Science.gov

Sample records for alkyne-azide click reaction

  1. A Study on the Kinetics of a Disorder-to-Order Transition Induced by Alkyne/Azide Click Reaction

    SciTech Connect

    X Wei; L Li; J Kalish; W Chen; T Russell

    2011-12-31

    The kinetics of binary blends of poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) diblock copolymer and Rhodamine B azide was investigated during a disorder-to-order transition induced by alkyne/azide click reaction. The change in the domain spacing and conversion of reactants as a function of annealing time were investigated by in situ small-angle X-ray scattering (SAXS) and infrared spectroscopy (IR), suggesting several kinetic processes with different time scales during thermal annealing. While a higher conversion can be realized by extending the annealing time, the microphase-separated morphology is independent of the annealing conditions, as long as both the reagents and final products have enough mobility.

  2. Assessment of the Full Compatibility of Copper(I)-Catalyzed Alkyne-Azide Cycloaddition and Oxime Click Reactions for bis-Labelling of Oligonucleotides

    PubMed Central

    Estalayo-Adriàn, Sandra; Lartia, Rémy; Meyer, Albert; Vasseur, Jean-Jacques; Morvan, François; Defrancq, Eric

    2015-01-01

    The conjugation of oligonucleotides with reporters is of great interest for improving their intrinsic properties or endowing new ones. In this context, we report herein a new procedure for the bis-labelling of oligonucleotides through oxime ligation (Click-O) and copper(I)-catalyzed alkyne–azide cycloaddition (Click-H). 5′-Azido and 3′-aldehyde precursors were incorporated into oligonucleotides, and subsequent coupling reactions through Click-O and Click-H (or vice versa) were successfully achieved. In particular, we exhaustively investigated the full compatibility of each required step for both tethering strategies. The results demonstrate that click Huisgen and click oxime reactions are fully compatible. However, whilst both approaches can deliver the targeted doubly conjugated oligonucleotide, the route involving click oxime ligation prior to click Huisgen is significantly more successful. Thus the reactions investigated here can be considered to be key elements of the chemical toolbox for the synthesis of highly sophisticated bioconjugates. PMID:25969815

  3. Disorder-to-order transitions induced by alkyne/azide click chemistry in diblock copolymer thin films.

    SciTech Connect

    Wei, X.; Gu, W.; Chen, W.; Shen, X.; Liu, F.; Strzalka, J. W.; Jiang, Z.; Russell, T. P.

    2012-01-01

    We investigated thin film morphologies of binary blends of alkyne-functionalized diblock copolymer poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) and Rhodamine B azide, where the thermal alkyne/azide click reaction between the two components induced a disorder-to-order transition (DOT) of the copolymer. By controlling the composition of the neat copolymers and the mole ratio between the alkyne and azide groups, different microphase separated morphologies were achieved. At higher azide loading ratios, a perpendicular orientation of the microdomains was observed with wide accessible film thickness window. As less azide was incorporated, the microdomains have a stronger tendency to be parallel to the substrate, and the film thickness window for perpendicular orientation also became narrower.

  4. Labeling live cells by copper-catalyzed alkyne--azide click chemistry.

    PubMed

    Hong, Vu; Steinmetz, Nicole F; Manchester, Marianne; Finn, M G

    2010-10-20

    The copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, optimized for biological molecules in aqueous buffers, has been shown to rapidly label mammalian cells in culture with no loss in cell viability. Metabolic uptake and display of the azide derivative of N-acetylmannosamine developed by Bertozzi, followed by CuAAC ligation using sodium ascorbate and the ligand tris(hydroxypropyltriazolyl)methylamine (THPTA), gave rise to abundant covalent attachment of dye-alkyne reactants. THPTA serves both to accelerate the CuAAC reaction and to protect the cells from damage by oxidative agents produced by the Cu-catalyzed reduction of oxygen by ascorbate, which is required to maintain the metal in the active +1 oxidation state. This procedure extends the application of this fastest of azide-based bioorthogonal reactions to the exterior of living cells.

  5. Characterization of non-specific protein adsorption induced by triazole groups on the chromatography media using Cu (I)-catalyzed alkyne-azide cycloaddition reaction for ligand immobilization.

    PubMed

    Gao, Ming; Ren, Jun; Tian, Kaikai; Jia, Lingyun

    2016-12-09

    As an efficient and facile reaction, click chemistry has been growingly used in the preparation of chromatography media for immobilizing varying types of ligands. For the widely used Cu (I)-catalyzed alkyne-azide click reaction, a 1, 2, 3-triazole group will be inevitably introduced in the molecular linkage, which could give rise to unexpected non-specific adsorption especially for the media employing small compound ligands or high ligand density. Triazole-induced non-specific protein adsorption on sepharose resins was evaluated systematically in this work, by considering the effects of triazole content, length of spacer arm, and solution conditions. We found that triazole content of a resin played the key role. Protein adsorption became significant when the media was coupled with triazole at a medium density (about 60μmol/mL gel), and the binding amount further increased with triazole density. The resin with triazole content of about 100μmol/mL gel could adsorb human IgG, bovine serum albumin and lysozyme at the amount of 13.6, 30.0, and 5.1mg/mL respectively. Proteins tended to be adsorbed at higher amount as the pH of solution approached their isoelectric points, and increasing salt concentration could reduce triazole-induced adsorption but only within limited extent. This study can facilitate reasonable application of click chemistry in the synthesis of chromatography media, by providing some basic principles for optimizing structural properties of separation media and choosing suitable solution conditions.

  6. A highly active and magnetically recoverable tris(triazolyl)-Cu(I) catalyst for alkyne-azide cycloaddition reactions.

    PubMed

    Wang, Dong; Etienne, Laetitia; Echeverria, María; Moya, Sergio; Astruc, Didier

    2014-04-01

    Nanoparticle-supported tris(triazolyl)-CuBr, with a diameter of approximately 25 nm measured by TEM spectroscopy, has been easily prepared, and its catalytic activity was evaluated in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. In initial experiments, 0.5 mol % loading successfully promoted the CuAAC reaction between benzyl azide and phenylacetylene, in water at room temperature (25 °C). During this process, the iron oxide nanoparticle-supported tris(triazolyl)-CuBr displayed good monodispersity, excellent recoverability, and outstanding reusability. Indeed, it was simply collected and separated from the reaction medium by using an external magnet, then used for another five catalytic cycles without significant loss of catalytic activity. Inductively coupled plasma (ICP) analysis for the first cycle revealed that the amount of copper leached from the catalyst into the reaction medium is negligible (1.5 ppm). The substrate scope has been examined, and it was found that the procedure can be successfully extended to various organic azides and alkynes and can also be applied to the one-pot synthesis of triazoles, through a cascade reaction involving benzyl bromides, alkynes, and sodium azide. In addition, the catalyst was shown to be an efficient CuAAC catalyst for the synthesis of allyl- and TEG-ended (TEG=triethylene glycol) 27-branch dendrimers.

  7. A novel DNA-templated click chemistry strategy for fluorescent detection of copper(II) ions.

    PubMed

    Shen, Qinpeng; Tang, Shiyun; Li, Wenhua; Nie, Zhou; Liu, Zhuoliang; Huang, Yan; Yao, Shouzhuo

    2012-01-07

    A novel fluorescent strategy has been developed for sensitive turn-on detection of Cu(2+) based on high efficiency of DNA-templated organic synthesis, great specificity of alkyne-azide click reaction to the catalysis of copper ions and the sequential strand displacement for signal transduction.

  8. Chemoselective Immobilization of Proteins by Microcontact Printing and Bioorthogonal Click Reactions

    PubMed Central

    Tolstyka, Zachary P.; Richardson, Wade; Bat, Erhan; Stevens, Caitlin J.; Parra, Dayanara P.; Dozier, Jonathan K.; Distefano, Mark D.; Dunn, Bruce; Maynard, Heather D.

    2014-01-01

    Herein, a combination of microcontact printing of functionalized alkanethiols and site-specific modification of proteins is utilized to chemoselectively immobilize proteins onto gold surfaces either by oxime or copper catalyzed alkyne-azide click chemistry. Two molecules capable of click reactions, an aminooxy-functionalized alkanethiol and an azide-functionalized alkanethiol, were synthesized, and self-assembled monolayer (SAM) formation on gold was confirmed by IR spectroscopy. The alkanethiols were then individually patterned onto gold surfaces by microcontact printing. Site-specifically modified proteins, horse heart myoglobin (HHMb) containing an N-terminal α-oxoamide and a red-fluorescent protein (mCherry-CVIA) with a C-terminal alkyne, respectively were immobilized by incubation onto the stamped functionalized alkanethiol patterns. Pattern formation was confirmed by fluorescence microscopy. PMID:24166802

  9. Cu-free 1,3-dipolar cycloaddition click reactions to form isoxazole linkers in chelating ligands for fac-[M(I)(CO)3]+ centers (M = Re, 99mTc).

    PubMed

    Bottorff, Shalina C; Kasten, Benjamin B; Stojakovic, Jelena; Moore, Adam L; MacGillivray, Leonard R; Benny, Paul D

    2014-02-17

    Isoxazole ring formation was examined as a potential Cu-free alternative click reaction to Cu(I)-catalyzed alkyne/azide cycloaddition. The isoxazole reaction was explored at macroscopic and radiotracer concentrations with the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core for use as a noncoordinating linker strategy between covalently linked molecules. Two click assembly methods (click, then chelate and chelate, then click) were examined to determine the feasibility of isoxazole ring formation with either alkyne-functionalized tridentate chelates or their respective fac-[M(I)(CO)3](+) complexes with a model nitrile oxide generator. Macroscale experiments, alkyne-functionalized chelates, or Re complexes indicate facile formation of the isoxazole ring. (99m)Tc experiments demonstrate efficient radiolabeling with click, then chelate; however, the chelate, then click approach led to faster product formation, but lower yields compared to the Re analogues.

  10. A versatile method for the preparation of conjugates of peptides with DNA/PNA/analog by employing chemo-selective click reaction in water

    PubMed Central

    Gogoi, Khirud; Mane, Meenakshi V.; Kunte, Sunita S.; Kumar, Vaijayanti A.

    2007-01-01

    The specific 1,3 dipolar Hüisgen cycloaddition reaction known as ‘click-reaction’ between azide and alkyne groups is employed for the synthesis of peptide–oligonucleotide conjugates. The peptide nucleic acids (PNA)/DNA and peptides may be appended either by azide or alkyne groups. The cycloaddition reaction between the azide and alkyne appended substrates allows the synthesis of the desired conjugates in high purity and yields irrespective of the sequence and functional groups on either of the two substrates. The versatile approach could also be employed to generate the conjugates of peptides with thioacetamido nucleic acid (TANA) analog. The click reaction is catalyzed by Cu (I) in either water or in organic medium. In water, ∼3-fold excess of the peptide-alkyne/azide drives the reaction to completion in 2 h with no side products. PMID:17981837

  11. Moderating strain without sacrificing reactivity: design of fast and tunable noncatalyzed alkyne-azide cycloadditions via stereoelectronically controlled transition state stabilization.

    PubMed

    Gold, Brian; Dudley, Gregory B; Alabugin, Igor V

    2013-01-30

    Recently, we have identified two strategies for selective transition state (TS) stabilization in catalyst-free azide/alkyne cycloadditions. In particular, the transition states for the formation of both 1,4- and 1,5-isomers can be stabilized via hyperconjugative assistance for the C···N bond formation, whereas the 1,5-TS can be stabilized via C-H···X H-bonding interactions. When the hyperconjugative assistance is maximized by the antiperiplanar arrangement of propargylic σ-acceptors relative to the forming bonds, the combination of these TS-stabilizing effects was predicted to lead to ~1 million fold acceleration of the cycloaddition with methyl azide. The present work investigated whether hyperconjugative assistance and H-bonding can be combined with strain activation for the design of even more reactive alkynes and whether reactivity can be turned "on demand." When stereoelectronic amplification is achieved by optimal positioning of σ-acceptors at the endocyclic bonds antiperiplanar to the breaking alkyne π-bonds, the stabilization of the bent alkyne geometry leads to a significant decrease in strain in cyclic alkynes without compromising their reactivity in alkyne-azide cycloadditions. The approach can be used in a modular fashion where the TS stabilizing effects are introduced sequentially until the desired level of reactivity is achieved. A significant increase in reactivity upon the protonation of an endocyclic NH-group suggests a new strategy for the design of click reactions triggered by a pH-change or introduction of an external Lewis acid.

  12. Post-Synthesis Modification of the Aurivillius Phase Bi2SrTa2O9 via In Situ Microwave-Assisted "Click Reaction".

    PubMed

    Wang, Yanhui; Delahaye, Emilie; Leuvrey, Cédric; Leroux, Fabrice; Rabu, Pierre; Rogez, Guillaume

    2016-10-03

    A new strategy for the functionalization of layered perovskites is presented, based on the in situ post-synthesis modification of a prefunctionalized phase by copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC). The microwave-assisted protonation and grafting of an alkyne alcohol provides the alkyne-functionalized precursor within a few hours, starting from Bi2SrTa2O9. The subsequent microwave-assisted in situ "click reaction" allows the post-synthesis modification of the precursor within ∼2 h, providing a layered perovskite functionalized by an alcohol-grafted 1,4-disubstituted-1H-1,2,3-triazole. Two compounds are described here, bearing an aliphatic and an aromatic substituent, which illustrates the general application of the method. This work opens new perspectives for the functionalization of layered perovskites, going beyond mere insertion/grafting reactions, and thus broadens the design possibilities and the range of applications of these hybrid systems.

  13. Triple click reaction strategy for macromolecular diversity.

    PubMed

    Tunca, Umit

    2013-01-11

    This Feature Article focuses on the rapidly emerging concept of the "triple click reactions" towards the design and synthesis of macromolecules with well-defined topology and chemical composition, and also precise molecular weight and narrow molecular weight distribution. The term "triple click reaction" used in this feature article is based on the utilization of three chemically and mechanistically different click reactions for polymer-polymer conjugation and post-modification of the polymers. Three sequential click reactions of which two are identical should not be considered to be triple click reactions. The triple click reaction strategy for polymer conjugation and post-modification of polymers is classified in this article based on the resultant architectures: linear and non-linear structures.

  14. Synthesis and characterization of cyclic polystyrene using copper-catalyzed alkyne-azide cycloaddition coupling - evaluation of physical properties and optimization of cyclization conditions

    NASA Astrophysics Data System (ADS)

    Elupula, Ravinder

    . Whereas, anionically prepared A-PS had much higher reliance on the molecular weight changes for its glass transition temperature. However, in thin films, c-PS films have, within error, no confinement effect. In contrast, A-PS has seen large T g reduction with confinement. Ellipsometry analysis suggests that this invariance of the Tg-confinement effect in c-PS is a result of the weak perturbation to Tg near the free surface (i.e. the polymer-air interface). These weak perturbations are the result of the high packing efficiency of cyclic PS segments. The copper-catalyzed alkyne/azide cycloaddition (CuAAC) click reaction has been used to cyclize many linear polymers with complementary azide and alkyne end groups via unimolecular heterodifunctional approach. Cyclic polymers exhibit unique and potentially useful physical properties compared to their linear analogs, hence increasing interest in techniques for preparing this class of polymers. However, a general route for producing high purity cyclic polymers remained elusive. Prior to the discovery of "click" chemistry, it was difficult to produce highly pure cyclic polymers via the ring-closure approach, requiring extensive post-cyclization purification. However, even minor amounts of linear impurities can influence the physical properties of cyclic polymers. Thermal gradient interaction chromatography (TGIC) coupled with Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-ToF MS) allows the fractionation of cyclic polymer samples and produce valuable data for determining both the quantity and identity of linear impurities. This understanding further enables us to optimize cyclization conditions towards the goal of and efficient, general methodology for producing highly pure cyclic polymers. To solve the ever-growing energy needs of the world and capture the renewable energy that is generated sporadically, we need to create devices that can store high amounts of energy and discharge power at

  15. Cooperative capture synthesis: yet another playground for copper-free click chemistry.

    PubMed

    Hou, Xisen; Ke, Chenfeng; Fraser Stoddart, J

    2016-07-21

    Click chemistry describes a family of modular, efficient, versatile and reliable reactions which have acquired a pivotal role as one of the most useful synthetic tools with a potentially broad range of applications. While copper(i)-catalysed alkyne-azide cycloaddition is the most widely adopted click reaction in the family, the fact that it is cytotoxic restricts its practice in certain situations, e.g., bioconjugation. Consequently, researchers have been exploring the development of copper-free click reactions, the most popular example so far being strain-promoted alkyne-azide cycloadditions. An early example of copper-free click reactions that is rarely mentioned in the literature is the cucurbit[6]uril (CB6) catalysed alkyne-azide cycloaddition (CB-AAC). Despite the unique ability of CB-AAC to generate mechanically interlocked molecules (MIMs) - in particular, rotaxanes - its slow reaction rate and narrow substrate acceptance limit its scope. In this Tutorial Review, we describe our efforts of late in developing the fundamental principles and practical applications of a new copper-free click reaction - namely, cooperative capture synthesis, whereby introducing a cyclodextrin (CD) as an accelerator in CB-AAC, hydrogen bonding networks are formed between the rims of CD and CB6 in a manner that is positively cooperative, giving rise to a high level of pre-organisation during efficient and quick rotaxane formation. For example, [4]rotaxanes can be prepared nearly quantitatively within a minute in water. Furthermore, we have demonstrated that CB-AAC can accommodate a wider substrate tolerance by introducing pillararenes as promoters. To date, we have put cooperative capture synthesis into practice by (i) preparing polyrotaxanes containing up to 200 rings in nearly quantitative yields, (ii) trapping conformational isomers of polymacrocycles as rings in rotaxanes, (iii) demonstrating solid-state fluorescence and Förster resonance energy transfer (FRET) processes by

  16. Covalent attachment of diphosphine ligands to glassy carbon electrodes via Cu-catalyzed alkyne-azide cycloaddition. Metallation with Ni(II).

