kelch-like ECH-associated protein 1 (Keap1) with the transcription factor nuclear factor-E2-related factor 2 (Nrf2) results in a low level of expression of cytoprotective genes whose promoter region contains the antioxidant response element (ARE). In response to oxidants and electrophiles, Nrf2 is stabilized and accumulates in the nucleus. The mechanism for this effect has been proposed to involve thiol-dependent modulation of Keap1, leading to loss of its ability to negatively regulate Nrf2. We previously reported that falcarindiol (heptadeca-1,9(Z)-diene-4,6-diyne-3,8-diol), which occurs in Apiaceae and the closely related Araliaceae plants, causes nuclear accumulation of Nrf2 and induces ARE-regulated enzymes. Here, we report the mechanism of Nrf2 induction by falcarindiol. NMR analysis revealed that the conjugated diacetylene carbons of falcarindiol acted as electrophilic moieties to form adducts with a cysteine (Cys) thiol. In addition, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and circular dichroism spectroscopy, it was demonstrated that falcarindiol alkylated Cys residues in Keap1 and altered the Keap1 secondary structure. Transfection studies using the purified Keap1 protein, a luciferase reporter construct, and an Nrf2-expressing plasmid indicated that the intact Keap1 protein suppressed Nrf2-mediated ARE-luciferase activity. On the other hand, the falcarindiol-alkylated Keap1 protein did not suppress such activity. Treatment of HEK293 cells overexpressing Keap1 with falcarindiol generated a high molecular weight (HMW) form of Keap1. Furthermore, the Cys151 residue in Keap1 was found to be uniquely required for not only the formation of HMW Keap1 but also an increase in ARE-luciferase activity by falcarindiol. Our results demonstrate that falcarindiol having conjugated diacetylene carbons covalently modifies the Cys151 residue in Keap1 and that the

  16. Manganese-Mediated C-H Alkylation of Unbiased Arenes Using Alkylboronic Acids.

    PubMed

    Castro, Susana; Fernández, Juan J; Fañanás, Francisco J; Vicente, Rubén; Rodríguez, Félix

    2016-06-27

    The alkylation of arenes is an essential synthetic step of interest not only from the academic point of view but also in the bulk chemical industry. Despite its limitations, the Friedel-Crafts reaction is still the method of choice for most of the arene alkylation processes. Thus, the development of new strategies to synthesize alkyl arenes is a highly desirable goal, and herein, we present an alternative method to those conventional reactions. Particularly, a simple protocol for the direct C-H alkylation of unbiased arenes with alkylboronic acids in the presence of Mn(OAc)3 ⋅2H2 O is reported. Primary or secondary unactivated alkylboronic acids served as alkylating agents for the direct functionalization of representative polyaromatic hydrocarbons (PAHs) or benzene. The results are consistent with a free-radical mechanism. PMID:27124250

  17. Design and in vitro activities of N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, novel, small-molecule hypoxia inducible factor-1 pathway inhibitors and anticancer agents.

    PubMed

    Mun, Jiyoung; Jabbar, Adnan Abdul; Devi, Narra Sarojini; Yin, Shaoman; Wang, Yingzhe; Tan, Chalet; Culver, Deborah; Snyder, James P; Van Meir, Erwin G; Goodman, Mark M

    2012-08-01

    The hypoxia inducible factor (HIF) pathway is an attractive target for cancer, as it controls tumor adaptation to growth under hypoxia and mediates chemotherapy and radiation resistance. We previously discovered 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide as a novel, small-molecule HIF-1 pathway inhibitor in a high-throughput cell-based assay, but its in vivo delivery is hampered by poor aqueous solubility (0.009 μM in water; log P(7.4) = 3.7). Here we describe the synthesis of 12 N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, which were designed to possess optimal lipophilicities and aqueous solubilities by in silico calculations. Experimental log P(7.4) values of 8 of the 12 new analogs ranged from 1.2-3.1. Aqueous solubilities of three analogs were measured, among which the most soluble N-[(8-methoxy-2,2-dimethyl-2H-chromen-6-yl)methyl]-N-(propan-2-yl)pyridine-2-sulfonamide had an aqueous solubility of 80 μM, e.g., a solubility improvement of ∼9000-fold. The pharmacological optimization had limited impact on drug efficacy as the compounds retained IC(50) values at or below 5 μM in our HIF-dependent reporter assay.

  18. Alkyl hydroxybenzoic acid derivatives that inhibit HIV-1 protease dimerization.

    PubMed

    Flausino, O A; Dufau, L; Regasini, L O; Petrônio, M S; Silva, D H S; Rose, T; Bolzani, V S; Reboud-Ravaux, M

    2012-01-01

    The therapeutic potential of gallic acid and its derivatives as anti-cancer, antimicrobial and antiviral agents is well known. We have examined the mechanism by which natural gallic acid and newly synthesized gallic acid alkyl esters and related protocatechuic acid alkyl esters inhibit HIV-1 protease to compare the influence of the aromatic ring substitutions on inhibition. We used Zhang-Poorman's kinetic analysis and fluorescent probe binding to demonstrate that several gallic and protecatechuic acid alkyl esters inhibited HIV-1 protease by preventing the dimerization of this obligate homodimeric aspartic protease rather than targeting the active site. The tri-hydroxy substituted benzoic moiety in gallates was more favorable than the di-substituted one in protocatechuates. In both series, the type of inhibition, its mechanism and the inhibitory efficiency dramatically depended on the length of the alkyl chain: no inhibition with alkyl chains less than 8 carbon atoms long. Molecular dynamics simulations corroborated the kinetic data and propose that gallic esters are intercalated between the two N- and C-monomer ends. They complete the β-sheet and disrupt the dimeric enzyme. The best gallic ester (14 carbon atoms, K(id) of 320 nM) also inhibited the multi-mutated protease MDR-HM. These results will aid the rational design of future generations of non-peptide inhibitors of HIV-1 protease dimerization that inhibit multi-mutated proteases. Finally, our work suggests the wide use of gallic and protocatechuic alkyl esters to dissociate intermolecular β-sheets involved in protein-protein interactions.

  19. New potential of the reductive alkylation of amines

    NASA Astrophysics Data System (ADS)

    Gusak, K. N.; Ignatovich, Zh V.; Koroleva, E. V.

    2015-03-01

    Available data on the reductive alkylation of amines with carbonyl compounds — a key method for the preparation of secondary and tertiary amines — are described systematically. The review provides information on the relevant reducing agents and catalysts and on the use of chiral catalysts in stereo- and enantiocontrolled reactions of amine synthesis. The effect of the reactant and catalyst structures on the reaction rates and chemo- and stereo(enantio)selectivity is considered. The bibliography includes 156 references.

  20. Silver-Mediated Oxidative Trifluoromethylation of Alcohols to Alkyl Trifluoromethyl Ethers.

    PubMed

    Liu, Jian-Bo; Xu, Xiu-Hua; Qing, Feng-Ling

    2015-10-16

    The development of an efficient and practical method for the preparation of alkyl trifluoromethyl ethers is urgently demanding. The silver-mediated oxidative O-trifluoromethylation of primary, secondary, and tertiary alcohols with TMSCF3 under mild reaction conditions is established to provide a novel approach to a broad range of alkyl trifluoromethyl ethers. Further, this method is applied to the late-stage O-trifluoromethylation of complex natural products and prescribed pharmaceutical agents.

  1. Wipe selection for the analysis of surface materials containing chemical warfare agent nitrogen mustard degradation products by ultra-high pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Willison, Stuart A

    2012-12-28

    Degradation products arising from nitrogen mustard chemical warfare agent were deposited on common urban surfaces and determined via surface wiping, wipe extraction, and liquid chromatography–tandem mass spectrometry detection. Wipes investigated included cotton gauze, glass fiber filter, non-woven polyester fiber and filter paper, and surfaces included several porous (vinyl tile, painted drywall, wood) and mostly non-porous (laminate, galvanized steel, glass) surfaces. Wipe extracts were analyzed by ultra-high pressure liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) and compared with high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) results. An evaluation of both techniques suggests UPLC–MS/MS provides a quick and sensitive analysis of targeted degradation products in addition to being nearly four times faster than a single HPLC run, allowing for greater throughput during a wide-spread release concerning large-scale contamination and subsequent remediation events. Based on the overall performance of all tested wipes, filter paper wipes were selected over other wipes because they did not contain interferences or native species (TEA and DEA) associated with the target analytes, resulting in high percent recoveries and low background levels during sample analysis. Other wipes, including cotton gauze, would require a pre-cleaning step due to the presence of large quantities of native species or interferences of the targeted analytes. Percent recoveries obtained from a laminate surface were 47–99% for all nitrogen mustard degradation products. The resulting detection limits achieved from wipes were 0.2 ng/cm(2) for triethanolamine (TEA), 0.03 ng/cm(2) for N-ethyldiethanolamine (EDEA), 0.1 ng/cm(2) for N-methyldiethanolamine (MDEA), and 0.1 ng/cm(2) for diethanolamine (DEA).

  2. Effects of alkyl and aryl substitution on the myocardial specificity of radioiodinated phosphonium, arsonium, and ammonium cations

    SciTech Connect

    Srivastava, P.C.; Hay, H.G.; Knapp, F.F. Jr.

    1985-07-01

    Several radioiodinated iodopentenyl-trisubstituted phosphonium, arsonium, and ammonium iodides have been prepared and evaluated in rats to determine the effects of structural variations of the cations on myocardial uptake and retention. The synthesis of (E)-(1-iodo-1-penten-5-yl)-trisubstituted phosphonium, arsonium, and ammonium iodides via the condensation of trisubstituted phosphine, arsine, and amine precursors, respectively, with (E)-1,5-diiodopentene is described. In some cases a second route involved condensation with (E)-1-borono-5-iodo-1-pentene followed by iodination. In the phosphonium series, the compounds triphenyl 1, dicyclohexylphenyl 5, tricyclohexyl 6, and dimethyl-n-octyl 8 were prepared. The triphenylarsonium 10 and triethylammonium 11 compounds were also prepared. The corresponding radioiodinated analogues were prepared and tissue distribution studies performed in rats. The results (percent dose/gram, 30 min) demonstrate that replacement of phosphorus with arsenic (1, 3.99%; 10, 3.17%) or the replacement of the phenyl ring with the cyclohexyl ring system (6, 2.67%) has no apparent effect on heart uptake. In the series of compounds studied, replacement of the cyclic ring system with alkyl groups, however, significantly decreased heart uptake with both the phosphorus (8, 1.95%) and nitrogen agents (11, 1.11%). Gamma camera imaging studies with (/sup 123/I)-5 and (/sup 123/I)-8 further substantiated the decreased heart uptake with alkyl substitution and the apparent hepatobiliary clearance of 8.

  3. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off.

    PubMed

    Peighamy-Ashnaei, S; Sharifi-Tehrani, A; Ahmadzadeh, M; Behboudi, K

    2007-01-01

    One of the most important environmental factors that regulate the growth and antagonistic efficacy of biocontrol agents is the medium. The aim of this paper was to find the nitrogen and carbon sources that provide maximum biomass production of strains P-5 and P-6 (Pseudomonas fluorescens), B-3 and B-16 (Bacillus subtilis) and minimum cost of media, whilst maintaining biocontrol efficacy. All of the strains were grown in seven liquid media (pH=6.9) including: sucrose + yeast extract, molasses of sugar beet + yeast extract in 2:1 and 1:1 w/w ratios, molasses of sugar beet + urea, nutrient broth, molasses and malt extract, at an initial inoculation of 1 x 10(5) CFU ml(-1). Cells from over night cultures used to inoculate soil at 1 x 10(9) CFU cm(-3) soil. At the same time, fungal inoculum (infected millet seed with Rhizoctonia solani) was added to soil at the rate of 2 g kg(-1) soil. Results indicated that growth of P-6, B-3 and B-16 in molasses + yeast extract (1:1 w/w) medium was significantly higher than in the other media. Molasses + yeast extract (1:1 and 2:1 w/w) media supported rapid growth and high cell yields in P-5. In greenhouse condition, results indicated that the influence of the media on the biocontrol efficacy of P-5, P-6, B-3 and B-16 was the same and Pseudomonas fluorescens P-5 in molasses and malt extract media reduced the severity of disease up to 72.8 percent. On the other hand, there were observed significant differences on bean growth after one month in greenhouse. P-5 in molasses + yeast extract (1:1 w/w) medium had the most effects on bean growth promotion. In this study molasses media showed good yield efficacy in all of the strains. The high sucrose concentration in molasses justifies the high biomass in all of the strains. Also, the low cost of molasses allows its concentration to be increased in media. On the other hand, yeast extract was the best organic nitrogen source for antagonist bacteria but it is expensive for an industrial process

  4. Modeling H-bonding and solvent effects in the alkylation of pyrimidine bases by a prototype quinone methide: a DFT study.

    PubMed

    Freccero, Mauro; Di Valentin, Cristiana; Sarzi-Amadè, Mirko

    2003-03-26

    Nucleophilicity of NH(2), N3, and O(2) centers of cytosine toward a model quinone methide (o-QM) as alkylating agent has been studied using DFT computational analysis [at the B3LYP/6-311+G(d,p) level]. Specific and bulk effects of water (by C-PCM model) on the alkylation pathways have been evaluated by analyzing both unassisted and water-assisted reaction mechanisms. An ancillary water molecule, H-bonded to the alkylating agent, may interact monofunctionally with the o-QM oxygen atom (passive mechanisms) or may participate bifunctionally in cyclic hydrogen-bonded structures as a proton shuttle (active mechanisms). A comparison of the unassisted with the water-assisted reaction mechanisms has been made on the basis of activation Gibbs free energies (DeltaG(++)). The gas-phase alkylation reaction at N3 does proceed through a passive mechanism that is preferred over both the active (by -6.3 kcal mol(-1)) and the unassisted process. In contrast, in the gas phase, the active assisted processes at NH(2) and O(2) centers are both favored over their unassisted counterparts by -4.0 and -2.2 kcal mol(-1), respectively. The catalytic effect of a water molecule, in gas phase, reduces the gap between the TSs of the O(2) and NH(2) reaction pathways, but the former remains more stable. Water bulk effect significantly modifies the relative importance of the unassisted and water-assisted alkylation mechanisms, favoring the former, in comparison to the gas-phase reactions. In particular, the unassisted alkylation becomes the preferred mechanism for the reaction at both the exocyclic (NH(2)) and the heterocyclic (N3) nitrogen atoms. By contrast, alkylation at the cytosine oxygen atom is a water-catalyzed process, since in water the active water-assisted mechanism is still favored. As far as competition, among all the possible mechanisms, our calculations unambiguously suggest that the most nucleophilic site both in gas phase (naked reagents: N3 > O(2) >or= NH(2)) and in water

  5. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  6. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  7. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  8. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  9. Towards understanding the mechanism of action of antibacterial N-alkyl-3-hydroxypyridinium salts: Biological activities, molecular modeling and QSAR studies.

    PubMed

    Dolezal, Rafael; Soukup, Ondrej; Malinak, David; Savedra, Ranylson M L; Marek, Jan; Dolezalova, Marie; Pasdiorova, Marketa; Salajkova, Sarka; Korabecny, Jan; Honegr, Jan; Ramalho, Teodorico C; Kuca, Kamil

    2016-10-01

    In this study, we have carried out a combined experimental and computational investigation to elucidate several bred-in-the-bone ideas standing out in rational design of novel cationic surfactants as antibacterial agents. Five 3-hydroxypyridinium salts differing in the length of N-alkyl side chain have been synthesized, analyzed by high performance liquid chromatography, tested for in vitro activity against a panel of pathogenic bacterial and fungal strains, computationally modeled in water by a SCRF B3LYP/6-311++G(d,p) method, and evaluated by a systematic QSAR analysis. Given the results of this work, the hypothesis suggesting that higher positive charge of the quaternary nitrogen should increase antimicrobial efficacy can be rejected since 3-hydroxyl group does increase the positive charge on the nitrogen but, simultaneously, it significantly derogates the antimicrobial activity by lowering the lipophilicity and by escalating the desolvation energy of the compounds in comparison with non-hydroxylated analogues. Herein, the majority of the prepared 3-hydroxylated substances showed notably lower potency than the parent pyridinium structures, although compound 8 with C12 alkyl chain proved a distinctly better antimicrobial activity in submicromolar range. Focusing on this anomaly, we have made an effort to reveal the reason of the observed activity through a molecular dynamics simulation of the interaction between the bacterial membrane and compound 8 in GROMACS software.

  10. Towards understanding the mechanism of action of antibacterial N-alkyl-3-hydroxypyridinium salts: Biological activities, molecular modeling and QSAR studies.

    PubMed

    Dolezal, Rafael; Soukup, Ondrej; Malinak, David; Savedra, Ranylson M L; Marek, Jan; Dolezalova, Marie; Pasdiorova, Marketa; Salajkova, Sarka; Korabecny, Jan; Honegr, Jan; Ramalho, Teodorico C; Kuca, Kamil

    2016-10-01

    In this study, we have carried out a combined experimental and computational investigation to elucidate several bred-in-the-bone ideas standing out in rational design of novel cationic surfactants as antibacterial agents. Five 3-hydroxypyridinium salts differing in the length of N-alkyl side chain have been synthesized, analyzed by high performance liquid chromatography, tested for in vitro activity against a panel of pathogenic bacterial and fungal strains, computationally modeled in water by a SCRF B3LYP/6-311++G(d,p) method, and evaluated by a systematic QSAR analysis. Given the results of this work, the hypothesis suggesting that higher positive charge of the quaternary nitrogen should increase antimicrobial efficacy can be rejected since 3-hydroxyl group does increase the positive charge on the nitrogen but, simultaneously, it significantly derogates the antimicrobial activity by lowering the lipophilicity and by escalating the desolvation energy of the compounds in comparison with non-hydroxylated analogues. Herein, the majority of the prepared 3-hydroxylated substances showed notably lower potency than the parent pyridinium structures, although compound 8 with C12 alkyl chain proved a distinctly better antimicrobial activity in submicromolar range. Focusing on this anomaly, we have made an effort to reveal the reason of the observed activity through a molecular dynamics simulation of the interaction between the bacterial membrane and compound 8 in GROMACS software. PMID:27341309

  11. Oil compositions containing alkyl amine or alkyl mercaptan derivatives of copolymers of an alpha olefin or an alkyl vinyl ether

    SciTech Connect

    Le, H.T.

    1990-02-13

    This patent describes an oil composition. It comprises a major amount of an oil selected from a crude oil or fuel oil and a minor amount of an alkyl amine or alkyl mercaptan derivative of an alpha olefin or alkyl vinyl ether and an unsaturated alpha, beta-dicarboxylic compound copolymer having pour point depressant ;properties. The copolymer comprising the reaction product of an alpha olefin having from about 2 to about 30 carbon atoms or mixtures of alpha olefins having from about 2 to about 30 carbon atoms or an alkyl vinyl ether or mixture of alkyl vinyl ethers.

  12. The Effect of 5-Alkyl Modification on the Biological Activity of Pyrrolo[2,3-d]pyrimidine Containing Classical and Nonclassical Antifolates as Inhibitors of Dihydrofolate Reductase and as Antitumor and/or Antiopportunistic Infection Agents1a-e

    PubMed Central

    Gangjee, Aleem; Jain, Hiteshkumar D.; Queener, Sherry F.; Kisliuk, Roy L.

    2013-01-01

    Novel classical antifolates (3 and 4) and 17 nonclassical antifolates (11-27) were synthesized as antitumor and/or antiopportunistic infection agents. Intermediates for the synthesis of 3, 4, and 11-27 were 2,4-diamino-5-alkylsubstituted-7H-pyrrolo[2,3-d]pyrimidines, 31 and 38, prepared by a ring transformation/ring annulation sequence of 2-amino-3-cyano-4-alkyl furans to which various aryl thiols were attached at the 6-position via an oxidative addition reaction using I2. The condensation of α-hydroxy ketones with malonodinitrile afforded the furans. For the classical analogues 3 and 4, the ester precursors were deprotected, coupled with diethyl-l-glutamate, and saponified. Compounds 3 (IC50 = 60 nM) and 4 (IC50 = 90 nM) were potent inhibitors of human DHFR. Compound 3 inhibited tumor cells in culture with GI50 ≤ 10−7 M. Nonclassical 17 (IC50 = 58 nM) was a potent inhibitor of Toxoplasma gondii (T. gondii) DHFR with >500-fold selectivity over human DHFR. Analogue 17 was 50-fold more potent than trimethoprim and about twice as selective against T. gondii DHFR. PMID:18605720

  13. Methods of making alkyl esters

    SciTech Connect

    Elliott, Brian

    2010-08-03

    A method comprising contacting an alcohol, a feed comprising one or more glycerides and equal to or greater than 2 wt % of one or more free fatty acids, and a solid acid catalyst, a nanostructured polymer catalyst, or a sulfated zirconia catalyst in one or more reactors, and recovering from the one or more reactors an effluent comprising equal to or greater than about 75 wt % alkyl ester and equal to or less than about 5 wt % glyceride.

  14. PREPARATION OF ALKYL PYROPHOSPHATE EXTRACTANTS

    DOEpatents

    Levine, C.A.; Skiens, W.E.; Moore, G.R.

    1960-08-01

    A process for providing superior solvent extractants for metal recovery processes is given wherein the extractant comprises an alkyl pyrophosphoric acid ester dissolved in an organic solvent diluent. Finely divided solid P/sub 2/O/ sub 5/ is slurried in an organic solvent-diluent selected from organic solvents such as kerosene, benzene, chlorobenzene, toluene, etc. An alcohol selected from the higher alcohols having 4 to 17 carbon atoms. e.g.. hexanol-1. heptanol-3, octanol-1. 2.6-dimethyl-heptanol-4, and decanol-1, is rapidly added to the P/sub 2/O/sub 5/ slurry in the amount of about 2 moles of alcohol to 1 mole of P/sub 2/ O/sub 5/. The temperature is maintained below about 110 deg C during the course of the P/sub 2/O/sub 5/-alcohol reaction. An alkyl pyrophosphate extractant compound is formed as a consequence of the reaction process. The alkyl pyrophosphate solvent-diluent extractant phase is useful in solvent extraction metal recovery processes.

  15. Safety Assessment of Alkyl Esters as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart A; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of 237 alkyl esters for use in cosmetics. The alkyl esters included in this assessment have a variety of reported functions in cosmetics, with skin-conditioning agent being the most common function. The Panel reviewed available animal and clinical data in making its determination of safety on these ingredients, and where there were data gaps, similarity in structure, properties, functions, and uses of these ingredients allowed for extrapolation of the available toxicological data to assess the safety of the entire group. The Panel concluded that these ingredients are safe in cosmetic formulations in the present practices of use and concentration when formulated to be nonirritating.

  16. Alkyl Nitrates and Oxidized Volatile Organic Compounds during NACHTT: Influence on Reactive Chlorine Activation

    NASA Astrophysics Data System (ADS)

    Swarthout, R.; Sive, B. C.; Russo, R. S.; Zhou, Y.

