Science.gov

Sample records for alkylation dna damage

  1. Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    PubMed Central

    Calvo, Jennifer A.; Moroski-Erkul, Catherine A.; Lake, Annabelle; Eichinger, Lindsey W.; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T.; Christiani, David C.; Meira, Lisiane B.; Samson, Leona D.

    2013-01-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag−/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage. PMID:23593019

  2. Water extracts of tree Hypericum sps. protect DNA from oxidative and alkylating damage and enhance DNA repair in colon cells.

    PubMed

    Ramos, Alice A; Marques, Filipe; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2013-01-01

    Diet may induce colon carcinogenesis through oxidative or alkylating DNA damage. However, diet may also contain anticarcinogenic compounds that contribute to cancer prevention. DNA damage prevention and/or induction of repair are two important mechanisms involved in cancer chemoprevention by dietary compounds. Hypericum sps. are widely used in traditional medicine to prepare infusions due to their beneficial digestive and neurologic effects. In this study, we investigated the potential of water extracts from three Hypericum sps. and some of their main phenolic compounds to prevent and repair oxidative and alkylating DNA damage in colon cells. The results showed that water extracts of Hypericum perforatum, Hypericum androsaemum, Hypericum undulatum, quercetin and rutin have protective effect against oxidative DNA damage in HT29 cells. Protective effect was also observed against alkylating DNA damage induced by methyl-methanesulfonate, except for H. androsaemum. With regard to alkylating damage repair H. perforatum, H. androsaemum and chlorogenic acid increased repair of alkylating DNA damage by base excision repair pathway. No effect was observed on nucleotide excision repair pathway. Antigenotoxic effects of Hypericum sps. may contribute to colon cancer prevention and the high amount of phenolic compounds present in Hypericum sps. play an important role in DNA protective effects.

  3. Structure-function relationships governing activity and stability of a DNA alkylation damage repair thermostable protein

    PubMed Central

    Perugino, Giuseppe; Miggiano, Riccardo; Serpe, Mario; Vettone, Antonella; Valenti, Anna; Lahiri, Samarpita; Rossi, Franca; Rossi, Mosè; Rizzi, Menico; Ciaramella, Maria

    2015-01-01

    Alkylated DNA-protein alkyltransferases repair alkylated DNA bases, which are among the most common DNA lesions, and are evolutionary conserved, from prokaryotes to higher eukaryotes. The human ortholog, hAGT, is involved in resistance to alkylating chemotherapy drugs. We report here on the alkylated DNA-protein alkyltransferase, SsOGT, from an archaeal species living at high temperature, a condition that enhances the harmful effect of DNA alkylation. The exceptionally high stability of SsOGT gave us the unique opportunity to perform structural and biochemical analysis of a protein of this class in its post-reaction form. This analysis, along with those performed on SsOGT in its ligand-free and DNA-bound forms, provides insights in the structure-function relationships of the protein before, during and after DNA repair, suggesting a molecular basis for DNA recognition, catalytic activity and protein post-reaction fate, and giving hints on the mechanism of alkylation-induced inactivation of this class of proteins. PMID:26227971

  4. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    PubMed

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  5. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    PubMed

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations.

  6. Caspase-9 is required for normal hematopoietic development and protection from alkylator-induced DNA damage in mice

    PubMed Central

    Lu, Elise Peterson; McLellan, Michael; Ding, Li; Fulton, Robert; Mardis, Elaine R.; Wilson, Richard K.; Miller, Christopher A.; Westervelt, Peter; DiPersio, John F.; Link, Daniel C.; Walter, Matthew J.; Ley, Timothy J.

    2014-01-01

    Apoptosis and the DNA damage responses have been implicated in hematopoietic development and differentiation, as well as in the pathogenesis of myelodysplastic syndromes (MDS) and leukemia. However, the importance of late-stage mediators of apoptosis in hematopoiesis and leukemogenesis has not been elucidated. Here, we examine the role of caspase-9 (Casp9), the initiator caspase of the intrinsic apoptotic cascade, in murine fetal and adult hematopoiesis. Casp9 deficiency resulted in decreased erythroid and B-cell progenitor abundance and impaired function of hematopoietic stem cells after transplantation. Mouse bone marrow chimeras lacking Casp9 or its cofactor Apaf1 developed low white blood cell counts, decreased B-cell numbers, anemia, and reduced survival. Defects in apoptosis have also been previously implicated in susceptibility to therapy-related leukemia, a disease caused by exposure to DNA-damaging chemotherapy. We found that the burden of DNA damage was increased in Casp9-deficient cells after exposure to the alkylator, N-ethyl-nitrosourea (ENU). Furthermore, exome sequencing revealed that oligoclonal hematopoiesis emerged in Casp9-deficient bone marrow chimeras after alkylator exposure. Taken together, these findings suggest that defects in apoptosis could be a key step in the pathogenesis of alkylator-associated secondary malignancies. PMID:25349173

  7. A modified host-cell reactivation assay to measure repair of alkylating DNA damage for assessing risk of lung adenocarcinoma.

    PubMed

    Wang, Luo; Wei, Qingyi; Shi, Qiuling; Guo, Zhaosheng; Qiao, Yawei; Spitz, Margaret R

    2007-07-01

    The nicotine-derived nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces lung adenocarcinoma through formation of DNA adducts. Our previous research on susceptibility to tobacco-induced carcinogenesis focused on benzo[a]pyrene diol epoxide (BPDE) as the in vitro mutagen for phenotype measurements of DNA repair capacity (DRC) in mammalian cells. Here, we present a modified host-cell reactivation (HCR) assay to measure lymphocytic DRC for alkylating DNA damage as is induced by the tobacco-specific nitrosamine, NNK. We substituted dimethyl sulfate (DMS) to create alkylating damage in pCMVluc plasmid DNA and established the damage-repair dose-response curves in both normal and nucleotide excision repair-deficient lymphoblastoid cell lines and in phytohemagglutinin (PHA)-stimulated primary lymphocytes. We then successfully measured the DRC in PHA-stimulated lymphocytes from 48 patients with lung adenocarcinoma and 45 cancer-free controls and tested our hypothesis that lower DRC for alkylating damage is associated with an increased risk of lung adenocarcinoma. The cases exhibited a lower mean DRC than did the controls. A >3-fold increased risk (odds ratio = 3.21; 95% confidence interval = 1.25-8.21) was found for those with DRC levels below the control median. There was no correlation between the DRC measured with this DMS-HCR assay and that from the parallel BPDE-HCR assay. Interestingly, risk increased to >10-fold for those with sub-optimal DRC measured by both DMS- and BPDE-HCR assays. We conclude that variability in DRC is a risk factor for lung cancer and our results provide proof of principle for a new assay that can assess DRC for NNK-induced DNA damage. PMID:17341660

  8. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents.

    PubMed

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-01-01

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents. PMID:26158513

  9. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents

    PubMed Central

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-01-01

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents. PMID:26158513

  10. DNA Polymerase α (swi7) and the Flap Endonuclease Fen1 (rad2) Act Together in the S-Phase Alkylation Damage Response in S. pombe

    PubMed Central

    Koulintchenko, Milana; Vengrova, Sonya; Eydmann, Trevor; Arumugam, Prakash; Dalgaard, Jacob Z.

    2012-01-01

    Polymerase α is an essential enzyme mainly mediating Okazaki fragment synthesis during lagging strand replication. A specific point mutation in Schizosaccharomyces pombe polymerase α named swi7-1, abolishes imprinting required for mating-type switching. Here we investigate whether this mutation confers any genome-wide defects. We show that the swi7-1 mutation renders cells hypersensitive to the DNA damaging agents methyl methansulfonate (MMS), hydroxyurea (HU) and UV and incapacitates activation of the intra-S checkpoint in response to DNA damage. In addition we show that, in the swi7-1 background, cells are characterized by an elevated level of repair foci and recombination, indicative of increased genetic instability. Furthermore, we detect novel Swi1-, -Swi3- and Pol α- dependent alkylation damage repair intermediates with mobility on 2D-gel that suggests presence of single-stranded regions. Genetic interaction studies showed that the flap endonuclease Fen1 works in the same pathway as Pol α in terms of alkylation damage response. Fen1 was also required for formation of alkylation- damage specific repair intermediates. We propose a model to explain how Pol α, Swi1, Swi3 and Fen1 might act together to detect and repair alkylation damage during S-phase. PMID:23071723

  11. DNA-damaging disinfection byproducts: alkylation mechanism of mutagenic mucohalic acids.

    PubMed

    Gómez-Bombarelli, Rafael; González-Pérez, Marina; Arenas-Valgañón, Jorge; Céspedes-Camacho, Isaac Fabián; Calle, Emilio; Casado, Julio

    2011-10-15

    Hydroxyhalofuranones form a group of genotoxic disinfection byproduct (DBP) of increasing interest. Among them, mucohalic acids (3,4-dihalo-5-hydroxyfuran-2(5H)-one, MXA) are known mutagens that react with nucleotides, affording etheno, oxaloetheno, and halopropenal derivatives. Mucohalic acids have also found use in organic synthesis due to their high functionalization. In this work, the alkylation kinetics of mucochloric and mucobromic acids with model nucleophiles aniline and NBP has been studied experimentally. Also, the alkylation mechanism of nucleosides by MXA has been studied in silico. The results described allow us to reach the following conclusions: (i) based on the kinetic and computational evidence obtained, a reaction mechanism was proposed, in which MXA react directly with amino groups in nucleotides, preferentially attacking the exocyclic amino groups over the endocyclic aromatic nitrogen atoms; (ii) the suggested mechanism is in agreement with both the product distribution observed experimentally and the mutational pattern of MXA; (iii) the limiting step in the alkylation reaction is addition to the carbonyl group, subsequent steps occurring rapidly; and (iv) mucoxyhalic acids, the hydrolysis products of MXA, play no role in the alkylation reaction by MXA.

  12. Repair-deficient 3-methyladenine DNA glycosylase homozygous mutant mouse cells have increased sensitivity to alkylation-induced chromosome damage and cell killing.

    PubMed Central

    Engelward, B P; Dreslin, A; Christensen, J; Huszar, D; Kurahara, C; Samson, L

    1996-01-01

    In Escherichia coli, the repair of 3-methyladenine (3MeA) DNA lesions prevents alkylation-induced cell death because unrepaired 3MeA blocks DNA replication. Whether this lesion is cytotoxic to mammalian cells has been difficult to establish in the absence of 3MeA repair-deficient cell lines. We previously isolated and characterized a mouse 3MeA DNA glycosylase cDNA (Aag) that provides resistance to killing by alkylating agents in E. coli. To determine the in vivo role of Aag, we cloned a large fragment of the Aag gene and used it to create Aag-deficient mouse cells by targeted homologous recombination. Aag null cells have no detectable Aag transcripts or 3MeA DNA glycosylase activity. The loss of Aag renders cells significantly more sensitive to methyl methanesulfonate-induced chromosome damage, and to cell killing induced by two methylating agents, one of which produces almost exclusively 3MeAs. Aag null embryonic stem cells become sensitive to two cancer chemotherapeutic alkylating agents, namely 1,3-bis(2-chloroethyl)-1-nitrosourea and mitomycin C, indicating that Aag status is an important determinant of cellular resistance to these agents. We conclude that this mammalian 3MeA DNA glycosylase plays a pivotal role in preventing alkylation-induced chromosome damage and cytotoxicity. Images PMID:8631315

  13. Repair of DNA Alkylation Damage by the Escherichia coli Adaptive Response Protein AlkB as Studied by ESI-TOF Mass Spectrometry

    PubMed Central

    Li, Deyu; Delaney, James C.; Page, Charlotte M.; Chen, Alvin S.; Wong, Cintyu; Drennan, Catherine L.; Essigmann, John M.

    2010-01-01

    DNA alkylation can cause mutations, epigenetic changes, and even cell death. All living organisms have evolved enzymatic and non-enzymatic strategies for repairing such alkylation damage. AlkB, one of the Escherichia coli adaptive response proteins, uses an α-ketoglutarate/Fe(II)-dependent mechanism that, by chemical oxidation, removes a variety of alkyl lesions from DNA, thus affording protection of the genome against alkylation. In an effort to understand the range of acceptable substrates for AlkB, the enzyme was incubated with chemically synthesized oligonucleotides containing alkyl lesions, and the reaction products were analyzed by electrospray ionization time-of-flight (ESI-TOF) mass spectrometry. Consistent with the literature, but studied comparatively here for the first time, it was found that 1-methyladenine, 1,N 6-ethenoadenine, 3-methylcytosine, and 3-ethylcytosine were completely transformed by AlkB, while 1-methylguanine and 3-methylthymine were partially repaired. The repair intermediates (epoxide and possibly glycol) of 3,N 4-ethenocytosine are reported for the first time. It is also demonstrated that O 6-methylguanine and 5-methylcytosine are refractory to AlkB, lending support to the hypothesis that AlkB repairs only alkyl lesions attached to the nitrogen atoms of the nucleobase. ESI-TOF mass spectrometry is shown to be a sensitive and efficient tool for probing the comparative substrate specificities of DNA repair proteins in vitro. PMID:21048928

  14. PARG dysfunction enhances DNA double strand break formation in S-phase after alkylation DNA damage and augments different cell death pathways

    PubMed Central

    Shirai, H; Poetsch, A R; Gunji, A; Maeda, D; Fujimori, H; Fujihara, H; Yoshida, T; Ogino, H; Masutani, M

    2013-01-01

    Poly(ADP-ribose) glycohydrolase (PARG) is the primary enzyme responsible for the degradation of poly(ADP-ribose). PARG dysfunction sensitizes cells to alkylating agents and induces cell death; however, the details of this effect have not been fully elucidated. Here, we investigated the mechanism by which PARG deficiency leads to cell death in different cell types using methylmethanesulfonate (MMS), an alkylating agent, and Parg−/− mouse ES cells and human cancer cell lines. Parg−/− mouse ES cells showed increased levels of γ-H2AX, a marker of DNA double strand breaks (DSBs), accumulation of poly(ADP-ribose), p53 network activation, and S-phase arrest. Early apoptosis was enhanced in Parg−/− mouse ES cells. Parg−/− ES cells predominantly underwent caspase-dependent apoptosis. PARG was then knocked down in a p53-defective cell line, MIAPaCa2 cells, a human pancreatic cancer cell line. MIAPaCa2 cells were sensitized to MMS by PARG knockdown. Enhanced necrotic cell death was induced in MIAPaCa2 cells after augmenting γ-H2AX levels and S-phase arrest. Taken together, these data suggest that DSB repair defect causing S-phase arrest, but p53 status was not important for sensitization to alkylation DNA damage by PARG dysfunction, whereas the cell death pathway is dependent on the cell type. This study demonstrates that functional inhibition of PARG may be useful for sensitizing at least particular cancer cells to alkylating agents. PMID:23744356

  15. Evaluation of phosphodiesterase I-based protocols for the detection of multiply damaged sites in DNA: the detection of abasic, oxidative and alkylative tandem damage in DNA oligonucleotides

    PubMed Central

    Bowman, Karen J.; Pla, Rachel Le; Guichard, Yves; Farmer, Peter B.; Jones, George D. D.

    2001-01-01

    It has been proposed that DNA multiply damaged sites (MDS), where more than one moiety in a local region (∼1 helical turn, 10 bp) of the DNA is damaged, are lesions of enhanced biological significance. However, other than indirect measures, there are few analytical techniques that allow direct detection of MDS in DNA. In the present study we demonstrate the potential of protocols incorporating an exonucleolytic snake venom phosphodiesterase (SVPD) digestion stage to permit the direct detection of certain tandem damage, in which two lesions are immediately adjacent to each other on the same DNA strand. A series of prepared oligonucleotides containing either single or pairs of tetrahydrofuran moieties (F), thymine glycol lesions (Tg) or methylphosphotriester adducts (Me-PTE) were digested with SVPD and the digests examined by either 32P-end-labelling or electrospray mass spectrometry. The unambiguous observation of SVPD-resistant ‘trimer’ species in the digests of oligonucleotides containing adjacent F, Tg and Me-PTE demonstrates that the SVPD digestion strategy is capable of allowing direct detection of certain tandem damage. Furthermore, in studies to determine the specificity of SVPD in dealing with pairs of lesions on the same strand, it was found mandatory to have the two lesions immediately adjacent to each other in order to generate the trimer species; pairs of lesions separated by as few as one or two normal nucleotides behave principally as single lesions towards SVPD. PMID:11600720

  16. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response

    PubMed Central

    2011-01-01

    Background 1-{4-[Bis(2-chloroethyl)amino]phenyl}-3-[2-methyl-5-(4-methylacridin-9-ylamino)phenyl]urea (BO-1051) is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects of this compound on radiation responses of human gliomas, which are notorious for the high resistance to radiotherapy. Methods The clonogenic assay was used to determine the IC50 and radiosensitivity of human glioma cell lines (U87MG, U251MG and GBM-3) following BO-1051. DNA histogram and propidium iodide-Annexin V staining were used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were determined by γ-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors were measured with a caliper, and the survival rate was determined using Kaplan-Meier method. Results BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage at IC50, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G2/M population was raised by BO-1051, whereas apoptosis and mitotic catastrophe were not affected. γ-H2AX foci was greatly increased and sustained by combined BO-1051 and γ-rays, suggested that DNA damage or repair capacity was impaired during treatment. In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also increased accordingly. Conclusions These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells. PMID:21244709

  17. Functional specialization of Chlamydomonas reinhardtii cytosolic thioredoxin h1 in the response to alkylation-induced DNA damage.

    PubMed

    Sarkar, Nandita; Lemaire, Stéphane; Wu-Scharf, Danxia; Issakidis-Bourguet, Emmanuelle; Cerutti, Heriberto

    2005-02-01

    DNA damage occurs as a by-product of intrinsic cellular processes, like DNA replication, or as a consequence of exposure to genotoxic agents. Organisms have evolved multiple mechanisms to avoid, tolerate, or repair DNA lesions. To gain insight into these processes, we have isolated mutants hypersensitive to DNA-damaging agents in the green alga Chlamydomonas reinhardtii. One mutant, Ble-1, showed decreased survival when it was treated with methyl methanesulfonate (MMS), bleomycin, or hydrogen peroxide (H2O2) but behaved like the wild type when it was exposed to UVC irradiation. Ble-1 carries an extensive chromosomal deletion that includes the gene encoding cytosolic thioredoxin h1 (Trxh1). Transformation of Ble-1 with a wild-type copy of Trxh1 fully corrected the MMS hypersensitivity and partly restored the tolerance to bleomycin. Trxh1 also complemented a defect in the repair of MMS-induced DNA strand breaks and alkali-labile sites. In addition, a Trxh1-beta-glucuronidase fusion protein translocated to the nucleus in response to treatment with MMS. However, somewhat surprisingly, Trxh1 failed to correct the Ble-1 hypersensitivity to H2O2. Moreover, Trxh1 suppression by RNA interference in a wild-type strain resulted in enhanced sensitivity to MMS and DNA repair defects but no increased cytotoxicity to H2O2. Thioredoxins have been implicated in oxidative-stress responses in many organisms. Yet our results indicate a specific role of Chlamydomonas Trxh1 in the repair of MMS-induced DNA damage, whereas it is dispensable for the response to H2O2. These observations also suggest functional specialization among cytosolic thioredoxins since another Chlamydomonas isoform (Trxh2) does not compensate for the lack of Trxh1. PMID:15701788

  18. Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage

    PubMed Central

    Srivenugopal, Kalkunte S.

    2014-01-01

    The alcohol aversion drug disulfiram (DSF) reacts and conjugates with the protein-bound nucleophilic cysteines and is known to elicit anticancer effects alone or improve the efficacy of many cancer drugs. We investigated the effects of DSF on human O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein and chemotherapy target that removes the mutagenic O6-akyl groups from guanines, and thus confers resistance to alkylating agents in brain tumors. We used DSF, copper-chelated DSF or CuCl2–DSF combination and found that all treatments inhibited the MGMT activity in two brain tumor cell lines in a rapid and dose-dependent manner. The drug treatments resulted in the loss of MGMT protein from tumor cells through the ubiquitin-proteasome pathway. Evidence showed that Cys145, a reactive cysteine, critical for DNA repair was the sole site of DSF modification in the MGMT protein. DSF was a weaker inhibitor of MGMT, compared with the established O6-benzylguanine; nevertheless, the 24–36h suppression of MGMT activity in cell cultures vastly increased the alkylation-induced DNA interstrand cross-linking, G2/M cell cycle blockade, cytotoxicity and the levels of apoptotic markers. Normal mice treated with DSF showed significantly attenuated levels of MGMT activity and protein in the liver and brain tissues. In nude mice bearing T98 glioblastoma xenografts, there was a preferential inhibition of tumor MGMT. Our studies demonstrate a strong and direct inhibition of MGMT by DSF and support the repurposing of this brain penetrating drug for glioma therapy. The findings also imply an increased risk for alkylation damage in alcoholic patients taking DSF. PMID:24193513

  19. Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase

    PubMed Central

    Zhao, Yu; Majid, Mona C; Soll, Jennifer M; Brickner, Joshua R; Dango, Sebastian; Mosammaparast, Nima

    2015-01-01

    Repair of DNA alkylation damage is critical for genomic stability and involves multiple conserved enzymatic pathways. Alkylation damage resistance, which is critical in cancer chemotherapy, depends on the overexpression of alkylation repair proteins. However, the mechanisms responsible for this upregulation are unknown. Here, we show that an OTU domain deubiquitinase, OTUD4, is a positive regulator of ALKBH2 and ALKBH3, two DNA demethylases critical for alkylation repair. Remarkably, we find that OTUD4 catalytic activity is completely dispensable for this function. Rather, OTUD4 is a scaffold for USP7 and USP9X, two deubiquitinases that act directly on the AlkB proteins. Moreover, we show that loss of OTUD4, USP7, or USP9X in tumor cells makes them significantly more sensitive to alkylating agents. Taken together, this work reveals a novel, noncanonical mechanism by which an OTU family deubiquitinase regulates its substrates, and provides multiple new targets for alkylation chemotherapy sensitization of tumors. PMID:25944111

  20. Decreased stability of DNA in cells treated with alkylating agents

    SciTech Connect

    Frankfurt, O.S. )

    1990-12-01

    A modified highly sensitive procedure for the evaluation of DNA damage in individual cells treated with alkylating agents is reported. The new methodology is based on the amplification of single-strandedness in alkylated DNA by heating in the presence of Mg{sup 2+}. Human ovarian carcinoma cells A2780 were treated with nitrogen mustard (HN2), fixed in methanol, and stained with monoclonal antibody (MOAB) F7-26 generated against HN2-treated DNA. Binding of MOAB was measured by flow cytometry with indirect immunofluorescence. Intensive binding of MOAB to control and drug-treated cells was observed after heating in Tris buffer supplemented with MgCl{sub 2}. Thus, the presence of phosphates and MgCl{sub 2} during heating was necessary for the detection of HN2-induced changes in DNA stability. Fluorescence of HN2-treated cells decreased to background levels after treatment with single-strand-specific S{sub 1} nuclease. MOAB F7-26 interacted with single-stranded regions in DNA and did not bind to dsDNA or other cellular antigens. It is suggested that alkylation of guanines decreased the stability of the DNA molecule and increased the access of MOAB F7-26 to deoxycytidines on the opposite DNA strand.

  1. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation

    PubMed Central

    Shrivastav, Nidhi; Li, Deyu; Essigmann, John M.

    2010-01-01

    The reaction of DNA-damaging agents with the genome results in a plethora of lesions, commonly referred to as adducts. Adducts may cause DNA to mutate, they may represent the chemical precursors of lethal events and they can disrupt expression of genes. Determination of which adduct is responsible for each of these biological endpoints is difficult, but this task has been accomplished for some carcinogenic DNA-damaging agents. Here, we describe the respective contributions of specific DNA lesions to the biological effects of low molecular weight alkylating agents. PMID:19875697

  2. A weak adaptive response to alkylation damage in Salmonella typhimurium.

    PubMed Central

    Vaughan, P; Sedgwick, B

    1991-01-01

    An efficient adaptive response to alkylation damage was observed in several enterobacterial species, including Klebsiella aerogenes, Shigella sonnei, Shigella boydii, Escherichia alkalescens, Escherichia hermanii, and Escherichia fergusonii. Increased O6-methylguanine-DNA and methylphosphotriester-DNA methyltransferase activities correlated with the induction of a 39-kDa protein recognized by monoclonal antibodies raised against the Escherichia coli Ada protein. Induced methyltransferase activities were similarly observed in Aerobacter aerogenes and Citrobacter intermedius, although no antigenically cross-reacting material was present. Weak induction of a 39-kDa protein immunologically related to the E. coli Ada protein occurred in Salmonella typhimurium. This protein encoded by the cloned S. typhimurium ada gene was shown to be an active methyltransferase which repaired O6-methylguanine and methylphosphotriesters in DNA as efficiently as did the E. coli Ada protein. However, the mehtyltransferase activity of the weakly induced 39-kDa protein in S. typhimurium was not detected, apparently because it was self-methylated and thus inactivated during the adaptive N-methyl-N-nitro-N-nitrosoguanidine pretreatment. In contrast, the E. coli ada gene on a low-copy-number plasmid was efficiently induced in S. typhimurium, and high methyltransferase activities were observed. We concluded that the inefficient induction of the adaptive response in S. typhimurium results from weak transcriptional activation of its ada gene by the self-methylated protein. Images PMID:2050626

  3. DNA Damage Response

    PubMed Central

    Giglia-Mari, Giuseppina; Zotter, Angelika; Vermeulen, Wim

    2011-01-01

    Structural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network of DNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance processes, and cell-cycle checkpoints safeguard genomic integrity. Like transcription and replication, DDR is a chromatin-associated process that is generally tightly controlled in time and space. As DNA damage can occur at any time on any genomic location, a specialized spatio-temporal orchestration of this defense apparatus is required. PMID:20980439

  4. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human

    PubMed Central

    Zanotto-Filho, Alfeu; Dashnamoorthy, Ravi; Loranc, Eva; de Souza, Luis H. T.; Moreira, José C. F.; Suresh, Uthra; Chen, Yidong

    2016-01-01

    Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival. PMID:27100653

  5. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

    PubMed

    Zanotto-Filho, Alfeu; Dashnamoorthy, Ravi; Loranc, Eva; de Souza, Luis H T; Moreira, José C F; Suresh, Uthra; Chen, Yidong; Bishop, Alexander J R

    2016-01-01

    Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival. PMID:27100653

  6. Structure and DNA binding of alkylation response protein AidB

    SciTech Connect

    Bowles, Timothy; Metz, Audrey H.; O'Quin, Jami; Wawrzak, Zdzislaw; Eichman, Brandt F.

    2009-01-12

    Exposure of Escherichia coli to alkylating agents activates expression of AidB in addition to DNA repair proteins Ada, AlkA, and AlkB. AidB was recently shown to possess a flavin adenine dinucleotide (FAD) cofactor and to bind to dsDNA, implicating it as a flavin-dependent DNA repair enzyme. However, the molecular mechanism by which AidB acts to reduce the mutagenic effects of specific DNA alkylators is unknown. We present a 1.7-{angstrom} crystal structure of AidB, which bears superficial resemblance to the acyl-CoA dehydrogenase superfamily of flavoproteins. The structure reveals a unique quaternary organization and a distinctive FAD active site that provides a rationale for AidB's limited dehydrogenase activity. A highly electropositive C-terminal domain not present in structural homologs was identified by mutational analysis as the DNA binding site. Structural analysis of the DNA and FAD binding sites provides evidence against AidB-catalyzed DNA repair and supports a model in which AidB acts to prevent alkylation damage by protecting DNA and destroying alkylating agents that have yet to reach their DNA target.

  7. Molecular dosimetry of DNA damage caused by alkylation. I. Single-strand breaks induced by ethylating agents in cultured mammalian cells in relation to survival.

    PubMed

    Abbondandolo, A; Dogliotti, E; Lohman, P H; Berends, F

    1982-02-22

    Cultured Chinese hamster ovary cells were treated with ethylating agents. DNA lesions giving rise to single-strand breaks (ssb) or alkali-labile sites were measured by centrifugation in alkaline sucrose gradients after lysis in alkali. 4 agents with different tendencies to ethylate preferentially either at N or O atoms were compared, namely N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG), N-ethyl-N-nitrosourea (ENU), ethyl methanesulphonate (EMS) and diethyl sulphonate (DES). The compounds differed greatly in their potency to induce the lesions measured when compared on a molar basis, but comparison at equicytotoxic doses showed relatively small differences. Upon prolonged incubation of the DNA in alkali, the number of ssb increased considerably. DNA from untreated cells showed biphasic kinetics: slow ssb formation for about 10 h, then the rate increased and remained constant for up to 40 h. Treated cells showed an accelerated, dose-dependent linear generation of ssb for 10 h, followed by a short plateau; then ssb were formed again at a constant rate, somewhat higher than that in controls. Ssb formed in the initial phase are ascribed to phosphotriester hydrolysis, those after the plateau to unidentified causes. Zero intercepts appeared to be a measure of apurinic sites generated intracellularly. A 24-h repair period preceding lysis reduced the ENNG intercept, but not that of DES. Rapid degradation of DES during the 1-h treatment occurred, so most "apurinic-site lesions" were induced in the beginning of exposure and possibly were already repaired at the end. The types of lesion distinguished (reparable and non-reparable apurinic sites, phosphotriesters) appeared of little consequence for cell survival. PMID:7201070

  8. Ribonucleotide triggered DNA damage and RNA-DNA damage responses

    PubMed Central

    Wallace, Bret D; Williams, R Scott

    2014-01-01

    Research indicates that the transient contamination of DNA with ribonucleotides exceeds all other known types of DNA damage combined. The consequences of ribose incorporation into DNA, and the identity of protein factors operating in this RNA-DNA realm to protect genomic integrity from RNA-triggered events are emerging. Left unrepaired, the presence of ribonucleotides in genomic DNA impacts cellular proliferation and is associated with chromosome instability, gross chromosomal rearrangements, mutagenesis, and production of previously unrecognized forms of ribonucleotide-triggered DNA damage. Here, we highlight recent findings on the nature and structure of DNA damage arising from ribonucleotides in DNA, and the identification of cellular factors acting in an RNA-DNA damage response (RDDR) to counter RNA-triggered DNA damage. PMID:25692233

  9. Molecular biological basis for the response of poly(ADP-rib) polymerase and NAD metabolism to DNA damage caused by mustard alkylating agents. Midterm report

    SciTech Connect

    Smulson, M.E.

    1996-07-01

    During the course of this contract, we have performed a variety of experiments to provide a strategy to modulate the nuclear enzyme poly(ADP-ribose) polymerase (PARP), in cultured keratinocytes. This enzyme modifies a variety of nuclear proteins utilizing NAD. DNA is required for the catalytic activity of the enzyme and the activity is dependent upon the presence of strand breaks in this DNA. It has been hypothesized that human skin exposed to mustards may develop blisters due to a generalized lowering of NAD in exposed skin cells. During the contract period, we have established a stably transfected human keratinocyte cell line which expresses antisense transcripts to PARP mRNA when these keratinocyte were grafted onto nude mice they formed histologically normal human skin. Accordingly, a model system has been developed in which the levels of PARP can be selectively manipulated in human keratinocytes in reconstituted epidermis as well. We also showed that PARP was proteolytically cleaved at the onset of spontaneous apoptosis following proteolytic conversion of CPP32b to its active form, termed `apopain`. Having characterized the events associated with apoptosis, we determined, during the last period, whether any or all of these features could be observed following exposure of keratinocytes to SM.

  10. DNA-directed alkylating ligands as potential antitumor agents: sequence specificity of alkylation by intercalating aniline mustards.

    PubMed

    Prakash, A S; Denny, W A; Gourdie, T A; Valu, K K; Woodgate, P D; Wakelin, L P

    1990-10-23

    The sequence preferences for alkylation of a series of novel parasubstituted aniline mustards linked to the DNA-intercalating chromophore 9-aminoacridine by an alkyl chain of variable length were studied by using procedures analogous to Maxam-Gilbert reactions. The compounds alkylate DNA at both guanine and adenine sites. For mustards linked to the acridine by a short alkyl chain through a para O- or S-link group, 5'-GT sequences are the most preferred sites at which N7-guanine alkylation occurs. For analogues with longer chain lengths, the preference of 5'-GT sequences diminishes in favor of N7-adenine alkylation at the complementary 5'-AC sequence. Magnesium ions are shown to selectively inhibit alkylation at the N7 of adenine (in the major groove) by these compounds but not the alkylation at the N3 of adenine (in the minor groove) by the antitumor antibiotic CC-1065. Effects of chromophore variation were also studied by using aniline mustards linked to quinazoline and sterically hindered tert-butyl-9-aminoacridine chromophores. The results demonstrate that in this series of DNA-directed mustards the noncovalent interactions of the carrier chromophores with DNA significantly modify the sequence selectivity of alkylation by the mustard. Relationships between the DNA alkylation patterns of these compounds and their biological activities are discussed.

  11. Study of the DNA damage checkpoint using Xenopus egg extracts.

    PubMed

    Willis, Jeremy; DeStephanis, Darla; Patel, Yogin; Gowda, Vrushab; Yan, Shan

    2012-01-01

    On a daily basis, cells are subjected to a variety of endogenous and environmental insults. To combat these insults, cells have evolved DNA damage checkpoint signaling as a surveillance mechanism to sense DNA damage and direct cellular responses to DNA damage. There are several groups of proteins called sensors, transducers and effectors involved in DNA damage checkpoint signaling (Figure 1). In this complex signaling pathway, ATR (ATM and Rad3-related) is one of the major kinases that can respond to DNA damage and replication stress. Activated ATR can phosphorylate its downstream substrates such as Chk1 (Checkpoint kinase 1). Consequently, phosphorylated and activated Chk1 leads to many downstream effects in the DNA damage checkpoint including cell cycle arrest, transcription activation, DNA damage repair, and apoptosis or senescence (Figure 1). When DNA is damaged, failing to activate the DNA damage checkpoint results in unrepaired damage and, subsequently, genomic instability. The study of the DNA damage checkpoint will elucidate how cells maintain genomic integrity and provide a better understanding of how human diseases, such as cancer, develop. Xenopus laevis egg extracts are emerging as a powerful cell-free extract model system in DNA damage checkpoint research. Low-speed extract (LSE) was initially described by the Masui group. The addition of demembranated sperm chromatin to LSE results in nuclei formation where DNA is replicated in a semiconservative fashion once per cell cycle. The ATR/Chk1-mediated checkpoint signaling pathway is triggered by DNA damage or replication stress. Two methods are currently used to induce the DNA damage checkpoint: DNA damaging approaches and DNA damage-mimicking structures. DNA damage can be induced by ultraviolet (UV) irradiation, γ-irradiation, methyl methanesulfonate (MMS), mitomycin C (MMC), 4-nitroquinoline-1-oxide (4-NQO), or aphidicolin. MMS is an alkylating agent that inhibits DNA replication and activates the ATR

  12. DNA minor groove targeted alkylating agents based on bisbenzimidazole carriers: synthesis, cytotoxicity and sequence-specificity of DNA alkylation.

    PubMed

    Smaill, J B; Fan, J Y; Denny, W A

    1998-12-01

    A series of bisbenzimidazoles bearing a variety of alkylating agents [ortho- and meta-mustards, imidazolebis(hydroxymethyl), imidazolebis(methylcarbamate) and pyrrolebis(hydroxymethyl)], appended by a propyl linker chain, were prepared and investigated for sequence-specificity of DNA alkylation and their cytotoxicity. Previous work has shown that, for para-aniline mustards, a propyl linker is optimal for cytotoxicity. Alkaline cleavage assays using a variety of different labelled oligonucleotides showed that the preferred sequences for adenine alkylation were 5'-TTTANANAANN and 5'-ATTANANAANN (underlined bases show the drug alkylation sites), with AT-rich sequences required on both the 5' and 3' sides of the alkylated adenine. The different aniline mustards showed little variation in alkylation pattern and similar efficiencies of DNA cross-link formation despite the changes in orientation and positioning of the mustard, suggesting that the propyl linker has some flexibility. The imidazole- and pyrrolebis(hydroxymethyl) alkylators showed no DNA strand cleavage following base treatment, indicating that no guanine or adenine N3 or N7 adducts were formed. Using the PCR-based polymerase stop assay, these alkylators showed PCR blocks at 5'-C*G sites (the * nucleotide indicates the blocked site), particularly at 5'-TAC*GA 5'-AGC*GGA, and 5'-AGCC*GGT sequences, caused by guanine 2-NH2 lesions on the opposite strand. Only the (more reactive) imidazolebis(methylcarbamoyl) and pyrrolebis(hydroxymethyl) alkylators demonstrated interstrand cross-linking ability. All of the bifunctional mustards showed large (approximately 100-fold) increases in cytotoxicity over chlorambucil, with the corresponding monofunctional mustards being 20- to 60-fold less cytotoxic. These results suggest that in the mustards the propyl linker provides sufficient flexibility to achieve delivery of the alkylator to favoured (adenine N3) sites in the minor groove, regardless of its exact geometry with

  13. Sperm DNA damage and its relation with leukocyte DNA damage.

    PubMed

    Babazadeh, Zahra; Razavi, Shahnaz; Tavalaee, Marziyeh; Deemeh, Mohammad Reza; Shahidi, Maryam; Nasr-Esfahani, Mohammad Hossein

    2010-01-01

    DNA fragmentation in human sperm has been related to endogenous and exogenous factors. Exogenous factors can also affect leukocyte DNA integrity. This study evaluated the relation between sperm DNA damage and leukocyte DNA integrity, as a predictor of exogenous factors. DNA damage in the sperm and leukocytes of 41 individuals undergoing ICSI were measured by Comet assay. In addition, sperm chromatin dispersion (SCD) was carried out on semen samples. A positive correlation was observed between the DNA integrity of sperm with leukocytes. When patients were divided into low and high DNA exposure groups, sperm DNA fragmentation was significantly different between the two groups. Cleavage rate and embryo quality showed significant correlation with leukocyte DNA integrity. The results showed that leukocyte DNA integrity could be used to identify individuals at high risk in order to reduce the extent of DNA damage in patients before ICSI in order to improve the subsequent outcome of this procedure.

  14. DNA damage by bromate: mechanism and consequences.

    PubMed

    Ballmaier, Daniel; Epe, Bernd

    2006-04-17

    Exposure of mammalian cells to bromate (BrO3-) generates oxidative DNA modifications, in particular 7,8-dihydro-8-oxo-guanine (8-oxoG). The damaging mechanism is quite unique, since glutathione, which is protective against most oxidants and alkylating agents, mediates a metabolic activation, while bromate itself does not react directly with DNA. Neither enzymes nor transition metals are required as catalysts in the activation. The ultimate DNA damaging species has not yet been established, but experiments under cell-free conditions suggest that neither molecular bromine nor reactive oxygen species such as superoxide, hydrogen peroxide or singlet oxygen are involved. Rather bromine radicals (Br*) or oxides (BrO*, BrO2*) might be responsible. Compared to hypochlorite (ClO-), bromate is much less cytotoxic, probably because the former halite efficiently reacts with proteins and other vitally important cellular constituents. In consequence, oxidative DNA damage and the induction of mutations and micronuclei is easily detectable at non-cytotoxic concentrations of bromate, while DNA damage by hypochlorite is observed only at cytotoxic concentrations and follows a non-linear (hockey-stick-like) dose response. PMID:16490296

  15. ATM regulates 3-Methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents

    PubMed Central

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A.; Clarke, Ian D.; Barszczyk, Mark S.; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W.; Taylor, Michael D; Rutka, James T.; Jones, Chris; Dirks, Peter B.; Zadeh, Gelareh; Hawkins, Cynthia

    2014-01-01

    Alkylating agents are a frontline therapy for the treatment of several aggressive cancers including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed; increasing therapeutic response while minimizing toxicity. Using a siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM) were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. PMID:25100205

  16. DNA damage-induced replication arrest in Xenopus egg extracts

    PubMed Central

    Stokes, Matthew P.; Michael, W. Matthew

    2003-01-01

    Chromosomal replication is sensitive to the presence of DNA-damaging alkylating agents, such as methyl methanesulfonate (MMS). MMS is known to inhibit replication though activation of the DNA damage checkpoint and through checkpoint-independent slowing of replication fork progression. Using Xenopus egg extracts, we now report an additional pathway that is stimulated by MMS-induced damage. We show that, upon incubation in egg extracts, MMS-treated DNA activates a diffusible inhibitor that blocks, in trans, chromosomal replication. The downstream effect of the inhibitor is a failure to recruit proliferating cell nuclear antigen, but not DNA polymerase α, to the nascent replication fork. Thus, alkylation damage activates an inhibitor that intercepts the replication pathway at a point between the polymerase α and proliferating cell nuclear antigen execution steps. We also show that activation of the inhibitor does not require the DNA damage checkpoint; rather, stimulation of the pathway described here results in checkpoint activation. These data describe a novel replication arrest pathway, and they also provide an example of how subpathways within the DNA damage response network are integrated to promote efficient cell cycle arrest in response to damaged DNA. PMID:14581453

  17. Mechanism of DNA damage tolerance.

    PubMed

    Bi, Xin

    2015-08-26

    DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance (DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis (TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching (TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial. PMID:26322163

  18. DNA Damage, DNA Repair, Aging, and Neurodegeneration.

    PubMed

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L; Bohr, Vilhelm A

    2015-09-18

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span.

  19. Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases.

    PubMed

    Eichman, Brandt F; O'Rourke, Eyleen J; Radicella, J Pablo; Ellenberger, Tom

    2003-10-01

    DNA glycosylases catalyze the excision of chemically modified bases from DNA. Although most glycosylases are specific to a particular base, the 3-methyladenine (m3A) DNA glycosylases include both highly specific enzymes acting on a single modified base, and enzymes with broader specificity for alkylation-damaged DNA. Our structural understanding of these different enzymatic specificities is currently limited to crystal and NMR structures of the unliganded enzymes and complexes with abasic DNA inhibitors. Presented here are high-resolution crystal structures of the m3A DNA glycosylase from Helicobacter pylori (MagIII) in the unliganded form and bound to alkylated bases 3,9-dimethyladenine and 1,N6-ethenoadenine. These are the first structures of a nucleobase bound in the active site of a m3A glycosylase belonging to the helix-hairpin-helix superfamily. MagIII achieves its specificity for positively-charged m3A not by direct interactions with purine or methyl substituent atoms, but rather by stacking the base between two aromatic side chains in a pocket that excludes 7-methylguanine. We report base excision and DNA binding activities of MagIII active site mutants, together with a structural comparison of the HhH glycosylases. PMID:14517230

  20. DNA damage checkpoints in mammals.

    PubMed

    Niida, Hiroyuki; Nakanishi, Makoto

    2006-01-01

    DNA damage is a common event and probably leads to mutation or deletion within chromosomal DNA, which may cause cancer or premature aging. DNA damage induces several cellular responses including DNA repair, checkpoint activity and the triggering of apoptotic pathways. DNA damage checkpoints are associated with biochemical pathways that end delay or arrest of cell-cycle progression. These checkpoints engage damage sensor proteins, such as the Rad9-Rad1-Hus1 (9-1-1) complex, and the Rad17-RFC complex, in the detection of DNA damage and transduction of signals to ATM, ATR, Chk1 and Chk2 kinases. Chk1 and Chk2 kinases regulate Cdc25, Wee1 and p53 that ultimately inactivate cyclin-dependent kinases (Cdks) which inhibit cell-cycle progression. In this review, we discuss the molecular mechanisms by which DNA damage is recognized by sensor proteins and signals are transmitted to Cdks. We classify the genes involved in checkpoint signaling into four categories, namely sensors, mediators, transducers and effectors, although their proteins have the broad activity, and thus this classification is for convenience and is not definitive. PMID:16314342

  1. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond*

    PubMed Central

    Fedeles, Bogdan I.; Singh, Vipender; Delaney, James C.; Li, Deyu; Essigmann, John M.

    2015-01-01

    The AlkB family of Fe(II)- and α-ketoglutarate-dependent dioxygenases is a class of ubiquitous direct reversal DNA repair enzymes that remove alkyl adducts from nucleobases by oxidative dealkylation. The prototypical and homonymous family member is an Escherichia coli “adaptive response” protein that protects the bacterial genome against alkylation damage. AlkB has a wide variety of substrates, including monoalkyl and exocyclic bridged adducts. Nine mammalian AlkB homologs exist (ALKBH1–8, FTO), but only a subset functions as DNA/RNA repair enzymes. This minireview presents an overview of the AlkB proteins including recent data on homologs, structural features, substrate specificities, and experimental strategies for studying DNA repair by AlkB family proteins. PMID:26152727

  2. Optical detection of DNA damage

    NASA Astrophysics Data System (ADS)

    Rogers, Kim R.; Apostol, A.; Cembrano, J.

    1999-02-01

    A rapid and sensitive fluorescence assay for oxidative damage to calf thymus DNA is reported. A decrease in the transition temperature for strand separation resulted from exposure of the DNA to the reactive decomposition products of 3- morpholinosydnonimine (SIN-1) (i.e., nitric oxide, superoxide, peroxynitrite, hydrogen peroxide, and hydroxyl radicals). A decrease in melting temperature of 12 degrees Celsius was indicative of oxidative damage including single strand chain breaks. Double stranded (ds) and single stranded (ss) forms of DNA were determined using the indicator dyes ethidium bromide and PicoGreen. The change in DNA 'melting' curves was dependant on the concentration of SIN-1 and was most pronounced at 75 degrees Celsius. This chemically induced damage was significantly inhibited by sodium citrate, tris(hydroxymethyl)aminomethane (Tris), and diethylenetriaminepentaacetic acid (DTPA), but was unaffected by superoxide dismutase (SOD), catalase, ethylenediamine tetraacietic acid (EDTA), or deferoxamine. Lowest observable effect level for SIN-1-induced damage was 200 (mu) M.

  3. Replicating Damaged DNA in Eukaryotes

    PubMed Central

    Chatterjee, Nimrat; Siede, Wolfram

    2013-01-01

    DNA damage is one of many possible perturbations that challenge the mechanisms that preserve genetic stability during the copying of the eukaryotic genome in S phase. This short review provides, in the first part, a general introduction to the topic and an overview of checkpoint responses. In the second part, the mechanisms of error-free tolerance in response to fork-arresting DNA damage will be discussed in some detail. PMID:24296172

  4. Replicating damaged DNA in eukaryotes.

    PubMed

    Chatterjee, Nimrat; Siede, Wolfram

    2013-12-01

    DNA damage is one of many possible perturbations that challenge the mechanisms that preserve genetic stability during the copying of the eukaryotic genome in S phase. This short review provides, in the first part, a general introduction to the topic and an overview of checkpoint responses. In the second part, the mechanisms of error-free tolerance in response to fork-arresting DNA damage will be discussed in some detail.

  5. DNA damage in neurodegenerative diseases.

    PubMed

    Coppedè, Fabio; Migliore, Lucia

    2015-06-01

    Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis, which represent three of the most common neurodegenerative pathologies in humans. PMID:26255941

  6. Glycidol-carbohydrate hybrids: a new family of DNA alkylating agents.

    PubMed

    Toshima, Kazunobu; Okuno, Yukiko; Matsumura, Shuichi

    2003-10-01

    Novel and chiral glycidol-carbohydrate hybrids possessing an epoxy group as a DNA alkylating moiety were designed and synthesized. These artificial hybrids selectively alkylated DNA at the N-7 sites of the guanines and cleaved DNA without any additives. The binding ability of the glycidol was significantly enhanced by the attachment of the carbohydrate.

  7. DNA damage and carcinogenesis

    SciTech Connect

    Stelow, R B

    1980-01-01

    Although cancer may arise as a result of many different types of molecular changes, there is little reason to doubt that changes to DNA are one of the more important ones in cancer initiation. Although DNA repair mechanisms seem able to eliminate a very large fraction of deleterious changes to DNA, we not only have little insight into the molecular mechanisms involved in such repair, but have a negligible amount of information to permit us to estimate the shape of dose response relations at low doses. The case of skin cancer is a special one, in that the average population is exposed to sufficient solar uv so that the effects of small increments in uv dose may be estimated. An approximate 85% reduction in DNA repair increases skin cancer incidence 10/sup 4/ fold.

  8. Molecular dosimetry of DNA damage caused by alkylation. II. The induction and repair of different classes of single-strand breaks in cultured mammalian cells treated with ethylating agents.

    PubMed

    Dogliotti, E; Lakhanisky, T; van der Schans, G P; Lohman, P H

    1984-01-01

    Cultured Chinese hamster ovary cells were treated with ethylating agents. DNA lesions giving rise to single-strand breaks (SSB) or alkali-labile sites were measured by elution through membrane filters at pH 12.0 and pH 12.6, and by centrifugation in alkaline sucrose gradients after 1 h and 21 h lysis in alkali. Two agents with different tendencies to ethylate preferentially either at N or O atoms were compared, namely N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG) and diethyl sulphate (DES). The compounds differed greatly in their potency to induce lesions, but the ratios of SSB, measured with different methods after a treatment for 30 min, did not differ significantly. This suggested that the spectrum of lesions induced by the two compounds is very similar. However, when both agents were studied with alkaline elution at pH 12.0 after a short treatment time (5 min) only ENNG was found to induce rapidly-repairable SSB. Most of these were rejoined already within 5 min after treatment. These results suggest that rapidly-repairable lesions occurring in DNA after treatment of mammalian cells with ethylating agents are due mainly to alkylation at O-atoms. PMID:6472317

  9. Sperm DNA oxidative damage and DNA adducts.

    PubMed

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-12-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm.

  10. Sperm DNA oxidative damage and DNA adducts.

    PubMed

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-12-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm

  11. Study of the DNA Damage Checkpoint using Xenopus Egg Extracts

    PubMed Central

    Patel, Yogin; Gowda, Vrushab; Yan, Shan

    2012-01-01

    On a daily basis, cells are subjected to a variety of endogenous and environmental insults. To combat these insults, cells have evolved DNA damage checkpoint signaling as a surveillance mechanism to sense DNA damage and direct cellular responses to DNA damage. There are several groups of proteins called sensors, transducers and effectors involved in DNA damage checkpoint signaling (Figure 1). In this complex signaling pathway, ATR (ATM and Rad3-related) is one of the major kinases that can respond to DNA damage and replication stress. Activated ATR can phosphorylate its downstream substrates such as Chk1 (Checkpoint kinase 1). Consequently, phosphorylated and activated Chk1 leads to many downstream effects in the DNA damage checkpoint including cell cycle arrest, transcription activation, DNA damage repair, and apoptosis or senescence (Figure 1). When DNA is damaged, failing to activate the DNA damage checkpoint results in unrepaired damage and, subsequently, genomic instability. The study of the DNA damage checkpoint will elucidate how cells maintain genomic integrity and provide a better understanding of how human diseases, such as cancer, develop. Xenopus laevis egg extracts are emerging as a powerful cell-free extract model system in DNA damage checkpoint research. Low-speed extract (LSE) was initially described by the Masui group1. The addition of demembranated sperm chromatin to LSE results in nuclei formation where DNA is replicated in a semiconservative fashion once per cell cycle. The ATR/Chk1-mediated checkpoint signaling pathway is triggered by DNA damage or replication stress 2. Two methods are currently used to induce the DNA damage checkpoint: DNA damaging approaches and DNA damage-mimicking structures 3. DNA damage can be induced by ultraviolet (UV) irradiation, γ-irradiation, methyl methanesulfonate (MMS), mitomycin C (MMC), 4-nitroquinoline-1-oxide (4-NQO), or aphidicolin3, 4. MMS is an alkylating agent that inhibits DNA replication and activates

  12. Types and Consequences of DNA Damage

    EPA Science Inventory

    This review provides a concise overview of the types of DNA damage and the molecular mechanisms by which a cell senses DNA damage, repairs the damage, converts the damage into a mutation, or dies as a consequence of unrepaired DNA damage. Such information is important in consid...

  13. Molecular biology basis for the response of poly(ADP-rib) polymerase and NAD metabolism to dna damage caused by mustard alkylating agents. Final report, 30 April 1990-30 July 1994

    SciTech Connect

    Smulson, M.E.

    1994-08-30

    During the course of this contract, we have performed a variety of experiments whose intent has been to provide a strategy to modulate the nuclear enzyme poly(ADP-ribose) polymerase (PADPRP) in cultured keratinocytes. During this study, human keratinocyte lines were stably transfected with the cDNA for human PADPRP in the antisense orientation under an inducible promoter. Induction of this antisense RNA by dexamethasone in cultured cells selectively lowered levels of PADPRP in RNA, protein, and enzyme activity. Induction of antisense RNA led to a reduction in the levels of PADPRP in individual cell nuclei, as well as the loss of the ability of cells to synthesize and modify proteins by poly(ADP-ribose) polymer in response to an alkylating agent. When keratinocyte clones containing the antisense construct or empty vector alone were grafted onto nude mice they formed histologically normal human skin. The PADPRP antisense construct was also inducible in vivo by the topical application of dexamethasone to the reconstituted epidermis. In addition, poly(ADP-ribose) polymer could be induced and detected in vivo following the topical application of a sulfur mustard to the grafted transfected skin layers. Accordingly, a model system has been developed in which the levels of PADPRP can be selectively manipulated in human keratinocytes in cell culture, and potentially in reconstituted epidermis as well.

  14. Induction of resistance to alkylating agents in E. coli: the ada+ gene product serves both as a regulatory protein and as an enzyme for repair of mutagenic damage.

    PubMed Central

    Teo, I; Sedgwick, B; Demple, B; Li, B; Lindahl, T

    1984-01-01

    The expression of several inducible enzymes for repair of alkylated DNA in Escherichia coli is controlled by the ada+ gene. This regulatory gene has been cloned into a multicopy plasmid and shown to code for a 37-kd protein. Antibodies raised against homogeneous O6-methylguanine-DNA methyltransferase (the main repair activity for mutagenic damage in alkylated DNA) were found to cross-react with this 37-kd protein. Cell extracts from several independently derived ada mutants contain variable amounts of an altered 37-kd protein after an inducing alkylation treatment. In addition, an 18-kd protein identical with the previously isolated O6-methyl-guanine-DNA methyltransferase has been identified as a product of the ada+ gene. The smaller polypeptide is derived from the 37-kd protein by proteolytic processing. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:6092060

  15. DNA Damage and Pulmonary Hypertension

    PubMed Central

    Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien

    2016-01-01

    Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis. PMID:27338373

  16. DNA Damage and Repair in Vascular Disease.

    PubMed

    Uryga, Anna; Gray, Kelly; Bennett, Martin

    2016-01-01

    DNA damage affecting both genomic and mitochondrial DNA is present in a variety of both inherited and acquired vascular diseases. Multiple cell types show persistent DNA damage and a range of lesions. In turn, DNA damage activates a variety of DNA repair mechanisms, many of which are activated in vascular disease. Such DNA repair mechanisms either stall the cell cycle to allow repair to occur or trigger apoptosis or cell senescence to prevent propagation of damaged DNA. Recent evidence has indicated that DNA damage occurs early, is progressive, and is sufficient to impair function of cells composing the vascular wall. The consequences of persistent genomic and mitochondrial DNA damage, including inflammation, cell senescence, and apoptosis, are present in vascular disease. DNA damage can thus directly cause vascular disease, opening up new possibilities for both prevention and treatment. We review the evidence for and the causes, types, and consequences of DNA damage in vascular disease.

  17. Mitochondrial DNA damage and atherosclerosis.

    PubMed

    Yu, Emma P K; Bennett, Martin R

    2014-09-01

    Mitochondria are often regarded as the cellular powerhouses through their ability to generate ATP, the universal fuel for metabolic processes. However, in recent years mitochondria have been recognised as critical regulators of cell death, inflammation, metabolism, and the generation of reactive oxygen species (ROS). Thus, mitochondrial dysfunction directly promotes cell death, inflammation, and oxidative stress and alters metabolism. These are key processes in atherosclerosis and there is now evidence that mitochondrial DNA (mtDNA) damage leads to mitochondrial dysfunction and promotes atherosclerosis directly. In this review we discuss the recent evidence for and mechanisms linking mtDNA defects and atherosclerosis and suggest areas of mitochondrial biology that are potential therapeutic targets.

  18. VP-16 and alkylating agents activate a common metabolic pathway for suppression of DNA replication

    SciTech Connect

    Das, S.K.; Berger, N.A.

    1986-05-01

    The cytotoxic effects of etoposide (VP-16) are mediated by topoisomerase II production of protein crosslinked DNA strand breaks. Previous studies have shown that alkylating agent induced DNA damage results in expansion of dTTP pools and reduction of dCTP pools and DNA replication. Studies were conducted with V79 cells to determine whether the metabolic consequences of VP-16 treatment were similar to those induced by alkylating agents. Treatment with 0.5..mu..M VP-16 prolonged the doubling time of V79 cells from 12 to 18 hrs and caused cell volume to increase from 1.1 to 1.6 x 10/sup -12/l. 2mM caffeine completely blocked the volume increase and substantially prevented the prolongation of doubling time. 5..mu..M VP-16 reduced the rate of (/sup 3/H)TdR incorporation by 70%, whereas in the presence of 2mM caffeine, VP-16 caused only a 10% decrease in the rate of (/sup 3/H)TdR incorporation. 4 hr treatment with 5.0..mu..M VP-16 increased dTTP levels from 65 +/- 10 pmol/10/sup 6/ cells to 80 +/- 13 pmol/10/sup 6/ cells and caused dCTP level to decline from 113 +/- 23 pmol/10/sup 6/ cells to 92 +/- 17 pmol/10/sup 6/ cells. These results indicate that the metabolic consequences of VP-16 treatment are similar to alkylating agent treatment and that an increase in dTTP pools with a subsequent effect on ribonucleotide reductase may be a final common pathway by which many cytotoxic agents suppress DNA synthesis.

  19. Method for assaying clustered DNA damages

    DOEpatents

    Sutherland, Betsy M.

    2004-09-07

    Disclosed is a method for detecting and quantifying clustered damages in DNA. In this method, a first aliquot of the DNA to be tested for clustered damages with one or more lesion-specific cleaving reagents under conditions appropriate for cleavage of the DNA to produce single-strand nicks in the DNA at sites of damage lesions. The number average molecular length (Ln) of double stranded DNA is then quantitatively determined for the treated DNA. The number average molecular length (Ln) of double stranded DNA is also quantitatively determined for a second, untreated aliquot of the DNA. The frequency of clustered damages (.PHI..sub.c) in the DNA is then calculated.

  20. Differences in sequence selectivity of DNA alkylation by isomeric intercalating aniline mustards.

    PubMed

    Prakash, A S; Denny, W A; Wakelin, L P

    1990-01-01

    Two DNA-targeted mustard derivatives, N,N-bis(2-chloroethyl)-4-(5-[9-acridinylamino]-pentamido)aniline and 4-(9-[acridinylamino]butyl 4-(N,N-bis[2-chloroethyl]-aminobenzamide, which are isomeric compounds where the mustard is linked to the DNA-binding 9-aminoacridine moiety by either a -CONH- or a -NHCO- group, show significant differences in the sequence selectivity of their alkylation of DNA. The CONH isomer is a more efficient alxylating agent than the NHCO compound by an order of magnitude, consistent with the larger electron release of the CONH group to the aniline ring. However, the pattern of alkylation by the two compounds is also very different, with the CONH isomer preferring alkylation of guanines adjacent to 3'- or 5'-adenines and cytosines (for example those in sequences 5'-CGC, 5'-AGC, 5'-CGG and 5'-AGA) while the isomeric NHCO compound shows preference for guanines in runs of Gs. In addition, both isomers alkylate 3'-adenines in runs of adenines. Both compounds also show completely different patterns of alkylation to their untargeted mustard counterparts, since 4-MeCONH-aniline mustard alkylates all guanines and adenines in runs of adenines, while 4-Me2NCO-aniline mustard fails to alkylate DNA at all. These differences in alkylation patterns between the CONH- and its isomeric NHCO- compounds and their relationships between the alkylation patterns of the isomers and their biological activities are discussed.