    PubMed

    Das, Atanu K; Engelhard, Mark H; Lense, Sheri; Roberts, John A S; Bullock, R Morris

    2015-07-21

    Covalent tethering of P(Ph)2N(C6H4C≡CH)2 ligands (P(Ph)2N(C6H4C≡CH)2 = 1,5-di-(4-ethynylphenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) to planar, azide-terminated glassy carbon electrode surfaces has been accomplished using a Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) coupling reaction, using a BH3←P protection-deprotection strategy. Deprotected, surface-confined ligands were metallated using [Ni(II)(MeCN)6](BF4)2. X-ray photoelectron spectroscopic measurements demonstrate that metallation introduced 1.3 equivalents Ni(II) per diphosphine onto the electrode surface. Exposure of the surface to a second diphosphine ligand, P(Ph)2N(Ph)2, resulted in the removal of Ni from the surface. Protection, coupling, deprotection, and metallation conditions were optimized using solution-phase model systems, with benzyl azide as a model for the azide-terminated carbon surface; these reactions generate a [Ni(II)(diphosphine)2](2+) complex.

  17. Linking Metal Ions via Inorganic Click (iClick) Reactions

    SciTech Connect

    Veige, Adam

    2015-11-17

    This final report discusses the major objectives of the project, a discussion of the objectives achieved, a discussion of the objectives that failed, and finally, a discussion of future directions given the new knowledge obtained. This one-year seed project (with one year no-cost extension) contained three objectives: A) Expand the scope of iClick synthesis beyond AuI/AuI reactions. B) Elucidate a CuI-catalyzed iClick reaction. C) Synthesize and characterize tri- and tetra-metallic complexes as models for metallopolymers. Objectives A and C were achieved, whereas only parts of objective B were achieved.

  18. Magnetite nanoparticles coated with alkyne-containing polyacrylates for click chemistry

    NASA Astrophysics Data System (ADS)

    Socaci, Crina; Rybka, Miriam; Magerusan, Lidia; Nan, Alexandrina; Turcu, Rodica; Liebscher, Jürgen

    2013-06-01

    New magnetic core shell nanoparticles were synthesized consisting of magnetite cores and poly-( O-propargyl acrylate) shells. Strong fixing of the shells was achieved by primary anchoring phosphates or α-dihydroxydiphosphonates containing acrylate or methacrylate functionalities. The magnetic nanoparticles are attractive as supports for a variety of function which can be easily introduced by Cu-catalyzed alkyne azide cycloaddition (CuAAC, a click reaction). In this way, also the loading of the magnetic nanoparticles with propargyl units was determined by reaction with 4-azidoacetophenone and analysis of the supernatant. In order to demonstrate the attractiveness of the magnetic nanoparticles a novel azido-containing conjugate with biotin as recognition function and dansyl as fluorescence marker was introduced by CuAAC reaction. All NP show superparamagnetic behavior with high-saturation magnetization values and were further characterized by FTIR, photoelectron spectroscopy and TEM.

  19. Preparation of bifunctional mesoporous silica nanoparticles by orthogonal click reactions and their application in cooperative catalysis.

    PubMed

    Dickschat, Arne T; Behrends, Frederik; Bühner, Martin; Ren, Jinjun; Weiss, Mark; Eckert, Hellmut; Studer, Armido

    2012-12-21

    The synthesis of bifunctional mesoporous silica nanoparticles is described. Two chemically orthogonal functionalities are incorporated into mesoporous silica by co-condensation of tetraethoxysilane with two orthogonally functionalized triethoxyalkylsilanes. Post-functionalization is achieved by orthogonal surface chemistry. A thiol-ene reaction, Cu-catalyzed 1,3-dipolar alkyne/azide cycloaddition, and a radical nitroxide exchange reaction are used as orthogonal processes to install two functionalities at the surface that differ in reactivity. Preparation of mesoporous silica nanoparticles bearing acidic and basic sites by this approach is discussed. Particles are analyzed by solid state NMR spectroscopy, elemental analysis, infrared-spectroscopy, and scanning electron microscopy. As a first application, these particles are successfully used as cooperative catalysts in the Henry reaction.

  20. Preparing polymeric biomaterials using "click" chemistry techniques

    NASA Astrophysics Data System (ADS)

    Lin, Fei

    Significant efforts have been focused on preparing degradable polymeric biomaterials with controllable properties, which have the potential to stimulate specific cellular responses at the molecular level. Click reactions provide a universal tool box to achieve that goal through molecular level design and modification. This dissertation demonstrates multiple methodologies and techniques to develop advanced biomaterials through combining degradable polymers and click chemistry. In my initial work, a novel class of amino acid-based poly(ester urea)s (PEU) materials was designed and prepared for potential applications in bone defect treatment. PEUs were synthesized via interfacial polycondensation, and showed degradability in vivo and possessed mechanical strength superior to conventionally used polyesters. Further mechanical enhancement was achieved after covalent crosslinking with a short peptide crosslinker derived from osteogenic growth peptide (OGP). The in vitro and in an in vivo subcutaneous rat model demonstrated that the OGP-based crosslinkers promoted proliferative activity of cells and accelerated degradation properties of PEUs. As a continuous study, extra efforts were focused on the development of PEUs with functional pendant groups, including alkyne, azide, alkene, tyrosine phenol, and ketone groups. PEUs with Mw exceeding to 100K Da were obtained via interfacial polycondensation, and the concentration of pendent groups was varied using a copolymerization strategy. Electrospinning was used to fabricate PEU nanofiber matrices with mechanical strengths suitable for tissue engineering. A series of biomolecules were conjugated to nanofiber surface following electrospinning using click reactions in aqueous media. The ability to derivatize PEUs with biological motifs using high efficient chemical reactions will significantly expand their use in vitro and in vivo. Based on similar principles, a series of mono- and multifunctionalized polycaprolactone (PCL

  1. ADIBO-based "click" chemistry for diagnostic peptide micro-array fabrication: physicochemical and assay characteristics.

    PubMed

    Prim, Denis; Rebeaud, Fabien; Cosandey, Vincent; Marti, Roger; Passeraub, Philippe; Pfeifer, Marc E

    2013-08-16

    Several azide-derivatized and fluorescently-labeled peptides were immobilized on azadibenzocyclooctyne (ADIBO)-activated slide surfaces via a strain-promoted alkyne-azide cycloaddition (SPAAC) reaction revealing excellent immobilization kinetics, good spot homogeneities and reproducible fluorescence signal intensities. A myc-peptide micro-array immunoassay showed an antibody limit-of-detection (LOD) superior to a microtiter plate-based ELISA. Bovine serum albumin (BSA) and dextran covalently attached via "click" chemistry more efficiently reduced non-specific binding (NSB) of fluorescently-labeled IgG to the microarray surface in comparison to immobilized hexanoic acid and various types of polyethylene glycol (PEG) derivatives. Confirmation of these findings via further studies with other proteins and serum components could open up new possibilities for human sample and microarray platform-based molecular diagnostic tests.

  2. Properties of Poly(ethylene glycol) Hydrogels Cross-Linked via Strain-Promoted Alkyne-Azide Cycloaddition (SPAAC).

    PubMed

    Hodgson, Sabrina M; Bakaic, Emilia; Stewart, S Alison; Hoare, Todd; Adronov, Alex

    2016-03-14

    A series of poly(ethylene glycol) (PEG) hydrogels was synthesized using strain-promoted alkyne-azide cycloaddition (SPAAC) between PEG chains terminated with either aza-dibenzocyclooctynes or azide functionalities. The gelation process was found to occur rapidly upon mixing the two components in aqueous solution without the need for external stimuli or catalysts, making the system a candidate for use as an injectable hydrogel. The mechanical and rheological properties of these hydrogels were found to be tunable by varying the polymer molecular weight and the number of cross-linking groups per chain. The gelation times of these hydrogels ranged from 10 to 60 s at room temperature. The mass-based swelling ratios varied from 45 to 76 at maximum swelling (relative to the dry state), while the weight percent of polymer in these hydrogels ranged from 1.31 to 2.05%, demonstrating the variations in amount of polymer required to maintain the structural integrity of the gel. Each hydrogel degraded at a different rate in PBS at pH = 7.4, with degradation times ranging from 1 to 35 days. By changing the composition of the two starting components, it was found that the Young's modulus of each hydrogel could be varied from 1 to 18 kPa. Hydrogel incubation with bovine serum albumin showed minimal protein adsorption. Finally, a cell cytotoxicity study of the precursor polymers with 3T3 fibroblasts demonstrated that the azide- and strained alkyne-functionalized PEGs are noncytotoxic.

  3. Cyclization of a cell-penetrating peptide via click-chemistry increases proteolytic resistance and improves drug delivery.

    PubMed

    Reichart, Florian; Horn, Mareike; Neundorf, Ines

    2016-06-01

    In this work we report synthesis and biological evaluation of a cell-penetrating peptide (CPP), that is partly cyclized via a triazole bridge. Recently, beneficious properties have been reported for cyclized peptides concerning their metabolic stability and intracellular uptake. A CPP based on human calcitonin was used in this study, and side chain cyclization was achieved via copper catalyzed alkyne-azide click reaction. Cell viability studies in several cell-lines revealed no cytotoxic effects. Furthermore, efficient uptake in breast cancer MCF-7 cells could be determined. Moreover, preliminary studies using this novel peptide as drug transporter for daunorubicin were performed. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  4. Nanoparticles under the light: click functionalization by photochemical thiol-yne reaction, towards double click functionalization.

    PubMed

    Demay-Drouhard, Paul; Nehlig, Emilie; Hardouin, Julie; Motte, Laurence; Guénin, Erwann

    2013-06-24

    A light click away: The first application of the thiol-yne reaction to nanoparticle functionalization is described (see figure). This metal-free click chemistry approach is compatible with the addition of various molecules at the surface and can be combined with CuAAC methodology to perform chemoselective double functionalization.

  5. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering.

    PubMed

    Wang, Xiaoyu; Li, Zihan; Shi, Ting; Zhao, Peng; An, Kangkang; Lin, Chao; Liu, Hongwei

    2017-04-01

    Injectable dextran-based hydrogels were prepared for the first time by bioorthogonal click chemistry for cartilage tissue engineering. Click-crosslinked injectable hydrogels based on cyto-compatible dextran (Mw=10kDa) were successfully fabricated under physiological conditions by metal-free alkyne-azide cycloaddition (click) reaction between azadibenzocyclooctyne-modified dextran (Dex-ADIBO) and azide-modified dextran (Dex-N3). Gelation time of these dextran hydrogels could be regulated in the range of approximately 1.1 to 10.2min, depending on the polymer concentrations (5% or 10%) and ADIBO substitution degree (DS, 5 or 10) of Dex-ADIBO. Rheological analysis indicated that the dextran hydrogels were elastic and had storage moduli from 2.1 to 6.0kPa with increasing DS of ADIBO from 5 to 10. The in vitro tests revealed that the dextran hydrogel crosslinked from Dex-ADIBO DS 10 and Dex-N3 DS 10 at a polymer concentration of 10% could support high viability of individual rabbit chondrocytes and the chondrocyte spheroids encapsulated in the hydrogel over 21days. Individual chondrocytes and chondrocyte spheroids in the hydrogel could produce cartilage matrices such as collagen and glycosaminoglycans. However, the chondrocyte spheroids produced a higher content of matrices than individual chondrocytes. This study indicates that metal-free click chemistry is effective to produce injectable dextran hydrogels for cartilage tissue engineering.

  6. Fluorescent detection of copper(II) based on DNA-templated click chemistry and graphene oxide.

    PubMed

    Zhou, Lifen; Shen, Qinpeng; Zhao, Peng; Xiang, Bingbing; Nie, Zhou; Huang, Yan; Yao, Shouzhuo

    2013-12-15

    A novel DNA-templated click chemistry strategy for homogenous fluorescent detection of Cu(2+) has been developed based on click ligation-dependent DNA structure switch and the selective quenching ability of graphene oxide (GO) nanosheet. The clickable duplex probe consists of two DNA strands with alkyne and azide group, respectively, and Cu(+)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction can chemically ligate these two strands. Toehold sequence displacement was consequently exploited to achieve DNA structure transformation bearing fluorescent tag FAM. Cu(2+)-induced chemical ligation caused the probe transfer to hybrid structure with single stranded DNA (ssDNA) tail, while only duplex structure was obtained without Cu(2+). This structural difference can be probed by GO-based fluorescence detection due to the preferential binding of GO to ssDNA. Under the optimum conditions, this sensor can sensitively and specifically detect Cu(2+) with a low detection limit of 58 nM and a linear range of 0.1-10 μM. This new strategy is highly sensitive and selective for Cu(2+) detection because of the great specificity of click chemistry and super-quenching ability of GO. Moreover, with the aid of high efficient DNA templated synthesis, the detection process requires only about half an hour which is much quicker than previous click-chemistry-based Cu(2+) sensors.

  7. Click Reaction: An Applicable Radiolabeling Method for Molecular Imaging.

    PubMed

    Choi, Ji Young; Lee, Byung Chul

    2015-12-01

    In recent years, the click reaction has found rapidly growing applications in the field of radiochemistry, ranging from a practical labeling method to molecular imaging of biomacromolecules. This present review details the development of highly reliable, powerful and selective click chemistry reactions for the rapid synthesis of new radiotracers for molecular imaging.

  8. Label-free electrochemical monitoring of protein addressing through electroactivated "click" chemistry on gold electrodes.

    PubMed

    Meini, Nadir; Ripert, Micaël; Chaix, Carole; Farre, Carole; De Crozals, Gabriel; Kherrat, Rochdi; Jaffrezic-Renault, Nicole

    2014-05-01

    In this work, using electrochemical impedance spectroscopy (EIS), we have, for the first time, label-free monitored protein immobilization on a gold surface through a strategy of electroaddressing, compatible with the production of microarrays for multi-detection. This functionalization is achieved via the alkyne/azide cycloaddition, better known as the "click" reaction. The electroaddressing was applied to a polythiol hexynyl derivative previously grafted onto the gold surface. This compound consists of two dithiol phosphate groups and a hexynyl function and was synthesized through a supported synthesis approach, from a dithiol reagent, phosphoramidite (DTPA), and a hexynyl phosphoramidite. Next, an azide-PEG3-biotin derivative was grafted onto the modified gold surface by electro-chronocoulometry. The "click" reaction was controlled by electrochemical impedance spectroscopy, showing the change in impedance only when the electroaddressing was performed at -300 mV. No effect on the EIS signal was observed when a positive potential was applied, confirming the specificity of the electroactivation. Biotin-modified electrodes were used to fix streptavidin and the immobilization was monitored using EIS. Fluorescent streptavidin-functionalized silica nanoparticles were also specifically grafted onto the biotinylated gold surface in order to confirm the "click" reaction using fluorescence microscopy. The obtained streptavidin platform was used to detect the surface coverage by biotinylated human serum albumin (HSA). The lowest detectable concentration is 10 pg/mL, and surface saturation is obtained with concentrations higher than 100 ng/mL.