    2011-12-01

    Recent studies have suggested that reactive chlorine species can contribute substantially to the oxidative capacity of the atmosphere and also influence tropospheric ozone chemistry in areas far from dominant marine sources. The photochemical processing of polluted air masses containing can potentially affect the formation of chlorine radical (Cl) through various processes involving hydrocarbons and NOx (NO + NO2). Organic peroxy radicals can react with nitric oxide (NO) to form alkyl nitrates or to produce nitrogen dioxide (NO2) and oxygenated volatile organic compounds (OVOCs), including alcohols, aldehydes and ketones. Aldehydes can further react with NO2 to form peroxyacyl nitrates (PAN). Alkyl nitrates and PAN can serve as reservoirs for long range transport of NOx and can influence Cl production in remote areas. In order to further elucidate the influence of OVOCs and alkyl nitrates on chlorine activation processes, whole air samples were collected hourly during the Nitrogen, Aerosol Composition and Halogens on a Tall Tower (NACHTT) campaign at the Boulder Atmospheric Observatory in Erie, Colorado from February 18 through March 11, 2011. Profile samples up to 250 m were also collected throughout the campaign. Samples were analyzed for a comprehensive suite of volatile organic compounds, including OVOCs and C1 to C5 alkyl nitrates, using a five channel gas chromatographic analytical system. Alkyl nitrates and OVOCs were abundant throughout the campaign. Total alkyl nitrate mixing ratios ranged from 13 to 227 pptv with 2-butyl nitrate and 2-propyl nitrate accounting for over half of this total. Ethanol was the most abundant OVOC followed by methanol with median mixing ratios of 8.5 ppbv and 5.6 ppbv, respectively. This presentation will focus on the influence the observed alkyl nitrate and OVOC mixing ratios and air mass photochemical processing on Cl cycling.

  17. Bimetallic oxidative addition involving radical intermediates in nickel-catalyzed alkyl-alkyl Kumada coupling reactions.

    PubMed

    Breitenfeld, Jan; Ruiz, Jesus; Wodrich, Matthew D; Hu, Xile

    2013-08-14

    Many nickel-based catalysts have been reported for cross-coupling reactions of nonactivated alkyl halides. The mechanistic understanding of these reactions is still primitive. Here we report a mechanistic study of alkyl-alkyl Kumada coupling catalyzed by a preformed nickel(II) pincer complex ([(N2N)Ni-Cl]). The coupling proceeds through a radical process, involving two nickel centers for the oxidative addition of alkyl halide. The catalysis is second-order in Grignard reagent, first-order in catalyst, and zero-order in alkyl halide. A transient species, [(N2N)Ni-alkyl(2)](alkyl(2)-MgCl), is identified as the key intermediate responsible for the activation of alkyl halide, the formation of which is the turnover-determining step of the catalysis.

  18. Bimetallic oxidative addition involving radical intermediates in nickel-catalyzed alkyl-alkyl Kumada coupling reactions.

    PubMed

    Breitenfeld, Jan; Ruiz, Jesus; Wodrich, Matthew D; Hu, Xile

    2013-08-14

    Many nickel-based catalysts have been reported for cross-coupling reactions of nonactivated alkyl halides. The mechanistic understanding of these reactions is still primitive. Here we report a mechanistic study of alkyl-alkyl Kumada coupling catalyzed by a preformed nickel(II) pincer complex ([(N2N)Ni-Cl]). The coupling proceeds through a radical process, involving two nickel centers for the oxidative addition of alkyl halide. The catalysis is second-order in Grignard reagent, first-order in catalyst, and zero-order in alkyl halide. A transient species, [(N2N)Ni-alkyl(2)](alkyl(2)-MgCl), is identified as the key intermediate responsible for the activation of alkyl halide, the formation of which is the turnover-determining step of the catalysis. PMID:23865460

  19. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid, alkyl and substituted alkyl esters (generic name). 721.1875 Section 721.1875 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted...

  20. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid, alkyl and substituted alkyl esters (generic name). 721.1875 Section 721.1875 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted...

  1. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid, alkyl and substituted alkyl esters (generic name). 721.1875 Section 721.1875 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted...

  2. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid, alkyl and substituted alkyl esters (generic name). 721.1875 Section 721.1875 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted...

  3. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid, alkyl and substituted alkyl esters (generic name). 721.1875 Section 721.1875 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted...

  4. 40 CFR 721.8673 - [(Disubstituted phenyl)]azo dihydro hydroxy alkyl oxo alkyl-substituted-pyridines (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false azo dihydro hydroxy alkyl oxo alkyl... Significant New Uses for Specific Chemical Substances § 721.8673 azo dihydro hydroxy alkyl oxo alkyl...) The chemical substances identified generically as azo dihydro hydroxy alkyl oxo...

  5. 40 CFR 721.8673 - [(Disubstituted phenyl)]azo dihydro hydroxy alkyl oxo alkyl-substituted-pyridines (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false azo dihydro hydroxy alkyl oxo alkyl... Significant New Uses for Specific Chemical Substances § 721.8673 azo dihydro hydroxy alkyl oxo alkyl...) The chemical substances identified generically as azo dihydro hydroxy alkyl oxo...

  6. 40 CFR 721.8673 - [(Disubstituted phenyl)]azo dihydro hydroxy alkyl oxo alkyl-substituted-pyridines (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false azo dihydro hydroxy alkyl oxo alkyl... Significant New Uses for Specific Chemical Substances § 721.8673 azo dihydro hydroxy alkyl oxo alkyl...) The chemical substances identified generically as azo dihydro hydroxy alkyl oxo...

  7. 40 CFR 721.8673 - [(Disubstituted phenyl)]azo dihydro hydroxy alkyl oxo alkyl-substituted-pyridines (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false azo dihydro hydroxy alkyl oxo alkyl... Significant New Uses for Specific Chemical Substances § 721.8673 azo dihydro hydroxy alkyl oxo alkyl...) The chemical substances identified generically as azo dihydro hydroxy alkyl oxo...

  8. 40 CFR 721.8673 - [(Disubstituted phenyl)]azo dihydro hydroxy alkyl oxo alkyl-substituted-pyridines (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false azo dihydro hydroxy alkyl oxo alkyl... Significant New Uses for Specific Chemical Substances § 721.8673 azo dihydro hydroxy alkyl oxo alkyl...) The chemical substances identified generically as azo dihydro hydroxy alkyl oxo...

  9. The Effect of Varying Short-Chain Alkyl Substitution on the Molar Absorptivity and Quantum Yield of Cyanine Dyes

    PubMed Central

    Chapman, Gala; Henary, Maged; Patonay, Gabor

    2011-01-01

    The effect of varying short-chain alkyl substitution of the indole nitrogens on the spectroscopic properties of cyanine dyes was examined. Molar absorptivities and fluorescence quantum yields were determined for a set of pentamethine dyes and a set of heptamethine dyes for which the substitution of the indole nitrogen was varied. For both sets of dyes, increasing alkyl chain length resulted in no significant change in quantum yield or molar absorptivity. These results may be useful in designing new cyanine dyes for analytical applications and predicting their spectroscopic properties. PMID:21760707

  10. Mechanistic insights into nickamine-catalyzed alkyl-alkyl cross-coupling reactions.

    PubMed

    Breitenfeld, Jan; Hu, Xile

    2014-01-01

    Within the last decades the transition metal-catalyzed cross-coupling of non-activated alkyl halides has significantly progressed. Within the context of alkyl-alkyl cross-coupling, first row transition metals spanning from iron, over cobalt, nickel, to copper have been successfully applied to catalyze this difficult reaction. The mechanistic understanding of these reactions is still in its infancy. Herein we outline our latest mechanistic studies that explain the efficiency of nickel, in particular nickamine-catalyzed alkyl-alkyl cross-coupling reactions.

  11. Quantification of lipid alkyl radicals trapped with nitroxyl radical via HPLC with postcolumn thermal decomposition.

    PubMed

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2005-11-01

    Lipid alkyl radicals generated from polyunsaturated fatty acids via chemical or enzymatic H-abstraction have been a pathologically important target to quantify. In the present study, we established a novel method for the quantification of lipid alkyl radicals via nitroxyl radical spin-trapping. These labile lipid alkyl radicals were converted into nitroxyl radical-lipid alkyl radical adducts using 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrroline-N-oxyl (CmdeltaP) (a partition coefficient between octanol and water is approximately 3) as a spin-trapping agent. The resulting CmdeltaP-lipid alkyl radical adducts were determined by HPLC with postcolumn online thermal decomposition, in which the adducts were degraded into nitroxyl radicals by heating at 100 degrees C for 2 min. The resulting nitroxyl radicals were selectively and sensitively detected by electrochemical detection. With the present method, we, for the first time, determined the lipid alkyl radicals generated from linoleic acid, linolenic acid, and arachidonic acid via soybean lipoxygenase-1 or the radical initiator 2,2'-azobis(2,4-dimethyl-valeronitrile).

  12. Metal ion-catalyzed nucleic acid alkylation and fragmentation.

    PubMed

    Browne, Kenneth A

    2002-07-10

    Nucleic acid microarrays are a growing technology in which high densities of known sequences are attached to a substrate in known locations (addressed). Hybridization of complementary sequences leads to a detectable signal such as an electrical impulse or fluorescence. This combination of sequence addressing, hybridization, and detection increases the efficiency of a variety of genomic disciplines including those that profile genetic expression, search for single nucleotide polymorphisms (SNPs), or diagnose infectious diseases by sequencing portions of microbial or viral genomes. Incorporation of reporter molecules into nucleic acids is essential for the sensitive detection of minute amounts of nucleic acids on most types of microarrays. Furthermore, polynucleic acid size reduction increases hybridization because of increased diffusion rates and decreased competing secondary structure of the target nucleic acids. Typically, these reactions would be performed as two separate processes. An improvement to past techniques, termed labeling-during-cleavage (LDC), is presented in which DNA or RNA is alkylated with fluorescent tags and fragmented in the same reaction mixture. In model studies with 26 nucleotide-long RNA and DNA oligomers using ultraviolet/visible and fluorescence spectroscopies as well as high-pressure liquid chromatography and mass spectrometry, addition of both alkylating agents (5-(bromomethyl)fluorescein, 5- or 6-iodoacetamidofluorescein) and select metal ions (of 21 tested) to nucleic acids in aqueous solutions was critical for significant increases in both labeling and fragmentation, with >or=100-fold increases in alkylation possible relative to metal ion-free reactions. Lanthanide series metal ions, Pb(2+), and Zn(2+) were the most reactive ions in terms of catalyzing alkylation and fragmentation. While oligonucleotides were particularly susceptible to fragmentation at sites containing phosphorothioate moieties, labeling and cleavage reactions

  13. Occupational asthma due to alkyl cyanoacrylate

    SciTech Connect

    Nakazawa, T. )

    1990-08-01

    A case of bronchial asthma induced by occupational exposure to alkyl cyanoacrylate, an adhesive, occurred in an assembly operation. Provocative exposure testing induced immediate and delayed asthmatic responses. Alkyl cyanoacrylate seemed to act as an allergen or as an irritant, resulting in the development of asthma.

  14. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated urea. 721.9892 Section 721.9892 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9892 Alkylated urea. (a) Chemical...

  15. Distribution coefficients of purine alkaloids in water-ammonium sulfate-alkyl acetate-dialkyl phthalate systems

    NASA Astrophysics Data System (ADS)

    Korenman, Ya. I.; Krivosheeva, O. A.; Mokshina, N. Ya.

    2012-12-01

    The distribution of purine alkaloids (caffeine, theobromine, theophylline) was studied in the systems: alkyl acetates-dialkyl phtalate-salting-out agent (ammonium sulfate). The quantitative characteristics of the extraction-distribution coefficients ( D) and the degree of extraction ( R, %) are calculated. The relationships between the distribution coefficients of alkaloids and the length of the hydrocarbon radical in the molecule of alkyl acetate (dialkyl phtalate) are determined. The possibility of predicting the distribution coefficients is demonstrated.

  16. C-Alkylation by Hydrogen Autotransfer Reactions.

    PubMed

    Obora, Yasushi

    2016-04-01

    The development of practical, efficient, and atom-economical methods for the formation of carbon-carbon bonds remains a topic of considerable interest in current synthetic organic chemistry. In this review, we have summarized selected topics from the recent literature with particular emphasis on C-alkylation processes involving hydrogen transfer using alcohols as alkylation reagents. This review includes selected highlights concerning recent progress towards the modification of catalytic systems for the α-alkylation of ketones, nitriles, and esters. Furthermore, we have devoted a significant portion of this review to the methylation of ketones, alcohols, and indoles using methanol. Lastly, we have also documented recent advances in β-alkylation methods involving the dimerization of alcohols (Guerbet reaction), as well as new developments in C-alkylation methods based on sp (3) C-H activation. PMID:27573136

  17. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with alkyl halides

    NASA Astrophysics Data System (ADS)

    Cheung, Chi Wai; Hu, Xile

    2016-08-01

    (Hetero)Aryl amines, an important class of organic molecules in medicinal chemistry, are most commonly synthesized from anilines, which are in turn synthesized by hydrogenation of nitroarenes. Amine synthesis directly from nitroarenes is attractive due to improved step economy and functional group compatibility. Despite these potential advantages, there is yet no general method for the synthesis of (hetero)aryl amines by carbon-nitrogen cross-coupling of nitroarenes. Here we report the reductive coupling of nitroarenes with alkyl halides to yield (hetero)aryl amines. A simple iron catalyst enables the coupling with numerous primary, secondary and tertiary alkyl halides. Broad scope and high functional group tolerance are demonstrated. Mechanistic study suggests that nitrosoarenes and alkyl radicals are involved as intermediates. This new C-N coupling method provides general and step-economical access to aryl amines.

  18. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with alkyl halides

    PubMed Central

    Cheung, Chi Wai; Hu, Xile

    2016-01-01

    (Hetero)Aryl amines, an important class of organic molecules in medicinal chemistry, are most commonly synthesized from anilines, which are in turn synthesized by hydrogenation of nitroarenes. Amine synthesis directly from nitroarenes is attractive due to improved step economy and functional group compatibility. Despite these potential advantages, there is yet no general method for the synthesis of (hetero)aryl amines by carbon–nitrogen cross-coupling of nitroarenes. Here we report the reductive coupling of nitroarenes with alkyl halides to yield (hetero)aryl amines. A simple iron catalyst enables the coupling with numerous primary, secondary and tertiary alkyl halides. Broad scope and high functional group tolerance are demonstrated. Mechanistic study suggests that nitrosoarenes and alkyl radicals are involved as intermediates. This new C–N coupling method provides general and step-economical access to aryl amines. PMID:27515391

  19. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with alkyl halides.

    PubMed

    Cheung, Chi Wai; Hu, Xile

    2016-01-01

    (Hetero)Aryl amines, an important class of organic molecules in medicinal chemistry, are most commonly synthesized from anilines, which are in turn synthesized by hydrogenation of nitroarenes. Amine synthesis directly from nitroarenes is attractive due to improved step economy and functional group compatibility. Despite these potential advantages, there is yet no general method for the synthesis of (hetero)aryl amines by carbon-nitrogen cross-coupling of nitroarenes. Here we report the reductive coupling of nitroarenes with alkyl halides to yield (hetero)aryl amines. A simple iron catalyst enables the coupling with numerous primary, secondary and tertiary alkyl halides. Broad scope and high functional group tolerance are demonstrated. Mechanistic study suggests that nitrosoarenes and alkyl radicals are involved as intermediates. This new C-N coupling method provides general and step-economical access to aryl amines. PMID:27515391

  20. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  1. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  2. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  3. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  4. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  5. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  6. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  7. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-01-05

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  8. Regioselectivity of Birch reductive alkylation of biaryls.

    PubMed

    Lebeuf, Raphaël; Robert, Frédéric; Landais, Yannick

    2005-10-13

    [reaction: see text] The regioselectivity of the Birch reductive alkylation of polysubstituted biaryls has been investigated. Results indicate that regioselectivity is affected by the electronic nature of substituents on both aromatic rings. The electron-rich 3,5-dimethoxyphenyl moiety is selectively reduced and then alkylated, while phenols and aniline are not dearomatized under these conditions. Biaryls possessing a phenol moiety are alkylated on the second ring, providing that the acidic proton has been removed prior to the Li/NH3 reduction.

  9. Properties of alkyl hydroxycinnamates and effects on Pseudomonas fluorescens.

    PubMed Central

    Baranowski, J D; Nagel, C W

    1983-01-01

    Alkyl esters of six hydroxycinnamic acids, shown to be active antimicrobial agents when tested against Pseudomonas fluorescens, were further investigated for their effects against this organism. There was no statistically significant adaptation by this organism to either of the methyl esters of caffeic, rho-coumaric, cinnamic, or rho-hydroxybenzoic acids. Mixtures of these compounds taken two at a time gave at least additive effects, with some mixtures showing synergism. Preliminary work was also performed to determine the mode of inhibitory action for these compounds. The inhibition of oxygen utilization by the methyl esters correlated well with growth inhibition. Short-term lethality studies showed that none of the alkyl esters or methyl or propyl paraben produced any bacteriocidal effects. Oil-water partition coefficients were determined for these compounds and were shown to have no correlation with growth inhibitions. These all point to a specific mode of action, based in part on cellular energy depletion, rather than the nonspecific membrane-disrupting effects of other phenolic antimicrobial agents. PMID:6401979

  10. Neurobehavioral teratogenicity of perfluorinated alkyls in an avian model.

    PubMed

    Pinkas, Adi; Slotkin, Theodore A; Brick-Turin, Yael; Van der Zee, Eddy A; Yanai, Joseph

    2010-01-01

    Perfluorinated alkyls are widely-used agents that accumulate in ecosystems and organisms because of their slow rate of degradation. There is increasing concern that these agents may be developmental neurotoxicants and the present study was designed to develop an avian model for the neurobehavioral teratogenicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Fertilized chicken eggs were injected with 5 or 10mg/kg of either compound on incubation day 0. On the day of hatching, imprinting behavior was impaired by both compounds. We then explored underlying mechanisms involving the targeting of protein kinase C (PKC) isoforms (alpha, beta, gamma) in the intermedial part of the hyperstriatum ventrale, the region most closely associated with imprinting. With PFOA exposure, cytosolic PKC concentrations were significantly elevated for all three isoforms; despite the overall increase in PKC expression, membrane-associated PKC was unaffected, indicating a defect in PKC translocation. In contrast, PFOS exposure evoked a significant decrease in cytosolic PKC, primarily for the beta and gamma isoforms, but again without a corresponding change in membrane-associated enzyme; this likely partial, compensatory increases in translocation to offset the net PKC deficiency. Our studies indicate that perfluorinated alkyls are indeed developmental neurotoxicants that affect posthatch cognitive performance but that the underlying synaptic mechanisms may differ substantially among the various members of this class of compounds, setting the stage for disparate outcomes later in life.

  11. Neurobehavioral Teratogenicity of Perfluorinated Alkyls in an Avian Model

    PubMed Central

    Pinkas, Adi; Slotkin, Theodore A.; Brick-Turin, Yael; Van der Zee, Eddy A.; Yanai, Joseph

    2010-01-01

    Perfluorinated alkyls are widely-used agents that accumulate in ecosystems and organisms because of their slow rate of degradation. There is increasing concern that these agents may be developmental neurotoxicants and the present study was designed to develop an avian model for the neurobehavioral teratogenicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Fertilized chicken eggs were injected with 5 or 10 mg/kg of either compound on incubation day 0. On the day of hatching, imprinting behavior was impaired by both compounds. We then explored underlying mechanisms involving the targeting of protein kinase C (PKC) isoforms (α, β, γ) in the intermedial part of the hyperstriatum ventrale, the region most closely associated with imprinting. With PFOA exposure, cytosolic PKC concentrations were significantly elevated for all three isoforms; despite the overall increase in PKC expression, membrane-associated PKC was unaffected, indicating a defect in PKC translocation. In contrast, PFOS exposure evoked a significant decrease in cytosolic PKC, primarily for the β and γ isoforms, but again without a corresponding change in membrane-associated enzyme; this likely partial, compensatory increases in translocation to offset the net PKC deficiency. Our studies indicate that perfluorinated alkyls are indeed developmental neurotoxicants that affect posthatch cognitive performance but that the underlying synaptic mechanisms may differ substantially among the various members of this class of compounds, setting the stage for disparate outcomes later in life. PMID:19945530

  12. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Alkyl ketene dimers. 176.120 Section 176.120 Food... Use Only as Components of Paper and Paperboard § 176.120 Alkyl ketene dimers. Alkyl ketene dimers may... section. (a) The alkyl ketene dimers are manufactured by the dehydrohalogenation of the acyl...

  13. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Alkyl ketene dimers. 176.120 Section 176.120 Food... Paperboard § 176.120 Alkyl ketene dimers. Alkyl ketene dimers may be safely used as a component of articles..., transporting, or holding food, subject to the provisions of this section. (a) The alkyl ketene dimers...

  14. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Alkyl ketene dimers. 176.120 Section 176.120 Food... Use Only as Components of Paper and Paperboard § 176.120 Alkyl ketene dimers. Alkyl ketene dimers may... section. (a) The alkyl ketene dimers are manufactured by the dehydrohalogenation of the acyl...

  15. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Alkyl ketene dimers. 176.120 Section 176.120 Food... Use Only as Components of Paper and Paperboard § 176.120 Alkyl ketene dimers. Alkyl ketene dimers may... section. (a) The alkyl ketene dimers are manufactured by the dehydrohalogenation of the acyl...

  16. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Alkyl ketene dimers. 176.120 Section 176.120 Food... Use Only as Components of Paper and Paperboard § 176.120 Alkyl ketene dimers. Alkyl ketene dimers may... section. (a) The alkyl ketene dimers are manufactured by the dehydrohalogenation of the acyl...

  17. Effect of nitrogen fertilization on growth of Arundo donax and on rearing of a biological control agent, the shoot gall-forming wasp Tetramesa romana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen augmentation often leads to increased feeding and/or reproduction by herbivorous insects, but little is known about the effects on insects that gall grasses. The shoot tip-galling wasp Tetramesa romana has been released for biological control of the giant grass arundo (Arundo donax) in the...

  18. Process for recovering uranium using an alkyl pyrophosphoric acid and alkaline stripping solution

    SciTech Connect

    Worthington, R.E.; Magdics, A.

    1987-03-24

    A process is described for stripping uranium for a pregnant organic extractant comprising an alkyl pyrophosphoric acid dissolved in a substantially water-immiscible organic diluent. The organic extractant contains tetravalent uranium and an alcohol or phenol modifier in a quantity sufficient to retain substantially all the unhydrolyzed alkyl pyrophosphoric acid in solution in the diluent during stripping. The process comprises adding an oxidizing agent to the organic extractant and thereby oxidizing the tetravalent uranium to the +6 state in the organic extractant, and contacting the organic extractant containing the uranium in the +6 state with a stripping solution comprising an aqueous solution of an alkali metal or ammonium carbonate or hydroxide thereby stripping uranium from the organic extractant into the stripping solution. The resulting barren organic extractant containing substantially all of the unhydrolyzed alkyl pyrophosphoric acid dissolved in the diluent is separated from the stripping solution containing the stripped uranium, the barren extractant being suitable for recycle.

  19. Process for recovering uranium using an alkyl pyrophosphoric acid and alkaline stripping solution

    SciTech Connect

    Worthington, R.E.; Magdics, A.

    1987-03-24

    A process is described for stripping uranium from a pregnant organic extractant comprising an alkyl pyrophosphoric acid dissolved in a substantially water-immiscible organic diluent. The organic extractant contains tetravalent uranium and an alcohol or phenol modifier in a quantity sufficient to retain substantially all the unhydrolyzed alkyl pyrophosphoric acid in solution in the diluent during stripping. The process comprises adding an oxidizing agent to the organic extractant to and thereby oxidizing the tetravalent uranium to the +6 state in the organic extractant, and contacting the organic extractant containing the uranium in the +6 state with a stripping solution comprising an aqueous solution of an alkali metal or ammonium carbonate, nonsaturated in uranium. The uranium is stripped from, the organic extractant into the stripping solution, and the resulting barren organic extractant containing substantially all of the unhydrolyzed alkyl pyrophosphoric acid dissolved in the diluent is separated from the stripping solution containing the stripped uranium, the barren extractant being suitable for recycle.

  20. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    SciTech Connect

    Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu

    2013-04-12

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.