  1. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells.

    PubMed

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-08-15

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. PMID:27342729

  2. Sphingolipids in the DNA damage response.

    PubMed

    Carroll, Brittany; Donaldson, Jane Catalina; Obeid, Lina

    2015-05-01

    Recently, sphingolipid metabolizing enzymes have emerged as important targets of many chemotherapeutics and DNA damaging agents and therefore play significant roles in mediating the physiological response of the cell to DNA damage. In this review we will highlight points of connection between the DNA damage response (DDR) and sphingolipid metabolism; specifically how certain sphingolipid enzymes are regulated in response to DNA damage and how the bioactive lipids produced by these enzymes affect cell fate. PMID:25434743

  3. Bifunctional rhodium intercalator conjugates as mismatch-directing DNA alkylating agents.

    PubMed

    Schatzschneider, Ulrich; Barton, Jacqueline K

    2004-07-21

    A conjugate of a DNA mismatch-specific rhodium intercalator, containing the bulky chrysenediimine ligand, and an aniline mustard has been prepared, and targeting of mismatches in DNA by this conjugate has been examined. The preferential alkylation of mismatched over fully matched DNA is found by a mobility shift assay at concentrations where untethered organic mustards show little reaction. The binding site of the Rh intercalator was determined by DNA photocleavage, and the position of covalent modification was established on the basis of the enhanced depurination associated with N-alkylation. The site-selective alkylation at mismatched DNA renders these conjugates useful tools for the covalent tagging of DNA base pair mismatches and new chemotherapeutic design.

  4. The current state of eukaryotic DNA base damage and repair

    PubMed Central

    Bauer, Nicholas C.; Corbett, Anita H.; Doetsch, Paul W.

    2015-01-01

    DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair. PMID:26519467

  5. 'Petite' mutagenesis and mitotic crossing-over in yeast by DNA-targeted alkylating agents.

    PubMed

    Ferguson, L R; Turner, P M; Gourdie, T A; Valu, K K; Denny, W A

    1989-12-01

    Although the biological properties (cytotoxicity, mutagenicity and carcinogenicity) of alkylating agents result from their bonding interactions with DNA, such compounds generally do not show any special binding affinity for DNA. A series of acridine-linked aniline mustards of widely-varying alkylator reactivity have been designed as DNA-directed alkylating agents. We have considered whether such DNA targeting has an effect on mutagenic properties by evaluating this series of drugs in comparison with their untargeted counterparts for toxic, recombinogenic and mutagenic properties in Saccharomyces cerevisiae strain D5. The simple untargeted aniline mustards are effective inducers of mitotic crossing-over in this strain, but resemble other reported alkylators in being rather inefficient inducers of the "petite" or mitochondrial mutation in yeast. However, the majority of the DNA-targeted mustards were very efficient petite mutagens, while showing little evidence of mitotic crossing-over or other nuclear events. The 100% conversion of cells into petites and the lack of a differential between growing and non-growing cells are similar to the effects of the well characterised mitochondrial mutagen ethidium bromide. These data suggest very different modes of action between the DNA-targeted alkylators and their non-targeted counterparts.

  6. Interaction between DNA and trimethyl-ammonium bromides with different alkyl chain lengths.

    PubMed

    Cheng, Chao; Ran, Shi-Yong

    2014-01-01

    The interaction between λ--DNA and cationic surfactants with varying alkyl chain lengths was investigated. By dynamic light scattering method, the trimethyl-ammonium bromides-DNA complex formation was shown to be dependent on the length of the surfactant's alkyl chain. For surfactants with sufficient long alkyl chain (CTAB, TTAB, DTAB), the compacted particles exist with a size of ~60-110 nm at low surfactant concentrations. In contrast, high concentration of surfactants leads to aggregates with increased sizes. Atomic force microscope scanning also supports the above observation. Zeta potential measurements show that the potential of the particles decreases with the increase of surfactant concentration (CTAB, TTAB, DTAB), which contributes much to the coagulation of the particles. For OTAB, the surfactant with the shortest chain in this study, it cannot fully neutralize the charges of DNA molecules; consequently, the complex is looser than other surfactant-DNA structures.

  7. Interaction between DNA and Trimethyl-Ammonium Bromides with Different Alkyl Chain Lengths

    PubMed Central

    Cheng, Chao; Ran, Shi-Yong

    2014-01-01

    The interaction between λ—DNA and cationic surfactants with varying alkyl chain lengths was investigated. By dynamic light scattering method, the trimethyl-ammonium bromides-DNA complex formation was shown to be dependent on the length of the surfactant's alkyl chain. For surfactants with sufficient long alkyl chain (CTAB, TTAB, DTAB), the compacted particles exist with a size of ~60–110 nm at low surfactant concentrations. In contrast, high concentration of surfactants leads to aggregates with increased sizes. Atomic force microscope scanning also supports the above observation. Zeta potential measurements show that the potential of the particles decreases with the increase of surfactant concentration (CTAB, TTAB, DTAB), which contributes much to the coagulation of the particles. For OTAB, the surfactant with the shortest chain in this study, it cannot fully neutralize the charges of DNA molecules; consequently, the complex is looser than other surfactant-DNA structures. PMID:24574926

  8. Deciphering DNA-based asymmetric catalysis through intramolecular Friedel-Crafts alkylations.

    PubMed

    Park, Soyoung; Ikehata, Keiichi; Watabe, Ryo; Hidaka, Yuta; Rajendran, Arivazhagan; Sugiyama, Hiroshi

    2012-10-28

    We describe asymmetric intramolecular Friedel-Crafts alkylations with a DNA-based hybrid catalyst and propose a plausible binding model. This study shows promise for studying relationships between the helical chirality of DNA and enantioselectivity of the chemical reaction. PMID:22986468

  9. Looking for Waldo: A Potential Thermodynamic Signature to DNA Damage

    PubMed Central

    2015-01-01

    Conspectus DNA in its simplest form is an ensemble of nucleic acids, water, and ions, and the conformation of DNA is dependent on the relative proportions of all three components. When DNA is covalently damaged by endogenous or exogenous reactive species, including those produced by some anticancer drugs, the ensemble undergoes localized changes that affect nucleic acid structure, thermodynamic stability, and the qualitative and quantative arrangement of associated cations and water molecules. Fortunately, the biological effects of low levels of DNA damage are successfully mitigated by a large number of proteins that efficiently recognize and repair DNA damage in the midst of a vast excess of canonical DNA. In this Account, we explore the impact of DNA modifications on the high resolution and dynamic structure of DNA, DNA stability, and the uptake of ions and water and explore how these changes may be sensed by proteins whose function is to initially locate DNA lesions. We discuss modifications on the nucleobases that are located in the major and minor grooves of DNA and include lesions that are observed in vivo, including oxidized bases, as well as some synthetic nucleobases that allow us to probe how the location and nature of different substituents affect the thermodynamics and structure of the DNA ensemble. It is demonstrated that disruption of a cation binding site in the major groove by modification of the N7-position on the purines, which is the major site for DNA alkylation, is enthalpically destabilizing. Accordingly, tethering a cationic charge in the major groove is enthalpically stabilizing. The combined structural and thermodynamic studies provide a detailed picture of how different DNA lesions affect the dynamics of DNA and how modified bases interact with their environment. Our work supports the hypothesis that there is a “thermodynamic signature” to DNA lesions that can be exploited in the initial search that requires differentiation between

  10. Cellular responses to environmental DNA damage

    SciTech Connect

    Not Available

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  11. DNA Damage Signals and Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  12. Apoptosis and DNA damage in human spermatozoa

    PubMed Central

    Aitken, R John; Koppers, Adam J

    2011-01-01

    DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis, resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apoptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy. PMID:20802502

  13. Repairing of N-mustard derivative BO-1055 induced DNA damage requires NER, HR, and MGMT-dependent DNA repair mechanisms.

    PubMed

    Kuo, Ching-Ying; Chou, Wen-Cheng; Wu, Chin-Chung; Wong, Teng-Song; Kakadiya, Rajesh; Lee, Te-Chang; Su, Tsann-Long; Wang, Hui-Chun

    2015-09-22

    Alkylating agents are frequently used as first-line chemotherapeutics for various newly diagnosed cancers. Disruption of genome integrity by such agents can lead to cell lethality if DNA lesions are not removed. Several DNA repair mechanisms participate in the recovery of mono- or bi-functional DNA alkylation. Thus, DNA repair capacity is correlated with the therapeutic response. Here, we assessed the function of novel water-soluble N-mustard BO-1055 (ureidomustin) in DNA damage response and repair mechanisms. As expected, BO-1055 induces ATM and ATR-mediated DNA damage response cascades, including downstream Chk1/Chk2 phosphorylation, S/G2 cell-cycle arrest, and cell death. Further investigation revealed that cell survival sensitivity to BO-1055 is comparable to that of mitomycin C. Both compounds require nucleotide excision repair and homologous recombination, but not non-homologous end-joining, to repair conventional cross-linking DNA damage. Interestingly and unlike mitomycin C and melphalan, MGMT activity was also observed in BO-1055 damage repair systems, which reflects the occurrence of O-alkyl DNA lesions. Combined treatment with ATM/ATR kinase inhibitors significantly increases BO-1055 sensitivity. Our study pinpoints that BO-1055 can be used for treating tumors that with deficient NER, HR, and MGMT DNA repair genes, or for synergistic therapy in tumors that DNA damage response have been suppressed. PMID:26208482

  14. Repairing of N-mustard derivative BO-1055 induced DNA damage requires NER, HR, and MGMT-dependent DNA repair mechanisms

    PubMed Central

    Wu, Chin-Chung; Wong, Teng-Song; Kakadiya, Rajesh; Lee, Te-Chang; Su, Tsann-Long; Wang, Hui-Chun

    2015-01-01

    Alkylating agents are frequently used as first-line chemotherapeutics for various newly diagnosed cancers. Disruption of genome integrity by such agents can lead to cell lethality if DNA lesions are not removed. Several DNA repair mechanisms participate in the recovery of mono- or bi-functional DNA alkylation. Thus, DNA repair capacity is correlated with the therapeutic response. Here, we assessed the function of novel water-soluble N-mustard BO-1055 (ureidomustin) in DNA damage response and repair mechanisms. As expected, BO-1055 induces ATM and ATR-mediated DNA damage response cascades, including downstream Chk1/Chk2 phosphorylation, S/G2 cell-cycle arrest, and cell death. Further investigation revealed that cell survival sensitivity to BO-1055 is comparable to that of mitomycin C. Both compounds require nucleotide excision repair and homologous recombination, but not non-homologous end-joining, to repair conventional cross-linking DNA damage. Interestingly and unlike mitomycin C and melphalan, MGMT activity was also observed in BO-1055 damage repair systems, which reflects the occurrence of O-alkyl DNA lesions. Combined treatment with ATM/ATR kinase inhibitors significantly increases BO-1055 sensitivity. Our study pinpoints that BO-1055 can be used for treating tumors that with deficient NER, HR, and MGMT DNA repair genes, or for synergistic therapy in tumors that DNA damage response have been suppressed. PMID:26208482

  15. Surviving the breakup: the DNA damage checkpoint.

    PubMed

    Harrison, Jacob C; Haber, James E

    2006-01-01

    In response to even a single chromosomal double-strand DNA break, cells enact the DNA damage checkpoint. This checkpoint triggers cell cycle arrest, providing time for the cell to repair damaged chromosomes before entering mitosis. This mechanism helps prevent the segregation of damaged or mutated chromosomes and thus promotes genomic stability. Recent work has elucidated the molecular mechanisms underlying several critical steps in checkpoint activation, notably the recruitment of the upstream checkpoint kinases of the ATM and ATR families to different damaged DNA structures and the molecular events through which these kinases activate their effectors. Chromatin modification has emerged as one important component of checkpoint activation and maintenance. Following DNA repair, the checkpoint pathway is inactivated in a process termed recovery. A related but genetically distinct process, adaptation, controls cell cycle re-entry in the face of unrepairable damage.

  16. Persistent damage induces mitochondrial DNA degradation.

    PubMed

    Shokolenko, Inna N; Wilson, Glenn L; Alexeyev, Mikhail F

    2013-07-01

    Considerable progress has been made recently toward understanding the processes of mitochondrial DNA (mtDNA) damage and repair. However, a paucity of information still exists regarding the physiological effects of persistent mtDNA damage. This is due, in part, to experimental difficulties associated with targeting mtDNA for damage, while sparing nuclear DNA. Here, we characterize two systems designed for targeted mtDNA damage based on the inducible (Tet-ON) mitochondrial expression of the bacterial enzyme, exonuclease III, and the human enzyme, uracil-N-glyosylase containing the Y147A mutation. In both systems, damage was accompanied by degradation of mtDNA, which was detectable by 6h after induction of mutant uracil-N-glycosylase and by 12h after induction of exoIII. Unexpectedly, increases in the steady-state levels of single-strand lesions, which led to degradation, were small in absolute terms indicating that both abasic sites and single-strand gaps may be poorly tolerated in mtDNA. mtDNA degradation was accompanied by the loss of expression of mtDNA-encoded COX2. After withdrawal of the inducer, recovery from mtDNA depletion occurred faster in the system expressing exonuclease III, but in both systems reduced mtDNA levels persisted longer than 144h after doxycycline withdrawal. mtDNA degradation was followed by reduction and loss of respiration, decreased membrane potential, reduced cell viability, reduced intrinsic reactive oxygen species production, slowed proliferation, and changes in mitochondrial morphology (fragmentation of the mitochondrial network, rounding and "foaming" of the mitochondria). The mutagenic effects of abasic sites in mtDNA were low, which indicates that damaged mtDNA molecules may be degraded if not rapidly repaired. This study establishes, for the first time, that mtDNA degradation can be a direct and immediate consequence of persistent mtDNA damage and that increased ROS production is not an invariant consequence of mtDNA damage.

  17. Ubiquitylation, neddylation and the DNA damage response

    PubMed Central

    Brown, Jessica S.; Jackson, Stephen P.

    2015-01-01

    Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair. PMID:25833379

  18. Specific Saccharomyces cerevisiae genes are expressed in response to DNA-damaging agents.

    PubMed Central

    Ruby, S W; Szostak, J W

    1985-01-01

    When exposed to DNA-damaging agents, the yeast Saccharomyces cerevisiae induces the expression of at least six specific genes. We have previously identified one damage inducible (DIN) gene as a gene fusion (din-lacZ fusion) whose expression increases in response to DNA-damaging treatments. We describe here the identification of five additional DIN genes as din-lacZ fusions and the responses of all six DIN genes to DNA-damaging agents. Northern blot analyses of the transcripts of two of the DIN genes show that their levels increase after exposure to DNA-damaging agents. Five of the din-lacZ fusions are induced in S. cerevisiae cells exposed to UV light, gamma rays, methotrexate, or alkylating agents. One of the din-lacZ fusions is induced by either UV or methotrexate but not by the other agents. This finding suggests that there are sets of DIN genes that are regulated differently. Images PMID:3920512

  19. DNA Damage Response and DNA Repair in Skeletal Myocytes From a Mouse Model of Spinal Muscular Atrophy.

    PubMed

    Fayzullina, Saniya; Martin, Lee J

    2016-09-01

    We studied DNA damage response (DDR) and DNA repair capacities of skeletal muscle cells from a mouse model of infantile spinal muscular atrophy (SMA) caused by loss-of-function mutation of survival of motor neuron (Smn). Primary myocyte cultures derived from skeletal muscle satellite cells of neonatal control and mutant SMN mice had similar myotube length, myonuclei, satellite cell marker Pax7 and differentiated myotube marker myosin, and acetylcholine receptor clustering. DNA damage was induced in differentiated skeletal myotubes by γ-irradiation, etoposide, and methyl methanesulfonate (MMS). Unexposed control and SMA myotubes had stable genome integrity. After γ-irradiation and etoposide, myotubes repaired most DNA damage equally. Control and mutant myotubes exposed to MMS exhibited equivalent DNA damage without repair. Control and SMA myotube nuclei contained DDR proteins phospho-p53 and phospho-H2AX foci that, with DNA damage, dispersed and then re-formed similarly after recovery. We conclude that mouse primary satellite cell-derived myotubes effectively respond to and repair DNA strand-breaks, while DNA alkylation repair is underrepresented. Morphological differentiation, genome stability, genome sensor, and DNA strand-break repair potential are preserved in mouse SMA myocytes; thus, reduced SMN does not interfere with myocyte differentiation, genome integrity, and DNA repair, and faulty DNA repair is unlikely pathogenic in SMA. PMID:27452406

  20. PCR-based analysis of mitochondrial DNA copy number, mitochondrial DNA damage, and nuclear DNA damage

    PubMed Central

    Gonzalez-Hunt, Claudia P.; Rooney, John P.; Ryde, Ian T.; Anbalagan, Charumathi; Joglekar, Rashmi

    2016-01-01

    Because of the role DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays. PMID:26828332

  1. Potential of the NBP method for the study of alkylation mechanisms: NBP as a DNA-model.

    PubMed

    Gómez-Bombarelli, Rafael; González-Pérez, Marina; Calle, Emilio; Casado, Julio

    2012-06-18

    Alkylating agents are considered to be archetypal carcinogens. One suitable technique to evaluate the activity of alkylating compounds is the NBP assay. This method is based on the formation of a chromophore in the reaction between the alkylating agent and the nucleophile 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to those of DNA bases. NBP is known to react with strong and weak alkylating agents, and much insight into such alkylation mechanisms in vivo can be gained from kinetic study of some alkylation reactions in vitro. Since 1925, the NBP assay has evolved from being a qualitative, analytical tool to becoming a useful physicochemical method that not only allows the rules of chemical reactivity that govern electrophilicity and nucleophilicity to be applied to the reaction of DNA with alkylating agents but also helps to understand some significant relationships between the structure of many alkylation substrates (including DNA) and their chemical and biological responses. Given that advances in this area have the potential to yield both fundamental and practical advances in chemistry, biology, predictive toxicology, and anticancer drug development, this review is designed to provide an overview of the evolution of the NBP method from its early inception until its recent kinetic-mechanistic approach, which allows the pros and cons of NBP as a DNA-model to be analyzed. The validity of NBP as a nucleophilicity model for DNA in general and the position of guanosine at N7 in particular are discussed. PMID:22480281

  2. Age to survive: DNA damage and aging.

    PubMed

    Schumacher, Björn; Garinis, George A; Hoeijmakers, Jan H J

    2008-02-01

    Aging represents the progressive functional decline and increased mortality risk common to nearly all metazoans. Recent findings experimentally link DNA damage and organismal aging: longevity-regulating genetic pathways respond to the accumulation of DNA damage and other stress conditions and conversely influence the rate of damage accumulation and its impact for cancer and aging. This novel insight has emerged from studies on human progeroid diseases and mouse models that have deficient DNA repair pathways. Here we discuss a unified concept of an evolutionarily conserved 'survival' response that shifts the organism's resources from growth to maintenance as an adaptation to stresses, such as starvation and DNA damage. This shift protects the organism from cancer and promotes healthy aging. PMID:18192065

  3. The RNA Splicing Response to DNA Damage.

    PubMed

    Shkreta, Lulzim; Chabot, Benoit

    2015-10-29

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.

  4. The RNA Splicing Response to DNA Damage

    PubMed Central

    Shkreta, Lulzim; Chabot, Benoit

    2015-01-01

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging. PMID:26529031

  5. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  6. Photo-triggered fluorescent theranostic prodrugs as DNA alkylating agents for mechlorethamine release and spatiotemporal monitoring.

    PubMed

    Cao, Yanting; Pan, Rong; Xuan, Weimin; Wei, Yongyi; Liu, Kejian; Zhou, Jiahong; Wang, Wei

    2015-06-28

    We describe a new theranostic strategy for selective delivery and spatiotemporal monitoring of mechlorethamine, a DNA alkylating agent. A photo-responsive prodrug is designed and composed of a photolabile o-nitrophenylethyl group, a DNA alkylating mechlorethamine drug and a coumarin fluorophore. Masking of the "N" in mechlorethamine in a positively charged state in the prodrug renders it inactive, non-toxic, selective and non-fluorescent. Indeed, the stable prodrug shows negligible cytotoxicity towards normal cells with and without UV activation and is completely non-fluorescent. However, upon photo-irradiation, the active mechlorethamine is released and induces efficient DNA cross-links, accompanied by a strong fluorescence enhancement (152 fold). Furthermore, DNA cross-linking activity from the release can be transformed into anticancer activity observed in in vitro studies of tumor cells. Importantly, the drug release progress and the movement can be conveniently monitored by fluorescence spectroscopy. The mechanistic study proves that the DNA cross-linking activity is mainly due to the release of DNA alkylating mechlorethamine. Altogether, the studies show the power of the theranostic strategy for efficient therapy in cancer treatment. PMID:25997534

  7. Historical perspective on the DNA damage response.

    PubMed

    Hanawalt, Philip C

    2015-12-01

    The DNA damage response (DDR) has been broadly defined as a complex network of cellular pathways that cooperate to sense and repair lesions in DNA. Multiple types of DNA damage, some natural DNA sequences, nucleotide pool deficiencies and collisions with transcription complexes can cause replication arrest to elicit the DDR. However, in practice, the term DDR as applied to eukaryotic/mammalian cells often refers more specifically to pathways involving the activation of the ATM (ataxia-telangiectasia mutated) and ATR (ATM-Rad3-related) kinases in response to double-strand breaks or arrested replication forks, respectively. Nevertheless, there are distinct responses to particular types of DNA damage that do not involve ATM or ATR. In addition, some of the aberrations that cause replication arrest and elicit the DDR cannot be categorized as direct DNA damage. These include nucleotide pool deficiencies, nucleotide sequences that can adopt non-canonical DNA structures, and collisions between replication forks and transcription complexes. The response to these aberrations can be called the genomic stress response (GSR), a term that is meant to encompass the sensing of all types of DNA aberrations together with the mechanisms involved in coping with them. In addition to fully functional cells, the consequences of processing genomic aberrations may include mutagenesis, genomic rearrangements and lethality.

  8. DNA damage may drive nucleosomal reorganization to facilitate damage detection

    NASA Astrophysics Data System (ADS)

    LeGresley, Sarah E.; Wilt, Jamie; Antonik, Matthew

    2014-03-01

    One issue in genome maintenance is how DNA repair proteins find lesions at rates that seem to exceed diffusion-limited search rates. We propose a phenomenon where DNA damage induces nucleosomal rearrangements which move lesions to potential rendezvous points in the chromatin structure. These rendezvous points are the dyad and the linker DNA between histones, positions in the chromatin which are more likely to be accessible by repair proteins engaged in a random search. The feasibility of this mechanism is tested by considering the statistical mechanics of DNA containing a single lesion wrapped onto the nucleosome. We consider lesions which make the DNA either more flexible or more rigid by modeling the lesion as either a decrease or an increase in the bending energy. We include this energy in a partition function model of nucleosome breathing. Our results indicate that the steady state for a breathing nucleosome will most likely position the lesion at the dyad or in the linker, depending on the energy of the lesion. A role for DNA binding proteins and chromatin remodelers is suggested based on their ability to alter the mechanical properties of the DNA and DNA-histone binding, respectively. We speculate that these positions around the nucleosome potentially serve as rendezvous points where DNA lesions may be encountered by repair proteins which may be sterically hindered from searching the rest of the nucleosomal DNA. The strength of the repositioning is strongly dependent on the structural details of the DNA lesion and the wrapping and breathing of the nucleosome. A more sophisticated evaluation of this proposed mechanism will require detailed information about breathing dynamics, the structure of partially wrapped nucleosomes, and the structural properties of damaged DNA.

  9. [UV radiation, tanning and DNA damage].

    PubMed

    Koulu, Leena

    2014-01-01

    Excessive exposure to UV radiation is the most significant known risk factor for skin cancer. Solarium devices produce UVA radiation that is 5 to 10 times stronger than that produced by the sun. All wavelengths of UV radiation cause DNA damage to skin cells and cause tanning. Tanning protects skin cells from further damage. The DNA damages caused by UVA and UVB radiation, however, differ from each other. The protective capacity of tanning caused by UVA radiation seems to be lower than that caused by UVB radiation.

  10. Transcriptional blockages in a cell-free system by sequence-selective DNA alkylating agents.

    PubMed

    Ferguson, L R; Liu, A P; Denny, W A; Cullinane, C; Talarico, T; Phillips, D R

    2000-04-14

    There is considerable interest in DNA sequence-selective DNA-binding drugs as potential inhibitors of gene expression. Five compounds with distinctly different base pair specificities were compared in their effects on the formation and elongation of the transcription complex from the lac UV5 promoter in a cell-free system. All were tested at drug levels which killed 90% of cells in a clonogenic survival assay. Cisplatin, a selective alkylator at purine residues, inhibited transcription, decreasing the full-length transcript, and causing blockage at a number of GG or AG sequences, making it probable that intrastrand crosslinks are the blocking lesions. A cyclopropylindoline known to be an A-specific alkylator also inhibited transcription, with blocks at adenines. The aniline mustard chlorambucil, that targets primarily G but also A sequences, was also effective in blocking the formation of full-length transcripts. It produced transcription blocks either at, or one base prior to, AA or GG sequences, suggesting that intrastrand crosslinks could again be involved. The non-alkylating DNA minor groove binder Hoechst 33342 (a bisbenzimidazole) blocked formation of the full-length transcript, but without creating specific blockage sites. A bisbenzimidazole-linked aniline mustard analogue was a more effective transcription inhibitor than either chlorambucil or Hoechst 33342, with different blockage sites occurring immediately as compared with 2 h after incubation. The blockages were either immediately prior to AA or GG residues, or four to five base pairs prior to such sites, a pattern not predicted from in vitro DNA-binding studies. Minor groove DNA-binding ligands are of particular interest as inhibitors of gene expression, since they have the potential ability to bind selectively to long sequences of DNA. The results suggest that the bisbenzimidazole-linked mustard does cause alkylation and transcription blockage at novel DNA sites. in addition to sites characteristic of

  11. The activation of DNA damage detection and repair responses in cleavage-stage rat embryos by a damaged paternal genome.

    PubMed

    Grenier, Lisanne; Robaire, Bernard; Hales, Barbara F

    2012-06-01

    Male germ cell DNA damage, after exposure to radiation, exogenous chemicals, or chemotherapeutic agents, is a major cause of male infertility. DNA-damaged spermatozoa can fertilize oocytes; this is of concern because there is limited information on the capacity of early embryos to repair a damaged male genome or on the fate of these embryos if repair is inadequate. We hypothesized that the early activation of DNA damage response in the early embryo is a critical determinant of its fate. The objective of this study was to assess the DNA damage response and mitochondrial function as a measure of the energy supply for DNA repair and general health in cleavage-stage embryos sired by males chronically exposed to an anticancer alkylating agent, cyclophosphamide. Male rats were treated with saline or cyclophosphamide (6 mg/kg/day) for 4 weeks and mated to naturally cycling females. Pronuclear two- and eight-cell embryos were collected for immunofluorescence analysis of mitochondrial function and biomarkers of the DNA damage response: γH2AX foci, 53BP1 reactivity, and poly(ADP-ribose) polymer formation. Mitochondrial activities did not differ between embryos sired by control- and cyclophosphamide-exposed males. At the two-cell stage, there was no treatment-related increase in DNA double-strand breaks; by the eight-cell stage, a significant increase was noted, as indicated by increased medium and large γH2AX foci. This was accompanied by a dampened DNA repair response, detected as a decrease in the nuclear intensity of poly(ADP-ribose) polymers. The micronuclei formed in cyclophosphamide-sired embryos contained large γH2AX foci and enhanced poly(ADP-ribose) polymer and 53BP1 reactivity compared with their nuclear counterparts. Thus, paternal cyclophosphamide exposure activated a DNA damage response in cleavage-stage embryos. Furthermore, this damage response may be useful in assessing embryo quality and developmental competence. PMID:22454429

  12. Spectroscopic study on interaction between three cationic surfactants with different alkyl chain lengths and DNA.

    PubMed

    Guo, Lili; Zhang, Zhaohong; Qiao, Heng; Liu, Miao; Shen, Manli; Yuan, Tianxin; Chen, Jing; Dionysiou, Dionysios D

    2015-01-01

    In this study, the interaction between cationic surfactants with different alkyl chain lengths, such as hexyltrimethyl ammonium bromide (HTAB), dodecyltrimethyl ammonium bromide (DTAB) and cetyltrimethyl ammonium bromide (CTAB), and DNA was investigated by UV-vis spectroscopy, fluorescence spectroscopy and viscosity techniques. The results showed that these three cationic surfactants with different hydrocarbon chain lengths could all interact with DNA. Their binding modes were estimated and their interaction strength was compared. In addition, the effects of the surfactant, NaCl and phosphate ion concentrations on the interaction were reviewed. It is wished that this work would provide some valuable references to investigate the influence of cationic surfactants with different alkyl chain lengths on DNA.

  13. Alkyl substitution effects on the intercalation of carcinogenic hydrocarbon and hydrocarbon metabolites into DNA

    SciTech Connect

    LeBreton, P.R.

    1986-05-01

    A large number of carcinogenic hydrocarbons and hydrocarbon metabolites intercalate into DNA with binding constants in terms of PO/sub 4//sup -/ concentration which lie in the range 10/sup 3/-10/sup 4/ M/sup -1/. These binding constants are similar to those associated with base stacking and hydrogen bonding interactions that occur naturally in DNA. Previous studies show that different metabolites derived from the same parent hydrocarbon exhibit different binding properties. In recent studies the authors have examined the effects of alkyl substitution on hydrocarbon binding to calf thymus DNA. Such groups can enhance or inhibit carcinogenic activity. Studies of 1-alkyl BP/sup +/ derivatives and of their 7,8-dihydrodiols indicate that the alkyl groups ethyl, isopropyl and t-butyl inhibit intercalation. Methyl groups can either inhibit or enhance intercalation into DNA. The binding constants of DMBA and BA are nearly the same. However, DMA, which is a ..pi.. electron model compound of the bay region diol epoxide of DMBA, binds 6.7 times better than anthracene. Similarly, highly carcinogenic 5-methylchyrsene binds to DNA 3.9 times better than chrysene. /sup +/Abbreviations: BP, benzo(a)pyrene; DMBA, 7,12-dimethylbenz(a)anthracene; BA, benz(a)anthracene DMA, 9,10-dimethylanthracene.

  14. DNA damage induction of ribonucleotide reductase.

    PubMed

    Elledge, S J; Davis, R W

    1989-11-01

    RNR2 encodes the small subunit of ribonucleotide reductase, the enzyme that catalyzes the first step in the pathway for the production of deoxyribonucleotides needed for DNA synthesis. RNR2 is a member of a group of genes whose activities are cell cycle regulated and that are transcriptionally induced in response to the stress of DNA damage. An RNR2-lacZ fusion was used to further characterize the regulation of RNR2 and the pathway responsible for its response to DNA damage. beta-Galactosidase activity in yeast strains containing the RNR2-lacZ fusion was inducible in response to DNA-damaging agents (UV light, 4-nitroquinoline-1-oxide [4-NQO], and methyl methanesulfonate [MMS]) and agents that block DNA replication (hydroxyurea [HU] and methotrexate) but not heat shock. When MATa cells were arrested in G1 by alpha-factor, RNR2 mRNA was still inducible by DNA damage, indicating that the observed induction can occur outside of S phase. In addition, RNR2 induction was not blocked by the presence of cycloheximide and is therefore likely to be independent of protein synthesis. A mutation, rnr2-314, was found to confer hypersensitivity to HU and increased sensitivity to MMS. In rnr2-314 mutant strains, the DNA damage stress response was found to be partially constitutive as well as hypersensitive to induction by HU but not MMS. The induction properties of RNR2 were examined in a rad4-2 mutant background; in this genetic background, RNR2 was hypersensitive to induction by 4-NQO but not MMS. Induction of the RNR2-lacZ fusion in a RAD(+) strain in response to 4-NQO was not enhanced by the presence of an equal number of rad4-2 cells that lacked the fusion, implying that the DNA damage stress response in cell autonomous. PMID:2513480

  15. DNA damage response in adult stem cells.

    PubMed

    Insinga, Alessandra; Cicalese, Angelo; Pelicci, Pier Giuseppe

    2014-04-01

    This review discusses the processes of DNA-damage-response and DNA-damage repair in stem and progenitor cells of several tissues. The long life-span of stem cells suggests that they may respond differently to DNA damage than their downstream progeny and, indeed, studies have begun to elucidate the unique stem cell response mechanisms to DNA damage. Because the DNA damage responses in stem cells and progenitor cells are distinctly different, stem and progenitor cells should be considered as two different entities from this point of view. Hematopoietic and mammary stem cells display a unique DNA-damage response, which involves active inhibition of apoptosis, entry into the cell-cycle, symmetric division, partial DNA repair and maintenance of self-renewal. Each of these biological events depends on the up-regulation of the cell-cycle inhibitor p21. Moreover, inhibition of apoptosis and symmetric stem cell division are the consequence of the down-regulation of the tumor suppressor p53, as a direct result of p21 up-regulation. A deeper understanding of these processes is required before these findings can be translated into human anti-aging and anti-cancer therapies. One needs to clarify and dissect the pathways that control p21 regulation in normal and cancer stem cells and define (a) how p21 blocks p53 functions in stem cells and (b) how p21 promotes DNA repair in stem cells. Is this effect dependent on p21s ability to inhibit p53? Such molecular knowledge may pave the way to methods for maintaining short-term tissue reconstitution while retaining long-term cellular and genomic integrity.

  16. The DNA Damage Response Induces Interferon

    PubMed Central

    Brzostek-Racine, Sabrina; Gordon, Chris; Van Scoy, Sarah; Reich, Nancy C.

    2011-01-01

    This study reveals a new complexity in the cellular response to DNA damage: activation of interferon (IFN) signaling. The DNA damage response involves the rapid recruitment of repair enzymes, and the activation of signal transducers that regulate cell cycle checkpoints and cell survival. To understand the link between DNA damage and innate cellular defense that occurs in response to many viral infections, we evaluated the effects of agents such as etoposide that promote double-stranded DNA breaks. Treatment of human cells with etoposide led to the induction of IFN-stimulated genes, and the IFN-α and IFN-λ genes. The nuclear factor-κB (NF-κB), known to be activated in response to DNA damage, was shown to be a key regulator of this IFN gene induction. Expression of an NF-κB subunit, p65/RelA was sufficient for induction of the human IFN-λ1 gene. In addition, NF-κB was required for the induction of the IFN regulatory factors-1 and -7 that are able to stimulate expression of the IFN-α and IFN-λ genes. Cells that lack the NF-κB essential modulator (NEMO), lack the ability to induce the IFN genes following DNA damage. Breaks in DNA are generated during normal physiological processes of replication, transcription, and recombination, as well as by external genotoxic agents or infectious agents. The significant finding of IFN production as a stress response to DNA damage provides a new perspective on the role of IFN signaling. PMID:22013119

  17. DNA Damages as a Depolymerization Process

    NASA Astrophysics Data System (ADS)

    Ochoa, Juan G. Diaz; Wulkow, Michael

    The damage of DNA chains by environmental factors like radiation or chemical pollutants is a topic that has been frequently explored from an experimental and a theoretical perspective. Such damages, like the damage of the strands of a DNA chain, are toxic for the cell and can induce mutagenesis or apoptosis. Several models make strong assumptions for the distribution of damages; for instance a frequent supposition is that these damages are Poisson distributed. [L. Ma, J. J. Wagner, W. Hu, A. J. Levine and G. A. Stolovitzki, Proc. Natl. Acad. Sci.PNAS 102, 14266 (2005).] Only few models describe in detail the damage and the mechanisms associated to the formation and evolution of this damage distribution [H. Nikjoo, P. O'neill and D. T. Goodhead, Radiat. Res. 156, 577 (2001).] Nevertheless, such models do not include the repair processes which are continuously active inside the cell. In this work we present a novel model, based on a depolymerization process, describing the distribution of damages on DNA chains coupled to the dynamics associated to its repair processes. The central aim is not to give a final and comprehensive model, but a hint to represent in more detail the complex dynamics involved in the damage and repair of DNA. We show that there are critical parameters associated to this repair process, in particular we show how critical doses can be relevant in deciding whether the cell continues its repair process or starts apoptosis. We also find out that the damage concentration is related to the dose via a power law relation.

  18. Chromatin Remodeling, DNA Damage Repair and Aging

    PubMed Central

    Liu, Baohua; Yip, Raymond KH; Zhou, Zhongjun

    2012-01-01

    Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging. PMID:23633913

  19. Parvovirus infection-induced DNA damage response

    PubMed Central

    Luo, Yong; Qiu, Jianming

    2014-01-01

    Parvoviruses are a group of small DNA viruses with ssDNA genomes flanked by two inverted terminal structures. Due to a limited genetic resource they require host cellular factors and sometimes a helper virus for efficient viral replication. Recent studies have shown that parvoviruses interact with the DNA damage machinery, which has a significant impact on the life cycle of the virus as well as the fate of infected cells. In addition, due to special DNA structures of the viral genomes, parvoviruses are useful tools for the study of the molecular mechanisms underlying viral infection-induced DNA damage response (DDR). This review aims to summarize recent advances in parvovirus-induced DDR, with a focus on the diverse DDR pathways triggered by different parvoviruses and the consequences of DDR on the viral life cycle as well as the fate of infected cells. PMID:25429305

  20. Synthesis and characterization of DNA minor groove binding alkylating agents.

    PubMed

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry

    2013-01-18

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization.

  1. Synthesis and Characterization of DNA Minor Groove Binding Alkylating Agents

    PubMed Central

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K.; Mascara, Gerard P.; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W.; Bobola, Michael S.; Silber, John R.; Gold, Barry

    2012-01-01

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases the N-terminus was appended with a O-methyl sulfonate ester while the C-terminus group was varied with non-polar and polar sidechains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) vs. major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is > 10-fold higher than the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells over-expressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization. PMID:23234400

  2. Synthesis and characterization of DNA minor groove binding alkylating agents.

    PubMed

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry

    2013-01-18

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization. PMID:23234400

  3. Fine-mapping of DNA damage and repair in specific genomic segments.

    PubMed Central

    Govan, H L; Valles-Ayoub, Y; Braun, J

    1990-01-01

    The susceptibility of various genomic regions to DNA damage and repair is heterogeneous. While this can be related to factors such as primary sequence, physical conformation, and functional status, the exact mechanisms involved remain unclear. To more precisely define the key features of a genomic region targeted for these processes, a useful tool would be a method for fine-mapping gene-specific DNA damage and repair in vivo. Here, a polymerase chain reaction-based assay is described for measuring DNA damage and repair in small (less than 500 bp) genomic segments of three transcriptionally active but functionally distinct loci (rearranged immunoglobulin heavy chain variable region [Ig VDJ], low-density lipoprotein receptor gene, and N-ras proto-oncogene) in human tonsillar B lymphocytes. Analysis of ultraviolet (254 nm)-induced DNA damage revealed single-hit kinetics and a similar level of sensitivity (D50% approximately 6000 joule/m2) in all three regions, indicating that a single photoproduct was sufficient to fully block PCR amplification. A similar time period per unit length was required for repair of this DNA damage (average t1/2 per fragment length = 23.5 seconds per bp). DNA damage and repair was also detectable with the base adducting agent, 4-nitroquinoline-1-oxide. However, in this case IgVDJ differed from segments within the other two loci by its relative inaccessibility to alkylation. This assay thus permits high-resolution mapping of DNA damage and repair activity. Images PMID:2115669

  4. DNA damage phenotype and prostate cancer risk

    PubMed Central

    Kosti, O.; Goldman, L.; Saha, D.T.; Orden, R.A.; Pollock, A.J.; Madej, H.L.; Hsing, A.W.; Chu, L.W.; Lynch, J.H.; Goldman, R.

    2010-01-01

    The capacity of an individual to process DNA damage is considered a crucial factor in carcinogenesis. The comet assay is a phenotypic measure of the combined effects of sensitivity to a mutagen exposure and repair capacity. In this paper, we evaluate the association of the DNA repair kinetics, as measured by the comet assay, with prostate cancer risk. In a pilot study of 55 men with prostate cancer, 53 men without the disease, and 71 men free of cancer at biopsy, we investigated the association of DNA damage with prostate cancer risk at early (0-15 min) and later (15-45 min) stages following gamma-radiation exposure. Although residual damage within 45 min was the same for all groups (65% of DNA in comet tail disappeared), prostate cancer cases had a slower first phase (38% vs 41%) and faster second phase (27% vs 22%) of the repair response compared to controls. When subjects were categorized into quartiles, according to efficiency of repairing DNA damage, high repair-efficiency within the first 15 min after exposure was not associated with prostate cancer risk while higher at the 15-45 min period was associated with increased risk (OR for highest-to-lowest quartiles = 3.24, 95% CI=0.98-10.66, p-trend =0.04). Despite limited sample size, our data suggest that DNA repair kinetics marginally differ between prostate cancer cases and controls. This small difference could be associated with differential responses to DNA damage among susceptible individuals. PMID:21095241

  5. Molecular mechanisms involved in initiation of the DNA damage response

    PubMed Central

    Barnum, Kevin J; O’Connell, Matthew J

    2015-01-01

    DNA is subject to a wide variety of damage. In order to maintain genomic integrity, cells must respond to this damage by activating repair and cell cycle checkpoint pathways. The initiating events in the DNA damage response entail recognition of the lesion and the assembly of DNA damage response complexes at the DNA. Here, we review what is known about these processes for various DNA damage pathways. PMID:27308403

  6. DNA Damage-induced Reactive Oxygen Species (ROS) Stress Response in Saccharomyces cerevisiae

    PubMed Central

    Rowe, Lori A.; Degtyareva, Natalya; Doetsch, Paul W.

    2008-01-01

    Cells are exposed to both endogenous and exogenous sources of reactive oxygen species (ROS). At high levels, ROS can lead to impaired physiological function through cellular damage of DNA, proteins, lipids, and other macromolecules, which can lead to certain human pathologies including cancers, neurodegenerative disorders, and cardiovascular disease, as well as aging. We have employed Saccharomyces cerevisiae as a model system to examine the levels and types of ROS that are produced in response to DNA damage in isogenic strains with different DNA repair capacities. We find that when DNA damage is introduced into cells from exogenous or endogenous sources there is an increase in the amount of intracellular ROS which is not directly related to cell death. We have examined the spectrum of ROS in order to elucidate its role in the cellular response to DNA damage. As an independent verification of the DNA damage-induced ROS response, we show that a major activator of the oxidative stress response, Yap1, relocalizes to the nucleus following exposure to the DNA alkylating agent methyl methanesulfonate. Our results indicate that the DNA damage-induced increase in intracellular ROS levels is a generalized stress response that is likely to function in various signaling pathways. PMID:18708137

  7. The RNA Response to DNA Damage.

    PubMed

    Giono, Luciana E; Nieto Moreno, Nicolás; Cambindo Botto, Adrián E; Dujardin, Gwendal; Muñoz, Manuel J; Kornblihtt, Alberto R

    2016-06-19

    Multicellular organisms must ensure genome integrity to prevent accumulation of mutations, cell death, and cancer. The DNA damage response (DDR) is a complex network that senses, signals, and executes multiple programs including DNA repair, cell cycle arrest, senescence, and apoptosis. This entails regulation of a variety of cellular processes: DNA replication and transcription, RNA processing, mRNA translation and turnover, and post-translational modification, degradation, and relocalization of proteins. Accumulated evidence over the past decades has shown that RNAs and RNA metabolism are both regulators and regulated actors of the DDR. This review aims to present a comprehensive overview of the current knowledge on the many interactions between the DNA damage and RNA fields.

  8. Detection of Damaged DNA Bases by DNA Glycosylase Enzymes†

    PubMed Central

    Friedman, Joshua I.; Stivers, James T.

    2010-01-01

    A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly-ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we refer to as the search complex (SC). Sliding is frequently punctuated by the formation of a transient “interrogation” complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome, and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location. PMID:20469926

  9. Expression of mammalian O6-alkylguanine-DNA alkyltransferase in a cell line sensitive to alkylating agents.

    PubMed

    Dolan, M E; Norbeck, L; Clyde, C; Hora, N K; Erickson, L C; Pegg, A E

    1989-09-01

    Chinese hamster ovary cells (CHO) were co-transfected with pSV2neo and sheared DNA from either a human cell line (HT29) expressing high levels of O6-alkylguanine-DNA alkyltransferase (AGT) or from a cell line (BE) deficient in this activity. Cells expressing the selectable marker were obtained by exposure to G418 and colonies resistant to alkylation damage isolated by growth in the presence of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU). The number of colonies of cells expressing AGT activity arising after transfection with DNA from BE cells was similar to the number arising from cells exposed to HT29 DNA. Although the amount of AGT repair protein expressed in the transfectant colonies from this experiment was relatively low, these results indicate that repair of alkylation damage can be restored in AGT-deficient cells by transfection of human DNA from both repair-deficient and proficient cells. A separate transfection of CHOMG cells [a mutant of CHO cells resistant to the drug, methylglyoxal bis(guanylhydrazone) (MGBG)] with HT29 DNA and pSV2neo followed by selection of G418 and 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) resulted in three colonies with high AGT levels. These transfectants had different growth rates and expressed levels of the AGT protein between 230 and 300 fmol/mg protein. The transfectants were as resistant to the cytotoxic effects of BCNU, Clomesone, methylnitrosourea (MNU) and 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) as HT29 cells which were much more resistant than the parental CHOMG cells. Pretreatment of transfectant cells with 0.4 mM O6-methylguanine for 24 h reduced AGT activity to 14% basal levels, which upon removal of the base increased to approximately 74% basal level within 8 h. The sensitivity to the cytotoxic effects of both the chloroethylating and methylating agents was enhanced by treatment with O6-methylguanine. In the same manner, the number of BCNU-induced DNA interstrand cross-links increased in transfectant

  10. DNA Damage and Repair in Eukaryotic Cells

    PubMed Central

    Painter, R. B.

    1974-01-01

    Damage in DNA after irradiation can be classified into five kinds: base damage, single-strand breaks, double-strand breaks, DNA–DNA cross-linking, and DNA-protein cross-linking. Of these, repair of base damage is the best understood. In eukaryotes, at least three repair systems are known that can deal with base damage: photoreactivation, excision repair, and post-replication repair. Photoreactivation is specific for UV-induced damage and occurs widely throughout the biosphere, although it seems to be absent from placental mammals. Excision repair is present in prokaryotes and in animals but does not seem to be present in plants. Post-replication repair is poorly understood. Recent reports indicate that growing points in mammalian DNA simply skip past UV-induced lesions, leaving gaps in newly made DNA that are subsequently filled in by de novo synthesis. Evidence that this concept is oversimplified or incorrect is presented.—Single-strand breaks are induced by ionizing radiation but most cells can rapidly repair most or all of them, even after supralethal doses. The chemistry of the fragments formed when breaks are induced by ionizing radiation is complex and poorly understood. Therefore, the intermediate steps in the repair of single-strand breaks are unknown. Double-strand breaks and the two kinds of cross-linking have been studied very little and almost nothing is known about their mechanisms for repair.—The role of mammalian DNA repair in mutations is not known. Although there is evidence that defective repair can lead to cancer and/or premature aging in humans, the relationship between the molecular defects and the diseased state remains obscure. PMID:4442699

  11. UV damage in DNA promotes nucleosome unwrapping.

    PubMed

    Duan, Ming-Rui; Smerdon, Michael J

    2010-08-20

    The association of DNA with histones in chromatin impedes DNA repair enzymes from accessing DNA lesions. Nucleosomes exist in a dynamic equilibrium in which portions of the DNA molecule spontaneously unwrap, transiently exposing buried DNA sites. Thus, nucleosome dynamics in certain regions of chromatin may provide the exposure time and space needed for efficient repair of buried DNA lesions. We have used FRET and restriction enzyme accessibility to study nucleosome dynamics following DNA damage by UV radiation. We find that FRET efficiency is reduced in a dose-dependent manner, showing that the presence of UV photoproducts enhances spontaneous unwrapping of DNA from histones. Furthermore, this UV-induced shift in unwrapping dynamics is associated with increased restriction enzyme accessibility of histone-bound DNA after UV treatment. Surprisingly, the increased unwrapping dynamics is even observed in nucleosome core particles containing a single UV lesion at a specific site. These results highlight the potential for increased "intrinsic exposure" of nucleosome-associated DNA lesions in chromatin to repair proteins. PMID:20562439

  12. Oxidation of DNA: damage to nucleobases.

    PubMed

    Kanvah, Sriram; Joseph, Joshy; Schuster, Gary B; Barnett, Robert N; Cleveland, Charles L; Landman, Uzi

    2010-02-16

    All organisms store the information necessary to maintain life in their DNA. Any process that damages DNA, causing a loss or corruption of that information, jeopardizes the viability of the organism. One-electron oxidation is such a process. In this Account, we address three of the central features of one-electron oxidation of DNA: (i) the migration of the radical cation away from the site of its formation; (ii) the electronic and structural factors that determine the nucleobases at which irreversible reactions most readily occur; (iii) the mechanism of reaction for nucleobase radical cations. The loss of an electron (ionization) from DNA generates an electron "hole" (a radical cation), located most often on its nucleobases, that migrates reversibly through duplex DNA by hopping until it is trapped in an irreversible chemical reaction. The particular sequence of nucleobases in a DNA oligomer determines both the efficiency of hopping and the specific location and nature of the damaging chemical reaction. In aqueous solution, DNA is a polyanion because of the negative charge carried by its phosphate groups. Counterions to the phosphate groups (typically Na(+)) play an important role in facilitating both hopping and the eventual reaction of the radical cation with H(2)O. Irreversible reaction of a radical cation with H(2)O in duplex DNA occurs preferentially at the most reactive site. In normal DNA, comprising the four common DNA nucleobases G, C, A, and T, reaction occurs most commonly at a guanine, resulting in its conversion primarily to 8-oxo-7,8-dihydroguanine (8-OxoG). Both electronic and steric effects control the outcome of this process. If the DNA oligomer does not contain a suitable guanine, then reaction of the radical cation occurs at the thymine of a TT step, primarily by a tandem process. The oxidative damage of DNA is a complex process, influenced by charge transport and reactions that are controlled by a combination of enthalpic, entropic, steric, and

  13. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    EPA Science Inventory

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  14. DNA damage recognition in the rat zygote following chronic paternal cyclophosphamide exposure.

    PubMed

    Barton, Tara S; Robaire, Bernard; Hales, Barbara F

    2007-12-01

    The detrimental effects of preconceptional paternal exposure to the alkylating anticancer agent, cyclophosphamide, include aberrant epigenetic programming, dysregulated zygotic gene activation, and abnormalities in the offspring that are transmitted to the next generation. The adverse developmental consequences of genomic instabilities transmitted via the spermatozoon emphasize the need to elucidate the mechanisms by which the early embryo recognizes DNA damage in the paternal genome. Little information exists on DNA damage detection in the zygote. We assessed the impact of paternal cyclophosphamide exposure on phosphorylated H2AX (gammaH2AX) and poly(ADP-ribose) polymerase-1(PARP-1), biomarkers of DNA damage, to determine the capacity in the rat zygote to recognize genomic damage and initiate a response to DNA lesions. An amplified biphasic gammaH2AX response was triggered in the paternal pronucleus in zygotes sired by drug-treated males; the maternal genome was not affected. PARP-1 immunoreactivity was substantially elevated in both parental genomes, coincident with the second phase of gammaH2AX induction in embryos sired by cyclophosphamide-exposed spermatozoa. Thus, paternal exposure to a DNA damaging agent rapidly activates signals implemental for DNA damage recognition in the zygote. Inefficient repair of DNA lesions may lead to persistent alterations of the histone code and chromatin integrity, resulting in aberrant embryogenesis. We propose that the response of the early embryo to disturbances in spermatozoal genomic integrity plays a vital role in determining its outcome.

  15. Assaying DNA damage in hippocampal neurons using the comet assay.

    PubMed

    Nowsheen, Somaira; Xia, Fen; Yang, Eddy S

    2012-12-19

    A number of drugs target the DNA repair pathways and induce cell kill by creating DNA damage. Thus, processes to directly measure DNA damage have been extensively evaluated. Traditional methods are time consuming, expensive, resource intensive and require replicating cells. In contrast, the comet assay, a single cell gel electrophoresis assay, is a faster, non-invasive, inexpensive, direct and sensitive measure of DNA damage and repair. All forms of DNA damage as well as DNA repair can be visualized at the single cell level using this powerful technique. The principle underlying the comet assay is that intact DNA is highly ordered whereas DNA damage disrupts this organization. The damaged DNA seeps into the agarose matrix and when subjected to an electric field, the negatively charged DNA migrates towards the cathode which is positively charged. The large undamaged DNA strands are not able to migrate far from the nucleus. DNA damage creates smaller DNA fragments which travel farther than the intact DNA. Comet Assay, an image analysis software, measures and compares the overall fluorescent intensity of the DNA in the nucleus with DNA that has migrated out of the nucleus. Fluorescent signal from the migrated DNA is proportional to DNA damage. Longer brighter DNA tail signifies increased DNA damage. Some of the parameters that are measured are tail moment which is a measure of both the amount of DNA and distribution of DNA in the tail, tail length and percentage of DNA in the tail. This assay allows to measure DNA repair as well since resolution of DNA damage signifies repair has taken place. The limit of sensitivity is approximately 50 strand breaks per diploid mammalian cell (1,2). Cells treated with any DNA damaging agents, such as etoposide, may be used as a positive control. Thus the comet assay is a quick and effective procedure to measure DNA damage.

  16. Oxidative DNA Damage and Nucleotide Excision Repair

    PubMed Central

    Melis, Joost P.M.; Luijten, Mirjam

    2013-01-01

    Abstract Significance: Oxidative DNA damage is repaired by multiple, overlapping DNA repair pathways. Accumulating evidence supports the hypothesis that nucleotide excision repair (NER), besides base excision repair (BER), is also involved in neutralizing oxidative DNA damage. Recent Advances: NER includes two distinct sub-pathways: transcription-coupled NER (TC-NER) and global genome repair (GG-NER). The CSA and CSB proteins initiate the onset of TC-NER. Recent findings show that not only CSB, but also CSA is involved in the repair of oxidative DNA lesions, in the nucleus as well as in mitochondria. The XPG protein is also of importance for the removal of oxidative DNA lesions, as it may enhance the initial step of BER. Substantial evidence exists that support a role for XPC in NER and BER. XPC deficiency not only results in decreased repair of oxidative lesions, but has also been linked to disturbed redox homeostasis. Critical Issues: The role of NER proteins in the regulation of the cellular response to oxidative (mitochondrial and nuclear) DNA damage may be the underlying mechanism of the pathology of accelerated aging in Cockayne syndrome patients, a driving force for internal cancer development in XP-A and XP-C patients, and a contributor to the mixed exhibited phenotypes of XP-G patients. Future Directions: Accumulating evidence indicates that DNA repair factors can be involved in multiple DNA repair pathways. However, the distinct detailed mechanism and consequences of these additional functions remain to be elucidated and can possibly shine a light on clinically related issues. Antioxid. Redox Signal. 18, 2409–2419. PMID:23216312

  17. Sensitive voltammetric detection of DNA damage at carbon electrodes using DNA repair enzymes and an electroactive osmium marker.

    PubMed

    Havran, Ludek; Vacek, Jan; Cahová, Katerina; Fojta, Miroslav

    2008-07-01

    This paper presents a new approach to electrochemical sensing of DNA damage, using osmium DNA markers and voltammetric detection at the pyrolytic graphite electrode. The technique is based on enzymatic digestion of DNA with a DNA repair enzyme exonuclease III (exoIII), followed by single-strand (ss) selective DNA modification by a complex of osmium tetroxide with 2,2'-bipyridine. In double-stranded DNA possessing free 3'-ends, the exoIII creates ss regions that can accommodate the electroactive osmium marker. Intensity of the marker signal measured at the pyrolytic graphite electrode responded well to the extent of DNA damage. The technique was successfully applied for the detection of (1) single-strand breaks (ssb) introduced in plasmid DNA by deoxyribonuclease I, and (2) apurinic sites generated in chromosomal calf thymus DNA upon treatment with the alkylating agent dimethyl sulfate. The apurinic sites were converted into the ssb by DNA repair endonuclease activity of the exoIII enzyme. We show that the presented technique is capable of detection of one lesion per approximately 10(5) nucleotides in supercoiled plasmid DNA.

  18. Damage and repair of ancient DNA.

    PubMed

    Mitchell, David; Willerslev, Eske; Hansen, Anders

    2005-04-01

    Under certain conditions small amounts of DNA can survive for long periods of time and can be used as polymerase chain reaction (PCR) substrates for the study of phylogenetic relationships and population genetics of extinct plants and animals, including hominids. Because of extensive DNA degradation, these studies are limited to species that lived within the past 10(4)-10(5) years (Late Pleistocene), although DNA sequences from 10(6) years have been reported. Ancient DNA (aDNA) has been used to study phylogenetic relationships of protists, fungi, algae, plants, and higher eukaryotes such as extinct horses, cave bears, the marsupial wolf, the moa, and Neanderthal. In the past few years, this technology has been extended to the study of infectious disease in ancient Egyptian and South American mummies, the dietary habits of ancient animals, and agricultural practices and population dynamics of early native Americans. Hence, ancient DNA contains information pertinent to numerous fields of study including evolution, population genetics, ecology, climatology, medicine, archeology, and behavior. The major obstacles to the study of aDNA are its extremely low yield, contamination with modern DNA, and extensive degradation. In the course of this review, we will discuss the current aDNA literature describing the importance of aDNA studies as they relate to important biological questions and the difficulties associated with extracting useful information from highly degraded and damaged substrates derived from limited sources. In addition, we will present some of our own preliminary and published data on mechanisms of DNA degradation and some speculative thoughts on strategies for repair and restoration of aDNA.

  19. Oxidative DNA damage in relation to nutrition.

    PubMed

    Krajcovicová-Kudlácková, M; Dusinská, M

    2004-01-01

    Oxidative DNA damage in humans could arise also from incorrect nutritional habit and life style. DNA strand breaks with apurinic/apyrimidinic sites, oxidized purines and oxidized pyrimidines were assessed in 24 subjectively healthy vegetarians (plant food, dairy products, eggs) and compared with 24 non-vegetarians (traditional diet, general population). DNA strand breaks + oxidized purines are significantly reduced in vegetarians (p<0.05), DNA strand breaks are nonsignificantly decreased. The sufficient antioxidative status (overthreshold values of natural essential antioxidants, which mean a reduced risk of free radical disease) is crucial in free radical defense. Intake of protective food commodities (fruit, vegetables, dark grain products, grain sprouts, oil seeds) is significantly higher in vegetarians. Alternative nutrition subjects have a significantly increased plasma levels of vitamin C, vitamin E, beta-carotene with high incidence of overthreshold values (92% vs. 42% - vitamin C, 67% vs. 33% - vitamin E, 67% vs. 17% - beta-carotene). There is recorded a significant inverse linear correlation between values of DNA strand breaks + oxidized purines and vitamin C or beta-carotene levels (p<0.01, p<0.05). Vegetarian diet is significantly more rich source of antioxidants. The results of reduced endogenous DNA damage and higher antioxidative status in vegetarians document that a correct vegetarian nutrition might represent an effective cancer prevention.