  9. Application of a Double Aza-Michael Reaction in a 'Click, Click, Cy-Click' Strategy: From Bench to Flow.

    PubMed

    Zang, Qin; Javed, Salim; Ullah, Farman; Zhou, Aihua; Knudtson, Christopher A; Bi, Danse; Basha, Fatima Z; Organ, Michael G; Hanson, Paul R

    2011-09-01

    The development of a 'click, click, cy-click' process utilizing a double aza-Michael reaction to generate functionalized 1,2,5-thiadiazepane 1,1-dioxides is reported. Optimization in flow, followed by scale out of the inter-/intramolecular double aza-Michael addition has also been realized using a microwave-assisted, continuous flow organic synthesis platform (MACOS). In addition, a facile one-pot, sequential strategy employing in situ Huisgen cycloaddition post-double aza-Michael has been accomplished, and is applicable to library synthesis.

  10. Improving bioorthogonal protein ubiquitylation by click reaction.

    PubMed

    Schneider, Daniel; Schneider, Tatjana; Rösner, Daniel; Scheffner, Martin; Marx, Andreas

    2013-06-15

    Posttranslational modification of proteins with ubiquitin (ubiquitylation) regulates numerous cellular processes. Besides functioning as a signal for proteasomal degradation, ubiquitylation has also non-proteolytic functions by altering the biochemical properties of the modified protein. To investigate the effect(s) of ubiquitylation on the properties of a protein, sufficient amounts of homogenously and well-defined ubiquitylated proteins are required. Here, we report on the elaboration of a method for the generation of high amounts of site-specifically mono-ubiquitylated proteins. Firstly, a one-step affinity purification scheme was developed for ubiquitin containing the unnatural amino acid azidohomoalanine at the C-terminal position. This ubiquitin was conjugated in a click reaction to recombinant DNA polymerase β, equipped with an alkyne function at a distinct position. Secondly, addition of defined amounts of SDS to the reaction significantly improved product formation. With these two technical improvements, we have developed a straight forward procedure for the efficient generation of site-specifically ubiquitylated proteins that can be used to study the effect(s) of ubiquitylation on the activities/properties of a protein.

  11. F-18 Labeled RGD Probes Based on Bioorthogonal Strain-Promoted Click Reaction for PET Imaging.

    PubMed

    Kim, Hye Lan; Sachin, Kalme; Jeong, Hyeon Jin; Choi, Wonsil; Lee, Hyun Soo; Kim, Dong Wook

    2015-04-09

    A series of fluorine-substituted monomeric and dimeric cRGD peptide derivatives, such as cRGD-ADIBOT-F (ADIBOT = azadibenzocyclooctatriazole), di-cRGD-ADIBOT-F, cRGD-PEG5-ADIBOT-F, and di-cRGD-PEG5-ADIBOT-F, were prepared by strain-promoted alkyne azide cycloaddition (SPAAC) reaction of the corresponding aza-dibenzocyclooctyne (ADIBO) substituted peptides with a fluorinated azide 3. Among these cRGD derivatives, di-cRGD-PEG5-ADIBOT-F had the highest binding affinity in a competitive binding assay compared to other derivatives and even the original cRGDyk. On the basis of the in vitro study results, di-cRGD-PEG5-ADIBOT-(18)F was prepared from a SPAAC reaction with (18)F-labeled azide and subsequent chemo-orthogonal scavenger-assisted separation without high performance liquid chromatography (HPLC) purification in 92% decay-corrected radiochemical yield (dcRCY) with high specific activity for further in vivo positron emission tomography (PET) imaging study. In vivo PET imaging study and biodistribution data showed that this radiotracer allowed successful visualization of tumors with good tumor-to-background contrast and significantly higher tumor uptake compared to other major organs.

  12. A biocompatible, highly efficient click reaction and its applications.

    PubMed

    Yuan, Yue; Liang, Gaolin

    2014-02-14

    Herein, we review the development, optimization, applications and potential prospects of a novel click reaction based on the condensation reaction between 2-cyanobenzothiazole (CBT) and D-cysteine (D-Cys) in fireflies. This click condensation reaction has obvious advantages in biocompatibility, efficiency and stability in aqueous environments. Optimization of this click reaction has been carried out so that it can be controlled by pH change, reduction, or enzymatic cleavage to synthesize large molecules and self-assembled nanostructures, or enhance probe signals. Consequently, this CBT-based click reaction has been and could be successfully applied to a wide range of biomedical applications such as molecular imaging (e.g., optical imaging, nuclear imaging and magnetic resonance imaging), biomolecular detection, drug delivery and other potentialities.

  13. Strain-promoted "click" chemistry for terminal labeling of DNA.

    PubMed

    Marks, Isaac S; Kang, Jun Sung; Jones, Brady T; Landmark, Kevin J; Cleland, Andrew J; Taton, T Andrew

    2011-07-20

    1,3-Dipolar [3 + 2] cycloaddition between azides and alkynes--an archetypal "click" chemistry--has been used increasingly for the functionalization of nucleic acids. Copper(I)-catalyzed 1,3-dipolar cycloaddition reactions between alkyne-tagged DNA molecules and azides work well, but they require optimization of multiple reagents, and Cu ions are known to mediate DNA cleavage. For many applications, it would be preferable to eliminate the Cu(I) catalyst from these reactions. Here, we describe the solid-phase synthesis and characterization of 5'-dibenzocyclooctyne (DIBO)-modified oligonucleotides, using a new DIBO phosphoramidite, which react with azides via copper-free, strain-promoted alkyne-azide cycloaddition (SPAAC). We found that the DIBO group not only survived the standard acidic and oxidative reactions of solid-phase oligonucleotide synthesis (SPOS), but that it also survived the thermal cycling and standard conditions of the polymerase chain reaction (PCR). As a result, PCR with DIBO-modified primers yielded "clickable" amplicons that could be tagged with azide-modified fluorophores or immobilized on azide-modified surfaces. Given its simplicity, SPAAC on DNA could streamline the bioconjugate chemistry of nucleic acids in a number of modern biotechnologies.

  14. Monocatenary, branched, double-headed, and bolaform surface active carbohydrate esters via photochemical thiol-ene/-yne reactions.

    PubMed

    Boyère, Cédric; Broze, Guy; Blecker, Christophe; Jérôme, Christine; Debuigne, Antoine

    2013-10-18

    An original and versatile method for the synthesis of a range of novel mannose-based surfactants was developed via metal-free photo-induced thiol-ene/-yne 'click' reactions. This light-mediated hydrothiolation reaction involving a thiolated mannose was successfully applied to terminal and internal alkenes, dienes, and alkynes, leading to monocatenary, branched, double-headed, and bolaform amphiphilic carbohydrate esters, respectively. A surface activity study showed that these new compounds possess valuable properties and display specific behavior at the air-water interface. It also demonstrated the greater flexibility of the thioether moiety in the spacer of the surfactants produced via a thiol-ene reaction in comparison with the triazole heterocyclic rings in similar glucose-based surfactants synthesized elsewhere by the alkyne-azide 1,3-dipolar addition.

  15. Site-Specific Antibody Labeling by Covalent Photoconjugation of Z Domains Functionalized for Alkyne-Azide Cycloaddition Reactions.

    PubMed

    Perols, Anna; Arcos Famme, Melina; Eriksson Karlström, Amelie

    2015-11-01

    Antibodies are extensively used in research, diagnostics, and therapy, and for many applications the antibodies need to be labeled. Labeling is typically performed by using amine-reactive probes that target surface-exposed lysine residues, resulting in heterogeneously labeled antibodies. An alternative labeling strategy is based on the immunoglobulin G (IgG)-binding protein domain Z, which binds to the Fc region of IgG. Introducing the photoactivable amino acid benzoylphenylalanine (BPA) into the Z domain makes it possible for a covalent bond to be be formed between the Z domain and the antibody on UV irradiation, to produce a site-specifically labeled product. Z32 BPA was synthesized by solid-phase peptide synthesis and further functionalized to give alkyne-Z32 BPA and azide-Z32 BPA for Cu(I) -catalyzed cycloaddition, as well as DBCO-Z32 BPA for Cu-free strain-promoted cycloaddition. The Z32 BPA variants were conjugated to the human IgG1 antibody trastuzumab and site-specifically labeled with biotin or fluorescein. The fluorescently labeled trastuzumab showed specific staining of the membranes of HER2-expressing cells in immunofluorescence microscopy.

  16. "Click" on Alkynylated Carbon Quantum Dots: An Efficient Surface Functionalization for Specific Biosensing and Bioimaging.

    PubMed

    Gao, Ming Xuan; Yang, Lin; Zheng, Yi; Yang, Xiao Xi; Zou, Hong Yan; Han, Jing; Liu, Ze Xi; Li, Yuan Fang; Huang, Cheng Zhi

    2017-02-10

    Surface functionalization is an essential pre requisite for wide and specific applications of nanoparticles such as photoluminescent (PL) carbon quantum dots (CQDs), but it remains a major challenge. In this report, alkynylated CQDs, prepared from carboxyl-rich CQDs through amidation with propargylamine in the presence of 1,1'-carbonyldiimidazole, were modified efficiently with azido molecular beacon DNA through a copper(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC). As a proof-of-concept, the DNA-modified CQDs are then bonded with gold nanoparticles (AuNPs, 5 nm) through a gold-sulfur bond. Owing to the emission enhancement, this complex can then be applied to the recognition of a single-base- mismatched target. The same functionalizing strategy applied to click the alkynylated CQDs with a nuclear localization sequence (NLS) peptide showed that the NLS-modified CQDs could target the nuclei specifically. These results indicate that surface functionalization of CQDs through a nonstoichiometric copper chalcogenide nanocrystal- (nsCuCNC-) catalyzed click reaction is efficient, and has significant potential in the fields of biosensing and bioimaging.

  17. Functionalization of Mechanochemically Passivated Germanium Nanoparticles via "Click" Chemistry

    NASA Astrophysics Data System (ADS)

    Purkait, Tapas Kumar

    . Copper(I) catalyzed "click" chemistry also can be explored with azido-terminated Ge NPs which were synthesized by azidation of chloro-terminated Ge NPs. Water soluble PEGylated Ge NPs were synthesized by "click" reaction for biological application. PEGylated Ge NP clusters were prepared using alpha, o-bis alkyno or bis-azido polyethylene glycol (PEG) derivatives by copper catalyzed "click" reaction via inter-particle linking. These nanoparticles were further functionalized by azido beta-cyclodextrin (beta-CD) and azido adamantane via alkyne-azide "click" reactions. Nanoparticle clusters were made from the functionalized Ge NPs by "host-guest" chemistry of beta-CD functionalized Ge NPs either with adamantane functionalized Ge NPs or fullerene, C60.

  18. Qualitative sensing of mechanical damage by a fluorogenic "click" reaction.

    PubMed

    Döhler, Diana; Rana, Sravendra; Rupp, Harald; Bergmann, Henrik; Behzadi, Shahed; Crespy, Daniel; Binder, Wolfgang H

    2016-09-25

    A simple and unique damage-sensing tool mediated by a Cu(i)-catalyzed [3+2] cycloaddition reaction is reported, where a fluorogenic "click"-reaction highlights physical damage by a strong fluorescence increase accompanied by in situ monitoring of localized self-healing.

  19. Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters.

    PubMed

    Ciampi, Simone; Böcking, Till; Kilian, Kristopher A; Harper, Jason B; Gooding, J Justin

    2008-06-03

    In this paper we report the use of the optical properties of porous silicon photonic crystals, combined with the chemical versatility of acetylene-terminated SAMs, to demonstrate the applicability of "click" chemistry to mesoporous materials. Cu(I)-catalyzed alkyne-azide cycloaddition reactions were employed to modify the internal pore surfaces through a two-step hydrosilylation/cycloaddition procedure. A positive outcome of this catalytic process, here performed in a spatially confined environment, was only observed in the presence of a ligand-stabilized Cu(I) species. Detailed characterization using Fourier transform infrared spectroscopy and optical reflectivity measurements demonstrated that the surface acetylenes had reacted in moderate to high yield to afford surfaces exposing chemical functionalities of interest. The porous silicon photonic crystals modified by the two-step strategy, and exposing oligoether moieties, displayed improved resistance toward the nonspecific adsorption of proteins as determined with fluorescently labeled bovine serum albumin. These results demonstrate that "click" immobilization offers a versatile, experimentally simple, and modular approach to produce functionalized porous silicon surfaces for applications as diverse as porous silicon-based sensing devices and implantable biomaterials.

  20. Effective click construction of bridged- and spiro-multicyclic polymer topologies with tailored cyclic prepolymers (kyklo-telechelics).

    PubMed

    Sugai, Naoto; Heguri, Hiroyuki; Ohta, Kengo; Meng, Qingyuan; Yamamoto, Takuya; Tezuka, Yasuyuki

    2010-10-27

    An alkyne-azide addition, i.e., click, reaction in conjunction with an electrostatic self-assembly and covalent fixation (ESA-CF) process has been demonstrated to effectively construct a variety of unprecedented multicyclic polymer topologies. A series of single cyclic poly(tetrahydrofuran), poly(THF), precursors having an alkyne group (Ia), an azide group (Ib), two alkyne groups at the opposite positions (Ic), and an alkyne group and an azide group at the opposite positions (Id) have been prepared by the ESA-CF process. Moreover, a bicyclic 8-shaped precursor having two alkyne groups at the opposite positions (Ie) was synthesized. The subsequent click reaction of Ia with linear (IIa) and three-armed star (IIb) telechelic precursors having azide groups has been performed to construct bridged-type two-way (IIIa) and three-way (IIIb) paddle-shaped polymer topologies, respectively. Likewise, spiro-type tandem tricyclic (IVa) and tetracyclic (IVb) topologies resulted from Ib/Ic and Ib/Ie, respectively. Furthermore, three types of multicyclic topologies that are composed of repeating ring (Va), alternating ring/linear (Vb), and alternating ring/star (Vc) units have been synthesized from Id, Ic/IIa, and Ic/IIb, respectively.

  1. Synthesis of Phenyl-Adducted Cyclodextrin through the Click Reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new derivative of ß-cyclodextrin (CD) has been made incorporating the phenyl group through the use of click reaction. The resulting product exhibits a self-association phenomenon through the formation of inclusion compound between the phenyl group and CD. The product has been characterized by 1H...

  2. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry.

    PubMed

    Tiwari, Vinod K; Mishra, Bhuwan B; Mishra, Kunj B; Mishra, Nidhi; Singh, Anoop S; Chen, Xi

    2016-03-09

    Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), popularly known as the "click reaction", serves as the most potent and highly dependable tool for facile construction of simple to complex architectures at the molecular level. Click-knitted threads of two exclusively different molecular entities have created some really interesting structures for more than 15 years with a broad spectrum of applicability, including in the fascinating fields of synthetic chemistry, medicinal science, biochemistry, pharmacology, material science, and catalysis. The unique properties of the carbohydrate moiety and the advantages of highly chemo- and regioselective click chemistry, such as mild reaction conditions, efficient performance with a wide range of solvents, and compatibility with different functionalities, together produce miraculous neoglycoconjugates and neoglycopolymers with various synthetic, biological, and pharmaceutical applications. In this review we highlight the successful advancement of Cu(I)-catalyzed click chemistry in glycoscience and its applications as well as future scope in different streams of applied sciences.

  3. Photolithographic strategy for patterning preformed, chemically modified, porous silicon photonic crystal using click chemistry.

    PubMed

    Zhu, Ying; Gupta, Bakul; Guan, Bin; Ciampi, Simone; Reece, Peter J; Gooding, J Justin

    2013-07-24

    Porous silicon (PSi) is an ideal platform for label-free biosensing, and the development of porous silicon patterning will open a pathway to the development of highly parallel PSi biochips for detecting multiple analytes. The optical response of PSi photonic crystal is determined by the changes in the effective bulk refractive index resulting from reactions/events occurring within the internal pore space. Therefore, introducing precise chemical functionalities in the pores of PSi is essential to ensure device selectivity. Here we describe the fabrication of PSi patterns that possess discrete chemical functionalities that are restricted to precise locations. The key difference to previous patterning protocols for PSi is that the entire porous material is first modified with a self-assembled monolayer of a α,ω-diyne adsorbate prior to patterning using a microfabricated titanium mask. The distal alkyne moieties in the monolayer are then amenable to further selective modification by the archetypal "click" reaction, the copper catalyzed alkyne-azide cycloaddition (CuAAC), using the titanium mask as a resist. This type of patterning is suitable for further immobilization of biological recognition elements, and presents a new platform for highly parallel PSi biosensor for multiple detections.