  1. N-Alkylation by Hydrogen Autotransfer Reactions.

    PubMed

    Ma, Xiantao; Su, Chenliang; Xu, Qing

    2016-06-01

    Owing to the importance of amine/amide derivatives in all fields of chemistry, and also the green and environmentally benign features of using alcohols as alkylating reagents, the relatively high atom economic dehydrative N-alkylation reactions of amines/amides with alcohols through hydrogen autotransfer processes have received much attention and have developed rapidly in recent decades. Various efficient homogeneous and heterogeneous transition metal catalysts, nano materials, electrochemical methods, biomimetic methods, asymmetric N-alkylation reactions, aerobic oxidative methods, and even certain transition metal-free, catalyst-free, or autocatalyzed methods, have also been developed in recent years. With a brief introduction to the background and developments in this area of research, this chapter focuses mainly on recent progress and technical and conceptual advances contributing to the development of this research in the last decade. In addition to mainstream research on homogeneous and heterogeneous transition metal-catalyzed reactions, possible mechanistic routes for hydrogen transfer and alcohol activation, which are key processes in N-alkylation reactions but seldom discussed in the past, the recent reports on computational mechanistic studies of the N-alkylation reactions, and the newly emerged N-alkylation methods based on novel alcohol activation protocols such as air-promoted reactions and transition metal-free methods, are also reviewed in this chapter. Problems and bottlenecks that remained to be solved in the field, and promising new research that deserves greater future attention and effort, are also reviewed and discussed.

  2. N-Alkylation by Hydrogen Autotransfer Reactions.

    PubMed

    Ma, Xiantao; Su, Chenliang; Xu, Qing

    2016-06-01

    Owing to the importance of amine/amide derivatives in all fields of chemistry, and also the green and environmentally benign features of using alcohols as alkylating reagents, the relatively high atom economic dehydrative N-alkylation reactions of amines/amides with alcohols through hydrogen autotransfer processes have received much attention and have developed rapidly in recent decades. Various efficient homogeneous and heterogeneous transition metal catalysts, nano materials, electrochemical methods, biomimetic methods, asymmetric N-alkylation reactions, aerobic oxidative methods, and even certain transition metal-free, catalyst-free, or autocatalyzed methods, have also been developed in recent years. With a brief introduction to the background and developments in this area of research, this chapter focuses mainly on recent progress and technical and conceptual advances contributing to the development of this research in the last decade. In addition to mainstream research on homogeneous and heterogeneous transition metal-catalyzed reactions, possible mechanistic routes for hydrogen transfer and alcohol activation, which are key processes in N-alkylation reactions but seldom discussed in the past, the recent reports on computational mechanistic studies of the N-alkylation reactions, and the newly emerged N-alkylation methods based on novel alcohol activation protocols such as air-promoted reactions and transition metal-free methods, are also reviewed in this chapter. Problems and bottlenecks that remained to be solved in the field, and promising new research that deserves greater future attention and effort, are also reviewed and discussed. PMID:27573267

  3. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes

    SciTech Connect

    Zhang Fabao; Gu Wenjie; Xu Peizhi; Tang Shuanhu; Xie Kaizhi; Huang Xu; Huang Qiaoyi

    2011-06-15

    Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a 'green' surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.

  4. Suppression of Hyperactive Immune Responses Protects against Nitrogen Mustard Injury

    PubMed Central

    Au, Liemin; Meisch, Jeffrey P; Das, Lopa M; Binko, Amy M; Boxer, Rebecca S; Wen, Amy M; Steinmetz, Nicole F; Lu, Kurt Q

    2015-01-01

    DNA alkylating agents like nitrogen mustard (NM) are easily absorbed through the skin and exposure to such agents manifest not only in direct cellular death but also in triggering inflammation. We show that toxicity resulting from topical mustard exposure is mediated in part by initiating exaggerated host innate immune responses. Using an experimental model of skin exposure to NM we observe activation of inflammatory dermal macrophages that exacerbate local tissue damage in an inducible nitric oxide synthase (iNOS)-dependent manner. Subsequently these activated dermal macrophages reappear in the bone marrow to aid in disruption of hematopoiesis and contribute ultimately to mortality in an experimental mouse model of topical NM exposure. Intervention with a single dose of 25-hydroxyvitamin D3 (25(OH)D) is capable of suppressing macrophage-mediated iNOS production resulting in mitigation of local skin destruction, enhanced tissue repair, protection from marrow depletion, and rescue from severe precipitous wasting. These protective effects are recapitulated experimentally using pharmacological inhibitors of iNOS or by compounds that locally deplete skin macrophages. Taken together, these data highlight a critical unappreciated role of the host innate immune system in exacerbating injury following exposure to NM and support the translation of 25(OH)D in the therapeutic use against these chemical agents. PMID:26288355

  5. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high throughput screening assay. 4. Structure-activity relationships of N-alkyl substituted pyrrole fused at the 7,8-positions.

    PubMed

    Kemnitzer, William; Drewe, John; Jiang, Songchun; Zhang, Hong; Crogan-Grundy, Candace; Labreque, Denis; Bubenick, Monica; Attardo, Giorgio; Denis, Real; Lamothe, Serge; Gourdeau, Henriette; Tseng, Ben; Kasibhatla, Shailaja; Cai, Sui Xiong

    2008-02-14

    In our continuing effort to discover and develop apoptosis inducing 4-aryl-4H-chromenes as novel anticancer agents, we explored the structure-activity relationship (SAR) of alkyl substituted pyrrole fused at the 7,8-positions. A methyl group substituted at the nitrogen in the 7-position of the pyrrole ring led to a series of potent apoptosis inducers with potency in the low nanomolar range. These compounds were also found to be low nanomolar or subnanomolar inhibitors of cell growth, and they inhibited tubulin polymerization, indicating that methylation of the 7-position nitrogen does not change the mechanism of action of these chromenes. Compound 2d was identified as a highly potent apoptosis inducer with an EC50 value of 2 nM and a highly potent inhibitor of cell growth with a GI50 value of 0.3 nM in T47D cells.

  6. Copper-catalyzed reductive cross-coupling of nonactivated alkyl tosylates and mesylates with alkyl and aryl bromides.

    PubMed

    Liu, Jing-Hui; Yang, Chu-Ting; Lu, Xiao-Yu; Zhang, Zhen-Qi; Xu, Ling; Cui, Mian; Lu, Xi; Xiao, Bin; Fu, Yao; Liu, Lei

    2014-11-17

    A copper-catalyzed reductive cross-coupling reaction of nonactivated alkyl tosylates and mesylates with alkyl and aryl bromides was developed. It provides a practical method for efficient and cost-effective construction of aryl-alkyl and alkyl-alkyl CC bonds with stereocontrol from readily available substrates. When used in an intramolecular fashion, the reaction enables convenient access to various substituted carbo- or heterocycles, such as 2,3-dihydrobenzofuran and benzochromene derivatives.

  7. Alkyl rearrangement processes in organozirconium complexes. Observation of internal alkyl complexes during hydrozirconation

    SciTech Connect

    Chirik, P.J.; Day, M.W.; Labinger, J.A.; Bercaw, J.E.

    1999-11-10

    Isotopically labeled alkyl zirconocene complexes of the form (CpR{sub n}){sub 2}Zr(CH{sub 2}CDR{sub 2}{prime})(X) (CpR{sub n} = alkyl-substituted cyclopentadienyl; R{prime} = H, alkyl group; X = H, D, Me) undergo isomerization of the alkyl ligand as well as exchange with free olefin in solution under ambient conditions. Increasing the substitution on the Cp ring results in slower isomerization reactions, but these steric effects are small. In contrast, changing X has a very large effect on the rate of isomerization. Pure {sigma}-bonding ligands such as methyl and hydride promote rapid isomerization, whereas {pi}-donor ligands inhibit {beta}-H elimination and hence alkyl isomerization. For ({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}Zr(R)(Cl), internal alkyl complexes have been observed for the first time. The rate of isomerization depends on the length of the alkyl group: longer alkyl chains (heptyl, hexyl) isomerize faster than shorter chains (butyl). The transient intermediate species have been identified by a combination of isotopic labeling and {sup 1}H, {sup 2}H, and {sup 13}C NMR experiments. The solid-state structure of the zirconocene cyclopentyl chloride complex, Cp{sub 2}Zr(cyclo-C{sub 5}H{sub 9})(Cl), has been determined by X-ray diffraction.

  8. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation

    PubMed Central

    Shrivastav, Nidhi; Li, Deyu; Essigmann, John M.

    2010-01-01

    The reaction of DNA-damaging agents with the genome results in a plethora of lesions, commonly referred to as adducts. Adducts may cause DNA to mutate, they may represent the chemical precursors of lethal events and they can disrupt expression of genes. Determination of which adduct is responsible for each of these biological endpoints is difficult, but this task has been accomplished for some carcinogenic DNA-damaging agents. Here, we describe the respective contributions of specific DNA lesions to the biological effects of low molecular weight alkylating agents. PMID:19875697

  9. Structure and DNA binding of alkylation response protein AidB

    SciTech Connect

    Bowles, Timothy; Metz, Audrey H.; O'Quin, Jami; Wawrzak, Zdzislaw; Eichman, Brandt F.

    2009-01-12

    Exposure of Escherichia coli to alkylating agents activates expression of AidB in addition to DNA repair proteins Ada, AlkA, and AlkB. AidB was recently shown to possess a flavin adenine dinucleotide (FAD) cofactor and to bind to dsDNA, implicating it as a flavin-dependent DNA repair enzyme. However, the molecular mechanism by which AidB acts to reduce the mutagenic effects of specific DNA alkylators is unknown. We present a 1.7-{angstrom} crystal structure of AidB, which bears superficial resemblance to the acyl-CoA dehydrogenase superfamily of flavoproteins. The structure reveals a unique quaternary organization and a distinctive FAD active site that provides a rationale for AidB's limited dehydrogenase activity. A highly electropositive C-terminal domain not present in structural homologs was identified by mutational analysis as the DNA binding site. Structural analysis of the DNA and FAD binding sites provides evidence against AidB-catalyzed DNA repair and supports a model in which AidB acts to prevent alkylation damage by protecting DNA and destroying alkylating agents that have yet to reach their DNA target.

  10. Palladium-Catalyzed Arylation of Alkyl Sulfenate Anions.

    PubMed

    Jia, Tiezheng; Zhang, Mengnan; Jiang, Hui; Wang, Carol Y; Walsh, Patrick J

    2015-11-01

    A unique palladium-catalyzed arylation of alkyl sulfenate anions is introduced that affords aryl alkyl sulfoxides in high yields. Due to the base sensitivity of the starting sulfoxides, sulfenate anion intermediates, and alkyl aryl sulfoxide products, the use of a mild method to generate alkyl sulfenate anions was crucial to the success of this process. Thus, a fluoride triggered elimination strategy was employed with alkyl 2-(trimethylsilyl)ethyl sulfoxides to liberate the requisite alkyl sulfenate anion intermediates. In the presence of palladium catalysts with bulky monodentate phosphines (SPhos and Cy-CarPhos) and aryl bromides or chlorides, alkyl sulfenate anions were readily arylated. Moreover, the thermal fragmentation and the base promoted elimination of alkyl sulfoxides was overridden. The alkyl sulfenate anion arylation exhibited excellent chemoselectivity in the presence of functional groups, such as anilines and phenols, which are also known to undergo palladium catalyzed arylation reactions.

  11. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.

    PubMed

    Satoh, Takafumi; Kishi, Shintaro; Nagashima, Hisayuki; Tachikawa, Masumi; Kanamori-Kataoka, Mieko; Nakagawa, Takao; Kitagawa, Nobuyoshi; Tokita, Kenichi; Yamamoto, Soichiro; Seto, Yasuo

    2015-03-20

    The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman

  12. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.

    PubMed

    Satoh, Takafumi; Kishi, Shintaro; Nagashima, Hisayuki; Tachikawa, Masumi; Kanamori-Kataoka, Mieko; Nakagawa, Takao; Kitagawa, Nobuyoshi; Tokita, Kenichi; Yamamoto, Soichiro; Seto, Yasuo

    2015-03-20

    The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman

  13. Antibacterial Activity of Alkyl Gallates against Xanthomonas citri subsp. citri

    PubMed Central

    Silva, I. C.; Regasini, L. O.; Petrônio, M. S.; Silva, D. H. S.; Bolzani, V. S.; Belasque, J.; Sacramento, L. V. S.

    2013-01-01

    The plant-pathogenic bacterium Xanthomonas citri subsp. citri is the causal agent of Asiatic citrus canker, a serious disease that affects all the cultivars of citrus in subtropical citrus-producing areas worldwide. There is no curative treatment for citrus canker; thus, the eradication of infected plants constitutes the only effective control of the spread of X. citri subsp. citri. Since the eradication program in the state of São Paulo, Brazil, is under threat, there is a clear risk of X. citri subsp. citri becoming endemic in the main orange-producing area in the world. Here we evaluated the potential use of alkyl gallates to prevent X. citri subsp. citri growth. These esters displayed a potent anti-X. citri subsp. citri activity similar to that of kanamycin (positive control), as evaluated by the resazurin microtiter assay (REMA). The treatment of X. citri subsp. citri cells with these compounds induced altered cell morphology, and investigations of the possible intracellular targets using X. citri subsp. citri strains labeled for the septum and centromere pointed to a common target involved in chromosome segregation and cell division. Finally, the artificial inoculation of citrus with X. citri subsp. citri cells pretreated with alkyl gallates showed that the bacterium loses the ability to colonize its host, which indicates the potential of these esters to protect citrus plants against X. citri subsp. citri infection. PMID:23104804

  14. Mismatch repair-dependent G2 checkpoint induced by low doses of SN1 type methylating agents requires the ATR kinase.

    PubMed

    Stojic, Lovorka; Mojas, Nina; Cejka, Petr; Di Pietro, Massimiliano; Ferrari, Stefano; Marra, Giancarlo; Jiricny, Josef

    2004-06-01

    S(N)1-type alkylating agents represent an important class of chemotherapeutics, but the molecular mechanisms underlying their cytotoxicity are unknown. Thus, although these substances modify predominantly purine nitrogen atoms, their toxicity appears to result from the processing of O(6)-methylguanine ((6Me)G)-containing mispairs by the mismatch repair (MMR) system, because cells with defective MMR are highly resistant to killing by these agents. In an attempt to understand the role of the MMR system in the molecular transactions underlying the toxicity of alkylating agents, we studied the response of human MMR-proficient and MMR-deficient cells to low concentrations of the prototypic methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We now show that MNNG treatment induced a cell cycle arrest that was absolutely dependent on functional MMR. Unusually, the cells arrested only in the second G(2) phase after treatment. Downstream targets of both ATM (Ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) kinases were modified, but only the ablation of ATR, or the inhibition of CHK1, attenuated the arrest. The checkpoint activation was accompanied by the formation of nuclear foci containing the signaling and repair proteins ATR, the S(*)/T(*)Q substrate, gamma-H2AX, and replication protein A (RPA). The persistence of these foci implied that they may represent sites of irreparable damage. PMID:15175264

  15. Highly Enantioselective Aza-Michael Reaction between Alkyl Amines and β-Trifluoromethyl β-Aryl Nitroolefins.

    PubMed

    Wang, Leming; Chen, Jiean; Huang, Yong

    2015-12-14

    The aza-Michael addition reaction is a vital transformation for the synthesis of functionalized chiral amines. Despite intensive research, enantioselective aza-Michael reactions with alkyl amines as the nitrogen donor have not been successful. We report the use of chiral N-heterocyclic carbenes (NHCs) as noncovalent organocatalysts to promote a highly selective aza-Michael reaction between primary alkyl amines and β-trifluoromethyl β-aryl nitroolefins. In contrast to classical conjugate-addition reactions, a strategy of HOMO-raising activation was used. Chiral trifluoromethylated amines were synthesized in high yield (up to 99 %) with excellent enantioselectivity (up to 98 % ee).

  16. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  17. DNA-damaging disinfection byproducts: alkylation mechanism of mutagenic mucohalic acids.

    PubMed

    Gómez-Bombarelli, Rafael; González-Pérez, Marina; Arenas-Valgañón, Jorge; Céspedes-Camacho, Isaac Fabián; Calle, Emilio; Casado, Julio

    2011-10-15

    Hydroxyhalofuranones form a group of genotoxic disinfection byproduct (DBP) of increasing interest. Among them, mucohalic acids (3,4-dihalo-5-hydroxyfuran-2(5H)-one, MXA) are known mutagens that react with nucleotides, affording etheno, oxaloetheno, and halopropenal derivatives. Mucohalic acids have also found use in organic synthesis due to their high functionalization. In this work, the alkylation kinetics of mucochloric and mucobromic acids with model nucleophiles aniline and NBP has been studied experimentally. Also, the alkylation mechanism of nucleosides by MXA has been studied in silico. The results described allow us to reach the following conclusions: (i) based on the kinetic and computational evidence obtained, a reaction mechanism was proposed, in which MXA react directly with amino groups in nucleotides, preferentially attacking the exocyclic amino groups over the endocyclic aromatic nitrogen atoms; (ii) the suggested mechanism is in agreement with both the product distribution observed experimentally and the mutational pattern of MXA; (iii) the limiting step in the alkylation reaction is addition to the carbonyl group, subsequent steps occurring rapidly; and (iv) mucoxyhalic acids, the hydrolysis products of MXA, play no role in the alkylation reaction by MXA.

  18. Determination of xanomeline (LY246708 tartrate), an investigational agent for the treatment of Alzheimer's disease, in rat and monkey plasma by capillary gas chromatography with nitrogen-phosphorus detection.

    PubMed

    Brown, T J; Shipley, L A

    1995-03-24

    A GC method is described for the determination of xanomeline (LY246708 tartrate) and selected metabolites in rat and monkey plasma. The analytes, including an internal standard, were extracted from plasma at basic pH with hexane. The organic extract was evaporated to dryness and the residue was reconstituted in hexane. The analytes were separated from metabolites and endogenous substances using a DB1701 capillary column. The analytes were detected using nitrogen-phosphorus detection (NPD). The limit of quantitation was determined to be 8 ng/ml, and the response was linear from 8 to 800 ng/ml. The method has been successfully applied to rat and monkey samples pursuant to the development of xanomeline as an agent for the symptomatic treatment of Alzheimer's disease.

  19. Complexation of alkyl glycosides with α-cyclodextrin can have drastically different effects on their conversion by glycoside hydrolases.

    PubMed

    Rather, Mohd Younis; Nordberg Karlsson, Eva; Adlercreutz, Patrick

    2015-04-20

    Substrates present in aggregated forms, such as micelles, are often poorly converted by enzymes. Alkyl glycosides constitute typical examples and the critical micelle concentration (CMC) decreases with increasing length of the alkyl group. In this study, possibilities to hydrolyse alkyl glycosides by glycoside hydrolases were explored, and α-cyclodextrin was used as an agent to form inclusion complexes with the alkyl glycosides, thereby preventing micelle formation. The cyclodextrin complexes were accepted as substrates by the enzymes to variable extent. The β-glucosidases originating from Thermotoga neapolitana (Tn Bgl3B) and from almond were not at all able to hydrolyse alkyl β-glucosides in the presence of 100mM α-cyclodextrin. However, Aspergillus niger amyloglucosidase readily accepted the complexes as substrates. In reactions involving decyl and dodecyl maltosides, the presence of 100mM α-cyclodextrin caused an increase in reaction rate in most cases, especially at high substrate concentrations. Surprisingly, the amyloglucosidase-catalyzed hydrolysis of octyl-β-maltoside to glucose and β-octylglucoside was faster in the presence of α-cyclodextrin than without, even at substrate concentrations below CMC. A possible explanation of the observed rate enhancement is that binding sites on the carbohydrate binding domain of amyloglucosidase, known to bind cyclodextrins, help to guide the alkyl glycoside-cyclodextrin complex to the active site, and thereby promote its conversion.

  20. Synthesis of Norbornane Bisether Antibiotics via Silver-mediated Alkylation

    PubMed Central

    Hickey, Shane M.; Ashton, Trent D.; White, Jonathan M.; Li, Jian; Nation, Roger L.; Yu, Heidi Y.; Elliott, Alysha G.; Butler, Mark S.; Huang, Johnny X.; Cooper, Matthew A.

    2015-01-01

    A small series of norbornane bisether diguanidines have been synthesized and evaluated as antibacterial agents. The key transformation—bisalkylation of norbornane diol 6—was not successful using Williamson methodology but has been accomplished using Ag2O mediated alkylation. Further functionalization to incorporate two guanidinium groups gave rise to a series of structurally rigid cationic amphiphiles; several of which (16d, 16g and 16h) exhibited antibiotic activity. For example, compound 16d was active against a broad range of bacteria including Pseudomonas aeruginosa (MIC = 8 µg/mL), Escherichia coli (MIC = 8 µg/mL) and methicillin-resistant Staphylococcus aureus (MIC = 8 µg/mL). PMID:26251697

  1. Palladium-Catalyzed, Ring-Forming Aromatic C–H Alkylations with Unactivated Alkyl Halides

    PubMed Central

    Venning, Alexander R. O.; Bohan, Patrick T.; Alexanian, Erik J.

    2015-01-01

    A catalytic C–H alkylation using unactivated alkyl halides and a variety of arenes and heteroarenes is described. This ring-forming process is successful with a variety of unactivated primary and secondary alkyl halides, including those with β-hydrogens. In contrast to standard polar or radical cyclizations of aromatic systems, electronic activation of the substrate is not required. The mild, catalytic reaction conditions are highly functional group tolerant and facilitate access to a diverse range of synthetically and medicinally important carbocyclic and heterocyclic systems. PMID:25746442

  2. Preparation of the pyridinium salts differing in the length of the N-alkyl substituent.

    PubMed

    Marek, Jan; Stodulka, Petr; Cabal, Jiri; Soukup, Ondrej; Pohanka, Miroslav; Korabecny, Jan; Musilek, Kamil; Kuca, Kamil

    2010-03-19

    Quaternary pyridinium salts with chains ranging from C8 to C20 belong in the large group of cationic surfactants. In this paper, the preparation of such cationic surface active agents based on the pyridinium moiety and differing in the length of the N-alkyl chain is described. Additionally, HPLC technique was established to distinguish each prepared pyridinium analogue. This study represents universal method for preparation and identification of quaternary pyridinium detergents.

  3. The cytotoxicity of benzaldehyde nitrogen mustard-2-pyridine carboxylic acid hydrazone being involved in topoisomerase IIα inhibition.

    PubMed

    Fu, Yun; Zhou, Sufeng; Liu, Youxun; Yang, Yingli; Sun, Xingzhi; Li, Changzheng

    2014-01-01

    The antitumor property of iron chelators and aromatic nitrogen mustard derivatives has been well documented. Combination of the two pharmacophores in one molecule in drug designation is worth to be explored. We reported previously the syntheses and preliminary cytotoxicity evaluation of benzaldehyde nitrogen mustard pyridine carboxyl acid hydrazones (BNMPH) as extended study, more tumor cell lines (IC50 for HepG2: 26.1 ± 3.5 μM, HCT-116: 57.5 ± 5.3 μM, K562: 48.2 ± 4.0 μM, and PC-12: 19.4 ± 2.2 μM) were used to investigate its cytotoxicity and potential mechanism. In vitro experimental data showed that the BNMPH chelating Fe(2+) caused a large number of ROS formations which led to DNA cleavage, and this was further supported by comet assay, implying that ROS might be involved in the cytotoxicity of BNMPH. The ROS induced changes of apoptosis related genes, but the TFR1 and NDRG1 metastatic genes were not obviously regulated, prompting that BNMPH might not be able to deprive Fe(2+) of ribonucleotide reductase. The BNMPH induced S phase arrest was different from that of iron chelators (G1) and alkylating agents (G2). BNMPH also exhibited its inhibition of human topoisomerase IIα. Those revealed that the cytotoxic mechanism of the BNMPH could stem from both the topoisomerase II inhibition, ROS generation and DNA alkylation.