  20. DNA damage and repair in mouse embryos following treatment transplacentally with methylnitrosourea and methylmethanesulfonate

    SciTech Connect

    Jirakulsomchok, S.; Yielding, K.L.

    1984-01-01

    Mouse embryos were labeled in vivo at 10 1/2-12 1/2 days of gestation with (/sup 3/H)-thymidine and subjected to DNA damage using x-ray, methylmethanesulfonate, or methylnitrosourea. DNA damage and its repair were assessed in specific cell preparations from embryos isolated at intervals thereafter using the highly sensitive method of nucleoid sedimentation, which evaluates the supercoiled state of the DNA. Repair of x-ray damage was demonstrated using trypsin-dispersed cells from whole embryos and from homogenized embryonic liver to show the validity of the analytical approach. The effects of the highly teratogenic methylnitrosourea and the much less teratogenic methylmethanesulfonate were compared in the targeted limb buds using equitoxic doses of the two alkylating agents. DNA supercoiling was fully restored after 24 hr in limb bud cells damaged with methylmethanesulfonate, while as much as 48 hr were required for full repair of methylnitrosourea damage. These results demonstrated the feasibility of studying DNA repair in embryonic tissues after damage in vivo and suggest that the potency of methylnitrosourea as a teratogen may be correlated with a prolonged period required for complete repair of DNA.

  1. DNA damage checkpoint recovery and cancer development

    SciTech Connect

    Wang, Haiyong; Zhang, Xiaoshan; Teng, Lisong; Legerski, Randy J.

    2015-06-10

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  2. DNA damage tolerance by recombination: Molecular pathways and DNA structures.

    PubMed

    Branzei, Dana; Szakal, Barnabas

    2016-08-01

    Replication perturbations activate DNA damage tolerance (DDT) pathways, which are crucial to promote replication completion and to prevent fork breakage, a leading cause of genome instability. One mode of DDT uses translesion synthesis polymerases, which however can also introduce mutations. The other DDT mode involves recombination-mediated mechanisms, which are generally accurate. DDT occurs prevalently postreplicatively, but in certain situations homologous recombination is needed to restart forks. Fork reversal can function to stabilize stalled forks, but may also promote error-prone outcome when used for fork restart. Recent years have witnessed important advances in our understanding of the mechanisms and DNA structures that mediate recombination-mediated damage-bypass and highlighted principles that regulate DDT pathway choice locally and temporally. In this review we summarize the current knowledge and paradoxes on recombination-mediated DDT pathways and their workings, discuss how the intermediate DNA structures may influence genome integrity, and outline key open questions for future research. PMID:27236213

  3. Screening for DNA Alkylation Mono and Cross-Linked Adducts with a Comprehensive LC-MS(3) Adductomic Approach.

    PubMed

    Stornetta, Alessia; Villalta, Peter W; Hecht, Stephen S; Sturla, Shana J; Balbo, Silvia

    2015-12-01

    A high-resolution/accurate-mass DNA adductomic approach was developed to investigate anticipated and unknown DNA adducts induced by DNA alkylating agents in biological samples. Two new features were added to a previously developed approach to significantly broaden its scope, versatility, and selectivity. First, the neutral loss of a base (guanine, adenine, thymine, or cytosine) was added to the original methodology's neutral loss of the 2'-deoxyribose moiety to allow for the detection of all DNA base adducts. Second, targeted detection of anticipated DNA adducts based on the reactivity of the DNA alkylating agent was demonstrated by inclusion of an ion mass list for data dependent triggering of MS(2) fragmentation events and subsequent MS(3) fragmentation. Additionally, untargeted screening of the samples, based on triggering of an MS(2) fragmentation event for the most intense ions of the full scan, was included for detecting unknown DNA adducts. The approach was tested by screening for DNA mono and cross-linked adducts in purified DNA and in DNA extracted from cells treated with PR104A, an experimental DNA alkylating nitrogen mustard prodrug currently under investigation for the treatment of leukemia. The results revealed the ability of this new DNA adductomic approach to detect anticipated and unknown PR104A-induced mono and cross-linked DNA adducts in biological samples. This methodology is expected to be a powerful tool for screening for DNA adducts induced by endogenous or exogenous exposures.

  4. DNA damage regulation and its role in drug-related phenotypes in the malaria parasites

    PubMed Central

    Gupta, Devendra Kumar; Patra, Alok Tanala; Zhu, Lei; Gupta, Archana Patkar; Bozdech, Zbynek

    2016-01-01

    DNA of malaria parasites, Plasmodium falciparum, is subjected to extraordinary high levels of genotoxic insults during its complex life cycle within both the mosquito and human host. Accordingly, most of the components of DNA repair machinery are conserved in the parasite genome. Here, we investigated the genome-wide responses of P. falciparum to DNA damaging agents and provided transcriptional evidence of the existence of the double strand break and excision repair system. We also showed that acetylation at H3K9, H4K8, and H3K56 play a role in the direct and indirect response to DNA damage induced by an alkylating agent, methyl methanesulphonate (MMS). Artemisinin, the first line antimalarial chemotherapeutics elicits a similar response compared to MMS which suggests its activity as a DNA damaging agent. Moreover, in contrast to the wild-type P. falciparum, two strains (Dd2 and W2) previously shown to exhibit a mutator phenotype, fail to induce their DNA repair upon MMS-induced DNA damage. Genome sequencing of the two mutator strains identified point mutations in 18 DNA repair genes which may contribute to this phenomenon. PMID:27033103

  5. DNA repair of oxidative DNA damage in human carcinogenesis

    PubMed Central

    Paz-Elizur, Tamar; Sevilya, Ziv; Leitner-Dagan, Yael; Elinger, Dalia; Roisman, Laila; Livneh, Zvi

    2008-01-01

    Efficient DNA repair mechanisms comprise a critical component in the protection against human cancer, as indicated by the high predisposition to cancer of individuals with germ-line mutations in DNA repair genes. This includes biallelic germ-line mutations in the MUYH gene, encoding a DNA glycosylase that is involved in the repair of oxidative DNA damage, which strongly predispose humans to a rare hereditary form of colorectal cancer. Extensive research efforts including biochemical, enzymological and genetic studies in model organisms established that the oxidative DNA lesion 8-oxoguanine is mutagenic, and that several DNA repair mechanisms operate to prevent its potentially mutagenic and carcinogenic outcome. Epidemiological studies on the association with sporadic cancers of single nucleotide polymorphisms in genes such as OGG1, involved in the repair of 8-oxoguanine yielded conflicting results, and suggest a minor effect at best. A new approach based on the functional analysis of DNA repair enzymatic activity showed that reduced activity of 8-oxoguanine DNA glycosylase (OGG) is a risk factor in lung and head and neck cancer. Moreover, the combination of smoking and low OGG activity was associated with a higher risk, suggesting a potential strategy for risk assessment and prevention of lung cancer, as well as other types of cancer. PMID:18374480

  6. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts

    PubMed Central

    Savreux-Lenglet, Gaëlle; Depauw, Sabine; David-Cordonnier, Marie-Hélène

    2015-01-01

    DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts. PMID:26556350

  7. DNA damage, homology-directed repair, and DNA methylation.

    PubMed

    Cuozzo, Concetta; Porcellini, Antonio; Angrisano, Tiziana; Morano, Annalisa; Lee, Bongyong; Di Pardo, Alba; Messina, Samantha; Iuliano, Rodolfo; Fusco, Alfredo; Santillo, Maria R; Muller, Mark T; Chiariotti, Lorenzo; Gottesman, Max E; Avvedimento, Enrico V

    2007-07-01

    To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments. PMID:17616978

  8. DNA Damage, Homology-Directed Repair, and DNA Methylation

    PubMed Central

    Angrisano, Tiziana; Morano, Annalisa; Lee, Bongyong; Pardo, Alba Di; Messina, Samantha; Iuliano, Rodolfo; Fusco, Alfredo; Santillo, Maria R; Muller, Mark T; Chiariotti, Lorenzo; Gottesman, Max E; Avvedimento, Enrico V

    2007-01-01

    To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%–4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, ~50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2′-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments. PMID:17616978

  9. Clinical implications of sperm DNA damage.

    PubMed

    Lewis, Sheena E M; Simon, Luke

    2010-12-01

    Traditionally, the diagnosis of male infertility has relied upon microscopic assessment and biochemical assays to determine human semen quality. These tests are essential to provide the fundamental information on which clinicians base their initial diagnosis. However, none of these parameters addresses sperm function and their clinical value in predicting fertility is questionable. The advent of intracytoplasmic sperm injection (ICSI) has further reduced the significance and perceived need for sperm quality tests since ICSI requires only one sperm for the procedure to be successful. Even the conventional measures of sperm quality in terms of normal morphology or motility are not necessary for successful ICSI. Funding of andrological research has been neglected and improvement in assisted reproductive technology (ART) success has suffered as a consequence. Testing of sperm DNA damage shows much promise both as a diagnostic test for male infertility and a prognostic test for ART outcomes. It has been shown to be closely associated with numerous fertility outcomes including negative relationships with fertilization, embryo quality, implantation and positive relationships with miscarriage and childhood diseases. Here we report the relationships between in vitro fertilisation, ICSI pregnancy rates and sperm DNA damage, using the Comet assay to measure DNA fragmentation and also a novel test to measure modified bases, as a indication of oxidative DNA injury.

  10. Antimalarial action of artesunate involves DNA damage mediated by reactive oxygen species.

    PubMed

    Gopalakrishnan, Anusha M; Kumar, Nirbhay

    2015-01-01

    Artemisinin-based combination therapy (ACT) is the recommended first-line treatment for Plasmodium falciparum malaria. It has been suggested that the cytotoxic effect of artemisinin is mediated by free radicals followed by the alkylation of P. falciparum proteins. The endoperoxide bridge, the active moiety of artemisinin derivatives, is cleaved in the presence of ferrous iron, generating reactive oxygen species (ROS) and other free radicals. However, the emergence of resistance to artemisinin in P. falciparum underscores the need for new insights into the molecular mechanisms of antimalarial activity of artemisinin. Here we show that artesunate (ART) induces DNA double-strand breaks in P. falciparum in a physiologically relevant dose- and time-dependent manner. DNA damage induced by ART was accompanied by an increase in the intracellular ROS level in the parasites. Mannitol, a ROS scavenger, reversed the cytotoxic effect of ART and reduced DNA damage, and modulation of glutathione (GSH) levels was found to impact ROS and DNA damage induced by ART. Accumulation of ROS, increased DNA damage, and the resulting antiparasite effect suggest a causal relationship between ROS, DNA damage, and parasite death. Finally, we also show that ART-induced ROS production involves a potential role for NADPH oxidase, an enzyme involved in the production of superoxide anions. Our results with P. falciparum provide novel insights into previously unknown molecular mechanisms underlying the antimalarial activity of artemisinin derivatives and may help in the design of next-generation antimalarial drugs against the most virulent Plasmodium species.

  11. Mitochondrial DNA damage and efficiency of ATP biosynthesis: mathematical model.

    PubMed

    Beregovskaya, N; Maiboroda, R

    1995-01-21

    The role of mitochondrial DNA (mtDNA) damage in ageing processes and in malignant transformation of a cell is discussed. A mathematical model of the mtDNA population in a cell and in tissue is constructed. The model describes the effects of mtDNA damages accumulated during ageing and some features of malignant transformation and regeneration.

  12. DNA-damaging autoantibodies and cancer: the lupus butterfly theory.

    PubMed

    Noble, Philip W; Bernatsky, Sasha; Clarke, Ann E; Isenberg, David A; Ramsey-Goldman, Rosalind; Hansen, James E

    2016-07-01

    Autoantibodies reactive against host DNA are detectable in the circulation of most people with systemic lupus erythematosus (SLE). The long-held view that antibodies cannot penetrate live cells has been disproved. A subset of lupus autoantibodies penetrate cells, translocate to nuclei, and inhibit DNA repair or directly damages DNA. The result of these effects depends on the microenvironment and genetic traits of the cell. Some DNA-damaging antibodies alone have little impact on normal cells, but in the presence of other conditions, such as pre-existing DNA-repair defects, can become highly toxic. These findings raise new questions about autoimmunity and DNA damage, and reveal opportunities for new targeted therapies against malignancies particularly vulnerable to DNA damage. In this Perspectives article, we review the known associations between SLE, DNA damage and cancer, and propose a theory for the effects of DNA-damaging autoantibodies on SLE pathophysiology and cancer risk. PMID:27009542

  13. Synthesis and antiproliferative activity of some new DNA-targeted alkylating pyrroloquinolines.

    PubMed

    Ferlin, M G; Dalla Via, L; Gia, O M

    2004-02-15

    Two novel DNA-direct alkylating agents, consisting of aniline mustard linked to an angular 3H-pyrrolo[3,2-f]quinoline nucleus, were synthetized and assayed for their in vitro antiproliferative activity. Simple convergent synthesis, consisting of separate preparation of 9-chloro-3H-pyrrolo[3,2-f]quinoline and p-amino-aniline derivatives, and following their linkage by substitution reactions 8a, b and 10, yielded the corresponding diol derivatives 7b and 9. Biological properties were evaluated with respect to cell growth inhibition, ability to form cross-links with DNA, and capacity to give rise to a molecular complex with the macromolecule for 7b, 8b, 9 and 10.

  14. Probing Conformational Changes in Human DNA Topoisomerase IIα by Pulsed Alkylation Mass Spectrometry*

    PubMed Central

    Chen, Yu-tsung; Collins, Tammy R. L.; Guan, Ziqiang; Chen, Vincent B.; Hsieh, Tao-Shih

    2012-01-01

    Type II topoisomerases are essential enzymes for solving DNA topological problems by passing one segment of DNA duplex through a transient double-strand break in a second segment. The reaction requires the enzyme to precisely control DNA cleavage and gate opening coupled with ATP hydrolysis. Using pulsed alkylation mass spectrometry, we were able to monitor the solvent accessibilities around 13 cysteines distributed throughout human topoisomerase IIα by measuring the thiol reactivities with monobromobimane. Most of the measured reactivities are in accordance with the predicted ones based on a homology structural model generated from available crystal structures. However, these results reveal new information for both the residues not covered in the structural model and potential differences between the modeled and solution holoenzyme structures. Furthermore, on the basis of the reactivity changes of several cysteines located at the N-gate and DNA gate, we could monitor the movement of topoisomerase II in the presence of cofactors and detect differences in the DNA gate between two closed clamp enzyme conformations locked by either 5′-adenylyl β,γ-imidodiphosphate or the anticancer drug ICRF-193. PMID:22679013

  15. Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration

    PubMed Central

    Li, Na; Parrish, Marcus; Chan, Tze Khee; Yin, Lu; Rai, Prashant; Yoshiyuki, Yamada; Abolhassani, Nona; Tan, Kong Bing; Kiraly, Orsolya; Chow, Vincent TK; Engelward, Bevin P.

    2016-01-01

    Influenza viruses account for significant morbidity worldwide. Inflammatory responses, including excessive generation of reactive oxygen and nitrogen species (RONS), mediate lung injury in severe Influenza infections. However, the molecular basis of inflammation-induced lung damage is not fully understood. Here, we studied influenza H1N1 infected cells in vitro, as well as H1N1 infected mice, and we monitored molecular and cellular responses over the course of two weeks in vivo. We show that influenza induces DNA damage both when cells are directly exposed to virus in vitro (measured using the comet assay) and also when cells are exposed to virus in vivo (estimated via γH2AX foci). We show that DNA damage, as well as responses to DNA damage, persist in vivo until long after virus has been cleared, at times when there are inflammation associated RONS (measured by xanthine oxidase activity and oxidative products). The frequency of lung epithelial and immune cells with increased γH2AX foci is elevated in vivo, especially for dividing cells (Ki-67 positive) exposed to oxidative stress during tissue regeneration. Additionally, we observed a significant increase in apoptotic cells as well as increased levels of DSB repair proteins Ku70, Ku86 and Rad51 during the regenerative phase. In conclusion, results show that influenza induces DNA both in vitro and in vivo, and that DNA damage responses are activated, raising the possibility that DNA repair capacity may be a determining factor for tissue recovery and disease outcome. PMID:25809161

  16. Nucleotide Salvage Deficiencies, DNA Damage and Neurodegeneration

    PubMed Central

    Fasullo, Michael; Endres, Lauren

    2015-01-01

    Nucleotide balance is critically important not only in replicating cells but also in quiescent cells. This is especially true in the nervous system, where there is a high demand for adenosine triphosphate (ATP) produced from mitochondria. Mitochondria are particularly prone to oxidative stress-associated DNA damage because nucleotide imbalance can lead to mitochondrial depletion due to low replication fidelity. Failure to maintain nucleotide balance due to genetic defects can result in infantile death; however there is great variability in clinical presentation for particular diseases. This review compares genetic diseases that result from defects in specific nucleotide salvage enzymes and a signaling kinase that activates nucleotide salvage after DNA damage exposure. These diseases include Lesch-Nyhan syndrome, mitochondrial depletion syndromes, and ataxia telangiectasia. Although treatment options are available to palliate symptoms of these diseases, there is no cure. The conclusions drawn from this review include the critical role of guanine nucleotides in preventing neurodegeneration, the limitations of animals as disease models, and the need to further understand nucleotide imbalances in treatment regimens. Such knowledge will hopefully guide future studies into clinical therapies for genetic diseases. PMID:25923076

  17. DNA damage in normally and prematurely aged mice

    PubMed Central

    Maslov, Alexander Y.; Ganapathi, Shireen; Westerhof, Maaike; Quispe, Wilber; White, Ryan R.; Van Houten, Bennett; Reiling, Erwin; Dollé, Martijn E.T.; van Steeg, Harry; Hasty, Paul; Hoeijmakers, Jan H.J.; Vijg, Jan

    2013-01-01

    Summary Steady-state levels of spontaneous DNA damage, the by-product of normal metabolism and environmental exposure, are controlled by DNA repair pathways. Incomplete repair or an age-related increase in damage production and/or decline in repair could lead to an accumulation of DNA damage, increasing mutation rate, affecting transcription and/or activating programmed cell death or senescence. These consequences of DNA damage metabolism are highly conserved and the accumulation of lesions in the DNA of the genome could, therefore, provide a universal cause of aging. An important corollary of this hypothesis is that defects in DNA repair cause both premature aging and accelerated DNA damage accumulation. While the former has been well-documented, the reliable quantification of the various lesions thought to accumulate in DNA during aging has been a challenge. Here, we quantified inhibition of long distance PCR as a measure of DNA damage in liver and brain of both normal and prematurely aging, DNA repair defective mice. The results indicate a marginal, but statistically significant, increase of spontaneous DNA damage with age in normal mouse liver but not in brain. Increased levels of DNA damage were not observed in the DNA repair defective mice. We also show that oxidative lesions do not increase with age. These results indicate that neither normal nor premature aging is accompanied by a dramatic increase in DNA damage. This suggests that factors other than DNA damage per se, e.g., cellular responses to DNA damage, are responsible for the aging phenotype in mice. PMID:23496256

  18. Extracellular ATP protects endothelial cells against DNA damage.

    PubMed

    Aho, Joonas; Helenius, Mikko; Vattulainen-Collanus, Sanna; Alastalo, Tero-Pekka; Koskenvuo, Juha

    2016-09-01

    Cell damage can lead to rapid release of ATP to extracellular space resulting in dramatic change in local ATP concentration. Evolutionary, this has been considered as a danger signal leading to adaptive responses in adjacent cells. Our aim was to demonstrate that elevated extracellular ATP or inhibition of ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1/CD39) activity could be used to increase tolerance against DNA-damaging conditions. Human endothelial cells, with increased extracellular ATP concentration in cell proximity, were more resistant to irradiation or chemically induced DNA damage evaluated with the DNA damage markers γH2AX and phosphorylated p53. In our rat models of DNA damage, inhibiting CD39-driven ATP hydrolysis with POM-1 protected the heart and lung tissues against chemically induced DNA damage. Interestingly, the phenomenon could not be replicated in cancer cells. Our results show that transient increase in extracellular ATP can promote resistance to DNA damage.

  19. DNA Damage Response and Immune Defense: Links and Mechanisms.

    PubMed

    Nakad, Rania; Schumacher, Björn

    2016-01-01

    DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signaling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signaling. We highlight evidence gained into (i) which molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and pathology in humans. PMID:27555866

  20. Yap1: A DNA damage responder in Saccharomyces cerevisiae

    PubMed Central

    Rowe, Lori A.; Degtyareva, Natalya; Doetsch, Paul W.

    2012-01-01

    Activation of signaling pathways in response to genotoxic stress is crucial for cells to properly repair DNA damage. In response to DNA damage, intracellular levels of reactive oxygen species increase. One important function of such a response could be to initiate signal transduction processes. We have employed the model eukaryote Saccharomyces cerevisiae to delineate DNA damage sensing mechanisms. We report a novel, unanticipated role for the transcription factor Yap1 as a DNA damage responder, providing direct evidence that reactive oxygen species are an important component of the DNA damage signaling process. Our findings reveal an epistatic link between Yap1 and the DNA base excision repair pathway. Corruption of the Yap1-mediated DNA damage response influences cell survival and genomic stability in response to exposure to genotoxic agents. PMID:22433435

  1. Yap1: a DNA damage responder in Saccharomyces cerevisiae.

    PubMed

    Rowe, Lori A; Degtyareva, Natalya; Doetsch, Paul W

    2012-04-01

    Activation of signaling pathways in response to genotoxic stress is crucial for cells to properly repair DNA damage. In response to DNA damage, intracellular levels of reactive oxygen species increase. One important function of such a response could be to initiate signal transduction processes. We have employed the model eukaryote Saccharomyces cerevisiae to delineate DNA damage sensing mechanisms. We report a novel, unanticipated role for the transcription factor Yap1 as a DNA damage responder, providing direct evidence that reactive oxygen species are an important component of the DNA damage signaling process. Our findings reveal an epistatic link between Yap1 and the DNA base excision repair pathway. Corruption of the Yap1-mediated DNA damage response influences cell survival and genomic stability in response to exposure to genotoxic agents.

  2. DNA Damage Response and Immune Defense: Links and Mechanisms

    PubMed Central

    Nakad, Rania; Schumacher, Björn

    2016-01-01

    DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signaling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signaling. We highlight evidence gained into (i) which molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and pathology in humans. PMID:27555866

  3. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  4. Role of DNA damage in atherosclerosis--bystander or participant?

    PubMed

    Gray, Kelly; Bennett, Martin

    2011-10-01

    Atherosclerosis leading to cardiovascular disease is the leading cause of death among western populations. Atherosclerosis in characterised by the development of a fibrofatty lesion that consists of a diverse cell population, including inflammatory cells that create an intensely oxidising environment within the vessel. Coupled with normal replication, the local intracellular and extracellular environment causes damage to cellular DNA that is recognised and repaired by the DNA damage response (DDR) pathway. The role of DNA damage and the resulting deregulation of 'normal' cellular behaviour and subsequent loss of cell cycle control checkpoints have been widely studied in cancer. However, despite the extensive evidence for DNA damage in atherosclerosis, it is only over the past two decades that a causative link between DNA damage and atherosclerosis has been hypothesised. Whilst atherosclerosis is a feature of human disease characterised by defects in DNA damage, currently the role of DNA damage in the initiation and progression of atherosclerosis remains highly debated, as a 'chicken and egg' situation. This review will analyse the evidence for, the causes of, and consequences of DNA damage in atherosclerosis, detail the DNA damage response pathway that results in these consequences, and highlight therapeutic opportunities in this area. We also outline the evidence that DNA damage is a cause of both initiation and progression of atherosclerosis, and not just a consequence of disease.

  5. Radiation damage to DNA-protein complexes

    NASA Astrophysics Data System (ADS)

    Spotheim-Maurizot, M.; Davídková, M.

    2011-01-01

    We review here the advances in understanding the effects of ionizing radiations on DNA, proteins and their complexes, resulting from the collaboration of the authors' teams. It concerns the preponderant indirect effect of low LET ionizing radiations, thus the attack of the macromolecules in aqueous solution by the most aggressive product of water radiolysis, the hydroxyl radical. A model of simulation of the reaction of these radicals with the macromolecules (called RADACK) was developed and was used for calculating the probabilities of damage of each constituent of DNA or proteins (nucleotide or amino-acid). The calculations allowed to draw conclusions from electrophoresis, mutagenesis, spectroscopic (fluorescence, circular dichroïsm) and mass spectrometry experiments. Thus we have shown that the extent and location of the lesions are strongly dependent on the 3D structure of the macromolecules, which in turns is modulated by their sequence and by the binding of some ligands. Molecular dynamics simulation completed our studies in showing the consequences of each lesion on the stability and structure of the proteins and their complexes with DNA.

  6. Nile blue can photosensitize DNA damage through electron transfer.

    PubMed

    Hirakawa, Kazutaka; Ota, Kazuhiro; Hirayama, Junya; Oikawa, Shinji; Kawanishi, Shosuke

    2014-04-21

    The mechanism of DNA damage photosensitized by Nile blue (NB) was studied using (32)P-5'-end-labeled DNA fragments. NB bound to the DNA strand was possibly intercalated through an electrostatic interaction. Photoirradiated NB caused DNA cleavage at guanine residues when the DNA fragments were treated with piperidine. Consecutive guanines, the underlined G in 5'-GG and 5'-GGG, were selectively damaged through photoinduced electron transfer. The fluorescence lifetime of NB was decreased by guanine-containing DNA sequence, supporting this mechanism. Single guanines were also slightly damaged by photoexcited NB, and DNA photodamage by NB was slightly enhanced in D2O. These results suggest that the singlet oxygen mechanism also partly contributes to DNA photodamage by NB. DNA damage photosensitized by NB via electron transfer may be an important mechanism in medicinal applications of photosensitizers, such as photodynamic therapy in low oxygen. PMID:24576317

  7. Synthesis and evaluation of DNA-targeted spatially separated bis(aniline mustards) as potential alkylating agents with enhanced DNA cross-linking capability.

    PubMed

    Gourdie, T A; Prakash, A S; Wakelin, L P; Woodgate, P D; Denny, W A

    1991-01-01

    DNA-targeted separated bis-mustards were synthesized by attaching aniline mono-mustards at the 4- and 9-positions of the DNA-intercalating ligand 9-aminoacridine-4-carboxamide, with the intention of improving the low cross-link to monoadduct ratio found with most alkylating agents. The geometry of these compounds requires that, when the acridine binds to DNA by intercalation, one alkylating moiety is delivered to each DNA groove. Gel electrophoretic studies show that only one arm of these compounds (probably that attached to the 9-position) alkylates DNA, such alkylation occurring specifically in the major groove at the N7 of guanines. Cell-line studies confirm that the mode of cytotoxicity of these compounds (unlike that of untargeted aniline bis-mustards of comparable reactivity) is due to bulky DNA monoadduct formation. It is concluded that more information is required about the exact orientation of the initial monoadducts before ligands with specific DNA cross-linking ability can be designed.

  8. DNA damage in Fabry patients: An investigation of oxidative damage and repair.

    PubMed

    Biancini, Giovana Brondani; Moura, Dinara Jaqueline; Manini, Paula Regina; Faverzani, Jéssica Lamberty; Netto, Cristina Brinckmann Oliveira; Deon, Marion; Giugliani, Roberto; Saffi, Jenifer; Vargas, Carmen Regla

    2015-06-01

    Fabry disease (FD) is a lysosomal storage disorder associated with loss of activity of the enzyme α-galactosidase A. In addition to accumulation of α-galactosidase A substrates, other mechanisms may be involved in FD pathophysiology, such as inflammation and oxidative stress. Higher levels of oxidative damage to proteins and lipids in Fabry patients were previously reported. However, DNA damage by oxidative species in FD has not yet been studied. We investigated basal DNA damage, oxidative DNA damage, DNA repair capacity, and reactive species generation in Fabry patients and controls. To measure oxidative damage to purines and pyrimidines, the alkaline version of the comet assay was used with two endonucleases, formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). To evaluate DNA repair, a challenge assay with hydrogen peroxide was performed. Patients presented significantly higher levels of basal DNA damage and oxidative damage to purines. Oxidative DNA damage was induced in both DNA bases by H2O2 in patients. Fabry patients presented efficient DNA repair in both assays (with and without endonucleases) as well as significantly higher levels of oxidative species (measured by dichlorofluorescein content). Even if DNA repair be induced in Fabry patients (as a consequence of continuous exposure to oxidative species), the repair is not sufficient to reduce DNA damage to control levels. PMID:26046974

  9. Reversal of DNA damage induced Topoisomerase 2 DNA–protein crosslinks by Tdp2

    PubMed Central

    Schellenberg, Matthew J.; Perera, Lalith; Strom, Christina N.; Waters, Crystal A.; Monian, Brinda; Appel, C. Denise; Vilas, Caroline K.; Williams, Jason G.; Ramsden, Dale A.; Williams, R. Scott

    2016-01-01

    Mammalian Tyrosyl-DNA phosphodiesterase 2 (Tdp2) reverses Topoisomerase 2 (Top2) DNA–protein crosslinks triggered by Top2 engagement of DNA damage or poisoning by anticancer drugs. Tdp2 deficiencies are linked to neurological disease and cellular sensitivity to Top2 poisons. Herein, we report X-ray crystal structures of ligand-free Tdp2 and Tdp2-DNA complexes with alkylated and abasic DNA that unveil a dynamic Tdp2 active site lid and deep substrate binding trench well-suited for engaging the diverse DNA damage triggers of abortive Top2 reactions. Modeling of a proposed Tdp2 reaction coordinate, combined with mutagenesis and biochemical studies support a single Mg2+-ion mechanism assisted by a phosphotyrosyl-arginine cation-π interface. We further identify a Tdp2 active site SNP that ablates Tdp2 Mg2+ binding and catalytic activity, impairs Tdp2 mediated NHEJ of tyrosine blocked termini, and renders cells sensitive to the anticancer agent etoposide. Collectively, our results provide a structural mechanism for Tdp2 engagement of heterogeneous DNA damage that causes Top2 poisoning, and indicate that evaluation of Tdp2 status may be an important personalized medicine biomarker informing on individual sensitivities to chemotherapeutic Top2 poisons. PMID:27060144

  10. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    PubMed Central

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  11. Clustered DNA damage induced by heavy ion particles.

    PubMed

    Terato, Hiroaki; Ide, Hiroshi

    2004-12-01

    Clustered DNA damage (locally multiply damaged site) is thought to be a critical lesion caused by ionizing radiation, and high LET radiation such as heavy ion particles is believed to produce high yields of such damage. Since heavy ion particles are major components of ionizing radiation in a space environment, it is important to clarify the chemical nature and biological consequences of clustered DNA damage and its relationship to the health effects of exposure to high LET particles in humans. The concept of clustered DNA damage emerged around 1980, but only recently has become the subject of experimental studies. In this article, we review methods used to detect clustered DNA damage, and the current status of our understanding of the chemical nature and repair of clustered DNA damage. PMID:15858387

  12. Bisphenol A Promotes Cell Survival Following Oxidative DNA Damage in Mouse Fibroblasts

    PubMed Central

    Gassman, Natalie R.; Coskun, Erdem; Stefanick, Donna F.; Horton, Julie K.; Jaruga, Pawel; Dizdaroglu, Miral; Wilson, Samuel H.

    2015-01-01

    Bisphenol A (BPA) is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER) is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3) or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway. PMID:25693136

  13. Impact of Alternative DNA Structures on DNA Damage, DNA Repair, and Genetic Instability

    PubMed Central

    Wang, Guliang; Vasquez, Karen M.

    2014-01-01

    Repetitive genomic sequences can adopt a number of alternative DNA structures that differ from the canonical B-form duplex (i.e. non-B DNA). These non-B DNA-forming sequences have been shown to have many important biological functions related to DNA metabolic processes; for example, they may have regulatory roles in DNA transcription and replication. In addition to these regulatory functions, non-B DNA can stimulate genetic instability in the presence or absence of DNA damage, via replication-dependent and/or replication-independent pathways. This review focuses on the interactions of non-B DNA conformations with DNA repair proteins and how these interactions impact genetic instability. PMID:24767258

  14. Saccharomyces cerevisiae-based system for studying clustered DNA damages

    SciTech Connect

    Moscariello, M.M.; Sutherland, B.

    2010-08-01

    DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by integrative DNA fragments carrying different damages to determine whether closely opposed base damages are converted to DSBs following the outcomes of the homologous recombination repair pathway. As a model of MDS, we studied clustered uracil DNA damages with a known location and a defined distance separating the lesions. The system we describe might well be extended to assessing the repair of MDSs with different compositions, and to most of the complex DNA lesions induced by physical and chemical agents.

  15. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  16. Oxidative DNA damage stalls the human mitochondrial replisome

    PubMed Central

    Stojkovič, Gorazd; Makarova, Alena V.; Wanrooij, Paulina H.; Forslund, Josefin; Burgers, Peter M.; Wanrooij, Sjoerd

    2016-01-01

    Oxidative stress is capable of causing damage to various cellular constituents, including DNA. There is however limited knowledge on how oxidative stress influences mitochondrial DNA and its replication. Here, we have used purified mtDNA replication proteins, i.e. DNA polymerase γ holoenzyme, the mitochondrial single-stranded DNA binding protein mtSSB, the replicative helicase Twinkle and the proposed mitochondrial translesion synthesis polymerase PrimPol to study lesion bypass synthesis on oxidative damage-containing DNA templates. Our studies were carried out at dNTP levels representative of those prevailing either in cycling or in non-dividing cells. At dNTP concentrations that mimic those in cycling cells, the replication machinery showed substantial stalling at sites of damage, and these problems were further exacerbated at the lower dNTP concentrations present in resting cells. PrimPol, the translesion synthesis polymerase identified inside mammalian mitochondria, did not promote mtDNA replication fork bypass of the damage. This argues against a conventional role for PrimPol as a mitochondrial translesion synthesis DNA polymerase for oxidative DNA damage; however, we show that Twinkle, the mtDNA replicative helicase, is able to stimulate PrimPol DNA synthesis in vitro, suggestive of an as yet unidentified role of PrimPol in mtDNA metabolism. PMID:27364318

  17. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  18. DNA damage in cells exhibiting radiation-induced genomic instability

    SciTech Connect

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.

  19. DNA damage and neurotoxicity of chronic alcohol abuse

    PubMed Central

    Kruman, Inna I; Henderson, George I; Bergeson, Susan E

    2013-01-01

    Chronic alcohol abuse results in a variety of pathological effects including damage to the brain. The causes of alcohol-induced brain pathology are presently unclear. Several mechanisms of pathogenicity of chronic alcoholism have been proposed, including accumulation of DNA damage in the absence of repair, resulting in genomic instability and death of neurons. Genomic instability is a unified genetic mechanism leading to a variety of neurodegenerative disorders. Ethanol also likely interacts with various metabolic pathways, including one-carbon metabolism (OCM). OCM is critical for the synthesis of DNA precursors, essential for DNA repair, and as a methyl donor for various methylation events, including DNA methylation. Both DNA repair and DNA methylation are critical for maintaining genomic stability. In this review, we outline the role of DNA damage and DNA repair dysfunction in chronic alcohol-induced neurodegeneration. PMID:22829701

  20. Metabolic activation of carcinogenic ethylbenzene leads to oxidative DNA damage.

    PubMed

    Midorikawa, Kaoru; Uchida, Takafumi; Okamoto, Yoshinori; Toda, Chitose; Sakai, Yoshie; Ueda, Koji; Hiraku, Yusuke; Murata, Mariko; Kawanishi, Shosuke; Kojima, Nakao

    2004-12-01

    Ethylbenzene is carcinogenic to rats and mice, while it has no mutagenic activity. We have investigated whether ethylbenzene undergoes metabolic activation, leading to DNA damage. Ethylbenzene was metabolized to 1-phenylethanol, acetophenone, 2-ethylphenol and 4-ethylphenol by rat liver microsomes. Furthermore, 2-ethylphenol and 4-ethylphenol were metabolically transformed to ring-dihydroxylated metabolites such as ethylhydroquinone and 4-ethylcatechol, respectively. Experiment with 32P-labeled DNA fragment revealed that both ethylhydroquinone and 4-ethylcatechol caused DNA damage in the presence of Cu(II). These dihydroxylated compounds also induced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in calf thymus DNA in the presence of Cu(II). Catalase, methional and Cu(I)-specific chelator, bathocuproine, significantly (P<0.05) inhibited oxidative DNA damage, whereas free hydroxyl radical scavenger and superoxide dismutase did not. These results suggest that Cu(I) and H2O2 produced via oxidation of ethylhydroquinone and 4-ethylcatechol are involved in oxidative DNA damage. Addition of an endogenous reductant NADH dramatically enhanced 4-ethylcatechol-induced oxidative DNA damage, whereas ethylhydroquinone-induced DNA damage was slightly enhanced. Enhancing effect of NADH on oxidative DNA damage by 4-ethylcatechol may be explained by assuming that reactive species are generated from the redox cycle. In conclusion, these active dihydroxylated metabolites would be involved in the mechanism of carcinogenesis by ethylbenzene. PMID:15560893

  1. Ultraviolet induced DNA damage and hereditary skin cancer

    SciTech Connect

    Regan, J.D.; Carrier, W.L.; Francis, A.A.

    1984-01-01

    Clearly, cells from normal individuals possess the ability to repair a variety of damage to DNA. Numerous studies indicate that defects in DNA repair may increase an individual's susceptibility to cancer. It is hoped that continued studies of the exact structural changes produced in the DNA by environmental insults, and the correlation of specific DNA changes with particulr cellular events, such as DNA repair, will lead to a better understanding of cell-killing, mutagenesis and carbinogenesis. 1 figure, 2 tables.

  2. DNA Damage among Wood Workers Assessed with the Comet Assay.

    PubMed

    Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B

    2016-01-01

    Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers' exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products.

  3. DNA Damage among Wood Workers Assessed with the Comet Assay

    PubMed Central

    Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B.

    2016-01-01

    Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers’ exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products. PMID:27398027

  4. DNA Damage among Wood Workers Assessed with the Comet Assay.

    PubMed

    Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B

    2016-01-01

    Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers' exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products. PMID:27398027

  5. Synthetic lethal approaches exploiting DNA damage in aggressive myeloma

    PubMed Central

    Cottini, Francesca; Hideshima, Teru; Suzuki, Rikio; Tai, Yu-Tzu; Bianchini, Giampaolo; Richardson, Paul G.; Anderson, Kenneth C.; Tonon, Giovanni

    2015-01-01

    Ongoing DNA damage is a common feature of epithelial cancers. Here we show that tumor cells derived from multiple myeloma (MM), a disease of clonal plasma cells, demonstrate DNA replicative stress leading to DNA damage. We identified a poor prognosis subset of MM with extensive chromosomal instability and replicative stress which rely on ATR to compensate for DNA replicative stress; conversely, silencing of ATR or treatment with a specific ATR inhibitor triggers MM cell apoptosis. We show that oncogenes such as MYC induce DNA damage in MM cells not only by increased replicative stress, but also via increased oxidative stress, and that ROS-inducer piperlongumine triggers further DNA damage and apoptosis. Importantly, ATR inhibition combined with piperlongumine triggers synergistic MM cytotoxicity. This synthetic lethal approach, enhancing oxidative stress while concomitantly blocking replicative stress response, provides a novel combination targeted therapy to address an unmet medical need in this subset of MM. PMID:26080835

  6. Nuclear DNA damage as a direct cause of aging.

    PubMed

    Best, Benjamin P

    2009-06-01

    This paper presents evidence that damage to nuclear DNA (nDNA) is a direct cause of aging in addition to the effects of nDNA damage on cancer, apoptosis, and cellular senescence. Many studies show significant nDNA damage with age, associated with declining nDNA repair, and this evidence for the decline of nDNA repair with age is also reviewed. Mammalian lifespans correlate with the effectiveness of nDNA repair. The most severe forms of accelerated aging disease in humans are due to nDNA repair defects, and many of these diseases do not exhibit increased cancer incidence. High rates of cellular senescence and apoptosis due to high rates of nDNA damage are apparently the main cause of the elderly phenotype in these diseases. Transgenic mice with high rates of cellular senescence and apoptosis exhibit an elderly phenotype, whereas some strains with low rates of cellular senescence and apoptosis show extended lifespan. Age-associated increases of nDNA damage in the brain may be problematic for rejuvenation because neurons may be difficult to replace and artificial nDNA repair could be difficult. PMID:19594328

  7. Stress-induced DNA damage biomarkers: applications and limitations

    PubMed Central

    Nikitaki, Zacharenia; Hellweg, Christine E.; Georgakilas, Alexandros G.; Ravanat, Jean-Luc

    2015-01-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism's endogenous processes such as replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damage plays a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g., X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e., single, complex DNA lesions etc. that can be used as DNA damage biomarkers. We critically compare DNA damage detection methods and their limitations. In addition, we suggest the use of DNA repair gene products as biomarkes for identification of different types of stresses i.e., radiation, oxidative, or replication stress, based on bioinformatic approaches and meta-analysis of literature data. PMID:26082923

  8. Nuclear DNA damage as a direct cause of aging.

    PubMed

    Best, Benjamin P

    2009-06-01

    This paper presents evidence that damage to nuclear DNA (nDNA) is a direct cause of aging in addition to the effects of nDNA damage on cancer, apoptosis, and cellular senescence. Many studies show significant nDNA damage with age, associated with declining nDNA repair, and this evidence for the decline of nDNA repair with age is also reviewed. Mammalian lifespans correlate with the effectiveness of nDNA repair. The most severe forms of accelerated aging disease in humans are due to nDNA repair defects, and many of these diseases do not exhibit increased cancer incidence. High rates of cellular senescence and apoptosis due to high rates of nDNA damage are apparently the main cause of the elderly phenotype in these diseases. Transgenic mice with high rates of cellular senescence and apoptosis exhibit an elderly phenotype, whereas some strains with low rates of cellular senescence and apoptosis show extended lifespan. Age-associated increases of nDNA damage in the brain may be problematic for rejuvenation because neurons may be difficult to replace and artificial nDNA repair could be difficult.

  9. Stress-induced DNA damage biomarkers: applications and limitations.

    PubMed

    Nikitaki, Zacharenia; Hellweg, Christine E; Georgakilas, Alexandros G; Ravanat, Jean-Luc

    2015-01-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism's endogenous processes such as replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damage plays a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g., X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e., single, complex DNA lesions etc. that can be used as DNA damage biomarkers. We critically compare DNA damage detection methods and their limitations. In addition, we suggest the use of DNA repair gene products as biomarkes for identification of different types of stresses i.e., radiation, oxidative, or replication stress, based on bioinformatic approaches and meta-analysis of literature data. PMID:26082923

  10. Modulation of mutagenic properties in a series of DNA-directed alkylating agents by variation of chain length and alkylator reactivity.

    PubMed

    Ferguson, L R; Turner, P M; Pogai, H; Denny, W A

    1992-02-01

    Four series of aniline mustards linked to a DNA-affinic acridine chromophore by alkyl chains of varying length (2-5 carbon atoms) have been studied for their mutagenic properties, as estimated in four strains of Salmonella typhimurium and in Saccharomyces cerevisiae strain D5. The four series have very different mustard reactivities, as determined by the aniline link group (-O-, -CH2-, -S- or -SO2-). Some of the derived compounds cause frameshift mutagenesis which can be detected in TA98 and also "petite" mutagenesis activity, neither of which occur to significant extents with the parent mustards or with 9-aminoacridine. None of the derived compounds are as effective as the parent mustards in mitotic crossing-over, nor do they show ability for frameshift mutagenesis in S. typhimurium TA1977 which is typical of acridines. Some of the compounds have comparable frameshift activity to compounds such as ICR-191, but appear to have a different base-pair preference. The results indicate clear structure-activity relationships for the spectrum of mutagenic activity, which relate to both chain length and alkylator reactivity, for these compounds.

  11. Chimeric Proteins to Detect DNA Damage and Mismatches

    SciTech Connect

    McCutchen-Maloney, S; Malfatti, M; Robbins, K M

    2002-01-14

    The goal of this project was to develop chimeric proteins composed of a DNA mismatch or damage binding protein and a nuclease, as well as methods to detect DNA mismatches and damage. We accomplished this through protein engineering based on using polymerase chain reactions (PCRs) to create chimeras with novel functions for damage and mismatch detection. This project addressed fundamental questions relating to disease susceptibility and radiation-induced damage in cells. It also supported and enhanced LLNL's competency in the emerging field of proteomics. In nature, DNA is constantly being subjected to damaging agents such as exposure to ultraviolet (UV) radiation and various environmental and dietary carcinogens. If DNA damage is not repaired however, mutations in DNA result that can eventually manifest in cancer and other diseases. In addition to damage-induced DNA mutations, single nucleotide polymorphisms (SNPs), which are variations in the genetic sequence between individuals, may predispose some to disease. As a result of the Human Genome Project, the integrity of a person's DNA can now be monitored. Therefore, methods to detect DNA damage, mutations, and SNPs are useful not only in basic research but also in the health and biotechnology industries. Current methods of detection often use radioactive labeling and rely on expensive instrumentation that is not readily available in many research settings. Our methods to detect DNA damage and mismatches employ simple gel electrophoresis and flow cytometry, thereby alleviating the need for radioactive labeling and expensive equipment. In FY2001, we explored SNP detection by developing methods based on the ability of the chimeric proteins to detect mismatches. Using multiplex assays with flow cytometry and fluorescent beads to which the DNA substrates where attached, we showed that several of the chimeras possess greater affinity for damaged and mismatched DNA than for native DNA. This affinity was demonstrated in

  12. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  13. DNA damage triggers genetic exchange in Helicobacter pylori.

    PubMed

    Dorer, Marion S; Fero, Jutta; Salama, Nina R

    2010-01-01

    Many organisms respond to DNA damage by inducing expression of DNA repair genes. We find that the human stomach pathogen Helicobacter pylori instead induces transcription and translation of natural competence genes, thus increasing transformation frequency. Transcription of a lysozyme-like protein that promotes DNA donation from intact cells is also induced. Exogenous DNA modulates the DNA damage response, as both recA and the ability to take up DNA are required for full induction of the response. This feedback loop is active during stomach colonization, indicating a role in the pathogenesis of the bacterium. As patients can be infected with multiple genetically distinct clones of H. pylori, DNA damage induced genetic exchange may facilitate spread of antibiotic resistance and selection of fitter variants through re-assortment of preexisting alleles in this important human pathogen. PMID:20686662

  14. DETECTION OF DNA DAMAGE USING MELTING ANALYSIS TECHNIQUES

    EPA Science Inventory

    A rapid and simple fluorescence screening assay for UV radiation-, chemical-, and enzyme-induced DNA damage is reported. This assay is based on a melting/annealing analysis technique and has been used with both calf thymus DNA and plasmid DNA (puc 19 plasmid from E. coli). DN...

  15. Chromatin perturbations during the DNA damage response in higher eukaryotes.

    PubMed

    Bakkenist, Christopher J; Kastan, Michael B

    2015-12-01

    The DNA damage response is a widely used term that encompasses all signaling initiated at DNA lesions and damaged replication forks as it extends to orchestrate DNA repair, cell cycle checkpoints, cell death and senescence. ATM, an apical DNA damage signaling kinase, is virtually instantaneously activated following the introduction of DNA double-strand breaks (DSBs). The MRE11-RAD50-NBS1 (MRN) complex, which has a catalytic role in DNA repair, and the KAT5 (Tip60) acetyltransferase are required for maximal ATM kinase activation in cells exposed to low doses of ionizing radiation. The sensing of DNA lesions occurs within a highly complex and heterogeneous chromatin environment. Chromatin decondensation and histone eviction at DSBs may be permissive for KAT5 binding to H3K9me3 and H3K36me3, ATM kinase acetylation and activation. Furthermore, chromatin perturbation may be a prerequisite for most DNA repair. Nucleosome disassembly during DNA repair was first reported in the 1970s by Smerdon and colleagues when nucleosome rearrangement was noted during the process of nucleotide excision repair of UV-induced DNA damage in human cells. Recently, the multi-functional protein nucleolin was identified as the relevant histone chaperone required for partial nucleosome disruption at DBSs, the recruitment of repair enzymes and for DNA repair. Notably, ATM kinase is activated by chromatin perturbations induced by a variety of treatments that do not directly cause DSBs, including treatment with histone deacetylase inhibitors. Central to the mechanisms that activate ATR, the second apical DNA damage signaling kinase, outside of a stalled and collapsed replication fork in S-phase, is chromatin decondensation and histone eviction associated with DNA end resection at DSBs. Thus, a stress that is common to both ATM and ATR kinase activation is chromatin perturbations, and we argue that chromatin perturbations are both sufficient and required for induction of the DNA damage response.

  16. Chromatin perturbations during the DNA damage response in higher eukaryotes

    PubMed Central

    Bakkenist, Christopher J.; Kastan, Michael B.

    2016-01-01

    The DNA damage response is a widely used term that encompasses all signaling initiated at DNA lesions and damaged replication forks as it extends to orchestrate DNA repair, cell cycle checkpoints, cell death and senescence. ATM, an apical DNA damage signaling kinase, is virtually instantaneously activated following the introduction of DNA double-strand breaks (DSBs). The MRE11-RAD50-NBS1 (MRN) complex, which has a catalytic role in DNA repair, and the KAT5 (Tip60) acetyltransferase are required for maximal ATM kinase activation in cells exposed to low doses of ionizing radiation. The sensing of DNA lesions occurs within a highly complex and heterogeneous chromatin environment. Chromatin decondensation and histone eviction at DSBs may be permissive for KAT5 binding to H3K9me3 and H3K36me3, ATM kinase acetylation and activation. Furthermore, chromatin perturbation may be a prerequisite for most DNA repair. Nucleosome disassembly during DNA repair was first reported in the 1970s by Smerdon and colleagues when nucleosome rearrangement was noted during the process of nucleotide excision repair of UV-induced DNA damage in human cells. Recently, the multi-functional protein nucleolin was identified as the relevant histone chaperone required for partial nucleosome disruption at DBSs, the recruitment of repair enzymes and for DNA repair. Notably, ATM kinase is activated by chromatin perturbations induced by a variety of treatments that do not directly cause DSBs, including treatment with histone deacetylase inhibitors. Central to the mechanisms that activate ATR, the second apical DNA damage signaling kinase, outside of a stalled and collapsed replication fork in S-phase, is chromatin decondensation and histone eviction associated with DNA end resection at DSBs. Thus, a stress that is common to both ATM and ATR kinase activation is chromatin perturbations, and we argue that chromatin perturbations are both sufficient and required for induction of the DNA damage response

  17. Stress-induced DNA Damage biomarkers: Applications and limitations

    NASA Astrophysics Data System (ADS)

    Nikitaki, Zacharenia; Hellweg, Christine; Georgakilas, Alexandros; Ravanat, Jean-Luc

    2015-06-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism’s endogenous processes like replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damages play a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g. X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e. single, complex DNA lesions etc. that can be used as biomarkers. We critically compare DNA damage detection methods and their limitations. In addition to such DNA damage products, we suggest possible gene inductions that can be used to characterize responses to different types of stresses i.e. radiation, oxidative and replication stress, based on bioinformatic approaches and stringent meta-analysis of literature data.

  18. DNA sequence-specific adenine alkylation by the novel antitumor drug tallimustine (FCE 24517), a benzoyl nitrogen mustard derivative of distamycin.

    PubMed Central

    Broggini, M; Coley, H M; Mongelli, N; Pesenti, E; Wyatt, M D; Hartley, J A; D'Incalci, M

    1995-01-01

    FCE 24517, a novel distamycin derivative possessing potent antitumor activity, is under initial clinical investigation in Europe. In spite of the presence of a benzoyl nitrogen mustard group this compound fails to alkylate the N7 position of guanine, the major site of alkylation by conventional nitrogen mustards. Characterisation of DNA-drug adducts revealed only a very low level of adenine adduct formation. Using a modified Maxam-Gilbert sequencing method the consensus sequence for FCE 24517-adenine adduct formation was found to be 5'-TTTTGA-3'. A single base modification in the hexamer completely abolishes the alkylation of adenine. Using a Taq polymerase stop assay alkylations were confirmed at the A present in the hexamer TTTTGA and, in addition, in one out of three TTTTAA sequences present in the plasmid utilized. The sequence specificity of alkylation by FCE 24517 is therefore the most striking yet observed for an alkylating agent of small molecular weight. Images PMID:7870593

  19. Loss of Urokinase Receptor Sensitizes Cells to DNA Damage and Delays DNA Repair

    PubMed Central

    Narayanaswamy, Pavan B.; Hodjat, Mahshid; Haller, Hermann; Dumler, Inna; Kiyan, Yulia

    2014-01-01

    DNA damage induced by numerous exogenous or endogenous factors may have irreversible consequences on the cell leading to cell cycle arrest, senescence and cell death. The DNA damage response (DDR) is powerful signaling machinery triggered in response to DNA damage, to provide DNA damage recognition, signaling and repair. Most anticancer drugs induce DNA damage, and DNA repair in turn attenuates therapeutic efficiency of those drugs. Approaches delaying DNA repair are often used to increase efficiency of treatment. Recent data show that ubiquitin-proteasome system is essential for signaling and repair of DNA damage. However, mechanisms providing regulation of proteasome intracellular localization, activity, and recruitment to DNA damage sites are elusive. Even less investigated are the roles of extranuclear signaling proteins in these processes. In this study, we report the involvement of the serine protease urokinase-type plasminogen activator receptor (uPAR) in DDR-associated regulation of proteasome. We show that in vascular smooth muscle cells (VSMC) uPAR activates DNA single strand break repair signaling pathway. We provide evidence that uPAR is essential for functional assembly of the 26S proteasome. We further demonstrate that uPAR mediates DNA damage-induced phosphorylation, nuclear import, and recruitment of the regulatory subunit PSMD6 to proteasome. We found that deficiency of uPAR and PSMD6 delays DNA repair and leads to decreased cell survival. These data may offer new therapeutic approaches for diseases such as cancer, cardiovascular and neurodegenerative disorders. PMID:24987841

  20. Metallothionein blocks oxidative DNA damage in vitro

    PubMed Central

    Qu, Wei; Pi, Jingbo; Waalkes, Michael P.

    2012-01-01

    The role of metallothionein (MT) in mitigation of oxidative DNA damage (ODD) induced either by cadmium (Cd) or the direct oxidant hydrogen peroxide (H2O2) was systematically examined by using MT-I/II double knockout (MT-null) or MT-competent wild-type (WT) cells. Both toxicants were much more lethal to MT-null cells (Cd LC50 = 6.6 μM; H2O2 LC50 = 550 μM) than WT cells (Cd LC50 = 16.5 μM; H2O2 LC50 = 930 μM). Cd induced concentration-related MT increases in WT cells, while the basal levels were undetectable and not increased by Cd in MT-null cells. ODD, measured by the immuno-spin trapping method, was minimally induced by sub-toxic Cd levels (1 or 5 μM; 24 h) in WT cells, but markedly increased in MT-null cells (> 430%). Similarly, ODD was induced to higher levels by lower concentrations of H2O2 in MT-null cells than WT cells. Transfection of MT-I into MT-null cells reduced both Cd- and H2O2-induced cytolethality and ODD. Cd increased expression of the oxidant defense genes, HO-1 and GSTa2 to a much greater extent in MT-null cells than WT. Cd or H2O2 exposure increased expression of key transport genes, Mrp1 and Mrp2, in WT cells but not in MT-null cells. MT protects against Cd- and H2O2-induced ODD in MT competent cells possibly by multiple mechanisms, potentially including direct metal ion sequestration and sequestration of oxidant radicals by MT. MT-deficient cells appear to adapt to Cd primarily by turning on oxidant response systems, while MT-competent cells activate MT and transport systems. PMID:22914987

  1. CHK2 kinase in the DNA damage response and beyond

    PubMed Central

    Zannini, Laura; Delia, Domenico; Buscemi, Giacomo

    2014-01-01

    The serine/threonine kinase CHK2 is a key component of the DNA damage response. In human cells, following genotoxic stress, CHK2 is activated and phosphorylates >20 proteins to induce the appropriate cellular response, which, depending on the extent of damage, the cell type, and other factors, could be cell cycle checkpoint activation, induction of apoptosis or senescence, DNA repair, or tolerance of the damage. Recently, CHK2 has also been found to have cellular functions independent of the presence of nuclear DNA lesions. In particular, CHK2 participates in several molecular processes involved in DNA structure modification and cell cycle progression. In this review, we discuss the activity of CHK2 in response to DNA damage and in the maintenance of the biological functions in unstressed cells. These activities are also considered in relation to a possible role of CHK2 in tumorigenesis and, as a consequence, as a target of cancer therapy. PMID:25404613

  2. Alkylation of nucleic acids by DNA-targeted 4-anilinoquinolinium aniline mustards: kinetic studies.

    PubMed

    O'Connor, C J; Denny, W A; Fan, J Y

    1991-01-01

    The rate of constant for hydrolysis of a series of 4-substituted aniline mustards Ar-X-pC6H4-N(CH2CH2Cl)2, where Ar is 4-anilinoquinolinium and X = O, CH2, CONH and CO, have been measured in water and 0.02 M imidazole buffer at 37 degrees C and in 50% aqueous acetone at 66 degrees C. The equilibrium binding constants of the compounds and their hydrolysis products to nucleic acids of differing base composition have been determined at varying ionic strengths, and the results are consistent with the compounds binding as expected in the DNA minor groove. The alkylating reactivity of the mustards towards these nucleic acids has been measured in water at 37 degrees C and in 0.01 M HEPES buffer over a range of temperatures from 25 degrees C to 60 degrees C. Evaluation of the thermodynamic parameters for these kinetic and equilibrium studies suggests that the interaction with nucleic acids is via an internal SN2 mechanism involving an aziridinium ion.

  3. Repair of O6-G-alkyl-O6-G interstrand cross-links by human O6-alkylguanine-DNA alkyltransferase†

    PubMed Central

    Fang, Qingming; Noronha, Anne M.; Murphy, Sebastian P.; Wilds, Christopher J.; Tubbs, Julie L.; Tainer, John A.; Chowdhury, Goutam; Guengerich, F. Peter; Pegg, Anthony E.