  4. Interfacial strain-promoted alkyne-azide cycloaddition (I-SPAAC) for the synthesis of nanomaterial hybrids.

    PubMed

    Gobbo, Pierangelo; Novoa, Samantha; Biesinger, Mark C; Workentin, Mark S

    2013-05-11

    An interfacial strain promoted azide-alkyne cycloaddition (I-SPACC) is introduced as a method to prepare robust nanomaterial hybrids. This is demonstrated with a reaction between a novel dibenzocyclooctyne-modified single walled carbon nanotubes (DBCO-SWCNT) and a versatile water-soluble azide modified gold nanoparticle (N3-EG4-AuNP).

  5. Alkyne-Azide Cycloaddition Catalyzed by Silver Chloride and “Abnormal” Silver N-Heterocyclic Carbene Complex

    PubMed Central

    Ortega-Arizmendi, Aldo I.; Aldeco-Pérez, Eugenia; Cuevas-Yañez, Erick

    2013-01-01

    A library of 1,2,3-triazoles was synthesized from diverse alkynes and azides using catalytic amounts of silver chloride instead of copper compounds. In addition, a novel “abnormal” silver N-heterocyclic carbene complex was tested as catalyst in this process. The results suggest that the reaction requires only 0.5% of silver complex, affording 1,2,3-triazoles in good yields. PMID:24307866

  6. Horseradish-Peroxidase-Catalyzed Tyrosine Click Reaction.

    PubMed

    Sato, Shinichi; Nakamura, Kosuke; Nakamura, Hiroyuki

    2017-03-02

    The efficiency of protein chemical modification on tyrosine residues with N-methylluminol derivatives was drastically improved by using horseradish peroxidase (HRP). In the previous method, based on the use of hemin and H2 O2 , oxidative side reactions such as cysteine oxidation were problematic for functionalization of proteins selectively on tyrosine residues. Oxidative activation of N-methylluminol derivatives with a minimum amount of H2 O2 prevented the occurrence of oxidative side reactions under HRP-catalyzed conditions. As probes for HRP-catalyzed protein modification, N-methylluminol derivatives showed much higher efficiency than tyramide without inducing oligomerization of probe molecules. Tyrosine modification also proceeded in the presence of β-nicotinamide adenine dinucleotide (NADH, H2 O2 -free conditions).

  7. Superstructures of fluorescent cyclodextrin via click-reaction.

    PubMed

    Maciollek, Arkadius; Ritter, Helmut; Beckert, Rainer

    2013-01-01

    Mono-(6-azido-6-deoxy)-β-cyclodextrin (CD) was covalently attached to an alkyne-modified 5-methyl-2-(pyridin-2-yl)thiazol-4-ol yielding a fluorophore containing CD in a click-type reaction. Intermolecular complexes were formed by poly(host-guest)-interactions. The supramolecular structures were characterized by (1)H NMR-ROESY spectroscopy, dynamic light scattering, UV-vis spectroscopy, fluorescence spectroscopy, and asymmetric flow field-flow fractionation. By adding potassium adamantane-1-carboxylate, the thiazol dye is displaced from the CD-cavity and the elongated noncovalent polymeric structures collapse.

  8. Labeling proteins on live mammalian cells using click chemistry.

    PubMed

    Nikić, Ivana; Kang, Jun Hee; Girona, Gemma Estrada; Aramburu, Iker Valle; Lemke, Edward A

    2015-05-01

    We describe a protocol for the rapid labeling of cell-surface proteins in living mammalian cells using click chemistry. The labeling method is based on strain-promoted alkyne-azide cycloaddition (SPAAC) and strain-promoted inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions, in which noncanonical amino acids (ncAAs) bearing ring-strained alkynes or alkenes react, respectively, with dyes containing azide or tetrazine groups. To introduce ncAAs site specifically into a protein of interest (POI), we use genetic code expansion technology. The protocol can be described as comprising two steps. In the first step, an Amber stop codon is introduced--by site-directed mutagenesis--at the desired site on the gene encoding the POI. This plasmid is then transfected into mammalian cells, along with another plasmid that encodes an aminoacyl-tRNA synthetase/tRNA (RS/tRNA) pair that is orthogonal to the host's translational machinery. In the presence of the ncAA, the orthogonal RS/tRNA pair specifically suppresses the Amber codon by incorporating the ncAA into the polypeptide chain of the POI. In the second step, the expressed POI is labeled with a suitably reactive dye derivative that is directly supplied to the growth medium. We provide a detailed protocol for using commercially available ncAAs and dyes for labeling the insulin receptor, and we discuss the optimal surface-labeling conditions and the limitations of labeling living mammalian cells. The protocol involves an initial cloning step that can take 4-7 d, followed by the described transfections and labeling reaction steps, which can take 3-4 d.

  9. Synthesis of temperature-responsive anion exchanger via click reaction.

    PubMed

    Murakami, Kenji; Yu, Xue; Kato, Takahiro; Inoue, Yukihiko; Sugawara, Katsuyasu

    2012-06-15

    The temperature-responsive anion exchanger was synthesized by immobilizing the poly(N-isopropylacrylamide) (PNIPAM), a kind of the temperature-responsive polymer, on the external surface of mesoporous silica via click reaction. The structure of this synthesized composite was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), elemental analysis, and nitrogen adsorption experiment. The amount of PNIPAM immobilized on the external surface of mesoporous silica, which was calculated from the weight loss measured by thermogravimetry, increased from 5.3 wt.% to 12.9 wt.% (dry) depending on the amount of PNIPAM added in the click reaction. The adsorption-desorption behavior of methyl orange (MO) ions in this synthesized anion exchanger was affected by the temperature of aqueous solution: the MO ions were adsorbed and desorbed reversibly and repeatedly with changing the pH of the solution at 25 °C, while the amount of adsorbed MO ions remained nearly constant at about 0.05 mmol/g independent of the pH of the solution at 40 °C. Also, the amount of PNIPAM immobilized on the mesoporous silica influenced the adsorption rate of MO ions, suggesting that the adsorption rate in this composite is controlled by the diffusion of MO ions through the PNIPAM layer.

  10. ParaCEST MRI contrast agents capable of derivatization via"click" chemistry.

    PubMed

    Milne, Mark; Chicas, Kirby; Li, Alex; Bartha, Robert; Hudson, Robert H E

    2012-01-14

    A comprehensive series of lanthanide chelates has been prepared with a tetrapropargyl DOTAM type ligand. The complexes have been characterized by a combination of (1)H NMR, single-crystal X-ray crystallography, CEST and relaxation studies and have also been evaluated for potential use as paramagnetic chemical exchange saturation transfer (ParaCEST) contrast agents in magnetic resonance imaging (MRI). We demonstrate the functionalization of several chelates by means of alkyne-azide "click" chemistry in which a glucosyl azide is used to produce a tetra-substituted carbohydrate-decorated lanthanide complex. The carbohydrate periphery of the chelates has a potent influence on the CEST properties as described herein.

  11. Anionic surfactants enhance click reaction-mediated protein conjugation with ubiquitin.

    PubMed

    Schneider, Daniel; Schneider, Tatjana; Aschenbrenner, Joos; Mortensen, Franziska; Scheffner, Martin; Marx, Andreas

    2016-03-01

    The Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) has become increasingly important in the conjugation chemistry of biomolecules. For example, it is an efficient and convenient method to generate defined ubiquitin-protein conjugates. Here, we investigate the effect of surfactants on the efficiency of CuAAC for chemical protein ubiquitylation. We found that anionic surfactants enhance conjugate formation by up to 10-fold resulting in high yields even at low (i.e., micromolar) concentrations of the reactants. Notably, the herein investigated conjugates are functional and thus properly folded.

  12. Intracellular click reaction with a fluorescent chemical Ca2+ indicator to prolong its cytosolic retention.

    PubMed

    Takei, Yoshiaki; Murata, Atsushi; Yamagishi, Kento; Arai, Satoshi; Nakamura, Hideki; Inoue, Takafumi; Takeoka, Shinji

    2013-08-25

    The powerful strategy of "intracellular click reaction" was used to retain a chemical Ca(2+) indicator in the cytosol. Specifically, a novel clickable Ca(2+) indicator "N3-fura-2 AM" was coupled with dibenzylcyclooctyl-modified biomacromolecules via copper-free click reaction in living cells and Ca(2+) oscillation was observed for an extended period of time.

  13. A Template-Mediated Click-Click Reaction: PNA-DNA, PNA-PNA (or Peptide) Ligation, and Single Nucleotide Discrimination.

    PubMed

    Peng, Xiaohua; Li, Hong; Seidman, Michael

    2010-08-01

    A highly efficient chemical ligation was developed for quantitative conjugation of PNA with DNA (PNA or peptide) using the copper-catalyzed azide-alkyne cycloaddition reaction. While PNAs with an alkyne at the C-terminus and an azide at the N-terminus have been used, an efficient click-click reaction occurs. The PNA click ligation is sequence-specific and capable of single nucleotide discrimination.

  14. Intra-molecular G-quadruplex structure generated by DNA-templated click chemistry: "turn-on" fluorescent probe for copper ions.

    PubMed

    Shen, Qinpeng; Zhou, Lifen; Yuan, Yijia; Huang, Yan; Xiang, Binbin; Chen, Chunyan; Nie, Zhou; Yao, Shouzhuo

    2014-05-15

    A novel homogenous fluorescent sensor for signal-on detection of Cu(2+) has been developed based on intra-molecular G-quadruplex formed by DNA-templated click reaction and crystal violet (CV) as label-free signal reporter. The clickable DNA probe consists of two G-rich strands (A and B) bearing azide and alkyne group, respectively, and a template strand (C) locating two proximate reactants by pairing with A and B. The sequences of A and B are derived from asymmetric split of the G-quadruplex sequence (TTAGGG)4. In the presence of Cu(2+), the whole G-quadruplex sequence A-B is generated by chemical ligation of A and B via copper ion-catalyzed alkyne-azide cycloaddition, then released from template by toehold strand displacement, and consequently forming a stable intra-molecular G-quadruplex, which binds with CV to generate a strong fluorescent signal. Oppositely, weak fluorescence was obtained without Cu(2+) because of unstable intermolecular G-quadruplex formed by A and B and lack of lateral loop connection. Therefore, the Cu(2+) can be sensitively and specifically detected by the fluorescence of the CV-stained G-quadruplex with a low detection limit of 65nM and a linear range of 0.1-3µM. This method rationally integrated the DNA-templated synthesis and G-quadruplex structure-switch, presenting a simple and promising approach for biosensor development.

  15. [Reactions of caudate nucleus neurons to presentation of acoustic clicks to cats in a chronic experiment].

    PubMed

    Litvinova, A N; Lukhanina, E P

    1980-01-01

    Background and evoked activities of the caudate nucleus neurons to repetitive auditory clicks were recorded extracellularly in chronic experiments with partial restrained cats. Four types of background neuronal activity were distinguished. 44% of recorded units altered their background activity during auditory click applications. Five types of neuronal responses were found: phasic activation, phasic inhibition, tonic activation, tonic inhibition, mixed tonic reactions. Tonic activation was predominant. The phasic responses persisted under prolonged presentation of clicks. Partial or total attenuation of tonic responses during frequent repetition of clicks occurred in 33% of responding units. The question is discussed on the convergence of specific and unspecific influences on the caudate nucleus neurons.

  16. Transient protection of strained alkynes from click reaction via complexation with copper.

    PubMed

    Yoshida, Suguru; Hatakeyama, Yasutomo; Johmoto, Kohei; Uekusa, Hidehiro; Hosoya, Takamitsu

    2014-10-01

    A transient protection method of cyclooctynes from a click reaction with an azide through 1:1 complexation with a cationic copper(I) salt is reported. The application of the method to a cyclooctyne bearing a terminal alkyne enabled the selective copper-catalyzed click conjugation with an azide at the terminal alkyne moiety, which made cyclooctyne derivatives readily accessible.

  17. Copper(I)-Catalyzed Interrupted Click Reaction: Synthesis of Diverse 5-Hetero-Functionalized Triazoles.

    PubMed

    Wang, Weiguo; Peng, Xianglong; Wei, Fang; Tung, Chen-Ho; Xu, Zhenghu

    2016-01-11

    The 5-heterofunctionalized triazoles are important scaffolds in bioactive compounds, but current click reactions (CuAAC) cannot produce these core structures. A copper(I)-catalyzed interrupted click reaction to access diverse 5-functionalized triazoles is reported. Various 5-amino-, thio-, and selenotriazoles were readily assembled in one step in high yields. The reaction proceeds under mild conditions with complete regioselectivity. It also features a broad substrate scope and good functional group compatibility.

  18. Oligonucleotide labelling using a fluorogenic "click" reaction with a hemicarboxonium salt.

    PubMed

    Maether, Marie-Pierre; Lapin, Kristie; Muntean, Andreea; Payrastre, Corinne; Escudier, Jean-Marc

    2013-10-17

    Two fluorescent streptocyanine labelled oligonucleotides have been synthesized by a simple "click" reaction between a non-fluorescent hemicarboxonium salt and aminoalkyl functionalized thymidines within the oligonucleotide and their spectrophotometric properties have been studied.

  19. "Click" reaction in conjunction with diazeniumdiolate chemistry: developing high-load nitric oxide donors.

    PubMed

    Oladeinde, Oyebola A; Hong, Sam Y; Holland, Ryan J; Maciag, Anna E; Keefer, Larry K; Saavedra, Joseph E; Nandurdikar, Rahul S

    2010-10-01

    The use of Cu(I)-catalyzed "click" reactions of alkyne-substituted diazeniumdiolate prodrugs with bis- and tetrakis-azido compounds is described. The "click" reaction for the bis-azide using CuSO(4)/Na-ascorbate predominantly gave the expected bis-triazole. However, CuI/diisopropylethylamine predominantly gave uncommon triazolo-triazole products as a result of oxidative coupling. Neither set of "click" conditions showed evidence of compromising the integrity of the diazeniumdiolate groups. The chemistry developed has applications in the synthesis of polyvalent and dendritic nitric oxide donors.

  20. Multifaceted and route-controlled "click" reactions based on vapor-deposited coatings.

    PubMed

    Sun, Ting-Pi; Tai, Ching-Heng; Wu, Jyun-Ting; Wu, Chih-Yu; Liang, Wei-Chieh; Chen, Hsien-Yeh

    2016-02-01

    "Click" reactions provide precise and reliable chemical transformations for the preparation of functional architectures for biomaterials and biointerfaces. The emergence of a multiple-click reaction strategy has paved the way for a multifunctional microenvironment with orthogonality and precise multitasking that mimics nature. We demonstrate a multifaceted and route-controlled click interface using vapor-deposited functionalized poly-para-xylylenes. Distinctly clickable moieties of ethynyl and maleimide were introduced into poly-para-xylylenes in one step via a chemical vapor deposition (CVD) copolymerization process. The advanced interface coating allows for a double-click route with concurrent copper(i)-catalyzed Huisgen 1,3-dipolar cycloaddition (CuAAC) and the thiol-maleimide click reaction. Additionally, double-click reactions can also be performed in a cascade manner by controlling the initiation route to enable the CuAAC and/or thiol-yne reaction using a mono-functional alkyne-functionalized poly-para-xylylene. The use of multifaceted coatings to create straightforward and orthogonal interface properties with respect to protein adsorption and cell attachment is demonstrated and characterized.

  1. Organocatalytic azomethine imine-olefin click reaction: high-yielding stereoselective synthesis of spiroindane-1,3-dione-pyrazolidinones.

    PubMed

    Ramachary, Dhevalapally B; Prabhakar Reddy, T; Suresh Kumar, A

    2016-07-06

    In search of developing new useful "click reactions", herein we report the organocatalytic azomethine imine-olefin [3 + 2]-cycloaddition as a new click reaction for the synthesis of drug-like spiroindane-1,3-dione-pyrazolidinones from indane-1,3-diones, aldehydes and N,N-cyclic azomethine imines through amino acid-catalysis. The scope of this new click reaction is demonstrated using many examples with high reactivity, selectivity and yields.

  2. Current approaches for RNA labeling in vitro and in cells based on click reactions.

    PubMed

    Schulz, Daniela; Rentmeister, Andrea

    2014-11-03

    Over recent years, click reactions have become recognized as valuable and flexible tools to label biomacromolecules such as proteins, nucleic acids, and glycans. Some of the developed strategies can be performed not only in aqueous solution but also in the presence of cellular components, as well as on (or even in) living cells. These labeling strategies require the initial, specific modification of the target molecule with a small, reactive moiety. In the second step, a click reaction is used to covalently couple a reporter molecule to the biomolecule. Depending on the type of reporter, labeling by the click reaction can be used in many different applications, ranging from isolation to functional studies of biomacromolecules. In this minireview, we focus on labeling strategies for RNA that rely on the click reaction. We first highlight click reactions that have been used successfully to label modified RNA, and then describe different strategies to introduce the required reactive groups into target RNA. The benefits and potential limitations of the strategies are critically discussed with regard to possible future developments.