  4. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  5. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    SciTech Connect

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  6. Role of alkyl alcohol on viscosity of silica-based chemical gels for decontamination of highly radioactive nuclear facilities

    SciTech Connect

    Choi, B. S.; Yoon, S. B.; Jung, C. H.; Lee, K. W.; Moon, J. K.

    2012-07-01

    Silica-based chemical gel for the decontamination of nuclear facilities was prepared by using fumed silica as a viscosifier, a 0.5 M Ce (IV) solution dissolved in concentrated nitric acid as a chemical decontamination agent, and tripropylene glycol butyl ether (TPGBE) as a co-viscosifier. A new effective strategy for the preparation of the chemical gel was investigated by introducing the alkyl alcohols as organic solvents to effectively dissolve the co-viscosifier. The mixture solution of the co-viscosifier and alkyl alcohols was more effective in the control of viscosity than that of the co-viscosifier only in gel. Here, the alkyl alcohols played a key role as an effective dissolution solvent for the co-viscosifier in the preparation of the chemical gel, resulting in a reducing of the amount of the co-viscosifier and gel time compared with that of the chemical gel prepared without the alkyl alcohols. It was considered that the alkyl alcohols contributed to the effective dissolution of the co-viscosifier as well as the homogeneous mixing in the formation of the gel, while the co-viscosifier in an aqueous media of the chemical decontamination agent solution showed a lower solubility. The decontamination efficiency of the chemical gels prepared in this work using a multi-channel analyzer (MCA) showed a high decontamination efficiency of over ca. 94% and ca. 92% for Co-60 and Cs-137 contaminated on surface of the stainless steel 304, respectively. (authors)

  7. Inhibition of STAT3 reverses alkylator resistance through modulation of the AKT and β-catenin signaling pathways.

    PubMed

    Wang, Yongzhi; Chen, Lingchao; Bao, Zhaoshi; Li, Shouwei; You, Gan; Yan, Wei; Shi, Zhendong; Liu, Yanwei; Yang, Pei; Zhang, Wei; Han, Lei; Kang, Chunsheng; Jiang, Tao

    2011-11-01

    Activation of signal transducer and activator of transcription 3 (STAT3) is associated with poor clinical outcome of glioblastoma (GBM). However, the role of STAT3 in resistance to alkylator-based chemotherapy remains unknown. Here, we retrospectively analyzed the phosphorylated STAT3 (p-STAT3) profile of 68 GBM patients receiving alkylator therapy, identifying p-STAT3 as an independent unfavorable prognostic factor for progression-free and overall survival. Additionally, elevated p-STAT3 expression correlated with resistance to alkylator therapy. In vitro analysis revealed that U251 and U87 human glioma cells were refractory to treatment with the common alkylating agent temozolomide (TMZ), with only a modest impact on AKT and β-catenin activation in the context of high p-STAT3. Inhibition of STAT3 in these cells significantly enhanced the effect of TMZ. Inhibition of STAT3 dramatically decreased the IC50 of TMZ, increasing TMZ-induced apoptosis while up-regulating expression of Bcl-2 and down-regulating expression of Bax. Furthermore, inhibition of STAT3 increased TMZ-induced G₀-G₁ arrest and decreased Cyclin D1 expression compared to TMZ alone. Together, these results indicate that inhibition of STAT3 sensitizes glioma cells to TMZ, at least in part, by blocking the p-AKT and β-catenin pathways. These findings strongly support the hypothesis that STAT3 inhibition significantly improves the clinical efficacy of alkylating agents.

  8. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  9. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  10. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  11. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated alkyl pyridine. 721.8700... Substances § 721.8700 Halogenated alkyl pyridine. Link to an amendment published at 79 FR 34638, June 18... identified generically as halogenated alkyl pyridine (PMN P-83-237) is subject to reporting under...

  12. 40 CFR 721.9720 - Disubstituted alkyl triazines (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Disubstituted alkyl triazines (generic... Specific Chemical Substances § 721.9720 Disubstituted alkyl triazines (generic name). Link to an amendment... reporting. (1) The chemical substances identified generically as disubstituted alkyl triazines (PMNs...

  13. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  14. 40 CFR 721.10233 - Linear alkyl epoxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Linear alkyl epoxide (generic). 721... Substances § 721.10233 Linear alkyl epoxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as linear alkyl epoxide (PMN...

  15. 40 CFR 721.555 - Alkyl amino nitriles (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl amino nitriles (generic). 721... Substances § 721.555 Alkyl amino nitriles (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl amino nitriles (PMNs...

  16. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl substituted diaromatic... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this...

  17. 40 CFR 721.550 - Alkyl alkenoate, azobis-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl alkenoate, azobis-. 721.550... Substances § 721.550 Alkyl alkenoate, azobis-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl alkenoate, azobis- (PMN P-88-2470)...

  18. 40 CFR 721.550 - Alkyl alkenoate, azobis-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl alkenoate, azobis-. 721.550... Substances § 721.550 Alkyl alkenoate, azobis-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl alkenoate, azobis- (PMN P-88-2470)...

  19. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  20. 40 CFR 721.648 - Alkyl dialkylamino phenylsulfonyl alkenoate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl dialkylamino phenylsulfonyl... Specific Chemical Substances § 721.648 Alkyl dialkylamino phenylsulfonyl alkenoate (generic). (a) Chemical... as alkyl dialkylamino phenylsulfonyl alkenoate (PMN P-00-0816) is subject to reporting under...

  1. 40 CFR 721.2825 - Alkyl ester (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  2. 40 CFR 721.1852 - Di-alkyl borane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Di-alkyl borane (generic). 721.1852... Substances § 721.1852 Di-alkyl borane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as di-alkyl borane (PMN P-00-1087) is...

  3. 40 CFR 721.3485 - Hydrofluorocarbon alkyl ether.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrofluorocarbon alkyl ether. 721... Substances § 721.3485 Hydrofluorocarbon alkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydrofluorocarbon alkyl...

  4. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  5. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  6. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl substituted diaromatic... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this...

  7. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phosphonate...

  8. 40 CFR 721.555 - Alkyl amino nitriles (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl amino nitriles (generic). 721... Substances § 721.555 Alkyl amino nitriles (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl amino nitriles (PMNs...

  9. 40 CFR 721.3485 - Hydrofluorocarbon alkyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluorocarbon alkyl ether. 721... Substances § 721.3485 Hydrofluorocarbon alkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydrofluorocarbon alkyl...

  10. 40 CFR 721.9720 - Disubstituted alkyl triazines (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted alkyl triazines (generic... Specific Chemical Substances § 721.9720 Disubstituted alkyl triazines (generic name). (a) Chemical... as disubstituted alkyl triazines (PMNs P-85-932 and P-85-933) are subject to reporting under...

  11. 40 CFR 721.6490 - Alkyl phenyl polyetheramines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl phenyl polyetheramines. 721.6490... Substances § 721.6490 Alkyl phenyl polyetheramines. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phenyl...

  12. 40 CFR 721.10669 - Tertiary amine alkyl ether (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tertiary amine alkyl ether (generic... Specific Chemical Substances § 721.10669 Tertiary amine alkyl ether (generic). (a) Chemical substance and... alkyl ether (PMN P-13-78) is subject to reporting under this section for the significant new...

  13. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethoxylated alkyl quaternary ammonium... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  14. 40 CFR 721.10385 - Phenoxy alkyl ether (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phenoxy alkyl ether (generic). 721... Substances § 721.10385 Phenoxy alkyl ether (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as phenoxy alkyl ether (PMN...

  15. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl substituted diaromatic... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this...

  16. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  17. 40 CFR 721.10385 - Phenoxy alkyl ether (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phenoxy alkyl ether (generic). 721... Substances § 721.10385 Phenoxy alkyl ether (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as phenoxy alkyl ether (PMN...

  18. 40 CFR 721.647 - Alkoxylated alkyl amine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkoxylated alkyl amine (generic). 721... Substances § 721.647 Alkoxylated alkyl amine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkoxylated alkyl amine...

  19. 40 CFR 721.10697 - Polyfluorinated alkyl polyamide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyfluorinated alkyl polyamide... Specific Chemical Substances § 721.10697 Polyfluorinated alkyl polyamide (generic). (a) Chemical substance... polyfluorinated alkyl polyamide (PMN P-11-487) is subject to reporting under this section for the significant...

  20. 40 CFR 721.2825 - Alkyl ester (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  1. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phosphonate...

  2. 40 CFR 721.3485 - Hydrofluorocarbon alkyl ether.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrofluorocarbon alkyl ether. 721... Substances § 721.3485 Hydrofluorocarbon alkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydrofluorocarbon alkyl...

  3. 40 CFR 721.3740 - Bisalkylated fatty alkyl amine oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Bisalkylated fatty alkyl amine oxide... Substances § 721.3740 Bisalkylated fatty alkyl amine oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as bisalkylated fatty alkyl...

  4. 40 CFR 721.647 - Alkoxylated alkyl amine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkoxylated alkyl amine (generic). 721... Substances § 721.647 Alkoxylated alkyl amine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkoxylated alkyl amine...

  5. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated alkyl pyridine. 721.8700... Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkyl pyridine (PMN P-83-237)...

  6. 40 CFR 721.10701 - Polyfluorinated alkyl amine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyfluorinated alkyl amine (generic... Specific Chemical Substances § 721.10701 Polyfluorinated alkyl amine (generic). (a) Chemical substance and... polyfluorinated alkyl amine (PMN P-11-532) is subject to reporting under this section for the significant new...

  7. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl substituted diaromatic... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this...

  8. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  9. 40 CFR 721.10385 - Phenoxy alkyl ether (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phenoxy alkyl ether (generic). 721... Substances § 721.10385 Phenoxy alkyl ether (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as phenoxy alkyl ether (PMN...

  10. 40 CFR 721.648 - Alkyl dialkylamino phenylsulfonyl alkenoate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl dialkylamino phenylsulfonyl... Specific Chemical Substances § 721.648 Alkyl dialkylamino phenylsulfonyl alkenoate (generic). (a) Chemical... as alkyl dialkylamino phenylsulfonyl alkenoate (PMN P-00-0816) is subject to reporting under...

  11. 40 CFR 721.10233 - Linear alkyl epoxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Linear alkyl epoxide (generic). 721... Substances § 721.10233 Linear alkyl epoxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as linear alkyl epoxide (PMN...

  12. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  13. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  14. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  15. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  16. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethoxylated alkyl quaternary ammonium... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  17. 40 CFR 721.550 - Alkyl alkenoate, azobis-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl alkenoate, azobis-. 721.550... Substances § 721.550 Alkyl alkenoate, azobis-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl alkenoate, azobis- (PMN P-88-2470)...

  18. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  19. 40 CFR 721.648 - Alkyl dialkylamino phenylsulfonyl alkenoate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl dialkylamino phenylsulfonyl... Specific Chemical Substances § 721.648 Alkyl dialkylamino phenylsulfonyl alkenoate (generic). (a) Chemical... as alkyl dialkylamino phenylsulfonyl alkenoate (PMN P-00-0816) is subject to reporting under...

  20. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  1. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phosphonate...

  2. 40 CFR 721.10453 - Polyglycerin alkyl ether (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyglycerin alkyl ether (generic... Specific Chemical Substances § 721.10453 Polyglycerin alkyl ether (generic). (a) Chemical substance and... alkyl ether (PMN P-02-796) is subject to reporting under this section for the significant new...

  3. 40 CFR 721.1852 - Di-alkyl borane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Di-alkyl borane (generic). 721.1852... Substances § 721.1852 Di-alkyl borane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as di-alkyl borane (PMN P-00-1087) is...

  4. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  5. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  6. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phosphonate...

  7. 40 CFR 721.9720 - Disubstituted alkyl triazines (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Disubstituted alkyl triazines (generic... Specific Chemical Substances § 721.9720 Disubstituted alkyl triazines (generic name). (a) Chemical... as disubstituted alkyl triazines (PMNs P-85-932 and P-85-933) are subject to reporting under...

  8. 40 CFR 721.1852 - Di-alkyl borane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Di-alkyl borane (generic). 721.1852... Substances § 721.1852 Di-alkyl borane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as di-alkyl borane (PMN P-00-1087) is...

  9. 40 CFR 721.10696 - Polyfluorinated alkyl thiol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyfluorinated alkyl thiol (generic... Specific Chemical Substances § 721.10696 Polyfluorinated alkyl thiol (generic). (a) Chemical substances and... polyfluorinated alkyl thiol (PMNs P-11-483 and P-11-528) are subject to reporting under this section for...

  10. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  11. 40 CFR 721.2825 - Alkyl ester (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  12. 40 CFR 721.1852 - Di-alkyl borane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Di-alkyl borane (generic). 721.1852... Substances § 721.1852 Di-alkyl borane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as di-alkyl borane (PMN P-00-1087) is...

  13. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  14. 40 CFR 721.648 - Alkyl dialkylamino phenylsulfonyl alkenoate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl dialkylamino phenylsulfonyl... Specific Chemical Substances § 721.648 Alkyl dialkylamino phenylsulfonyl alkenoate (generic). (a) Chemical... as alkyl dialkylamino phenylsulfonyl alkenoate (PMN P-00-0816) is subject to reporting under...

  15. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  16. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  17. 40 CFR 721.10700 - Polyfluorinated alkyl thio polyacrylamide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyfluorinated alkyl thio... Specific Chemical Substances § 721.10700 Polyfluorinated alkyl thio polyacrylamide (generic). (a) Chemical... as polyfluorinated alkyl thio polyacrylamide (PMNs P-11-530 and P-11-533) are subject to...

  18. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  19. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  20. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  1. 40 CFR 721.550 - Alkyl alkenoate, azobis-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl alkenoate, azobis-. 721.550... Substances § 721.550 Alkyl alkenoate, azobis-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl alkenoate, azobis- (PMN P-88-2470)...

  2. 40 CFR 721.3485 - Hydrofluorocarbon alkyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluorocarbon alkyl ether. 721... Substances § 721.3485 Hydrofluorocarbon alkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydrofluorocarbon alkyl...

  3. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  4. 40 CFR 721.10453 - Polyglycerin alkyl ether (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyglycerin alkyl ether (generic... Specific Chemical Substances § 721.10453 Polyglycerin alkyl ether (generic). (a) Chemical substance and... alkyl ether (PMN P-02-796) is subject to reporting under this section for the significant new...

  5. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  6. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  7. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  8. 40 CFR 721.4136 - Alkyl heteropolycyclic-aniline (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl heteropolycyclic-aniline... Specific Chemical Substances § 721.4136 Alkyl heteropolycyclic-aniline (generic). (a) Chemical substance... alkyl heteropolycyclic-aniline (PMN P-00-0067) is subject to reporting under this section for...

  9. 40 CFR 721.3485 - Hydrofluorocarbon alkyl ether.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrofluorocarbon alkyl ether. 721... Substances § 721.3485 Hydrofluorocarbon alkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydrofluorocarbon alkyl...

  10. 40 CFR 721.9720 - Disubstituted alkyl triazines (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Disubstituted alkyl triazines (generic... Specific Chemical Substances § 721.9720 Disubstituted alkyl triazines (generic name). (a) Chemical... as disubstituted alkyl triazines (PMNs P-85-932 and P-85-933) are subject to reporting under...

  11. 40 CFR 721.3740 - Bisalkylated fatty alkyl amine oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Bisalkylated fatty alkyl amine oxide... Substances § 721.3740 Bisalkylated fatty alkyl amine oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as bisalkylated fatty alkyl...

  12. 40 CFR 721.555 - Alkyl amino nitriles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino nitriles (generic). 721... Substances § 721.555 Alkyl amino nitriles (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl amino nitriles (PMNs...

  13. 40 CFR 721.10233 - Linear alkyl epoxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Linear alkyl epoxide (generic). 721... Substances § 721.10233 Linear alkyl epoxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as linear alkyl epoxide (PMN...

  14. 40 CFR 721.10692 - Fluorinated alkyl dianiline (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fluorinated alkyl dianiline (generic... Specific Chemical Substances § 721.10692 Fluorinated alkyl dianiline (generic). (a) Chemical substance and... alkyl dianiline (PMN P-13-288) is subject to reporting under this section for the significant new...

  15. 40 CFR 721.3740 - Bisalkylated fatty alkyl amine oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Bisalkylated fatty alkyl amine oxide... Substances § 721.3740 Bisalkylated fatty alkyl amine oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as bisalkylated fatty alkyl...

  16. 40 CFR 721.555 - Alkyl amino nitriles (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl amino nitriles (generic). 721... Substances § 721.555 Alkyl amino nitriles (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl amino nitriles (PMNs...

  17. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  18. 40 CFR 721.6490 - Alkyl phenyl polyetheramines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl phenyl polyetheramines. 721.6490... Substances § 721.6490 Alkyl phenyl polyetheramines. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phenyl...

  19. 40 CFR 721.6490 - Alkyl phenyl polyetheramines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl phenyl polyetheramines. 721.6490... Substances § 721.6490 Alkyl phenyl polyetheramines. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phenyl...

  20. 40 CFR 721.648 - Alkyl dialkylamino phenylsulfonyl alkenoate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl dialkylamino phenylsulfonyl... Specific Chemical Substances § 721.648 Alkyl dialkylamino phenylsulfonyl alkenoate (generic). (a) Chemical... as alkyl dialkylamino phenylsulfonyl alkenoate (PMN P-00-0816) is subject to reporting under...

  1. 40 CFR 721.10699 - Polyfluorinated alkyl thio acrylamide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyfluorinated alkyl thio acrylamide... Specific Chemical Substances § 721.10699 Polyfluorinated alkyl thio acrylamide (generic). (a) Chemical... as polyfluorinated alkyl thio acrylamide (PMN P-11-529) is subject to reporting under this...

  2. 40 CFR 721.1852 - Di-alkyl borane (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Di-alkyl borane (generic). 721.1852... Substances § 721.1852 Di-alkyl borane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as di-alkyl borane (PMN P-00-1087) is...

  3. 40 CFR 721.2825 - Alkyl ester (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  4. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethoxylated alkyl quaternary ammonium... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  5. 40 CFR 721.10698 - Polyfluorinated alkyl halide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyfluorinated alkyl halide (generic... Specific Chemical Substances § 721.10698 Polyfluorinated alkyl halide (generic). (a) Chemical substance and... polyfluorinated alkyl halide (PMN P-11-527) is subject to reporting under this section for the significant...

  6. 40 CFR 721.550 - Alkyl alkenoate, azobis-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl alkenoate, azobis-. 721.550... Substances § 721.550 Alkyl alkenoate, azobis-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl alkenoate, azobis- (PMN P-88-2470)...

  7. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  8. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327)...

  9. 40 CFR 721.6490 - Alkyl phenyl polyetheramines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl phenyl polyetheramines. 721.6490... Substances § 721.6490 Alkyl phenyl polyetheramines. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phenyl...

  10. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethoxylated alkyl quaternary ammonium... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  11. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  12. 40 CFR 721.555 - Alkyl amino nitriles (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl amino nitriles (generic). 721... Substances § 721.555 Alkyl amino nitriles (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl amino nitriles (PMNs...

  13. 40 CFR 721.647 - Alkoxylated alkyl amine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated alkyl amine (generic). 721... Substances § 721.647 Alkoxylated alkyl amine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkoxylated alkyl amine...

  14. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  15. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl substituted diaromatic... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this...

  16. 40 CFR 721.9720 - Disubstituted alkyl triazines (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Disubstituted alkyl triazines (generic... Specific Chemical Substances § 721.9720 Disubstituted alkyl triazines (generic name). (a) Chemical... as disubstituted alkyl triazines (PMNs P-85-932 and P-85-933) are subject to reporting under...

  17. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethoxylated alkyl quaternary ammonium... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  18. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject...

  19. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  20. 40 CFR 721.3740 - Bisalkylated fatty alkyl amine oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Bisalkylated fatty alkyl amine oxide... Substances § 721.3740 Bisalkylated fatty alkyl amine oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as bisalkylated fatty alkyl...

  1. 40 CFR 721.10669 - Tertiary amine alkyl ether (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tertiary amine alkyl ether (generic... Specific Chemical Substances § 721.10669 Tertiary amine alkyl ether (generic). (a) Chemical substance and... alkyl ether (PMN P-13-78) is subject to reporting under this section for the significant new...

  2. 40 CFR 721.3740 - Bisalkylated fatty alkyl amine oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Bisalkylated fatty alkyl amine oxide... Substances § 721.3740 Bisalkylated fatty alkyl amine oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as bisalkylated fatty alkyl...

  3. 40 CFR 721.6490 - Alkyl phenyl polyetheramines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl phenyl polyetheramines. 721.6490... Substances § 721.6490 Alkyl phenyl polyetheramines. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phenyl...

  4. 40 CFR 721.647 - Alkoxylated alkyl amine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkoxylated alkyl amine (generic). 721... Substances § 721.647 Alkoxylated alkyl amine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkoxylated alkyl amine...

  5. 40 CFR 721.647 - Alkoxylated alkyl amine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkoxylated alkyl amine (generic). 721... Substances § 721.647 Alkoxylated alkyl amine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkoxylated alkyl amine...

  6. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  7. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phosphonate...

  8. 40 CFR 721.2825 - Alkyl ester (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  9. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    EPA Science Inventory

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  10. 40 CFR 721.10506 - Alkylated phenols (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkylated phenols (generic). 721.10506... Substances § 721.10506 Alkylated phenols (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkylated phenols (PMNs...

  11. 40 CFR 721.10506 - Alkylated phenols (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkylated phenols (generic). 721.10506... Substances § 721.10506 Alkylated phenols (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkylated phenols (PMNs...

  12. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  13. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  14. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  15. Chelation-driven rearrangement of primary alkyl aminopalladation products to stable trisubstituted alkyl-palladium complexes.

    PubMed

    Rosewall, Carolyn F; Ingalls, Erica L; Kaminsky, Werner; Michael, Forrest E

    2015-04-01

    The formation of highly substituted carbon centers using catalysis has been a widely sought after goal, but complexes of highly substituted carbon atoms with transition metals are rare, and the factors that affect the relative stability of complexes with differentially substituted carbon atoms are poorly understood. In this study, a set of equilibrating alkyl-palladium complexes were subtly tuned to form either a primary or trisubstituted alkyl complex as the more thermodynamically favored state, depending on either the substrate or reaction conditions. An X-ray crystal structure of the trisubstituted alkyl-palladium complex is presented and compared with the corresponding primary alkyl complex. The mechanism for rearrangement and the factors that drive the change in stability are discussed.

  16. 77 FR 72747 - Alkyl(C8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... Classification System (NAICS) codes is not intended to be exhaustive, but rather provides a guide to help readers... . II. Petition for Exemption In the Federal Register of May 2, 2012 (77 FR 25957) (FRL-9346-1), EPA.../reproductive screening test (OECD 422) toxicity study on a representative N- alkyl(C 8 -C...

  17. Synthesis and characterization of chitosan alkyl urea.

    PubMed

    Wang, Jing; Jiang, Ji-Zhou; Chen, Wei; Bai, Zheng-Wu

    2016-07-10

    Chitosan is a versatile material employed for various purposes in many fields including the development of chiral stationary phases for enantioseparation. Chitosan alkyl urea is a kind of intermediate used to prepare enantioseparation materials. In order to synthesize the intermediates, in the present work, a new way to prepare chitosan alkyl urea has been established: chitosan was first reacted with methyl chloroformate yielding N-methoxyformylated chitosan, which was then converted to chitosan alkyl urea through amine-ester exchange reaction. With a large excess of methyl chloroformate and primary amine of low stereohindrance, the amino group in chitosan could be almost completely converted to ureido group. The as-prepared chitosan alkyl urea derivatives were characterized by IR, (1)H NMR, (13)C NMR,(1)H-(1)H COSY and (1)H-(13)C HSQC NMR spectra. The chemical shifts of hydrogen and carbon atoms of glucose unit were assigned. It was found that the degree of substitution was obviously lower if cyclopropyl amine, aniline, tert-butyl amine and diethyl amine were used as reactants for the amine-ester exchange reaction. The reason was explained with the aid of theoretical calculations.