    2008-01-01

    O6-Alkylguanine-DNA alkyltransferase (AGT) plays an important role protecting cells from alkylating agents. This reduces carcinogenesis and mutagenesis initiated by such agents but AGT also provides a major resistance mechanism to some chemotherapeutic drugs. In order to improve understanding of the AGT-mediated repair reaction and to increase understanding of the spectrum of repairable damage, we have studied the ability of AGT to repair interstrand cross-link DNA damage where the two DNA strands are joined via the guanine-O6 in each strand. An oligodeoxyribonucleotide containing a heptane cross-link was repaired with initial formation of an AGT-oligo complex and further reaction of a second AGT molecule yielding a hAGT dimer and free oligo. However, an oligodeoxyribonucleotide with a butane cross-link was a very poor substrate for AGT-mediated repair and only the first reaction to form an AGT-oligo complex could be detected. Models of the reaction of these substrates in the AGT active site show that the DNA duplex is forced apart locally to repair the first guanine. This reaction is greatly hindered with the butane cross-link, which is mostly buried in the active site pocket and limited in conformational flexibility. This limitation also prevents the adoption of a conformation for the second reaction to repair the AGT-oligo complex. These results are consistent with the postulated mechanism of AGT repair that involves DNA binding and flipping of the substrate nucleotide and indicate that hAGT can repair some types of interstrand cross-link damages. PMID:18803403

  4. At a crossroads: human DNA tumor viruses and the host DNA damage response.

    PubMed

    Nikitin, Pavel A; Luftig, Micah A

    2011-07-01

    Human DNA tumor viruses induce host cell proliferation in order to establish the necessary cellular milieu to replicate viral DNA. The consequence of such viral-programmed induction of proliferation coupled with the introduction of foreign replicating DNA structures makes these viruses particularly sensitive to the host DNA damage response machinery. In fact, sensors of DNA damage are often activated and modulated by DNA tumor viruses in both latent and lytic infection. This article focuses on the role of the DNA damage response during the life cycle of human DNA tumor viruses, with a particular emphasis on recent advances in our understanding of the role of the DNA damage response in EBV, Kaposi's sarcoma-associated herpesvirus and human papillomavirus infection. PMID:21927617

  5. DNA damage and repair after high LET radiation

    NASA Astrophysics Data System (ADS)

    O'Neill, Peter; Cucinotta, Francis; Anderson, Jennifer

    Predictions from biophysical models of interactions of radiation tracks with cellular DNA indicate that clustered DNA damage sites, defined as two or more lesions formed within one or two helical turns of the DNA by passage of a single radiation track, are formed in mammalian cells. These complex DNA damage sites are regarded as a signature of ionizing radiation exposure particularly as the likelihood of clustered damage sites arising endogenously is low. For instance, it was predicted from biophysical modelling that 30-40% of low LET-induced double strand breaks (DSB), a form of clustered damage, are complex with the yield increasing to >90% for high LET radiation, consistent with the reduced reparability of DSB with increasing ionization density of the radiation. The question arises whether the increased biological effects such as mutagenesis, carcinogenesis and lethality is in part related to DNA damage complexity and/or spatial distribution of the damage sites, which may lead to small DNA fragments. With particle radiation it is also important to consider not only delta-rays which may cause clustered damaged sites and may be highly mutagenic but the non-random spatial distribution of DSB which may lead to deletions. In this overview I will concentrate on the molecular aspects of the variation of the complexity of DNA damage on radiation quality and the challenges this complexity presents the DNA damage repair pathways. I will draw on data from micro-irradiations which indicate that the repair of DSBs by non-homologous end joining is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB. In summary the aim is to emphasis the link between the spatial distribution of energy deposition events related to the track, the molecular products formed and the consequence of damage complexity contributing to biological effects and to present some of the outstanding molecular challenges with particle radiation.

  6. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    PubMed

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  7. Oxidative stress and DNA damage in agricultural workers.

    PubMed

    Kisby, Glen E; Muniz, Juan F; Scherer, Jennifer; Lasarev, Michael R; Koshy, Mary; Kow, Yoke W; McCauley, Linda

    2009-01-01

    Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A pilot study of pesticide applicators and farm workers working in the fruit orchards of Oregon (i.e., apples, pears) was conducted to examine the relationship between organophosphate (OP) pesticide exposure and oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay) and serum analyzed for lipid peroxides (i.e., malondialdehyde [MDA]). Cellular DNA damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farm workers and applicators (p < .001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farm workers and applicators, respectively, than in controls. Serum MDA levels were 4.9 times and 24 times higher in farm workers and applicators, respectively, than in controls. DNA damage and oxidative DNA repair were significantly greater in lymphocytes from applicators and farm workers when compared with controls. A separate field study showed that DNA damage was also significantly greater (p < .001) in buccal cells (i.e., leukocytes) collected from migrant farm workers working with fungicides in the berry crops in Oregon. Markers of oxidative stress (i.e., reactive oxygen species, reduced levels of glutathione) and oxidative DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and cancer. PMID:19437279

  8. Pneumococcal Pneumolysin Induces DNA Damage and Cell Cycle Arrest

    PubMed Central

    Rai, Prashant; He, Fang; Kwang, Jimmy; Engelward, Bevin P.; Chow, Vincent T.K.

    2016-01-01

    Streptococcus pneumoniae produces pneumolysin toxin as a key virulence factor against host cells. Pneumolysin is a cholesterol-dependent cytolysin (CDC) toxin that forms lytic pores in host membranes and mediates pneumococcal disease pathogenesis by modulating inflammatory responses. Here, we show that pneumolysin, which is released during bacterial lysis, induces DNA double strand breaks (DSBs), as indicated by ataxia telangiectasia mutated (ATM)-mediated H2AX phosphorylation (γH2AX). Pneumolysin-induced γH2AX foci recruit mediator of DNA damage checkpoint 1 (MDC1) and p53 binding protein 1 (53BP1), to sites of DSBs. Importantly, results show that toxin-induced DNA damage precedes cell cycle arrest and causes apoptosis when DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end joining is inhibited. Further, we observe that cells that were undergoing DNA replication harbored DSBs in greater frequency during pneumolysin treatment. This observation raises the possibility that DSBs might be arising as a result of replication fork breakdown. Additionally, neutralizing the oligomerization domain of pneumolysin with monoclonal antibody suppresses DNA damage and also cell cycle arrest, indicating that pneumolysin oligomerization is important for causing DNA damage. Taken together, this study reveals a previously unidentified ability of pneumolysin to induce cytotoxicity via DNA damage, with implications in the pathophysiology of S. pneumoniae infection. PMID:27026501

  9. Analysis of chromatin integrity and DNA damage of buffalo spermatozoa

    PubMed Central

    Mahmoud, K. Gh. M.; El-Sokary, A. A. E.; Abdel-Ghaffar, A. E.; Abou El-Roos, M. E. A.; Ahmed, Y. F.

    2015-01-01

    This study was conducted to determine chromatin integrity and DNA damage by DNA electrophoresis and comet assays of buffalo fresh and frozen semen. Semen samples were collected from four buffalo bulls and evaluated after freezing for semen motility, viability, sperm abnormalities, chromatin integrity and DNA damage. A significant variation was found in semen parameters after thawing. Highly significant differences (P<0.001) in chromatin integrity were observed between fresh and frozen semen. For the fresh semen, there was no significant difference between the bulls for chromatin integrity; however, a significant variation (P<0.05) was detected in their frozen semen. No DNA fragmentation was observed by agarose gel electrophoresis. The percentage of sperm with damaged DNA detected by comet assay differed significantly between fresh and frozen semen. A significant negative correlation was recorded between motility and DNA damage (r=-0.68, P<0.05). Sperm abnormalities and DNA fragmentation were significantly positively correlated (r=0.59, P<0.05). In conclusion, DNA damage evaluation can provide reassurance about genomic normalcy and guide the development of improved methods of selecting spermatozoa with intact DNA to be used in artificial insemination. PMID:27175169

  10. Analysis of chromatin integrity and DNA damage of buffalo spermatozoa.

    PubMed

    Mahmoud, K Gh M; El-Sokary, A A E; Abdel-Ghaffar, A E; Abou El-Roos, M E A; Ahmed, Y F

    2015-01-01

    This study was conducted to determine chromatin integrity and DNA damage by DNA electrophoresis and comet assays of buffalo fresh and frozen semen. Semen samples were collected from four buffalo bulls and evaluated after freezing for semen motility, viability, sperm abnormalities, chromatin integrity and DNA damage. A significant variation was found in semen parameters after thawing. Highly significant differences (P<0.001) in chromatin integrity were observed between fresh and frozen semen. For the fresh semen, there was no significant difference between the bulls for chromatin integrity; however, a significant variation (P<0.05) was detected in their frozen semen. No DNA fragmentation was observed by agarose gel electrophoresis. The percentage of sperm with damaged DNA detected by comet assay differed significantly between fresh and frozen semen. A significant negative correlation was recorded between motility and DNA damage (r=-0.68, P<0.05). Sperm abnormalities and DNA fragmentation were significantly positively correlated (r=0.59, P<0.05). In conclusion, DNA damage evaluation can provide reassurance about genomic normalcy and guide the development of improved methods of selecting spermatozoa with intact DNA to be used in artificial insemination. PMID:27175169

  11. Pneumococcal Pneumolysin Induces DNA Damage and Cell Cycle Arrest.

    PubMed

    Rai, Prashant; He, Fang; Kwang, Jimmy; Engelward, Bevin P; Chow, Vincent T K

    2016-01-01

    Streptococcus pneumoniae produces pneumolysin toxin as a key virulence factor against host cells. Pneumolysin is a cholesterol-dependent cytolysin (CDC) toxin that forms lytic pores in host membranes and mediates pneumococcal disease pathogenesis by modulating inflammatory responses. Here, we show that pneumolysin, which is released during bacterial lysis, induces DNA double strand breaks (DSBs), as indicated by ataxia telangiectasia mutated (ATM)-mediated H2AX phosphorylation (γH2AX). Pneumolysin-induced γH2AX foci recruit mediator of DNA damage checkpoint 1 (MDC1) and p53 binding protein 1 (53BP1), to sites of DSBs. Importantly, results show that toxin-induced DNA damage precedes cell cycle arrest and causes apoptosis when DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end joining is inhibited. Further, we observe that cells that were undergoing DNA replication harbored DSBs in greater frequency during pneumolysin treatment. This observation raises the possibility that DSBs might be arising as a result of replication fork breakdown. Additionally, neutralizing the oligomerization domain of pneumolysin with monoclonal antibody suppresses DNA damage and also cell cycle arrest, indicating that pneumolysin oligomerization is important for causing DNA damage. Taken together, this study reveals a previously unidentified ability of pneumolysin to induce cytotoxicity via DNA damage, with implications in the pathophysiology of S. pneumoniae infection. PMID:27026501

  12. Radiation-induced DNA damage and chromatin structure

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    DNA lesions induced by ionizing radiation in cells are clustered and not randomly distributed. For low linear energy transfer (LET) radiation this clustering occurs mainly on the small scales of DNA molecules and nucleosomes. For example, experimental evidence suggests that both strands of DNA on the nucleosomal surface can be damaged in single events and that this damage occurs with a 10-bp modulation because of protection by histones. For high LET radiation, clustering also occurs on a larger scale and depends on chromatin organization. A particularly significant clustering occurs when an ionizing particle traverses the 30 nm chromatin fiber with generation of heavily damaged DNA regions with an average size of about 2 kbp. On an even larger scale, high LET radiation can produce several DNA double-strand breaks in closer proximity than expected from randomness. It is suggested that this increases the probability of misrejoining of DNA ends and generation of lethal chromosome aberrations.

  13. p53 and Cell Cycle Effects After DNA Damage

    PubMed Central

    Senturk, Emir; Manfredi, James J.

    2016-01-01

    Flow cytometry, a valuable technique that employs the principles of light scattering, light excitation, and emission of fluorochrome molecules, can be used to assess the cell cycle position of individual cells based on DNA content. After the permeabilization of cells, the DNA can be stained with a fluorescent dye. Cells which have a 2N amount of DNA can be distinguished from cells with a 4N amount of DNA, making flow cytometry a very useful tool for the analysis of cell cycle checkpoints following DNA damage. A critical feature of the cellular response to DNA damage is the ability to pause and repair the damage so that consequential mutations are not passed along to daughter generations of cells. If cells arrest prior to DNA replication, they will contain a 2N amount of DNA, whereas arrest after replication but before mitosis will result in a 4N amount of DNA. Using this technique, the role that p53 plays in cell cycle checkpoints following DNA damage can be evaluated based on changes in the profile of the G1, S, and G2/M phases of the cell cycle. PMID:23150436

  14. Preventing metal-mediated oxidative DNA damage with selenium compounds.

    PubMed

    Battin, Erin E; Zimmerman, Matthew T; Ramoutar, Ria R; Quarles, Carolyn E; Brumaghim, Julia L

    2011-05-01

    Copper and iron are two widely studied transition metals associated with hydroxyl radical (˙OH) generation, oxidative damage, and disease development. Because antioxidants ameliorate metal-mediated DNA damage, DNA gel electrophoresis assays were used to quantify the ability of ten selenium-containing compounds to inhibit metal-mediated DNA damage by hydroxyl radical. In the Cu(I)/H(2)O(2) system, selenocystine, selenomethionine, and methyl-selenocysteine inhibit DNA damage with IC(50) values ranging from 3.34 to 25.1 μM. Four selenium compounds also prevent DNA damage from Fe(II) and H(2)O(2). Additional gel electrophoresis experiments indicate that Cu(I) or Fe(II) coordination is responsible for the selenium antioxidant activity. Mass spectrometry studies show that a 1 : 1 stoichiometry is the most common for iron and copper complexes of the tested compounds, even if no antioxidant activity is observed, suggesting that metal coordination is necessary but not sufficient for selenium antioxidant activity. A majority of the selenium compounds are electroactive, regardless of antioxidant activity, and the glutathione peroxidase activities of the selenium compounds show no correlation to DNA damage inhibition. Thus, metal binding is a primary mechanism of selenium antioxidant activity, and both the chemical functionality of the selenium compound and the metal ion generating damaging hydroxyl radical significantly affect selenium antioxidant behavior. PMID:21286651

  15. Global chromatin fibre compaction in response to DNA damage

    SciTech Connect

    Hamilton, Charlotte; Hayward, Richard L.; Gilbert, Nick

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Robust KAP1 phosphorylation in response to DNA damage in HCT116 cells. Black-Right-Pointing-Pointer DNA repair foci are found in soluble chromatin. Black-Right-Pointing-Pointer Biophysical analysis reveals global chromatin fibre compaction after DNA damage. Black-Right-Pointing-Pointer DNA damage is accompanied by rapid linker histone dephosphorylation. -- Abstract: DNA is protected by packaging it into higher order chromatin fibres, but this can impede nuclear processes like DNA repair. Despite considerable research into the factors required for signalling and repairing DNA damage, it is unclear if there are concomitant changes in global chromatin fibre structure. In human cells DNA double strand break (DSB) formation triggers a signalling cascade resulting in H2AX phosphorylation ({gamma}H2AX), the rapid recruitment of chromatin associated proteins and the subsequent repair of damaged sites. KAP1 is a transcriptional corepressor and in HCT116 cells we found that after DSB formation by chemicals or ionising radiation there was a wave of, predominantly ATM dependent, KAP1 phosphorylation. Both KAP1 and phosphorylated KAP1 were readily extracted from cells indicating they do not have a structural role and {gamma}H2AX was extracted in soluble chromatin indicating that sites of damage are not attached to an underlying structural matrix. After DSB formation we did not find a concomitant change in the sensitivity of chromatin fibres to micrococcal nuclease digestion. Therefore to directly investigate higher order chromatin fibre structures we used a biophysical sedimentation technique based on sucrose gradient centrifugation to compare the conformation of chromatin fibres isolated from cells before and after DNA DSB formation. After damage we found global chromatin fibre compaction, accompanied by rapid linker histone dephosphorylation, consistent with fibres being more regularly folded or fibre deformation being stabilized by

  16. In vitro packaging of damaged bacteriophage T7 DNA

    SciTech Connect

    Masker, W. E.; Kuemmerle, N. B.; Dodson, L. A.

    1980-01-01

    Experiments using in vitro packaging to monitor the biological activity of DNA recovered after in vitro repair, replication, and recombination reactions are described. These results suggest that the in vitro systems mimic the in vivo situation sufficiently well to allow generation (or restoration) of DNA molecules which can be encapsulated to form fully viable T7 phage particles. The in vitro packaging system has proved to be a convenient and relatively sensitive means for determining the amount of biological damage present in T7 DNA and for examining the response of various DNA metabolic systems to that damage.

  17. The DNA damage response: the omics era and its impact

    PubMed Central

    Derks, Kasper W.J.; Hoeijmakers, Jan H.J.; Pothof, Joris

    2014-01-01

    The emergence of high density technologies monitoring the genome, transcriptome and proteome in relation to genotoxic stress have tremendously enhanced our knowledge on global responses and dynamics in the DNA damage response, including its relation with cancer and aging. Moreover, ‘-omics’ technologies identified many novel factors, their post-translational modifications, pathways and global responses in the cellular response to DNA damage. Based on omics, it is currently estimated that thousands of gene(product)s participate in the DNA damage response, recognizing complex networks that determine cell fate after damage to the most precious cellular molecule, DNA. The development of next generation sequencing technology and associated specialized protocols can quantitatively monitor RNA and DNA at unprecedented single nucleotide resolution. In this review we will discuss the contribution of omics technologies and in particular next generation sequencing to our understanding of the DNA damage response and the future prospective of next generation sequencing, its single cell application and omics dataset integration in unraveling intricate DNA damage signaling networks. PMID:24794401

  18. DNA damage in cancer therapeutics: a boon or a curse?

    PubMed

    Khanna, Anchit

    2015-06-01

    Millions of DNA-damaging lesions occur every day in each cell of our bodies due to various stresses. The failure to detect and accurately repair these lesions can give rise to cells with high levels of endogenous DNA damage, deleterious mutations, or genomic aberrations. Such genomic instability can lead to the activation of specific signaling pathways, including the DNA damage response (DDR) pathway. Constitutive activation of DDR proteins has been observed in human tumor specimens from different cancer stages, including precancerous and metastatic cancers, although not in normal tissues. The tumor-suppressive role of DDR activity during the premalignant stage has been studied, and strong evidence is emerging for an oncogenic role for DDR proteins such as DNA-PK and CHK1 during the later stages of tumor development. However, the majority of current cancer therapies induce DNA damage, potentially exacerbating protumorigenic genomic instability and enabling the development of resistance. Therefore, elucidating the molecular basis of DNA damage-mediated genomic instability and its role in tumorigenesis is critical. Finally, I discuss the potential existence of distinct DNA damage thresholds at various stages of tumorigenesis and what the ramifications of such thresholds would be, including the ambiguous role of the DDR pathway in human cancers, therapy-induced malignancies, and enhanced therapies.

  19. Persistent DNA damage caused by low levels of mitomycin C induces irreversible cell senescence.

    PubMed

    McKenna, Elise; Traganos, Frank; Zhao, Hong; Darzynkiewicz, Zbigniew

    2012-08-15

    Mutations of oncogenes and tumor suppressor genes which activate mTOR through several downstream signaling pathways are common to cancer. Activation of mTOR when combined with inhibition of cell cycle progression or DNA replication stress has previously been shown to promote cell senescence. In the present study, we examined the conditions under which human non-small cell lung carcinoma A549 cells can undergo senescence when treated with the DNA alkylating agent mitomycin C (MMC). While exposure of A549 cells to 0.1 or 0.5 µg/ml of MMC led to their arrest in S phase of the cell cycle and subsequent apoptosis, exposure to 0.01 or 0.02 µg/ml for 6 d resulted in induction of cell senescence and near total (0.01 µg/ml) or total (0.02 µg/ml) elimination of their reproductive potential. During exposure to these low concentrations of MMC, the cells demonstrated evidence of DNA replication stress manifested by expression of γH2AX, p21 (WAF1) and a very low level of EdU incorporation into DNA. The data are consistent with the notion that enduring DNA replication stress in cells known to have activated oncogenes leads to their senescence. It is reasonable to expect that tumors having constitutive activation of oncogenes triggering mTOR signaling may be particularly predisposed to undergoing senescence following prolonged treatment with low doses of DNA damaging drugs. PMID:22871735

  20. ISWI chromatin remodeling complexes in the DNA damage response

    PubMed Central

    Aydin, Özge Z; Vermeulen, Wim; Lans, Hannes

    2014-01-01

    Regulation of chromatin structure is an essential component of the DNA damage response (DDR), which effectively preserves the integrity of DNA by a network of multiple DNA repair and associated signaling pathways. Within the DDR, chromatin is modified and remodeled to facilitate efficient DNA access, to control the activity of repair proteins and to mediate signaling. The mammalian ISWI family has recently emerged as one of the major ATP-dependent chromatin remodeling complex families that function in the DDR, as it is implicated in at least 3 major DNA repair pathways: homologous recombination, non-homologous end-joining and nucleotide excision repair. In this review, we discuss the various manners through which different ISWI complexes regulate DNA repair and how they are targeted to chromatin containing damaged DNA. PMID:25486562

  1. ISWI chromatin remodeling complexes in the DNA damage response.

    PubMed

    Aydin, Özge Z; Vermeulen, Wim; Lans, Hannes

    2014-01-01

    Regulation of chromatin structure is an essential component of the DNA damage response (DDR), which effectively preserves the integrity of DNA by a network of multiple DNA repair and associated signaling pathways. Within the DDR, chromatin is modified and remodeled to facilitate efficient DNA access, to control the activity of repair proteins and to mediate signaling. The mammalian ISWI family has recently emerged as one of the major ATP-dependent chromatin remodeling complex families that function in the DDR, as it is implicated in at least 3 major DNA repair pathways: homologous recombination, non-homologous end-joining and nucleotide excision repair. In this review, we discuss the various manners through which different ISWI complexes regulate DNA repair and how they are targeted to chromatin containing damaged DNA.

  2. Spatially localized generation of nucleotide sequence-specific DNA damage.

    PubMed

    Oh, D H; King, B A; Boxer, S G; Hanawalt, P C

    2001-09-25

    Psoralens linked to triplex-forming oligonucleotides (psoTFOs) have been used in conjunction with laser-induced two-photon excitation (TPE) to damage a specific DNA target sequence. To demonstrate that TPE can initiate photochemistry resulting in psoralen-DNA photoadducts, target DNA sequences were incubated with psoTFOs to form triple-helical complexes and then irradiated in liquid solution with pulsed 765-nm laser light, which is half the quantum energy required for conventional one-photon excitation, as used in psoralen + UV A radiation (320-400 nm) therapy. Target DNA acquired strand-specific psoralen monoadducts in a light dose-dependent fashion. To localize DNA damage in a model tissue-like medium, a DNA-psoTFO mixture was prepared in a polyacrylamide gel and then irradiated with a converging laser beam targeting the rear of the gel. The highest number of photoadducts formed at the rear while relatively sparing DNA at the front of the gel, demonstrating spatial localization of sequence-specific DNA damage by TPE. To assess whether TPE treatment could be extended to cells without significant toxicity, cultured monolayers of normal human dermal fibroblasts were incubated with tritium-labeled psoralen without TFO to maximize detectable damage and irradiated by TPE. DNA from irradiated cells treated with psoralen exhibited a 4- to 7-fold increase in tritium activity relative to untreated controls. Functional survival assays indicated that the psoralen-TPE treatment was not toxic to cells. These results demonstrate that DNA damage can be simultaneously manipulated at the nucleotide level and in three dimensions. This approach for targeting photochemical DNA damage may have photochemotherapeutic applications in skin and other optically accessible tissues. PMID:11572980

  3. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    SciTech Connect

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali; Shahverdi, Ahmad Reza; Ahmadi, Abbas; Baeeri, Maryam; Mohammadirad, Azadeh; Abdollahi, Mohammad

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage

  4. Roles of RNA-Binding Proteins in DNA Damage Response.

    PubMed

    Kai, Mihoko

    2016-01-01

    Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR)), and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR) pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, "sensor" proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM)'s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ) pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP) with low complexity domains, called intrinsically disordered proteins (IDPs), and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs) in a poly(ADP-ribose) (PAR)-dependent manner (unpublished data). DNA-dependent PARP1 (poly-(ADP) ribose polymerase 1) makes key contributions in the DNA damage response (DDR) network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as "liquid-demixing"). Among the

  5. Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits.

    PubMed

    Wells, Peter G; McCallum, Gordon P; Lam, Kyla C H; Henderson, Jeffrey T; Ondovcik, Stephanie L

    2010-06-01

    Several teratogenic agents, including ionizing radiation and xenobiotics such as phenytoin, benzo[a]pyrene, thalidomide, and methamphetamine, can initiate the formation of reactive oxygen species (ROS) that oxidatively damage cellular macromolecules including DNA. Oxidative DNA damage, and particularly the most prevalent 8-oxoguanine lesion, may adversely affect development, likely via alterations in gene transcription rather than via a mutational mechanism. Contributions from oxidative DNA damage do not exclude roles for alternative mechanisms of initiation like receptor-mediated processes or the formation of covalent xenobiotic-macromolecular adducts, damage to other macromolecular targets like proteins and lipids, and other effects of ROS like altered signal transduction. Even in the absence of teratogen exposure, endogenous developmental oxidative stress can have embryopathic consequences in the absence of key pathways for detoxifying ROS or repairing DNA damage. Critical proteins in pathways for DNA damage detection/repair signaling, like p53 and ataxia telangiectasia mutated, and DNA repair itself, like oxoguanine glycosylase 1 and Cockayne syndrome B, can often, but not always, protect the embryo from ROS-initiating teratogens. Protection may be variably dependent upon such factors as the nature of the teratogen and its concentration within the embryo, the stage of development, the species, strain, gender, target tissue and cell type, among other factors.

  6. Oxidative status and DNA damage in chidren with marasmic malnutrition.

    PubMed

    Celik, Maruf; Sermatov, Kabil; Abuhandan, Mahmut; Zeyrek, Dost; Kocyigit, Abdurrahim; Iscan, Akin

    2012-05-01

    Malnutrition as a lack of several substances containing antioxidants such as vitamins and micronutrients, while showing a predisposition for lipid peroxidation and DNA damage, is also characterized by a slowing down of the metabolic processes, which may then have protective properties against DNA damage due to a reduction in endogenous free radical production. This study aimed to examine the oxidative status and DNA damage in cases of marasmus. The study comprised 28 infants aged 6-24 months with marasmus only and 28 age-matched healthy infants. DNA damage was examined by the alkali single cell electrophoresis method (Comet assay) on mononuclear leukocytes. The total oxidant status (TOS) and total antioxidant status (TAS) were measured by colormetric auto-analyzer and the oxidative stress index (OSI) was calculated. The TOS, TAS, and OSI levels of the patient group were found to be significantly lower compared to the control group (P < 0.01, P < 0.01, P < 0.01, respectively). No statistically significant difference was found between the two groups in terms of mononuclear leukocyte DNA damage (P > 0.05). The findings of this study showed that in marasmus cases, the oxidative and antioxidative processes, which have a counteractive effect, decreased together. The other results of the study indicate that there is no increase in DNA damage in marasmus cases.

  7. Regulation of the DNA damage response by ubiquitin conjugation

    PubMed Central

    Brinkmann, Kerstin; Schell, Michael; Hoppe, Thorsten; Kashkar, Hamid

    2015-01-01

    In response to DNA damage, cells activate a highly conserved and complex kinase-based signaling network, commonly referred to as the DNA damage response (DDR), to safeguard genomic integrity. The DDR consists of a set of tightly regulated events, including detection of DNA damage, accumulation of DNA repair factors at the site of damage, and finally physical repair of the lesion. Upon overwhelming damage the DDR provokes detrimental cellular actions by involving the apoptotic machinery and inducing a coordinated demise of the damaged cells (DNA damage-induced apoptosis, DDIA). These diverse actions involve transcriptional activation of several genes that govern the DDR. Moreover, recent observations highlighted the role of ubiquitylation in orchestrating the DDR, providing a dynamic cellular regulatory circuit helping to guarantee genomic stability and cellular homeostasis (Popovic et al., 2014). One of the hallmarks of human cancer is genomic instability (Hanahan and Weinberg, 2011). Not surprisingly, deregulation of the DDR can lead to human diseases, including cancer, and can induce resistance to genotoxic anti-cancer therapy (Lord and Ashworth, 2012). Here, we summarize the role of ubiquitin-signaling in the DDR with special emphasis on its role in cancer and highlight the therapeutic value of the ubiquitin-conjugation machinery as a target in anti-cancer treatment strategy. PMID:25806049

  8. Spatially localized generation of nucleotide sequence-specific DNA damage

    PubMed Central

    Oh, Dennis H.; King, Brett A.; Boxer, Steven G.; Hanawalt, Philip C.

    2001-01-01

    Psoralens linked to triplex-forming oligonucleotides (psoTFOs) have been used in conjunction with laser-induced two-photon excitation (TPE) to damage a specific DNA target sequence. To demonstrate that TPE can initiate photochemistry resulting in psoralen–DNA photoadducts, target DNA sequences were incubated with psoTFOs to form triple-helical complexes and then irradiated in liquid solution with pulsed 765-nm laser light, which is half the quantum energy required for conventional one-photon excitation, as used in psoralen + UV A radiation (320–400 nm) therapy. Target DNA acquired strand-specific psoralen monoadducts in a light dose-dependent fashion. To localize DNA damage in a model tissue-like medium, a DNA–psoTFO mixture was prepared in a polyacrylamide gel and then irradiated with a converging laser beam targeting the rear of the gel. The highest number of photoadducts formed at the rear while relatively sparing DNA at the front of the gel, demonstrating spatial localization of sequence-specific DNA damage by TPE. To assess whether TPE treatment could be extended to cells without significant toxicity, cultured monolayers of normal human dermal fibroblasts were incubated with tritium-labeled psoralen without TFO to maximize detectable damage and irradiated by TPE. DNA from irradiated cells treated with psoralen exhibited a 4- to 7-fold increase in tritium activity relative to untreated controls. Functional survival assays indicated that the psoralen–TPE treatment was not toxic to cells. These results demonstrate that DNA damage can be simultaneously manipulated at the nucleotide level and in three dimensions. This approach for targeting photochemical DNA damage may have photochemotherapeutic applications in skin and other optically accessible tissues. PMID:11572980

  9. DNA Damage Response Genes and the Development of Cancer Metastasis

    PubMed Central

    Broustas, Constantinos G.; Lieberman, Howard B.

    2014-01-01

    DNA damage response genes play vital roles in the maintenance of a healthy genome. Defects in cell cycle checkpoint and DNA repair genes, especially mutation or aberrant downregulation, are associated with a wide spectrum of human disease, including a predisposition to the development of neurodegenerative conditions and cancer. On the other hand, upregulation of DNA damage response and repair genes can also cause cancer, as well as increase resistance of cancer cells to DNA damaging therapy. In recent years, it has become evident that many of the genes involved in DNA damage repair have additional roles in tumorigenesis, most prominently by acting as transcriptional (co-) factors. Although defects in these genes are causally connected to tumor initiation, their role in tumor progression is more controversial and it seems to depend on tumor type. In some tumors like melanoma, cell cycle checkpoint/DNA repair gene upregulation is associated with tumor metastasis, whereas in a number of other cancers the opposite has been observed. Several genes that participate in the DNA damage response, such as RAD9, PARP1, BRCA1, ATM and TP53 have been associated with metastasis by a number of in vitro biochemical and cellular assays, by examining human tumor specimens by immunohistochemistry or by DNA genomewide gene expression profiling. Many of these genes act as transcriptional effectors to regulate other genes implicated in the pathogenesis of cancer. Furthermore, they are aberrantly expressed in numerous human tumors and are causally related to tumorigenesis. However, whether the DNA damage repair function of these genes is required to promote metastasis or another activity is responsible (e.g., transcription control) has not been determined. Importantly, despite some compelling in vitro evidence, investigations are still needed to demonstrate the role of cell cycle checkpoint and DNA repair genes in regulating metastatic phenotypes in vivo. PMID:24397478

  10. Conformation and dynamics of normal and damaged DNA.

    PubMed

    Rachofsky, E L; Ross, J B; Osman, R

    2001-12-01

    The genetic information that determines the structure and function of living organisms is encoded in the nucleotide sequence of double-stranded DNA molecules. Despite an apparent structural homogeneity displayed by DNA, subtle local variations in structure and dynamics are functionally significant. Short sequences exhibit specificity for regulatory and catalytic proteins, which mediate fundamental processes necessary to the survival of the cell. However, the molecular basis for specific recognition is still incompletely understood. The "indirect readout" mechanism suggests that the relative propensity of DNA to undergo structural deformations induced by the protein contributes to specific protein-DNA recognition. Although the hypothesis was originally formulated to explain recognition of specific nucleic acid sequences by DNA-binding proteins, it may have particular application to the recognition of DNA damage, because damaged sites in DNA have different equilibrium structure and dynamics from undamaged DNA. In this work, we review the approaches that we took to investigate the questions of sequence- and damage-dependent structure and dynamics of DNA. We describe a statistical thermodynamic model that relates DNA configurational flexibility to sequence-specific protein-DNA binding. The model provides a theoretical basis for interpreting experimental measurements of DNA dynamics. We describe results from MCSCF calculations of the excited states of 2-aminopurine (2AP), which provide the theoretical basis for the intramolecular mechanism of quenching as well as the effect of environment on this process. We then describe our investigations of the effect of stacking, base pairing, and base dynamics on the fluorescence of 2-AP in model systems, which allow us to develop the relationships between steady-state and time-resolved fluorescence parameters on the one hand and local structural and dynamic properties of DNA on the other hand. Finally, we describe the application

  11. Imaging the DNA Alkylator Melphalan by CEST MRI: An Advanced Approach to Theranostics.

    PubMed

    Ngen, Ethel J; Bar-Shir, Amnon; Jablonska, Anna; Liu, Guanshu; Song, Xiaolei; Ansari, Roxana; Bulte, Jeff W M; Janowski, Miroslaw; Pearl, Monica; Walczak, Piotr; Gilad, Assaf A

    2016-09-01

    Brain tumors are among the most lethal types of tumors. Therapeutic response variability and failure in patients have been attributed to several factors, including inadequate drug delivery to tumors due to the blood-brain barrier (BBB). Consequently, drug delivery strategies are being developed for the local and targeted delivery of drugs to brain tumors. These drug delivery strategies could benefit from new approaches to monitor the delivery of drugs to tumors. Here, we evaluated the feasibility of imaging 4-[bis(2-chloroethyl)amino]-l-phenylalanine (melphalan), a clinically used DNA alkylating agent, using chemical exchange saturation transfer magnetic resonance imaging (CEST MRI), for theranostic applications. We evaluated the physicochemical parameters that affect melphalan's CEST contrast and demonstrated the feasibility of imaging the unmodified drug by saturating its exchangeable amine protons. Melphalan generated a CEST signal despite its reactivity in an aqueous milieu. The maximum CEST signal was observed at pH 6.2. This CEST contrast trend was then used to monitor therapeutic responses to melphalan in vitro. Upon cell death, the decrease in cellular pH from ∼7.4 to ∼6.4 caused an amplification of the melphalan CEST signal. This is contrary to what has been reported for other CEST contrast agents used for imaging cell death, where a decrease in the cellular pH following cell death results in a decrease in the CEST signal. Ultimately, this method could be used to noninvasively monitor melphalan delivery to brain tumors and also to validate therapeutic responses to melphalan clinically. PMID:27398883

  12. Circadian Modulation of 8-Oxoguanine DNA Damage Repair

    PubMed Central

    Manzella, Nicola; Bracci, Massimo; Strafella, Elisabetta; Staffolani, Sara; Ciarapica, Veronica; Copertaro, Alfredo; Rapisarda, Venerando; Ledda, Caterina; Amati, Monica; Valentino, Matteo; Tomasetti, Marco; Stevens, Richard G.; Santarelli, Lory

    2015-01-01

    The DNA base excision repair pathway is the main system involved in the removal of oxidative damage to DNA such as 8-Oxoguanine (8-oxoG) primarily via the 8-Oxoguanine DNA glycosylase (OGG1). Our goal was to investigate whether the repair of 8-oxoG DNA damage follow a circadian rhythm. In a group of 15 healthy volunteers, we found a daily variation of Ogg1 expression and activity with higher levels in the morning compared to the evening hours. Consistent with this, we also found lower levels of 8-oxoG in morning hours compared to those in the evening hours. Lymphocytes exposed to oxidative damage to DNA at 8:00 AM display lower accumulation of 8-oxoG than lymphocytes exposed at 8:00 PM. Furthermore, altered levels of Ogg1 expression were also observed in a group of shift workers experiencing a deregulation of circadian clock genes compared to a control group. Moreover, BMAL1 knockdown fibroblasts with a deregulated molecular clock showed an abolishment of circadian variation of Ogg1 expression and an increase of OGG1 activity. Our results suggest that the circadian modulation of 8-oxoG DNA damage repair, according to a variation of Ogg1 expression, could render humans less susceptible to accumulate 8-oxoG DNA damage in the morning hours. PMID:26337123

  13. DNA damage in mouse lymphocytes exposed to curcumin and copper.

    PubMed

    Urbina-Cano, Patricia; Bobadilla-Morales, Lucina; Ramírez-Herrera, Mario A; Corona-Rivera, Jorge R; Mendoza-Magaña, Maria L; Troyo-Sanromán, Rogelio; Corona-Rivera, Alfredo

    2006-01-01

    Dietary polyphenolics, such as curcumin, have shown antioxidant and anti-inflammatory effects. Some antioxidants cause DNA strand breaks in excess of transition metal ions, such as copper. The aim of this study was to evaluate the in vitro effect of curcumin in the presence of increasing concentrations of copper to induce DNA damage in murine leukocytes by the comet assay. Balb-C mouse lymphocytes were exposed to 50 microM curcumin and various concentrations of copper (10 microM, 100 microM and 200 microM). Cellular DNA damage was detected by means of the alkaline comet assay. Our results show that 50 microM curcumin in the presence of 100-200 microM copper induced DNA damage in murine lymphocytes. Curcumin did not inhibit the oxidative DNA damage caused by 50 microM H2O2 in mouse lymphocytes. Moreover, 50 microM curcumin alone was capable of inducing DNA strand breaks under the tested conditions. The increased DNA damage by 50 mM curcumin was observed in the presence of various concentrations of copper, as detected by the alkaline comet assay. PMID:17132903

  14. Oxidative DNA damage induced by aminoacetone, an amino acid metabolite.

    PubMed

    Hiraku, Y; Sugimoto, J; Yamaguchi, T; Kawanishi, S

    1999-05-01

    We investigated DNA damage induced by aminoacetone, a metabolite of threonine and glycine. Pulsed-field gel electrophoresis revealed that aminoacetone caused cellular DNA cleavage. Aminoacetone increased the amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in human cultured cells in a dose-dependent manner. The formation of 8-oxodG in calf thymus DNA increased due to aminoacetone only in the presence of Cu(II). DNA ladder formation was observed at higher concentrations of aminoacetone than those causing DNA cleavage. Flow cytometry showed that aminoacetone enhanced the generation of hydrogen peroxide (H2O2) in cultured cells. Aminoacetone caused damage to 32P-5'-end-labeled DNA fragments, obtained from the human c-Ha-ras-1 and p53 genes, at cytosine and thymine residues in the presence of Cu(II). Catalase and bathocuproine inhibited DNA damage, suggesting that H2O2 and Cu(I) were involved. Analysis of the products generated from aminoacetone revealed that aminoacetone underwent Cu(II)-mediated autoxidation in two different pathways: the major pathway in which methylglyoxal and NH+4 are generated and the minor pathway in which 2,5-dimethylpyrazine is formed through condensation of two molecules of aminoacetone. These findings suggest that H2O2 generated by the autoxidation of aminoacetone reacts with Cu(I) to form reactive species capable of causing oxidative DNA damage.

  15. Comparison of DNA damage by methylmelamines and formaldehyde

    SciTech Connect

    Ross, W.E.; McMillan, D.R.; Ross, C.F.

    1981-07-01

    The cytotoxicity and DNA damaging activity of S9-activated hexamethylmelamine (HMM) and pentamethylmelamine (PMM) were compared with suspected active metabolites in mouse leukemia L1210 cells. Following treatment of L1210 cells with high concentrations of activated HMM and PMM, there were no DNA single-strand breaks or interstrand cross-links observed by DNA alkaline elution and only a low frequency of DNA-protein cross-links. Formaldehyde (FA) at nonlethal concentrations caused far greater DNA-protein cross-linking. The cytotoxicities of HMM and PMM were found unlikely to be related to extracellular or intracellular release of FA.

  16. Loss of ubiquitin E2 Ube2w rescues hypersensitivity of Rnf4 mutant cells to DNA damage

    PubMed Central

    Maure, Jean-François; Moser, Sandra C.; Jaffray, Ellis G.; F. Alpi, Arno; Hay, Ronald T.

    2016-01-01

    SUMO and ubiquitin play important roles in the response of cells to DNA damage. These pathways are linked by the SUMO Targeted ubiquitin Ligase Rnf4 that catalyses transfer of ubiquitin from a ubiquitin loaded E2 conjugating enzyme to a polySUMO modified substrate. Rnf4 can functionally interact with multiple E2s, including Ube2w, in vitro. Chicken cells lacking Rnf4 are hypersensitive to hyroxyurea, DNA alkylating drugs and DNA crosslinking agents, but this sensitivity is suppressed by simultaneous depletion of Ube2w. Cells depleted of Ube2w alone are not hypersensitive to the same DNA damaging agents. Similar results were also obtained in human cells. These data indicate that Ube2w does not have an essential role in the DNA damage response, but is deleterious in the absence of Rnf4. Thus, although Rnf4 and Ube2w functionally interact in vitro, our genetic experiments indicate that in response to DNA damage Ube2w and Rnf4 function in distinct pathways. PMID:27185577

  17. T7 replisome directly overcomes DNA damage

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Pandey, Manjula; Inman, James T.; Yang, Yi; Kashlev, Mikhail; Patel, Smita S.; Wang, Michelle D.

    2015-12-01

    Cells and viruses possess several known `restart' pathways to overcome lesions during DNA replication. However, these `bypass' pathways leave a gap in replicated DNA or require recruitment of accessory proteins, resulting in significant delays to fork movement or even cell division arrest. Using single-molecule and ensemble methods, we demonstrate that the bacteriophage T7 replisome is able to directly replicate through a leading-strand cyclobutane pyrimidine dimer (CPD) lesion. We show that when a replisome encounters the lesion, a substantial fraction of DNA polymerase (DNAP) and helicase stay together at the lesion, the replisome does not dissociate and the helicase does not move forward on its own. The DNAP is able to directly replicate through the lesion by working in conjunction with helicase through specific helicase-DNAP interactions. These observations suggest that the T7 replisome is fundamentally permissive of DNA lesions via pathways that do not require fork adjustment or replisome reassembly.

  18. T7 replisome directly overcomes DNA damage

    PubMed Central

    Sun, Bo; Pandey, Manjula; Inman, James T.; Yang, Yi; Kashlev, Mikhail; Patel, Smita S.; Wang, Michelle D.

    2015-01-01

    Cells and viruses possess several known ‘restart' pathways to overcome lesions during DNA replication. However, these ‘bypass' pathways leave a gap in replicated DNA or require recruitment of accessory proteins, resulting in significant delays to fork movement or even cell division arrest. Using single-molecule and ensemble methods, we demonstrate that the bacteriophage T7 replisome is able to directly replicate through a leading-strand cyclobutane pyrimidine dimer (CPD) lesion. We show that when a replisome encounters the lesion, a substantial fraction of DNA polymerase (DNAP) and helicase stay together at the lesion, the replisome does not dissociate and the helicase does not move forward on its own. The DNAP is able to directly replicate through the lesion by working in conjunction with helicase through specific helicase–DNAP interactions. These observations suggest that the T7 replisome is fundamentally permissive of DNA lesions via pathways that do not require fork adjustment or replisome reassembly. PMID:26675048

  19. DNA damage induced by a new 2-chloroethyl nitrosourea on malignant melanoma cells.

    PubMed

    Godeneche, D; Rapp, M; Thierry, A; Laval, F; Madelmont, J C; Chollet, P; Veyre, A

    1990-09-15

    Different biological aspects of a novel 2-chloroethyl nitrosourea derived from cysteamine, N'-(2-chloroethyl)-N-[2-(methylsulfinyl)ethyl]-N'- nitrosourea (CMSOEN2), were studied. Drug-induced cytotoxic effects, uptake kinetics, DNA damage, and O6-alkylguanine-DNA alkyltransferase activity were determined in 3 melanoma cell lines: the murine B16 and 2 human metastatic-derived cell lines (M4 Beu and M3 Dau). We found that radioactivity uptake and incorporation in acido-precipitable material was inversely proportional to cell drug viability. The highly CMSOEN2-sensitive B16 line showed the lowest total radioactivity uptake. In fact, among the melanoma cell parameters studied, 3 of them were well correlated: (a) cytotoxicity as reflected by the colony-forming assay; (b) DNA cross-link frequency estimated by the alkaline elution technique; and (c) O6-alkylguanine-DNA alkyltransferase activity (Mer phenotype), defined as the ability of cell extracts to remove O6-methylguanine from N-methyl-N-nitrosourea-alkylated DNA. The 2 human cell lines (M4 Beu and M3 Dau), the most resistant to the cytostatic drug effects, showed little or no ability to form DNA lethal cross-links. These results correspond to the higher O6-alkylguanine-DNA alkyltransferase activity found in human-derived cell lines compared with that present in murine B16 cell lines. This study confirms that the cell content in this repair DNA protein is certainly one of the important factors implicated in the variability of response to 2-chloroethyl nitrosourea treatment observed in a number of established malignant cell lines. It has been shown that pretreatment of derived cell lines with methylating agents (N-methyl-N-nitrosourea, N-methyl-N'-nitro-N-nitrosoguanidine) or O6-methylguanine used as a free base, increased cytotoxic effects of this class of anticancer agents, likely by saturating receptor sites (sulfhydryl groups) of this specific DNA repair enzyme. Nevertheless, in preliminary Phase I and II clinical

  20. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L.

    PubMed

    Achary, V Mohan Murali; Jena, Suprava; Panda, Kamal K; Panda, Brahma B

    2008-06-01

    Aluminium (Al) was evaluated for induction of oxidative stress and DNA damage employing the growing roots of Allium cepa L. as the assay system. Intact roots of A. cepa were treated with different concentrations, 0, 1, 10, 50, 100, or 200 microM of aluminium chloride, at pH 4.5 for 4 h (or 2 h for comet assay) at room temperature, 25+/-1 degrees C. Following treatment the parameters investigated in root tissue were Al-uptake, cell death, extra cellular generation of reactive oxygen intermediates (ROI), viz. O(2)(*-), H(2)O(2) and (*)OH, lipid peroxidation, protein oxidation, activities of antioxidant enzymes namely catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX); and DNA damage, assessed by comet assay. The findings indicated that Al triggered generation of extra-cellular ROI following a dose-response. Through application of specific enzyme inhibitors it was demonstrated that extra-cellular generation of ROI was primarily due to the activity of cell wall bound NADH-PX. Generation of ROI in root tissue as well as cell death was better correlated to the levels of root Al-uptake rather than to the concentrations of Al in ambient experimental solutions. Induction of lipid peroxidation and protein oxidation by Al were statistically significant. Whereas Al inhibited CAT activity, enhanced SOD, GPX and APX activities significantly; that followed dose-response. Comet assay provided evidence that Al induced DNA damage in a range of concentrations 50-200 microM, which was comparable to that induced by ethylmethane sulfonate (EMS), an alkylating mutagen served as the positive control. The findings provided evidence that Al comparable to biotic stress induced oxidative burst at the cell surface through up- or down-regulation of some of the key enzymes of oxidative metabolism ultimately resulting in oxidative stress leading to DNA damage and cell death in root cells of A. cepa. PMID:18068230

  1. The DNA-damage response in human biology and disease

    PubMed Central

    Jackson, Stephen P.; Bartek, Jiri

    2010-01-01

    The prime objective for every life-form is to deliver its genetic material, intact and unchanged, to the next generation. This must be achieved despite constant assaults by endogenous and environmental agents on the DNA. To counter this threat, life has evolved several systems to detect DNA damage, signal its presence and mediate its repair. Such responses, which impact a wide range of cellular events, are biologically significant because they prevent diverse human diseases. Our improving understanding of DNA-damage responses is providing new avenues for disease management. PMID:19847258

  2. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation

    PubMed Central

    Brand, Marjorie; Moggs, Jonathan G.; Oulad-Abdelghani, Mustapha; Lejeune, Fabrice; Dilworth, F.Jeffrey; Stevenin, James; Almouzni, Geneviève; Tora, Làszlò

    2001-01-01

    Initiation of transcription of protein-encoding genes by RNA polymerase II (Pol II) was thought to require transcription factor TFIID, a complex comprised of the TATA box-binding protein (TBP) and TBP-associated factors (TAFIIs). In the presence of TBP-free TAFII complex (TFTC), initiation of Pol II transcription can occur in the absence of TFIID. TFTC containing the GCN5 acetyltransferase acetylates histone H3 in a nucleosomal context. We have identified a 130 kDa subunit of TFTC (SAP130) that shares homology with the large subunit of UV-damaged DNA-binding factor. TFTC preferentially binds UV-irradiated DNA, UV-damaged DNA inhibits TFTC-mediated Pol II transcription and TFTC is recruited in parallel with the nucleotide excision repair protein XP-A to UV-damaged DNA. TFTC preferentially acetylates histone H3 in nucleosomes assembled on UV-damaged DNA. In agreement with this, strong histone H3 acetylation occurs in intact cells after UV irradiation. These results suggest that the access of DNA repair machinery to lesions within chromatin may be facilitated by TFTC via covalent modification of chromatin. Thus, our experiments reveal a molecular link between DNA damage recognition and chromatin modification. PMID:11406595

  3. DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors

    PubMed Central

    Francia, Sofia; Cabrini, Matteo; Matti, Valentina; Oldani, Amanda; d'Adda di Fagagna, Fabrizio

    2016-01-01

    ABSTRACT The DNA damage response (DDR) plays a central role in preserving genome integrity. Recently, we reported that the endoribonucleases DICER and DROSHA contribute to DDR activation by generating small non-coding RNAs, termed DNA damage response RNA (DDRNA), carrying the sequence of the damaged locus. It is presently unclear whether DDRNAs act by promoting the primary recognition of DNA lesions or the secondary recruitment of DDR factors into cytologically detectable foci and consequent signal amplification. Here, we demonstrate that DICER and DROSHA are dispensable for primary recruitment of the DDR sensor NBS1 to DNA damage sites. Instead, the accumulation of the DDR mediators MDC1 and 53BP1 (also known as TP53BP1), markers of secondary recruitment, is reduced in DICER- or DROSHA-inactivated cells. In addition, NBS1 (also known as NBN) primary recruitment is resistant to RNA degradation, consistent with the notion that RNA is dispensable for primary recognition of DNA lesions. We propose that DICER, DROSHA and DDRNAs act in the response to DNA damage after primary recognition of DNA lesions and, together with γH2AX, are essential for enabling the secondary recruitment of DDR factors and fuel the amplification of DDR signaling. PMID:26906421

  4. DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors.

    PubMed

    Francia, Sofia; Cabrini, Matteo; Matti, Valentina; Oldani, Amanda; d'Adda di Fagagna, Fabrizio

    2016-04-01

    The DNA damage response (DDR) plays a central role in preserving genome integrity. Recently, we reported that the endoribonucleases DICER and DROSHA contribute to DDR activation by generating small non-coding RNAs, termed DNA damage response RNA (DDRNA), carrying the sequence of the damaged locus. It is presently unclear whether DDRNAs act by promoting the primary recognition of DNA lesions or the secondary recruitment of DDR factors into cytologically detectable foci and consequent signal amplification. Here, we demonstrate that DICER and DROSHA are dispensable for primary recruitment of the DDR sensor NBS1 to DNA damage sites. Instead, the accumulation of the DDR mediators MDC1 and 53BP1 (also known as TP53BP1), markers of secondary recruitment, is reduced in DICER- or DROSHA-inactivated cells. In addition, NBS1 (also known as NBN) primary recruitment is resistant to RNA degradation, consistent with the notion that RNA is dispensable for primary recognition of DNA lesions. We propose that DICER, DROSHA and DDRNAs act in the response to DNA damage after primary recognition of DNA lesions and, together with γH2AX, are essential for enabling the secondary recruitment of DDR factors and fuel the amplification of DDR signaling. PMID:26906421

  5. Real-time damage monitoring of irradiated DNA.

    PubMed

    Pješčić, Ilija; Tranter, Collin A; Haywood, James C; Paidipalli, Manasa; Ganveer, Ankur; Haywood, Stratton E; Tham, Jessica; Crews, Niel D

    2011-09-01

    This article presents a microfluidic technique for the real-time analysis of DNA damage due to radiation exposure. A continuous-flow spatial melting analysis was performed every three seconds on a sample of isolated DNA while it was being irradiated. The formation of photoproducts being caused by the UV-C radiation was monitored during the process. Cumulative damage produced distinct changes in the DNA melting curves, characterized by a shifting and broadening of the melting peaks. The design of the microfluidic device, the experimental procedure, and the analysis algorithm and interactive GUI are discussed herein. In addition, the advantages of this system are correlated to specific needs of related scientific studies, such as the investigation of sequence-specific damage susceptibility and the characterization of exposure-damage nonlinearities.

  6. Bacterial natural transformation by highly fragmented and damaged DNA.

    PubMed

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic A A; Mayar, J Victor Moreno; Rasmussen, Simon; Dahl, Tais W; Rosing, Minik T; Poole, Anthony M; Sicheritz-Ponten, Thomas; Brunak, Søren; Inselmann, Sabrina; de Vries, Johann; Wackernagel, Wilfried; Pybus, Oliver G; Nielsen, Rasmus; Johnsen, Pål Jarle; Nielsen, Kaare Magne; Willerslev, Eske

    2013-12-01

    DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often <100 bp) and may persist in the environment for more than half a million years. Fragmented DNA is recognized as nutrient source for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥ 20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations generated by uptake of short DNA fragments escape mismatch repair. Moreover, double-nucleotide polymorphisms appear more common among genomes of transformable than nontransformable bacteria. Our findings reveal that short and damaged, including truly ancient, DNA molecules, which are present in large quantities in the environment, can be acquired by bacteria through natural transformation. Our findings open for the possibility that natural genetic exchange can occur with DNA up to several hundreds of thousands years old.

  7. Bacterial natural transformation by highly fragmented and damaged DNA.

    PubMed

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic A A; Mayar, J Victor Moreno; Rasmussen, Simon; Dahl, Tais W; Rosing, Minik T; Poole, Anthony M; Sicheritz-Ponten, Thomas; Brunak, Søren; Inselmann, Sabrina; de Vries, Johann; Wackernagel, Wilfried; Pybus, Oliver G; Nielsen, Rasmus; Johnsen, Pål Jarle; Nielsen, Kaare Magne; Willerslev, Eske

    2013-12-01

    DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often <100 bp) and may persist in the environment for more than half a million years. Fragmented DNA is recognized as nutrient source for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥ 20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations generated by uptake of short DNA fragments escape mismatch repair. Moreover, double-nucleotide polymorphisms appear more common among genomes of transformable than nontransformable bacteria. Our findings reveal that short and damaged, including truly ancient, DNA molecules, which are present in large quantities in the environment, can be acquired by bacteria through natural transformation. Our findings open for the possibility that natural genetic exchange can occur with DNA up to several hundreds of thousands years old. PMID:24248361

  8. Bacterial natural transformation by highly fragmented and damaged DNA

    PubMed Central

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic A. A.; Mayar, J. Victor Moreno; Rasmussen, Simon; Dahl, Tais W.; Rosing, Minik T.; Poole, Anthony M.; Sicheritz-Ponten, Thomas; Brunak, Søren; Inselmann, Sabrina; de Vries, Johann; Wackernagel, Wilfried; Pybus, Oliver G.; Nielsen, Rasmus; Johnsen, Pål Jarle; Nielsen, Kaare Magne; Willerslev, Eske

    2013-01-01

    DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often <100 bp) and may persist in the environment for more than half a million years. Fragmented DNA is recognized as nutrient source for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations generated by uptake of short DNA fragments escape mismatch repair. Moreover, double-nucleotide polymorphisms appear more common among genomes of transformable than nontransformable bacteria. Our findings reveal that short and damaged, including truly ancient, DNA molecules, which are present in large quantities in the environment, can be acquired by bacteria through natural transformation. Our findings open for the possibility that natural genetic exchange can occur with DNA up to several hundreds of thousands years old. PMID:24248361

  9. DNA damage in internal organs after cutaneous exposure to sulphur mustard

    SciTech Connect

    Batal, Mohamed; Boudry, Isabelle; Mouret, Stéphane; Cléry-Barraud, Cécile; Wartelle, Julien; Bérard, Izabel

    2014-07-01

    Sulphur mustard (SM) is a chemical warfare agent that attacks mainly skin, eye and lungs. Due to its lipophilic properties, SM is also able to diffuse through the skin and reach internal organs. DNA represents one of the most critical molecular targets of this powerful alkylating agent which modifies DNA structure by forming monoadducts and biadducts. These DNA lesions are involved in the acute toxicity of SM as well as its long-term carcinogenicity. In the present work we studied the formation and persistence of guanine and adenine monoadducts and guanine biadducts in the DNA of brain, lungs, kidneys, spleen, and liver of SKH-1 mice cutaneously exposed to 2, 6 and 60 mg/kg of SM. SM-DNA adducts were detected in all studied organs, except in liver at the two lowest doses. Brain and lungs were the organs with the highest level of SM-DNA adducts, followed by kidney, spleen and liver. Monitoring the level of adducts for three weeks after cutaneous exposure showed that the lifetime of adducts were not the same in all organs, lungs being the organ with the longest persistence. Diffusion from skin to internal organs was much more efficient at the highest compared to the lowest dose investigated as the result of the loss of the skin barrier function. These data provide novel information on the distribution of SM in tissues following cutaneous exposures and indicate that brain is an important target. - Highlights: • Sulphur mustard reaches internal organs after skin exposure • Adducts are detected in the DNA of internal organs • Brain is the organ with the highest level of DNA damage • The barrier function of skin is lost at high dose of sulphur mustard • DNA adducts persist in organs for 2 or 3 weeks.

  10. Repair of Oxidative DNA Damage and Cancer: Recent Progress in DNA Base Excision Repair

    PubMed Central

    Scott, Timothy L.; Rangaswamy, Suganya; Wicker, Christina A.

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) are generated by exogenous and environmental genotoxins, but also arise from mitochondria as byproducts of respiration in the body. ROS generate DNA damage of which pathological consequence, including cancer is well established. Research efforts are intense to understand the mechanism of DNA base excision repair, the primary mechanism to protect cells from genotoxicity caused by ROS. Recent Advances: In addition to the notion that oxidative DNA damage causes transformation of cells, recent studies have revealed how the mitochondrial deficiencies and ROS generation alter cell growth during the cancer transformation. Critical Issues: The emphasis of this review is to highlight the importance of the cellular response to oxidative DNA damage during carcinogenesis. Oxidative DNA damage, including 7,8-dihydro-8-oxoguanine, play an important role during the cellular transformation. It is also becoming apparent that the unusual activity and subcellular distribution of apurinic/apyrimidinic endonuclease 1, an essential DNA repair factor/redox sensor, affect cancer malignancy by increasing cellular resistance to oxidative stress and by positively influencing cell proliferation. Future Directions: Technological advancement in cancer cell biology and genetics has enabled us to monitor the detailed DNA repair activities in the microenvironment. Precise understanding of the intracellular activities of DNA repair proteins for oxidative DNA damage should provide help in understanding how mitochondria, ROS, DNA damage, and repair influence cancer transformation. Antioxid. Redox Signal. 20, 708–726. PMID:23901781

  11. Quantitative PCR for detection of DNA damage in mitochondrial DNA of the fission yeast Schizosaccharomyces pombe.

    PubMed

    Senoo, Takanori; Yamanaka, Mayumi; Nakamura, Atori; Terashita, Tomoki; Kawano, Shinji; Ikeda, Shogo

    2016-08-01

    Quantitative polymerase chain reaction (QPCR) has been employed to detect DNA damage and repair in mitochondrial DNA (mtDNA) of human and several model organisms. The assay also permits the quantitation of relative mtDNA copy number in cells. Here, we developed the QPCR assay primers and reaction conditions for the fission yeast Schizosaccharomyces pombe, an important model of eukaryote biology, not previously described. Under these conditions, long targets (approximately 10kb) in mtDNA were quantitatively amplified using 0.1ng of crude DNA templates without isolation of mitochondria and mtDNA. Quantitative detection of oxidative DNA damage in mtDNA was illustrated by using a DNA template irradiated with UVA in the presence of riboflavin. The damage to mtDNA in S. pombe cells treated with hydrogen peroxide and paraquat was also quantitatively measured. Finally, we found that mtDNA copy number in S. pombe cells increased after transition into a stationary phase and that the damage to mtDNA due to endogenous cellular processes accumulated during chronological aging.