  3. Tandem Catalysis of an Aldol-'Click' Reaction System within a Molecular Hydrogel.

    PubMed

    Araújo, Marco; Muñoz Capdevila, Iván; Díaz-Oltra, Santiago; Escuder, Beatriu

    2016-06-08

    A heterogeneous supramolecular catalytic system for multicomponent aldol-'click' reactions is reported. The copper(I) metallohydrogel functionalized with a phenyltriazole fragment was able to catalyze the multicomponent reaction between phenylacetylene, p-nitrobenzaldehyde, and an azide containing a ketone moiety, obtaining the corresponding aldol products in good yields. A possible mechanistic pathway responsible for this unexpected catalytic behavior has been proposed.

  4. Capture of 2D Microparticle Arrays via a UV-Triggered Thiol-yne "Click" Reaction.

    PubMed

    Walker, Debora; Singh, Dhruv P; Fischer, Peer

    2016-11-01

    Immobilization of colloidal assemblies onto solid supports via a fast UV-triggered click-reaction is achieved. Transient assemblies of microparticles and colloidal materials can be captured and transferred to solid supports. The technique does not require complex reaction conditions, and is compatible with a variety of particle assembly methods.

  5. Ultrasound responsive block copolymer micelle of poly(ethylene glycol)-poly(propylene glycol) obtained through click reaction.

    PubMed

    Li, Fayong; Xie, Chuan; Cheng, Zhengang; Xia, Hesheng

    2016-05-01

    The well-defined amphiphilic poly(ethylene glycol)-block-poly(propylene glycol) copolymer containing 1, 2, 3-triazole moiety and multiple ester bonds (PEG-click-PPG) was prepared by click reaction strategy. The PEG-click-PPG copolymer can self-assemble into spherical micelles in aqueous solution. It is found that high intensity focused ultrasound (HIFU) can open the copolymer PEG-click-PPG micelles and trigger the release of the payload in the micelle. The multiple ester bonds introduced in the junction point of the copolymer chain through click reactions were cleaved under HIFU, and leads to the disruption of the copolymer micelle and fast release of loaded cargo. The click reaction provides a convenient way to construct ultrasound responsive copolymer micelles with weak bonds.

  6. Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction

    NASA Astrophysics Data System (ADS)

    Kabiri, Roya; Namazi, Hassan

    2014-07-01

    Reduced graphene oxide (RGO) sheet was functionalized with nanocrystalline cellulose (NCC) via click coupling between azide-functionalized graphene oxide (GO-N3) and terminal propargyl-functionalized nanocrystalline cellulose (PG-NCC). First, the reactive azide groups were introduced on the surface of GO with azidation of 2-chloroethyl isocyanate-treated graphene oxide (GO-Cl). Then, the resulted compounds were reacted with PG-NCC utilizing copper-catalyzed azide-alkyne cycloaddition. During the click reaction, GO was simultaneously reduced to graphene. The coupling was confirmed by Fourier transform infrared, Raman, DEPT135, and 13C NMR spectroscopy, and the complete exfoliation of graphene in the NCC matrix was confirmed with X-ray diffraction measurement. The degree of functionalization from the gradual mass loss of RGO-NCC suggests that around 23 mass % has been functionalized covalently. The size of both NCC and GO was found to be in nanometric range, which decreased after click reaction.

  7. A photoreducible copper(II)-tren complex of practical value: generation of a highly reactive click catalyst.

    PubMed

    Harmand, Lydie; Lambert, Romain; Scarpantonio, Luca; McClenaghan, Nathan D; Lastécouères, Dominique; Vincent, Jean-Marc

    2013-11-25

    A detailed study on the photoreduction of the copper(II) precatalyst 1 to generate a highly reactive cuprous species for the copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction is presented. For the photoactive catalyst described herein, the activation is driven by a photoinduced electron transfer (PET) process harnessing a benzophenone-like ketoprofenate chromophore as a photosensitizer, which is equally the counterion. The solvent is shown to play a major role in the Cu(II) to Cu(I) reduction process as the final electron source, and the influence of the solvent nature on the photoreduction efficiency has been studied. Particular attention was paid to the use of water as a potential solvent, aqueous media being particularly appealing for CuAAC processes. The ability to solubilize the copper-tren complexes in water through the formation of inclusion complexes with β-CDs is demonstrated. Data is also provided on the fate of the copper(I)-tren catalytic species when reacting with O2, O2 being used to switch off the catalysis. These data show that partial oxidation of the secondary benzylamine groups of the ligand to benzylimines occurs. Preliminary results show that when prolonged irradiation times are employed a Cu(I) to Cu(0) over-reduction process takes place, leading to the formation of copper nanoparticles (NPs). Finally, the main objective of this work being the development of photoactivable catalysts of practical value for the CuAAC, the catalytic, photolatent, and recycling properties of 1 in water and organic solvents are reported.

  8. Sulfur dioxide prodrugs: triggered release of SO2via a click reaction.

    PubMed

    Wang, Wenyi; Ji, Xingyue; Du, Zhenming; Wang, Binghe

    2017-01-24

    Sulfur dioxide (SO2) is being recognized as a possible endogenous gasotransmitter with importance on par with that of NO, CO, and H2S. Herein we describe a series of SO2 prodrugs that are activated for SO2 release via a bioorthogonal click reaction. The release rate can be tuned by adjusting the substituents on the prodrug.

  9. All-in-One azides: empowered click reaction for in vivo labeling and imaging of biomolecules.

    PubMed

    Su, Yaning; Li, Li; Wang, Haibin; Wang, Xiaochen; Zhang, Zhiyuan

    2016-02-04

    We designed and synthesized All-in-One (AIO) reactive azide reagents for bioorthogonal reactions with highly efficient Cu(I) ligand moieties, an azido group, and functional tags for imaging or purification. The AIO reagents displayed fast and efficient click ligation and can be applied in a wide range of in vivo systems.

  10. Postsynthetic Modification of an Alkyne-Tagged Zirconium Metal-Organic Framework via a "Click" Reaction.

    PubMed

    Li, Bijian; Gui, Bo; Hu, Guiping; Yuan, Daqiang; Wang, Cheng

    2015-06-01

    Herein, we report the synthesis and postsynthetic modification of a novel alkyne-tagged zirconium metal-organic framework, UiO-68-alkyne. The alkynyl groups in the pore surface were subjected to a "click" reaction, achieving quantitative conversion and maintaining the crystallinity of the framework.

  11. Click Reaction-Mediated Functionalization of Near-Infrared Pyrrolopyrrole Cyanine Dyes for Biological Imaging Applications.

    PubMed

    Zhou, Mingzhou; Zhang, Xuan; Bai, Mingfeng; Shen, Duanwen; Xu, Baogang; Kao, Jeffery; Xia, Ge; Achilefu, Samuel

    2013-05-21

    A clickable pyrrolopyrrole cyanine (PPCy) dye was synthesized by incorporating an alkyne moiety, followed by click reaction with azide-functionalized molecules of different polarities. The clickable dyes are readily amenable to labelling diverse molecules and exhibit an exceptionally high photostability and an impressive fluorescence quantum yield.

  12. Light effect on Click reaction: Role of photonic quantum dot catalyst.

    PubMed

    Nandi, Debkumar; Taher, Abu; Islam, Rafique Ul; Choudhary, Meenakshi; Siwal, Samarjeet; Mallick, Kaushik

    2016-09-13

    Due to the light excitation, the valence band electron of the copper (I) sulfide quantum dot transfer to the conduction band and act as a scavenger of the terminal proton of the alkyne in the presence of organic azide with the formation of 1,4-disubstituted 1,2,3-triazoles, where the copper(I) species of Cu2S act as a catalyst for the reaction. The above cycloaddition reaction between alkyne and azide is commonly known as the Click reaction. In this study, experiments were carried out under the exposure of ultra-violate and daylight and also dark environment. According to the original recommendation for the Click reaction, the role of the base was also considered for this experiment. We found that the effect of conduction band electron is more efficient than the recommended conventional base mediated reaction procedure.

  13. Light effect on Click reaction: Role of photonic quantum dot catalyst

    NASA Astrophysics Data System (ADS)

    Nandi, Debkumar; Taher, Abu; Islam, Rafique Ul; Choudhary, Meenakshi; Siwal, Samarjeet; Mallick, Kaushik

    2016-09-01

    Due to the light excitation, the valence band electron of the copper (I) sulfide quantum dot transfer to the conduction band and act as a scavenger of the terminal proton of the alkyne in the presence of organic azide with the formation of 1,4-disubstituted 1,2,3-triazoles, where the copper(I) species of Cu2S act as a catalyst for the reaction. The above cycloaddition reaction between alkyne and azide is commonly known as the Click reaction. In this study, experiments were carried out under the exposure of ultra-violate and daylight and also dark environment. According to the original recommendation for the Click reaction, the role of the base was also considered for this experiment. We found that the effect of conduction band electron is more efficient than the recommended conventional base mediated reaction procedure.

  14. Light effect on Click reaction: Role of photonic quantum dot catalyst

    PubMed Central

    Nandi, Debkumar; Taher, Abu; Islam, Rafique Ul; Choudhary, Meenakshi; Siwal, Samarjeet; Mallick, Kaushik

    2016-01-01

    Due to the light excitation, the valence band electron of the copper (I) sulfide quantum dot transfer to the conduction band and act as a scavenger of the terminal proton of the alkyne in the presence of organic azide with the formation of 1,4-disubstituted 1,2,3-triazoles, where the copper(I) species of Cu2S act as a catalyst for the reaction. The above cycloaddition reaction between alkyne and azide is commonly known as the Click reaction. In this study, experiments were carried out under the exposure of ultra-violate and daylight and also dark environment. According to the original recommendation for the Click reaction, the role of the base was also considered for this experiment. We found that the effect of conduction band electron is more efficient than the recommended conventional base mediated reaction procedure. PMID:27621031

  15. CuAAC click reactions for the design of multifunctional luminescent ruthenium complexes.

    PubMed

    Zabarska, Natalia; Stumper, Anne; Rau, Sven

    2016-02-14

    CuAAC (Cu(i) catalyzed azide-alkyne cycloaddition) click chemistry has emerged as a versatile tool in the development of photoactive ruthenium complexes with multilateral potential applicability. In this contribution we discuss possible synthetic approaches towards CuAAC reactions with ruthenium(ii) polypyridine complexes and their differences with respect to possible applications. We focus on two main application possibilities of the click-coupled ruthenium assemblies. New results within the development of ruthenium based photosensitizers for the field of renewable energy supply, i.e. DSSCs (dye-sensitized solar cells) and artificial photocatalysis for the production of hydrogen, or for anticancer photodynamic therapeutic applications are reviewed.

  16. Polymeric ion sensors with multiple detection modes achieved by a new type of click chemistry reaction.

    PubMed

    Michinobu, Tsuyoshi; Li, Yongrong; Hyakutake, Tsuyoshi

    2013-02-28

    The rapid growth of the click chemistry concept enables the production of a wide variety of functional polymers. Among the new generation of click chemistry reactions, the highly efficient addition reactions between electron-rich alkynes and cyano-based acceptors, referred to as alkyne-acceptor click chemistry, have found promising application possibilities as polymeric chemosensors. The donor-acceptor chromophores, formed by this click chemistry reaction, feature intense charge-transfer (CT) bands in the visible region, but they are hardly fluorescent. Importantly, the chromophores possess two different nitrogen atoms, namely the aniline nitrogen and cyano nitrogen. The recognition of some specific metal cations by different nitrogen atoms in the polymers led to different modes of changes in the absorption spectra. For example, the hard acid of Fe(3+) ion was recognized by the aniline nitrogen, resulting in a decrease in the CT bands. On the other hand, the soft acid of the Ag(+) ion was captured by the cyano nitrogen, leading to a bathochromic shift in the CT bands. Some specific anions, such as CN(-), F(-), and I(-) ions, were also recognized by a chemodocimetric detection mode, discoloring the original solutions. When the CT bands decreased upon the addition of analytes, the polymers were found to serve as turn-on fluorescent sensors. In this perspective, the detailed detection modes of the new polymeric chemosensors are fully described.

  17. Covalent protein-oligonucleotide conjugates by copper-free click reaction.

    PubMed

    Khatwani, Santoshkumar L; Kang, Jun Sung; Mullen, Daniel G; Hast, Michael A; Beese, Lorena S; Distefano, Mark D; Taton, T Andrew

    2012-07-15

    Covalent protein-oligodeoxynucleotide (protein-ODN) conjugates are useful in a number of biological applications, but synthesizing discrete conjugates-where the connection between the two components is at a defined location in both the protein and the ODN-under mild conditions with significant yield can be a challenge. In this article, we demonstrate a strategy for synthesizing discrete protein-ODN conjugates using strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC, a copper-free 'click' reaction). Azide-functionalized proteins, prepared by enzymatic prenylation of C-terminal CVIA tags with synthetic azidoprenyl diphosphates, were 'clicked' to ODNs that had been modified with a strained dibenzocyclooctyne (DIBO-ODN). The resulting protein-ODN conjugates were purified and characterized by size-exclusion chromatography and gel electrophoresis. We find that the yields and reaction times of the SPAAC bioconjugation reactions are comparable to those previously reported for copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) bioconjugation, but require no catalyst. The same SPAAC chemistry was used to immobilize azide-modified proteins onto surfaces, using surface-bound DIBO-ODN as a heterobifunctional linker. Cu-free click bioconjugation of proteins to ODNs is a simple and versatile alternative to Cu-catalyzed click methods.

  18. Heterogeneous Photocatalytic Click Chemistry.

    PubMed

    Wang, Bowen; Durantini, Javier; Nie, Jun; Lanterna, Anabel E; Scaiano, Juan C

    2016-10-12

    Copper-doped semiconductors are designed to photoassist the alkyne-azide cycloaddition catalysis by Cu(I). Upon irradiation, injection of electrons from the semiconductor into copper oxide nanostructures produces the catalytic Cu(I) species. The new catalysts are air- and moisture-tolerant and can be readily recovered after use and reused several times.

  19. A New Methodology for Assessing Macromolecular Click Reactions and Its Application to Amine--Tertiary Isocyanate Coupling for Polymer Ligation.

    PubMed

    Gody, Guillaume; Roberts, Derrick A; Maschmeyer, Thomas; Perrier, Sébastien

    2016-03-30

    Click reactions have provided access to an array of remarkably complex polymer architectures. However, the term "click" is often applied inaccurately to polymer ligation reactions that fail to respect the criteria that typify a true "click" reaction. With the purpose of providing a universal way to benchmark polymer-polymer coupling efficiency at equimolarity and thus evaluate the fulfilment of click criteria, we report a simple one-pot methodology involving the homodicoupling of α-end-functionalized polymers using a small-molecule bifunctional linker. A combination of SEC analysis and chromatogram deconvolution enables straightforward quantification of the coupling efficiency. We subsequently employ this methodology to evaluate an overlooked candidate for the click reaction family: the addition of primary amines to α-tertiary isocyanates (α-(t)NCO). Using our bifunctional linker coupling strategy, we show that the amine-(t)NCO reaction fulfills the criteria for a polymer-polymer click reaction, achieving rapid, chemoselective, and quantitative coupling at room temperature without generating any byproducts. We demonstrate that amine-(t)NCO coupling is faster and more efficient than the more common amine-tertiary active ester coupling under equivalent conditions. Additionally, we show that the α-(t)NCO end group is unprecedentedly stable in aqueous media. Thus, we propose that the amine-(t)NCO ligation is a powerful new click reaction for efficient macromolecular coupling.