  18. Lipoxygenase inhibitory activity of alkyl protocatechuates.

    PubMed

    Ha, Tae Joung; Shimizu, Kuniyoshi; Kubo, Isao

    2014-09-15

    Alkyl 3,4-dihydroxybenzoates (protocatechuates) inhibited linoleic acid peroxidation catalyzed by soybean lipoxygenase-1 (EC 1.13.11.12, Type 1). Their inhibitory activities displayed a parabolic function of their lipophilicity and maximized with alkyl chain lengths of between C11 and C14. Tetradecanyl protocatechuate exhibited the most potent inhibition with an IC50 of 0.05 μM, followed by dodecyl (lauryl) protocatechuate with an IC50 of 0.06 μM. However, their parent compound, protocatechuic acid, did not show this inhibitory activity up to 200 μM, indicating that the alkyl chain length is significantly related to the inhibition activity. The allosteric (or cooperative) inhibition of soybean lipoxygenase-1 of longer alkyl protocatechuates is reversible but in combination with their iron binding ability to disrupt the active site competitively and to interact with the hydrophobic portion surrounding near the active site (sequential action). In the case of dodecyl protocatechuate, the enzyme quickly binds this protocatechuate and then its dodecyl group undergoes a slow interaction with the hydrophobic domain in close proximity to the active site in the enzyme. The inhibition kinetics analyzed by Lineweaver-Burk plots indicates that octyl protocatechuate is a competitive inhibitor and the inhibition constant (Ki) was obtained as 0.23 μM but dodecyl protocatechuate is a slow binding inhibitor.

  19. Xanthine oxidase inhibitory activity of alkyl gallates.

    PubMed

    Masuoka, Noriyoshi; Nihei, Ken-ichi; Kubo, Isao

    2006-08-01

    A series (C1-C12) of alkyl gallates was examined for their effects on the activity of xanthine oxidase. Octyl (C8), decyl (C10), and dodecyl (C12) gallates competitively inhibited uric acid formation generated by xanthine oxidase, and the inhibition increased upon increasing the alkyl chain length. Interestingly, neither menthyl nor bornyl gallates inhibited uric acid formation. These data indicate that the hydrophobic alkyl portion is associated with the xanthine-binding site in the Mo-binding domain. It is likely that the linear alkyl portion interacts with the hydrophobic domain close to the binding site, and the hydrophobic interaction is crucial to inhibit the xanthine oxidase reaction. On the other hand, all of gallic acid and its esters equally suppress superoxide anion generation catalyzed by xanthine oxidase at low concentration. The suppression is not due to scavenging activity of these gallates but due to reduction of xanthine oxidase by these gallates. The reduced enzyme catalyzes the reaction to generate hydrogen peroxide and uric acid.

  20. Poly(ethyleneoxide) functionalization through alkylation

    DOEpatents

    Sivanandan, Kulandaivelu; Eitouni, Hany Basam; Li, Yan; Pratt, Russell Clayton

    2015-04-21

    A new and efficient method of functionalizing high molecular weight polymers through alkylation using a metal amide base is described. This novel procedure can also be used to synthesize polymer-based macro-initiators containing radical initiating groups at the chain-ends for synthesis of block copolymers.

  1. Theoretical study on the mechanism of Ni-catalyzed alkyl-alkyl Suzuki cross-coupling.

    PubMed

    Li, Zhe; Jiang, Yuan-Ye; Fu, Yao

    2012-04-01

    Ni-catalyzed cross-coupling of unactivated secondary alkyl halides with alkylboranes provides an efficient way to construct alkyl-alkyl bonds. The mechanism of this reaction with the Ni/L1 (L1=trans-N,N'-dimethyl-1,2-cyclohexanediamine) system was examined for the first time by using theoretical calculations. The feasible mechanism was found to involve a Ni(I)-Ni(III) catalytic cycle with three main steps: transmetalation of [Ni(I)(L1)X] (X=Cl, Br) with 9-borabicyclo[3.3.1]nonane (9-BBN)R(1) to produce [Ni(I)(L1)(R(1))], oxidative addition of R(2) X with [Ni(I)(L1)(R(1))] to produce [Ni(III)(L1)(R(1))(R(2))X] through a radical pathway, and C-C reductive elimination to generate the product and [Ni(I)(L1)X]. The transmetalation step is rate-determining for both primary and secondary alkyl bromides. KOiBu decreases the activation barrier of the transmetalation step by forming a potassium alkyl boronate salt with alkyl borane. Tertiary alkyl halides are not reactive because the activation barrier of reductive elimination is too high (+34.7 kcal mol(-1)). On the other hand, the cross-coupling of alkyl chlorides can be catalyzed by Ni/L2 (L2=trans-N,N'-dimethyl-1,2-diphenylethane-1,2-diamine) because the activation barrier of transmetalation with L2 is lower than that with L1. Importantly, the Ni(0)-Ni(II) catalytic cycle is not favored in the present systems because reductive elimination from both singlet and triplet [Ni(II)(L1)(R(1))(R(2))] is very difficult.

  2. Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy.

    PubMed

    Jaffrès, Paul-Alain; Gajate, Consuelo; Bouchet, Ana Maria; Couthon-Gourvès, Hélène; Chantôme, Aurélie; Potier-Cartereau, Marie; Besson, Pierre; Bougnoux, Philippe; Mollinedo, Faustino; Vandier, Christophe

    2016-09-01

    Synthetic alkyl lipids, such as the ether lipids edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) and ohmline (1-O-hexadecyl-2-O-methyl-rac-glycero-3-β-lactose), are forming a class of antitumor agents that target cell membranes to induce apoptosis and to decrease cell migration/invasion, leading to the inhibition of tumor and metastasis development. In this review, we present the structure-activity relationship of edelfosine and ohmline, and we point out differences and similarities between these two amphiphilic compounds. We also discuss the mechanisms of action of these synthetic alkyl ether lipids (involving, among other structures and molecules, membrane domains, Fas/CD95 death receptor signaling, and ion channels), and highlight a key role for lipid rafts in the underlying process. The reorganization of lipid raft membrane domains induced by these alkyl lipids affects the function of death receptors and ion channels, thus leading to apoptosis and/or inhibition of cancer cell migration. The possible therapeutic use of these alkyl lipids and the clinical perspectives for these lipids in prevention or/and treatment of tumor development and metastasis are also discussed.

  3. Masked N-Heterocyclic Carbene-Catalyzed Alkylation of Phenols with Organic Carbonates.

    PubMed

    Lui, Matthew Y; Yuen, Alexander K L; Masters, Anthony F; Maschmeyer, Thomas

    2016-09-01

    An easily prepared masked N-heterocyclic carbene, 1,3-dimethylimidazolium-2-carboxylate (DMI-CO2 ), was investigated as a "green" and inexpensive organocatalyst for the alkylation of phenols. The process made use of various low-toxicity and renewable alkylating agents, such as dimethyl- and diethyl carbonate, in a focused microwave reactor. DMI-CO2 was found to be a very active catalyst and excellent yields of a range of aryl alkyl ethers were obtained under relatively benign conditions. The observed difference in the conversion behavior of phenol methylation, in the presence of either the carbene or 1,8-diazabicycloundec-7-ene (DBU) catalyst, was rationalized on the basis of mechanistic investigations. The primary mode of action for the N-heterocyclic carbene is nucleophilic catalysis. Activation of the dialkyl carbonate electrophile results in concomitant evolution of an organo-soluble alkoxide, which deprotonates the phenolic starting material. In contrast, DBU is initially protonated by the phenol and thus consumed. Subsequent regeneration and participation in nucleophilic catalysis only becomes significant after some phenolate alkylation occurs. PMID:27528488

  4. A role for Saccharomyces cerevisiae Tpa1 protein in direct alkylation repair.

    PubMed

    Shivange, Gururaj; Kodipelli, Naveena; Monisha, Mohan; Anindya, Roy

    2014-12-26

    Alkylating agents induce cytotoxic DNA base adducts. In this work, we provide evidence to suggest, for the first time, that Saccharomyces cerevisiae Tpa1 protein is involved in DNA alkylation repair. Little is known about Tpa1 as a repair protein beyond the initial observation from a high-throughput analysis indicating that deletion of TPA1 causes methyl methane sulfonate sensitivity in S. cerevisiae. Using purified Tpa1, we demonstrate that Tpa1 repairs both single- and double-stranded methylated DNA. Tpa1 is a member of the Fe(II) and 2-oxoglutarate-dependent dioxygenase family, and we show that mutation of the amino acid residues involved in cofactor binding abolishes the Tpa1 DNA repair activity. Deletion of TPA1 along with the base excision repair pathway DNA glycosylase MAG1 renders the tpa1Δmag1Δ double mutant highly susceptible to methylation-induced toxicity. We further demonstrate that the trans-lesion synthesis DNA polymerase Polζ (REV3) plays a key role in tolerating DNA methyl-base lesions and that tpa1Δmag1revΔ3 triple mutant is extremely susceptible to methylation-induced toxicity. Our results indicate a synergism between the base excision repair pathway and direct alkylation repair by Tpa1 in S. cerevisiae. We conclude that Tpa1 is a hitherto unidentified DNA repair protein in yeast and that it plays a crucial role in reverting alkylated DNA base lesions and cytotoxicity.

  5. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218... 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2-...

  6. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218... 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2-...

  7. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218... 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2-...

  8. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218... 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2-...

  9. Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation

    PubMed Central

    Gupta, Lekha; Ramírez, Antonio; Collum, David B.

    2010-01-01

    A combination of NMR, kinetic, and computational methods are used to examine reactions of lithium diethylamide in tetrahydrofuran (THF) with n-dodecyl bromide and n-octyl benzenesulfonate. The alkyl bromide undergoes competitive SN2 substitution and E2 elimination in proportions independent of all concentrations except for a minor medium effect. Rate studies show that both reactions occur via trisolvated-monomer-based transition structures. The alkyl benzenesulfonate undergoes competitive SN2 substitution (minor) and N-sulfonation (major) with N-sulfonation promoted at low THF concentrations. The SN2 substitution is shown to proceed via a disolvated monomer suggested computationally to involve a cyclic transition structure. The dominant N-sulfonation follows a disolvated-dimer-based transition structure suggested computationally to be a bicyclo[3.1.1] form. The differing THF and lithium diethylamide orders for the two reactions explain the observed concentration-dependent chemoselectivities. PMID:21077695

  10. Antifungal activity of alkyl gallates against plant pathogenic fungi.

    PubMed

    Ito, Shinsaku; Nakagawa, Yasutaka; Yazawa, Satoru; Sasaki, Yasuyuki; Yajima, Shunsuke

    2014-04-01

    The antifungal activity of alkyl gallates against plant pathogenic fungi was evaluated. All of the fungi tested in this study were susceptible to some alkyl gallates, and the effect of linear alkyl gallates against plant pathogenic fungi was similar to the previously reported effects against Gram-negative and Gram-positive bacteria. We found that branched alkyl gallates showed stronger activity than did linear alkyl gallates with similar logP values. In addition, the antifungal activity of alkyl gallates was correlated with gallate-induced inhibition of the activity of mitochondrial complex II. The antifungal activity of alkyl gallates likely originates, at least in part, from their ability to inhibit the membrane respiratory chain.

  11. Substituent controlled reactivity switch: selective synthesis of α-diazoalkylphosphonates or vinylphosphonates via nucleophilic substitution of alkyl bromides with Bestmann-Ohira reagent.

    PubMed

    Pramanik, Mukund M D; Chaturvedi, Atul Kumar; Rastogi, Namrata

    2014-11-01

    We report a substituent controlled nucleophilic displacement of alkyl bromides with Bestmann-Ohira reagent yielding either dimethyl diazoalkylphosphonates or (E)-vinylphosphonates. The dimethyl diazoalkylphosphonates could be readily converted into corresponding (E)-vinylphosphonates in the presence of Cu following nitrogen elimination in quantitative yields.

  12. PROCESS FOR PRODUCING ALKYL ORTHOPHOSPHORIC ACID EXTRACTANTS

    DOEpatents

    Grinstead, R.R.

    1962-01-23

    A process is given for producing superior alkyl orthophosphoric acid extractants for use in solvent extraction methods to recover and purify various metals such as uranium and vanadium. The process comprises slurrying P/sub 2/O/ sub 5/ in a solvent diluent such as kerosene, benzene, isopropyl ether, and the like. An alipbatic alcohol having from nine to seventeen carbon atoms, and w- hcrein ihc OH group is situated inward of the terminal carbon atoms, is added to the slurry while the reaction temperature is mainiained below 60 deg C. The alcohol is added in the mole ratio of about 2 to l, alcohol to P/sub 2/O/sub 5/. A pyrophosphate reaotion product is formed in the slurry-alcohol mixture. Subsequently, the pyrophosphate reaction product is hydrolyzed with dilute mineral acid to produce the desired alkyl orthophosphoric aeid extractant. The extraetant may then be separated and utilized in metal-recovery, solvent- extraction processes. (AEC)

  13. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human

    PubMed Central

    Zanotto-Filho, Alfeu; Dashnamoorthy, Ravi; Loranc, Eva; de Souza, Luis H. T.; Moreira, José C. F.; Suresh, Uthra; Chen, Yidong

    2016-01-01

    Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival. PMID:27100653

  14. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

    PubMed

    Zanotto-Filho, Alfeu; Dashnamoorthy, Ravi; Loranc, Eva; de Souza, Luis H T; Moreira, José C F; Suresh, Uthra; Chen, Yidong; Bishop, Alexander J R

    2016-01-01

    Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival. PMID:27100653

  15. Hydrophilic interaction liquid chromatography-tandem mass spectrometry methylphosponic and alkyl methylphosphonic acids determination in environmental samples after pre-column derivatization with p-bromophenacyl bromide.

    PubMed

    Baygildiev, T M; Rodin, I A; Stavrianidi, A N; Braun, A V; Lebedev, A T; Rybalchenko, I V; Shpigun, O A

    2016-04-15

    Once exposed to the environment organophosphate nerve agents readily degrade by rapid hydrolysis to the corresponding alkyl methylphosphonic acids which do not exist in nature. These alkyl methylphosphonic acids are finally slowly hydrolyzed to methylphosphonic acid. Methylphosphonic acid is the most stable hydrolysis product of organophosphate nerve agents, persisting in environment for a long time. A highly sensitive method of methylphosphonic acid and alkyl methylphosphonic acids detection in dust and ground mixed samples has been developed and validated. The fact that alkyl methylphosphonic acids unlike methylphosphonic acid did not react with p-bromophenacyl bromide under chosen conditions was discovered. This allowed simultaneous chromatographic separation and mass spectrometric detection of derivatized methylphosphonic acid and underivatized alkyl methylphosphonic acids using HILIC-MS/MS method. Very simple sample pretreatment with high recoveries for each analyte was developed. Methylphosphonic acid pre-column derivate and alkyl methylphosphonic acids were detected using tandem mass spectrometry with electrospray ionization after hydrophilic interaction liquid chromatography separation. The developed approach allows achieving ultra-low detection limits: 200 pg mL(-1) for methylphosphonic acid, 70 pg mL(-1) for ethyl methylphosphonic acid, 8 pg mL(-1) for i-propyl methylphosphonic acid, 8 pg mL(-1) for i-butyl methylphosphonic acid, 5 pg mL(-1) for pinacolyl methylphosphonic acid in the extracts of dust and ground mixed samples. This approach was successfully applied to the dust and ground mixed samples from decommissioned plant for the production of chemical weapons.

  16. Hydrophilic interaction liquid chromatography-tandem mass spectrometry methylphosponic and alkyl methylphosphonic acids determination in environmental samples after pre-column derivatization with p-bromophenacyl bromide.

    PubMed

    Baygildiev, T M; Rodin, I A; Stavrianidi, A N; Braun, A V; Lebedev, A T; Rybalchenko, I V; Shpigun, O A

    2016-04-15

    Once exposed to the environment organophosphate nerve agents readily degrade by rapid hydrolysis to the corresponding alkyl methylphosphonic acids which do not exist in nature. These alkyl methylphosphonic acids are finally slowly hydrolyzed to methylphosphonic acid. Methylphosphonic acid is the most stable hydrolysis product of organophosphate nerve agents, persisting in environment for a long time. A highly sensitive method of methylphosphonic acid and alkyl methylphosphonic acids detection in dust and ground mixed samples has been developed and validated. The fact that alkyl methylphosphonic acids unlike methylphosphonic acid did not react with p-bromophenacyl bromide under chosen conditions was discovered. This allowed simultaneous chromatographic separation and mass spectrometric detection of derivatized methylphosphonic acid and underivatized alkyl methylphosphonic acids using HILIC-MS/MS method. Very simple sample pretreatment with high recoveries for each analyte was developed. Methylphosphonic acid pre-column derivate and alkyl methylphosphonic acids were detected using tandem mass spectrometry with electrospray ionization after hydrophilic interaction liquid chromatography separation. The developed approach allows achieving ultra-low detection limits: 200 pg mL(-1) for methylphosphonic acid, 70 pg mL(-1) for ethyl methylphosphonic acid, 8 pg mL(-1) for i-propyl methylphosphonic acid, 8 pg mL(-1) for i-butyl methylphosphonic acid, 5 pg mL(-1) for pinacolyl methylphosphonic acid in the extracts of dust and ground mixed samples. This approach was successfully applied to the dust and ground mixed samples from decommissioned plant for the production of chemical weapons. PMID:26965649

  17. Stereoselective coordination: a six-membered P,N-chelate tailored for asymmetric allylic alkylation.

    PubMed

    Császár, Z; Farkas, G; Bényei, A; Lendvay, G; Tóth, I; Bakos, J

    2015-10-01

    Six-membered chelate complexes [Pd(1a-b)Cl2], (2a-b) and [Pd(1a-b)(η(3)-PhCHCHCHPh)]BF4, (3a-b) of P,N-type ligands 1a, ((2S,4S)-2-diphenyl-phosphino-4-isopropylamino-pentane) and 1b, ((2S,4S)-2-diphenyl-phosphino-4-methylamino-pentane) have been prepared. The Pd-complexes have been characterized in solution by 1D and 2D NMR spectroscopy. The observed structures were confirmed by DFT calculations and in the case of 2a also by X-ray crystallography. Unexpectedly, the coordination of the all-carbon-backbone aminophosphine 1a resulted in not only a stereospecific locking of the donor nitrogen atom into one of the two possible configurations but also the conformation of the six-membered chelate rings containing three alkyl substituents was forced into the same single chair structure showing the axially placed isopropyl group on the coordinated N-atom. The stereodiscriminative complexation of 1a led to the formation of a palladium catalyst with a conformationally rigid chelate having a configurationally fixed nitrogen and electronically different coordination sites due to the presence of P and N donors. The stereochemically fixed catalyst provided excellent ee's (up to 96%) and activities in asymmetric allylic alkylation reactions. In contrast, the chelate rings formed by 1b exist in two different chair conformations, both containing axial methyl groups, but with the opposite configurations of the coordinated N-atom. Pd-complexes of 1b provided low enantioselectivities in similar alkylations, therefore emphasizing the importance of the stereoselective coordination of N-atoms in analogous P-N chelates. The factors determining the coordination of the ligands were also studied with respect to the chelate ring conformation and the nitrogen configuration.

  18. In pursuit of homoleptic actinide alkyl complexes.

    PubMed

    Seaman, Lani A; Walensky, Justin R; Wu, Guang; Hayton, Trevor W

    2013-04-01

    This Forum Article describes the pursuit of isolable homoleptic actinide alkyl complexes, starting with the pioneering work of Gilman during the Manhattan project. The initial reports in this area suggested that homoleptic uranium alkyls were too unstable to be isolated, but Wilkinson demonstrated that tractable uranium alkyls could be generated by purposeful "ate" complex formation, which serves to saturate the uranium coordination sphere and provide the complexes with greater kinetic stability. More recently, we reported the solid-state molecular structures of several homoleptic uranium alkyl complexes, including [Li(THF)4][U(CH2(t)Bu)5], [Li(TMEDA)]2[UMe6], [K(THF)]3[K(THF)2][U(CH2Ph)6]2, and [Li(THF)4][U(CH2SiMe3)6], by employing Wilkinson's strategy. Herein, we describe our attempts to extend this chemistry to thorium. The treatment of ThCl4(DME)2 with 5 equiv of LiCH2(t)Bu or LiCH2SiMe3 at -25 °C in THF affords [Th(CH2(t)Bu)5] (1) and [Li(DME)2][Th(CH2SiMe3)5 (2), respectively, in moderate yields. Similarly, the treatment of ThCl4(DME)2 with 6 equiv of K(CH2Ph) produces [K(THF)]2[Th(CH2Ph)6] (3), in good yield. Complexes 1-3 have been fully characterized, while the structures of 1 and 3 were confirmed by X-ray crystallography. Additionally, the electronic properties of 1 and 3 were explored by density functional theory.

  19. Hypobetalipoproteinemic agents. 2. Compounds related to 4-(1-adamantyloxy)aniline.

    PubMed

    Lednicer, D; Heyd, W E; Emmert, D E; TenBrink, R E; Schurr, P E; Day, C E

    1979-01-01

    While the previously used displacement reaction of sodim 1-adamantyl oxide on 4-fluoronitrobenzene was applicable to the preparation of 4-(1-adamantyloxy)aniline and several related compounds, certain derivatives were not easily accessible by this route. Thus the recently reported ortho alkylation of anilines and the dicyclohexylcarbodiimide-promoted coupling of 1-adamantanol with phenols were useful in the preparation of aromatic-substituted derivatives. Furthermore, addition of phenylmagnesium bromide to 1-cyanoadamantane provided entry to the 4-(1-adamantylmethyl)aniline series. 4-(1-Adamantyloxy)aniline (3) is herein reported to be a more potent hypobetalipoproteinemic agent than the previously reported bicyclooctyloxy analogue. Replacement of the oxygen atom of 3 with sulfur (74) or methylene (62), but not nitrogen (71), results in active compounds. In the oxygen series derived from 3, the widest scope of substitution on nitrogen resulting in activity is found. The N-ethoxycarbonyl (5), acetyl (6), methyl (12), ethyl (13), N-methyl-N-(2-hydroxyethyl) (19), N-methyl-N-formyl (22), N,N-dimethyl (26), pyrrolidine (14), and piperidine (15) derivatives are active. Aromatic ring substitution also provided the active 3-chloro (44b), 2-fluoro (41b, 42, and 43), and 2-methylthiomethyl (48) compounds. Thus these active compounds are identified for further development as hypobetalipoproteinemic agents.

  20. Preparation of quinolinium salts differing in the length of the alkyl side chain.

    PubMed

    Marek, Jan; Buchta, Vladimir; Soukup, Ondrej; Stodulka, Petr; Cabal, Jiri; Ghosh, Kallol K; Musilek, Kamil; Kuca, Kamil

    2012-05-25

    Quaternary quinolinium salts differing in alkyl chain length are members of a widespread group of cationic surfactants. These compounds have numerous applications in various branches of industry and research. In this work, the preparation of quinoline-derived cationic surface active agents differing in the length of the side alkyl chains (from C₈ to C₂₀) is described. An HPLC method was successfully developed for distinction of all members of the series of prepared long-chain quinolinium derivatives. In conclusion, some possibilities of intended tests or usage have been summarized. In vitro testing using a microdilution broth method showed good activity of a substance with a C12 chain length against Gram-positive cocci and Candida species.