  12. Higher order DNA structure and radiation damage

    SciTech Connect

    Oleinick, N.L.; Chiu, S.M.; Xue, L.Y.; Friedman, L.R.; Balasubramaniam, U.

    1995-12-31

    Work until now has implicated chromatin structure and/or chromatin proteins as both radioprotectors of cellular DNA for double-strand breaks (DSB) induction and substrates for DNA-protein crosslinks (DPC) production. In the present study, the authors have attempted further to differentiate between the possible roles of chromatin proteins by reconstitution of chromatin. One or more hypertonic salt extracts or commercial histones were added back to dehistonized nuclei, following which the preparations were irradiated and the yields of DPC and DSB were measured.

  13. Both genetic and dietary factors underlie individual differences in DNA damage levels and DNA repair capacity.

    PubMed

    Slyskova, Jana; Lorenzo, Yolanda; Karlsen, Anette; Carlsen, Monica H; Novosadova, Vendula; Blomhoff, Rune; Vodicka, Pavel; Collins, Andrew R

    2014-04-01

    The interplay between dietary habits and individual genetic make-up is assumed to influence risk of cancer, via modulation of DNA integrity. Our aim was to characterize internal and external factors that underlie inter-individual variability in DNA damage and repair and to identify dietary habits beneficial for maintaining DNA integrity. Habitual diet was estimated in 340 healthy individuals using a food frequency questionnaire and biomarkers of antioxidant status were quantified in fasting blood samples. Markers of DNA integrity were represented by DNA strand breaks, oxidized purines, oxidized pyrimidines and a sum of all three as total DNA damage. DNA repair was characterized by genetic variants and functional activities of base and nucleotide excision repair pathways. Sex, fruit-based food consumption and XPG genotype were factors significantly associated with the level of DNA damage. DNA damage was higher in women (p=0.035). Fruit consumption was negatively associated with the number of all measured DNA lesions, and this effect was mediated mostly by β-cryptoxanthin and β-tocopherol (p<0.05). XPG 1104His homozygotes appeared more vulnerable to DNA damage accumulation (p=0.001). Sex and individual antioxidants were also associated with DNA repair capacity; both the base and nucleotide excision repairs were lower in women and the latter increased with higher plasma levels of ascorbic acid and α-carotene (p<0.05). We have determined genetic and dietary factors that modulate DNA integrity. We propose that the positive health effect of fruit intake is partially mediated via DNA damage suppression and a simultaneous increase in DNA repair capacity. PMID:24674629

  14. DNA Damage in Chronic Kidney Disease: Evaluation of Clinical Biomarkers

    PubMed Central

    Schupp, Nicole; Stopper, Helga; Heidland, August

    2016-01-01

    Patients with chronic kidney disease (CKD) exhibit an increased cancer risk compared to a healthy control population. To be able to estimate the cancer risk of the patients and to assess the impact of interventional therapies thereon, it is of particular interest to measure the patients' burden of genomic damage. Chromosomal abnormalities, reduced DNA repair, and DNA lesions were found indeed in cells of patients with CKD. Biomarkers for DNA damage measurable in easily accessible cells like peripheral blood lymphocytes are chromosomal aberrations, structural DNA lesions, and oxidatively modified DNA bases. In this review the most common methods quantifying the three parameters mentioned above, the cytokinesis-block micronucleus assay, the comet assay, and the quantification of 8-oxo-7,8-dihydro-2′-deoxyguanosine, are evaluated concerning the feasibility of the analysis and regarding the marker's potential to predict clinical outcomes. PMID:27313827

  15. NBS1 and multiple regulations of DNA damage response

    PubMed Central

    Komatsu, Kenshi

    2016-01-01

    DNA damage response is finely tuned, with several pathways including those for DNA repair, chromatin remodeling and cell cycle checkpoint, although most studies to date have focused on single pathways. Genetic diseases characterized by genome instability have provided novel insights into the underlying mechanisms of DNA damage response. NBS1, a protein responsible for the radiation-sensitive autosomal recessive disorder Nijmegen breakage syndrome, is one of the first factors to accumulate at sites of DNA double-strand breaks (DSBs). NBS1 binds to at least five key proteins, including ATM, RPA, MRE11, RAD18 and RNF20, in the conserved regions within a limited span of the C terminus, functioning in the regulation of chromatin remodeling, cell cycle checkpoint and DNA repair in response to DSBs. In this article, we reviewed the functions of these binding proteins and their comprehensive association with NBS1. PMID:27068998

  16. Actinic DNA damage and the pathogenesis of cutaneous malignant melanoma.

    PubMed

    Ross, P M; Carter, D M

    1989-05-01

    The near epidemic of melanoma and non-melanoma skin cancer in the United States and certain other industrialized nations is attributable to cutaneous exposure to sunlight more than to any other factor. Chronic exposure to UV irradiation and a high total cumulative dose may be less deleterious than are periodic bursts of large amounts of sun exposure leading to severe sunburn. Such an exposure pattern is characteristic of individuals such as office workers whose outdoor activities are irregular rather than daily, as with farmers or fisherman. Although UV irradiation is injurious to many cellular elements, the mechanisms underlying UV-mediated skin cancer are thought to be most likely related to DNA damage to cutaneous cells. Various types of UV-induced DNA damage have been identified, and they differ in biologic significance. Damage which is apt to be most cytotoxic is probably less effective as an inducer of skin cancer than is more subtle damage, which is tolerated but can initiate malignant transformation. Repair of DNA damage involves specific cellular activities which vary in their effectiveness in restoring cutaneous cell function to normal. Other biologic effects of UV irradiation may contribute to the development of skin cancer through effects on such defenses as pigmentation and the immune response. Sun-induced damage to DNA, however, is apparently necessary. Biologic consequences of dangerous environmental exposure to UV irradiation can be modulated by changes in life-style, the depth of the ozone layer, use of sunscreens, and possibly by hormones or their synthetic analogs.

  17. PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage.

    PubMed

    Riccio, Amanda A; Cingolani, Gino; Pascal, John M

    2016-02-29

    Poly(ADP-ribose) polymerase-2 (PARP-2) is one of three human PARP enzymes that are potently activated during the cellular DNA damage response (DDR). DDR-PARPs detect DNA strand breaks, leading to a dramatic increase in their catalytic production of the posttranslational modification poly(ADP-ribose) (PAR) to facilitate repair. There are limited biochemical and structural insights into the functional domains of PARP-2, which has restricted our understanding of how PARP-2 is specialized toward specific repair pathways. PARP-2 has a modular architecture composed of a C-terminal catalytic domain (CAT), a central Trp-Gly-Arg (WGR) domain and an N-terminal region (NTR). Although the NTR is generally considered the key DNA-binding domain of PARP-2, we report here that all three domains of PARP-2 collectively contribute to interaction with DNA damage. Biophysical, structural and biochemical analyses indicate that the NTR is natively disordered, and is only required for activation on specific types of DNA damage. Interestingly, the NTR is not essential for PARP-2 localization to sites of DNA damage. Rather, the WGR and CAT domains function together to recruit PARP-2 to sites of DNA breaks. Our study differentiates the functions of PARP-2 domains from those of PARP-1, the other major DDR-PARP, and highlights the specialization of the multi-domain architectures of DDR-PARPs.

  18. Activation of the DNA Damage Response by RNA Viruses

    PubMed Central

    Ryan, Ellis L.; Hollingworth, Robert; Grand, Roger J.

    2016-01-01

    RNA viruses are a genetically diverse group of pathogens that are responsible for some of the most prevalent and lethal human diseases. Numerous viruses introduce DNA damage and genetic instability in host cells during their lifecycles and some species also manipulate components of the DNA damage response (DDR), a complex and sophisticated series of cellular pathways that have evolved to detect and repair DNA lesions. Activation and manipulation of the DDR by DNA viruses has been extensively studied. It is apparent, however, that many RNA viruses can also induce significant DNA damage, even in cases where viral replication takes place exclusively in the cytoplasm. DNA damage can contribute to the pathogenesis of RNA viruses through the triggering of apoptosis, stimulation of inflammatory immune responses and the introduction of deleterious mutations that can increase the risk of tumorigenesis. In addition, activation of DDR pathways can contribute positively to replication of viral RNA genomes. Elucidation of the interactions between RNA viruses and the DDR has provided important insights into modulation of host cell functions by these pathogens. This review summarises the current literature regarding activation and manipulation of the DDR by several medically important RNA viruses. PMID:26751489

  19. Involvement of DNA Damage Response Pathways in Hepatocellular Carcinoma

    PubMed Central

    Yang, Sheau-Fang; Wei, Ren-Jie; Shiue, Yow-Ling; Wang, Shen-Nien

    2014-01-01

    Hepatocellular carcinoma (HCC) has been known as one of the most lethal human malignancies, due to the difficulty of early detection, chemoresistance, and radioresistance, and is characterized by active angiogenesis and metastasis, which account for rapid recurrence and poor survival. Its development has been closely associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Genetic alterations and genomic instability, probably resulted from unrepaired DNA lesions, are increasingly recognized as a common feature of human HCC. Dysregulation of DNA damage repair and signaling to cell cycle checkpoints, known as the DNA damage response (DDR), is associated with a predisposition to cancer and affects responses to DNA-damaging anticancer therapy. It has been demonstrated that various HCC-associated risk factors are able to promote DNA damages, formation of DNA adducts, and chromosomal aberrations. Hence, alterations in the DDR pathways may accumulate these lesions to trigger hepatocarcinogenesis and also to facilitate advanced HCC progression. This review collects some of the most known information about the link between HCC-associated risk factors and DDR pathways in HCC. Hopefully, the review will remind the researchers and clinicians of further characterizing and validating the roles of these DDR pathways in HCC. PMID:24877058

  20. UV-induced DNA damage and repair: a review.

    PubMed

    Sinha, Rajeshwar P; Häder, Donat P

    2002-04-01

    Increases in ultraviolet radiation at the Earth's surface due to the depletion of the stratospheric ozone layer have recently fuelled interest in the mechanisms of various effects it might have on organisms. DNA is certainly one of the key targets for UV-induced damage in a variety of organisms ranging from bacteria to humans. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) and their Dewar valence Isomers. However, cells have developed a number of repair or tolerance mechanism to counteract the DNA damage caused by UV or any other stressors. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also plays an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with UV-induced DNA damage and the associated repair mechanisms as well as methods of detecting DNA damage and its future perspectives.

  1. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest

    SciTech Connect

    Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen; Tang, Yu-Shuan; Kakadiya, Rajesh B.; Su, Tsann-Long; Yih, Ling-Huei

    2014-08-01

    DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest. - Highlights: • Autophagy inhibitors enhanced the cytotoxicity of a DNA alkylating agent, BO-1012. • BO-1012-induced S phase arrest was a CHK1-dependent pro-survival response. • Autophagy inhibition enhanced BO-1012 cytotoxicity via disrupting the S phase arrest.

  2. DNA damage and L1 retrotransposition.

    PubMed

    Farkash, Evan A; Luning Prak, Eline T

    2006-01-01

    Barbara McClintock was the first to suggest that transposons are a source of genome instability and that genotoxic stress assisted in their mobilization. The generation of double-stranded DNA breaks (DSBs) is a severe form of genotoxic stress that threatens the integrity of the genome, activates cell cycle checkpoints, and, in some cases, causes cell death. Applying McClintock's stress hypothesis to humans, are L1 retrotransposons, the most active autonomous mobile elements in the modern day human genome, mobilized by DSBs? Here, evidence that transposable elements, particularly retrotransposons, are mobilized by genotoxic stress is reviewed. In the setting of DSB formation, L1 mobility may be affected by changes in the substrate for L1 integration, the DNA repair machinery, or the L1 element itself. The review concludes with a discussion of the potential consequences of L1 mobilization in the setting of genotoxic stress. PMID:16877815

  3. Parvovirus diversity and DNA damage responses.

    PubMed

    Cotmore, Susan F; Tattersall, Peter

    2013-02-01

    Parvoviruses have a linear single-stranded DNA genome, around 5 kb in length, with short imperfect terminal palindromes that fold back on themselves to form duplex hairpin telomeres. These contain most of the cis-acting information required for viral "rolling hairpin" DNA replication, an evolutionary adaptation of rolling-circle synthesis in which the hairpins create duplex replication origins, prime complementary strand synthesis, and act as hinges to reverse the direction of the unidirectional cellular fork. Genomes are packaged vectorially into small, rugged protein capsids ~260 Å in diameter, which mediate their delivery directly into the cell nucleus, where they await their host cell's entry into S phase under its own cell cycle control. Here we focus on genus-specific variations in genome structure and replication, and review host cell responses that modulate the nuclear environment.

  4. DNA damage and L1 retrotransposition.

    PubMed

    Farkash, Evan A; Luning Prak, Eline T

    2006-01-01

    Barbara McClintock was the first to suggest that transposons are a source of genome instability and that genotoxic stress assisted in their mobilization. The generation of double-stranded DNA breaks (DSBs) is a severe form of genotoxic stress that threatens the integrity of the genome, activates cell cycle checkpoints, and, in some cases, causes cell death. Applying McClintock's stress hypothesis to humans, are L1 retrotransposons, the most active autonomous mobile elements in the modern day human genome, mobilized by DSBs? Here, evidence that transposable elements, particularly retrotransposons, are mobilized by genotoxic stress is reviewed. In the setting of DSB formation, L1 mobility may be affected by changes in the substrate for L1 integration, the DNA repair machinery, or the L1 element itself. The review concludes with a discussion of the potential consequences of L1 mobilization in the setting of genotoxic stress.

  5. Parvovirus Diversity and DNA Damage Responses

    PubMed Central

    Cotmore, Susan F.; Tattersall, Peter

    2013-01-01

    Parvoviruses have a linear single-stranded DNA genome, around 5 kb in length, with short imperfect terminal palindromes that fold back on themselves to form duplex hairpin telomeres. These contain most of the cis-acting information required for viral “rolling hairpin” DNA replication, an evolutionary adaptation of rolling-circle synthesis in which the hairpins create duplex replication origins, prime complementary strand synthesis, and act as hinges to reverse the direction of the unidirectional cellular fork. Genomes are packaged vectorially into small, rugged protein capsids ∼260 Å in diameter, which mediate their delivery directly into the cell nucleus, where they await their host cell’s entry into S phase under its own cell cycle control. Here we focus on genus-specific variations in genome structure and replication, and review host cell responses that modulate the nuclear environment. PMID:23293137

  6. Mycofumigation by the Volatile Organic Compound-Producing Fungus Muscodor albus Induces Bacterial Cell Death through DNA Damage

    PubMed Central

    Alpha, Cambria J.; Campos, Manuel; Jacobs-Wagner, Christine

    2014-01-01

    Muscodor albus belongs to a genus of endophytic fungi that inhibit and kill other fungi, bacteria, and insects through production of a complex mixture of volatile organic compounds (VOCs). This process of mycofumigation has found commercial application for control of human and plant pathogens, but the mechanism of the VOC toxicity is unknown. Here, the mode of action of these volatiles was investigated through a series of genetic screens and biochemical assays. A single-gene knockout screen revealed high sensitivity for Escherichia coli lacking enzymes in the pathways of DNA repair, DNA metabolic process, and response to stress when exposed to the VOCs of M. albus. Furthermore, the sensitivity of knockouts involved in the repair of specific DNA alkyl adducts suggests that the VOCs may induce alkylation. Evidence of DNA damage suggests that these adducts lead to breaks during DNA replication or transcription if not properly repaired. Additional cytotoxicity profiling indicated that during VOC exposure, E. coli became filamentous and demonstrated an increase in cellular membrane fluidity. The volatile nature of the toxic compounds produced by M. albus and their broad range of inhibition make this fungus an attractive biological agent. Understanding the antimicrobial effects and the VOC mode of action will inform the utility and safety of potential mycofumigation applications for M. albus. PMID:25452287

  7. Mycofumigation by the volatile organic compound-producing Fungus Muscodor albus induces bacterial cell death through DNA damage.

    PubMed

    Alpha, Cambria J; Campos, Manuel; Jacobs-Wagner, Christine; Strobel, Scott A

    2015-02-01

    Muscodor albus belongs to a genus of endophytic fungi that inhibit and kill other fungi, bacteria, and insects through production of a complex mixture of volatile organic compounds (VOCs). This process of mycofumigation has found commercial application for control of human and plant pathogens, but the mechanism of the VOC toxicity is unknown. Here, the mode of action of these volatiles was investigated through a series of genetic screens and biochemical assays. A single-gene knockout screen revealed high sensitivity for Escherichia coli lacking enzymes in the pathways of DNA repair, DNA metabolic process, and response to stress when exposed to the VOCs of M. albus. Furthermore, the sensitivity of knockouts involved in the repair of specific DNA alkyl adducts suggests that the VOCs may induce alkylation. Evidence of DNA damage suggests that these adducts lead to breaks during DNA replication or transcription if not properly repaired. Additional cytotoxicity profiling indicated that during VOC exposure, E. coli became filamentous and demonstrated an increase in cellular membrane fluidity. The volatile nature of the toxic compounds produced by M. albus and their broad range of inhibition make this fungus an attractive biological agent. Understanding the antimicrobial effects and the VOC mode of action will inform the utility and safety of potential mycofumigation applications for M. albus.

  8. DNA damage in storage cells of anhydrobiotic tardigrades.

    PubMed

    Neumann, Simon; Reuner, Andy; Brümmer, Franz; Schill, Ralph O

    2009-08-01

    In order to recover without any apparent damage, tardigrades have evolved effective adaptations to preserve the integrity of cells and tissues in the anhydrobiotic state. Despite those adaptations and the fact that the process of biological ageing comes to a stop during anhydrobiosis, the time animals can persist in this state is limited; after exceedingly long anhydrobiotic periods tardigrades fail to recover. Using the single cell gel electrophoresis (comet assay) technique to study the effect of anhydrobiosis on the integrity of deoxyribonucleic acid, we showed that the DNA in storage cells of the tardigrade Milnesium tardigradum was well protected during transition from the active into the anhydrobiotic state. Specimens of M. tardigradum that had been desiccated for two days had only accumulated minor DNA damage (2.09 +/- 1.98% DNA in tail, compared to 0.44 +/- 0.74% DNA in tail for the negative control with active, hydrated animals). Yet the longer the anhydrobiotic phase lasted, the more damage was inflicted on the DNA. After six weeks in anhydrobiosis, 13.63 +/- 6.41% of DNA was found in the comet tail. After ten months, 23.66 +/- 7.56% of DNA was detected in the comet tail. The cause for this deterioration is unknown, but oxidative processes mediated by reactive oxygen species are a possible explanation.

  9. Base Excision Repair of Oxidative DNA Damage

    PubMed Central

    David, Sheila S.; O’Shea, Valerie L.; Kundu, Sucharita

    2010-01-01

    Base excision repair plays an important role in preventing mutations associated with the common product of oxidative damage, 8-oxoguanine. Recent structural studies have shown that 8-oxoguanine glycosylases use an intricate series of steps to efficiently search and locate 8-oxoguanine lesions within the multitude of undamaged bases. The importance of prevention of mutations associated with 8-oxoguanine has also been illustrated by direct connections between defects in the BER glycosylase MUTYH and colorectal cancer. In addition, the properties of other guanine oxidation products and the BER glycosylases that remove them are being uncovered. This work is providing surprising and intriguing new insights into the process of base excision repair. PMID:17581577

  10. Alkylating agent (MNU)-induced mutation in space environment.

    PubMed

    Ohnishi, T; Takahashi, A; Ohnishi, K; Takahashi, S; Masukawa, M; Sekikawa, K; Amano, T; Nakano, T; Nagaoka, S

    2001-01-01

    In recent years, some contradictory data about the effects of microgravity on radiation-induced biological responses in space experiments have been reported. We prepared a damaged template DNA produced with an alkylating agent (N-methyl-N-nitroso urea; MNU) to measure incorrect base-incorporation during DNA replication in microgravity. We examined whether mutation frequency is affected by microgravity during DNA replication for a DNA template damaged by an alkylating agent. Using an in vitro enzymatic reaction system, DNA synthesis by Taq polymerase or polymerase III was done during a US space shuttle mission (Discovery, STS-91). After the flight, DNA replication and mutation frequencies were measured. We found that there was almost no effect of microgravity on DNA replication and mutation frequency. It is suggested that microgravity might not affect at the stage of substrate incorporation in induced-mutation frequency.

  11. BACH2: a Marker of DNA Damage and Aging

    PubMed Central

    Uittenboogaard, L.M.; Payan-Gomez, C.; Pothof, J.; van IJcken, W.; Mastroberardino, PG; van der Pluijm; Hoeijmakers, J.H.J.; Tresini, M.

    2013-01-01

    DNA damage and aging share expression changes involving alterations in many aspects of metabolism, suppression of growth and upregulation of defence and genome maintenance systems. “Omics” technologies have permitted large-scale parallel measurements covering global cellular constituents and aided the identification of specific response pathways that change during aging and after DNA damage. We have set out to identify genes with highly conserved response patterns through meta-analysis of mRNA expression datasets collected during natural aging and accelerated aging caused by a Transcription-Coupled Nucleotide Excision Repair (TC-NER) defect in a diverse set of organs and tissues in mice, and from in-vitro UV-induced DNA damage in a variety of murine cells. The identified set of genes that show similar expression patterns in response to organ aging (accelerated and normal), and endogenously and exogenously induced DNA damage, consists of genes involved in anti-oxidant systems and includes the transcription factor Bach2 as one of the most consistent markers. BACH2 was originally identified as a partner of the small Maf proteins and antagonist of the NRF2 anti-oxidant defence pathway and has been implicated in B-cell differentiation and immune system homeostasis. Although BACH2 has never before been associated with UV-induced damage or aging, it shows a strong downregulation in both conditions. We have characterized the dynamics of Bach2 expression in response to DNA damage and show that it is a highly sensitive responder to transcription-blocking DNA lesions. Gene expression profiling using Affymetrix microarray analysis after siRNA-mediated silencing of Bach2 identified cell cycle and transcription regulation as the most significantly altered processes consistent with a function as transcription factor affecting proliferation. PMID:24075570

  12. Increased Mutagen Sensitivity and DNA Damage in Pulmonary Arterial Hypertension

    PubMed Central

    Federici, Chiara; Drake, Kylie M.; Rigelsky, Christina M.; McNelly, Lauren N.; Meade, Sirena L.; Comhair, Suzy A. A.; Erzurum, Serpil C.

    2015-01-01

    Rationale: Pulmonary arterial hypertension (PAH) is a serious lung condition characterized by vascular remodeling in the precapillary pulmonary arterioles. We and others have demonstrated chromosomal abnormalities and increased DNA damage in PAH lung vascular cells, but their timing and role in disease pathogenesis is unknown. Objectives: We hypothesized that if DNA damage predates PAH, it might be an intrinsic cell property that is present outside the diseased lung. Methods: We measured DNA damage, mutagen sensitivity, and reactive oxygen species (ROS) in lung and blood cells from patients with Group 1 PAH, their relatives, and unrelated control subjects. Measurements and Main Results: Baseline DNA damage was significantly elevated in PAH, both in pulmonary artery endothelial cells (P < 0.05) and peripheral blood mononuclear cells (PBMC) (P < 0.001). Remarkably, PBMC from unaffected relatives showed similar increases, indicating this is not related to PAH treatments. ROS levels were also higher (P < 0.01). DNA damage correlated with ROS production and was suppressed by antioxidants (P < 0.001). PBMC from patients and relatives also showed markedly increased sensitivity to two chemotherapeutic drugs, bleomycin and etoposide (P < 0.001). Results were consistent across idiopathic, heritable, and associated PAH groups. Conclusions: Levels of baseline and mutagen-induced DNA damage are intrinsically higher in PAH cells. Similar results in PBMC from unaffected relatives suggest this may be a genetically determined trait that predates disease onset and may act as a risk factor contributing to lung vascular remodeling following endothelial cell injury. Further studies are required to fully characterize mutagen sensitivity, which could have important implications for clinical management. PMID:25918951

  13. Can graphene quantum dots cause DNA damage in cells?

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Zhu, Lin; Chen, Jian-Feng; Dai, Liming

    2015-05-01

    Graphene quantum dots (GQDs) have attracted tremendous attention for biological applications. We report the first study on cytotoxicity and genotoxicity of GQDs to fibroblast cell lines (NIH-3T3 cells). The NIH-3T3 cells treated with GQDs at dosages over 50 μg mL-1 showed no significant cytotoxicity. However, the GQD-treated NIH-3T3 cells exhibited an increased expression of proteins (p53, Rad 51, and OGG1) related to DNA damage compared with untreated cells, indicating the DNA damage caused by GQDs. The GQD-induced release of reactive oxygen species (ROS) was demonstrated to be responsible for the observed DNA damage. These findings should have important implications for future applications of GQDs in biological systems.Graphene quantum dots (GQDs) have attracted tremendous attention for biological applications. We report the first study on cytotoxicity and genotoxicity of GQDs to fibroblast cell lines (NIH-3T3 cells). The NIH-3T3 cells treated with GQDs at dosages over 50 μg mL-1 showed no significant cytotoxicity. However, the GQD-treated NIH-3T3 cells exhibited an increased expression of proteins (p53, Rad 51, and OGG1) related to DNA damage compared with untreated cells, indicating the DNA damage caused by GQDs. The GQD-induced release of reactive oxygen species (ROS) was demonstrated to be responsible for the observed DNA damage. These findings should have important implications for future applications of GQDs in biological systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01734c

  14. Analysis of pesticide exposure and DNA damage in immigrant farmworkers.

    PubMed

    McCauley, Linda A; Lasarev, Michael; Muniz, Juan; Nazar Stewart, Valle; Kisby, Glen

    2008-01-01

    In the last decade, the Comet assay has been used increasingly in studies of workers potentially exposed to genotoxic substances in the workplace or environment. Significant increases in DNA damage measured with the Comet assay has been reported in lymphocytes of agricultural workers; however, less intrusive means of biomonitoring are needed in epidemiological investigations. This study was designed to use the Comet assay to describe the association of markers of DNA damage in oral leukocytes with biomarkers of pesticide exposure in 134 farmworkers working in berry crops in Oregon compared to control populations. The authors also examined the extent of DNA damage in young workers compared to adults and the effect of work histories, lifestyle factors, and diet on markers of DNA damage. Urinary levels of organophosphate pesticides were low at the time of sampling; however, mean levels of the Captan metabolite tetrahydrophthalimide (THPI) were found to be shifted significantly higher in the farmworkers (0.14 microg/ml) compared to controls (0.078 microg/ml) (one-sided p value=.01). Likewise, the combined molar equivalent of all dialkylphosphate metabolites was marginally higher in farmworkers (p value=.05). The mean tail intensity was significantly greater for agricultural workers compared to controls (one-sided p value<.001), indicating more DNA damage in the oral leukocytes. On average, the mean tail intensity was 10.9 units greater for agricultural workers (95% CI: 6-16 units greater). Tail moment was also significantly greater for agricultural workers compared to nonagricultural workers (one-sided p value<.001). No Comet parameter was significantly associated with years spent working in agriculture, age, sex, body mass index, diet, and alcohol or tobacco use. The results of this study demonstrate the feasibility for using the Comet assay in biomonitoring studies of farmworkers. Additional studies are needed to examine the effects of different pesticide types on

  15. Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases.

    PubMed

    Tuteja, Narendra; Ahmad, Parvaiz; Panda, Brahma B; Tuteja, Renu

    2009-01-01

    Plant cells are constantly exposed to environmental agents and endogenous processes that inflict damage to DNA and cause genotoxic stress, which can reduce plant genome stability, growth and productivity. Plants are most affected by solar UV-B radiation, which damage the DNA by inducing the formation of two main UV photoproducts such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). Reactive oxygen species (ROS) are also generated extra- or intra-cellularly, which constitute yet another source of genotoxic stress. As a result of this stress, the cellular DNA-damage responses (DDR) are activated, which transiently arrest the cell cycle and allow cells to repair DNA before proceeding into mitosis. DDR requires the activation of Ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) genes, which regulate the cell cycle and transmit the damage signals to downstream effectors of cell-cycle progression. Since genomic protection and stability are fundamental to ensure and sustain plant diversity and productivity, therefore, repair of DNA damages is essential. In plants the bulky DNA lesions, CPDs and 6-4PPs, are repaired by a simple and error-free mechanism: photoreactivation, which is a light-dependent mechanism and requires CPD or 6-4PP specific photolyases. In addition to this direct repair process, the plants also have sophisticated light-independent general repair mechanisms, such as the nucleotide excision repair (NER) and base excision repair (BER). The completed plant genome sequences reveal that most of the genes involved in NER and BER are present in higher plants, which suggests that the network of in-built DNA-damage repair mechanisms is conserved. This article describes the insight underlying the DNA damage and repair pathways in plants. The comet assay to measure the DNA damage and the role of DNA repair helicases such as XPD and XPB are also covered.

  16. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.

    PubMed

    Doudican, Nicole A; Song, Binwei; Shadel, Gerald S; Doetsch, Paul W

    2005-06-01

    Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.

  17. DNA damage and cell killing. Cause and effect

    SciTech Connect

    Elkind, M.M.

    1985-11-15

    The evidence supporting a cause and effect relationship between DNA damage and cell killing is examined in the light of what is currently known about the organization and replication of genomic DNA in eukaryotic cells and the radio-energetics of DNA breakage. A large disparity is identified between characteristic doses for cell killing and for the production of DNA lesions (i.e., single- or double-strand breaks). In contrast, the sensitive phase of the inhibition of DNA synthesis has a dependence on dose quantitatively similar to that of cell killing. A model is developed in which single- and double-strand breaks are associated with the inhibition of replicon initiation, whereas only double-strand breaks are primarily responsible for strand elongation. Furthermore, the model points to the replisome and the region of replicated DNA just downstream from the fork as the locus of radiation action.

  18. DNA damage response during mouse oocyte maturation.

    PubMed

    Mayer, Alexandra; Baran, Vladimir; Sakakibara, Yogo; Brzakova, Adela; Ferencova, Ivana; Motlik, Jan; Kitajima, Tomoya S; Schultz, Richard M; Solc, Petr

    2016-01-01

    Because low levels of DNA double strand breaks (DSBs) appear not to activate the ATM-mediated prophase I checkpoint in full-grown oocytes, there may exist mechanisms to protect chromosome integrity during meiotic maturation. Using live imaging we demonstrate that low levels of DSBs induced by the radiomimetic drug Neocarzinostatin (NCS) increase the incidence of chromosome fragments and lagging chromosomes but do not lead to APC/C activation and anaphase onset delay. The number of DSBs, represented by γH2AX foci, significantly decreases between prophase I and metaphase II in both control and NCS-treated oocytes. Transient treatment with NCS increases >2-fold the number of DSBs in prophase I oocytes, but less than 30% of these oocytes enter anaphase with segregation errors. MRE11, but not ATM, is essential to detect DSBs in prophase I and is involved in H2AX phosphorylation during metaphase I. Inhibiting MRE11 by mirin during meiotic maturation results in anaphase bridges and also increases the number of γH2AX foci in metaphase II.  Compromised DNA integrity in mirin-treated oocytes indicates a role for MRE11 in chromosome integrity during meiotic maturation. PMID:26745237

  19. Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response

    PubMed Central

    Lee, Hong-Jen; Lan, Li; Peng, Guang; Chang, Wei-Chao; Hsu, Ming-Chuan; Wang, Ying-Nai; Cheng, Chien-Chia; Wei, Leizhen; Nakajima, Satoshi; Chang, Shih-Shin; Liao, Hsin-Wei; Chen, Chung-Hsuan; Lavin, Martin; Ang, K Kian; Lin, Shiaw-Yih; Hung, Mien-Chie

    2015-01-01

    Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition. PMID:25601159

  20. DNA damage and repair in human skin in situ

    SciTech Connect

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs.

  1. Nuclear DNA damage signalling to mitochondria in ageing.

    PubMed

    Fang, Evandro Fei; Scheibye-Knudsen, Morten; Chua, Katrin F; Mattson, Mark P; Croteau, Deborah L; Bohr, Vilhelm A

    2016-05-01

    Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases.

  2. Nuclear DNA damage signalling to mitochondria in ageing.

    PubMed

    Fang, Evandro Fei; Scheibye-Knudsen, Morten; Chua, Katrin F; Mattson, Mark P; Croteau, Deborah L; Bohr, Vilhelm A

    2016-05-01

    Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases. PMID:26956196

  3. DNA damage under simulated extraterrestrial conditions in bacteriophage T7

    NASA Astrophysics Data System (ADS)

    Fekete, A.; Módos, K.; Hegedüs, M.; Kovács, G.; Rontó, Gy.; Péter, Á.; Lammer, H.; Panitz, C.

    The experiment "Phage and Uracil response" will be accommodated in the EXPOSE facility of the International Space Station. Its objective is to examine and quantify the effect of specific space conditions on nucleic acid models, especially on bacteriophage T7 and isolated T7 DNA thin films. In order to define the environmental and technical requirements of the EXPOSE, the samples were subjected to the experiment verification test (EVT). During EVT, the samples were exposed to vacuum (10 -4-10 -6 Pa) and polychromatic UV-radiation (200-400 nm) in air, in inert atmosphere, as well as in simulated space vacuum. The effect of extreme temperature in vacuum and the influence of temperature fluctuations around 0 °C were also studied. The total intraphage/isolated DNA damage was determined by quantitative PCR using 555 and 3826 bp fragments of T7 DNA. The type of the damage was resolved using a combination of enzymatic probes and neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. We obtained substantial evidence that DNA lesions accumulate throughout exposure, but the amount of damage depends on the thickness of the layers. According to our preliminary results, the damages by exposure to conditions of dehydration and UV-irradiation are larger than the sum of vacuum alone, or radiation alone case, suggesting a synergistic action of space vacuum and UV radiation with DNA being the critical target.

  4. Assessing cellular DNA damage from a helium plasma needle.

    PubMed

    Morales-Ramírez, P; Cruz-Vallejo, V; Peña-Eguiluz, R; López-Callejas, R; Rodríguez-Méndez, B G; Valencia-Alvarado, R; Mercado-Cabrera, A; Muñoz-Castro, A E

    2013-06-01

    The aim of the present study is to determine the deoxyribonucleic acid (DNA) damage by cells exposed to atmospheric pressure non-thermal plasma (APNTP). Mouse leukocytes embedded in agarose were exposed to the plasma at two different distances from a helium plasma needle outlet and during three different exposure periods. Damage was assessed by the single cell gel electrophoresis assay. The results indicate that, at 0.1 cm from the plasma needle, the exposure caused complete DNA fragmentation determined by the presence of so called "clouds". Samples exposed at 0.5 cm from the slide sample surface presented damage proportional to the exposure periods in terms of tail intensity, tail moment and "clouds" frequency. Studies performed with alkaline single cell gel electrophoresis assay to determine DNA breaks and alkali-labile sites, indicates that DNA damage produced by exposure to APNTP was caused mainly by oxidative radicals, rather than by UV light which causes cyclobutane pyrimidine dimers. These results allow us to conclude that plasma needle induced DNA breaks in mice leukocytes proportionally to exposure time.

  5. DNA damage mediated transcription arrest: Step back to go forward.

    PubMed

    Mullenders, Leon

    2015-12-01

    The disturbance of DNA helix conformation by bulky DNA damage poses hindrance to transcription elongating due to stalling of RNA polymerase at transcription blocking lesions. Stalling of RNA polymerase provokes the formation of R-loops, i.e. the formation of a DNA-RNA hybrid and a displaced single stranded DNA strand as well as displacement of spliceosomes. R-loops are processed into DNA single and double strand breaks by NER factors depending on TC-NER factors leading to genome instability. Moreover, stalling of RNA polymerase induces a strong signal for cell cycle arrest and apoptosis. These toxic and mutagenic effects are counteracted by a rapid recruitment of DNA repair proteins to perform transcription coupled nucleotide excision repair (TC-NER) to remove the blocking DNA lesions and to restore transcription. Recent studies have highlighted the role of backtracking of RNA polymerase to facilitate TC-NER and identified novel factors that play key roles in TC-NER and in restoration of transcription. On the molecular level these factors facilitate stability of the repair complex by promotion and regulation of various post-translational modifications of NER factors and chromatin substrate. In addition, the continuous flow of new factors that emerge from screening assays hints to several regulatory levels to safeguard the integrity of transcription elongation after disturbance by DNA damage that have yet to be explored.

  6. CHROMOTHRIPSIS FROM DNA DAMAGE IN MICRONUCLEI

    PubMed Central

    Zhang, Cheng-Zhong; Spektor, Alexander; Cornils, Hauke; Francis, Joshua M.; Jackson, Emily K.; Liu, Shiwei; Meyerson, Matthew; Pellman, David

    2015-01-01

    Genome sequencing has uncovered a new mutational phenomenon in cancer and congenital disorders called chromothripsis. Chromothripsis is characterized by extensive genomic rearrangements and an oscillating pattern of DNA copy number levels, all curiously restricted to one or a few chromosomes. The mechanism for chromothripsis is unknown, but we previously proposed that it could occur through the physical isolation of chromosomes in aberrant nuclear structures called micronuclei. Here, using a combination of live-cell imaging and single-cell genome sequencing, we demonstrate that micronucleus formation can indeed generate a spectrum of genomic rearrangements, some of which recapitulate all known features of chromothripsis. These events are restricted to the missegregated chromosome and occur within one cell division. We demonstrate that the mechanism for chromothripsis can involve the fragmentation and subsequent reassembly of a single chromatid from a micronucleus. Collectively, these experiments establish a new mutational process of which chromothripsis is one extreme outcome. PMID:26017310

  7. A novel thermostable protein-tag: optimization of the Sulfolobus solfataricus DNA- alkyl-transferase by protein engineering.

    PubMed

    Vettone, Antonella; Serpe, Mario; Hidalgo, Aurelio; Berenguer, José; del Monaco, Giovanni; Valenti, Anna; Rossi, Mosé; Ciaramella, Maria; Perugino, Giuseppe

    2016-01-01

    In the last decade, a powerful biotechnological tool for the in vivo and in vitro specific labeling of proteins (SNAP-tag™ technology) was proposed as a valid alternative to classical protein-tags (green fluorescent proteins, GFPs). This was made possible by the discovery of the irreversible reaction of the human alkylguanine-DNA-alkyl-transferase (hAGT) in the presence of benzyl-guanine derivatives. However, the mild reaction conditions and the general instability of the mesophilic SNAP-tag™ make this new approach not fully applicable to (hyper-)thermophilic and, in general, extremophilic organisms. Here, we introduce an engineered variant of the thermostable alkylguanine-DNA-alkyl-transferase from the Archaea Sulfolobus solfataricus (SsOGT-H5), which displays a catalytic efficiency comparable to the SNAP-tag™ protein, but showing high intrinsic stability typical of proteins from this organism. The successful heterologous expression obtained in a thermophilic model organism makes SsOGT-H5 a valid candidate as protein-tag for organisms living in extreme environments.

  8. Diagnosis of Lung Cancer by Fractal Analysis of Damaged DNA

    PubMed Central

    Namazi, Hamidreza; Kiminezhadmalaie, Mona

    2015-01-01

    Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to study the cancer genes, DNA walk plots of genomes of patients with lung cancer were generated using a program written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA sequences. So we confirmed this method can be used for early detection of lung cancer. The method introduced in this research not only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers. PMID:26539245

  9. DNA damage under simulated extraterrestrial conditions in bacteriophage T7

    NASA Astrophysics Data System (ADS)

    Fekete, A.; Kovács, G.; Hegedüs, M.; Módos, K.; Rontó, Gy.; Lammer, H.; Panitz, C.

    The experiment ``Phage and uracil response'' (PUR) will be accommodated in the EXPOSE facility of the ISS aiming to examine and quantify the effect of specific space conditions on bacteriophage T7 and isolated T7 DNA thin films. To achieve this new method was elaborated for the preparation of DNA and nucleoprotein thin films (1). During the EXPOSE Experiment Verification Tests (EVT) the samples were exposed to vacuum (10 -6 Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated, and we also studied the effect of temperature in vacuum as well as the influence of temperature fluctuations. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, DNA-DNA cross-links) accumulate throughout exposure. DNA damage was determined by quantitative PCR using 555 bp and 3826 bp fragments of T7 DNA (2) and by neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of the PCR products have been detected indicating the damage of isolated and intraphage DNA. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target. Fekete et al. J. Luminescence 102-103, 469-475, 2003 Hegedüs et al. Photochem. Photobiol. 78, 213-219, 2003

  10. Analysis of alcohol-induced DNA damage in Escherichia coli by visualizing single genomic DNA molecules.

    PubMed

    Kang, Yujin; Lee, Jinyong; Kim, Jisoo; Oh, Yeeun; Kim, Dogeun; Lee, Jungyun; Lim, Sangyong; Jo, Kyubong

    2016-07-21

    Consumption of alcohol injures DNA, and such damage is considered to be a primary cause for the development of cancer and many other diseases essentially due to reactive oxygen species generated from alcohol. To sensitively detect alcohol-induced DNA lesions in a biological system, we introduced a novel analytical platform for visualization of single genomic DNA molecules using E. coli. By fluorescently labelling the DNA lesions, our approach demonstrated, with the highest sensitivity, that we could count the number of DNA lesions induced by alcohol metabolism in a single bacterial cell. Moreover, our results showed a linear relationship between ethanol concentration and the number of DNA lesions: 0.88 lesions per 1% ethanol. Using this approach, we quantitatively analysed the DNA damage induced by exposure to alcoholic beverages such as beer (5% ethanol), rice wine (13%), soju (20%), and whisky (40%). PMID:27186604

  11. UV Radiation Damage and Bacterial DNA Repair Systems

    ERIC Educational Resources Information Center

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  12. Mechanism study of goldenseal-associated DNA damage.

    PubMed

    Chen, Si; Wan, Liqing; Couch, Letha; Lin, Haixia; Li, Yan; Dobrovolsky, Vasily N; Mei, Nan; Guo, Lei

    2013-07-31

    Goldenseal has been used for the treatment of a wide variety of ailments including gastrointestinal disturbances, urinary tract disorders, and inflammation. The five major alkaloid constituents in goldenseal are berberine, palmatine, hydrastine, hydrastinine, and canadine. When goldenseal was evaluated by the National Toxicology Program (NTP) in the standard 2-year bioassay, goldenseal induced an increase in liver tumors in rats and mice; however, the mechanism of goldenseal-associated liver carcinogenicity remains unknown. In this study, the toxicity of the five goldenseal alkaloid constituents was characterized, and their toxic potencies were compared. As measured by the Comet assay and the expression of γ-H2A.X, berberine, followed by palmatine, appeared to be the most potent DNA damage inducer in human hepatoma HepG2 cells. Berberine and palmatine suppressed the activities of both topoisomerase (Topo) I and II. In berberine-treated cells, DNA damage was shown to be directly associated with the inhibitory effect of Topo II, but not Topo I by silencing gene of Topo I or Topo II. In addition, DNA damage was also observed when cells were treated with commercially available goldenseal extracts and the extent of DNA damage was positively correlated to the berberine content. Our findings suggest that the Topo II inhibitory effect may contribute to berberine- and goldenseal-induced genotoxicity and tumorigenicity.

  13. DETECTION OF DNA DAMAGE USING A FIBEROPTIC BIOSENSOR

    EPA Science Inventory

    A rapid and sensitive fiber optic biosensor assay for radiation-induced DNA damage is reported. For this assay, a biotin-labeled capture oligonucleotide (38 mer) was immobilized to an avidin-coated quartz fiber. Hybridization of a dye-labeled complementary sequence was observed...

  14. Modeling the Study of DNA Damage Responses in Mice

    PubMed Central

    Specks, Julia; Nieto-Soler, Maria; Lopez-Contreras, Andres J; Fernandez-Capetillo, Oscar

    2016-01-01

    Summary Damaged DNA has a profound impact on mammalian health and overall survival. In addition to being the source of mutations that initiate cancer, the accumulation of toxic amounts of DNA damage can cause severe developmental diseases and accelerate ageing. Therefore, understanding how cells respond to DNA damage has become one of the most intense areas of biomedical research in the recent years. However, whereas most mechanistic studies derive from in vitro or in cellulo work, the impact of a given mutation on a living organism is largely unpredictable. For instance, why BRCA1 mutations preferentially lead to breast cancer whereas mutations compromising mismatch repair drive colon cancer is still not understood. In this context, evaluating the specific physiological impact of mutations that compromise genome integrity has become crucial for a better dimensioning of our knowledge. We here describe the various technologies that can be used for modeling mutations in mice, and provide a review of the genes and pathways that have been modeled so far in the context of DNA damage responses. PMID:25636482

  15. DNA Damage Repair in the Context of Plant Chromatin1

    PubMed Central

    Donà, Mattia; Mittelsten Scheid, Ortrun

    2015-01-01

    The integrity of DNA molecules is constantly challenged. All organisms have developed mechanisms to detect and repair multiple types of DNA lesions. The basic principles of DNA damage repair (DDR) in prokaryotes and unicellular and multicellular eukaryotes are similar, but the association of DNA with nucleosomes in eukaryotic chromatin requires mechanisms that allow access of repair enzymes to the lesions. This is achieved by chromatin-remodeling factors, and their necessity for efficient DDR has recently been demonstrated for several organisms and repair pathways. Plants share many features of chromatin organization and DNA repair with fungi and animals, but they differ in other, important details, which are both interesting and relevant for our understanding of genome stability and genetic diversity. In this Update, we compare the knowledge of the role of chromatin and chromatin-modifying factors during DDR in plants with equivalent systems in yeast and humans. We emphasize plant-specific elements and discuss possible implications. PMID:26089404

  16. CC3/TIP30 affects DNA damage repair

    PubMed Central

    2010-01-01

    Background The pro-apoptotic protein CC3/TIP30 has an unusual cellular function as an inhibitor of nucleocytoplasmic transport. This function is likely to be activated under conditions of stress. A number of studies support the notion that CC3 acts as a tumor and metastasis suppressor in various types of cancer. The yeast homolog of CC3 is likely to be involved in responses to DNA damage. Here we examined the potential role of CC3 in regulation of cellular responses to genotoxic stress. Results We found that forced expression of CC3 in CC3-negative cells strongly delays the repair of UV-induced DNA damage. Exogenously introduced CC3 negatively affects expression levels of DDB2/XPE and p21CIP1, and inhibits induction of c-FOS after UV exposure. In addition, exogenous CC3 prevents the nuclear accumulation of P21CIP in response to UV. These changes in the levels/localization of relevant proteins resulting from the enforced expression of CC3 are likely to contribute to the observed delay in DNA damage repair. Silencing of CC3 in CC3-positive cells has a modest delaying effect on repair of the UV induced damage, but has a much more significant negative affect on the translesion DNA synthesis after UV exposure. This could be related to the higher expression levels and increased nuclear localization of p21CIP1 in cells where expression of CC3 is silenced. Expression of CC3 also inhibits repair of oxidative DNA damage and leads to a decrease in levels of nucleoredoxin, that could contribute to the reduced viability of CC3 expressing cells after oxidative insult. Conclusions Manipulation of the cellular levels of CC3 alters expression levels and/or subcellular localization of proteins that exhibit nucleocytoplasmic shuttling. This results in altered responses to genotoxic stress and adversely affects DNA damage repair by affecting the recruitment of adequate amounts of required proteins to proper cellular compartments. Excess of cellular CC3 has a significant negative

  17. DNA-directed alkylating agents. 6. Synthesis and antitumor activity of DNA minor groove-targeted aniline mustard analogues of pibenzimol (Hoechst 33258)

    PubMed

    Gravatt, G L; Baguley, B C; Wilson, W R; Denny, W A

    1994-12-01

    A series of nitrogen mustard analogues of the DNA minor groove binding fluorophore pibenzimol (Hoechst 33258) have been synthesized and evaluated for antitumor activity. Conventional construction of the bisbenzimidazole ring system from the piperazinyl terminus, via two consecutive Pinner-type reactions, gave low yields of products contaminated with the 2-methyl analogue which proved difficult to separate. An alternative synthesis was developed, involving construction of the bisbenzimidazole from the mustard terminus, via Cu(2+)-promoted oxidative coupling of the mustard aldehydes with 3,4-diaminobenzonitrile to form the monobenzimidazoles, followed by a Pinner-type reaction and condensation with 4-(1-methyl-4-piperazinyl)-o-phenylenediamine. This process gives higher yields and pure products. The mustard analogues showed high hypersensitivity factors (IC50AA8/IC50 UV4), typical of DNA alkylating agents. There was a large increase in cytotoxicity (85-fold) across the homologous series which cannot be explained entirely by changes in mustard reactivity and may be related to altering orientation of the mustard with respect to the DNA resulting in different patterns of alkylation. Pibenzimol itself (which has been evaluated clinically as an anticancer drug) was inactive against P388 in vivo using a single-dose protocol, but the short-chain mustard homologues were highly effective, eliciting a proportion of long-term survivors.

  18. Clustered DNA damage on subcellular level: effect of scavengers.

    PubMed

    Pachnerová Brabcová, Kateřina; Sihver, Lembit; Yasuda, Nakahiro; Matuo, Youichirou; Stěpán, Václav; Davídková, Marie

    2014-11-01

    Clustered DNA damages are induced by ionizing radiation, particularly of high linear energy transfer (LET). Compared to isolated DNA damage sites, their biological effects can be more severe. We investigated a clustered DNA damage induced by high LET radiation (C 290 MeV u(-1) and Fe 500 MeV u(-1)) in pBR322 plasmid DNA. The plasmid is dissolved in pure water or in aqueous solution of one of the three scavengers (coumarin-3-carboxylic acid, dimethylsulfoxide, and glycylglycine). The yield of double strand breaks (DSB) induced in the DNA plasmid-scavenger system by heavy ion radiation was found to decrease with increasing scavenging capacity due to reaction with hydroxyl radical, linearly with high correlation coefficients. The yield of non-DSB clusters was found to occur twice as much as the DSB. Their decrease with increasing scavenging capacity had lower linear correlation coefficients. This indicates that the yield of non-DSB clusters depends on more factors, which are likely connected to the chemical properties of individual scavengers.

  19. Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps

    PubMed Central

    Guénolé, Aude; Srivas, Rohith; Vreeken, Kees; Wang, Ze Zhong; Wang, Shuyi; Krogan, Nevan J.; Ideker, Trey; van Attikum, Haico

    2013-01-01

    SUMMARY To protect the genome, cells have evolved a diverse set of pathways designed to sense, signal, and repair multiple types of DNA damage. To assess the degree of coordination and crosstalk among these pathways, we systematically mapped changes in the cell's genetic network across a panel of different DNA-damaging agents, resulting in ~1,800,000 differential measurements. Each agent was associated with a distinct interaction pattern, which, unlike single-mutant phenotypes or gene expression data, has high statistical power to pinpoint the specific repair mechanisms at work. The agent-specific networks revealed roles for the histone acetyltranferase Rtt109 in the mutagenic bypass of DNA lesions and the neddylation machinery in cell-cycle regulation and genome stability, while the network induced by multiple agents implicates Irc21, an uncharacterized protein, in checkpoint control and DNA repair. Our multiconditional genetic interaction map provides a unique resource that identifies agent-specific and general DNA damage response pathways. PMID:23273983

  20. Initiation of DNA damage responses through XPG-related nucleases

    PubMed Central

    Kuntz, Karen; O'Connell, Matthew J

    2013-01-01

    Lesion-specific enzymes repair different forms of DNA damage, yet all lesions elicit the same checkpoint response. The common intermediate required to mount a checkpoint response is thought to be single-stranded DNA (ssDNA), coated by replication protein A (RPA) and containing a primer-template junction. To identify factors important for initiating the checkpoint response, we screened for genes that, when overexpressed, could amplify a checkpoint signal to a weak allele of chk1 in fission yeast. We identified Ast1, a novel member of the XPG-related family of endo/exonucleases. Ast1 promotes checkpoint activation caused by the absence of the other XPG-related nucleases, Exo1 and Rad2, the homologue of Fen1. Each nuclease is recruited to DSBs, and promotes the formation of ssDNA for checkpoint activation and recombinational repair. For Rad2 and Exo1, this is independent of their S-phase role in Okazaki fragment processing. This XPG-related pathway is distinct from MRN-dependent responses, and each enzyme is critical for damage resistance in MRN mutants. Thus, multiple nucleases collaborate to initiate DNA damage responses, highlighting the importance of these responses to cellular fitness. PMID:23211746

  1. ZRBA1, a Mixed EGFR/DNA Targeting Molecule, Potentiates Radiation Response Through Delayed DNA Damage Repair Process in a Triple Negative Breast Cancer Model

    SciTech Connect

    Heravi, Mitra; Kumala, Slawomir; Rachid, Zakaria; Jean-Claude, Bertrand J.; Radzioch, Danuta; Muanza, Thierry M.

    2015-06-01

    Purpose: ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities. Methods and Materials: The triple negative human breast MDA-MB-468 cancer cell line and mouse mammary cancer 4T1 cell line were used in this study. Clonogenic assay, Western blot analysis, and DNA damage analysis were performed at multiple time points after treatment. To confirm our in vitro findings, in vivo tumor growth delay assay was performed. Results: Our results show that a combination of ZRBA1 and radiation increases the radiation sensitivity of both cell lines significantly with a dose enhancement factor of 1.56, induces significant numbers of DNA strand breaks, prolongs higher DNA damage up to 24 hours after treatment, and significantly increases tumor growth delay in a syngeneic mouse model. Conclusions: Our data suggest that the higher efficacy of this combination could be partially due to increased DNA damage and delayed DNA repair process and to the inhibition of EGFR. The encouraging results of this combination demonstrated a significant improvement in treatment efficiency and therefore could be applicable in early clinical trial settings.

  2. How do male germ cells handle DNA damage?

    SciTech Connect

    Olsen, Ann-Karin; Lindeman, Birgitte; Wiger, Richard; Duale, Nur; Brunborg, Gunnar . E-mail: gunnar.brunborg@fhi.no

    2005-09-01

    Male reproductive health has received considerable attention in recent years. In addition to declining sperm quality, fertility problems and increased incidence of testicular cancer, there is accumulating evidence that genetic damage, in the form of unrepaired DNA lesions or de novo mutations, may be transmitted via sperm to the offspring. Such genetic damage may arise from environmental exposure or via endogenously formed reactive species, in stem cells or during spermatogenesis. Damaged testicular cells not removed by apoptosis rely on DNA repair for their genomic integrity to be preserved. To identify factors with potentially harmful effects on testicular cells and to characterise associated risk, a thorough understanding of repair mechanisms in these cells is of particular importance. Based on results from our own and other laboratories, we discuss the current knowledge of different pathways of excision repair in rodent and human testicular cells. It has become evident that, in human spermatogenic cells, some repair functions are indeed non-functional.

  3. Nitrous acid induced damage in T7 DNA and phage

    SciTech Connect

    Scearce, L.M.; Masker, W.E.

    1986-05-01

    The response of bacteriophage T7 to nitrous acid damage was investigated. The T7 system allows in vitro mimicry of most aspects of in vivo DNA metabolism. Nitrous acid is of special interest since it has been previously shown to induce deletions and point mutations as well as novel adducts in DNA. T7 phage was exposed to 56 mM nitrous acid at pH 4.6 in vivo, causing a time dependent 98% decrease in survival for each 10 min duration of exposure to nitrous acid. These studies were extended to include examination of pure T7 DNA exposed in vitro to nitrous acid conditions identical to those used in the in vivo survival studies. The treated DNA was dialyzed to remove the nitrous acid and the DNA was encapsulated into empty phage heads. These in vitro packaged phage showed a survival curve analogous to the in vivo system. There was no change in survival when either in vitro or in vivo exposed phage were grown on wild type E. coli or on E. coli strains deficient in DNA repair due to mutations in DNA polymerase I, exonuclease III or a uvrA mutation. Survival was not increased when nitrous acid treated T7 were grown on E. coli induced for SOS repair. In vitro replication of nitrous acid treated DNA showed a time dependent decrease in the total amount of DNA synthesized.

  4. Turning off the G2 DNA damage checkpoint

    PubMed Central

    Calonge, Teresa M.; O'Connell, Matthew J.

    2008-01-01

    In response to DNA damage, cells activate checkpoints to delay cell cycle progression and allow time for completion of DNA repair before commitment to S-phase or mitosis. During G2, many proteins collaborate to activate Chk1, an effector protein kinase that ensures the mitotic cyclin-dependent kinase remains in an inactive state. This checkpoint is ancient in origin and highly conserved from fission yeast to humans. Work from many groups has led to a detailed description of the spatiotemporal control of signaling events leading to Chk1 activation. However, to survive DNA damage in G2, the checkpoint must be inactivated to allow resumption of cell cycling and entry into mitosis. Though only beginning to be understood, here we review current data regarding checkpoint termination signals acting on Chk1 and its' upstream regulators. PMID:17851138

  5. Diseases Associated with Defective Responses to DNA Damage

    PubMed Central

    O’Driscoll, Mark

    2012-01-01

    Within the last decade, multiple novel congenital human disorders have been described with genetic defects in known and/or novel components of several well-known DNA repair and damage response pathways. Examples include disorders of impaired nucleotide excision repair, DNA double-strand and single-strand break repair, as well as compromised DNA damage-induced signal transduction including phosphorylation and ubiquitination. These conditions further reinforce the importance of multiple genome stability pathways for health and development in humans. Furthermore, these conditions inform our knowledge of the biology of the mechanics of genome stability and in some cases provide potential routes to help exploit these pathways therapeutically. Here, I will review a selection of these exciting findings from the perspective of the disorders themselves, describing how they were identified, how genotype informs phenotype, and how these defects contribute to our growing understanding of genome stability pathways. PMID:23209155

  6. DNA damage, repair and photoadaptation in a Xiphophorus fish hybrid.

    PubMed

    Mitchell, David L; Paniker, Lakshmi; Douki, Thierry

    2009-01-01

    Exposure to sunlight is responsible for most cutaneous malignant melanomas in the human population. It is very likely that DNA damage is an initial event in melanomagenesis, however, the role played by this damage is an open question. To this end, we used a hemipigmented F(1) hybrid of the fish genus Xiphophorus and HPLC tandem mass spectrometry to examine the effects of melanin on the induction and repair of the predominant UV-induced photoproducts formed in skin cell DNA. We found that heavily pigmented skin cells had about half the damage of nonpigmented cells and the relative induction of the major photoproducts was independent of the degree of pigmentation. The efficiency of photoenzymatic repair was the same in nonpigmented and pigmented areas of the fish. We found no evidence of residual damage at 10 days after the last exposure. Most striking was that repeated exposure to multiple doses of UVB caused a very significant photoadaptive response. Rather than an accumulation of damage after five doses of UVB we saw a significant reduction in the amount of damage induced after the final dose compared with the initial dose. The relevance of these observations is discussed in the context of melanoma susceptibility and UVB thresholds.

  7. DNA Damage: A Main Determinant of Vascular Aging

    PubMed Central

    Bautista-Niño, Paula K.; Portilla-Fernandez, Eliana; Vaughan, Douglas E.; Danser, A. H. Jan; Roks, Anton J. M.