  20. Thiol-ene click reaction as a general route to functional trialkoxysilanes for surface coating applications.

    PubMed

    Tucker-Schwartz, Alexander K; Farrell, Richard A; Garrell, Robin L

    2011-07-27

    Functionalized trialkoxysilanes are widely used to modify the surface properties of materials and devices. It will be shown that the photoinitiated radical-based thiol-ene "click" reaction provides a simple and efficient route to diverse trialkoxysilanes. A total of 15 trialkoxysilanes were synthesized by reacting either alkenes with 3-mercaptopropyltrialkoxysilane or thiols with allyltrialkoxysilanes in the presence of a photoinitiator. The functionalized trialkoxysilanes were obtained in quantitative to near-quantitative yields with high purity. The photochemical reactions can be run neat in standard borosilicate glassware using a low power 15-W blacklight. A wide range of functional groups is tolerated in this approach, and even complex alkenes click with the silane precursors. To demonstrate that these silanes can be used as surface coating agents, several were reacted with iron oxide superparamagnetic nanoparticles and the loadings quantified. The photoinitiated thiol-ene reaction thus offers a facile and efficient method for preparing surface-active functional trialkoxysilanes.

  1. Discovery and enantiocontrol of axially chiral urazoles via organocatalytic tyrosine click reaction.

    PubMed

    Zhang, Ji-Wei; Xu, Jin-Hui; Cheng, Dao-Juan; Shi, Chuan; Liu, Xin-Yuan; Tan, Bin

    2016-02-11

    Axially chiral compounds play an important role in areas such as asymmetric catalysis. The tyrosine click-like reaction is an efficient approach for synthesis of urazoles with potential applications in pharmaceutical and asymmetric catalysis. Here we discover a class of urazole with axial chirality by restricted rotation around an N-Ar bond. By using bifunctional organocatalyst, we successfully develop an organocatalytic asymmetric tyrosine click-like reaction in high yields with excellent enantioselectivity under mild reaction conditions. The excellent remote enantiocontrol of the strategy originates from the efficient discrimination of the two reactive sites in the triazoledione and transferring the stereochemical information of the catalyst into the axial chirality of urazoles at the remote position far from the reactive site.

  2. Discovery and enantiocontrol of axially chiral urazoles via organocatalytic tyrosine click reaction

    PubMed Central

    Zhang, Ji-Wei; Xu, Jin-Hui; Cheng, Dao-Juan; Shi, Chuan; Liu, Xin-Yuan; Tan, Bin

    2016-01-01

    Axially chiral compounds play an important role in areas such as asymmetric catalysis. The tyrosine click-like reaction is an efficient approach for synthesis of urazoles with potential applications in pharmaceutical and asymmetric catalysis. Here we discover a class of urazole with axial chirality by restricted rotation around an N–Ar bond. By using bifunctional organocatalyst, we successfully develop an organocatalytic asymmetric tyrosine click-like reaction in high yields with excellent enantioselectivity under mild reaction conditions. The excellent remote enantiocontrol of the strategy originates from the efficient discrimination of the two reactive sites in the triazoledione and transferring the stereochemical information of the catalyst into the axial chirality of urazoles at the remote position far from the reactive site. PMID:26864510

  3. Metal Free Azide-Alkyne Click Reaction: Role of Substituents and Heavy Atom Tunneling.

    PubMed

    Karmakar, Sharmistha; Datta, Ayan

    2015-09-03

    Metal free click reactions provide an excellent noninvasive tool to modify and understand the processes in biological systems. Release of ring strain in cyclooctynes on reaction with azides on the formation of triazoles results in small activation energies for various intermolecular Huisgen reactions (1-9). Substitution of difluoro groups at the α, α' position of the cyclooctyne ring enhances the rates of cycloadditions by 10 and 20 times for methyl azide and benzyl azide respectively at room temperature. The computed rate enhancement on difluoro substitution using direct dynamical calculations using the canonical variational transition state theory (CVT/CAG) with small curvature tunneling (SCT) corrections are in excellent agreement with the experimental results. For the intramolecular click reaction (10) notwithstanding its much higher activation energy, quantum mechanical tunneling (QMT) enhances the rate of cycloaddition significantly and increases the N(14)/N(15) primary kinetic isotope effect at 298 K. QMT is shown to be rather efficient in 10 due to a thin barrier of ∼2.4 Å. The present study shows that tunneling effects can be significant for intramolecular click reactions.

  4. Silanized aryl layers through thiol-yne photo-click reaction.

    PubMed

    Bengamra, Marwen; Khlifi, Akila; Ktari, Nadia; Mahouche-Chergui, Samia; Carbonnier, Benjamin; Fourati, Najla; Kalfat, Rafik; Chehimi, Mohamed M

    2015-10-06

    Nanometer-scale multilayered coatings were prepared by sequential surface reactions on gold plates. First 4-ethynylphenyl organic layer was electrografted from the parent diazonium tetrafluoroborate salt providing reactive alkynylated gold plate (Au-Y). The latter served for clicking mercaptosilane via a thiol-yne photo-triggered reaction to obtain alkoxysilane-functionalized surface. The trialkoxysilane top groups in turn served as anchor sites for the final sol-gel coating resulting from the surface reaction between aminopropylsilane and tetraethoxysilane (TEOS). It is demonstrated that two coupling agents, namely, aryl diazonium salt and silane, can be coupled using photo-triggered thiol-yne click reaction, resulting in robust multilayered coatings. In addition, the process is versatile in that it offers the possibility to design patterned surfaces. The top sol-gel layer can in turn be reacted with aminosilane, therefore providing a reactive and functional surface that can be used for different applications given the reactivity of amine groups. This approach opens new avenues for photo-triggered click reactions of aryl layers from diazonium salts. It shows that the new class of surface modifiers and coupling agents has much to offer and continues to be renewed for achieving tightly bound, reactive top coatings.

  5. Copper-Catalyzed Click Reaction on/in Live Cells.

    PubMed

    Li, Siheng; Wang, Lin; Yu, Fei; Zhu, Zhiling; Shobaki, Dema; Chen, Haoqing; Wang, Mu; Wang, Jun; Qin, Guoting; Erasquin, Uriel J; Ren, Li; Wang, Yingjun; Cai, Chengzhi

    2017-03-01

    We demonstrated that copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction could be performed inside live mammalian cells without using a chelating azide. Under optimized conditions, the reaction was performed in human ovary cancer cell line OVCAR5 in which newly synthesized proteins were metabolically modified with homopropargylglycine (HPG). This model system allowed us to estimate the efficiency of the reaction on the cell membranes and in the cytosol using mass spectrometry. We found that the reaction was greatly promoted by a tris(triazolylmethyl)amine Cu(I) ligand tethering a cell-penetrating peptide. Uptake of the ligand, copper, and a biotin-tagged azide in the cells was determined to be 69 ± 2, 163 ± 3 and 1.3 ± 0.1 µM, respectively. After 10 minutes of reaction, the product yields on the membrane and cytosolic proteins were higher than 18% and 0.8%, respectively, while 75% cells remained viable. By reducing the biothiols in the system by scraping or treatment with N-ethylmalemide, the reaction yield on the cytosolic proteins was greatly improved to ~9% and ~14%, respectively, while the yield on the membrane proteins remained unchanged. The results indicate that out of many possibilities, deactivation of the current copper catalysts by biothiols is the major reason for the low yield of CuAAC reaction in the cytosol. Overall, we have improved the efficiency for CuAAC reaction on live cells by 3-fold. Despite the low yielding inside live cells, the products that strongly bind to the intracellular targets can be detected by mass spectrometry. Hence, the in situ CuAAC reaction can be potentially used for screening of cell-specific enzyme inhibitors or biomarkers containing 1,4-substituted 1,2,3-triazoles.

  6. Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential "click" reaction and adsorption.

    PubMed

    Filpponen, Ilari; Kontturi, Eero; Nummelin, Sami; Rosilo, Henna; Kolehmainen, Erkki; Ikkala, Olli; Laine, Janne

    2012-03-12

    A generic approach for heterogeneous surface modification of cellulosic materials in aqueous medium, applicable for a wide range of functionalizations, is presented. In the first step, carboxymethyl cellulose (CMC) modified with azide or alkyne functionality, was adsorbed on a cellulosic substrate, thus, providing reactive sites for azide-alkyne cycloaddition click reactions. In the second step, functional units with complementary click units were reacted on the cellulose surface, coated by the click-modified CMC. Selected model functionalizations on diverse cellulosic substrates are shown to demonstrate the generality of the approach. The concept by sequentially combining the robust physical adsorption ("physical click") and robust chemical reaction ("chemical click") allows versatile, simple, and environmentally friendly modification of a cellulosic substrate with virtually any azide- or alkyne-modified molecule and even functionalization with several types of units.

  7. Facile and Stabile Linkages through Tyrosine: Bioconjugation Strategies with the Tyrosine-Click Reaction

    PubMed Central

    Ban, Hitoshi; Nagano, Masanobu; Gavrilyuk, Julia; Hakamata, Wataru; Inokuma, Tsubasa; Barbas, Carlos F.

    2013-01-01

    The scope, chemoselectivity, and utility of the click-like tyrosine labeling reaction with 4-phenyl-3H-1,2,4-triazoline-3,5(4H)-diones (PTADs) is reported. To study the utility and chemoselectivity of PTAD derivatives in peptide and protein chemistry, we synthesized PTAD derivatives possessing azide, alkyne, and ketone groups and studied their reactions with amino acid derivatives and peptides of increasing complexity. With proteins we studied the compatibility of the tyrosine click reaction with cysteine and lysine-targeted labeling approaches and demonstrate that chemoselective tri-functionalization of proteins is readily achieved. In particular cases, we noted PTAD decomposition resulted in formation of a putative isocyanate by-product that was promiscuous in labeling. This side reaction product, however, was readily scavenged by the addition of a small amount of 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) to the reaction medium. To study the potential of the tyrosine click reaction to introduce poly(ethylene) glycol chains onto proteins (PEGylation), we demonstrate that this novel reagent provides for the selective PEGylation of chymotrypsinogen whereas traditional succinimide-based PEGylation targeting lysine residues provided a more diverse range of PEGylated products. Finally, we applied the tyrosine click reaction to create a novel antibody drug conjugate. For this purpose, we synthesized a PTAD derivative linked to the HIV entry inhibitor aplaviroc. Labeling of the antibody trastuzumab with this reagent provided a labeled antibody conjugate that demonstrated potent HIV-1 neutralization activity demonstrating the potential of this reaction in creating protein conjugates with small molecules. The tyrosine click linkage demonstrated stability to extremes of pH, temperature and exposure to human blood plasma indicating that this linkage is significantly more robust than maleimide-type linkages that are commonly employed in bioconjugations. These studies

  8. Facile and stabile linkages through tyrosine: bioconjugation strategies with the tyrosine-click reaction.

    PubMed

    Ban, Hitoshi; Nagano, Masanobu; Gavrilyuk, Julia; Hakamata, Wataru; Inokuma, Tsubasa; Barbas, Carlos F

    2013-04-17

    The scope, chemoselectivity, and utility of the click-like tyrosine labeling reaction with 4-phenyl-3H-1,2,4-triazoline-3,5(4H)-diones (PTADs) is reported. To study the utility and chemoselectivity of PTAD derivatives in peptide and protein chemistry, we synthesized PTAD derivatives possessing azide, alkyne, and ketone groups and studied their reactions with amino acid derivatives and peptides of increasing complexity. With proteins we studied the compatibility of the tyrosine click reaction with cysteine and lysine-targeted labeling approaches and demonstrate that chemoselective trifunctionalization of proteins is readily achieved. In particular cases, we noted that PTAD decomposition resulted in formation of a putative isocyanate byproduct that was promiscuous in labeling. This side reaction product, however, was readily scavenged by the addition of a small amount of 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) to the reaction medium. To study the potential of the tyrosine click reaction to introduce poly(ethylene glycol) chains onto proteins (PEGylation), we demonstrate that this novel reagent provides for the selective PEGylation of chymotrypsinogen, whereas traditional succinimide-based PEGylation targeting lysine residues provided a more diverse range of PEGylated products. Finally, we applied the tyrosine click reaction to create a novel antibody-drug conjugate. For this purpose, we synthesized a PTAD derivative linked to the HIV entry inhibitor aplaviroc. Labeling of the antibody trastuzumab with this reagent provided a labeled antibody conjugate that demonstrated potent HIV-1 neutralization activity demonstrating the potential of this reaction in creating protein conjugates with small molecules. The tyrosine click linkage demonstrated stability to extremes of pH, temperature, and exposure to human blood plasma indicating that this linkage is significantly more robust than maleimide-type linkages that are commonly employed in bioconjugations. These

  9. Click Grafting of Alkyne-containing Vinyl Polymers onto Biosynthesized Extracellular Matrix Protein Containing Azide Functionality and Adhesion Control of Human Umbilical Vein Endothelial Cells

    PubMed Central

    Yamada, Tomoki

    2015-01-01

    In vivo incorporation of a phenylalanine (Phe) analogue, p-azidophenylalanine (p-N3Phe) into an artificial extracellular matrix protein (aECM-CS5-ELF) was accomplished using a bacterial expression host that harbors the mutant phenylalanyl-tRNA synthetase (PheRS) with an enlarged binding pocket, in which the Ala294Gly/Thr251Gly mutant PheRS (PheRS**) was expressed under the control of T7 promoters. In this study, biosynthesized aECM-CS5-ELF containing p-N3Phe (aECM-CS5-ELF-N3) was coupled with alkyne-containing vinyl polymers prepared via controlled radical polymerization of three vinyl monomers, (styrene, acrylamide, and N-isopropylacrylamide) using a trithiocarbonate as the RAFT agent. Grafting of the vinyl polymers onto the aECM was accomplished via a copper-catalyzed alkyne-azide click reaction. The lower critical transition temperature (LCST) was evaluated, as well as the solubility in aqueous and organic media, which are dependent on the incorporation ratio of p-N3Phe and species of graft chains, in which the LCST behavior was altered remarkably when poly(N-isopropylacrylamide) moieties were attached as side chains. Circular dichroism measurements indicate conformational change was not induced by the grafting. Specific adhesion of human umbilical vein endothelial cells (HUVECs) onto the aECM-CS5-ELF-N3-graft-poly(N-isopropylacrylamide) composite surface and subsequent temperature-sensitive detachment were also demonstrated. PMID:26294960

  10. Functionalization of nanostructured ZnO films by copper-free click reaction.

    PubMed

    Cao, Yan; Galoppini, Elena; Reyes, Pavel Ivanoff; Lu, Yicheng

    2013-06-25

    The copper-free click reaction was explored as a surface functionalization methodology for ZnO nanorod films grown by metal organic chemical vapor deposition (MOCVD). 11-Azidodecanoic acid was bound to ZnO nanorod films through the carboxylic acid moiety, leaving the azide group available for Cu-free click reaction with alkynes. The azide-functionalized layer was reacted with 1-ethynylpyrene, a fluorescent probe, and with alkynated biotin, a small biomolecule. The immobilization of pyrene on the surface was probed by fluorescence spectroscopy, and the immobilization of biotin was confirmed by binding with streptavidin-fluorescein isothiocyanate (streptavidin-FITC). The functionalized ZnO films were characterized by Fourier transform infrared attenuated total reflectance (FTIR-ATR), steady-state fluorescence emission, fluorescence microscopy, and field emission scanning electron microscopy (FESEM).

  11. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase.

    PubMed

    Castro, Vida; Rodríguez, Hortensia; Albericio, Fernando

    2016-01-11

    Click chemistry is an approach that uses efficient and reliable reactions, such as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), to bind two molecular building blocks. CuAAC has broad applications in medicinal chemistry and other fields of chemistry. This review describes the general features and applications of CuAAC in solid-phase synthesis (CuAAC-SP), highlighting the suitability of this kind of reaction for peptides, nucleotides, small molecules, supramolecular structures, and polymers, among others. This versatile reaction is expected to become pivotal for meeting future challenges in solid-phase chemistry.

  12. Clickable periodic mesoporous organosilicas: synthesis, click reactions, and adsorption of antibiotics.

    PubMed

    Gao, Jinsuo; Zhang, Xueying; Xu, Shutao; Tan, Feng; Li, Xinyong; Zhang, Yaobin; Qu, Zhenping; Quan, Xie; Liu, Jian

    2014-02-10

    Pharmaceutical antibiotics are not easily removed from water by conventional water-treatment technologies and have been recognized as new emerging pollutants. Herein, we report the synthesis of clickable azido periodic mesoporous organosilicas (PMOs) and their use as adsorbents for the adsorption of antibiotics. Ethane-bridged PMOs, functionalized with azido groups at different densities, were synthesized by the co-condensation of 1,2-bis(trimethoxysilyl)ethane (BTME) and 3-azidopropyltrimethoxysilane (AzPTMS), in the presence of nonionic-surfactant triblock-copolymer P123, in an acidic medium. Four different alkynes were conjugated to azide-terminated PMOs by means of an efficient click reaction. The clicked PMOs showed improved adsorption capacity (241 μg g(-1)) for antibiotics (ciprofloxacin hydrochloride) compared with azido-functionalized PMOs because of the enhanced π-π stacking interactions. These results indicate that click reactions can introduce multifunctional groups onto PMOs, thus demonstrating the great potential of PMOs for environmental applications.