  1. Alkyl ammonium cation stabilized biocidal polyiodides with adaptable high density and low pressure.

    PubMed

    He, Chunlin; Parrish, Damon A; Shreeve, Jean'ne M

    2014-05-26

    The effective application of biocidal species requires building the active moiety into a molecular back bone that can be delivered and decomposed on demand under conditions of low pressure and prolonged high-temperature detonation. The goal is to destroy storage facilities and their contents while utilizing the biocidal products arising from the released energy to destroy any remaining harmful airborne agents. Decomposition of carefully selected iodine-rich compounds can produce large amounts of the very active biocides, hydroiodic acid (HI) and iodine (I2). Polyiodide anions, namely, I3(-), I5(-), which are excellent sources of such biocides, can be stabilized through interactions with large, symmetric cations, such as alkyl ammonium salts. We have designed and synthesized suitable compounds of adaptable high density up to 3.33 g cm(-3) that are low-pressure polyiodides with various alkyl ammonium cations, deliverable iodine contents of which range between 58.0-90.9%.

  2. Repair of DNA Alkylation Damage by the Escherichia coli Adaptive Response Protein AlkB as Studied by ESI-TOF Mass Spectrometry

    PubMed Central

    Li, Deyu; Delaney, James C.; Page, Charlotte M.; Chen, Alvin S.; Wong, Cintyu; Drennan, Catherine L.; Essigmann, John M.

    2010-01-01

    DNA alkylation can cause mutations, epigenetic changes, and even cell death. All living organisms have evolved enzymatic and non-enzymatic strategies for repairing such alkylation damage. AlkB, one of the Escherichia coli adaptive response proteins, uses an α-ketoglutarate/Fe(II)-dependent mechanism that, by chemical oxidation, removes a variety of alkyl lesions from DNA, thus affording protection of the genome against alkylation. In an effort to understand the range of acceptable substrates for AlkB, the enzyme was incubated with chemically synthesized oligonucleotides containing alkyl lesions, and the reaction products were analyzed by electrospray ionization time-of-flight (ESI-TOF) mass spectrometry. Consistent with the literature, but studied comparatively here for the first time, it was found that 1-methyladenine, 1,N 6-ethenoadenine, 3-methylcytosine, and 3-ethylcytosine were completely transformed by AlkB, while 1-methylguanine and 3-methylthymine were partially repaired. The repair intermediates (epoxide and possibly glycol) of 3,N 4-ethenocytosine are reported for the first time. It is also demonstrated that O 6-methylguanine and 5-methylcytosine are refractory to AlkB, lending support to the hypothesis that AlkB repairs only alkyl lesions attached to the nitrogen atoms of the nucleobase. ESI-TOF mass spectrometry is shown to be a sensitive and efficient tool for probing the comparative substrate specificities of DNA repair proteins in vitro. PMID:21048928

  3. Proteomic analysis of DNA-protein cross-linking by antitumor nitrogen mustards.

    PubMed

    Loeber, Rachel L; Michaelson-Richie, Erin D; Codreanu, Simona G; Liebler, Daniel C; Campbell, Colin R; Tretyakova, Natalia Y

    2009-06-01

    Nitrogen mustards are antitumor agents used clinically for the treatment of a variety of neoplastic conditions. The biological activity of these compounds is typically attributed to their ability to induce DNA-DNA cross-links. However, nitrogen mustards are able to produce a variety of other lesions, including DNA-protein cross-links (DPCs). DPCs induced by nitrogen mustards are not well-characterized because of their structural complexity and the insufficient specificity and sensitivity of previously available experimental methodologies. In the present work, affinity capture methodology in combination with mass spectrometry-based proteomics was employed to identify mammalian proteins that form covalent cross-links to DNA in the presence of a simple nitrogen mustard, mechlorethamine. Following incubation of 5'-biotinylated DNA duplexes with nuclear protein extracts, DPCs were isolated by affinity capture on streptavidin beads, and the cross-linked proteins were identified by high-performance liquid chromatography-electrospray tandem mass spectrometry of tryptic peptides. Mechlorethamine treatment resulted in the formation of DPCs with nuclear proteins involved in chromatin regulation, DNA replication and repair, cell cycle control, transcriptional regulation, and cell architecture. Western blot analysis was employed to confirm protein identification and to quantify the extent of drug-mediated cross-linking. Mass spectrometry of amino acid-nucleobase conjugates found in total proteolytic digests revealed that mechlorethamine-induced DPCs are formed via alkylation of the N7 position of guanine in duplex DNA and cysteine thiols within the proteins to give N-[2-[S-cysteinyl]ethyl]-N-[2-(guan-7-yl)ethyl]methylamine lesions. The results described herein suggest that cellular exposure to nitrogen mustards leads to cross-linking of a large spectrum of nuclear proteins to chromosomal DNA, potentially contributing to the cytotoxic and mutagenic effects of these drugs.

  4. Effects of alkyl parabens on plant pathogenic fungi.

    PubMed

    Ito, Shinsaku; Yazawa, Satoru; Nakagawa, Yasutaka; Sasaki, Yasuyuki; Yajima, Shunsuke

    2015-04-15

    Alkyl parabens are used as antimicrobial preservatives in cosmetics, food, and pharmaceutical products. However, the mode of action of these chemicals has not been assessed thoroughly. In this study, we determined the effects of alkyl parabens on plant pathogenic fungi. All the fungi tested, were susceptible to parabens. The effect of linear alkyl parabens on plant pathogenic fungi was related to the length of the alkyl chain. In addition, the antifungal activity was correlated with the paraben-induced inhibition of oxygen consumption. The antifungal activity of linear alkyl parabens likely originates, at least in part, from their ability to inhibit the membrane respiratory chain, especially mitochondrial complex II. Additionally, we determined that some alkyl parabens inhibit Alternaria brassicicola infection of cabbage.

  5. Alkylated benzothiophene desulfurization by Rhodococcus sp. strain T09.

    PubMed

    Matsui, T; Onaka, T; Tanaka, Y; Tezuka, T; Suzuki, M; Kurane, R

    2000-03-01

    A benzothiophene desulfurizing bacterium was isolated and identified as Rhodococcus sp. strain T09. Growth assays revealed that this strain assimilated, as the sole sulfur source, various organosulfur compounds that cannot be assimilated by the well-studied dibenzothiophene-desulfurizing Rhodococcus sp. IGTS8. The cellular growth rate of strain T09 for the alkylated benzothiophenes depended on the alkylated position and the length of the alkyl moiety.

  6. Lithium perchlorate-nitromethane-promoted alkylation of anilines with arylmethanols.

    PubMed

    Zhou, Jun; Mao, Hai-Feng; Wang, Lu; Zou, Jian-Ping; Zhang, Wei

    2011-11-01

    A new application of lithium perchlorate-nitromethane (LPNM) for the formation of aromatic C-N and C-C bonds is introduced. LPNM-promoted reactions of anilines with diarylmethanols selectively generate N-alkylated anilines or mono and double Friedel-Crafts alkylation products under different conditions by changing the reaction time, reaction temperature, and the ratio of the reactants. This method does not require the use of transition metal catalysts to prepare alkylated aniline derivatives.

  7. Arylthiosemicarbazones as antileishmanial agents.

    PubMed

    Manzano, José Ignacio; Cochet, Florent; Boucherle, Benjamin; Gómez-Pérez, Verónica; Boumendjel, Ahcène; Gamarro, Francisco; Peuchmaur, Marine

    2016-11-10

    Based on a screening process, we targeted substituted thiosemicarbazone as potential antileishmanial agents. Our objective was to identify the key structural elements contributing to the anti-parasite activity that might be used for development of effective drugs. A series of 32 compounds was synthesized and their efficacy was evaluated against the clinically relevant intracellular amastigotes of Leishmania donovani. From these, 22 compounds showed EC50 values below 10 μM with the most active derivative (compound 14) showing an EC50 of 0.8 μM with very low toxicity on two different mammalian cell lines. The most relevant structural elements required for higher activity indicate that the presence of a fused bicyclic aromatic ring such as a naphthalene bearing an alkyl or an alkoxy group substituent are prerequisites. Owing to the easy synthesis, high activity and low toxicity, the most active compounds could be considered as a lead for further development.

  8. Alkyl substitution effect: A high mobility bistetracene derivatives

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyan; Liu, Yujuan; Zheng, Yujun

    2016-03-01

    Tetracenes and their derivatives are widely used in organic semiconductors for the advantages of small reorganization energies and large electronic couplings. The influences of long alkyl chain on charge transfer mobility of two bistetracene derivatives are investigated theoretically. The results show that the introduction of long alkyl chains would lead to a more compact packing, and increase electronic coupling, but reduce intermolecular distance. However, the introduction of long alkyl chains has little influence on reorganization energy. This provides a new understanding of the introduction of long alkyl chain on designing new high efficiency organic semiconductors.

  9. Biosynthesis of alkyl lysophosphatidic acid by diacylglycerol kinases.

    PubMed

    Gellett, Amanda M; Kharel, Yugesh; Sunkara, Manjula; Morris, Andrew J; Lynch, Kevin R

    2012-06-15

    Lysophosphatidic acid (LPA) designates a family of bioactive phosphoglycerides that differ in the length and degree of saturation of their radyl chain. Additional diversity is provided by the linkage of the radyl chain to glycerol: acyl, alkyl, or alk-1-enyl. Acyl-LPAs are the predominate species in tissues and biological fluids. Alkyl-LPAs exhibit distinct pharmacodynamics at LPA receptors, potently drive platelet aggregation, and contribute to ovarian cancer aggressiveness. Multiple biosynthetic pathways exist for alkyl-LPA production. Herein we report that diacylglycerol kinases (DGKs) contribute to cell-associated alkyl-LPA production involving phosphorylation of 1-alkyl-2-acetyl glycerol and document the biosynthesis of alkyl-LPA by DGKs in SKOV-3 ovarian cancer cells, specifically identifying the contribution of DGKα. Concurrently, we discovered that treating SKOV-3 ovarian cancer cell with a sphingosine analog stimulates conversion of exogenous 1-alkyl-2-acetyl glycerol to alkyl-LPA, indicating that DGKα contributes significantly to the production of alkyl-LPA in SKOV-3 cells and identifying cross-talk between the sphingolipid and glycerol lipid pathways.

  10. Drilling fluid containing a copolymer filtration control agent

    SciTech Connect

    Enright, D.P.; Lucas, J.M.; Perricone, A.C.

    1981-10-06

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: (1) a (Meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and (2) a (Meth) acrylamide or n-alkyl (Meth) acrylamide. The copolymer may be cross-linked with a quaternary ammonium salt cross-linking agent.

  11. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    SciTech Connect

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J.; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of

  12. Agent Orange

    MedlinePlus

    ... Index Agent Orange Agent Orange Home Facts about Herbicides Veterans' Diseases Birth Defects Benefits Exposure Locations Provider ... millions of gallons of Agent Orange and other herbicides on trees and vegetation during the Vietnam War. ...

  13. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect

    Nadas, Janos I; Vukovic, Sinisa; Hay, Benjamin

    2012-01-01

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  14. Catalytic Asymmetric Alkylation of Substituted Isoflavanones

    PubMed Central

    Nibbs, Antoinette E.; Baize, Amanda-Lauren; Herter, Rachel M.; Scheidt, Karl A.

    2009-01-01

    The asymmetric alkylation of isoflavanones and protected 3-phenyl-2,3-dihydroquinolin-4(1H)-ones catalyzed by a novel cinchonidine-derived phase transfer catalyst E is reported. This functionalization occurs at the non-activated C3 methine to afford novel products that can easily be functionalized to generate more complex fused ring systems. The process accommodates a variety of isoflavanones and activated electrophiles and installs a stereogenic quaternary center in high yield and with good-to-excellent selectivity. PMID:19658430

  15. Safety Assessment of Citric Acid, Inorganic Citrate Salts, and Alkyl Citrate Esters as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart A; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2014-05-26

    The CIR Expert Panel (Panel) assessed the safety of citric acid, 12 inorganic citrate salts, and 20 alkyl citrate esters as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration. Citric acid is reported to function as a pH adjuster, chelating agent, or fragrance ingredient. Some of the salts are also reported to function as chelating agents, and a number of the citrates are reported to function as skin-conditioning agents but other functions are also reported. The Panel reviewed available animal and clinical data, but because citric acid, calcium citrate, ferric citrate, manganese citrate, potassium citrate, sodium citrate, diammonium citrate, isopropyl citrate, stearyl citrate, and triethyl citrate are generally recognized as safe direct food additives, dermal exposure was the focus for these ingredients in this cosmetic ingredient safety assessment.

  16. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  17. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  18. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  19. The siloxane bond in contact lens materials: the siloxanyl alkyl methacrylate copolymers.

    PubMed

    Refojo, M F

    1984-11-01

    The siloxanyl alkyl methacrylate copolymers with methyl methacrylate and other components including hydrophilic monomers and crosslinking agents are used to make siloxane methacrylate oxygen-permeable rigid contact lenses. These copolymers contain the element silicon as siloxane bonds in side branches of the main polymer chain, which is made of carbon-to-carbon bonds. The siloxane bonds are the main contributing factor to the oxygen permeability of these materials. Because silicone is not a component of these contact lenses, it is not appropriate to refer to them as silicone methacrylate contact lenses. This paper analyzes data from three fundamental patents and gives the oxygen permeability coefficients of three types of siloxanyl alkyl methacrylate copolymers. In one type the siloxanyl component contains two silicon atoms, in the second type it contains three silicon atoms, and in the third type it contains four silicon atoms. A general relationship, expressed by a power function, is developed between the oxygen permeability coefficients of siloxanyl alkyl methacrylate copolymers and dimethylsilicone rubber and their percent disiloxane or silicon content. PMID:6517434

  20. Fragmentation of Electrospray-Produced Deprotonated Ions of Oligodeoxyribonucleotides Containing an Alkylated or Oxidized Thymidine

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Williams, Renee T.; Guerrero, Candace R.; Ji, Debin; Wang, Yinsheng

    2014-07-01

    Alkylation and oxidation constitute major routes of DNA damage induced by endogenous and exogenous genotoxic agents. Understanding the biological consequences of DNA lesions often necessitates the availability of oligodeoxyribonucleotide (ODN) substrates harboring these lesions, and sensitive and robust methods for validating the identities of these ODNs. Tandem mass spectrometry is well suited for meeting these latter analytical needs. In the present study, we evaluated how the incorporation of an ethyl group to different positions (i.e., O 2, N3, and O 4) of thymine and the oxidation of its 5-methyl carbon impact collisionally activated dissociation (CAD) pathways of electrospray-produced deprotonated ions of ODNs harboring these thymine modifications. Unlike an unmodified thymine, which often manifests poor cleavage of the C3'-O3' bond, the incorporation of an alkyl group to the O 2 position and, to a much lesser extent, the O 4 position, but not the N3 position of thymine, led to facile cleavage of the C3'-O3' bond on the 3' side of the modified thymine. Similar efficient chain cleavage was observed when thymine was oxidized to 5-formyluracil or 5-carboxyluracil, but not 5-hydroxymethyluracil. Additionally, with the support of computational modeling, we revealed that proton affinity and acidity of the modified nucleobases govern the fragmentation of ODNs containing the alkylated and oxidized thymidine derivatives, respectively. These results provided important insights into the effects of thymine modifications on ODN fragmentation.

  1. The photodissociation dynamics of alkyl radicals

    SciTech Connect

    Giegerich, Jens; Fischer, Ingo

    2015-01-28

    The photodisscociation dynamics of the alkyl radicals i-propyl (CH(CH{sub 3}){sub 2}) and t-butyl (C(CH{sub 3}){sub 3}) are investigated by H-atom photofragment imaging. While i-propyl is excited at 250 nm, the photodynamics of t-butyl are explored over a large energy range using excitation wavelengths between 347 nm and 233 nm. The results are compared to those obtained previously for ethyl, CH{sub 3}CH{sub 2}, and to those reported for t-butyl using 248 nm excitation. The translational energy (E{sub T}) distribution of the H-atom photofragments is bimodal and appears rather similar for all three radicals. The low E{sub T} part of the distribution shows an isotropic photofragment angular distribution, while the high E{sub T} part is associated with a considerable anisotropy. Thus, for t-butyl, two H-atom loss channels of roughly equal importance have been identified in addition to the CH{sub 3}-loss channel reported previously. A mechanism for the photodissociation of alkyl radicals is suggested that is based on interactions between Rydberg- and valence states.

  2. Radioiodination of Aryl-Alkyl Cyclic Sulfates

    PubMed Central

    Mushti, Chandra; Papisov, Mikhail I.

    2015-01-01

    Among the currently available positron emitters suitable for Positron Emission Tomography (PET), 124I has the longest physical half-life (4.2 days). The long half-life and well-investigated behavior of iodine in vivo makes 124I very attractive for pharmacological studies. In this communication, we describe a simple yet effective method for the synthesis of novel 124I labeled compounds intended for PET imaging of arylsulfatase activity in vivo. Arylsulfatases have important biological functions, and genetic deficiencies of such functions require pharmacological replacement, the efficacy of which must be properly and non-invasively evaluated. These enzymes, even though their natural substrates are mostly of aliphatic nature, hydrolyze phenolic sulfates to phenol and sulfuric acid. The availability of [124I]iodinated substrates is expected to provide a PET-based method for measuring their activity in vivo. The currently available methods of synthesis of iodinated arylsulfates usually require either introducing of a protected sulfate ester early in the synthesis or introduction of sulfate group at the end of synthesis in a separate step. The described method gives the desired product in one step from an aryl-alkyl cyclic sulfate. When treated with iodide, the source cyclic sulfate opens with substitution of iodide at the alkyl center and gives the desired arylsulfate monoester. PMID:23135631

  3. Alkyl hydroperoxide reductase: a candidate Helicobacter pylori vaccine.

    PubMed

    O'Riordan, Avril A; Morales, Veronica Athie; Mulligan, Linda; Faheem, Nazia; Windle, Henry J; Kelleher, Dermot P

    2012-06-01

    Helicobacter pylori (H. pylori) is the most important etiological agent of chronic active gastritis, peptic ulcer disease and gastric cancer. The aim of this study was to evaluate the efficacy of alkyl hydroperoxide reductase (AhpC) and mannosylated AhpC (mAhpC) as candidate vaccines in the C57BL/6J mouse model of H. pylori infection. Recombinant AhpC was cloned, over-expressed and purified in an unmodified form and was also engineered to incorporate N and C-terminal mannose residues when expressed in the yeast Pichia pastoris. Mice were immunized systemically and mucosally with AhpC and systemically with mAhpC prior to challenge with H. pylori. Serum IgG responses to AhpC were determined and quantitative culture was used to determine the efficacy of vaccination strategies. Systemic prophylactic immunization with AhpC/alum and mAhpC/alum conferred protection against infection in 55% and 77.3% of mice, respectively. Mucosal immunization with AhpC/cholera toxin did not protect against infection and elicited low levels of serum IgG in comparison with systemic immunization. These data support the use of AhpC as a potential vaccine candidate against H. pylori infection. PMID:22512976

  4. 40 CFR 721.2560 - Alkylated diphenyl oxide (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated diphenyl oxide (generic name). 721.2560 Section 721.2560 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... Substances § 721.2560 Alkylated diphenyl oxide (generic name). (a) Chemical substance and significant...

  5. Alkylation of refinery C5 streams to lower gasoline volatility

    SciTech Connect

    Cronkright, W.A.; Ditz, J.M.; Newsome, D.S. ); Lerner, H. ); Schorfheide, J.J. ); Libbers, D.D. )

    1994-01-01

    A pilot plant program was carried out to provide precise information about the sulfuric acid alkylation of refinery C5 streams under conditions found in commercial operation of the Exxon stirred, autorefrigerated alkylation process. The study used isobutane to alkylate the full range of pentenes in a C5 cut from an FCC unit as well as the linear olefin concentrate in the raffinate that would be obtained after processing this cut in a TAME unit. A few experiments were conducted with a mixture of C5 olefins matching the composition of the refinery feed in order to highlight the effect of impurities. The results showed that hydrocarbon impurities are a principal factor causing the high acid consumption values reported for pentene alkylation. The results also demonstrated that operating variables that affect acid consumption and alkylate quality in butene alkylation produce directionally similar effects in pentene alkylation, but of different magnitude. It is concluded that sulfur acid alkylation of pentenes produces an excellent isoparaffinic blending stock for the gasoline pool while eliminating volatile olefins and reducing gasoline RVP. Combined with the TAME process, a scheme for adding oxygen and achieving maximum RVP reduction at the same time is realized.

  6. 40 CFR 721.10677 - Alkyl phosphonate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10677 Alkyl phosphonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl phosphonate (PMN...

  7. 40 CFR 721.10341 - Amino alkyl organoborane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amino alkyl organoborane (generic... Specific Chemical Substances § 721.10341 Amino alkyl organoborane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amino...

  8. 40 CFR 721.10430 - Tetra alkyl ammonium salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tetra alkyl ammonium salt (generic... Specific Chemical Substances § 721.10430 Tetra alkyl ammonium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as tetra...

  9. 40 CFR 721.9515 - Aminofunctional alkoxy alkyl siloxane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aminofunctional alkoxy alkyl siloxane... Substances § 721.9515 Aminofunctional alkoxy alkyl siloxane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aminofunctional alkoxy...

  10. 40 CFR 721.2155 - Alkoxyamino-alkyl-coumarin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxyamino-alkyl-coumarin (generic... Substances § 721.2155 Alkoxyamino-alkyl-coumarin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  11. 40 CFR 721.9515 - Aminofunctional alkoxy alkyl siloxane.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aminofunctional alkoxy alkyl siloxane... Substances § 721.9515 Aminofunctional alkoxy alkyl siloxane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aminofunctional alkoxy...

  12. 40 CFR 721.10317 - Alkyl phosphate derivative (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl phosphate derivative (generic... Specific Chemical Substances § 721.10317 Alkyl phosphate derivative (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  13. 40 CFR 721.10073 - Modified alkyl acrylamide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified alkyl acrylamide (generic... Specific Chemical Substances § 721.10073 Modified alkyl acrylamide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified...

  14. 40 CFR 721.9572 - Substituted alkyl sulfonamide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted alkyl sulfonamide (generic... Substances § 721.9572 Substituted alkyl sulfonamide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted...

  15. 40 CFR 721.10430 - Tetra alkyl ammonium salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tetra alkyl ammonium salt (generic... Specific Chemical Substances § 721.10430 Tetra alkyl ammonium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as tetra...

  16. 40 CFR 721.2155 - Alkoxyamino-alkyl-coumarin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkoxyamino-alkyl-coumarin (generic... Substances § 721.2155 Alkoxyamino-alkyl-coumarin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  17. 40 CFR 721.9515 - Aminofunctional alkoxy alkyl siloxane.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aminofunctional alkoxy alkyl siloxane... Substances § 721.9515 Aminofunctional alkoxy alkyl siloxane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aminofunctional alkoxy...

  18. 40 CFR 721.10341 - Amino alkyl organoborane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amino alkyl organoborane (generic... Specific Chemical Substances § 721.10341 Amino alkyl organoborane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amino...

  19. 40 CFR 721.2155 - Alkoxyamino-alkyl-coumarin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkoxyamino-alkyl-coumarin (generic... Substances § 721.2155 Alkoxyamino-alkyl-coumarin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  20. 40 CFR 721.10073 - Modified alkyl acrylamide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified alkyl acrylamide (generic... Specific Chemical Substances § 721.10073 Modified alkyl acrylamide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified...

  1. 40 CFR 721.9572 - Substituted alkyl sulfonamide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted alkyl sulfonamide (generic... Substances § 721.9572 Substituted alkyl sulfonamide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted...

  2. 40 CFR 721.10317 - Alkyl phosphate derivative (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl phosphate derivative (generic... Specific Chemical Substances § 721.10317 Alkyl phosphate derivative (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  3. 40 CFR 721.9572 - Substituted alkyl sulfonamide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted alkyl sulfonamide (generic... Substances § 721.9572 Substituted alkyl sulfonamide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted...

  4. 40 CFR 721.9515 - Aminofunctional alkoxy alkyl siloxane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aminofunctional alkoxy alkyl siloxane... Substances § 721.9515 Aminofunctional alkoxy alkyl siloxane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aminofunctional alkoxy...