    2016-01-01

    Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (c

  8. Chromatin remodeling facilitates DNA incision in UV-damaged nucleosomes.

    PubMed

    Lee, Kyungeun; Kim, Deok Ryong; Ahn, Byungchan

    2004-08-31

    The DNA repair machinery must locate and repair DNA damage all over the genome. As nucleosomes inhibit DNA repair in vitro, it has been suggested that chromatin remodeling might be required for efficient repair in vivo. To investigate a possible contribution of nucleosome dynamics and chromatin remodeling to the repair of UV-photoproducts in nucleosomes, we examined the effect of a chromatin remodeling complex on the repair of UV-lesions by Micrococcus luteus UV endonuclease (ML-UV endo) and T4-endonuclease V (T4-endoV) in reconstituted mononucleosomes positioned at one end of a 175-bp long DNA fragment. Repair by ML-UV endo and T4-endoV was inefficient in mononucleosomes compared with naked DNA. However, the human nucleosome remodeling complex, hSWI/SNF, promoted more homogeneous repair by ML-UV endo and T4-endo V in reconstituted nucleosomes. This result suggests that recognition of DNA damage could be facilitated by a fluid state of the chromatin resulting from chromatin remodeling activities. PMID:15359130

  9. DNA damage response induced by HZE particles in human cells

    NASA Astrophysics Data System (ADS)

    Chen, David; Aroumougame, Asaithamby

    Convincing evidences indicate that high-linear energy transfer (LET) ionizing radiation (IR) induced complex DNA lesions are more difficult to repair than isolated DNA lesions induced by low-LET IR; this has been associated with the increased RBE for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in high energy charged-particle irradiated human cells. We have employed an in situ method to directly monitor induction and repair of clustered DNA lesions at the single-cell level. We showed, consistent with biophysical modeling, that the kinetics of loss of clustered DNA lesions was substantially compromised in human fibroblasts. The unique spatial distribution of different types of DNA lesions within the clustered damages determined the cellular ability to repair these damages. Importantly, examination of metaphase cells derived from HZE particle irradiated cells revealed that the extent of chromosome aberrations directly correlated with the levels of unrepaired clustered DNA lesions. In addition, we used a novel organotypic human lung three-dimensional (3D) model to investigate the biological significance of unrepaired DNA lesions in differentiated lung epithelial cells. We found that complex DNA lesions induced by HZE particles were even more difficult to be repaired in organotypic 3D culture, resulting enhanced cell killing and chromosome aberrations. Our data suggest that DNA repair capability in differentiated cells renders them vulnerable to DSBs, promoting genome instability that may lead to carcinogenesis. As the organotypic 3D model mimics human lung, it opens up new experimental approaches to explore the effect of radiation in vivo and will have important implications for evaluating radiation risk in human tissues.

  10. Mitochondrial DNA damage is associated with damage accrual and disease duration in patients with Systemic Lupus Erythematosus

    PubMed Central

    López-López, Linnette; Nieves-Plaza, Mariely; Castro, María del R.; Font, Yvonne M.; Torres-Ramos, Carlos; Vilá, Luis M.; Ayala-Peña, Sylvette

    2014-01-01

    Objective To determine the extent of mitochondrial DNA (mtDNA) damage in systemic lupus erythematosus (SLE) patients compared to healthy subjects and to determine the factors associated with mtDNA damage among SLE patients. Methods A cross-sectional study was performed in 86 SLE patients (per American College of Rheumatology classification criteria) and 86 healthy individuals matched for age and gender. Peripheral blood mononuclear cells (PBMCs) were collected from subjects to assess the relative amounts of mtDNA damage. Quantitative polymerase chain reaction assay was used to measure the frequency of mtDNA lesions and mtDNA abundance. Socioeconomic-demographic features, clinical manifestations, pharmacologic treatment, disease activity, and damage accrual were determined. Statistical analyses were performed using t test, pairwise correlation, and Pearson’s chi-square test (or Fisher’s exact test) as appropriate. Results Among SLE patients, 93.0% were women. The mean (SD) age was 38.0 (10.4) years and the mean (SD) disease duration was 8.7 (7.5) years. SLE patients exhibited increased levels of mtDNA damage as shown by higher levels of mtDNA lesions and decreased mtDNA abundance as compared to healthy individuals. There was a negative correlation between disease damage and mtDNA abundance and a positive correlation between mtDNA lesions and disease duration. No association was found between disease activity and mtDNA damage. Conclusion PBMCs from SLE patients exhibited more mtDNA damage compared to healthy subjects. Higher levels of mtDNA damage were observed among SLE patients with major organ involvement and damage accrual. These results suggest that mtDNA damage have a potential role in the pathogenesis of SLE. PMID:24899636

  11. DNA damage and radiocesium in channel catfish from Chernobyl

    SciTech Connect

    Sugg, D.W.; Brooks, J.A.; Jagoe, C.H.; Smith, M.H.; Chesser, R.K.; Bickham, J.W.; Lomakin, M.D.; Dallas, C.E.; Baker, R.J.

    1996-07-01

    The explosion of the Chernobyl Nuclear Power Plant resulted in some of the most radioactively contaminated habitats on earth. Despite evacuation of all human inhabitants from the most contaminated areas, animals and plants continue to thrive in these areas. This study examines the levels of contamination and genetic damage associated with cesium-137 in catfish (Ictalurus punctatus) from the cooling pond and a control site. In general, catfish from the cooling pond exhibit greater genetic damage, and the amount of damage is related to the concentration of radiocesium in individual fish. Genetic damage is primarily in the form of DNA strand breaks, with few micronuclei being observed in contaminated fish. The possible roles that acclimation and adaption play in the response to high levels of radiation exposure are discussed.

  12. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction.

    PubMed

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-24

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag(+)-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.

  13. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction

    NASA Astrophysics Data System (ADS)

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-01

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.

  14. Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage

    PubMed Central

    Mallik, Sarita; Popodi, Ellen M.; Hanson, Andrew J.

    2015-01-01

    ABSTRACT Escherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure of E. coli to DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that the in vitro interaction between Rep and Pol IV reported previously also occurs in vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecA in vivo and is recruited to sites of DSBs to aid in the restoration of DNA replication. IMPORTANCE DNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstrate in vivo localization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings

  15. Metal specificity in DNA damage prevention by sulfur antioxidants.

    PubMed

    Battin, Erin E; Brumaghim, Julia L

    2008-12-01

    Metals such as CuI and FeII generate hydroxyl radical (.OH) by reducing endogenous hydrogen peroxide (H2O2). Because antioxidants can ameliorate metal-mediated oxidative damage, we have quantified the ability of glutathione, a primary intracellular antioxidant, and other biological sulfur-containing compounds to inhibit metal-mediated DNA damage caused hydroxyl radical. In the CuI/H2O2 system, six sulfur compounds, including both reduced and oxidized glutathione, inhibited DNA damage with IC50 values ranging from 3.4 to 12.4 microM. Glutathione and 3-carboxypropyl disulfide also demonstrated significant antioxidant activity with FeII and H2O2. Additional gel electrophoresis and UV-vis spectroscopy studies confirm that antioxidant activity for sulfur compounds in the CuI system is attributed to metal coordination, a previously unexplored mechanism. The antioxidant mechanism for sulfur compounds in the FeII system, however, is unlike that of CuI. Our results demonstrate that glutathione and other sulfur compounds are potent antioxidants capable of preventing metal-mediated oxidative DNA damage at well below their biological concentrations. This novel metal-binding antioxidant mechanism may play a significant role in the antioxidant behavior of these sulfur compounds and help refine understanding of glutathione function in vivo. PMID:18675460

  16. Regulation of the DNA Damage Response by p53 Cofactors

    PubMed Central

    Zhang, Xiao-Peng; Liu, Feng; Wang, Wei

    2012-01-01

    The selective expression of p53-targeted genes is central to the p53-mediated DNA damage response. It is affected by multiple factors including posttranslational modifications and cofactors of p53. Here, we proposed an integrated model of the p53 network to characterize how the cellular response is regulated by key cofactors of p53, Hzf and ASPP. We found that the sequential induction of Hzf and ASPP is crucial to a reliable cell-fate decision between survival and death. After DNA damage, activated p53 first induces Hzf, which promotes the expression of p21 to arrest the cell cycle and facilitate DNA repair. The cell recovers to normal proliferation after the damage is repaired. If the damage is beyond repair, Hzf is effectively degraded, and activated E2F1 induces ASPP, which promotes the expression of Bax to trigger apoptosis. Furthermore, interrupting the induction of Hzf or ASPP remarkably impairs the cellular function. We also proposed two schemes for the production of the unknown E3 ubiquitin ligase for Hzf degradation: it is induced by either E2F1 or p53. In both schemes, the sufficient degradation of Hzf is required for apoptosis induction. These results are in good agreement with experimental observations or are experimentally testable. PMID:22677378

  17. Multistage carcinogenesis modeling including cell cycle and DNA damage states

    NASA Astrophysics Data System (ADS)

    Hazelton, W.; Moolgavkar, S.

    The multistage clonal expansion model of carcinogenesis is generalized to include cell cycle states and corresponding DNA damage states with imperfect repair for normal and initiated stem cells. Initiated cells may undergo transformation to a malignant state, eventually leading to cancer incidence or death. The model allows oxidative or radiation induced DNA damage, checkpoint delay, DNA repair, apoptosis, and transformation rates to depend on the cell cycle state or DNA damage state of normal and initiated cells. A probability generating function approach is used to represent the time dependent probability distribution for cells in all states. The continuous time coupled Markov system representing this joint distribution satisfies a partial differential equation (pde). Time dependent survival and hazard functions are found through numerical solution of the characteristic equations for the pde. Although the hazard and survival can be calculated numerically, number and size distributions of pre-malignant lesions from models that are developed will be approximated through simulation. We use the model to explore predictions for hazard and survival as parameters representing cell cycle regulation and arrest are modified. Modification of these parameters may influence rates for cell division, apoptosis and malignant transformation that are important in carcinogenesis. We also explore enhanced repair that may be important for low-dose hypersensitivity and adaptive response, and degradation of repair processes or loss of checkpoint control that may drive genetic instability.

  18. Targeting ATR in DNA damage response and cancer therapeutics.

    PubMed

    Fokas, Emmanouil; Prevo, Remko; Hammond, Ester M; Brunner, Thomas B; McKenna, W Gillies; Muschel, Ruth J

    2014-02-01

    The ataxia telangiectasia and Rad3-related (ATR) plays an important role in maintaining genome integrity during DNA replication through the phosphorylation and activation of Chk1 and regulation of the DNA damage response. Preclinical studies have shown that disruption of ATR pathway can exacerbate the levels of replication stress in oncogene-driven murine tumors to promote cell killing. Additionally, inhibition of ATR can sensitise tumor cells to radiation or chemotherapy. Accumulating evidence suggests that targeting ATR can selectively sensitize cancer cells but not normal cells to DNA damage. Furthermore, in hypoxic conditions, ATR blockade results in overloading replication stress and DNA damage response causing cell death. Despite the attractiveness of ATR inhibition in the treatment of cancer, specific ATR inhibitors have remained elusive. In the last two years however, selective ATR inhibitors suitable for in vitro and - most recently - in vivo studies have been identified. In this article, we will review the literature on ATR function, its role in DDR and the potential of ATR inhibition to enhance the efficacy of radiation and chemotherapy.

  19. Uridine homeostatic disorder leads to DNA damage and tumorigenesis.

    PubMed

    Cao, Zhe; Ma, Jun; Chen, Xinchun; Zhou, Boping; Cai, Chuan; Huang, Dan; Zhang, Xuewen; Cao, Deliang

    2016-03-28

    Uridine is a natural nucleoside precursor of uridine monophosphate in organisms and thus is considered to be safe and is used in a wide range of clinical settings. The far-reaching effects of pharmacological uridine have long been neglected. Here, we report that the homeostatic disorder of uridine is carcinogenic. Targeted disruption (-/-) of murine uridine phosphorylase (UPase) disrupted the homeostasis of uridine and increased spontaneous tumorigenesis by more than 3-fold. Multiple tumors (e.g., lymphoma, hepatoma and lung adenoma) occurred simultaneously in some UPase deficient mice, but not in wild-type mice raised under the same conditions. In the tissue from UPase -/- mice, the 2'-deoxyuridine,5'-triphosphate (dUTP) levels and uracil DNA were increased and p53 was activated with an increased phospho-Ser18 p53 level. Exposing cell lines (e.g., MCF-7, RKO, HCT-8 and NCI-H460) to uridine (10 or 30 µM) led to uracil DNA damage and p53 activation, which in turn triggered the DNA damage response. In these cells, phospho-ATM, phospho-CHK2, and phospho-γH2AX were increased by uridine. These data suggest that uridine homeostatic disorder leads to uracil DNA damage and that pharmacological uridine may be carcinogenic.

  20. rasiRNAs, DNA damage, and embryonic axis specification.

    PubMed

    Theurkauf, W E; Klattenhoff, C; Bratu, D P; McGinnis-Schultz, N; Koppetsch, B S; Cook, H A

    2006-01-01

    Drosophila repeat-associated small interfering RNAs (rasiRNAs) have been implicated in retrotransposon and stellate locus silencing. However, mutations in the rasiRNA pathway genes armitage, spindle-E, and aubergine disrupt embryonic axis specification, triggering defects in microtubule organization and localization of osk and grk mRNAs during oogenesis. We show that mutations in mei-41 and mnk, which encode ATR and Chk2 kinases that function in DNA damage signal transduction, dramatically suppress the cytoskeletal and RNA localization defects associated with rasiRNA mutations. In contrast, stellate and retrotransposon silencing are not restored in mei-41 and mnk double mutants. We also find that armitage, aubergine, and spindle-E mutations lead to germ-line-specific accumulation of gamma-H2Av foci, which form at DNA double-strand breaks, and that mutations in armi lead to Chk2-dependent phosphorylation of Vasa, an RNA helicase required for axis specification. The Drosophila rasiRNA pathway thus appears to suppress DNA damage in the germ line, and mutations in this pathway block axis specification by activating an ATR/Chk2-dependent DNA damage response that disrupts microtubule polarization and RNA localization.

  1. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage.

    PubMed

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-03-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells. PMID:26666690

  2. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage

    PubMed Central

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-01-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells. PMID:26666690

  3. p53 in the DNA-Damage-Repair Process.

    PubMed

    Williams, Ashley B; Schumacher, Björn

    2016-01-01

    The cells in the human body are continuously challenged by a variety of genotoxic attacks. Erroneous repair of the DNA can lead to mutations and chromosomal aberrations that can alter the functions of tumor suppressor genes or oncogenes, thus causing cancer development. As a central tumor suppressor, p53 guards the genome by orchestrating a variety of DNA-damage-response (DDR) mechanisms. Already early in metazoan evolution, p53 started controlling the apoptotic demise of genomically compromised cells. p53 plays a prominent role as a facilitator of DNA repair by halting the cell cycle to allow time for the repair machineries to restore genome stability. In addition, p53 took on diverse roles to also directly impact the activity of various DNA-repair systems. It thus appears as if p53 is multitasking in providing protection from cancer development by maintaining genome stability.

  4. p53 in the DNA-Damage-Repair Process.

    PubMed

    Williams, Ashley B; Schumacher, Björn

    2016-01-01

    The cells in the human body are continuously challenged by a variety of genotoxic attacks. Erroneous repair of the DNA can lead to mutations and chromosomal aberrations that can alter the functions of tumor suppressor genes or oncogenes, thus causing cancer development. As a central tumor suppressor, p53 guards the genome by orchestrating a variety of DNA-damage-response (DDR) mechanisms. Already early in metazoan evolution, p53 started controlling the apoptotic demise of genomically compromised cells. p53 plays a prominent role as a facilitator of DNA repair by halting the cell cycle to allow time for the repair machineries to restore genome stability. In addition, p53 took on diverse roles to also directly impact the activity of various DNA-repair systems. It thus appears as if p53 is multitasking in providing protection from cancer development by maintaining genome stability. PMID:27048304

  5. p53 in the DNA damage repair process

    PubMed Central

    Williams, Ashley B.; Schumacher, Björn

    2016-01-01

    The cells in the human body are continuously challenged by a variety of genotoxic attacks. Erroneous repair of the DNA can lead to mutations and chromosomal aberrations that can alter the functions of tumor suppressor genes or oncogenes, thus causing cancer development. As a central tumor suppressor, p53 guards the genome by orchestrating a variety of DNA damage response (DDR) mechanisms. Already early in metazoan evolution, p53 started controlling the apoptotic demise of genomically compromised cells. p53 plays a prominent role as a facilitator of DNA repair by halting the cell cycle to allow time for the repair machineries to restore genome stability. In addition, p53 took on diverse roles to also directly impact the activity of various DNA repair systems. It thus appears as if p53 is multitasking in protecting from cancer development by maintaining genome stability. PMID:27048304

  6. DNA damage and repair in Stylonychia lemnae (Ciliata, Protozoa)

    SciTech Connect

    Ammermann, D.

    1988-05-01

    Irradiation with X rays, UV irradiation after incorporation of bromodeoxyuridine (BU) into the DNA, and cis-platinum (cis-Pt) treatment each cause the loss of micronuclei of Stylonychia lemnae while the macronuclei are not severely affected. The abilities of both nuclei to repair DNA were investigated. Unscheduled DNA synthesis could not be demonstrated after X-ray irradiation, but it was found after treatment with BU/UV and cis-Pt in macro- and micronuclei. The extent of the repair process in the micro- and macronuclei was alike, as indicated by grain counts of (6-/sup 3/H)thymidine-treated cells. One reason for the different sensitivity of both nuclei to DNA-damaging treatment may be the different number of gene copies in the macro- and micronuclei.

  7. Reduction in oxidatively generated DNA damage following smoking cessation

    PubMed Central

    2011-01-01

    Background Cigarette smoking is a known cause of cancer, and cancer may be in part due to effects of oxidative stress. However, whether smoking cessation reverses oxidatively induced DNA damage unclear. The current study sought to examine the extent to which three DNA lesions showed significant reductions after participants quit smoking. Methods Participants (n = 19) in this study were recruited from an ongoing 16-week smoking cessation clinical trial and provided blood samples from which leukocyte DNA was extracted and assessed for 3 DNA lesions (thymine glycol modification [d(TgpA)]; formamide breakdown of pyrimidine bases [d(TgpA)]; 8-oxo-7,8-dihydroguanine [d(Gh)]) via liquid chromatography tandem mass spectrometry (LC-MS/MS). Change in lesions over time was assessed using generalized estimating equations, controlling for gender, age, and treatment condition. Results Overall time effects for the d(TgpA) (χ2(3) = 8.068, p < 0.045), d(PfpA) (χ2(3) = 8.477, p < 0.037), and d(Gh) (χ2(3) = 37.599, p < 0.001) lesions were seen, indicating levels of each decreased significantly after CO-confirmed smoking cessation. The d(TgpA) and d(PfpA) lesions show relatively greater rebound at Week 16 compared to the d(Gh) lesion (88% of baseline for d(TgpA), 64% of baseline for d(PfpA), vs 46% of baseline for d(Gh)). Conclusions Overall, results from this analysis suggest that cigarette smoking contributes to oxidatively induced DNA damage, and that smoking cessation appears to reduce levels of specific damage markers between 30-50 percent in the short term. Future research may shed light on the broader array of oxidative damage influenced by smoking and over longer durations of abstinence, to provide further insights into mechanisms underlying carcinogenesis. PMID:21569419

  8. Nitroxides block DNA scission and protect cells from oxidative damage

    SciTech Connect

    Samuni, A.; Godinger, D.; Aronovitch, J. ); Russo, A.; Mitchell, J. )

    1991-01-01

    The protective effect of cyclic stable nitroxide free radicals, having SOD-like activity, against oxidative damage was studied by using Escherichia coli xthA DNA repair-deficient mutant hypersensitive to H{sub 2}O{sub 2}. Oxidative damage induced by H{sub 2}O{sub 2} was assayed by monitoring cell survival. The metal chelator 1,10-phenanthroline (OP), which readily intercalates into DNA, potentiated with H{sub 2}O{sub 2}-induced damage. The extent of in vivo DNA scission and degradation was studied and compared with the loss of cell viability. The extent of DNA breakage correlated with cell killing, supporting previous suggestions that DNA is the crucial cellular target of H{sub 2}O{sub 2} cytotoxicity. The xthA cells were protected by catalase but not by superoxide dismutase (SOD). Both five- and six-membered ring nitroxides, having SOD-like activity, protected growing and resting cells from H{sub 2}O{sub 2} toxicity, without lowering H{sub 2}O{sub 2} concentration. To check whether nitroxides protect against O{sub 2}{sup {center dot}{minus}}-independent injury also, experiments were repeated under hypoxia. These nitroxides also protected hypoxic cells against H{sub 2}O{sub 2}, suggesting alternative modes of protection. Since nitroxides were found to reoxidize DNA-bound iron(II), the present results suggest that nitroxides protect by oxidizing reduced transition metals, thus interfering with the Fenton reaction.

  9. Melanin photosensitizes ultraviolet light (UVC) DNA damage in pigmented cells

    SciTech Connect

    Huselton, C.A.; Hill, H.Z. )

    1990-01-01

    Melanins, pigments of photoprotection and camouflage, are very photoreactive and can both absorb and emit active oxygen species. Nevertheless, black skinned individuals rarely develop skin cancer and melanin is assumed to act as a solar screen. Since DNA is the target for solar carcinogenesis, the effect of melanin on Ultraviolet (UV)-induced thymine lesions was examined in mouse melanoma and carcinoma cells that varied in melanin content. Cells prelabeled with 14C-dThd were irradiated with UVC; DNA was isolated, purified, degraded to bases by acid hydrolysis and analyzed by HPLC. Thymine dimers were detected in all of the extracts of irradiated cells. Melanotic and hypomelanotic but not mammary carcinoma cell DNA from irradiated cells contained hydrophilic thymine derivatives. The quantity of these damaged bases was a function of both the UVC dose and the cellular melanin content. One such derivative was identified by gas chromatography-mass spectroscopy as thymine glycol. The other appears to be derived from thymine glycol by further oxidation during acid hydrolysis of the DNA. The finding of oxidative DNA damage in melanin-containing cells suggests that melanin may be implicated in the etiology of caucasian skin cancer, particularly melanoma. Furthermore, the projected decrease in stratospheric ozone could impact in an unanticipated deleterious manner on dark-skinned individuals.

  10. Development of the adverse outcome pathway "alkylation of DNA in male premeiotic germ cells leading to heritable mutations" using the OECD's users' handbook supplement.

    PubMed

    Yauk, Carole L; Lambert, Iain B; Meek, M E Bette; Douglas, George R; Marchetti, Francesco

    2015-12-01

    The Organisation for Economic Cooperation and Development's (OECD) Adverse Outcome Pathway (AOP) programme aims to develop a knowledgebase of all known pathways of toxicity that lead to adverse effects in humans and ecosystems. A Users' Handbook was recently released to provide supplementary guidance on AOP development. This article describes one AOP-alkylation of DNA in male premeiotic germ cells leading to heritable mutations. This outcome is an important regulatory endpoint. The AOP describes the biological plausibility and empirical evidence supporting that compounds capable of alkylating DNA cause germ cell mutations and subsequent mutations in the offspring of exposed males. Alkyl adducts are subject to DNA repair; however, at high doses the repair machinery becomes saturated. Lack of repair leads to replication of alkylated DNA and ensuing mutations in male premeiotic germ cells. Mutations that do not impair spermatogenesis persist and eventually are present in mature sperm. Thus, the mutations are transmitted to the offspring. Although there are some gaps in empirical support and evidence for essentiality of the key events for certain aspects of this AOP, the overall AOP is generally accepted as dogma and applies broadly to any species that produces sperm. The AOP was developed and used in an iterative process to test and refine the Users' Handbook, and is one of the first publicly available AOPs. It is our hope that this AOP will be leveraged to develop other AOPs in this field to advance method development, computational models to predict germ cell effects, and integrated testing strategies. PMID:26010389

  11. Investigation of perfluorooctanoic acid induced DNA damage using electrogenerated chemiluminescence associated with charge transfer in DNA.

    PubMed

    Lu, Liping; Guo, Linqing; Li, Meng; Kang, Tianfang; Cheng, Shuiyuan; Miao, Wujian

    2016-10-01

    An electrogenerated chemiluminescence (ECL)-DNA sensor was designed and fabricated for the investigation of DNA damage by a potential environmental pollutant, perfluorooctanoic acid (PFOA). The ECL-DNA sensor consisted of a Au electrode that had a self-assembled monolayer of 15 base-pair double-stranded (ds) DNA oligonucleotides with covalently attached semiconductor CdSe quantum dots (QDs) at the distal end of the DNA. Characterization of the ECL-DNA sensor was conducted with X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), ECL, and cyclic voltammetry before and after the exposure of the sensor to PFOA. Consistent data revealed that the dsDNA on Au was severely damaged upon the incubation of the electrode in PFOA, causing significant increase in charge (or electron) transfer (CT) resistance within DNA strands. Consequently, the cathodic coreactant ECL responses of the Au/dsDNA-QDs electrode in the presence of K2S2O8 were markedly decreased. The strong interaction between DNA and PFOA via the hydrophobic interaction, especially the formation of F···H hydrogen bonds by insertion of the difluoro-methylene group of PFOA into the DNA base pairs, was believed to be responsible for the dissociation or loosening of dsDNA structure, which inhibited the CT through DNA. A linear relationship between the ECL signal of the sensor and the logarithmical concentration of PFOA displayed a dynamic range of 1.00 × 10(-14)-1.00 × 10(-4) M, with a limit of detection of 1.00 × 10(-15) M at a signal-to-noise ratio of 3. Graphical Abstract Illustration of ECL detection of PFOA on a Au/dsDNA-QDs ECL-DNA sensor.

  12. Investigation of perfluorooctanoic acid induced DNA damage using electrogenerated chemiluminescence associated with charge transfer in DNA.

    PubMed

    Lu, Liping; Guo, Linqing; Li, Meng; Kang, Tianfang; Cheng, Shuiyuan; Miao, Wujian

    2016-10-01

    An electrogenerated chemiluminescence (ECL)-DNA sensor was designed and fabricated for the investigation of DNA damage by a potential environmental pollutant, perfluorooctanoic acid (PFOA). The ECL-DNA sensor consisted of a Au electrode that had a self-assembled monolayer of 15 base-pair double-stranded (ds) DNA oligonucleotides with covalently attached semiconductor CdSe quantum dots (QDs) at the distal end of the DNA. Characterization of the ECL-DNA sensor was conducted with X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), ECL, and cyclic voltammetry before and after the exposure of the sensor to PFOA. Consistent data revealed that the dsDNA on Au was severely damaged upon the incubation of the electrode in PFOA, causing significant increase in charge (or electron) transfer (CT) resistance within DNA strands. Consequently, the cathodic coreactant ECL responses of the Au/dsDNA-QDs electrode in the presence of K2S2O8 were markedly decreased. The strong interaction between DNA and PFOA via the hydrophobic interaction, especially the formation of F···H hydrogen bonds by insertion of the difluoro-methylene group of PFOA into the DNA base pairs, was believed to be responsible for the dissociation or loosening of dsDNA structure, which inhibited the CT through DNA. A linear relationship between the ECL signal of the sensor and the logarithmical concentration of PFOA displayed a dynamic range of 1.00 × 10(-14)-1.00 × 10(-4) M, with a limit of detection of 1.00 × 10(-15) M at a signal-to-noise ratio of 3. Graphical Abstract Illustration of ECL detection of PFOA on a Au/dsDNA-QDs ECL-DNA sensor. PMID:27108285

  13. The Dynamics of DNA Damage Repair and Transcription

    PubMed Central

    Shanbhag, Niraj M.; Greenberg, Roger A.

    2013-01-01

    Recent advances have led to several systems to study transcription from defined loci in living cells. It has now become possible to address long-standing questions regarding the interplay between the processes of DNA damage repair and transcription—two disparate processes that can occur on the same stretch of chromatin and which both lead to extensive chromatin change. Here we describe the development of a system to create enzymatically induced DNA double-strand breaks (DSBs) at a site of inducible transcription and methods to study the interplay between these processes. PMID:23980011

  14. Spatiotemporal Dynamics of Early DNA Damage Response Proteins on Complex DNA Lesions

    PubMed Central

    Tobias, Frank; Löb, Daniel; Lengert, Nicor; Durante, Marco; Drossel, Barbara; Taucher-Scholz, Gisela; Jakob, Burkhard

    2013-01-01

    The response of cells to ionizing radiation-induced DNA double-strand breaks (DSB) is determined by the activation of multiple pathways aimed at repairing the injury and maintaining genomic integrity. Densely ionizing radiation induces complex damage consisting of different types of DNA lesions in close proximity that are difficult to repair and may promote carcinogenesis. Little is known about the dynamic behavior of repair proteins on complex lesions. In this study we use live-cell imaging for the spatio-temporal characterization of early protein interactions at damage sites of increasing complexity. Beamline microscopy was used to image living cells expressing fluorescently-tagged proteins during and immediately after charged particle irradiation to reveal protein accumulation at damaged sites in real time. Information on the mobility and binding rates of the recruited proteins was obtained from fluorescence recovery after photobleaching (FRAP). Recruitment of the DNA damage sensor protein NBS1 accelerates with increasing lesion density and saturates at very high damage levels. FRAP measurements revealed two different binding modalities of NBS1 to damage sites and a direct impact of lesion complexity on the binding. Faster recruitment with increasing lesion complexity was also observed for the mediator MDC1, but mobility was limited at very high damage densities due to nuclear-wide binding. We constructed a minimal computer model of the initial response to DSB based on known protein interactions only. By fitting all measured data using the same set of parameters, we can reproduce the experimentally characterized steps of the DNA damage response over a wide range of damage densities. The model suggests that the influence of increasing lesion density accelerating NBS1 recruitment is only dependent on the different binding modes of NBS1, directly to DSB and to the surrounding chromatin via MDC1. This elucidates an impact of damage clustering on repair without the

  15. Preservation of ancient DNA in thermally damaged archaeological bone

    NASA Astrophysics Data System (ADS)

    Ottoni, Claudio; Koon, Hannah E. C.; Collins, Matthew J.; Penkman, Kirsty E. H.; Rickards, Olga; Craig, Oliver E.

    2009-02-01

    Evolutionary biologists are increasingly relying on ancient DNA from archaeological animal bones to study processes such as domestication and population dispersals. As many animal bones found on archaeological sites are likely to have been cooked, the potential for DNA preservation must be carefully considered to maximise the chance of amplification success. Here, we assess the preservation of mitochondrial DNA in a medieval cattle bone assemblage from Coppergate, York, UK. These bones have variable degrees of thermal alterations to bone collagen fibrils, indicative of cooking. Our results show that DNA preservation is not reliant on the presence of intact collagen fibrils. In fact, a greater number of template molecules could be extracted from bones with damaged collagen. We conclude that moderate heating of bone may enhance the retention of DNA fragments. Our results also indicate that ancient DNA preservation is highly variable, even within a relatively recent assemblage from contexts conducive to organic preservation, and that diagenetic parameters based on protein diagenesis are not always useful for predicting ancient DNA survival.

  16. DNA damage profiles induced by sunlight at different latitudes.

    PubMed

    Schuch, André Passaglia; Yagura, Teiti; Makita, Kazuo; Yamamoto, Hiromasa; Schuch, Nelson Jorge; Agnez-Lima, Lucymara Fassarella; MacMahon, Ricardo Monreal; Menck, Carlos Frederico Martins

    2012-04-01

    Despite growing knowledge on the biological effects of ultraviolet (UV) radiation on human health and ecosystems, it is still difficult to predict the negative impacts of the increasing incidence of solar UV radiation in a scenario of global warming and climate changes. Hence, the development and application of DNA-based biological sensors to monitor the solar UV radiation under different environmental conditions is of increasing importance. With a mind to rendering a molecular view-point of the genotoxic impact of sunlight, field experiments were undertaken with a DNA-dosimeter system in parallel with physical photometry of solar UVB/UVA radiation, at various latitudes in South America. On applying biochemical and immunological approaches based on specific DNA-repair enzymes and antibodies, for evaluating sunlight-induced DNA damage profiles, it became clear that the genotoxic potential of sunlight does indeed vary according to latitude. Notwithstanding, while induction of oxidized DNA bases is directly dependent on an increase in latitude, the generation of 6-4PPs is inversely so, whereby the latter can be regarded as a biomolecular marker of UVB incidence. This molecular DNA lesion-pattern largely reflects the relative incidence of UVA and UVB energy at any specific latitude. Hereby is demonstrated the applicability of this DNA-based biosensor for additional, continuous field experiments, as a means of registering variations in the genotoxic impact of solar UV radiation.

  17. Preservation of ancient DNA in thermally damaged archaeological bone.

    PubMed

    Ottoni, Claudio; Koon, Hannah E C; Collins, Matthew J; Penkman, Kirsty E H; Rickards, Olga; Craig, Oliver E

    2009-02-01

    Evolutionary biologists are increasingly relying on ancient DNA from archaeological animal bones to study processes such as domestication and population dispersals. As many animal bones found on archaeological sites are likely to have been cooked, the potential for DNA preservation must be carefully considered to maximise the chance of amplification success. Here, we assess the preservation of mitochondrial DNA in a medieval cattle bone assemblage from Coppergate, York, UK. These bones have variable degrees of thermal alterations to bone collagen fibrils, indicative of cooking. Our results show that DNA preservation is not reliant on the presence of intact collagen fibrils. In fact, a greater number of template molecules could be extracted from bones with damaged collagen. We conclude that moderate heating of bone may enhance the retention of DNA fragments. Our results also indicate that ancient DNA preservation is highly variable, even within a relatively recent assemblage from contexts conducive to organic preservation, and that diagenetic parameters based on protein diagenesis are not always useful for predicting ancient DNA survival.

  18. Eukaryotic damaged DNA-binding proteins: DNA repair proteins or transcription factors?

    SciTech Connect

    Protic, M.

    1994-12-31

    Recognition and removal of structural defects in the genome, caused by diverse physical and chemical agents, are among the most important cell functions. Proteins that recognize and bind to modified DNA, and thereby initiate damage-induced recovery processes, have been identified in prokaryotic and eukaryotic cells. Damaged DNA-binding (DDB) proteins from prokaryotes are either DNA repair enzymes or noncatalytic subunits of larger DNA repair complexes that participate in excision repair, or in recombinational repair and SOS-mutagenesis. Although the methods employed may not have allowed detection of all eukaryotic DDB proteins and identification of their functions, it appears that during evolution cells have developed a wide array of DDB proteins that can discriminate among the diversity of DNA conformations found in the eukaryotic nucleus, as well as a gene-sharing feature found in DDB proteins that also act as transcription factors.

  19. DNA binding, antioxidant activity, and DNA damage protection of chiral macrocyclic Mn(III) salen complexes.

    PubMed

    Pandya, Nirali; Khan, Noor-ul H; Prathap, K Jeya; Kureshy, Rukhsana I; Abdi, Sayed H R; Mishra, Sandhya; Bajaj, Hari C

    2012-12-01

    We are reporting the synthesis, characterization, and calf thymus DNA binding studies of novel chiral macrocyclic Mn(III) salen complexes S-1, R-1, S-2, and R-2. These chiral complexes showed ability to bind with DNA, where complex S-1 exhibits the highest DNA binding constant 1.20 × 10(6) M(-1). All the compounds were screened for superoxide and hydroxyl radical scavenging activities; among them, complex S-1 exhibited significant activity with IC(50) 1.36 and 2.37 μM, respectively. Further, comet assay was used to evaluate the DNA damage protection in white blood cells against the reactive oxygen species wherein complex S-1 was found effective in protecting the hydroxyl radicals mediated plasmid and white blood cells DNA damage.

  20. The comet assay, DNA damage, DNA repair and cytotoxicity: hedgehogs are not always dead.

    PubMed

    Lorenzo, Yolanda; Costa, Solange; Collins, Andrew R; Azqueta, Amaya

    2013-07-01

    DNA damage is commonly measured at the level of individual cells using the so-called comet assay (single-cell gel electrophoresis). As the frequency of DNA breaks increases, so does the fraction of the DNA extending towards the anode, forming the comet tail. Comets with almost all DNA in the tail are often referred to as 'hedgehog' comets and are widely assumed to represent apoptotic cells. We review the literature and present theoretical and empirical arguments against this interpretation. The level of DNA damage in these comets is far less than the massive fragmentation that occurs in apoptosis. 'Hedgehog' comets are formed after moderate exposure of cells to, for example, H2O2, but if the cells are incubated for a short period, 'hedgehogs' are no longer seen. We confirm that this is not because DNA has degraded further and been lost from the gel, but because the DNA is repaired. The comet assay may detect the earliest stages of apoptosis, but as it proceeds, comets disappear in a smear of unattached DNA. It is clear that 'hedgehogs' can correspond to one level on a continuum of genotoxic damage, are not diagnostic of apoptosis and should not be regarded as an indicator of cytotoxicity. PMID:23630247

  1. Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways

    PubMed Central

    2013-01-01

    Background Melatonin, a hormone-like substance involved in the regulation of the circadian rhythm, has been demonstrated to protect cells against oxidative DNA damage and to inhibit tumorigenesis. Results In the current study, we investigated the effect of melatonin on DNA strand breaks using the alkaline DNA comet assay in breast cancer (MCF-7) and colon cancer (HCT-15) cell lines. Our results demonstrated that cells pretreated with melatonin had significantly shorter Olive tail moments compared to non-melatonin treated cells upon mutagen (methyl methanesulfonate, MMS) exposure, indicating an increased DNA repair capacity after melatonin treatment. We further examined the genome-wide gene expression in melatonin pretreated MCF-7 cells upon carcinogen exposure and detected altered expression of many genes involved in multiple DNA damage responsive pathways. Genes exhibiting altered expression were further analyzed for functional interrelatedness using network- and pathway-based bioinformatics analysis. The top functional network was defined as having relevance for “DNA Replication, Recombination, and Repair, Gene Expression, [and] Cancer”. Conclusions These findings suggest that melatonin may enhance DNA repair capacity by affecting several key genes involved in DNA damage responsive pathways. PMID:23294620

  2. Non-coding RNAs in DNA damage response

    PubMed Central

    Liu, Yunhua; Lu, Xiongbin

    2012-01-01

    Genome-wide studies have revealed that human and other mammalian genomes are pervasively transcribed and produce thousands of regulatory non-protein-coding RNAs (ncRNAs), including miRNAs, siRNAs, piRNAs and long non-coding RNAs (lncRNAs). Emerging evidences suggest that these ncRNAs also play a pivotal role in genome integrity and stability via the regulation of DNA damage response (DDR). In this review, we discuss the recent finding on the interplay of ncRNAs with the canonical DDR signaling pathway, with a particular emphasis on miRNAs and lncRNAs. While the expression of ncRNAs is regulated in the DDR, the DDR is also subjected to regulation by those DNA damage-responsive ncRNAs. In addition, the roles of those Dicer- and Drosha-dependent small RNAs produced in the vicinity of double-strand breaks sites are also described. PMID:23226613

  3. Endogenous DNA Damage and Risk of Testicular Germ Cell Tumors

    SciTech Connect

    Cook, M B; Sigurdson, A J; Jones, I M; Thomas, C B; Graubard, B I; Korde, L; Greene, M H; McGlynn, K A

    2008-01-18

    Testicular germ cell tumors (TGCT) are comprised of two histologic groups, seminomas and nonseminomas. We postulated that the possible divergent pathogeneses of these histologies may be partially explained by variable endogenous DNA damage. To assess our hypothesis, we conducted a case-case analysis of seminomas and nonseminomas using the alkaline comet assay to quantify single-strand DNA breaks and alkali-labile sites. The Familial Testicular Cancer study and the U.S. Radiologic Technologists cohort provided 112 TGCT cases (51 seminomas & 61 nonseminomas). A lymphoblastoid cell line was cultured for each patient and the alkaline comet assay was used to determine four parameters: tail DNA, tail length, comet distributed moment (CDM) and Olive tail moment (OTM). Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated using logistic regression. Values for tail length, tail DNA, CDM and OTM were modeled as categorical variables using the 50th and 75th percentiles of the seminoma group. Tail DNA was significantly associated with nonseminoma compared to seminoma (OR{sub 50th percentile} = 3.31, 95%CI: 1.00, 10.98; OR{sub 75th percentile} = 3.71, 95%CI: 1.04, 13.20; p for trend=0.039). OTM exhibited similar, albeit statistically non-significant, risk estimates (OR{sub 50th percentile} = 2.27, 95%CI: 0.75, 6.87; OR{sub 75th percentile} = 2.40, 95%CI: 0.75, 7.71; p for trend=0.12) whereas tail length and CDM showed no association. In conclusion, the results for tail DNA and OTM indicate that endogenous DNA damage levels are higher in patients who develop nonseminoma compared with seminoma. This may partly explain the more aggressive biology and younger age-of-onset of this histologic subgroup compared with the relatively less aggressive, later-onset seminoma.

  4. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage

    SciTech Connect

    Marchetti, Francesco; Marchetti, Francesco; Wryobek, Andrew J

    2008-02-21

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7- 1 dbf). Analysis of chromosomalaberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  5. DNA Repair Decline During Mouse Spermiogenesis Results in the Accumulation of Heritable DNA Damage

    SciTech Connect

    Marchetti, Francesco; Marchetti, Francesco; Wyrobek, Andrew J.

    2007-12-01

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7-1 dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  6. Development and use of an in vitro HSV-tk forward mutation assay to study eukaryotic DNA polymerase processing of DNA alkyl lesions.

    PubMed Central

    Eckert, K A; Hile, S E; Vargo, P L

    1997-01-01

    We have developed an in vitro DNA polymerase forward mutation assay using damaged DNA templates that contain the herpes simplex virus type 1 thymidine kinase (HSV-tk) gene. The quantitative method uses complementary strand hybridization to gapped duplex DNA molecules and chloramphenicol selection. This design ensures exclusive analysis of mutations derived from the DNA strand produced during in vitro synthesis. We have examined the accuracy of DNA synthesis catalyzed by calf thymus polymerase alpha-primase, polymerase beta and exonuclease-deficient Klenow polymerase. Using unmodified DNA templates, polymerase beta displays a unique specificity for the loss of two bases in a dinucleotide repeat sequence within the HSV-tk locus. Treatment of the DNA template with N-ethyl-N-nitrosourea resulted in a dose-dependent inhibition of DNA synthesis concomitant with an increased mutation frequency. Similar dose-response curves were measured for the three polymerases examined; thus the identity of the DNA polymerase does not appear to affect the mutagenic potency of ethyl lesions. The HSV-tk system is unique in that damage-induced mutagenesis can be analyzed both quantitatively and qualitatively in human cells, in bacterial cells and in in vitro DNA synthesis reactions at a single target sequence. PMID:9060443

  7. DNA Damage Response and Tumorigenesis in Mcm2 Deficient Mice

    PubMed Central

    Kunnev, Dimiter; Rusiniak, Michael E.; Kudla, Angela; Freeland, Amy; Cady, Gillian K.; Pruitt, Steven C.

    2010-01-01

    Mini-chromosome maintenance proteins (Mcm’s) are components of the DNA replication licensing complex. In vivo, reduced expression or activity of Mcm proteins has been shown to result in highly penetrant early onset cancers (Shima et al., 2007; Pruitt et al., 2007 and stem cell deficiencies (Pruitt et al., 2007). Here we use MEFs from an Mcm2 deficient strain of mice to show by DNA fiber analysis that origin usage is decreased in Mcm2 deficient cells under conditions of HU mediated replication stress. DNA damage responses (DDR) resulting from HU and additional replication dependent and independent genotoxic agents were also examined and shown to function at wild type levels. Further, basal levels of many components of the DNA damage response were expressed at wild type levels demonstrating that there is no acute replicative stress under normal growth conditions. Only very modest, 1.5–2 fold increases in the basal levels of γ-H2AX, p21cip1 and 53bp foci were found, consistent with a slight chronic elevation in DDR pathways. The one condition in which a larger difference between wt and Mcm2 deficient cells was found occurred following UV irradiation and may reflect the role of Chk1 mediated suppression of dormant origins. In vivo, abrogating p53 mediated DDR in Mcm2 deficient mice results in increased embryonic lethality and accelerated cancer formation in surviving mice. Further, p53 mutation rescues the negative effect of Mcm2 deficiency on the survival of neural stem cells in vitro; however, the enhanced survival correlates with increased genetic damage relative to Mcm2 wt cells carrying the p53 mutation. Together these results demonstrate that even relatively minor perturbations to primary or dormant replication origin usage contribute to accelerated genetic damage in vivo. Additionally, these studies demonstrate that tumor types resulting from Mcm2 deficiency are strongly affected by interaction with both genetic background and p53. PMID:20440269

  8. Defects in mitochondrial DNA replication and oxidative damage in muscle of mtDNA mutator mice.

    PubMed

    Kolesar, Jill E; Safdar, Adeel; Abadi, Arkan; MacNeil, Lauren G; Crane, Justin D; Tarnopolsky, Mark A; Kaufman, Brett A

    2014-10-01

    A causal role for mitochondrial dysfunction in mammalian aging is supported by recent studies of the mtDNA mutator mouse ("PolG" mouse), which harbors a defect in the proofreading-exonuclease activity of mitochondrial DNA polymerase gamma. These mice exhibit accelerated aging phenotypes characteristic of human aging, including systemic mitochondrial dysfunction, exercise intolerance, alopecia and graying of hair, curvature of the spine, and premature mortality. While mitochondrial dysfunction has been shown to cause increased oxidative stress in many systems, several groups have suggested that PolG mutator mice show no markers of oxidative damage. These mice have been presented as proof that mitochondrial dysfunction is sufficient to accelerate aging without oxidative stress. In this study, by normalizing to mitochondrial content in enriched fractions we detected increased oxidative modification of protein and DNA in PolG skeletal muscle mitochondria. We separately developed novel methods that allow simultaneous direct measurement of mtDNA replication defects and oxidative damage. Using this approach, we find evidence that suggests PolG muscle mtDNA is indeed oxidatively damaged. We also observed a significant decrease in antioxidants and expression of mitochondrial biogenesis pathway components and DNA repair enzymes in these mice, indicating an association of maladaptive gene expression with the phenotypes observed in PolG mice. Together, these findings demonstrate the presence of oxidative damage associated with the premature aging-like phenotypes induced by mitochondrial dysfunction.

  9. Prevention of oxidative DNA damage in rats by brussels sprouts.

    PubMed

    Deng, X S; Tuo, J; Poulsen, H E; Loft, S

    1998-03-01

    The alleged cancer preventive effects of cruciferous vegetables could be related to protection from mutagenic oxidative DNA damage. We have studied the effects of Brussels sprouts, some non-cruciferous vegetables and isolated glucosinolates on spontaneous and induced oxidative DNA damage in terms of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in groups of 6-8 male Wistar rats. Excess oxidative DNA damage was induced by 2-nitropropane (2-NP 100 mg/kg). Four days oral administration of 3 g of cooked Brussels sprouts homogenate reduced the spontaneous urinary 8-oxodG excretion by 31% (p<0.05) whereas raw sprouts, beans and endive (1:1), isolated indolyl glucosinolates and breakdown products had no significant effect. An aqueous extract of cooked Brussels sprouts (corresponding to 6.7 g vegetable per day for 4 days) decreased the spontaneous 8-oxodG excretion from 92 +/- 12 to 52 +/- 15 pmol/24 h (p<0.05). After 2-NP administration the 8-oxodG excretion was increased to 132 +/- 26 pmol/24 h (p<0.05) whereas pretreatment with the sprouts extract reduced this to 102 +/- 30 pmol/24 h (p<0.05). The spontaneous level of 8-oxodG in nuclear DNA from liver and bone marrow was not significantly affected by the sprouts extract whereas the level decreased by 27% in the kidney (p<0.05). In the liver 2-NP increased the 8-oxodG levels in nuclear DNA 8.7 and 3.8 times (p<0.05) 6 and 24 h after dose, respectively. The sprouts extract reduced this increase by 57% (p<0.05) at 6 h whereas there was no significant effect at 24 h. In the kidneys 2-NP increased the 8-oxodG levels 2.2 and 1.2 times (p<0.05) 6 and 24 h after dose, respectively. Pretreatment with the sprouts extract abolished these increases (p<0.05). Similarly, in the bone marrow the extract protected completely (p<0.05) against a 4.9-fold 2-NP induced increase (p<0.05) in the 8-oxodG level. These findings demonstrate that cooked Brussels sprouts contain bioactive substance(s) with a potential for reducing the physiological

  10. Increased DNA damage and oxidative stress among silver jewelry workers.

    PubMed

    Aktepe, Necmettin; Kocyigit, Abdurrahim; Yukselten, Yunus; Taskin, Abdullah; Keskin, Cumali; Celik, Hakim

    2015-04-01

    Silver has long been valued as a precious metal, and it is used to make ornaments, jewelry, high-value tableware, utensils, and currency coins. Human exposures to silver and silver compounds can occur oral, dermal, or by inhalation. In this study, we investigated genotoxic and oxidative effects of silver exposure among silver jewelry workers. DNA damage in peripheral mononuclear leukocytes was measured by using the comet assay. Serum total antioxidative status (TAS), total oxidative status (TOS), total thiol contents, and ceruloplasmin levels were measured by using colorimetric methods among silver jewelry workers. Moreover, oxidative stress index (OSI) was calculated. Results were compared with non-exposed healthy subjects. The mean values of mononuclear leukocyte DNA damage were significantly higher than control subjects (p < 0.001). Serum TOS, OSI, and ceruloplasmin levels were also found to be higher in silver particles exposed group than those of non-exposed group (p < 0.001, p < 0.001, p < 0.01, respectively). However, serum TAS levels and total thiol contents of silver exposed group were found significantly lower (p < 0.05, p < 0.001, respectively). Exposure to silver particles among silver jewelry workers caused oxidative stress and accumulation of severe DNA damage.

  11. ATM kinase: Much more than a DNA damage responsive protein.

    PubMed

    Guleria, Ayushi; Chandna, Sudhir

    2016-03-01

    ATM, mutation of which causes Ataxia telangiectasia, has emerged as a cardinal multifunctional protein kinase during past two decades as evidenced by various studies from around the globe. Further to its well established and predominant role in DNA damage response, ATM has also been understood to help in maintaining overall functional integrity of cells; since its mutation, inactivation or deficiency results in a variety of pathological manifestations besides DNA damage. These include oxidative stress, metabolic syndrome, mitochondrial dysfunction as well as neurodegeneration. Recently, high throughput screening using proteomics, metabolomics and transcriptomic studies revealed several proteins which might be acting as substrates of ATM. Studies that can help in identifying effective regulatory controls within the ATM-mediated pathways/mechanisms can help in developing better therapeutics. In fact, more in-depth understanding of ATM-dependent cellular signals could also help in the treatment of variety of other disease conditions since these pathways seem to control many critical cellular functions. In this review, we have attempted to put together a detailed yet lucid picture of the present-day understanding of ATM's role in various pathophysiological conditions involving DNA damage and beyond.

  12. DNA-directed alkylating agents. 1. Structure-activity relationships for acridine-linked aniline mustards: consequences of varying the reactivity of the mustard.

    PubMed

    Gourdie, T A; Valu, K K; Gravatt, G L; Boritzki, T J; Baguley, B C; Wakelin, L P; Wilson, W R; Woodgate, P D; Denny, W A

    1990-04-01

    A series of DNA-targeted aniline mustards have been prepared, and their chemical reactivity and in vitro and in vivo cytotoxicity have been evaluated and compared with that of the corresponding simple aniline mustards. The alkylating groups were anchored to the DNA-intercalating 9-aminoacridine chromophore by an alkyl chain of fixed length attached at the mustard 4-position through a link group X, while the corresponding simple mustards possessed an electronically identical small group at this position. The link group was varied to provide a series of compounds of similar geometry but widely differing mustard reactivity. Variation in biological activity should then largely be a consequence of this varying reactivity. Rates of mustard hydrolysis in the two series related only to the electronic properties of the link group, with attachment of the intercalating chromophore having no effect. The cytotoxicities of the simple mustards correlated well with group electronic properties (with a 200-300-fold range in IC50S). The corresponding DNA-targeted mustards were much more potent (up to 100-fold), but their IC50 values varied much less with linker group electronic properties. Most of the DNA-targeted mustards showed in vivo antitumor activity, being both more active and more dose-potent than either the corresponding untargeted mustards and chlorambucil. These results show that targeting alkylating agents to DNA by attachment to DNA-affinic units may be a useful strategy.

  13. The alkaline single cell electrophoresis assay with eight mouse organs: results with 22 mono-functional alkylating agents (including 9 dialkyl N-nitrosoamines) and 10 DNA crosslinkers.

    PubMed

    Tsuda, S; Matsusaka, N; Madarame, H; Miyamae, Y; Ishida, K; Satoh, M; Sekihashi, K; Sasaki, Y F

    2000-04-13

    The genotoxicity of 22 mono-functional alkylating agents (including 9 dialkyl N-nitrosoamines) and 10 DNA crosslinkers selected from IARC (International Agency for Research on Cancer) groups 1, 2A, and 2B was evaluated in eight mouse organs with the alkaline single cell gel electrophoresis (SCGE) (comet) assay. Groups of four mice were treated once intraperitoneally at the dose at which micronucleus tests had been conducted, and the stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow were sampled 3, 8, and/or 24 h later. All chemicals were positive in the SCGE assay in at least one organ. Of the 22 mono-functional alkylating agents, over 50% were positive in all organs except the brain and bone marrow. The two subsets of mono-functional alkylating agents differed in their bone marrow genotoxicity: only 1 of the 9 dialkyl N-nitrosoamines was positive in bone marrow as opposed to 8 of the 13 other alkylating agents, reflecting the fact that dialkyl N-nitrosoamines are poor micronucleus inducers in hematopoietic cells. The two groups of mono-functional alkylating agents also differ in hepatic carcinogenicity in spite of the fact that they are similar in hepatic genotoxicity. While dialkyl N-nitrosoamines produce tumors primarily in mouse liver, only one (styrene-7,8-oxide) out of 10 of the other type of mono-functional alkylating agents is a mouse hepatic carcinogen. Taking into consideration our previous results showing high concordance between hepatic genotoxicity and carcinogenicity for aromatic amines and azo compounds, a possible explanation for the discrepancy might be that chemicals that require metabolic activation show high concordance between genotoxicity and carcinogenicity in the liver. A high percent of the 10 DNA crosslinkers were positive in the SCGE assay in the gastrointestinal mucosa, but less than 50% were positive in the liver and lung. In this study, we allowed 10 min alkali-unwinding to obtain low and stable control values

  14. Nicotine induces DNA damage in human salivary glands.

    PubMed

    Ginzkey, Christian; Kampfinger, Katja; Friehs, Gudrun; Köhler, Christian; Hagen, Rudolf; Richter, Elmar; Kleinsasser, Norbert H

    2009-01-10

    The tobacco alkaloid nicotine is responsible for addiction to tobacco and supposed to contribute to tobacco carcinogensis, too. Recently, genotoxic effects of nicotine have been reported in human cells from blood and upper aerodigestive tract. Because of nicotine accumulation in saliva, the study of possible in vitro genotoxic effects of nicotine have been extended to human salivary gland cells. Specimens of parotid glands of 10 tumor patients were obtained from tumor-free tissue. Single cells were prepared by enzymatic digestion immediately after surgery and exposed for 1h to 0.125-4.0mM of nicotine. Possible genotoxic effects were determined by the Comet assay using the % DNA in tail (DT) as a reliable indicator of DNA damage. Nicotine induced a significant dose-dependent increase of DNA migration in parotid gland single-cells. The mean DT was 1.12-fold (0.125mM) to 2.24-fold (4.0mM) higher compared to control. The lowest concentration eliciting significant DNA damage within 1h, 0.25mM nicotine, is only 10-fold higher than maximal concentrations of nicotine reported in saliva after unrestricted smoking. Although conclusive evidence for a carcinogenic potential of nicotine is still lacking, the safety of long-term nicotine replacement therapy should be carefully monitored. PMID:18852035

  15. DNA damage and repair in telomeres: relation to aging.

    PubMed Central

    Kruk, P A; Rampino, N J; Bohr, V A

    1995-01-01

    We have established a method for the detection of DNA damage and its repair in human telomeres, the natural ends of chromosomes which are necessary for replication and critical for chromosomal stability. We find that ultraviolet light-induced pyrimidine dimers in telomeric DNA are repaired less efficiently than endogenous genes but more efficiently than inactive, noncoding regions. We have also measured telomeric length, telomeric DNA damage, and its repair in relation to the progression of aging. Telomeres are shorter in fibroblasts from an old donor compared to fibroblasts from a young donor, shortest in cells from a patient with the progeroid disorder Werner syndrome, and relatively long in fibroblasts from a patient with Alzheimer disease. Telomeric DNA repair efficiency is lower in cells from an old donor than in cells from a young donor, normal in Alzheimer cells, and slightly lower in Werner cells. It is possible that this decline in telomeric repair with aging is of functional significance to an age-related decline in genomic stability. Images Fig. 1 Fig. 2 PMID:7816828

  16. DNA damage in leukocytes of mice treated with copper sulfate.

    PubMed

    Saleha Banu, B; Ishaq, Mohd; Danadevi, K; Padmavathi, P; Ahuja, Y R

    2004-12-01

    Single stranded DNA breaks induced by copper sulfate (CuSO(4)) in mice has been studied in vivo using Alkaline Single Cell Gel Electrophoresis (Comet assay). Mice were administered orally with doses of 0, 1.25, 2.50, 5.00, 7.50, 10.00 and 12.50 mg/kg body weight (b.wt.) of CuSO4 respectively. The samples of whole blood were collected at 24, 48, 72 h, first week and second week post-treatment and the assay was carried out to determine single strand DNA breaks as represented by comet tail-length. In addition, the sample was used to study the repair efficiency by incubating the samples with RPMI medium for 2 h. Results indicated a significant DNA damage at all the doses after treatment with CuSO4 when compared to controls showing a clear dose-dependent response (p < 0.05). A gradual decrease in the tail-lengths from 48 h post-treatment was observed and by second week, the values returned to control levels at all doses. The study on the repair efficiency indicated that mice treated with all the doses of CuSO4 showed decrease in mean comet tail-length indicating repair efficiency capacity but less when compared to those of controls. The study also reveals that comet assay is a sensitive and rapid method for detecting DNA damage caused by trace metals such as copper (Cu). PMID:15500930

  17. HSV-I and the cellular DNA damage response

    PubMed Central

    Smith, Samantha; Weller, Sandra K

    2015-01-01

    Peter Wildy first observed genetic recombination between strains of HSV in 1955. At the time, knowledge of DNA repair mechanisms was limited, and it has only been in the last decade that particular DNA damage response (DDR) pathways have been examined in the context of viral infections. One of the first reports addressing the interaction between a cellular DDR protein and HSV-1 was the observation by Lees-Miller et al. that DNA-dependent protein kinase catalytic subunit levels were depleted in an ICP0-dependent manner during Herpes simplex virus 1 infection. Since then, there have been numerous reports describing the interactions between HSV infection and cellular DDR pathways. Due to space limitations, this review will focus predominantly on the most recent observations regarding how HSV navigates a potentially hostile environment to replicate its genome. PMID:26213561

  18. SUMO-mediated regulation of DNA damage repair and responses

    PubMed Central

    Sarangi, Prabha; Zhao, Xiaolan

    2015-01-01

    Sumoylation plays important roles during DNA damage repair and responses. Recent broad-scope and substrate-based studies have shed light on the regulation and significance of sumoylation during these processes. An emerging paradigm is that sumoylation of many DNA metabolism proteins is controlled by DNA engagement. Such “on-site modification” can explain low substrate modification levels and has important implications in sumoylation mechanisms and effects. New studies also suggest that sumoylation can regulate a process through an ensemble effect or via major substrates. Additionally, we describe new trends in the functional effects of sumoylation, such as bi-directional changes in biomolecule binding and multi-level coordination with other modifications. These emerging themes and models will stimulate our thinking and research in sumoylation and genome maintenance. PMID:25778614

  19. A novel bisindole-PBD conjugate causes DNA damage induced apoptosis via inhibition of DNA repair pathway

    PubMed Central

    Sarma, Pranjal; Ramaiah, M Janaki; Kamal, Ahmed; Bhadra, Utpal; Bhadra, Manika Pal

    2014-01-01

    DNA damage response (DDR) that includes cell cycle check points, DNA repair, apoptosis, and senescence is intimately linked with cancer. It shields an organism against cancer development when genomic integrity fails. DNA repair pathways protect the cells from tumor progression caused as a result of DNA damage induced by irradiation or due to chemotherapeutic treatment. Many promising anticancer agents have been identified that target specific DNA repair pathways in response to DNA damage thereby leading to apoptosis. Here we identified a novel bisindole-PBD conjugate that possess potent anticancer activity in breast cancer cells. Further studies aimed at understanding the mechanism of action of the molecule showed its role in DNA damage induced apoptosis via inhibition of DNA repair pathway. Trypan blue and BrdU assay exhibited a dose-dependent effect. Single-stranded DNA damage was observed by COMET assay. In addition DNA damage induced ROS generation with simultaneous activation of ATM and ATR upon compound treatment was observed. Further downregulation of Bcl-XL and activation of Bax showed DNA damage induced apoptosis in MCF-7 and MDAMB-231 cells. In conclusion, it can be summarized that bisindole-PBD conjugate induces DNA damage in a dose dependent (2, 4, and 8 μM) manner by inhibiting the DNA repair genes. PMID:25010292

  20. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    SciTech Connect

    Roper, Katherine; Coverley, Dawn

    2012-03-10

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naieve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naieve nuclei. At the same time, H2AX is phosphorylated in naieve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naieve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: Black-Right-Pointing-Pointer A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. Black-Right-Pointing-Pointer Damage-activated extracts impose the cellular response to DNA damage on naieve nuclei. Black-Right-Pointing-Pointer PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. Black-Right-Pointing-Pointer Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. Black-Right-Pointing-Pointer LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening

  1. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine.