  13. Versatility of Alkyne-Modified Poly(Glycidyl Methacrylate) Layers for Click Reactions

    SciTech Connect

    Soto-Cantu, Dr. Erick; Lokitz, Bradley S; Hinestrosa Salazar, Juan Pablo; Deodhar, Chaitra; Messman, Jamie M; Ankner, John Francis; Kilbey, II, S Michael

    2011-01-01

    Functional soft interfaces are of interest for a variety of technologies. We describe three methods for preparing substrates with alkyne groups, which show versatility for 'click' chemistry reactions. Two of the methods have the same root: formation of thin, covalently attached, reactive interfacial layers of poly(glycidyl methacrylate) (PGMA) via spin coating onto silicon wafers followed by reactive modification with either propargylamine or 5-hexynoic acid. The amine or the carboxylic acid moieties react with the epoxy groups of PGMA, creating interfacial polymer layers decorated with alkyne groups. The third method consists of using copolymers comprising glycidyl methacrylate and propargyl methacrylate (pGP). The pGP copolymers are spin coated and covalently attached on silicon wafers. For each method, we investigate the factors that control film thickness and content of alkyne groups using ellipsometry, and study the nanophase structure of the films using neutron reflectometry. Azide-terminated polymers of methacrylic acid and 2-vinyl-4,4-dimethylazlactone synthesized via reversible addition-fragmentation chain transfer polymerization were attached to the alkyne-modified substrates using 'click' chemistry, and grafting densities in the range of 0.007-0.95 chains nm{sup -2} were attained. The maximum density of alkyne groups attained by functionalization of PGMA with propargylamine or 5-hexynoic acid was approximately 2 alkynes nm{sup -3}. The alkyne content obtained by the three decorating approaches was sufficiently high that it was not the limiting factor for the click reaction of azide-capped polymers.

  14. Solvent-resistant nanofiltration for product purification and catalyst recovery in click chemistry reactions.

    PubMed

    Cano-Odena, Angels; Vandezande, Pieter; Fournier, David; Van Camp, Wim; Du Prez, Filip E; Vankelecom, Ivo F J

    2010-01-18

    The quickly developing field of "click" chemistry would undoubtedly benefit from the availability of an easy and efficient technology for product purification to reduce the potential health risks associated with the presence of copper in the final product. Therefore, solvent-resistant nanofiltration (SRNF) membranes have been developed to selectively separate "clicked" polymers from the copper catalyst and solvent. By using these solvent-stable cross-linked polyimide membranes in diafiltration, up to 98 % of the initially present copper could be removed through the membrane together with the DMF solvent, the polymer product being almost completely retained. This paper also presents the first SRNF application in which the catalyst permeates through the membrane and the reaction product is retained.

  15. Application of click chemistry conditions for 5-bromo-2'-deoxyuridine determination through Fenton and related reactions.

    PubMed

    Cappella, Paolo; Pulici, Maurizio; Gasparri, Fabio

    2015-01-05

    Mixtures of ascorbate and copper used in certain click chemistry experimental conditions act as oxidizing agents, catalyzing the formation of reactive oxygen species through Fenton and related reactions. Hydroxyl radicals act as chemical nucleases, introducing DNA strand breaks that can be exploited for BrdU immunostaining in place of acid denaturation. This procedure is readily applicable to high content analysis and flow cytometry assays, and provides results comparable to click chemistry EdU cycloaddition and classical BrdU immunodetection. Importantly, this approach allows preservation of labile epitopes such as phosphoproteins. This unit describes an optimized method that successfully employs Fenton chemistry for simultaneous detection of phosphoproteins and BrdU in intact cells.

  16. The click reaction as an efficient tool for the construction of macrocyclic structures.

    PubMed

    Pasini, Dario

    2013-08-08

    The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC, known as the click reaction) is an established tool used for the construction of complex molecular architectures. Given its efficiency it has been widely applied for bioconjugation, polymer and dendrimer synthesis. More recently, this reaction has been utilized for the efficient formation of rigid or shape-persistent, preorganized macrocyclic species. This strategy also allows the installment of useful functionalities, in the form of polar and function-rich 1,2,3-triazole moieties, directly embedded in the macrocyclic structures. This review analyzes the state of the art in this context, and provides some elements of perspective for future applications.

  17. A New Methodology for Assessing Macromolecular Click Reactions and Its Application to Amine–Tertiary Isocyanate Coupling for Polymer Ligation

    PubMed Central

    2016-01-01

    Click reactions have provided access to an array of remarkably complex polymer architectures. However, the term “click” is often applied inaccurately to polymer ligation reactions that fail to respect the criteria that typify a true “click” reaction. With the purpose of providing a universal way to benchmark polymer–polymer coupling efficiency at equimolarity and thus evaluate the fulfilment of click criteria, we report a simple one-pot methodology involving the homodicoupling of α-end-functionalized polymers using a small-molecule bifunctional linker. A combination of SEC analysis and chromatogram deconvolution enables straightforward quantification of the coupling efficiency. We subsequently employ this methodology to evaluate an overlooked candidate for the click reaction family: the addition of primary amines to α-tertiary isocyanates (α-tNCO). Using our bifunctional linker coupling strategy, we show that the amine–tNCO reaction fulfills the criteria for a polymer–polymer click reaction, achieving rapid, chemoselective, and quantitative coupling at room temperature without generating any byproducts. We demonstrate that amine–tNCO coupling is faster and more efficient than the more common amine–tertiary active ester coupling under equivalent conditions. Additionally, we show that the α-tNCO end group is unprecedentedly stable in aqueous media. Thus, we propose that the amine–tNCO ligation is a powerful new click reaction for efficient macromolecular coupling. PMID:26927624

  18. Irreversible bonding of polyimide and polydimethylsiloxane (PDMS) based on a thiol-epoxy click reaction

    NASA Astrophysics Data System (ADS)

    Hoang, Michelle V.; Chung, Hyun-Joong; Elias, Anastasia L.

    2016-10-01

    Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (<0.01 N mm-1) is measured with a peel test, and adhesive failure occurs at the PDMS surface. With surface functionalization, however, remarkably higher peel strengths of ~0.2 N mm-1 (method 1) and  >0.3 N mm-1 (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication.

  19. Simultaneous electropolymerization and electro-click functionalization for highly versatile surface platforms.

    PubMed

    Rydzek, Gaulthier; Terentyeva, Tatyana G; Pakdel, Amir; Golberg, Dmitri; Hill, Jonathan P; Ariga, Katsuhiko

    2014-05-27

    Simple preparation methods of chemically versatile and highly functionalizable surfaces remain rare and present a challenging research objective. Here, we demonstrate a simultaneous electropolymerization and electro-click functionalization process (SEEC) for one-pot self-construction of aniline- and naphthalene-based functional polymer films where both polymerization and click functionalization are triggered by applying electrochemical stimuli. Cyclic voltammetry (CV) can be applied for the simultaneous oxidation of 4-azidoaniline and the reduction of Cu(II) ions, resulting in polymerization of the former, and the Cu(I)-catalyzed alkyne/azide cycloaddition ("click" chemistry). Properties of the films obtained can be tuned by varying their morphology, their chemically "clicked" content, or by postconstruction functionalization. To demonstrate this, the CV scan rates, component monomers, and "clicked" molecules were varied. Covalent postconstruction immobilization of horseradish peroxidase was also performed. Consequently, pseudocapacitance and enzyme activity were affected. SEEC provides surface scientists an easy access to a wide range of functionalization possibilities in several fields including sensors, fuel cells, photovoltaics, and biomaterials.

  20. Preparation of Metalloporphyrin-Bound Superparamagnetic Silica Particles via "Click" Reaction.

    PubMed

    Hollingsworth, Javoris V; Bhupathiraju, N V S Dinesh K; Sun, Jirun; Lochner, Eric; Vicente, M Graça H; Russo, Paul S

    2016-01-13

    A facile approach using click chemistry is demonstrated for immobilization of metalloporphyrins onto the surface of silica-coated iron oxide particles. Oleic-acid stabilized iron oxide nanocrystals were prepared by thermal decomposition of iron(III) acetylacetonate. Their crystallinity, morphology, and superparamagnetism were determined using X-ray diffraction, transmission electron microscopy, and a superconducting quantum interference device. Monodisperse core-shell particles were produced in the silica-coating of iron oxide via microemulsion synthesis. Surface modification of these particles was performed in two steps, which included the reaction of silica-coated iron oxide particles with 3-bromopropyltrichlorosilane, followed by azido-functionalization with sodium azide. Monoalkylated porphyrins were prepared using the Williamson ether synthesis of commercially available tetra(4-hydroxyphenyl) porphyrin with propargyl bromide in the presence of a base. (1)H NMR and matrix-assisted laser desorption ionization confirmed the identity of the compounds. The prepared monoalkyne porphyrins were zinc-metalated prior to their introduction to azide-functionalized, silica-coated iron oxide particles in the click reaction. X-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the surface chemistry after each step in the reaction. In addition, particle size was determined using dynamic light scattering and microscopy. The presented methodology is versatile and can be extended to other photoreactive systems, such as phthalocyanines and boron-dipyrromethane, which may lead to new materials for optical, photonic, and biological applications.

  1. Covalent protein-oligonucleotide conjugates by copper-free click reaction

    PubMed Central

    Khatwani, Santoshkumar L.; Mullen, Daniel G.; Hast, Michael A.; Beese, Lorena S.; Distefano, Mark D.; Taton, T. Andrew

    2013-01-01

    Covalent protein-oligodeoxynucleotide (protein-ODN) conjugates are useful in a number of biological applications, but synthesizing discrete conjugates—where the connection between the two components is at a defined location in both the protein and the ODN—under mild conditions with significant yield can be a challenge. In this article, we demonstrate a strategy for synthesizing discrete protein-ODN conjugates using strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC, a copper-free “click” reaction). Azide-functionalized proteins, prepared by enzymatic prenylation of C-terminal CVIA tags with synthetic azidoprenyl diphosphates, were “clicked” to ODNs that had been modified with a strained dibenzocyclooctyne (DIBO-ODN). The resulting protein-ODN conjugates were purified and characterized by size-exclusion chromatography and gel electrophoresis. We find that the yields and reaction times of the SPAAC bioconjugation reactions are comparable to those previously reported for copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) bioconjugation, but require no catalyst. The same SPAAC chemistry was used to immobilize azide-modified proteins onto surfaces, using surface-bound DIBO-ODN as a heterobifunctional linker. Cu-free click bioconjugation of proteins to ODNs is a simple and versatile alternative to Cu-catalyzed click methods. PMID:22682299

  2. Click and Patterned Functionalization of Graphene by Diels-Alder Reaction.

    PubMed

    Li, Jing; Li, Meng; Zhou, Li-Li; Lang, Shuang-Yan; Lu, Hai-Yan; Wang, Dong; Chen, Chuan-Feng; Wan, Li-Jun

    2016-06-22

    Chemical functionalization is a promising approach to controllably manipulate the characteristics of graphene. Here, we designed cis-dienes, featuring two dihydronaphthalene backbones, to decorate a graphene surface via Diels-Alder (DA) click reaction. The installation of a diene moiety into a nonplanar molecular structure to form cis-conformation enables a rapid (∼5 min) DA reaction between graphene and diene groups. Patterned graphene of sub-micrometer resolution can be obtained by easily soaking poly(methyl methacrylate)-masked graphene in solution of hydroxyl-substituted cis-diene at room temperature. The functionalization degree can be further controlled by carrying out the reaction at higher temperature. The present result gives important insight into the effect of molecular conformation on the graphene functionalization process, and provides an effective and facile method for graphene functionalization.

  3. Photo-initiated thiol-ene click reactions as a potential strategy for incorporation of [M(I)(CO)3]+ (M = Re, (99m)Tc) complexes.

    PubMed

    Hayes, Thomas R; Lyon, Patrice A; Silva-Lopez, Elsa; Twamley, Brendan; Benny, Paul D

    2013-03-18

    Click reactions offer a rapid technique to covalently assemble two molecules. In radiopharmaceutical construction, these reactions can be utilized to combine a radioactive metal complex with a biological targeting molecule to yield a potent tool for imaging or therapy applications. The photo-initiated radical thiol-ene click reaction between a thiol and an alkene was examined for the incorporation of [M(I)(CO)3](+) (M = Re, (99m)Tc) systems for conjugating biologically active targeting molecules containing a thiol. In this strategy, a potent chelate system, 2,2'-dipicolylamine (DPA), for [M(I)(CO)3](+) was functionalized at the central amine with a terminal alkene linker that was explored with two synthetic approaches, click then chelate and chelate then click, to determine the flexibility and applicability of the thiol-ene click reaction to specifically incorporate ligand systems and metal complexes with a thiol containing molecule. In the click then chelate approach, the thiol-ene click reaction was carried out with the DPA chelate followed by complexation with [M(I)(CO)3](+). In the chelate then click approach, the alkene functionalized DPA chelate was first complexed with [M(I)(CO)3](+) followed by the conduction of the thiol-ene click reaction. Initial studies utilized benzyl mercaptan as a model thiol for both strategies to generate the identical product from either route to provide information on reactivity and product formation. DPA ligands functionalized with two unique linker systems (allyl and propyl allyl ether) were prepared to examine the effect of the proximity of the chelate or complex on the thiol-ene click reaction. Both the thiol-ene click and coordination reactions with Re, (99m)Tc were performed in moderate to high yields demonstrating the potential of the thiol-ene click reaction for [M(I)(CO)3](+) incorporation into thiol containing biomolecules.

  4. Advanced functionalization of polyhydroxyalkanoate via the UV-initiated thiol-ene click reaction.

    PubMed

    Tajima, Kenji; Iwamoto, Kosuke; Satoh, Yasuharu; Sakai, Ryosuke; Satoh, Toshifumi; Dairi, Tohru

    2016-05-01

    Polyhydroxyalkanoates (PHAs) incorporating vinyl-bearing 3-hydroxyalkanoates were prepared in 8.5-12.9 g L(-1) yield. The molar ratios (0-16 mol%) of the vinyl-bearing 3-hydroxyalkanoate derivatives were controlled by the continuous feeding of undecylenate at various concentrations. Subsequently, the PHAs were functionalized by UV-initiated thiol-ene click reaction and chemical modification. (1)H NMR spectra suggested that 3-mercaptopropionic acid and 2-aminoethanethiol were successfully introduced into the vinyl-bearing PHA. Subsequently, chemical modification using fluorescein or a fibronectin active fragment (GRGDS) was attempted. The former yielded a PHA derivative capable of emitting fluorescence under UV irradiation, which was useful for determining the miscibility of PHA in a composite film comprising poly-ʟ-lactic acid (PLLA) and PHA. In the latter case, PHA bearing GRGDS peptides exhibited cell adhesiveness, suggesting that its biocompatibility was improved upon peptide introduction. Taken together, the UV-initiated thiol-ene click reaction was demonstrated to be useful in PHA modification.

  5. On-demand electrochemical activation of the click reaction on self-assembled monolayers on gold presenting masked acetylene groups.

    PubMed

    Choi, Inseong; Kim, Young-Kwan; Min, Dal-Hee; Lee, SangWook; Yeo, Woon-Seok

    2011-10-26

    We report on a new surface modification method for grafting a "dynamic" property for on-demand activation of the click reaction. Our approach utilizes the acetylene group masked with dicobalt hexacarbonyl, Co(2)(CO)(6), which is not reactive toward the click reaction. Electrochemical treatment reveals the acetylene group on the selected region, which is then used as a chemical handle for surface functionalization via the click reaction with an azide-containing molecule. Electrochemical and chemical conversions on the surface were verified by cyclic voltammetry, X-ray photoelectron spectroscopy, and fluorescence spectroscopy. We have demonstrated immobilization of an azide-modified RGD peptide and promotion of cell adhesion/migration to the region of electrochemical induction.