  5. 40 CFR 721.10073 - Modified alkyl acrylamide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified alkyl acrylamide (generic... Specific Chemical Substances § 721.10073 Modified alkyl acrylamide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified...

  6. 40 CFR 721.10073 - Modified alkyl acrylamide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified alkyl acrylamide (generic... Specific Chemical Substances § 721.10073 Modified alkyl acrylamide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified...

  7. 40 CFR 721.9572 - Substituted alkyl sulfonamide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl sulfonamide (generic... Substances § 721.9572 Substituted alkyl sulfonamide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted...

  8. 40 CFR 721.10317 - Alkyl phosphate derivative (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl phosphate derivative (generic... Specific Chemical Substances § 721.10317 Alkyl phosphate derivative (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  9. 40 CFR 721.10073 - Modified alkyl acrylamide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified alkyl acrylamide (generic... Specific Chemical Substances § 721.10073 Modified alkyl acrylamide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified...

  10. 40 CFR 721.10341 - Amino alkyl organoborane (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amino alkyl organoborane (generic... Specific Chemical Substances § 721.10341 Amino alkyl organoborane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amino...

  11. 40 CFR 721.9572 - Substituted alkyl sulfonamide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted alkyl sulfonamide (generic... Substances § 721.9572 Substituted alkyl sulfonamide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted...

  12. 40 CFR 721.9515 - Aminofunctional alkoxy alkyl siloxane.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aminofunctional alkoxy alkyl siloxane... Substances § 721.9515 Aminofunctional alkoxy alkyl siloxane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aminofunctional alkoxy...

  13. 40 CFR 721.2155 - Alkoxyamino-alkyl-coumarin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkoxyamino-alkyl-coumarin (generic... Substances § 721.2155 Alkoxyamino-alkyl-coumarin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  14. 40 CFR 721.2155 - Alkoxyamino-alkyl-coumarin (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkoxyamino-alkyl-coumarin (generic... Substances § 721.2155 Alkoxyamino-alkyl-coumarin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  15. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkyl pyridine (PMN P-83-237)...

  16. Direct, Catalytic and Regioselective Synthesis of 2-Alkyl, Aryl, and Alkenyl-Substituted N-Heterocycles from N-Oxides

    PubMed Central

    Larionov, Oleg V.; Stephens, David; Mfuh, Adelphe; Chavez, Gabriel

    2014-01-01

    A one-step transformation of heterocyclic N-oxides to 2-alkyl, aryl, and alkenyl-substituted N-heterocycles is described. The success of this broad-scope methodology hinges on the combination of copper catalysis and activation by lithium fluoride or magnesium chloride. The utility of this method for the late-stage modification of complex N-heterocycles is exemplified by facile syntheses of new structural analogs of several antimalarial, antimicrobial and fungicidal agents. PMID:24410049

  17. Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes

    SciTech Connect

    Suen, Yu.; Hubbard, J.S.; Holzer, G.; Tornabene, T.G.

    1987-06-01

    The green alga Nannochloropsis sp. QII was cultivated in media with sufficient and growth-limiting levels of nitrogen (nitrate). Nitrogen deficiency promoted lipid synthesis yielding cells with lipids comprising 55% of the biomass. The major lipids were triacylglycerols (79%), polar lipids (9%) and hydrocarbons (2.5%). The polar lipids consisted of a broad range of phospholipids, glycolipids and sulfolipids. Other lipids identified were pigments, free fatty acids, saponifiable and unsaponifiable sterol derivatives, various glycerides, a family of alkyl-1, 4-dioxane derivatives and a series of alkyl- and hydroxy-alkyl-dimethyl-acetals. Experiments in which /sup 14/CO/sub 2/ was provided at different times in the growth cycle demonstrated that enhanced lipid biosynthesis at low nitrogen levels resulted principally from de novo CO/sub 2/ fixation.

  18. Effect of polyester blends in hydroentangled raw and bleached cotton nonwoven fabrics on the adsorption of alkyl-dimethyl-benzyl-ammonium chloride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adsorption kinetics and isotherms of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on hydroentangled nonwoven fabrics (applicable for wipes) including raw cotton, bleached cotton, and their blends with polyester (PES) were stu...

  19. N-alkyl-4-[(8-azabicyclo[3.2.1]-oct-3-ylidene)phenylmethyl]benzamides, micro and delta opioid agonists: a micro address.

    PubMed

    Carson, John R; Coats, Steven J; Codd, Ellen E; Dax, Scott L; Lee, Jung; Martinez, Rebecca P; McKown, Linda A; Anne Neilson, Lou; Pitis, Philip M; Wu, Wu-Nan; Zhang, Sui-Po

    2004-05-01

    The tertiary amide delta opioid agonist 2 is a potent antinociceptive agent. Compound 2 was metabolized in vitro and in vivo to secondary amide 3, a potent and selective micro opioid agonist. The SAR of a series of N-alkyl-4-[(8-azabicyclo[3.2.1]-oct-3-ylidene)phenylmethyl]benzamides was examined.

  20. Repair-deficient 3-methyladenine DNA glycosylase homozygous mutant mouse cells have increased sensitivity to alkylation-induced chromosome damage and cell killing.

    PubMed Central

    Engelward, B P; Dreslin, A; Christensen, J; Huszar, D; Kurahara, C; Samson, L

    1996-01-01

    In Escherichia coli, the repair of 3-methyladenine (3MeA) DNA lesions prevents alkylation-induced cell death because unrepaired 3MeA blocks DNA replication. Whether this lesion is cytotoxic to mammalian cells has been difficult to establish in the absence of 3MeA repair-deficient cell lines. We previously isolated and characterized a mouse 3MeA DNA glycosylase cDNA (Aag) that provides resistance to killing by alkylating agents in E. coli. To determine the in vivo role of Aag, we cloned a large fragment of the Aag gene and used it to create Aag-deficient mouse cells by targeted homologous recombination. Aag null cells have no detectable Aag transcripts or 3MeA DNA glycosylase activity. The loss of Aag renders cells significantly more sensitive to methyl methanesulfonate-induced chromosome damage, and to cell killing induced by two methylating agents, one of which produces almost exclusively 3MeAs. Aag null embryonic stem cells become sensitive to two cancer chemotherapeutic alkylating agents, namely 1,3-bis(2-chloroethyl)-1-nitrosourea and mitomycin C, indicating that Aag status is an important determinant of cellular resistance to these agents. We conclude that this mammalian 3MeA DNA glycosylase plays a pivotal role in preventing alkylation-induced chromosome damage and cytotoxicity. Images PMID:8631315

  1. Ni-Catalyzed C-C Couplings Using Alkyl Electrophiles.

    PubMed

    Iwasaki, Takanori; Kambe, Nobuaki

    2016-10-01

    Much effort has been devoted to developing new methods using Ni catalysts for the cross-coupling reaction of alkyl electrophiles with organometallic reagents, and significant achievements in this area have emerged during the past two decades. Nickel catalysts have enabled the coupling reaction of not only primary alkyl electrophiles, but also sterically hindered secondary and tertiary alkyl electrophiles possessing β-hydrogens with various organometallic reagents to construct carbon skeletons. In addition, Ni catalysts opened a new era of asymmetric cross-coupling reaction using alkyl halides. Recent progress in nickel-catalyzed cross-coupling reaction of alkyl electrophiles with sp(3)-, sp(2)-, and sp-hybridized organometallic reagents including asymmetric variants as well as mechanistic insights of nickel catalysis are reviewed in this chapter. PMID:27580894

  2. β-Alkyl Elimination: Fundamental Principles and Some Applications.

    PubMed

    O'Reilly, Matthew E; Dutta, Saikat; Veige, Adam S

    2016-07-27

    This review describes organometallic compounds and materials that are capable of mediating a rarely encountered but fundamentally important reaction: β-alkyl elimination at the metal-Cα-Cβ-R moiety, in which an alkyl group attached to the Cβ atom is transferred to the metal or to a coordinated substrate. The objectives of this review are to provide a cohesive fundamental understanding of β-alkyl-elimination reactions and to highlight its applications in olefin polymerization, alkane hydrogenolysis, depolymerization of branched polymers, ring-opening polymerization of cycloalkanes, and other useful organic reactions. To provide a coherent understanding of the β-alkyl elimination reaction, special attention is given to conditions and strategies used to facilitate β-alkyl-elimination/transfer events in metal-catalyzed olefin polymerization, which provide the well-studied examples.

  3. Polyimide characterization studies - Effect of pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1984-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  4. Ni-Catalyzed C-C Couplings Using Alkyl Electrophiles.

    PubMed

    Iwasaki, Takanori; Kambe, Nobuaki

    2016-10-01

    Much effort has been devoted to developing new methods using Ni catalysts for the cross-coupling reaction of alkyl electrophiles with organometallic reagents, and significant achievements in this area have emerged during the past two decades. Nickel catalysts have enabled the coupling reaction of not only primary alkyl electrophiles, but also sterically hindered secondary and tertiary alkyl electrophiles possessing β-hydrogens with various organometallic reagents to construct carbon skeletons. In addition, Ni catalysts opened a new era of asymmetric cross-coupling reaction using alkyl halides. Recent progress in nickel-catalyzed cross-coupling reaction of alkyl electrophiles with sp(3)-, sp(2)-, and sp-hybridized organometallic reagents including asymmetric variants as well as mechanistic insights of nickel catalysis are reviewed in this chapter.

  5. Abuse potential and dopaminergic effect of alkyl nitrites.

    PubMed

    Jeon, Seo Young; Kim, Yun Ji; Kim, Young-Hoon; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Park, Hye-Kyung; Kim, Hyung Soo; Cha, Hye Jin

    2016-08-26

    The abuse of alkyl nitrites is common among adolescents and young adults worldwide. However, the information regarding the effects of alkyl nitrites on the central nervous system and the associated psychological abuse potential is scarce. The abuse potential of 3 representative alkyl nitrites - isobutyl nitrite, isoamyl nitrite, and butyl nitrite - was evaluated in mice using conditioned place preference tests with an unbiased method. The dopamine levels released by synaptosomes extracted from the striatal region were measured using high performance liquid chromatography. Mice treated with the test substances (50mg/kg, i.p.) exhibited a significantly increased drug-paired place preference. Moreover, greater levels of dopamine were released by striatal region synaptosomes in response to isobutyl nitrite treatment in mice. Thus, our findings suggest that alkyl nitrites could lead to psychological dependence and dopaminergic effects. Furthermore, these results provide scientific evidence to support the regulation of alkyl nitrites as psychoactive substances in the future.

  6. An efficient copper-catalyzed cross-coupling reaction of alkyl-triflates with alkyl-Grignard reagents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A highly efficient method for the formation of C-C covalent bonds by cross-coupling reaction between alkyl-triflates and alkyl-Grignard reagents catalyzed by copper catalyst, Li2CuCl4, is described. The reaction works with most primary triflates in diethyl ether at low temperature within 0.5-3 h an...

  7. Process for conversion of light paraffins to alkylate in the production of tertiary alkyl ether rich gasoline

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1992-04-21

    This patent describes a continuous integrated process for producing hydrocarbon streams comprising C{sub 5} + gasoline rich in alkyl tertiary alkyl ether and C{sub 5} + alkylated aromatic rich gasoline. It comprises contacting alkanol and C{sub 3} + aliphatic hydrocarbon stream containing alkanes and alkenes rich in iso-olefins with acid etherification catalyst under iso-olefin etherification conditions in an etherification reaction zone; separating etherification effluent to recover an overhead stream comprising unreacted alkanol plus C{sub 4} {minus} aliphatic hydrocarbons and a liquid product stream comprising C{sub 5} + gasoline containing alkyl tertiary-alkyl ether; contacting the overhead stream and a feedstream containing light aromatic hydrocarbons in an alkylation reactor containing acidic, medium pore metallosilicate catalyst under alkylation conditions and conversion conditions sufficient to convert alkanol, alkane and alkene to higher hydrocarbons the conditions comprising a temperature of about 200{degrees} C to 400{degrees} C and a pressure about above 3400 kPa; and separating step (c) reaction products and recovering the C{sub 5} + alkylated aromatic rich gasoline and a stream comprising C{sub 4} {minus} hydrocarbons.

  8. How Does the Ionic Liquid Organizational Landscape Change when Nonpolar Cationic Alkyl Groups Are Replaced by Polar Isoelectronic Diethers?

    SciTech Connect

    Kashyap, Hemant K.; Santos, Cherry S.; Daly, Ryan P.; Hettige, Jeevapani J.; Murthy, N. Sanjeeva; Shirota, Hideaki; Edward W. Castner Jr.; Margulis, Claudio J.

    2012-12-21

    The X-ray scattering experiments and molecular dynamics simulations have been performed to investigate the structure of four room temperature ionic liquids (ILs) comprising the bis(trifluoromethylsulfonyl)amide (NTf2) anion paired with the triethyloctylammonium (N2228+) and triethyloctylphosphonium (P2228+) cations and their isoelectronic diether analogs, the (2-ethoxyethoxy)ethyltriethylammonium (N222(2O2O2)+) and (2-ethoxyethoxy)ethyltriethylphosphonium (P222(2O2O2)+) cations. Agreement between simulations and experiments is good and permits a clear interpretation of the important topological differences between these systems. The first sharp diffraction peak (or prepeak) in the structure function S(q) that is present in the case of the liquids containing the alkyl-substituted cations is absent in the case of the diether substituted analogs. Using different theoretical partitioning schemes for the X-ray structure function, we show that the prepeak present in the alkyl-substituted ILs arises from polarity alternations between charged groups and nonpolar alkyl tails. In the case of the diether substituted ILs, we find considerable curling of tails. Anions can be found with high probability in two different environments: close to the cationic nitrogen (phosphorus) and also close to the two ether groups. Moreover, for the two diether systems, anions are found in locations from which they are excluded in the alkyl-substituted systems. This removes the longer range (polar/nonpolar) pattern of alternation that gives rise to the prepeak in alkyl-substituted systems.

  9. Synthetic, structural, and computational investigations of N-alkyl benzo-2,1,3-selenadiazolium iodides and their supramolecular aggregates.

    PubMed

    Lee, Lucia M; Corless, Victoria B; Tran, Michael; Jenkins, Hilary; Britten, James F; Vargas-Baca, Ignacio

    2016-02-28

    Despite their versatility, the application of telluradiazoles as supramolecular building blocks is considerably constrained by their sensitivity to moisture. Albeit more robust, their selenium analogues form weaker supramolecular interactions. These, however, are enhanced when one nitrogen atom is bonded to an alkyl group. Here we investigate general methods for the synthesis of such derivatives. Methyl, iso-propyl and tert-butyl benzo-2,1,3-selenadiazolium cations were prepared by direct alkylation or cyclo-condensation of the alkyl-phenylenediamine with selenous acid. While the former reaction only proceeds with the primary and tertiary alkyl iodides, the latter is very efficient. Difficulties reported in earlier literature are attributable to the formation of adducts of benzoselenadiazole with its alkylated cations and side reactions initiated by aerobic oxidation of iodide. However, the cations themselves are resilient to oxidation and stable in acidic to neutral aqueous medium. X-ray crystallography was used in the identification and characterization of the following compounds: [C6H4N2(R)Se](+)X(-), (R = CH(CH3)2, C(CH3)3; X = I(-), I3(-)], [C6H4N2(CH3)Se](+)I(-), and [C6H4N2Se][C6H4N2(CH3)Se]2I2. Formation of SeN secondary bonding interactions (chalcogen bonds) was only observed in the last structure as anion binding to selenium is a strong competitor. The relative strengths of those forces and the structural preferences they enforce were assessed with DFT-D3 calculations supplemented by AIM analysis of the electron density. PMID:26765368

  10. Quantification of Alkyl Nitrates in Ambient Air by Thermal Dissociation Cavity Ring-Down Spectroscopy with Preconcentration

    NASA Astrophysics Data System (ADS)

    Ye, C. Z.; Osthoff, H. D.; Taha, Y. M.; Pak, J. K.; Saowapon, M. T.

    2015-12-01

    Alkyl nitrates (AN, molecular formula RONO2) play a crucial role in the troposphere as temporary reservoirs of nitrogen oxides (NOx =NO +NO2) and by acting as chain terminators in the photochemical production of ozone. Mixing ratios of AN in ambient air are commonly quantified by gas chromatography with electron capture or mass spectrometric detection (GC-ECD or GC-MS) coupled to purge-and-trap preconcentration, usually on Tenax sorbent, to improve the detection limits. The analysis, however, is quite laborious as there are many alkyl nitrates that are low in individual abundance (often less than 1 parts-per-trillion by volume, pptv) and that exhibit different instrumental response factors. An alternative method is to determine alkyl nitrates as a sum (ΣAN) by thermal dissociation (TD) to a common fragment (NO2), which can then be quantified with a uniform response factor by optical absorption, for example by cavity ring-down spectroscopy (CRDS). However, the determination of ΣAN by TD-CRDS is hampered by its relatively high detection limits (several 100 pptv) and secondary chemistry following TD that results in both negative and positive interferences and depends on the composition of the ambient air sampled. In this work, a TD-CRDS equipped with a Tenax preconcentration unit is described. Matrix effects are minimized by desorbing the samples from the Tenax in a background of nitrogen. The performance of the instrument, in particular the recovery from the Tenax sorbent, was evaluated by sampling laboratory-generated mixtures of alkyl and peroxyacyl nitrates. Field data from a coastal site collected during the Ozone-depleting reactions in a coastal atmosphere (ORCA) campaign, which took place at the Amphitrite Point Observatory in Ucluelet, BC, from July 6 - 31, 2015, are presented. Advantages and disadvantages of the new method are discussed.

  11. Total synthesis of the potent microtubule-stabilizing agent (+)-discodermolide.

    PubMed

    Harried, Scott S; Lee, Christopher P; Yang, Ge; Lee, Tony I H; Myles, David C

    2003-08-22

    The total synthesis of the potent microtubule-stabilizing, antimitotic agent (+)-discodermolide is described. The convergent synthetic strategy takes advantage of the diastereoselective alkylation of a ketone enolate to establish the key C15-C16 bond. The synthesis is amenable to preparation of gram-scale quantities of (+)-discodermolide and analogues.

  12. Effect of caffeine on in vivo processing of alkylated bases in proliferating plant cells.

    PubMed

    Pincheira, J; López-Sáez, J F; Carrera, P; Navarrete, M H; de la Torre, C

    2003-01-01

    DNA damage was induced by either 2 mM ethylmethanesulfonate or 1 Gy of gamma-irradiation in Allium cepa L. root meristems. The percentage of DNA that migrated towards the anode during microelectrophoresis after alkali denaturation (pH approximately 13.5) of the isolated nuclei (comet assay) reflects the amount of single strand breaks present in them. There was some DNA migration (12.8+/-2.4%) in untreated roots. This percentage doubled at the end of 1.5 h treatment with the mono-functional alkylating agent 2 mM ethylmethanesulfonate, and trebled after a single exposure to 1 Gy of gamma-rays. A proportion of the DNA migration caused by these two treatments was reversed (repaired) by a 2 h long period of in vivo recovery. However, when 5 mM caffeine was applied after removal of the alkylating agent, the amount of DNA migrating to the comet tail over the same 2 h period was almost double that at the onset of recovery. In both control and irradiated nuclei, caffeine also increased the initial level of DNA migration in the comet assay, but to a lesser extent. These results indicate that caffeine increases the DNA damage that accumulates during the processing of alkylated bases and, to a lesser extent, of the DNA bases damaged by gamma-irradiation. Thus, the potentiation effect of caffeine on induced chromosomal damage may not just be due to caffeine-induced cancellation of the G2 checkpoint, but also to a direct effect this methylxantine has on the processing of DNA damage.

  13. Biological Agents

    MedlinePlus

    ... to Z Index Contact Us FAQs What's New Biological Agents This page requires that javascript be enabled ... and Health Topics A-Z Index What's New Biological agents include bacteria, viruses, fungi, other microorganisms and ...

  14. Development of polyimide foams with blowing agents

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Sorathia, Usman A. K. (Inventor); Lee, Raymond (Inventor)

    1985-01-01

    A method of preparing a polyimide foam which includes the steps of: preparing, foaming, and curing a precursor containing at least one alkyl ester of 3,3'4,4'-benzophenonetetracarboxylic acid; a meta- or para-substituted aromatic diamine; a heterocyclic diamine; an aliphatic diamine; and a solid blowing agent. The blowing agent is added to said precursor in a concentration which is sufficient to effect at least one of the following attributes of the foam: cell size, proportion of open cells, cell density, and indentation load deflection.

  15. Rapid determination of four short-chain alkyl mercapturic acids in human urine by column-switching liquid chromatography-tandem mass spectrometry.

    PubMed

    Eckert, Elisabeth; Göen, Thomas

    2014-08-15

    We developed and validated an analytical method for the simultaneous determination of methyl mercapturic acid (MeMA), ethyl mercapturic acid (EtMA), n-propyl mercapturic acid (PrMA) and iso-propyl mercapturic acid (iPrMA) in human urine. These alkyl mercapturic acids are known or presumed biomarkers of exposure to several alkylating agents including methyl bromide, dimethyl sulfate, ethyl bromide, 1-bromopropane and 2-bromopropane. The method involves a column switching arrangement for online solid phase extraction of the analytes with subsequent analytical separation and detection using liquid chromatography and tandem mass spectrometry. Within day and day-to-day imprecision was determined to range from 4.5 to 12.2%. The analytical method is distinguished by its wide linear working range of up to 2,500 μg/L with detection limits ranging from 2.0 μg/L (for PrMA) to 5.1 μg/L (for MeMA) that render possible the application in various biomonitoring studies regarding exposure to alkylating agents. The results of a pilot study on urine samples of 30 individuals occupationally non-exposed to alkylating agents using the new procedure confirmed the background excretion of MeMA (<5.1-35.6 μg/L) and PrMA (<2.0-95.7 μg/L).

  16. Copper-catalyzed alkyl-alkyl cross-coupling reactions using hydrocarbon additives: efficiency of catalyst and roles of additives.

    PubMed

    Iwasaki, Takanori; Imanishi, Reiko; Shimizu, Ryohei; Kuniyasu, Hitoshi; Terao, Jun; Kambe, Nobuaki

    2014-09-19

    Cross-coupling of alkyl halides with alkyl Grignard reagents proceeds with extremely high TONs of up to 1230000 using a Cu/unsaturated hydrocarbon catalytic system. Alkyl fluorides, chlorides, bromides, and tosylates are all suitable electrophiles, and a TOF as high as 31200 h(-1) was attained using an alkyl iodide. Side reactions of this catalytic system, i.e., reduction, dehydrohalogenation (elimination), and the homocoupling of alkyl halides, occur in the absence of additives. It appears that the reaction involves the β-hydrogen elimination of alkylcopper intermediates, giving rise to olefins and Cu-H species, and that this process triggers both side reactions and the degradation of the Cu catalyst. The formed Cu-H promotes the reduction of alkyl halides to give alkanes and Cu-X or the generation of Cu(0), probably by disproportionation, which can oxidatively add to alkyl halides to yield olefins and, in some cases, homocoupling products. Unsaturated hydrocarbon additives such as 1,3-butadiene and phenylpropyne play important roles in achieving highly efficient cross-coupling by suppressing β-hydrogen elimination, which inhibits both the degradation of the Cu catalyst and undesirable side reactions.

  17. Ligand redox effects in the synthesis, electronic structure, and reactivity of an alkyl-alkyl cross-coupling catalyst.