    PubMed Central

    Fraga, C G; Shigenaga, M K; Park, J W; Degan, P; Ames, B N

    1990-01-01

    Oxidative damage to DNA is shown to be extensive and could be a major cause of the physiological changes associated with aging and the degenerative diseases related to aging such as cancer. The oxidized nucleoside, 8-hydroxy-2'-deoxyguanosine (oh8dG), one of the approximately 20 known oxidative DNA damage products, has been measured in DNA isolated from various organs of Fischer 344 rats of different ages. oh8dG was present in the DNA isolated from all the organs studied: liver, brain, kidney, intestine, and testes. Steady-state levels of oh8dG ranged from 8 to 73 residues per 10(6) deoxyguanosine residues or 0.2-2.0 x 10(5) residues per cell. Levels of oh8dG in DNA increased with age in liver, kidney, and intestine but remained unchanged in brain and testes. The urinary excretion of oh8dG, which presumably reflects its repair from DNA by nuclease activity, decreased with age from 481 to 165 pmol per kg of body weight per day for urine obtained from 2-month- and 25-month-old rats, respectively. 8-Hydroxyguanine, the proposed repair product of a glycosylase activity, was also assayed in the urine. We estimate approximately 9 x 10(4) oxidative hits to DNA per cell per day in the rat. The results suggest that the age-dependent accumulation of oh8dG residues observed in DNA from liver, kidney, and intestine is principally due to the slow loss of DNA nuclease activity; however, an increase in the rate of oxidative DNA damage cannot be ruled out. PMID:2352934

  2. Nitrosation of aspartic acid, aspartame, and glycine ethylester. Alkylation of 4-(p-nitrobenzyl)pyridine (NBP) in vitro and binding to DNA in the rat.

    PubMed

    Meier, I; Shephard, S E; Lutz, W K

    1990-05-01

    In a colorimetric assay using 4-(p-nitrobenzyl)pyridine (NBP) as a nucleophilic scavenger of alkylating agents, the nitrosation and alkylation reactions were investigated for a number of amino acids and derivatives. The alkylating activity increased with the square of the nitrite concentration. The nitrosation rate constants for aspartic acid, aspartame, and glycine ethylester (= precursors C) were 0.08, 1.4 and less than or equal to 0.2, respectively, expressed in terms of the pH-dependent k2 rate constant of the equation dNOC/dt = k2.[C].[nitrite]2. The rates correlated inversely with the basicity of the amino group. The stability of the alkylating activity was astonishingly high, both in acid and at neutral pH. Half-lives of 500, 200, and 30 min were determined for aspartic acid (pH 3.5), aspartame (pH 2.5), and glycine ethylester (pH 2.5). Values of 60, 15, and 2 min, respectively, were found at pH 7. It is concluded that rearrangement of the primary N-nitroso product to the ultimate alkylating agent could be rate-limiting. The potential of nitrosated alpha-amino acids to bind to DNA in vivo was investigated by oral gavage of radiolabelled glycine ethylester to rats, followed immediately by sodium nitrite. DNA was isolated from stomach and liver and analysed for radioactivity and modified nucleotides. No indication of DNA adduct formation was obtained. Based on an estimation of the dose fraction converted from glycine ethylester to the nitroso product under the given experimental conditions, the maximum possible DNA-binding potency of nitroso glycine ethylester is about one order of magnitude below the methylating potency of N-nitrosomethylurea in rat stomach. The apparent discrepancy to the in vitro data could be due to efficient detoxification processes in mammalian cells.

  3. Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds

    PubMed Central

    Goldman, Lynn R; Brebi-Mieville, Priscilla; Ili-Gangas, Carmen; LeBron, Cynthia; Hernandez-Arroyo, Mireya; Witter, Frank R; Apelberg, Ben J; Roystacher, Marina; Jaffe, Andrew; Halden, Rolf U; Sidransky, David

    2010-01-01

    Environmental exposures in utero may alter the epigenome, thus impacting chromosomal stability and gene expression. We hypothesized that in utero exposures to maternal smoking and perfluoroalkyl compounds (PFCs) are associated with global DNA hypomethylation in umbilical cord serum. Our objective was to determine if global DNA methylation could be used as a biomarker of in utero exposures to maternal smoking and PFCs. Using an ELISA-based method, global DNA methylation was quantified in umbilical cord serum from 30 newborns with high (>10 ng/ml, mean 123.8 ng/ml), low (range 1–10 ng/ml, mean 1.6 ng/ml) and very low (<1 ng/ml, mean 0.06 ng/ml) cord serum cotinine levels. Y chromosome analysis was performed to rule out maternal DNA cross-contamination. Cord serum global DNA methylation showed an inverse dose response to serum cotinine levels (p < 0.001). Global DNA methylation levels in cord blood were the lowest among newborns with smoking mothers (mean = 15.04%; 95% CI, 8.4, 21.7) when compared to babies of mothers who were second-hand smokers (21.1%; 95% CI, 16.6, 25.5) and non-smokers (mean = 29.2%; 95% CI, 20.1, 38.1). Global DNA methylation was inversely correlated with serum PFOA (r = -0.35, p = 0.06) but not PFOS levels. Serum Y chromosome analyses did not detect maternal DNA cross-contamination. This study supports the use of global DNA methylation status as a biomarker of in utero exposure to cigarette smoke and PFCs. PMID:20523118

  4. The impact of lymphocyte isolation on induced DNA damage in human blood samples measured by the comet assay.

    PubMed

    Bausinger, Julia; Speit, Günter

    2016-09-01

    The comet assay is frequently used in human biomonitoring for the detection of exposure to genotoxic agents. Peripheral blood samples are most frequently used and tested either as whole blood or after isolation of lymphocytes (i.e. peripheral blood mononuclear cells, PBMC). To investigate a potential impact of lymphocyte isolation on induced DNA damage in human blood samples, we exposed blood ex vivo to mutagens with different modes of genotoxic action. The comet assay was performed either directly with whole blood at the end of the exposure period or with lymphocytes isolated directly after exposure. In addition to the recommended standard protocol for lymphocyte isolation, a shortened protocol was established to optimise the isolation procedure. The results indicate that the effects of induced DNA strand breaks and alkali-labile sites induced by ionising radiation and alkylants, respectively, are significantly reduced in isolated lymphocytes. In contrast, oxidative DNA base damage (induced by potassium bromate) and stable bulky adducts (induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide; BPDE) seem to be less affected. Our findings suggest that in vivo-induced DNA damage might also be reduced in isolated lymphocytes in comparison with the whole blood depending of the types of DNA damage induced. Because only small genotoxic effects can generally be expected in human biomonitoring studies with the comet assay after occupational and environmental exposure to genotoxic agents, any loss might be relevant and should be avoided. The possibility of such effects and their potential impact on variability of comet assay results in human biomonitoring should be considered when performing or evaluating such kind of studies.

  5. An Unprecedented Nucleic Acid Capture Mechanism for Excision of DNA Damage

    PubMed Central

    Rubinson, Emily H.; Gowda, A.S. Prakasha; Spratt, Thomas E.; Gold, Barry; Eichman, Brandt F.

    2014-01-01

    DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA targeting anticancer compounds. The basis for glycosylase specificity toward N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here, we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched, and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing the first illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how AlkD’s HEAT-repeats distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation. PMID:20927102

  6. An unprecedented nucleic acid capture mechanism for excision of DNA damage

    SciTech Connect

    Rubinson, Emily H.; Prakasha Gowda, A.S.; Spratt, Thomas E.; Gold, Barry; Eichmanbrand, Brandt F.

    2010-11-18

    DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA-targeting anticancer compounds. The basis for glycosylase specificity towards N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing an illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how the HEAT repeats of AlkD distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation.

  7. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

    DOE PAGES

    Marchetti, Francesco; Bishop, Jack; Gingerich, John; Wyrobek, Andrew J.

    2015-01-08

    De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widelymore » used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. In conclusion, these findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus.« less

  8. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

    SciTech Connect

    Marchetti, Francesco; Bishop, Jack; Gingerich, John; Wyrobek, Andrew J.

    2015-01-08

    De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widely used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. In conclusion, these findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus.

  9. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

    PubMed Central

    Marchetti, Francesco; Bishop, Jack; Gingerich, John; Wyrobek, Andrew J.

    2015-01-01

    De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widely used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. These findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus. PMID:25567288

  10. The RecA-Dependent SOS Response Is Active and Required for Processing of DNA Damage during Bacillus subtilis Sporulation.

    PubMed

    Ramírez-Guadiana, Fernando H; Barajas-Ornelas, Rocío Del Carmen; Corona-Bautista, Saúl U; Setlow, Peter; Pedraza-Reyes, Mario

    2016-01-01

    The expression of and role played by RecA in protecting sporulating cells of Bacillus subtilis from DNA damage has been determined. Results showed that the DNA-alkylating agent Mitomycin-C (M-C) activated expression of a PrecA-gfpmut3a fusion in both sporulating cells' mother cell and forespore compartments. The expression levels of a recA-lacZ fusion were significantly lower in sporulating than in growing cells. However, M-C induced levels of ß-galactosidase from a recA-lacZ fusion ~6- and 3-fold in the mother cell and forespore compartments of B. subtilis sporangia, respectively. Disruption of recA slowed sporulation and sensitized sporulating cells to M-C and UV-C radiation, and the M-C and UV-C sensitivity of sporangia lacking the transcriptional repair-coupling factor Mfd was significantly increased by loss of RecA. We postulate that when DNA damage is encountered during sporulation, RecA activates the SOS response thus providing sporangia with the repair machinery to process DNA lesions that may compromise the spatio-temporal expression of genes that are essential for efficient spore formation.

  11. The RecA-Dependent SOS Response Is Active and Required for Processing of DNA Damage during Bacillus subtilis Sporulation

    PubMed Central

    Corona-Bautista, Saúl U.; Setlow, Peter; Pedraza-Reyes, Mario

    2016-01-01

    The expression of and role played by RecA in protecting sporulating cells of Bacillus subtilis from DNA damage has been determined. Results showed that the DNA-alkylating agent Mitomycin-C (M-C) activated expression of a PrecA-gfpmut3a fusion in both sporulating cells’ mother cell and forespore compartments. The expression levels of a recA-lacZ fusion were significantly lower in sporulating than in growing cells. However, M-C induced levels of ß-galactosidase from a recA-lacZ fusion ~6- and 3-fold in the mother cell and forespore compartments of B. subtilis sporangia, respectively. Disruption of recA slowed sporulation and sensitized sporulating cells to M-C and UV-C radiation, and the M-C and UV-C sensitivity of sporangia lacking the transcriptional repair-coupling factor Mfd was significantly increased by loss of RecA. We postulate that when DNA damage is encountered during sporulation, RecA activates the SOS response thus providing sporangia with the repair machinery to process DNA lesions that may compromise the spatio-temporal expression of genes that are essential for efficient spore formation. PMID:26930481

  12. DNA-directed alkylating agents. 3. Structure-activity relationships for acridine-linked aniline mustards: consequences of varying the length of the linker chain.

    PubMed

    Valu, K K; Gourdie, T A; Boritzki, T J; Gravatt, G L; Baguley, B C; Wilson, W R; Wakelin, L P; Woodgate, P D; Denny, W A

    1990-11-01

    Four series of acridine-linked aniline mustards have been prepared and evaluated for in vitro cytotoxicity, in vivo antitumor activity, and DNA cross-linking ability. The anilines were attached to the DNA-intercalating acridine chromophores by link groups (-O-, -CH2-, -S-, and -SO2-) of widely varying electronic properties, providing four series of widely differing mustard reactivity where the alkyl chain linking the acridine and mustard moieties was varied from two to five carbons. Relationships were sought between chain length and biological properties. Within each series, increasing the chain length did not alter the reactivity of the alkylating moiety but did appear to position it differently on the DNA, since cross-linking ability (measured by agarose gel assay) altered with chain length, being maximal with the C4 analogue. The in vivo antitumor activities of the compounds depended to some extent on the reactivity of the mustard, with the least reactive SO2 compounds being inactive. However, DNA-targeting did appear to allow the use of less reactive mustards, since the S-linked acridine mustards showed significant activity whereas the parent S-mustard did not. Within each active series, the most active compound was the C4 homologue, suggesting some relationship between activity and extent of DNA alkylation.

  13. Terminally differentiated astrocytes lack DNA damage response signaling and are radioresistant but retain DNA repair proficiency

    PubMed Central

    Schneider, L; Fumagalli, M; d'Adda di Fagagna, F

    2012-01-01

    The impact and consequences of damage generation into genomic DNA, especially in the form of DNA double-strand breaks, and of the DNA-damage response (DDR) pathways that are promptly activated, have been elucidated in great detail. Most of this research, however, has been performed on proliferating, often cancerous, cell lines. In a mammalian body, the majority of cells are terminally differentiated (TD), and derives from a small pool of self-renewing somatic stem cells. Here, we comparatively studied DDR signaling and radiosensitivity in neural stem cells (NSC) and their TD-descendants, astrocytes – the predominant cells in the mammalian brain. Astrocytes have important roles in brain physiology, development and plasticity. We discovered that NSC activate canonical DDR upon exposure to ionizing radiation. Strikingly, astrocytes proved radioresistant, lacked functional DDR signaling, with key DDR genes such as ATM being repressed at the transcriptional level. Nevertheless, astrocytes retain the expression of non-homologous end-joining (NHEJ) genes and indeed they are DNA repair proficient. Unlike in NSC, in astrocytes DNA-PK seems to be the PI3K-like protein kinase responsible for γH2AX signal generation upon DNA damage. We also demonstrate the lack of functional DDR signaling activation in vivo in astrocytes of irradiated adult mouse brains, although adjacent neurons activate the DDR. PMID:21979466

  14. Capturing snapshots of APE1 processing DNA damage.

    PubMed

    Freudenthal, Bret D; Beard, William A; Cuneo, Matthew J; Dyrkheeva, Nadezhda S; Wilson, Samuel H

    2015-11-01

    DNA apurinic-apyrimidinic (AP) sites are prevalent noncoding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA-repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive, owing in part to limited structural information. We report multiple high-resolution human APE1-DNA structures that divulge new features of the APE1 reaction, including the metal-binding site, the nucleophile and the arginine clamps that mediate product release. We also report APE1-DNA structures with a T-G mismatch 5' to the AP site, representing a clustered lesion occurring in methylated CpG dinucleotides. These structures reveal that APE1 molds the T-G mismatch into a unique Watson-Crick-like geometry that distorts the active site, thus reducing incision. These snapshots provide mechanistic clarity for APE1 while affording a rational framework to manipulate biological responses to DNA damage. PMID:26458045

  15. Capturing snapshots of APE1 processing DNA damage

    DOE PAGES

    Freudenthal, Bret D.; Beard, William A.; Cuneo, Matthew J.; Dyrkheeva, Nadezhda S.; Wilson, Samuel H.

    2015-10-12

    DNA apurinic-apyrimidinic (AP) sites are prevalent noncoding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA-repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive, owing in part to limited structural information. Here we report multiple high-resolution human APE1-DNA structures that divulge new features of the APE1 reaction, including the metal-binding site, the nucleophile and the arginine clamps that mediate product release. We also report APE1-DNA structures with a T-G mismatch 5' to the AP site, representing a clustered lesion occurring in methylatedmore » CpG dinucleotides. Moreover, these structures reveal that APE1 molds the T-G mismatch into a unique Watson-Crick-like geometry that distorts the active site, thus reducing incision. Finally, these snapshots provide mechanistic clarity for APE1 while affording a rational framework to manipulate biological responses to DNA damage.« less

  16. Capturing snapshots of APE1 processing DNA damage

    SciTech Connect

    Freudenthal, Bret D.; Beard, William A.; Cuneo, Matthew J.; Dyrkheeva, Nadezhda S.; Wilson, Samuel H.

    2015-10-12

    DNA apurinic-apyrimidinic (AP) sites are prevalent noncoding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA-repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive, owing in part to limited structural information. Here we report multiple high-resolution human APE1-DNA structures that divulge new features of the APE1 reaction, including the metal-binding site, the nucleophile and the arginine clamps that mediate product release. We also report APE1-DNA structures with a T-G mismatch 5' to the AP site, representing a clustered lesion occurring in methylated CpG dinucleotides. Moreover, these structures reveal that APE1 molds the T-G mismatch into a unique Watson-Crick-like geometry that distorts the active site, thus reducing incision. Finally, these snapshots provide mechanistic clarity for APE1 while affording a rational framework to manipulate biological responses to DNA damage.

  17. Capturing Snapshots of APE1 Processing DNA Damage

    PubMed Central

    Freudenthal, Bret D.; Beard, William A.; Cuneo, Matthew J.; Dyrkheeva, Nadezhda S.; Wilson, Samuel H.

    2015-01-01

    DNA apurinic-apyrimidinic (AP) sites are prevalent non-coding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive due in part to limited structural information. We report multiple high-resolution human APE1:DNA structures that divulge novel features of the APE1 reaction, including the metal binding site, nucleophile, and arginine clamps that mediate product release. We also report APE1:DNA structures with a T:G mismatch 5′ to the AP-site, representing a clustered lesion occurring in methylated CpG dinucleotides. These reveal that APE1 molds the T:G mismatch into a unique Watson-Crick like geometry that distorts the active site reducing incision. These snapshots provide mechanistic clarity for APE1, while affording a rational framework to manipulate biological responses to DNA damage. PMID:26458045

  18. Induction of heat-labile sites in DNA of mammalian cells by the antitumor alkylating drug CC-1065

    SciTech Connect

    Zsido, T.J.; Woynarowski, J.M.; Baker, R.M.; Gawron, L.S.; Beerman, T.A. )

    1991-04-16

    CC-1065 is a very potent antitumor antibiotic capable of covalent and noncovalent binding to the minor groove of naked DNA. Upon thermal treatment, covalent adducts formed between CC-1065 and DNA generate strand break. The authors have shown that this molecular damage can be detected following CC-1065 treatment of mammalian whole cells. Using alkaline sucrose gradient analysis, They observe thermally induced breakage of ({sup 14}C)thymidine-prelabeled DNA from drug-treated African green monkey kidney BSC-1 cells. Very little damage to cellular DNA by CC-1065 can be detected without first heating the drug-treated samples. CC-1065 can also generate heat-labile sites within DNA during cell lysis and heating, subsequent to the exposure of cells to drug, suggesting that a pool of free and noncovalently bound drug is available for posttreatment adduct formation. This effect was controlled for by mixing ({sup 3}H)thymidine-labeled untreated cells with the ({sup 14}C)thymidine-labeled drug-treated samples. The lowest drug dose at which heat-labile sites were detected was 3 nM CC-1065 (3 single-stranded breaks/10{sup 6} base pairs). This concentration reduced survival of BSC-1 cells to 0.1% in cytotoxicity assays. The generation of CC-1065-induced lesions in cellular DNA is time dependent (the frequency of lesions caused by a 60 nM treatment reaching a plateau at 2 h) and is not readily reversible. The results of this study demonstrate that CC-1065 does generate heat-labile sites with the cellular DNA of intact cells and suggest that a mechanism of cytotoxic action of CC-1065 involves formation of covalent adducts to DNA.

  19. Pathophysiology of Bronchoconstriction: Role of Oxidatively Damaged DNA Repair

    PubMed Central

    Bacsi, Attila; Pan, Lang; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Purpose of review To provide an overview on the present understanding of roles of oxidative DNA damage repair in cell signaling underlying bronchoconstriction common to, but not restricted to various forms of asthma and chronic obstructive pulmonary disease Recent findings Bronchoconstriction is a tightening of smooth muscle surrounding the bronchi and bronchioles with consequent wheezing and shortness of breath. Key stimuli include air pollutants, viral infections, allergens, thermal and osmotic changes, and shear stress of mucosal epithelium, triggering a wide range of cellular, vascular and neural events. Although activation of nerve fibers, the role of G-proteins, protein kinases and Ca++, and molecular interaction within contracting filaments of muscle are well defined, the overarching mechanisms by which a wide range of stimuli initiate these events are not fully understood. Many, if not all, stimuli increase levels of reactive oxygen species (ROS), which are signaling and oxidatively modifying macromolecules, including DNA. The primary ROS target in DNA is guanine, and 8-oxoguanine is one of the most abundant base lesions. It is repaired by 8-oxoguanine DNA glycosylase1 (OGG1) during base excision repair processes. The product, free 8-oxoG base, is bound by OGG1 with high affinity, and the complex then functions as an activator of small GTPases, triggering pathways for inducing gene expression and contraction of intracellular filaments in mast and smooth muscle cells. Summary Oxidative DNA damage repair-mediated cell activation signaling result in gene expression that “primes” the mucosal epithelium and submucosal tissues to generate mediators of airway smooth muscle contractions. PMID:26694039

  20. Radiation track, DNA damage and response—a review

    NASA Astrophysics Data System (ADS)

    Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S.

    2016-11-01

    The purpose of this paper has been to review the current status and progress of the field of radiation biophysics, and draw attention to the fact that physics, in general, and radiation physics in particular, with the aid of mathematical modeling, can help elucidate biological mechanisms and cancer therapies. We hypothesize that concepts of condensed-matter physics along with the new genomic knowledge and technologies and mechanistic mathematical modeling in conjunction with advances in experimental DNA (Deoxyrinonucleic acid molecule) repair and cell signaling have now provided us with unprecedented opportunities in radiation biophysics to address problems in targeted cancer therapy, and genetic risk estimation in humans. Obviously, one is not dealing with ‘low-hanging fruit’, but it will be a major scientific achievement if it becomes possible to state, in another decade or so, that we can link mechanistically the stages between the initial radiation-induced DNA damage; in particular, at doses of radiation less than 2 Gy and with structural changes in genomic DNA as a precursor to cell inactivation and/or mutations leading to genetic diseases. The paper presents recent development in the physics of radiation track structure contained in the computer code system KURBUC, in particular for low-energy electrons in the condensed phase of water for which we provide a comprehensive discussion of the dielectric response function approach. The state-of-the-art in the simulation of proton and carbon ion tracks in the Bragg peak region is also presented. The paper presents a critical discussion of the models used for elastic scattering, and the validity of the trajectory approach in low-electron transport. Brief discussions of mechanistic and quantitative aspects of microdosimetry, DNA damage and DNA repair are also included as developed by the authors’ work.

  1. Maintaining Genome Stability in Defiance of Mitotic DNA Damage.

    PubMed

    Ferrari, Stefano; Gentili, Christian

    2016-01-01

    The implementation of decisions affecting cell viability and proliferation is based on prompt detection of the issue to be addressed, formulation and transmission of a correct set of instructions and fidelity in the execution of orders. While the first and the last are purely mechanical processes relying on the faithful functioning of single proteins or macromolecular complexes (sensors and effectors), information is the real cue, with signal amplitude, duration, and frequency ultimately determining the type of response. The cellular response to DNA damage is no exception to the rule. In this review article we focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing mitosis and the machineries in charge of assembling the apparatus responsible for chromosome alignment and segregation as well as the inputs that control its function (checkpoints). Next, we examine the type of issues that a cell approaching mitosis might face, presenting the impact of post-translational modifications (PTMs) on the correct and timely functioning of pathways correcting errors or damage before chromosome segregation. We conclude this essay with a perspective on the current status of mitotic signaling pathway inhibitors and their potential use in cancer therapy. PMID:27493659

  2. β2-spectrin depletion impairs DNA damage repair

    PubMed Central

    Horikoshi, Nobuo; Pandita, Raj K.; Mujoo, Kalpana; Hambarde, Shashank; Sharma, Dharmendra; Mattoo, Abid R.; Chakraborty, Sharmistha; Charaka, Vijaya; Hunt, Clayton R.; Pandita, Tej K.

    2016-01-01

    β2-Spectrin (β2SP/SPTBN1, gene SPTBN1) is a key TGF-β/SMAD3/4 adaptor and transcriptional cofactor that regulates TGF-β signaling and can contribute to liver cancer development. Here we report that cells deficient in β2-Spectrin (β2SP) are moderately sensitive to ionizing radiation (IR) and extremely sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with IR or ICL agents (formaldehyde, cisplatin, camptothecin, mitomycin), β2SP deficient cells displayed a higher frequency of cells with delayed γ-H2AX removal and a higher frequency of residual chromosome aberrations. Following hydroxyurea (HU)-induced replication stress, β2SP-deficient cells displayed delayed disappearance of γ-H2AX foci along with defective repair factor recruitment (MRE11, CtIP, RAD51, RPA, and FANCD2) as well as defective restart of stalled replication forks. Repair factor recruitment is a prerequisite for initiation of DNA damage repair by the homologous recombination (HR) pathway, which was also defective in β2SP deficient cells. We propose that β2SP is required for maintaining genomic stability following replication fork stalling, whether induced by either ICL damage or replicative stress, by facilitating fork regression as well as DNA damage repair by homologous recombination. PMID:27248179

  3. Maintaining Genome Stability in Defiance of Mitotic DNA Damage

    PubMed Central

    Ferrari, Stefano; Gentili, Christian

    2016-01-01

    The implementation of decisions affecting cell viability and proliferation is based on prompt detection of the issue to be addressed, formulation and transmission of a correct set of instructions and fidelity in the execution of orders. While the first and the last are purely mechanical processes relying on the faithful functioning of single proteins or macromolecular complexes (sensors and effectors), information is the real cue, with signal amplitude, duration, and frequency ultimately determining the type of response. The cellular response to DNA damage is no exception to the rule. In this review article we focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing mitosis and the machineries in charge of assembling the apparatus responsible for chromosome alignment and segregation as well as the inputs that control its function (checkpoints). Next, we examine the type of issues that a cell approaching mitosis might face, presenting the impact of post-translational modifications (PTMs) on the correct and timely functioning of pathways correcting errors or damage before chromosome segregation. We conclude this essay with a perspective on the current status of mitotic signaling pathway inhibitors and their potential use in cancer therapy. PMID:27493659

  4. The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability

    PubMed Central

    Hamperl, Stephan; Cimprich, Karlene A.

    2014-01-01

    Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell. PMID:24746923

  5. Solar UVB-induced DNA damage and photoenzymatic DNA repair in antarctic zooplankton

    SciTech Connect

    Malloy, K.D.; Holman, M.A.; Mitchell, D.

    1997-02-18

    The detrimental effects of elevated intensities of mid-UV radiation (UVB), a result of stratospheric ozone depletion during the austral spring, on the primary producers of the Antarctic marine ecosystem have been well documented. Here we report that natural populations of Antarctic zooplankton also sustain significant DNA damage [measured as cyclobutane pyrimidine dimers (CPDs)] during periods of increased UVB flux. This is the first direct evidence that increased solar UVB may result in damage to marine organisms other than primary producers in Antarctica. The extent of DNA damage in pelagic icefish eggs correlated with daily incident UVB irradiance, reflecting the difference between acquisition and repair of CPDs. Patterns of DNA damage in fish larvae did not correlated with daily UVB flux, possibly due to different depth distributions and/or different capacities for DNA repair. Clearance of CPDs by Antarctic fish and krill was mediated primarily by the photoenzymatic repair system. Although repair rates were large for all species evaluated, they were apparently inadequate to prevent the transient accumulation of substantial CPD burdens. The capacity for DNA repair in Antarctic organisms was highest in those species whose early life history stages occupy the water column during periods of ozone depletion (austral spring) and lowest in fish species whose eggs and larvae are abundant during winter. Although the potential reduction in fitness of Antarctic zooplankton resulting from DNA damage is unknown, we suggest that increased solar UV may reduce recruitment and adversely affect trophic transfer of productivity by affecting heterotrophic species as well as primary producers. 54 refs., 4 figs., 2 tabs.

  6. Solar UVB-induced DNA damage and photoenzymatic DNA repair in antarctic zooplankton.

    PubMed

    Malloy, K D; Holman, M A; Mitchell, D; Detrich, H W

    1997-02-18

    The detrimental effects of elevated intensities of mid-UV radiation (UVB), a result of stratospheric ozone depletion during the austral spring, on the primary producers of the Antarctic marine ecosystem have been well documented. Here we report that natural populations of Antarctic zooplankton also sustain significant DNA damage [measured as cyclobutane pyrimidine dimers (CPDs)] during periods of increased UVB flux. This is the first direct evidence that increased solar UVB may result in damage to marine organisms other than primary producers in Antarctica. The extent of DNA damage in pelagic icefish eggs correlated with daily incident UVB irradiance, reflecting the difference between acquisition and repair of CPDs. Patterns of DNA damage in fish larvae did not correlate with daily UVB flux, possibly due to different depth distributions and/or different capacities for DNA repair. Clearance of CPDs by Antarctic fish and krill was mediated primarily by the photoenzymatic repair system. Although repair rates were large for all species evaluated, they were apparently inadequate to prevent the transient accumulation of substantial CPD burdens. The capacity for DNA repair in Antarctic organisms was highest in those species whose early life history stages occupy the water column during periods of ozone depletion (austral spring) and lowest in fish species whose eggs and larvae are abundant during winter. Although the potential reduction in fitness of Antarctic zooplankton resulting from DNA damage is unknown, we suggest that increased solar UV may reduce recruitment and adversely affect trophic transfer of productivity by affecting heterotrophic species as well as primary producers. PMID:9037040

  7. DNA damage control: regulation and functions of checkpoint kinase 1.

    PubMed

    Smits, Veronique A J; Gillespie, David A

    2015-10-01

    Checkpoint kinase 1 (Chk1) is a master regulator of the DNA damage and replication checkpoints in vertebrate cells. When activated via phosphorylation by its upstream regulatory kinase, ATR, Chk1 prevents cells with damaged or incompletely replicated DNA from entering mitosis, and acts to stabilize stalled replication forks and suppress replication origin firing when DNA synthesis is inhibited. Chk1 blocks mitosis by maintaining high levels of inhibitory tyrosine phosphorylation of the mitotic cyclin-dependent kinase 1; however, the mechanisms that underlie replication fork stabilization and suppression of origin firing are less well defined. Although Chk1 function is evidently acutely regulated during these responses, how this occurs at the molecular level is incompletely understood. Recent evidence that Chk1 contains a 'kinase-associated 1' domain within its regulatory C-terminal region promises new insights. Additional modifications catalysed by other protein kinases, such as cyclin-dependent kinase 1, Akt, and RSK, can combine with ubiquitylation to regulate Chk1 subcellular localization and protein stability. Interestingly, it is clear that Chk1 has less well-defined functions in homologous recombination, chromatin modification, gene expression, spindle checkpoint proficiency, and cytokinesis. Here, we provide an overview of Chk1 regulation and functions, with an emphasis on unresolved questions that merit further research. PMID:26216057

  8. Increased Sensitivity of DNA Damage Response-Deficient Cells to Stimulated Microgravity-Induced DNA Lesions

    PubMed Central

    Li, Nan; An, Lili; Hang, Haiying

    2015-01-01

    Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG). In this study we used mouse embryonic stem (MES) and mouse embryonic fibroblast (MEF) cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs) in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS). Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR) defects. PMID:25915950

  9. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions.

    PubMed

    Li, Nan; An, Lili; Hang, Haiying

    2015-01-01

    Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG). In this study we used mouse embryonic stem (MES) and mouse embryonic fibroblast (MEF) cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs) in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS). Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR) defects.

  10. Changes in DNA damage, molecular integrity, and copy number for plastid DNA and mitochondrial DNA during maize development

    PubMed Central

    Kumar, Rachana A.; Oldenburg, Delene J.; Bendich, Arnold J.

    2014-01-01

    The amount and structural integrity of organellar DNAs change during plant development, although the mechanisms of change are poorly understood. Using PCR-based methods, we quantified DNA damage, molecular integrity, and genome copy number for plastid and mitochondrial DNAs of maize seedlings. A DNA repair assay was also used to assess DNA impediments. During development, DNA damage increased and molecules with impediments that prevented amplification by Taq DNA polymerase increased, with light causing the greatest change. DNA copy number values depended on the assay method, with standard real-time quantitative PCR (qPCR) values exceeding those determined by long-PCR by 100- to 1000-fold. As the organelles develop, their DNAs may be damaged in oxidative environments created by photo-oxidative reactions and photosynthetic/respiratory electron transfer. Some molecules may be repaired, while molecules with unrepaired damage may be degraded to non-functional fragments measured by standard qPCR but not by long-PCR. PMID:25261192

  11. Involvement of oxidatively damaged DNA and repair in cancer development and aging

    PubMed Central

    Tudek, Barbara; Winczura, Alicja; Janik, Justyna; Siomek, Agnieszka; Foksinski, Marek; Oliński, Ryszard

    2010-01-01

    DNA damage and DNA repair may mediate several cellular processes, like replication and transcription, mutagenesis and apoptosis and thus may be important factors in the development and pathology of an organism, including cancer. DNA is constantly damaged by reactive oxygen species (ROS) and reactive nitrogen species (RNS) directly and also by products of lipid peroxidation (LPO), which form exocyclic adducts to DNA bases. A wide variety of oxidatively-generated DNA lesions are present in living cells. 8-oxoguanine (8-oxoGua) is one of the best known DNA lesions due to its mutagenic properties. Among LPO-derived DNA base modifications the most intensively studied are ethenoadenine and ethenocytosine, highly miscoding DNA lesions considered as markers of oxidative stress and promutagenic DNA damage. Although at present it is impossible to directly answer the question concerning involvement of oxidatively damaged DNA in cancer etiology, it is likely that oxidatively modified DNA bases may serve as a source of mutations that initiate carcinogenesis and are involved in aging (i.e. they may be causal factors responsible for these processes). To counteract the deleterious effect of oxidatively damaged DNA, all organisms have developed several DNA repair mechanisms. The efficiency of oxidatively damaged DNA repair was frequently found to be decreased in cancer patients. The present work reviews the basis for the biological significance of DNA damage, particularly effects of 8-oxoGua and ethenoadduct occurrence in DNA in the aspect of cancer development, drawing attention to the multiplicity of proteins with repair activities. PMID:20589166

  12. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism

    PubMed Central

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-01-01

    Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. Methods: The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2- scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays. Results: Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form. PMID:27478791

  13. DNA damage in Wistar rats exposed to dithiocarbamate pesticide mancozeb.

    PubMed

    Goldoni, A; Klauck, C R; Da Silva, S T; Da Silva, M D; Ardenghi, P G; Da Silva, L B

    2014-01-01

    Pesticides are used in large amounts in agriculture and the evaluation of their toxic effects is of major concern to public and environmental health. The aim of the present study was to investigate the genotoxic potential of a commercial formulation of the fungicide mancozeb by the micronucleus test in bone marrow and the comet assay in total blood of Wistar rats. Adult male Wistar rats were treated with a solution of mancozeb at a concentration of 40 mg/kg/day, administered intraperitoneally for 18 consecutive days, and compared to a control group. The results indicate that mancozeb induced significantly higher DNA damage as detected by the comet assay and increased the frequency of micronuclei. The results show that mancozeb is genotoxic and may adversely affect the DNA integrity of exposed organisms. PMID:25152054

  14. Senescence of Primary Amniotic Cells via Oxidative DNA Damage

    PubMed Central

    Menon, Ramkumar; Boldogh, Istvan; Urrabaz-Garza, Rheanna; Polettini, Jossimara; Syed, Tariq Ali; Saade, George R.; Papaconstantinou, John; Taylor, Robert N.

    2013-01-01

    Objective Oxidative stress is a postulated etiology of spontaneous preterm birth (PTB) and preterm prelabor rupture of the membranes (pPROM); however, the precise mechanistic role of reactive oxygen species (ROS) in these complications is unclear. The objective of this study is to examine impact of a water soluble cigarette smoke extract (wsCSE), a predicted cause of pregnancy complications, on human amnion epithelial cells. Methods Amnion cells isolated from fetal membranes were exposed to wsCSE prepared in cell culture medium and changes in ROS levels, DNA base and strand damage was determined by using 2′7′-dichlorodihydro-fluorescein and comet assays as well as Fragment Length Analysis using Repair Enzymes (FLARE) assays, respectively. Western blot analyses were used to determine the changes in mass and post-translational modification of apoptosis signal-regulating kinase (ASK1), phospho-p38 (P-p38 MAPK), and p19arf. Expression of senescence-associated β-galectosidase (SAβ-gal) was used to confirm cell ageing in situ. Results ROS levels in wsCSE-exposed amnion cells increased rapidly (within 2 min) and significantly (p<0.01) at all-time points, and DNA strand and base damage was evidenced by comet and FLARE assays. Activation of ASK1, P-p38 MAPK and p19Arf correlated with percentage of SAβ-gal expressing cells after wsCSE treatment. The antioxidant N-acetyl-L-cysteine (NAC) prevented ROS-induced DNA damage and phosphorylation of p38 MAPK, whereas activation of ASK1 and increased expression of p19Arf were not significantly affected by NAC. Conclusions The findings support the hypothesis that compounds in wsCSE induces amnion cell senescence via a mechanism involving ROS and DNA damage. Both pathways may contribute to PTB and pPROM. Our results imply that antioxidant interventions that control ROS may interrupt pathways leading to pPROM and other causes of PTB. PMID:24386195

  15. Genotoxicity of refinery waste assessed by some DNA damage tests.

    PubMed

    Gupta, Amit Kumar; Ahmad, Irshad; Ahmad, Masood

    2015-04-01

    Refinery waste effluent is well known to contain polycyclic aromatic hydrocarbons, phenols and heavy metals as potentially genotoxic substances. The aim of the present study was to assess the genotoxic potential of Mathura refinery wastewater (MRWW) by various in vitro tests including the single cell gel electrophoresis, plasmid nicking assay and S1 nuclease assay. Treatment of human lymphocytes to different MRWW concentrations (0.15×, 0.3×, 0.5× and 0.78×) caused the formation of comets of which the mean tail lengths increased proportionately and differed significantly from those of unexposed controls. The toxic effect of MRWW on DNA was also studied by plasmid nicking assay and S1 nuclease assay. Strand breaks formation in the MRWW treated pBR322 plasmid confirmed its genotoxic effect. Moreover, a dose dependent increase in cleavage of calf thymus DNA in S1 nuclease assay was also suggestive of the DNA damaging potential of MRWW. A higher level of ROS generation in the test water sample was recorded which might be contributing to its genotoxicity. Interaction between the constituents of MRWW and calf thymus DNA was also ascertained by UV-visible spectroscopy.

  16. Genotoxicity of refinery waste assessed by some DNA damage tests.

    PubMed

    Gupta, Amit Kumar; Ahmad, Irshad; Ahmad, Masood

    2015-04-01

    Refinery waste effluent is well known to contain polycyclic aromatic hydrocarbons, phenols and heavy metals as potentially genotoxic substances. The aim of the present study was to assess the genotoxic potential of Mathura refinery wastewater (MRWW) by various in vitro tests including the single cell gel electrophoresis, plasmid nicking assay and S1 nuclease assay. Treatment of human lymphocytes to different MRWW concentrations (0.15×, 0.3×, 0.5× and 0.78×) caused the formation of comets of which the mean tail lengths increased proportionately and differed significantly from those of unexposed controls. The toxic effect of MRWW on DNA was also studied by plasmid nicking assay and S1 nuclease assay. Strand breaks formation in the MRWW treated pBR322 plasmid confirmed its genotoxic effect. Moreover, a dose dependent increase in cleavage of calf thymus DNA in S1 nuclease assay was also suggestive of the DNA damaging potential of MRWW. A higher level of ROS generation in the test water sample was recorded which might be contributing to its genotoxicity. Interaction between the constituents of MRWW and calf thymus DNA was also ascertained by UV-visible spectroscopy. PMID:24836934

  17. Detection of DNA damage by thiazole orange fluorescence probe assisted with exonuclease III.

    PubMed

    Lu, Qian; Zhou, Zhenxian; Mei, Yuan; Wei, Wei; Liu, Songqin

    2013-11-15

    This work reports a fluorescent dye insertion approach for detection of DNA damage. The capture DNA with overhanging 3'-terminus was immobilized on silicon surface to hybridize with target DNA. The intercalation of cyanine dye of thiazole orange (TO) to the double helix structure of DNA (dsDNA) allowed intense enhancement of fluorescence signal. The DNA damage with chemicals led to poor intercalation of TO into double helix structure, resulting in the decrease of the fluorescence signal. This signal decrease could be further enhanced by exonuclease III (Exo III). With this approach, the target DNA could be detected down to 47 fM. Seven chemicals were chosen as models to monitor DNA damage. The results suggested that the present strategy could be developed to detect DNA damage, to classify the damaging mechanism with chemicals and to estimate the toxic effect of chemicals.

  18. The dynamic behavior of Ect2 in response to DNA damage

    PubMed Central

    He, Dan; Xiang, Jinnan; Li, Baojie; Liu, Huijuan

    2016-01-01

    Ect2 is a BRCT-containing guanidine exchange factor for Rho GTPases. It is essential for cytokinesis and is also involved in tumorigenesis. Since most BRCT-containing proteins are involved in DNA damage response and/or DNA repair, we tested whether Ect2 plays similar roles. We report that in primary mouse embryonic fibroblasts (MEFs), DNA damage quickly led to Ect2 relocalization to the chromatin and DNA damage foci-like structures. Ect2 knockdown did not affect foci localization of γH2AX, TopBP1, or Brca1, or activation of Atm, yet it impeded p53 Ser15 phosphorylation and activation, and resulted in defects in apoptosis and activation of S and G2/M checkpoints in response to DNA damage. These results suggest that Ect2 plays a role in DNA damage response. Interestingly, Ect2 is down-regulated at late stages of DNA damage response. Although p53 and E2F1 have been shown to regulate Ect2 transcription, DNA damage-induced Ect2 down-regulation occurred in p53−/− or Atm−/− MEFs and E2F1 knockdown cells. Instead, DNA damage-induced Ect2 down-regulation is mainly attributable to decreased protein stability. Like Ect2 knockdown, Ect2 destabilization may help the cell to recover from DNA damage response. These results suggest that Ect2 plays roles in multiple aspects of DNA damage response. PMID:27074761

  19. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2

    PubMed Central

    Grindel, Annemarie; Guggenberger, Bianca; Eichberger, Lukas; Pöppelmeyer, Christina; Gschaider, Michaela; Tosevska, Anela; Mare, George; Briskey, David; Brath, Helmut; Wagner, Karl-Heinz

    2016-01-01

    Background Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration. Methods Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49). Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals. Results No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group. Conclusion BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which

  20. DNA damage response and sphingolipid signaling in liver diseases

    PubMed Central

    Matsuda, Yasunobu; Moro, Kazuki; Tsuchida, Junko; Soma, Daiki; Hirose, Yuki; Kobayashi, Takashi; Kosugi, Shin-ichi; Takabe, Kazuaki; Komatsu, Masaaki; Wakai, Toshifumi

    2016-01-01

    Patients with unresectable hepatocellular carcinoma (HCC) cannot generally be cured by systemic chemotherapy or radiotherapy due to their poor response to conventional therapeutic agents. The development of novel and efficient targeted therapies to increase their treatment options depends on the elucidation of the molecular mechanisms that underlie the pathogenesis of HCC. The DNA damage response (DDR) is a network of cell-signaling events that are triggered by DNA damage. Its dysregulation is thought to be one of the key mechanisms underlying the generation of HCC. Sphingosine-1-phosphate (S1P), a lipid mediator, has emerged as an important signaling molecule that has been found to be involved in many cellular functions. In the liver, the alteration of S1P signaling potentially affects the DDR pathways. In this review, we explore the role of the DDR in hepatocarcinogenesis of various etiologies, including hepatitis B and C infection and non-alcoholic steatohepatitis. Furthermore, we discuss the metabolism and functions of S1P that may affect the hepatic DDR. The elucidation of the pathogenic role of S1P may create new avenues of research into therapeutic strategies for patients with HCC. PMID:26514817

  1. The yeast copper response is regulated by DNA damage.

    PubMed

    Dong, Kangzhen; Addinall, Stephen G; Lydall, David; Rutherford, Julian C

    2013-10-01

    Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast.

  2. The Yeast Copper Response Is Regulated by DNA Damage

    PubMed Central

    Dong, Kangzhen; Addinall, Stephen G.; Lydall, David

    2013-01-01

    Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast. PMID:23959798

  3. DNA Damage Tolerance and a Web of Connections with DNA Repair at Yale

    PubMed Central

    Wood, Richard D.

    2013-01-01

    This short article summarizes some of the research carried out recently by my laboratory colleagues on the function of DNA polymerase zeta (polζ) in mammalian cells. Some personal background is also described, relevant to research associations with Yale University and its continuing influence. Polζ is involved in the bypass of many DNA lesions by translesion DNA synthesis and is responsible for the majority of DNA damage-induced point mutagenesis in mammalian cells (including human cells), as well as in yeast. We also found that the absence of this enzyme leads to gross chromosomal instability in mammalian cells and increased spontaneous tumorigenesis in mice. Recently, we discovered a further unexpectedly critical role for polζ: it plays an essential role in allowing continued rapid proliferation of cells and tissues. These observations and others indicate that polζ engages frequently during DNA replication to bypass and tolerate DNA lesions or unusual DNA structures that are barriers for the normal DNA replication machinery. PMID:24348215

  4. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. II. Experimental detection

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The basic 30-nm chromatin fiber in the mammalian cell consists of an unknown (possibly helical) arrangement of nucleosomes, with about 1.2 kb of DNA per 10-nm length of fiber. Track-structure considerations suggest that interactions of single delta rays or high-LET particles with the chromatin fiber might result in the formation of multiple lesions spread over a few kilobases of DNA (see the accompanying paper: W.R. Holley and A. Chatterjee, Radiat. Res. 145, 188-199, 1996). In particular, multiple DNA double-strand breaks and single-strand breaks may form. To test this experimentally, primary human fibroblasts were labeled with [3H]thymidine and exposed at 0 degrees C to X rays or accelerated nitrogen or iron ions in the LET range of 97-440 keV/microns. DNA was isolated inside agarose plugs and subjected to agarose gel electrophoresis under conditions that allowed good separation of 0.1-2 kb size DNA. The bulk of DNA remained in the well or migrated only a small distance into the gel. It was found that DNA fragments in the expected size range were formed linearly with dose with an efficiency that increased with LET. A comparison of the yield of such fragments with the yield of total DNA double-strand breaks suggests that for the high-LET ions a substantial proportion (20-90%) of DNA double-strand breaks are accompanied within 0.1-2 kb by at least one additional DNA double-strand break. It is shown that these results are in good agreement with theoretical calculations based on treating the 30-nm chromatin fiber as the target for ionizing particles. Theoretical considerations also predict that the clusters will contain numerous single-strand breaks and base damages. It is proposed that such clusters be designated "regionally multiply damaged sites." Postirradiation incubation at 37 degrees C resulted in a decline in the number of short DNA fragments, suggesting a repair activity. The biological significance of regionally multiply damaged sites is presently unknown.

  5. Protective Effect of Folic Acid on Oxidative DNA Damage

    PubMed Central

    Guo, Xiaojuan; Cui, Huan; Zhang, Haiyang; Guan, Xiaoju; Zhang, Zheng; Jia, Chaonan; Wu, Jia; Yang, Hui; Qiu, Wenting; Zhang, Chuanwu; Yang, Zuopeng; Chen, Zhu; Mao, Guangyun

    2015-01-01

    Abstract Although previous reports have linked DNA damage with both transmissions across generations as well as our own survival, it is unknown how to reverse the lesion. Based on the data from a Randomized, Double-blind, Placebo Controlled Clinical Trial, this study aimed to assess the efficacy of folic acid supplementation (FAS) on DNA oxidative damage reversal. In this randomized clinical trial (RCT), a total of 450 participants were enrolled and randomly assigned to 3 groups to receive folic acid (FA) 0.4 mg/day (low-FA), 0.8 mg/day (high-FA), or placebo (control) for 8 weeks. The urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) and creatinine (Cr) concentration at pre- and post-FAS were measured with modified enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), respectively. A multivariate general linear model was applied to assess the individual effects of FAS and the joint effects between FAS and hypercholesterolemia on oxidative DNA damage improvement. This clinical trial was registered with ClinicalTrials.gov, number NCT02235948. Of the 438 subjects that received FA fortification or placebo, the median (first quartile, third quartile) of urinary 8-OHdG/Cr for placebo, low-FA, and high-FA groups were 58.19 (43.90, 82.26), 53.51 (38.97, 72.74), 54.73 (39.58, 76.63) ng/mg at baseline and 57.77 (44.35, 81.33), 51.73 (38.20, 71.30), and 50.65 (37.64, 76.17) ng/mg at the 56th day, respectively. A significant decrease of urinary 8-OHdG was observed after 56 days FA fortification (P < 0.001). Compared with the placebo, after adjusting for some potential confounding factors, including the baseline urinary 8-OHdG/Cr, the urinary 8-OHdG/Cr concentration significantly decreased after 56 days FAS [β (95% confidence interval) = −0.88 (−1.62, −0.14) and P = 0.020 for low-FA; and β (95% confidence interval) = −2.68 (−3.42, −1.94) and P < 0.001 for high-FA] in a dose-response fashion (Ptrend

  6. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    PubMed

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods.

  7. Evaluation of DNA damage using 3 comet assay parameters in workers occupationally exposed to lead.

    PubMed

    Kayaaltı, Zelıha; Yavuz, İlknur; Söylemez, Esma; Bacaksız, Ayşegül; Tutkun, Engın; Sayal, Ahmet; Söylemezoğlu, Tülın

    2015-01-01

    The aim of this study was to investigate the association between DNA damage and blood lead levels in individuals occupationally exposed to lead. To evaluate this association, 61 workers exposed to lead were monitored in terms of DNA damage in blood lymphocytes. The levels of DNA damage were measured according to 3 comet assay parameters, including tail intensity (TI), tail moment (TM), and DNA tail (DNAt). A statistically significant positive correlation was found between the lead levels and TI, TM, and DNAt (p < .01). Smoking had independent effects on DNA damage. A statistically significant difference was observed between smokers and nonsmokers in regards to DNA damage parameters (p < .05). In addition, the lead and DNA damage levels in smokers were found to be significantly higher than the levels observed in nonsmoking workers (p < . 05). Our results show that exposure to lead induces genotoxic effects in peripheral lymphocytes, as measured by comet assays.

  8. Damage to DNA in bacterioplankton: a model of damage by ultraviolet radiation and its repair as influenced by vertical mixing.

    PubMed

    Huot, Y; Jeffrey, W H; Davis, R F; Cullen, J J

    2000-07-01

    A model of UV-induced DNA damage in oceanic bacterioplankton was developed and tested against previously published and novel measurements of cyclobutane pyrimidine dimers (CPD) in surface layers of the ocean. The model describes the effects of solar irradiance, wind-forced mixing of bacterioplankton and optical properties of the water on net DNA damage in the water column. The biological part includes the induction of CPD by UV radiation and repair of this damage through photoreactivation and excision. The modeled damage is compared with measured variability of CPD in the ocean: diel variation in natural bacterioplankton communities at the surface and in vertical profiles under different wind conditions (net damage as influenced by repair and mixing); in situ incubation of natural assemblages of bacterioplankton (damage and repair, no mixing); and in situ incubation of DNA solutions (no repair, no mixing). The model predictions are generally consistent with the measurements, showing similar patterns with depth, time and wind speed. A sensitivity analysis assesses the effect on net DNA damage of varying ozone thickness, colored dissolved organic matter concentration, chlorophyll concentration, wind speed and mixed layer depth. Ozone thickness and mixed layer depth are the most important factors affecting net DNA damage in the mixed layer. From the model, the total amplification factor (TAF; a relative measure of the increase of damage associated with a decrease in ozone thickness) for net DNA damage in the euphotic zone is 1.7, as compared with 2.1-2.2 for irradiance weighted for damage to DNA at the surface.

  9. Garlic supplementation prevents oxidative DNA damage in essential hypertension.

    PubMed

    Dhawan, Veena; Jain, Sanjay

    2005-07-01

    Oxygen-free radicals and other oxygen/nitrogen species are constantly generated in the human body. Most are intercepted by antioxidant defences and perform useful metabolic roles, whereas others escape to damage biomolecules like DNA, lipids and proteins. Garlic has been shown to contain antioxidant phytochemicals that prevent oxidative damage. These include unique water-soluble organosulphur compounds, lipid-soluble organosulphur compounds and flavonoids. Therefore, in the present study, we have tried to explore the antioxidant effect of garlic supplementation on oxidative stress-induced DNA damage, nitric oxide (NO) and superoxide generation and on the total antioxidant status (TAS) in patients of essential hypertension (EH). Twenty patients of EH as diagnosed by JNC VI criteria (Group I) and 20 age and sex-matched normotensive controls (Group II) were enrolled in the study. Both groups were given garlic pearls (GP) in a dose of 250 mg per day for 2 months. Baseline samples were taken at the start of the study, i.e. 0 day, and thereafter 2 months follow-up. 8-Hydroxy-2'-deoxyguanosine (8-OHdG), lipids, lipid peroxidation (MDA), NO and antioxidant vitamins A, E and C were determined. A moderate decline in blood pressure (BP) and a significant reduction in 8-OHdG, NO levels and lipid peroxidation were observed in Group I subjects with GP supplementation. Further, a significant increase in vitamin levels and TAS was also observed in this group as compared to the control subjects. These findings point out the beneficial effects of garlic supplementation in reducing blood pressure and counteracting oxidative stress, and thereby, offering cardioprotection in essential hypertensives. PMID:16335787

  10. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation

    PubMed Central

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621

  11. Alcohols as alkylating agents in heteroarene C-H functionalization

    NASA Astrophysics Data System (ADS)

    Jin, Jian; MacMillan, David W. C.

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  12. Thirdhand smoke causes DNA damage in human cells.

    PubMed

    Hang, Bo; Sarker, Altaf H; Havel, Christopher; Saha, Saikat; Hazra, Tapas K; Schick, Suzaynn; Jacob, Peyton; Rehan, Virender K; Chenna, Ahmed; Sharan, Divya; Sleiman, Mohamad; Destaillats, Hugo; Gundel, Lara A

    2013-07-01

    Exposure to thirdhand smoke (THS) is a newly described health risk. Evidence supports its widespread presence in indoor environments. However, its genotoxic potential, a critical aspect in risk assessment, is virtually untested. An important characteristic of THS is its ability to undergo chemical transformations during aging periods, as demonstrated in a recent study showing that sorbed nicotine reacts with the indoor pollutant nitrous acid (HONO) to form tobacco-specific nitrosamines (TSNAs) such as 4-(methylnitrosamino)-4-(3-pyridyl)butanal (NNA) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The goal of this study was to assess the genotoxicity of THS in human cell lines using two in vitro assays. THS was generated in laboratory systems that simulated short (acute)- and long (chronic)-term exposures. Analysis by liquid chromatography-tandem mass spectrometry quantified TSNAs and common tobacco alkaloids in extracts of THS that had sorbed onto cellulose substrates. Exposure of human HepG2 cells to either acute or chronic THS for 24h resulted in significant increases in DNA strand breaks in the alkaline Comet assay. Cell cultures exposed to NNA alone showed significantly higher levels of DNA damage in the same assay. NNA is absent in freshly emitted secondhand smoke, but it is the main TSNA formed in THS when nicotine reacts with HONO long after smoking takes place. The long amplicon-quantitative PCR assay quantified significantly higher levels of oxidative DNA damage in hypoxanthine phosphoribosyltransferase 1 (HPRT) and polymerase β (POLB) genes of cultured human cells exposed to chronic THS for 24h compared with untreated cells, suggesting that THS exposure is related to increased oxidative stress and could be an important contributing factor in THS-mediated toxicity. The findings of this study demonstrate for the first time that exposure to THS is genotoxic in human cell lines. PMID:23462851

  13. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells.

    PubMed

    Furda, Amy; Santos, Janine H; Meyer, Joel N; Van Houten, Bennett

    2014-01-01

    In this chapter, we describe a gene-specific quantitative PCR (QPCR)-based assay for the measurement of DNA damage, using amplification of long DNA targets. This assay has been used extensively to measure the integrity of both nuclear and mitochondrial genomes exposed to different genotoxins and has proven to be particularly valuable in identifying reactive oxygen species-mediated mitochondrial DNA damage. QPCR can be used to quantify both the formation of DNA damage as well as the kinetics of damage removal. One of the main strengths of the assay is that it permits monitoring the integrity of mtDNA directly from total cellular DNA without the need for isolating mitochondria or a separate step of mitochondrial DNA purification. Here we discuss advantages and limitations of using QPCR to assay DNA damage in mammalian cells. In addition, we give a detailed protocol of the QPCR assay that helps facilitate its successful deployment in any molecular biology laboratory.

  14. A fundamental relationship between hydrophobic properties and biological activity for the duocarmycin class of DNA-alkylating antitumor drugs: hydrophobic-binding-driven bonding.

    PubMed

    Wolfe, Amanda L; Duncan, Katharine K; Lajiness, James P; Zhu, Kaicheng; Duerfeldt, Adam S; Boger, Dale L

    2013-09-12

    Two systematic series of increasingly hydrophilic derivatives of duocarmycin SA that feature the incorporation of ethylene glycol units (n = 1-5) into the methoxy substituents of the trimethoxyindole subunit are described. These derivatives exhibit progressively increasing water solubility along with progressive decreases in cell growth inhibitory activity and DNA alkylation efficiency with the incremental ethylene glycol unit incorporations. Linear relationships of cLogP with -log IC50 for cell growth inhibition and -log AE (AE = cell-free DNA alkylation efficiency) were observed, with the cLogP values spanning the productive range of 2.5-0.49 and the -log IC50 values spanning the range of 11.2-6.4, representing IC50 values that vary by a factor of 10(5) (0.008 to 370 nM). The results quantify the fundamental role played by the hydrophobic character of the compound in the expression of the biological activity of members in this class (driving the intrinsically reversible DNA alkylation reaction) and define the stunning magnitude of its effect.