    PubMed

    Jones, Gavin D; Martin, Jason L; McFarland, Chris; Allen, Olivia R; Hall, Ryan E; Haley, Aireal D; Brandon, R Jacob; Konovalova, Tatyana; Desrochers, Patrick J; Pulay, Peter; Vicic, David A

    2006-10-11

    The ability of the terpyridine ligand to stabilize alkyl complexes of nickel has been central in obtaining a fundamental understanding of the key processes involved in alkyl-alkyl cross-coupling reactions. Here, mechanistic studies using isotopically labeled (TMEDA)NiMe(2) (TMEDA = N,N,N',N'-tetramethylethylenediamine) have shown that an important catalyst in alkyl-alkyl cross-coupling reactions, (tpy')NiMe (2b, tpy' = 4,4',4' '-tri-tert-butylterpyridine), is not produced via a mechanism that involves the formation of methyl radicals. Instead, it is proposed that (terpyridine)NiMe complexes arise via a comproportionation reaction between a Ni(II)-dimethyl species and a Ni(0) fragment in solution upon addition of a terpyridine ligand to (TMEDA)NiMe(2). EPR and DFT studies on the paramagnetic (terpyridine)NiMe (2a) both suggest that the unpaired electron resides heavily on the terpyridine ligand and that the proper electronic description of this nickel complex is a Ni(II)-methyl cation bound to a reduced terpyridine ligand. Thus, an important consequence of these results is that alkyl halide reduction by (terpyridine)NiR(alkyl) complexes appears to be substantially ligand based. A comprehensive survey investigating the catalytic reactivity of related ligand derivatives suggests that electronic factors only moderately influence reactivity in the terpyridine-based catalysis and that the most dramatic effects arise from steric and solubility factors.

  18. Copper-catalyzed alkyl-alkyl cross-coupling reactions using hydrocarbon additives: efficiency of catalyst and roles of additives.

    PubMed

    Iwasaki, Takanori; Imanishi, Reiko; Shimizu, Ryohei; Kuniyasu, Hitoshi; Terao, Jun; Kambe, Nobuaki

    2014-09-19

    Cross-coupling of alkyl halides with alkyl Grignard reagents proceeds with extremely high TONs of up to 1230000 using a Cu/unsaturated hydrocarbon catalytic system. Alkyl fluorides, chlorides, bromides, and tosylates are all suitable electrophiles, and a TOF as high as 31200 h(-1) was attained using an alkyl iodide. Side reactions of this catalytic system, i.e., reduction, dehydrohalogenation (elimination), and the homocoupling of alkyl halides, occur in the absence of additives. It appears that the reaction involves the β-hydrogen elimination of alkylcopper intermediates, giving rise to olefins and Cu-H species, and that this process triggers both side reactions and the degradation of the Cu catalyst. The formed Cu-H promotes the reduction of alkyl halides to give alkanes and Cu-X or the generation of Cu(0), probably by disproportionation, which can oxidatively add to alkyl halides to yield olefins and, in some cases, homocoupling products. Unsaturated hydrocarbon additives such as 1,3-butadiene and phenylpropyne play important roles in achieving highly efficient cross-coupling by suppressing β-hydrogen elimination, which inhibits both the degradation of the Cu catalyst and undesirable side reactions. PMID:25010426

  19. Antihydrophobic cosolvent effects for alkylation reactions in water solution, particularly oxygen versus carbon alkylations of phenoxide ions.

    PubMed

    Breslow, Ronald; Groves, Kevin; Mayer, M Uljana

    2002-04-10

    Antihydrophobic cosolvents such as ethanol increase the solubility of hydrophobic molecules in water, and they also affect the rates of reactions involving hydrophobic surfaces. In simple reactions of hydrocarbons, such as the Diels-Alder dimerization of 1,3-cyclopentadiene, the rate and solubility data directly reflect the geometry of the transition state, in which some hydrophobic surface becomes hidden. In reactions involving polar groups, such as alkylations of phenoxide ions or S(N)1 ionizations of alkyl halides, cosolvents in water can have other effects as well. However, solvation of hydrophobic surfaces is still important. By the use of structure-reactivity relationships, and comparing the effects of ethanol and DMSO as solvents, it has been possible to sort out these effects. The conclusions are reinforced by an ab initio computer model for hydrophobic solvation. The result is a sensible transition state for phenoxide ion as a nucleophile, using its oxygen n electrons to avoid loss of conjugation. The geometry of alkylation of aniline is very different, involving packing (stacking) of the aniline ring onto the phenyl ring of a benzyl group in the benzylation reaction. The alkylation of phenoxide ions by benzylic chlorides can occur both at the phenoxide oxygen and on ortho and para positions of the ring. Carbon alkylation occurs in water, but not in nonpolar organic solvents, and it is observed only when the phenoxide has at least one methyl substituent ortho, meta, or para. The effects of phenol substituents and of antihydrophobic cosolvents on the rates of the competing alkylation processes indicate that in water the carbon alkylation involves a transition state with hydrophobic packing of the benzyl group onto the phenol ring. The results also support our conclusion that oxygen alkylation uses the n electrons of the phenoxide oxygen as the nucleophile and does not have hydrophobic overlap in the transition state. The mechanisms and explanations for

  20. Perfluorinated Alkyl Compounds: Challenges To Develop Robust And Reliable Methods

    EPA Science Inventory

    An increasing number of studies have been conducted to investigate the environmental distribution of perfluorinated alkyl compounds (PFCs), some of which are known to be toxic in laboratory studies. Despite growing public concerns, environmental monitoring data are still limited...

  1. The influence of poly(ethylene glycol) on the micelle formation of alkyl maltosides used in membrane protein crystallization.

    PubMed

    Müh, Frank; DiFiore, Dörte; Zouni, Athina

    2015-05-01

    With the aim of better understanding the phase behavior of alkyl maltosides (n-alkyl-β-d-maltosides, CnG2) under the conditions of membrane protein crystallization, we studied the influence of poly(ethylene glycol) (PEG) 2000, a commonly used precipitating agent, on the critical micelle concentration (CMC) of the alkyl maltosides by systematic variation of the number n of carbon atoms in the alkyl chain (n = 10, 11, and 12) and the concentration of PEG2000 (χ) in a buffer suitable for the crystallization of cyanobacterial photosystem II. CMC measurements were based on established fluorescence techniques using pyrene and 8-anilinonaphthalene-1-sulfonate (ANS). We found an increase of the CMC with increasing PEG concentration according to ln(CMC/CMC0) = kPχ, where CMC0 is the CMC in the absence of PEG and kP is a constant that we termed the "polymer constant". In parallel, we measured the influence of PEG2000 on the surface tension of detergent-free buffer solutions. At PEG concentrations χ > 1% w/v, the surface pressure πs(χ) = γ(0) - γ(χ) was found to depend linearly on the PEG concentration according to πs(χ) = κχ + πs(0), where γ(0) is the surface tension in the absence of PEG. Based on a molecular thermodynamic modeling, CMC shifts and surface pressure due to PEG are related, and it is shown that kP = κc(n) + η, where c(n) is a detergent-specific constant depending inter alia on the alkyl chain length n and η is a correction for molarity. Thus, knowledge of the surface pressure in the absence of a detergent allows for the prediction of the CMC shift. The PEG effect on the CMC is discussed concerning its molecular origin and its implications for membrane protein solubilization and crystallization.

  2. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    PubMed Central

    Shrestha, Bijay

    2015-01-01

    Summary We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  3. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents.

    PubMed

    Shrestha, Bijay; Giri, Ramesh

    2015-01-01

    We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N',N'-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  4. Use of Trifluoromethyl Groups for Catalytic Benzylation and Alkylation with Subsequent Hydrodefluorination.

    PubMed

    Zhu, Jiangtao; Pérez, Manuel; Caputo, Christopher B; Stephan, Douglas W

    2016-01-22

    The electrophilic organofluorophosphonium catalyst [(C6F5)3PF][B(C6F5)4] is shown to effect benzylation or alkylation by aryl and alkyl CF3 groups with subsequent hydrodefluorination, thus resulting in a net transformation of CF3 into CH2-aryl fragments. In the case of alkyl CF3 groups, Friedel-Crafts alkylation by the difluorocarbocation proceeded without cation rearrangement, in contrast to the corresponding reactions of alkyl monofluorides. PMID:26663711

  5. Chemical Agents

    MedlinePlus

    ... glycol Hydrazine Hydrofluoric acid Hydrogen chloride Lewisite Melamine Mercury Methyl bromide Methyl isocyanate Nicotine Nitrogen mustard Opioids ... L-3) Long-acting anticoagulant (super warfarin) M Mercury Methyl bromide Methyl isocyanate Mustard gas (H) (sulfur ...

  6. Anti-cancer agents based on N-acyl-2, 3-dihydro-1H-pyrrolo[2,3-b] quinoline derivatives and a method of making

    DOEpatents

    Gakh, Andrei; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V

    2013-04-16

    The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. In particular, the invention relates to N-acyl derivatives of 2,3-dihydro-1H-pyrrolo[2,3-b]quinolines having the structural Formula (I), ##STR00001## stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. The meaning of R1 is independently selected from H; C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl substituents; R2 is selected from C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl; substituted or non-substituted, fused or non-fused to substituted or non-substituted aromatic ring, aryl or heteroaryl groups. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  7. Alkyl and phenolic glycosides from Saussurea stella.

    PubMed

    Wang, Tian-Min; Wang, Ru-Feng; Chen, Hu-Biao; Shang, Ming-Ying; Cai, Shao-Qing

    2013-07-01

    One alkyl glycoside, saussurostelloside A (1), two phenolic glycosides, saussurostellosides B1 (2) and B2 (3), and 27 known compounds, including eleven flavonoids, seven phenolics, six lignans, one neolignan, one phenethyl glucoside and one fatty acid, were isolated from an ethanol extract of Saussurea stella (Asteraceae). Their structures were elucidated by NMR, MS, UV, and IR spectroscopic analysis. Of the known compounds, (+)-medioresinol-di-O-β-D-glucoside (7), picraquassioside C (10), and diosmetin-3'-O-β-D-glucoside (27) were isolated from the Asteraceae family for the first time, while (+)-pinoresinol-di-O-β-D-glucoside (6), di-O-methylcrenatin (11), protocatechuic acid (14), 1,5-di-O-caffeoylquinic acid (17), formononetin (28), and phenethyl glucoside (29) were isolated from the Saussurea genus for the first time. The anti-inflammatory activities of three new compounds (1-3), five lignans ((-)-arctiin (4), (+)-pinoresinol-4-O-β-D-glucoside (5), (+)-pinoresinol-di-O-β-D-glucoside (6), (+)-medioresinol-di-O-β-D-glucoside (7) and (+)-syringaresinol-4-O-β-D-glucoside (8)), one neolignan (picraquassioside C (10)), and one phenolic glycoside (di-O-methylcrenatin (11)) were evaluated by testing their inhibition of the release of β-glucuronidase from PAF-stimulated neutrophils. Only compound 5 showed moderate inhibition of the release of β-glucuronidase, with an inhibition ratio of 39.1%.

  8. Salvage of failed protein targets by reductive alkylation.

    PubMed

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719

  9. Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: relevance of their surface active properties and of the type of emulsifier.

    PubMed

    González, María J; Medina, Isabel; Maldonado, Olivia S; Lucas, Ricardo; Morales, Juan C

    2015-09-15

    The antioxidant activity of gallic acid and a series of alkyl gallates (C4-C18) and glycosylated alkyl gallates (C4-C18) on fish oil-in-water emulsions was studied. Three types of emulsifiers, lecithin, Tween-20 and sodium dodecyl sulphate (SDS) were tested. A nonlinear behavior of the antioxidant activity of alkyl gallates when increasing alkyl chain length was observed for emulsions prepared with lecithin. Medium-size alkyl gallates (C6-C12) were the best antioxidants. In contrast, for emulsions prepared with Tween-20, the antioxidants seem to follow the polar paradox. Glucosyl alkyl gallates were shown previously to be better surfactants than alkyl gallates. Nevertheless, they exhibited a worse antioxidant capacity than their corresponding alkyl gallates, in emulsions prepared with lecithin or Tween-20, indicating the greater relevance of having three OH groups at the polar head in comparison with having improved surfactant properties but just a di-ortho phenolic structure in the antioxidant.

  10. Silicone elastomer uptake method for determination of free 1-alkyl-2-pyrrolidone concentration in micelle and hydroxypropyl-beta-cyclodextrin systems used in skin transport studies.

    PubMed

    Warner, Kevin S; Shaker, Dalia S; Molokhia, Sarah; Xu, Qingfang; Hao, Jinsong; Higuchi, William I; Li, S Kevin

    2008-01-01

    Previous investigations in our laboratory demonstrated how the polar head group and alkyl chain of amphiphilic chemical skin permeation enhancers contribute to enhancer potency. In those studies enhancers with n-alkyl chain lengths of eight or less were investigated. In order to investigate enhancers with longer n-alkyl chain lengths, enhancer-solubilizing agents should be considered. Corticosterone (CS) flux enhancement along the lipoidal pathway of hairless mouse skin (HMS) was determined with the enhancers 1-hexyl- (HP), 1-octyl- (OP), 1-decyl- (DP), and 1-dodecyl-2-pyrrolidone (DoP) solubilized in 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol-2000] (DSPE) micelles or in hydroxypropyl-beta-cyclodextrin (HPbetaCD). The free CS, HP, OP, DP, and DoP aqueous concentrations in the DSPE micelle and HPbetaCD systems were determined using a partitioning method. Comparisons of the enhancer potencies based on the free concentration of the enhancers revealed a nearly semi-logarithmic linear relationship between enhancer potency and the carbon number of the alkyl chain length with a slope of approximately 0.55. The observed n-alkyl chain length dependency in the aqueous phase is consistent with the hydrophobic effect. This study shows that longer chain enhancers may be studied by employing a solubilizing system, and free enhancer concentration in these systems can be determined with the aid of the silicone elastomer uptake method.

  11. Nitrogen species

    NASA Technical Reports Server (NTRS)

    Harries, J. E.; Brasseur, G.; Coffey, M. T.; Fischer, H.; Gille, J.; Jones, R.; Louisnard, N.; Mccormick, M. P.; Noxon, J.; Owens, A. J.

    1985-01-01

    Total odd nitrogen, NO(y), may be defined as the sum of all active nitrogen species that interchange photochemically with one another on a time scale of the order of weeks or less. As noted, NO + NO2 reactions dominate the processes controlling the ozone balance in the contemporary stratosphere. The observational data from non-satellite platforms are reviewed. The growth in available satellite data in the past four years is considered. Some of the most important scientific issues are discussed, taking into account new results from atmospheric models (mainly 2-D). The model results are compared with the observational data.

  12. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin.

    PubMed

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. PMID:25791923

  13. Binding of chemical warfare agent simulants as guests in a coordination cage: contributions to binding and a fluorescence-based response.

    PubMed

    Taylor, Christopher G P; Piper, Jerico R; Ward, Michael D

    2016-05-01

    Cubic coordination cages act as competent hosts for several alkyl phosphonates used as chemical warfare agent simulants; a range of cage/guest structures have been determined, contributions to guest binding analysed, and a fluorescent response to guest binding demonstrated.

  14. Nitrogen dioxide

    Integrated Risk Information System (IRIS)

    Nitrogen dioxide ; CASRN 10102 - 44 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  15. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning

    SciTech Connect

    Huang, C.-P.; Fang, W.-H.; Lin, L.-I.; Chiou, Robin Y.; Kan, L.-S.; Chi, N.-H.; Chen, Y.-R.; Lin, T.-Y.; Lin, S.-B.

    2008-03-15

    Cytotoxic alkyl hydroquinone compounds have been isolated from many plants. We previously isolated 3 structurally similar cytotoxic alkyl hydroquinone compounds from the sap of the lacquer tree Rhus succedanea L. belonging to the sumac family, which have a long history of medicinal use in Asia. Each has an unsaturated alkyl chain attached to the 2-position of a hydroquinone ring. One of these isolates, 10'(Z),13'(E),15'(E)-heptadecatrienylhydroquinone [HQ17(3)], being the most cytotoxic, was chosen for studying the anticancer mechanism of these compounds. We found that HQ17(3) was a topoisomerase (Topo) II poison. It irreversibly inhibited Topo II{alpha} activity through the accumulation of Topo II-DNA cleavable complexes. A cell-based assay showed that HQ17(3) inhibited the growth of leukemia HL-60 cells with an EC{sub 50} of 0.9 {mu}M, inhibited the topoisomerase-II-deficient cells HL-60/MX2 with an EC{sub 50} of 9.6 {mu}M, and exerted no effect on peripheral blood mononuclear cells at concentrations up to 50 {mu}M. These results suggest that Topo II is the cellular drug target. In HL-60 cells, HQ17(3) promptly inhibited DNA synthesis, induced chromosomal breakage, and led to cell death with an EC{sub 50} about one-tenth that of hydroquinone. Pretreatment of the cells with N-acetylcysteine could not attenuate the cytotoxicity and DNA damage induced by HQ17(3). However, N-acetylcysteine did significantly reduce the cytotoxicity of hydroquinone. In F344 rats, intraperitoneal injection of HQ17(3) for 28 days induced no clinical signs of toxicity. These results indicated that HQ17(3) is a potential anticancer agent, and its structural features could be a model for anticancer drug design.

  16. Lutetium-methanediide-alkyl complexes: synthesis and chemistry.

    PubMed

    Li, Shihui; Wang, Meiyan; Liu, Bo; Li, Lei; Cheng, Jianhua; Wu, Chunji; Liu, Dongtao; Liu, Jingyao; Cui, Dongmei

    2014-11-17

    The first four-coordinate methanediide/alkyl lutetium complex (BODDI)Lu2 (CH2 SiMe3 )2 (μ2 -CHSiMe3 )(THF)2 (BODDI=ArNC(Me)CHCOCHC(Me)NAr, Ar=2,6-iPr2 C6 H3 ) (1) was synthesized by a thermolysis methodology through α-H abstraction from a Lu-CH2 SiMe3 group. Complex 1 reacted with equimolar 2,6-iPrC6 H3 NH2 and Ph2 C+O to give the corresponding lutetium bridging imido and oxo complexes (BODDI)Lu2 (CH2 SiMe3 )2 (μ2 -N-2,6-iPr2 C6 H3 )(THF)2 (2) and (BODDI)Lu2 (CH2 SiMe3 )2 (μ2 -O)(THF)2 (3). Treatment of 3 with Ph2 C=O (4 equiv) caused a rare insertion of Lu-μ2 -O bond into theC=O group to afford a diphenylmethyl diolate complex 4. Reaction of 1 with PhN=C=O (2 equiv) led to the migration of SiMe3 to the amido nitrogen atom to give complex (BODDI)Lu2 (CH2 SiMe3 )2 -μ-{PhNC(O)CHC(O)NPh(SiMe3 )-κ(3) N,O,O}(THF) (5). Reaction of 1 withtBuN=C formed an unprecedented product (BODDI)Lu2 (CH2 SiMe3 ){μ2 -[η(2) :η(2) -tBuN=C(=CH2 )SiMe2 CHC=NtBu-κ(1) N]}(tBuN=C)2 (6) through a cascade reaction of N=C bond insertion, sequential cyclometalative γ-(sp(3) )-H activation, C=C bond formation, and rearrangement of the newly formed carbene intermediate. The possible mechanistic pathways between 1, PhN=C=O, and tBuN=C were elucidated by DFT calculations.

  17. Ultrasound promoted N-alkylation of pyrrole using potassium superoxide as base in crown ether.

    PubMed

    Yim, E S; Park, M K; Han, B H

    1997-04-01

    Ultrasound accelerates the N-alkylation of pyrrole by alkylating reagents using potassium superoxide as base in the presence of 18-crown-6. A much lower yield of N-alkylated pyrrole was realized in the absence of ultrasound. N-alkylating reagents employed for pyrrole are methyl iodide, ethyl bromide, benzyl bromide, as well as acrylonitrile allyl cyanide and methyl acrylate. In an extension of this work, we have found that ultrasound was not necessary for the N-alkylation of indole and alkyl amine, such as diphenyl amine and piperidine with alkyl halides using our reagents. In all cases we observed that the 18-crown-6 catalyzed N-alkylation reaction gives higher yields of N-alkylated products than that without crown ether, when potassium superoxide was used as base. These observations are probably due to the potassium-crown complex which can be released when the reaction goes to completion. PMID:11237050

  18. Removing polysaccharides-and saccharides-related coloring impurities in alkyl polyglycosides by bleaching with the H2O2/TAED/NaHCO3 system.

    PubMed

    Yanmei, Liu; Jinliang, Tao; Jiao, Sun; Wenyi, Chen

    2014-11-01

    The effect of H2O2/TAED/NaHCO3 system, namely NaHCO3 as alkaline agent with the (tetra acetyl ethylene diamine (TAED)) TAED-activated peroxide system, bleaching of alkyl polyglycosides solution was studied by spectrophotometry. The results showed that the optimal bleaching conditions about H2O2/TAED/NaHCO3 system bleaching of alkyl polyglycosides solution were as follows: molar ratio of TAED to H2O2 was 0.06, addition of H2O2 was 8.6%, addition of NaHCO3 was 3.2%, bleaching temperature of 50-65 °C, addition of MgO was 0.13%, and bleaching time was 8h. If too much amount of NaHCO3 was added to the system and maintained alkaline pH, the bleaching effect would be greatly reduced. Fixing molar ratio of TAED to H2O2 and increasing the amount of H2O2 were beneficial to improve the whiteness of alkyl polyglycosides, but adding too much amount of H2O2 would reduce the transparency. In the TAED-activated peroxide system, NaHCO3 as alkaline agent and buffer agent, could overcome the disadvantage of producing black precipitates when NaOH as alkaline agent. PMID:25129762

  19. Nitrogen narcosis and alcohol consumption--a scuba diving fatality.

    PubMed

    Michalodimitrakis, E; Patsalis, A

    1987-07-01

    Nitrogen narcosis can cause death among experienced scuba divers. Nitrogen under pressure affects the brain by acting as an anesthetic agent. Furthermore, the consumption of ethanol along with diving will cause the symptoms of nitrogen narcosis to occur at depths less than 30 m. Our case deals with an experienced diver who drank alcoholic beverages before diving and developed symptoms of nitrogen narcosis at a shallow depth. These two conditions contributed to his death by drowning.

  20. N-Alkyl-, 1-C-Alkyl-, and 5-C-Alkyl-1,5-dideoxy-1,5-imino-(L)-ribitols as Galactosidase Inhibitors.

    PubMed

    Front, Sophie; Gallienne, Estelle; Charollais-Thoenig, Julie; Demotz, Stéphane; Martin, Olivier R

    2016-01-01

    A series of 1,5-dideoxy-1,5-imino-(l)-ribitol (DIR) derivatives carrying alkyl or functionalized alkyl groups were prepared and investigated as glycosidase inhibitors. These compounds were designed as simplified 4-epi-isofagomine (4-epi-IFG) mimics and were expected to behave as selective inhibitors of β-galactosidases. All compounds were indeed found to be highly selective for β-galactosidases versus α-glycosidases, as they generally did not inhibit coffee bean α-galactosidase or other α-glycosidases. Some compounds were also found to be inhibitors of almond β-glucosidase. The N-alkyl DIR derivatives were only modest inhibitors of bovine β-galactosidase, with IC50 values in the 30-700 μM range. Likewise, imino-L-ribitol substituted at the C1 position was found to be a weak inhibitor of this enzyme. In contrast, alkyl substitution at C5 resulted in enhanced β-galactosidase inhibitory activity by a factor of up to 1000, with at least six carbon atoms in the alkyl substituent. Remarkably, the 'pseudo-anomeric' configuration in this series does not appear to play a role. Human lysosomal β-galactosidase from leukocyte lysate was, however, poorly inhibited by all iminoribitol derivatives tested (IC50 values in the 100 μM range), while 4-epi-IFG was a good inhibitor of this enzyme. Two compounds were evaluated as pharmacological chaperones for a GM1-gangliosidosis cell line (R301Q mutation) and were found to enhance the mutant enzyme activity by factors up to 2.7-fold.