  15. Viral and Cellular Genomes Activate Distinct DNA Damage Responses

    PubMed Central

    Shah, Govind A.; O’Shea, Clodagh C.

    2015-01-01

    Summary In response to cellular genome breaks, MRE11/RAD50/NBS1 (MRN) activates a global ATM DNA damage response (DDR) that prevents cellular replication. Here we show that MRN-ATM also has critical functions in defending the cell against DNA viruses. We reveal temporally distinct responses to adenovirus genomes: a critical MRN-ATM DDR that must be inactivated by E1B-55K/E4-ORF3 viral oncoproteins and a global MRN independent ATM DDR to viral nuclear domains that does not impact viral replication. We show that MRN binds to adenovirus genomes and activates a localized ATM response that specifically prevents viral DNA replication. In contrast to chromosomal breaks, ATM activation is not amplified by H2AX across megabases of chromatin to induce global signaling and replicative arrest. Thus, γH2AX foci discriminate ‘self’ and ‘non-self’ genomes and determine if a localized anti-viral or global ATM response is appropriate. This provides an elegant mechanism to neutralize viral genomes without jeopardizing cellular viability. PMID:26317467

  16. Antioxidant and DNA damage protection potentials of selected phenolic acids.

    PubMed

    Sevgi, Kemal; Tepe, Bektas; Sarikurkcu, Cengiz

    2015-03-01

    In this study, ten different phenolic acids (caffeic, chlorogenic, cinnamic, ferulic, gallic, p-hydroxybenzoic, protocatechuic, rosmarinic, syringic, and vanillic acids) were evaluated for their antioxidant and DNA damage protection potentials. Antioxidant activity was evaluated by using four different test systems named as β-carotene bleaching, DPPH free radical scavenging, reducing power and chelating effect. In all test systems, rosmarinic acid showed the maximum activity potential, while protocatechuic acid was determined as the weakest antioxidant in β-carotene bleaching, DPPH free radical scavenging, and chelating effect assays. Phenolic acids were also screened for their protective effects on pBR322 plasmid DNA against the mutagenic and toxic effects of UV and H2O2. Ferulic acid was found as the most active phytochemical among the others. Even at the lowest concentration value (0.002 mg/ml), ferulic acid protected all of the bands in the presence of H2O2 and UV. It is followed by caffeic, rosmarinic, and vanillic acids. On the other hand, cinnamic acid (at 0.002 mg/ml), gallic acid (at 0.002 mg/ml), p-hydroxybenzoic acid (at 0.002 and 0.004 mg/ml), and protocatechuic acid (at 0.002 and 0.004 mg/ml) could not protect plasmid DNA. PMID:25542528

  17. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY STYRENE OXIDE

    EPA Science Inventory

    A rapid and simple assay to detect DNA damage to calf thymus DNA caused by styrene oxide (SO) is reported. This assay is based on changes observed in the melting and annealing behavior of the damaged DNA. The melting annealing process was monitored using a fluorescence indicat...

  18. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...

  19. DNA-directed alkylating agents. 4. 4-anilinoquinoline-based minor groove directed aniline mustards.

    PubMed

    Gravatt, G L; Baguley, B C; Wilson, W R; Denny, W A

    1991-05-01

    A series of 4-anilinoquinoline-linked aniline mustards of widely varying mustard reactivity were prepared and evaluated for their antitumor activity. The compounds were designed as minor grove binding agents, where the aniline mustard ring is itself part of the DNA-binding ligand. While there was a general trend for cytotoxicity to correlate with mustard reactivity, this was much less pronounced than with untargeted mustards. The compounds were much more cytotoxic than the parent diols, and were also at least 10-fold more cytotoxic than the corresponding aniline mustards themselves. Comparative cell line studies suggested that the mechanism of cytotoxicity varied with mustard reactivity. The most reactive mustards cross-linked DNA, while cell killing by the less reactive compounds appeared to be by the formation of bulky monoadducts. The compounds were active but not particularly dose-potent against P388 leukemia in vivo. The modest potency may be related to their poor aqueous solubility, since the more soluble methyl quaternary salts were equally active at much lower doses.

  20. Development of a robust DNA damage model including persistent telomere-associated damage with application to secondary cancer risk assessment.

    PubMed

    Rastgou Talemi, Soheil; Kollarovic, Gabriel; Lapytsko, Anastasiya; Schaber, Jörg

    2015-01-01

    Mathematical modelling has been instrumental to understand kinetics of radiation-induced DNA damage repair and associated secondary cancer risk. The widely accepted two-lesion kinetic (TLK) model assumes two kinds of double strand breaks, simple and complex ones, with different repair rates. Recently, persistent DNA damage associated with telomeres was reported as a new kind of DNA damage. We therefore extended existing versions of the TLK model by new categories of DNA damage and re-evaluated those models using extensive data. We subjected different versions of the TLK model to a rigorous model discrimination approach. This enabled us to robustly select a best approximating parsimonious model that can both recapitulate and predict transient and persistent DNA damage after ionizing radiation. Models and data argue for i) nonlinear dose-damage relationships, and ii) negligible saturation of repair kinetics even for high doses. Additionally, we show that simulated radiation-induced persistent telomere-associated DNA damage foci (TAF) can be used to predict excess relative risk (ERR) of developing secondary leukemia after fractionated radiotherapy. We suggest that TAF may serve as an additional measure to predict cancer risk after radiotherapy using high dose rates. This may improve predicting risk-dose dependency of ionizing radiation especially for long-term therapies. PMID:26359627

  1. Development of a robust DNA damage model including persistent telomere-associated damage with application to secondary cancer risk assessment

    PubMed Central

    Rastgou Talemi, Soheil; Kollarovic, Gabriel; Lapytsko, Anastasiya; Schaber, Jörg

    2015-01-01

    Mathematical modelling has been instrumental to understand kinetics of radiation-induced DNA damage repair and associated secondary cancer risk. The widely accepted two-lesion kinetic (TLK) model assumes two kinds of double strand breaks, simple and complex ones, with different repair rates. Recently, persistent DNA damage associated with telomeres was reported as a new kind of DNA damage. We therefore extended existing versions of the TLK model by new categories of DNA damage and re-evaluated those models using extensive data. We subjected different versions of the TLK model to a rigorous model discrimination approach. This enabled us to robustly select a best approximating parsimonious model that can both recapitulate and predict transient and persistent DNA damage after ionizing radiation. Models and data argue for i) nonlinear dose-damage relationships, and ii) negligible saturation of repair kinetics even for high doses. Additionally, we show that simulated radiation-induced persistent telomere-associated DNA damage foci (TAF) can be used to predict excess relative risk (ERR) of developing secondary leukemia after fractionated radiotherapy. We suggest that TAF may serve as an additional measure to predict cancer risk after radiotherapy using high dose rates. This may improve predicting risk-dose dependency of ionizing radiation especially for long-term therapies. PMID:26359627

  2. Peroxidase-Thiocyanate-Peroxide Antibacterial System Does Not Damage DNA

    PubMed Central

    White, William E.; Pruitt, Kenneth M.; Mansson-Rahemtulla, Britta

    1983-01-01

    The hypothiocyanite ion (OSCN-) is a normal component of human saliva. It is a highly reactive oxidizing agent, and at concentrations above the values normally found in human saliva, it inhibits the growth and metabolism of oral bacteria. This finding has led to the suggestion that antibacterial properties of human saliva might be enhanced in vivo by appropriate supplements which elevate OSCN- concentrations. Since DNA is sensitive to oxidizing agents (hydrogen peroxide attacks nucleosides), high concentrations of OSCN- in human saliva might damage DNA and produce deleterious effects on the oral mucosa. In the present study, the effect of high OSCN- concentrations on several mutagen-sensitive Salmonella typhimurium strains was determined. These strains are used to detect base-pair substitutions and frameshift mutations. We also studied the effects of OSCN- on a Saccharomyces cerevisiae (yeast) strain commonly employed as a test cell for evaluating the potential of a compound to produce gene conversion, mitotic crossing-over, or reverse mutation. By recording the UV spectra of mixtures of calf thymus DNA and OSCN-, we explored the possible in vitro reactions of this oxidizing agent with eucaryotic genetic material. Our results show that, at concentrations above 10 μM, OSCN- is toxic for the tested Salmonella typhimurium strains. The mutant strains with defects in cell wall lipopolysaccharides are killed more readily by OSCN- than is the strain lacking these defects. However, OSCN- was not mutagenic for any of the tested strains. Saccharomyces cerevisiae was not affected by OSCN- even at concentrations above 800 μM. Calf thymus DNA was not oxidized by OSCN-. We conclude that the elevated concentrations of OSCN- required to produce antibacterial effects in the human mouth pose no threat to the genetic material of host tissues. PMID:6340603

  3. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  4. Effects of pH on nicotine-induced DNA damage and oxidative stress.

    PubMed

    Wu, Hui-Ju; Chi, Chin-Wen; Liu, Tsung-Yun

    2005-09-01

    Epidemiological evidence suggests that chewing betel quid and smoking have synergistic potential in the development of oral squamous-cell carcinoma in Taiwan. Chewing betel quid produces alkalization of saliva. This study investigated the response of human oral cancer OEC-M1 cells to nicotine in different pH environments (6.5 and 8) by examining its effects on DNA damage as evidenced by single-cell gel electrophoresis. Nicotine (1 and 10 muM) significantly induced DNA strand breakage when cultured at pH 8 for 6 h but did not induce DNA damage at pH 6.5. Nicotine-induced DNA damage was also time dependent. When cells were pretreated with catalase or N-acetylcysteine, a significant reduction in nicotine-induced DNA damage was observed. Flow cytometric analyses showed that the production of 8-oxoguanine was significantly increased following nicotine (10 muM) treatment. Posttreatment of nicotine-damaged DNA by endonuclease III and formamidopyrimidine-DNA glycosylase, recognizing oxidized DNA bases, increased the extent of DNA damage. These results suggest that nicotine-induced DNA strand breakage is pH dependent, and oxidative stress might be involved in nicotine-induced DNA damage. Finally, cigarette smoke condensate (equivalent to 8 muM nicotine) induced significant DNA strand breaks in OEC-M1 cells at pH 8 and correlated with the generation of oxidative DNA damage. Thus, alkaline saliva generated by chewing betel quid plays an important role in cigarette-related nicotine-induced DNA damage, and reactive oxygen species may be involved in generating this DNA damage. PMID:16076763

  5. Hyperglycemia Differentially Affects Maternal and Fetal DNA Integrity and DNA Damage Response

    PubMed Central

    Moreli, Jusciele B.; Santos, Janine H.; Lorenzon-Ojea, Aline Rodrigues; Corrêa-Silva, Simone; Fortunato, Rodrigo S.; Rocha, Clarissa Ribeiro; Rudge, Marilza V.; Damasceno, Débora C.; Bevilacqua, Estela; Calderon, Iracema M.

    2016-01-01

    Objective: Investigate the DNA damage and its cellular response in blood samples from both mother and the umbilical cord of pregnancies complicated by hyperglycemia. Methods: A total of 144 subjects were divided into 4 groups: normoglycemia (ND; 46 cases), mild gestational hyperglycemia (MGH; 30 cases), gestational diabetes mellitus (GDM; 45 cases) and type-2 diabetes mellitus (DM2; 23 cases). Peripheral blood mononuclear cell (PBMC) isolation and/or leukocytes from whole maternal and umbilical cord blood were obtained from all groups at delivery. Nuclear and mitochondrial DNA damage were measured by gene-specific quantitative PCR, and the expression of mRNA and proteins involved in the base excision repair (BER) pathway were assessed by real-time qPCR and Western blot, respectively. Apoptosis was measured in vitro experiments by caspase 3/7 activity and ATP levels. Results: GDM and DM2 groups were characterized by an increase in oxidative stress biomarkers, an increase in nuclear and mitochondrial DNA damage, and decreased expression of mRNA (APE1, POLβ and FEN1) and proteins (hOGG1, APE1) involved in BER. The levels of hyperglycemia were associated with the in vitro apoptosis pathway. Blood levels of DNA damage in umbilical cord were similar among the groups. Newborns of diabetic mothers had increased expression of BER mRNA (APE1, POLβ and FEN1) and proteins (hOGG1, APE1, POLβ and FEN1). A diabetes-like environment was unable to induce apoptosis in the umbilical cord blood cells. Conclusions: Our data show relevant asymmetry between maternal and fetal blood cell susceptibility to DNA damage and apoptosis induction. Maternal cells seem to be more predisposed to changes in an adverse glucose environment. This may be due to differential ability in upregulating multiple genes involved in the activation of DNA repair response, especially the BER mechanism. However if this study shows a more effective adaptive response by the fetal organism, it also calls for

  6. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor.

    PubMed

    Huang, M; Zhou, Z; Elledge, S J

    1998-09-01

    We have identified the yeast CRT1 gene as an effector of the DNA damage and replication checkpoint pathway. CRT1 encodes a DNA-binding protein that recruits the general repressors Ssn6 and Tup1 to the promoters of damage-inducible genes. Derepression of the Crt1 regulon suppresses the lethality of mec1 and rad53 null alleles and is essential for cell viability during replicative stress. In response to DNA damage and replication blocks, Crt1 becomes hyperphosphorylated and no longer binds DNA, resulting in transcriptional induction. CRT1 is autoregulated and is itself induced by DNA damage, indicating the existence of a negative feedback pathway that facilitates return to the repressed state after elimination of damage. The inhibition of an autoregulatory repressor in response to DNA damage is a strategy conserved throughout prokaryotic and eukaryotic evolution.

  7. DNA damage induces a meiotic arrest in mouse oocytes mediated by the spindle assembly checkpoint

    PubMed Central

    Collins, Josie K.; Lane, Simon I. R.; Merriman, Julie A.; Jones, Keith T.

    2015-01-01

    Extensive damage to maternal DNA during meiosis causes infertility, birth defects and abortions. However, it is unknown if fully grown oocytes have a mechanism to prevent the creation of DNA-damaged embryos. Here we show that DNA damage activates a pathway involving the spindle assembly checkpoint (SAC) in response to chemically induced double strand breaks, UVB and ionizing radiation. DNA damage can occur either before or after nuclear envelope breakdown, and provides an effective block to anaphase-promoting complex activity, and consequently the formation of mature eggs. This contrasts with somatic cells, where DNA damage fails to affect mitotic progression. However, it uncovers a second function for the meiotic SAC, which in the context of detecting microtubule–kinetochore errors has hitherto been labelled as weak or ineffectual in mammalian oocytes. We propose that its essential role in the detection of DNA damage sheds new light on its biological purpose in mammalian female meiosis. PMID:26522232

  8. Changing the ubiquitin landscape during viral manipulation of the DNA damage response

    PubMed Central

    Weitzman, Matthew D.; Lilley, Caroline E.; Chaurushiya, Mira S.

    2011-01-01

    Viruses often induce signaling through the same cellular cascades that are activated by damage to the cellular genome. Signaling triggered by viral proteins or exogenous DNA delivered by viruses can be beneficial or detrimental to viral infection. Viruses have therefore evolved to dissect the cellular DNA damage response pathway during infection, often marking key cellular regulators with ubiquitin to induce their degradation or change their function. Signaling controlled by ubiquitin or ubiquitin-like proteins has recently emerged as key regulator of the cellular DNA damage response. Situated at the interface between DNA damage signaling and the ubiquitin system, viruses can reveal key convergence points in this important cellular pathway. In this review, we examine how viruses harness the diversity of the cellular ubiquitin system to modulate the DNA damage signaling pathway. We discuss the implications of viral infiltration of this pathway for both the transcriptional program of the virus and for the cellular response to DNA damage. PMID:21549706

  9. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression.

    PubMed

    Hampp, Stephanie; Kiessling, Tina; Buechle, Kerstin; Mansilla, Sabrina F; Thomale, Jürgen; Rall, Melanie; Ahn, Jinwoo; Pospiech, Helmut; Gottifredi, Vanesa; Wiesmüller, Lisa

    2016-07-26

    DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress. PMID:27407148

  10. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression

    PubMed Central

    Hampp, Stephanie; Kiessling, Tina; Buechle, Kerstin; Mansilla, Sabrina F.; Thomale, Jürgen; Rall, Melanie; Ahn, Jinwoo; Pospiech, Helmut; Gottifredi, Vanesa; Wiesmüller, Lisa

    2016-01-01

    DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker–induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress. PMID:27407148

  11. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression.

    PubMed

    Hampp, Stephanie; Kiessling, Tina; Buechle, Kerstin; Mansilla, Sabrina F; Thomale, Jürgen; Rall, Melanie; Ahn, Jinwoo; Pospiech, Helmut; Gottifredi, Vanesa; Wiesmüller, Lisa

    2016-07-26

    DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.

  12. Survival of phosphate-solubilizing bacteria against DNA damaging agents.

    PubMed

    Shrivastava, Manoj; Rajpurohit, Yogendra S; Misra, Hari S; D'Souza, S F

    2010-10-01

    Phosphate-solubilizing bacteria (PSBs) were isolated from different plant rhizosphere soils of various agroecological regions of India. These isolates showed synthesis of pyrroloquinoline quinone (PQQ), production of gluconic acid, and release of phosphorus from insoluble tricalcium phosphate. The bacterial isolates synthesizing PQQ also showed higher tolerance to ultraviolet C radiation and mitomycin C as compared to Escherichia coli but were less tolerant than Deinococcus radiodurans. Unlike E. coli, PSB isolates showed higher tolerance to DNA damage when grown in the absence of inorganic phosphate. Higher tolerance to ultraviolet C radiation and oxidative stress in these PSBs grown under PQQ synthesis inducible conditions, namely phosphate starvation, might suggest the possible additional role of this redox cofactor in the survival of these isolates under extreme abiotic stress conditions. PMID:20962905

  13. Common Fragile Sites: Genomic Hotspots of DNA Damage and Carcinogenesis

    PubMed Central

    Ma, Ke; Qiu, Li; Mrasek, Kristin; Zhang, Jun; Liehr, Thomas; Quintana, Luciana Gonçalves; Li, Zheng

    2012-01-01

    Genomic instability, a hallmark of cancer, occurs preferentially at specific genomic regions known as common fragile sites (CFSs). CFSs are evolutionarily conserved and late replicating regions with AT-rich sequences, and CFS instability is correlated with cancer. In the last decade, much progress has been made toward understanding the mechanisms of chromosomal instability at CFSs. However, despite tremendous efforts, identifying a cancer-associated CFS gene (CACG) remains a challenge and little is known about the function of CACGs at most CFS loci. Recent studies of FATS (for Fragile-site Associated Tumor Suppressor), a new CACG at FRA10F, reveal an active role of this CACG in regulating DNA damage checkpoints and suppressing tumorigenesis. The identification of FATS may inspire more discoveries of other uncharacterized CACGs. Further elucidation of the biological functions and clinical significance of CACGs may be exploited for cancer biomarkers and therapeutic benefits. PMID:23109895

  14. DDRprot: a database of DNA damage response-related proteins

    PubMed Central

    Andrés-León, Eduardo; Cases, Ildefonso; Arcas, Aida; Rojas, Ana M.

    2016-01-01

    The DNA Damage Response (DDR) signalling network is an essential system that protects the genome’s integrity. The DDRprot database presented here is a resource that integrates manually curated information on the human DDR network and its sub-pathways. For each particular DDR protein, we present detailed information about its function. If involved in post-translational modifications (PTMs) with each other, we depict the position of the modified residue/s in the three-dimensional structures, when resolved structures are available for the proteins. All this information is linked to the original publication from where it was obtained. Phylogenetic information is also shown, including time of emergence and conservation across 47 selected species, family trees and sequence alignments of homologues. The DDRprot database can be queried by different criteria: pathways, species, evolutionary age or involvement in (PTM). Sequence searches using hidden Markov models can be also used. Database URL: http://ddr.cbbio.es. PMID:27577567

  15. DDRprot: a database of DNA damage response-related proteins.

    PubMed

    Andrés-León, Eduardo; Cases, Ildefonso; Arcas, Aida; Rojas, Ana M

    2016-01-01

    The DNA Damage Response (DDR) signalling network is an essential system that protects the genome's integrity. The DDRprot database presented here is a resource that integrates manually curated information on the human DDR network and its sub-pathways. For each particular DDR protein, we present detailed information about its function. If involved in post-translational modifications (PTMs) with each other, we depict the position of the modified residue/s in the three-dimensional structures, when resolved structures are available for the proteins. All this information is linked to the original publication from where it was obtained. Phylogenetic information is also shown, including time of emergence and conservation across 47 selected species, family trees and sequence alignments of homologues. The DDRprot database can be queried by different criteria: pathways, species, evolutionary age or involvement in (PTM). Sequence searches using hidden Markov models can be also used.Database URL: http://ddr.cbbio.es. PMID:27577567

  16. Design, synthesis, and characterization of nucleosomes containing site-specific DNA damage.

    PubMed

    Taylor, John-Stephen

    2015-12-01

    How DNA damaged is formed, recognized, and repaired in chromatin is an area of intense study. To better understand the structure activity relationships of damaged chromatin, mono and dinucleosomes containing site-specific damage have been prepared and studied. This review will focus on the design, synthesis, and characterization of model systems of damaged chromatin for structural, physical, and enzymatic studies.

  17. DNA damage action spectroscopy and DNA repair in intact organisms: Alfalfa seedlings

    SciTech Connect

    Sutherland, B.M.; Quaite, F.E.; Sutherland, J.C.

    1993-12-31

    Understanding the effects of UV, and increased levels of UV, on DNA in living organisms requires knowledge of both the frequency of damages induced by the quantities and quality (wavelength composition) of the damaging radiation, and of the capacity of the organisms to carry out efficient and accurate repair. The major levels of uncertainty in understanding the responses of intact organisms, both plant and animal, to UV indicates that we cannot assess accurately the impact of stratospheric ozone depletion without major increases in knowledge of DNA damage and repair. What repair paths does alfalfa use for dealing with UV damages? The rate of pyrimidine dimers induced at a low exposure of 280 nm radiation to alfalfa seedlings, was observed to be about 8 dimers/million bases. After UV exposure, the seedlings were kept in the dark or exposed to blue light filtered by a yellow. filter which excluded wavelengths shorter than about 405 nm. Seedlings so exposed carry out photorepair, but do not seem to remove dimers by excision.

  18. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    SciTech Connect

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G.

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  19. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    SciTech Connect

    Ganesan, Shanthi Keating, Aileen F.

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  20. The DNA repair complex Ku70/86 modulates Apaf1 expression upon DNA damage

    PubMed Central

    De Zio, D; Bordi, M; Tino, E; Lanzuolo, C; Ferraro, E; Mora, E; Ciccosanti, F; Fimia, G M; Orlando, V; Cecconi, F

    2011-01-01

    Apaf1 is a key regulator of the mitochondrial intrinsic pathway of apoptosis, as it activates executioner caspases by forming the apoptotic machinery apoptosome. Its genetic regulation and its post-translational modification are crucial under the various conditions where apoptosis occurs. Here we describe Ku70/86, a mediator of non-homologous end-joining pathway of DNA repair, as a novel regulator of Apaf1 transcription. Through analysing different Apaf1 promoter mutants, we identified an element repressing the Apaf1 promoter. We demonstrated that Ku70/86 is a nuclear factor able to bind this repressing element and downregulating Apaf1 transcription. We also found that Ku70/86 interaction with Apaf1 promoter is dynamically modulated upon DNA damage. The effect of this binding is a downregulation of Apaf1 expression immediately following the damage to DNA; conversely, we observed Apaf1 upregulation and apoptosis activation when Ku70/86 unleashes the Apaf1-repressing element. Therefore, besides regulating DNA repair, our results suggest that Ku70/86 binds to the Apaf1 promoter and represses its activity. This may help to inhibit the apoptosome pathway of cell death and contribute to regulate cell survival. PMID:20966962

  1. SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response

    PubMed Central

    Mund, Andreas; Schubert, Tobias; Staege, Hannah; Kinkley, Sarah; Reumann, Kerstin; Kriegs, Malte; Fritsch, Lauriane; Battisti, Valentine; Ait-Si-Ali, Slimane; Hoffbeck, Anne-Sophie; Soutoglou, Evi; Will, Hans

    2012-01-01

    Survival time-associated plant homeodomain (PHD) finger protein in Ovarian Cancer 1 (SPOC1, also known as PHF13) is known to modulate chromatin structure and is essential for testicular stem-cell differentiation. Here we show that SPOC1 is recruited to DNA double-strand breaks (DSBs) in an ATM-dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non-homologous end-joining (NHEJ) repair activity, and cellular radioresistance, but impairs homologous recombination (HR) repair. Conversely, SPOC1 overexpression delays IRIF formation and γH2AX expansion, reduces NHEJ repair activity and enhances cellular radiosensitivity. SPOC1 mediates dose-dependent changes in chromatin association of DNA compaction factors KAP-1, HP1-α and H3K9 methyltransferases (KMT) GLP, G9A and SETDB1. In addition, SPOC1 interacts with KAP-1 and H3K9 KMTs, inhibits KAP-1 phosphorylation and enhances H3K9 trimethylation. These findings provide the first evidence for a function of SPOC1 in DNA damage response (DDR) and repair. SPOC1 acts as a modulator of repair kinetics and choice of pathways. This involves its dose-dependent effects on DNA damage sensors, repair mediators and key regulators of chromatin structure. PMID:23034801

  2. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  3. C/EBPβ represses p53 to promote cell survival downstream of DNA damage independent of oncogenic Ras and p19Arf

    PubMed Central

    Ewing, SJ; Zhu, S; Zhu, F; House, JS; Smart, RC

    2013-01-01

    CCAAT/enhancer-binding protein-β (C/EBPβ) is a mediator of cell survival and tumorigenesis. When C/EBPβ−/− mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19Arf and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19Arf is dramatically elevated in C/EBPβ−/− epidermis and that C/EBPβ represses a p19Arf promoter reporter. To determine whether p19Arf is responsible for the proapoptotic phenotype in C/EBPβ−/− mice, C/EBPβ−/−;p19Arf−/− mice were generated. C/EBPβ−/−;p19Arf−/− mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19Arf is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPβ−/− epidermis, we generated K14-ER:Ras; C/EBPβ−/− mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPβ−/− mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPβ represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPβ may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents. PMID:18636078

  4. Targeted DNA damage at individual telomeres disrupts their integrity and triggers cell death.

    PubMed

    Sun, Luxi; Tan, Rong; Xu, Jianquan; LaFace, Justin; Gao, Ying; Xiao, Yanchun; Attar, Myriam; Neumann, Carola; Li, Guo-Min; Su, Bing; Liu, Yang; Nakajima, Satoshi; Levine, Arthur S; Lan, Li

    2015-07-27

    Cellular DNA is organized into chromosomes and capped by a unique nucleoprotein structure, the telomere. Both oxidative stress and telomere shortening/dysfunction cause aging-related degenerative pathologies and increase cancer risk. However, a direct connection between oxidative damage to telomeric DNA, comprising <1% of the genome, and telomere dysfunction has not been established. By fusing the KillerRed chromophore with the telomere repeat binding factor 1, TRF1, we developed a novel approach to generate localized damage to telomere DNA and to monitor the real time damage response at the single telomere level. We found that DNA damage at long telomeres in U2OS cells is not repaired efficiently compared to DNA damage in non-telomeric regions of the same length in heterochromatin. Telomeric DNA damage shortens the average length of telomeres and leads to cell senescence in HeLa cells and cell death in HeLa, U2OS and IMR90 cells, when DNA damage at non-telomeric regions is undetectable. Telomere-specific damage induces chromosomal aberrations, including chromatid telomere loss and telomere associations, distinct from the damage induced by ionizing irradiation. Taken together, our results demonstrate that oxidative damage induces telomere dysfunction and underline the importance of maintaining telomere integrity upon oxidative damage.

  5. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    PubMed

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  6. A novel DNA damage response mediated by DNA mismatch repair in Caenorhabditis elegans: induction of programmed autophagic cell death in non-dividing cells

    PubMed Central

    Moriwaki, Takahito; Kato, Yuichi; Nakamura, Chihiro; Ishikawa, Satoru; Zhang-Akiyama, Qiu-Mei

    2015-01-01

    DNA mismatch repair (MMR) contributes to genome integrity by correcting errors of DNA polymerase and inducing cell death in response to DNA damage. Dysfunction of MMR results in increased mutation frequency and cancer risk. Clinical researches revealed that MMR abnormalities induce cancers of non-dividing tissues, such as kidney and liver. However, how MMR suppresses cancer in non-dividing tissues is not understood. To address that mechanism, we analyzed the roles of MMR in non-dividing cells using Caenorhabditis elegans (C. elegans), in which all somatic cells are non-dividing in the adult stage. In this study, we used stable MMR-mutant lines with a balancer chromosome. First, we confirmed that deficiency of MMR leads to resistance to various mutagens in C. elegans dividing cells. Next, we performed drug resistance assays, and found that MMR-deficient adult worms were resistant to SN1-type alkylating and oxidizing agents. In addition, dead cell staining and reporter assays of an autophagy-related gene demonstrated that the cell death was autophagic cell death. Interestingly, this autophagic cell death was not suppressed by caffeine, implying that MMR induces death of non-dividing cells in an atl-1-independent manner. Hence, we propose the hypothesis that MMR prevents cancers in non-dividing tissues by directly inducing cell death. PMID:26413217

  7. DNA damage by smoke: Protection by turmeric and other inhibitors of ROS

    SciTech Connect

    Srinivas, L.; Shalini, V.K. )

    1991-01-01

    Twigs-dry leaves smoke condensate (TDS), as a source of clastogenic ROS and carcinogenic PAH, was investigated for its in vitro DNA-damaging effect in calf thymus DNA and human peripheral lymphocytes. An aqueous turmeric component--Aq.T--with an established antioxidant activity, was tested as a DNA protectant. TDS induced 13-fold damage to calf thymus DNA as judged by the emergence of a DNA damage specific, fluorescent product (em: 405 nm). Aq.T at 800 ng/microL extended 69% protection to calf thymus DNA and was comparable to the other protectants such as curcumin, BHA, vitamin E, SOD, and CAT. In human peripheral lymphocytes, TDS induced extensive DNA damage in comparison with the tumor promoter TPA, as judged by FADU. Aq.T at 300 ng/microL extended 90% protection to human lymphocyte DNA against TDS-induced damage, and was more effective than the other protectants--DABCO, D-mannitol, sodium benzoate, vitamin E (ROS quenchers), SOD, CAT (antioxidant enzymes), tannic acid, flufenamic acid, BHA, BHT, n-PG, curcumin and quercetin (antioxidants). Aq.T offered 65% protection to human lymphocyte DNA against TPA-induced damage and was comparable to SOD. The above results indicate that TDS induces substantial DNA damage in calf thymus DNA and human lymphocytes and Aq.T is an efficient protectant.

  8. Lycopene-induced hydroxyl radical causes oxidative DNA damage in Escherichia coli.

    PubMed

    Lee, Wonyoung; Lee, Dong Gun

    2014-09-01

    Lycopene, which is a well-known red carotenoid pigment, has been drawing scientific interest because of its potential biological functions. The current study reports that lycopene acts as a bactericidal agent by inducing reactive oxygen species (ROS)-mediated DNA damage in Escherichia coli. Lycopene treatment elevated the level of ROS-in particular, hydroxyl radicals ((•)OH) -which can damage DNA in E. coli. Lycopene-induced DNA damage in bacteria was confirmed and we also observed cell filamentation caused by cell division arrest, an indirect marker of the DNA damage repair system, in lycopene-treated E. coli. Increased RecA expression was observed, indicating activation of the DNA repair system (SOS response). To summarize, lycopene exerts its antibacterial effects by inducing (•)OH -mediated DNA damage that cannot be ameliorated by the SOS response. Lycopene may be a clinically useful adjuvant for current antimicrobial therapies.

  9. GENETIC AND MOLECULAR ANALYSIS OF DNA DAMAGE REPAIR AND TOLERANCE PATHWAYS.

    SciTech Connect

    SUTHERLAND, B.M.

    2001-07-26

    Radiation can damage cellular components, including DNA. Organisms have developed a panoply of means of dealing with DNA damage. Some repair paths have rather narrow substrate specificity (e.g. photolyases), which act on specific pyrimidine photoproducts in a specific type (e.g., DNA) and conformation (double-stranded B conformation) of nucleic acid. Others, for example, nucleotide excision repair, deal with larger classes of damages, in this case bulky adducts in DNA. A detailed discussion of DNA repair mechanisms is beyond the scope of this article, but one can be found in the excellent book of Friedberg et al. [1] for further detail. However, some DNA damages and paths for repair of those damages important for photobiology will be outlined below as a basis for the specific examples of genetic and molecular analysis that will be presented below.

  10. HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism

    PubMed Central

    Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G

    2016-01-01

    Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041

  11. Mechanism of DNA damage by cadmium and interplay of antioxidant enzymes and agents.

    PubMed

    Badisa, Veera L D; Latinwo, Lekan M; Odewumi, Caroline O; Ikediobi, Christopher O; Badisa, Ramesh B; Ayuk-Takem, Lambert T; Nwoga, Jude; West, John

    2007-04-01

    Cadmium is an environmental toxicant, which causes cancer in different organs. It was found that it damages DNA in the various tissues and cultured cell lines. To investigate the mechanism of DNA damage, we have studied the effect of cadmium-induced DNA damage in plasmid pBR322 DNA, and the possible ameliorative effects of antioxidative agents under in vitro conditions. It was observed that cadmium alone did not cause DNA damage. However, it caused DNA damage in the presence of hydrogen peroxide, in a dose dependent manner, because of production of hydroxyl radicals. Findings from this study show the conversion of covalently closed circular double-stranded pBR 322 DNA to the open circular and linear forms of DNA when treated with 10 muM cadmium and various concentrations of H(2)O(2). The conversion was due to nicking in DNA strands. The observed rate of DNA strand breakage was dependent on H(2)O(2) concentration, temperature, and time. Metallothionein I failed to prevent cadmium-induced DNA nicking in the presence of H(2)O(2). Of the two antioxidant enzymes (catalase and superoxide dismutase) studied, only catalase conferred significant (50-60%) protection. EDTA and DMSO exhibited protection similar to catalase, while mannitol showed only about 20% protection against DNA damage. Ethyl alcohol failed to ameliorate cadmium-induced DNA strands break. From this study, it is plausible to infer that cadmium in the presence of hydrogen peroxide causes DNA damage probably by the formation of hydroxyl ions. These results may indicate that cadmium in vivo could play a major role in the DNA damage induced by oxidative stress. PMID:17366568

  12. DNA damage in an animal model of maple syrup urine disease.

    PubMed

    Scaini, Giselli; Jeremias, Isabela C; Morais, Meline O S; Borges, Gabriela D; Munhoz, Bruna P; Leffa, Daniela D; Andrade, Vanessa M; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2012-06-01

    Maple syrup urine disease is an inborn error of metabolism caused by a severe deficiency of the branched chain alpha-ketoacid dehydrogenase complex. Neurological dysfunction is a common finding in patients with maple syrup urine disease. However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly understood. In this study, we investigated whether acute or chronic administration of a branched chain amino acid pool (leucine, isoleucine and valine) causes transient DNA damage, as determined by the alkaline comet assay, in the brain and blood of rats during development and whether antioxidant treatment prevented the alterations induced by branched chain amino acids. Our results showed that the acute administration of branched chain amino acids increased the DNA damage frequency and damage index in the hippocampus. However, the chronic administration of branched chain amino acids increased the DNA damage frequency and damage index in both the hippocampus and the striatum, and the antioxidant treatment was able to prevent DNA damage in the hippocampus and striatum. The present study demonstrated that metabolite accumulation in MSUD induces DNA damage in the hippocampus and striatum and that it may be implicated in the neuropathology observed in the affected patients. We demonstrated that the effect of antioxidant treatment (N-acetylcysteine plus deferoxamine) prevented DNA damage, suggesting the involvement of oxidative stress in DNA damage. PMID:22560665

  13. WDR76 Co-Localizes with Heterochromatin Related Proteins and Rapidly Responds to DNA Damage

    PubMed Central

    Gilmore, Joshua M.; Sardiu, Mihaela E.; Groppe, Brad D.; Thornton, Janet L.; Liu, Xingyu; Dayebgadoh, Gerald; Banks, Charles A.; Slaughter, Brian D.; Unruh, Jay R.; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.

    2016-01-01

    Proteins that respond to DNA damage play critical roles in normal and diseased states in human biology. Studies have suggested that the S. cerevisiae protein CMR1/YDL156w is associated with histones and is possibly associated with DNA repair and replication processes. Through a quantitative proteomic analysis of affinity purifications here we show that the human homologue of this protein, WDR76, shares multiple protein associations with the histones H2A, H2B, and H4. Furthermore, our quantitative proteomic analysis of WDR76 associated proteins demonstrated links to proteins in the DNA damage response like PARP1 and XRCC5 and heterochromatin related proteins like CBX1, CBX3, and CBX5. Co-immunoprecipitation studies validated these interactions. Next, quantitative imaging studies demonstrated that WDR76 was recruited to laser induced DNA damage immediately after induction, and we compared the recruitment of WDR76 to laser induced DNA damage to known DNA damage proteins like PARP1, XRCC5, and RPA1. In addition, WDR76 co-localizes to puncta with the heterochromatin proteins CBX1 and CBX5, which are also recruited to DNA damage but much less intensely than WDR76. This work demonstrates the chromatin and DNA damage protein associations of WDR76 and demonstrates the rapid response of WDR76 to laser induced DNA damage. PMID:27248496

  14. Detection of DNA damage in oocytes of small ovarian follicles following phosphoramide mustard exposures of cultured rodent ovaries in vitro

    SciTech Connect

    Petrillo, Stephanie K.; Desmeules, Patrice; Truong, To-Quyen; Devine, Patrick J.

    2011-06-01

    Healthy oocytes are critical for producing healthy children, but little is known about whether or not oocytes have the capacity to identify and recover from injury. Using a model ovotoxic alkylating drug, cyclophosphamide (CPA), and its active metabolite, phosphoramide mustard (PM), we previously showed that PM ({>=} 3 {mu}M) caused significant follicle loss in postnatal day 4 (PND4) mouse ovaries in vitro. We now investigate whether PM induces DNA damage in oocytes, examining histone H2AX phosphorylation ({gamma}H2AX), a marker of DNA double-strand breaks (DSBs). Exposure of cultured PND4 mouse ovaries to 3 and 0.1 {mu}M PM induced significant losses of primordial and small primary follicles, respectively. PM-induced {gamma}H2AX was observed predominantly in oocytes, in which foci of {gamma}H2AX staining increased in a concentration-dependent manner and peaked 18-24 h after exposure to 3-10 {mu}M PM. Numbers of oocytes with {>=} 5 {gamma}H2AX foci were significantly increased both 1 and 8 days after exposure to {>=} 1 {mu}M PM compared to controls. Inhibiting the kinases that phosphorylate H2AX significantly increased follicle loss relative to PM alone. In adult mice, CPA also induced follicle loss in vivo. PM also significantly decreased primordial follicle numbers ({>=} 30 {mu}M) and increased {gamma}H2AX foci ({>=} 3 {mu}M) in cultured PND4 Sprague-Dawley rat ovaries. Results suggest oocytes can detect PM-induced damage at or below concentrations which cause significant follicle loss, and there are quantitative species-specific differences in sensitivity. Surviving oocytes with DNA damage may represent an increased risk for fertility problems or unhealthy offspring.

  15. Detection of DNA damage in oocytes of small ovarian follicles following phosphoramide mustard exposures of cultured rodent ovaries in vitro.

    PubMed

    Petrillo, Stephanie K; Desmeules, Patrice; Truong, To-Quyen; Devine, Patrick J

    2011-06-01

    Healthy oocytes are critical for producing healthy children, but little is known about whether or not oocytes have the capacity to identify and recover from injury. Using a model ovotoxic alkylating drug, cyclophosphamide (CPA), and its active metabolite, phosphoramide mustard (PM), we previously showed that PM (≥3μM) caused significant follicle loss in postnatal day 4 (PND4) mouse ovaries in vitro. We now investigate whether PM induces DNA damage in oocytes, examining histone H2AX phosphorylation (γH2AX), a marker of DNA double-strand breaks (DSBs). Exposure of cultured PND4 mouse ovaries to 3 and 0.1μM PM induced significant losses of primordial and small primary follicles, respectively. PM-induced γH2AX was observed predominantly in oocytes, in which foci of γH2AX staining increased in a concentration-dependent manner and peaked 18-24h after exposure to 3-10μMPM. Numbers of oocytes with ≥5 γH2AX foci were significantly increased both 1 and 8days after exposure to ≥1μMPM compared to controls. Inhibiting the kinases that phosphorylate H2AX significantly increased follicle loss relative to PM alone. In adult mice, CPA also induced follicle loss in vivo. PM also significantly decreased primordial follicle numbers (≥30μM) and increased γH2AX foci (≥3μM) in cultured PND4 Sprague-Dawley rat ovaries. Results suggest oocytes can detect PM-induced damage at or below concentrations which cause significant follicle loss, and there are quantitative species-specific differences in sensitivity. Surviving oocytes with DNA damage may represent an increased risk for fertility problems or unhealthy offspring. PMID:21439308

  16. DNA damage induced by red food dyes orally administered to pregnant and male mice.

    PubMed

    Tsuda, S; Murakami, M; Matsusaka, N; Kano, K; Taniguchi, K; Sasaki, Y F

    2001-05-01

    We determined the genotoxicity of synthetic red tar dyes currently used as food color additives in many countries, including JAPAN: For the preliminary assessment, we treated groups of 4 pregnant mice (gestational day 11) once orally at the limit dose (2000 mg/kg) of amaranth (food red No. 2), allura red (food red No. 40), or acid red (food red No. 106), and we sampled brain, lung, liver, kidney, glandular stomach, colon, urinary bladder, and embryo 3, 6, and 24 h after treatment. We used the comet (alkaline single cell gel electrophoresis) assay to measure DNA damage. The assay was positive in the colon 3 h after the administration of amaranth and allura red and weakly positive in the lung 6 h after the administration of amaranth. Acid red did not induce DNA damage in any sample at any sampling time. None of the dyes damaged DNA in other organs or the embryo. We then tested male mice with amaranth, allura red, and a related color additive, new coccine (food red No. 18). The 3 dyes induced DNA damage in the colon starting at 10 mg/kg. Twenty ml/kg of soaking liquid from commercial red ginger pickles, which contained 6.5 mg/10 ml of new coccine, induced DNA damage in colon, glandular stomach, and bladder. The potencies were compared to those of other rodent carcinogens. The rodent hepatocarcinogen p-dimethylaminoazobenzene induced colon DNA damage at 1 mg/kg, whereas it damaged liver DNA only at 500 mg/kg. Although 1 mg/kg of N-nitrosodimethylamine induced DNA damage in liver and bladder, it did not induce colon DNA damage. N-nitrosodiethylamine at 14 mg/kg did not induce DNA damage in any organs examined. Because the 3 azo additives we examined induced colon DNA damage at a very low dose, more extensive assessment of azo additives is warranted.

  17. ATP-dependent chromatin remodeling in the DNA-damage response

    PubMed Central

    2012-01-01

    The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways. PMID:22289628

  18. The DNA Damage Response: Making it safe to play with knives

    PubMed Central

    Ciccia, Alberto; Elledge, Stephen J.

    2010-01-01

    Damage to our genetic material is an ongoing threat to both our ability to faithfully transmit genetic information to our offspring as well as our own survival. To respond to these threats, eukaryotes have evolved the DNA Damage Response (DDR). The DDR is a complex signal transduction pathway that has the ability to sense DNA damage and transduce this information to the cell to influence cellular responses to DNA damage. Cells possess an arsenal of enzymatic tools capable of remodeling and repairing DNA, however, their activities must be tightly regulated in a temporal, spatial and DNA lesion-appropriate fashion to optimize repair and prevent unnecessary and potentially deleterious alterations in the structure of DNA during normal cellular processes. This review will focus on how the DDR controls DNA repair and the phenotypic consequences of defects in these critical regulatory functions in mammals. PMID:20965415

  19. DNA-dependent protein kinase and checkpoint kinase 2 synergistically activate a latent population of p53 upon DNA damage.

    PubMed

    Jack, Melissa T; Woo, Richard A; Motoyama, Noboru; Takai, Hitoyuki; Lee, Patrick W K

    2004-04-01

    The role of the checkpoint kinase 2 (Chk2) as an upstream activator of p53 following DNA damage has been controversial. We have recently shown that Chk2 and the DNA-dependent protein kinase (DNA-PK) are both involved in DNA damage-induced apoptosis but not G(1) arrest in mouse embryo fibroblasts. Here we demonstrate that Chk2 is required to activate p53 in vitro as measured by its ability to bind its consensus DNA target sequence following DNA damage and is in fact the previously unidentified factor working synergistically with DNA-PK to activate p53. The gene mutated in ataxia telangiectasia is not involved in this p53 activation. Using wortmannin, serine 15 mutants of p53, DNA-PK null cells and Chk2 null cells, we demonstrate that DNA-PK and Chk2 act independently and sequentially on p53. Furthermore, the p53 target of these two kinases represents a latent (preexisting) population of p53. Taken together, the results from these studies are consistent with a model in which DNA damage causes an immediate and sequential modification of latent p53 by DNA-PK and Chk2, which under appropriate conditions can lead to apoptosis. PMID:14752107

  20. Homogenous repair of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA.

    PubMed Central

    Anson, R M; Croteau, D L; Stierum, R H; Filburn, C; Parsell, R; Bohr, V A

    1998-01-01

    Photoactivated methylene blue was used to damage purified DNA and the mitochondrial DNA (mtDNA) of human fibroblasts in culture. The primary product of this reaction is the DNA lesion 7-hydro-8-oxo-deoxyguanosine (8-oxo-dG). The DNA damage was quantitated using Escherichia coli formamidopyrimidine DNA glycosylase (Fpg) in a gene-specific damage and repair assay. Assay conditions were refined to give incision at all enzyme-sensitive sites with minimal non-specific cutting. Cultured fibroblasts were exposed to photoactivated methylene blue under conditions that would produce an average of three oxidative lesions per double-stranded mitochondrial genome. Within 9 h, 47% of this damage had been removed by the cells. This removal was due to repair rather than to replication, cell loss or degradation of damaged genomes. The rate of repair was measured in both DNA strands of the frequently transcribed ribosomal region of the mitochondrial genome and in both strands of the non-ribosomal region. Fpg-sensitive alkali-resistant oxidative base damage was efficiently removed from human mtDNA with no differences in the rate of repair between strands or between two different regions of the genome that differ substantially with regard to transcriptional activity. PMID:9421531

  1. Function of high-mobility group A proteins in the DNA damage signaling for the induction of apoptosis

    PubMed Central

    Fujikane, Ryosuke; Komori, Kayoko; Sekiguchi, Mutsuo; Hidaka, Masumi

    2016-01-01

    O6-Methylguanine produced in DNA can pair with thymine during DNA replication, thus leading to a G-to-A transition mutation. To prevent such outcomes, cells harboring O6-methylguanine-containing mispair undergo apoptosis that requires the function of mismatch repair (MMR) protein complex. To identify the genes involved in the induction of apoptosis, we performed gene-trap mutagenesis and isolated a clone of mouse cells exhibiting an increased resistance to the killing effect of an alkylating agent, N-methyl-N-nitrosourea (MNU). The mutant carries an insertion in the Hmga2 gene, which belongs to a gene family encoding the high-mobility group A non-histone chromatin proteins. To elucidate the function of HMGA proteins in the apoptosis pathway, we introduced siRNAs for HMGA1 and/or HMGA2 into human HeLa MR cells defective in O6-methylguanine-DNA methyltransferase. HMGA1- and HMGA2-single knockdown cells showed an increased resistance to MNU, and HMGA1/HMGA2-double knockdown cells exhibited further increased tolerance compared to the control. The phosphorylation of ATR and CHK1, the appearance of a sub-G1 population, and caspase-9 activation were suppressed in the knockdown cells, although the formation of mismatch recognition complex was unaffected. These results suggest that HMGA family proteins function at the step following the damage recognition in the process of apoptosis triggered by O6-methylguanine. PMID:27538817

  2. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals.

    PubMed

    Møller, Peter; Jensen, Ditte Marie; Christophersen, Daniel Vest; Kermanizadeh, Ali; Jacobsen, Nicklas Raun; Hemmingsen, Jette Gjerke; Danielsen, Pernille Høgh; Karottki, Dorina Gabriela; Roursgaard, Martin; Cao, Yi; Jantzen, Kim; Klingberg, Henrik; Hersoug, Lars-Georg; Loft, Steffen

    2015-03-01

    Increased levels of oxidatively damaged DNA have been documented in studies of metal, metal oxide, carbon-based and ceramic engineered nanomaterials (ENMs). In particular, 8-oxo-7,8-dihydroguanine-2'-deoxyguanosine (8-oxodG) is widely assessed as a DNA nucleobase oxidation product, measured by chromatographic assays, antibody-based methods or the comet assay with DNA repair enzymes. However, spurious oxidation of DNA has been a problem in certain studies applying chromatographic assays, yielding high baseline levels of 8-oxodG. Antibody-based assays detect high 8-oxodG baseline levels, related to cross-reactivity with other molecules in cells. This review provides an overview of efforts to reliably detect oxidatively damaged DNA and a critical assessment of the published studies on DNA damage levels. Animal studies with high baseline levels of oxidatively damaged DNA are more likely to show positive associations between exposure to ENMs and oxidized DNA in tissue than studies showing acceptable baseline levels (odds ratio = 12.1, 95% confidence interval: 1.2-124). Nevertheless, reliable studies indicate that intratracheal instillation of nanosized carbon black is associated with increased levels of oxidatively damaged DNA in lung tissue. Oral exposure to nanosized carbon black, TiO2 , carbon nanotubes and ZnO is associated with elevated levels of oxidatively damaged DNA in tissues. These observations are supported by cell culture studies showing concentration-dependent associations between ENM exposure and oxidatively damaged DNA measured by the comet assay. Cell culture studies show relatively high variation in the ability of ENMs to oxidatively damage DNA; hence, it is currently impossible to group ENMs according to their DNA damaging potential. PMID:25196723

  3. Identification of S-phase DNA damage-response targets in fission yeast reveals conservation of damage-response networks.

    PubMed

    Willis, Nicholas A; Zhou, Chunshui; Elia, Andrew E H; Murray, Johanne M; Carr, Antony M; Elledge, Stephen J; Rhind, Nicholas

    2016-06-28

    The cellular response to DNA damage during S-phase regulates a complicated network of processes, including cell-cycle progression, gene expression, DNA replication kinetics, and DNA repair. In fission yeast, this S-phase DNA damage response (DDR) is coordinated by two protein kinases: Rad3, the ortholog of mammalian ATR, and Cds1, the ortholog of mammalian Chk2. Although several critical downstream targets of Rad3 and Cds1 have been identified, most of their presumed targets are unknown, including the targets responsible for regulating replication kinetics and coordinating replication and repair. To characterize targets of the S-phase DDR, we identified proteins phosphorylated in response to methyl methanesulfonate (MMS)-induced S-phase DNA damage in wild-type, rad3∆, and cds1∆ cells by proteome-wide mass spectrometry. We found a broad range of S-phase-specific DDR targets involved in gene expression, stress response, regulation of mitosis and cytokinesis, and DNA replication and repair. These targets are highly enriched for proteins required for viability in response to MMS, indicating their biological significance. Furthermore, the regulation of these proteins is similar in fission and budding yeast, across 300 My of evolution, demonstrating a deep conservation of S-phase DDR targets and suggesting that these targets may be critical for maintaining genome stability in response to S-phase DNA damage across eukaryotes.

  4. DNA damage in lung after oral exposure to diesel exhaust particles in Big Blue rats.

    PubMed

    Müller, Anne K; Farombi, E Olatunde; Møller, Peter; Autrup, Herman N; Vogel, Ulla; Wallin, Håkan; Dragsted, Lars O; Loft, Steffen; Binderup, Mona-Lise

    2004-06-01

    Several chemical mutagens and carcinogens, including polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs, are adsorbed to the surface of diesel exhaust particles (DEP). DEP can induce formation of reactive oxygen species and cause oxidative DNA damage as well as bulky carcinogen DNA adducts. Lung tissue is a target organ for DEP induced cancer following inhalation. Recent studies have provided evidence that the lung is also a target organ for DNA damage and cancer after oral exposure to other complex mixtures of PAHs. The genotoxic effect of oral administration of DEP was investigated, in terms of markers of DNA damage, mutations and repair, in the lung of Big Blue rats fed a diet with 0, 0.2, 0.8, 2, 8, 20 or 80 mg DEP/kg feed for 21 days. There was no significant increase in the mutation frequency in the cII gene. However, an increase of DNA damage measured as DNA strand breaks (comet assay) and bulky DNA adducts (32P post labeling) was observed. The level of DNA strand breaks increased significantly at all dose levels while the level of DNA adducts increased significantly only at the intermediate dose levels. Similarly, the number of oxidized DNA bases measured as endonuclease III and fapyguanine glycosylase (FPG) sensitive sites increased at the intermediate dose levels. The induction of DNA damage by DEP exposure did not increase the expression of the repair genes OGG1 and ERCC1 at the mRNA level. The present study indicates that the lung is a target organ for primary DNA damage following oral exposure to DEP. DNA damage was induced following exposure to relatively low levels of DEP, but under the conditions used in the present experiment DNA damage did not result in an increased mutation rate. PMID:15135646

  5. DNA damage in leukocytes of workers occupationally exposed to arsenic in copper smelters.

    PubMed

    Palus, Jadwiga; Lewinska, Dobroslawa; Dziubaltowska, Elzbieta; Stepnik, Maciej; Beck, Jens; Rydzynski, Konrad; Nilsson, Robert

    2005-08-01

    Inorganic arsenic (i-As) is a known human carcinogen; however, humans continue to be exposed to i-As in drinking water and in certain occupational settings. In this study, we used the Comet assay to evaluate DNA damage in the somatic cells of workers from three Polish copper smelters who were occupationally exposed to i-As. Blood samples were collected from 72 male workers and 83 unexposed male controls and used for the detection of DNA damage, oxidative DNA damage, and DNA damage after a 3-hr incubation in culture. Urine samples were collected to assess the level of exposure. The mean concentration of arsenic metabolites in urine [the sum of arsenite (AsIII), arsenate (AsV), monomethylarsenate (MMA) and dimethylarsenate (DMA)] and the concentrations of DMA (the main metabolite in urine) were higher in workers than in controls, but the differences were not statistically significant. By contrast, the level of DNA damage, expressed as the median tail moment, was significantly higher in the leukocytes of workers than in the controls. Comet assays conducted with formamidopyrimidine glycosylase (FPG) digestion to detect oxidative DNA damage indicated that oxidative lesions were present in leukocytes from both the exposed and control groups, but the levels of damage were significantly higher among the workers. Incubation of the cells in culture resulted in a significant reduction in the levels of DNA damage, especially among leukocytes from the workers, suggesting that the DNA damage was subject to repair. Our findings indicate that copper smelter workers have increased levels of DNA damage in somatic cells, suggesting a potential health risk for the workers. Although i-As was present in air samples from the smelters and in urine samples from workers, no clear association could be made between i-As exposure and the DNA damage. PMID:15880732

  6. Chk2 Activation Dependence on Nbs1 after DNA Damage

    PubMed Central

    Buscemi, Giacomo; Savio, Camilla; Zannini, Laura; Miccichè, Francesca; Masnada, Debora; Nakanishi, Makoto; Tauchi, Hiroshi; Komatsu, Kenshi; Mizutani, Shuki; Khanna, KumKum; Chen, Phil; Concannon, Patrick; Chessa, Luciana; Delia, Domenico

    2001-01-01

    The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)-dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G1 arrest. Here we show that the ATM-dependent activation of Chk2 by γ- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells. Interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1. Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2. PMID:11438675

  7. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY RADIATION, CHEMICAL MUTAGENS AND ENZYMES

    EPA Science Inventory

    A simple and rapid assay to detect DNA damage is reported. This novel assay is based on changes in melting/annealing behavior and facilitated using certain dyes that increase their fluorescence upon association with double stranded (ds)DNA. Damage caused by ultraviolet (UV) ra...

  8. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE: INDUCED BY RADIATION, CHEMICALS AND ENZYMES

    EPA Science Inventory

    A simple and rapid assay to detect DNA damage is reported. This assay is based on the ability of certain dyes to fluoresce upon intercalation with dsDNA. Damage caused by ultraviolet (UV) radiation, chemicals or restriction enzymes is detected using this assay. UV radiation at...

  9. Aging and DNA damage in humans: a meta-analysis study

    PubMed Central

    Soares, Jorge Pinto; Cortinhas, António; Bento, Teresa; Leitão, José Carlos; Collins, Andrew R.; Gaivã, Isabel; Mota, Maria Paula

    2014-01-01

    Age-related DNA damage is regarded as one of the possible explanations of aging. Although a generalized idea about the accumulation of DNA damage with age exists, results found in the literature are inconsistent. To better understand the question of age-related DNA damage in humans and to identify possible moderator variables, a meta-analysis was conducted. Electronic databases and bibliographies for studies published since 2004 were searched. Summary odds ratios (ORs) and 95% confidence intervals (CIs) for age-related DNA damage were calculated in a random-effects model. A total of 76 correlations from 36 studies with 4676 participants were included. Based on our analysis, a correlation between age and DNA damage was found (r = 0.230, p = 0.000; 95% confidence interval = 0.111 - 0.342). The test for heterogeneity of variance indicates that the study´s results are significantly high (Q (75) = 1754.831, p = 0.000). Moderator variables such as smoking habits, technique used, and the tissue/sample analyzed, are shown to influence age-related DNA damage (p=0.026; p=0.000; p=0.000, respectively). Nevertheless, sex did not show any influence on this relation (p=0.114). In conclusion, this meta-analysis showed an association between age and DNA damage in humans. It was also found that smoking habits, the technique used, and tissue/sample analyzed, are important moderator variables in age-related DNA damage. PMID:25140379

  10. p53 activates G₁ checkpoint following DNA damage by doxorubicin during transient mitotic arrest.

    PubMed

    Hyun, Sun-Yi; Jang, Young-Joo

    2015-03-10

    Recovery from DNA damage is critical for cell survival. The serious damage is not able to be repaired during checkpoint and finally induces cell death to prevent abnormal cell growth. In this study, we demonstrated that 8N-DNA contents are accumulated via re-replication during prolonged recovery period containing serious DNA damage in mitotic cells. During the incubation for recovery, a mitotic delay and initiation of an abnormal interphase without cytokinesis were detected. Whereas a failure of cytokinesis occurred in cells with no relation with p53/p21, re-replication is an anomalous phenomenon in the mitotic DNA damage response in p53/p21 negative cells. Cells with wild-type p53 are accumulated just prior to the initiation of DNA replication through a G₁ checkpoint after mitotic DNA damage, even though p53 does not interrupt pre-RC assembly. Finally, these cells undergo cell death by apoptosis. These data suggest that p53 activates G₁ checkpoint in response to mitotic DNA damage. Without p53, cells with mitotic DNA damage undergo re-replication leading to accumulation of damage.