  6. Resin-supported catalysts for CuAAC click reactions in aqueous or organic solvents.

    PubMed

    Presolski, Stanislav I; Mamidyala, Sreeman K; Manzenrieder, Florian; Finn, M G

    2012-10-08

    The copper-catalyzed azide-alkyne cycloaddition click reaction is a valuable process for the synthesis of libraries of drug candidates, derivatized polymers and materials, and a wide variety of other functional molecules. In some circumstances, the removal of the copper catalyst is both necessary and inconvenient. We describe here two immobilized forms of a Cu-binding ligand that has been shown to accelerate triazole formation under many different conditions, using different resin supports that are appropriate for aqueous or organic solvents. Copper leaching from these resins was modest, allowing them to be reused in many reaction/filtration cycles without recharging with metal ion. The utility of this catalyst form was demonstrated in the convenient synthesis of 20 N-acetylgalactosamine derivatives for biological testing.

  7. Phospha-Michael Addition as a New Click Reaction for Protein Functionalization.

    PubMed

    Lee, Yan-Jiun; Kurra, Yadagiri; Liu, Wenshe R

    2016-03-15

    A new type of click reaction between an alkyl phosphine and acrylamide was developed and applied for site-specific protein labeling in vitro and in live cells. Acrylamide is a small electrophilic olefin that readily undergoes phospha-Michael addition with an alkyl phosphine. Our kinetic study indicated a second-order rate constant of 0.07 m(-1)  s(-1) for the reaction between tris(2-carboxyethyl)phosphine and acrylamide at pH 7.4. To demonstrate its application in protein functionalization, we used a dansyl-phosphine conjugate to successfully label proteins that were site-specifically installed with N(ɛ) -acryloyl-l-lysine and employed a biotin-phosphine conjugate to selectively probe human proteins that were metabolically labeled with N-acryloyl-galactosamine.

  8. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction.

    PubMed

    Shi, Lei; Jing, Chao; Ma, Wei; Li, Da-Wei; Halls, Jonathan E; Marken, Frank; Long, Yi-Tao

    2013-06-03

    A method based on plasmon resonance Rayleigh scattering (PRRS) spectroscopy and dark-field microscopy (DFM) was established for the real-time monitoring of a click reaction at the single-nanoparticle level. Click reactions on the surface of single gold nanoparticles (GNPs) result in interparticle coupling, which leads to a red-shift of the λmax (Δλmax =43 nm) in the PRRS spectra and a color change of the single gold nanoparticles in DFM (from green to orange).

  9. Precision synthesis of functional materials via RAFT polymerization and click-type chemical reactions

    NASA Astrophysics Data System (ADS)

    Flores, Joel Diez

    2011-12-01

    The need to tailor polymeric architectures with specific physico-chemical properties via the simplest, cleanest, and most efficient synthetic route possible has become the ultimate goal in polymer synthesis. Recent progress in macromolecular science, such as the discoveries of controlled/"living" free radical polymerization (CRP) methods, has brought about synthetic capabilities to prepare (co)polymers with advanced topologies, predetermined molecular weights, narrow molecular weight distributions, and precisely located functional groups. In addition, the establishment of click chemistry has redefined the selected few highly efficient chemical reactions that become highly useful in post-polymerization modification strategies. Hence, the ability to make well-defined topologies afforded by controlled polymerization techniques and the facile incorporation of functionalities along the chain via click-type reactions have yielded complex architectures, allowing the investigation of physical phenomena which otherwise could not be studied with systems prepared via conventional methods. The overarching theme of the research work described in this dissertation is the fusion of the excellent attributes of reversible addition-fragmentation chain transfer (RAFT) polymerization method, which is one of the CRP techniques, and click-type chemical reactions in the precision of synthesis of advanced functional materials. Chapter IV is divided into three sections. In Section I, the direct RAFT homopolymerization of 2-(acryloyloxy)ethyl isocyanate (AOI) and subsequent post-polymerization modifications are described. The polymerization conditions were optimized in terms of the choice of RAFT chain transfer agent (CTA), polymerization temperature and the reaction medium. Direct RAFT polymerization of AOI requires a neutral CTA, and relatively low reaction temperature to yield AOI homopolymers with low polydispersities. Efficient side-chain functionalization of PAOI homopolymers was

  10. Click on silica: systematic immobilization of Co(II) Schiff bases to the mesoporous silica via click reaction and their catalytic activity for aerobic oxidation of alcohols.

    PubMed

    Rana, Bharat S; Jain, Suman L; Singh, Bhawan; Bhaumik, Asim; Sain, Bir; Sinha, Anil K

    2010-09-07

    The systematic immobilization of cobalt(II) Schiff base complexes on SBA-15 mesoporous silica via copper catalyzed [3 + 2] azide-alkyne cycloaddition (CuAAC) "click reaction" involving either step-wise synthesis of silica-bound Schiff base ligand followed by its subsequent complexation with cobalt ions, or by the direct immobilization of preformed Co(II) Schiff base complex to the silica support is described. The catalytic activity of the prepared complexes was studied for the oxidation of alcohols to carbonyl compounds using molecular oxygen as oxidant. The immobilized complexes were recycled for several runs without loss in catalytic activity and no leaching was observed during this course.

  11. Fluorogenic "click" reaction for labeling and detection of DNA in proliferating cells.

    PubMed

    Li, Kai; Lee, L Andrew; Lu, Xiaobing; Wang, Qian

    2010-07-01

    A thymidine analog, 5-ethynyl-2'-deoxyuridine (EdU), has been reported as a rapid labeling tool for direct measurement of cells in S-phase. The alkynyl group of EdU is a biologically inert group that undergoes an extremely selective reaction with azido-functionalized groups via Cu(I)-catalyzed alkyneazide cycloaddition (CuAAC or "click") reaction. Here we report the highly efficient reaction of the terminal alkynyl group of EdU with a pro-fluorogenic compound, 3-azido-7-hydroxycoumarin, to afford an intense fluorescent 1,2,3-triazole product, which occurs only after the CuAAC reaction. This new method eliminates concerns for residual fluorescence since the unreacted precursors are optically inactive. The procedure therefore does not require extensive wash steps to remove the unreacted fluorescent dyes in the sample, allowing for immediate quantification and visualization after the reaction. The advantage over currently available commercial products is its potential to streamline high-throughput applications and help minimize errors.

  12. Synthesis of Janus nanoparticles via a combination of the reversible click reaction and "grafting to" strategies.

    PubMed

    Li, Junting; Wang, Lei; Benicewicz, Brian C

    2013-09-17

    A critical challenge in nanoparticle functionalization has been the preparation of polymer-grafted asymmetric (Janus) nanoparticles (diameter < 100 nm). We describe a robust and cyclic method involving a reversible click reaction and "grafting to" strategies to synthesize such nanoparticles. Mechanochemistry was used in a protection-deprotection process to separate nanoparticles cleanly that were anchored to larger particles, and the recovered azide-functionalized larger particles could be recycled as face-blocking moieties. With this combination of strategies, we prepared 15 nm silica nanoparticles that were partially functionalized with poly(methyl methacrylate). Additionally, the unique self-assembly behaviors of the resultant Janus nanoparticles were investigated in different solvents at different concentrations.

  13. Synthesize of new fluorescent polymeric nanoparticle using modified cellulose nanowhisker through click reaction.

    PubMed

    Parsamanesh, Masoumeh; Dadkhah Tehrani, Abbas

    2016-01-20

    New biopolymeric nanoparticles consisting of cellulose nanowhisker (CNW) as support system and polyglycerol (PG) as surface modifying agent were prepared. PG was attached to the surface of CNW by click chemistry reaction. CdSe quantum dots then interact with the prepared system by noncovalent interaction. These new synthesized biopolymeric nanoparticles were characterized by spectroscopic measurement methods such as IR spectroscopy, UV-vis spectroscopy, NMR spectroscopy; scanning electron microscopy etc. due to the presence of hydrophilic polymerr at the surface of CNW, synthesized nanomaterials were water soluble, and have a large number of functional group for further modification. Also the presence of fluorescence quantum dots (QDS) caused fluorescence property of synthesized system. These new synthesized system has potential application to be used in different filed such as drug delivery, biomedical imaging etc.

  14. Porphyrin network polymers prepared via a click reaction and facilitated oxygen permeation through their membranes.

    PubMed

    Chikushi, Natsuru; Ohara, Emiko; Hisama, Ayako; Nishide, Hiroyuki

    2014-05-01

    Network polymers of cobaltporphyrin derivatives are prepared by a facile click reaction via the Michael addition of acetoacetate-substituted tetraphenyl cobaltporphyrin and tri- or tetra-acrylates. The conversion is saturated for 1 h in the presence of a catalyst, which almost reaches the same gelation point of the formed network polymers. Deeply and homogeneously red-colored membranes with a sub-micrometer thickness are yielded on a porous supporting membrane. They are still tough even with a very high content of the rigid porphyrin residue. The oxygen permeability is high, at 10-100 Barrer, and the oxygen/nitrogen permselectivity (PO2/PN2) is significantly enhanced with the porphyrin content reaching 30, for the membranes with ca. 70 wt% porphyrin content.

  15. Synthesis and structure design of new bio-based elastomers via Thiol-ene-Click Reactions.

    PubMed

    Khan, Shafiullah; Wang, Zhao; Wang, Runguo; Zhang, Liqun

    2016-10-01

    The additions of 2-mercaptoethanol to (S)-(-)-limonene via click reaction is described as an adaptable and efficient way to obtain alcohol functionalized renewable monomer for the synthesis of new cross-linkable bio-based elastomers. Thiol first reacted with the limonene endocyclic double bond and then reacted with the exocyclics double bond to form the difunctional monomer. The structure of the monomer was determined by using FTIR, (1)H NMR and mass spectrometry. Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetrys (DSC) characterization exposed that this monomer could be used to synthesize elastomers with excellent and adaptable thermal properties. The molecular weight of the synthesized elastomer could reach 186kDaa via melting polycondensation route and the structure-properties relationship was deliberated. Finally, these elastomers were mixed with dicumyl peroxide (DCP) to form cross-linked elastomers with certain mechanical property, and the gel contents of the elastomers were confirmed by using Soxhlet extraction method.

  16. Versatile method for AFM-tip functionalization with biomolecules: fishing a ligand by means of an in situ click reaction.

    PubMed

    Kumar, Rakesh; Ramakrishna, Shivaprakash N; Naik, Vikrant V; Chu, Zonglin; Drew, Michael E; Spencer, Nicholas D; Yamakoshi, Yoko

    2015-04-21

    A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions.

  17. Synthesis of novel tryptamine-based macrocycles using an Ugi 4-CR/microwave assisted click-cycloaddition reaction protocol.

    PubMed

    Chavez-Acevedo, Lizbeth; Miranda, Luis D

    2015-04-21

    A practical synthesis of novel tryptamine-based macrocycles using an Ugi 4-CR/click-cycloaddition sequential reaction protocol is described. The main features of the macrocyclic scaffolds are a peptoid moiety, a 1,3-substituted indole nucleus, and a triazole ring.

  18. The inverse electron demand Diels-Alder click reaction in radiochemistry.

    PubMed

    Reiner, Thomas; Zeglis, Brian M

    2014-04-01

    The inverse electron-demand Diels-Alder (IEDDA) cycloaddition between 1,2,4,5-tetrazines and strained alkene dienophiles is an emergent variety of catalyst-free 'click' chemistry that has the potential to have a transformational impact on the synthesis and development of radiopharmaceuticals. The ligation is selective, rapid, high-yielding, clean, and bioorthogonal and, since its advent in 2008, has been employed in a wide variety of chemical settings. In radiochemistry, the reaction has proven particularly useful with (18)  F and has already been utilized to create a number of (18)  F-labeled agents, including the PARP1-targeting small molecule (18)  F-AZD2281, the αv β3 integrin-targeting peptide (18)  F-RGD, and the GLP-1-targeting peptide (18)  F-exendin. The inherent flexibility of the ligation has also been applied to the construction of radiometal-based probes, specifically the development of a modular strategy for the synthesis of radioimmunoconjugates that effectively eliminates variability in the construction of these agents. Further, the exceptional speed and biorthogonality of the reaction have made it especially promising in the realm of in vivo pretargeted imaging and therapy, and pretargeted imaging strategies based on the isotopes (111) In, (18)  F, and (64) Cu have already proven capable of producing images with high tumor contrast and low levels of uptake in background, nontarget organs. Ultimately, the characteristics of inverse electron-demand Diels-Alder click chemistry make it almost uniquely well-suited for radiochemistry, and although the field is young, this ligation has the potential to make a tremendous impact on the synthesis, development, and study of novel radiopharmaceuticals.

  19. Cu/Pd-Catalyzed, Three-Component Click Reaction of Azide, Alkyne, and Aryl Halide: One-Pot Strategy toward Trisubstituted Triazoles.

    PubMed

    Wei, Fang; Li, Haoyu; Song, Chuanling; Ma, Yudao; Zhou, Ling; Tung, Chen-Ho; Xu, Zhenghu

    2015-06-05

    A Cu/Pd-catalyzed, three-component click reaction of azide, alkyne, and aryl halide has been developed. By using this Cu/Pd transmetalation relay catalysis, a variety of 1,4,5-trisubstituted 1,2,3-triazoles were quickly assembled in one step in high yields with complete regioselectivity, just like assembling Lego bricks. Notably, different from the well-established CuAAC click reactions only working on terminal alkynes, this reaction offers an alternative solution for the problem of the click reaction of internal alkynes.

  20. Fast and efficient synthesis of microporous polymer nanomembranes via light-induced click reaction

    PubMed Central

    An, Qi; Hassan, Youssef; Yan, Xiaotong; Krolla-Sidenstein, Peter; Mohammed, Tawheed; Lang, Mathias; Bräse, Stefan

    2017-01-01

    Conjugated microporous polymers (CMPs) are materials of low density and high intrinsic porosity. This is due to the use of rigid building blocks consisting only of lightweight elements. These materials are usually stable up to temperatures of 400 °C and are chemically inert, since the networks are highly crosslinked via strong covalent bonds, making them ideal candidates for demanding applications in hostile environments. However, the high stability and chemical inertness pose problems in the processing of the CMP materials and their integration in functional devices. Especially the application of these materials for membrane separation has been limited due to their insoluble nature when synthesized as bulk material. To make full use of the beneficial properties of CMPs for membrane applications, their synthesis and functionalization on surfaces become increasingly important. In this respect, we recently introduced the solid liquid interfacial layer-by-layer (LbL) synthesis of CMP-nanomembranes via Cu catalyzed azide–alkyne cycloaddition (CuAAC). However, this process featured very long reaction times and limited scalability. Herein we present the synthesis of surface grown CMP thin films and nanomembranes via light induced thiol–yne click reaction. Using this reaction, we could greatly enhance the CMP nanomembrane synthesis and further broaden the variability of the LbL approach.

  1. Layer-by-layer click deposition of functional polymer coatings for combating marine biofouling.

    PubMed

    Yang, Wen Jing; Pranantyo, Dicky; Neoh, Koon-Gee; Kang, En-Tang; Teo, Serena Lay-Ming; Rittschof, Daniel

    2012-09-10

    "Click" chemistry-enabled layer-by-layer (LBL) deposition of multilayer functional polymer coatings provides an alternative approach to combating biofouling. Fouling-resistant azido-functionalized poly(ethylene glycol) methyl ether methacrylate-based polymer chains (azido-poly(PEGMA)) and antimicrobial alkynyl-functionalized 2-(methacryloyloxy)ethyl trimethyl ammonium chloride-based polymer chains (alkynyl-poly(META)) were click-assembled layer-by-layer via alkyne-azide 1,3-dipolar cycloaddition. The polymer multilayer coatings are resistant to bacterial adhesion and are bactericidal to marine Gram-negative Pseudomonas sp. NCIMB 2021 bacteria. Settlement of barnacle ( Amphibalanus (= Balanus ) amphitrite ) cyprids is greatly reduced on the multilayer polymer-functionalized substrates. As the number of the polymer layers increases, efficacy against bacterial fouling and settlement of barnacle cyprids increases. The LBL-functionalized surfaces exhibit low toxicity toward the barnacle cyprids and are stable upon prolonged exposure to seawater. LBL click deposition is thus an effective and potentially environmentally benign way to prepare antifouling coatings.

  2. Smart tools and orthogonal click-like reactions onto small unilamellar vesicles.

    PubMed

    Salomé, Christophe; Spanedda, Maria Vittoria; Hilbold, Benoit; Berner, Etienne; Heurtault, Béatrice; Fournel, Sylvie; Frisch, Benoit; Bourel-Bonnet, Line

    2015-05-01

    Click-based reactions were conducted at the surface of small unilamellar vesicles (SUVs) to provide onto-vesicle chemistry with efficient innovative ready-for-use tools. For that purpose, four amphiphilic molecules were designed to insert into bilayers while presenting a reactive functional head. In this manner, a dioleylglycero-ethoxy-ethoxy-ethoxy-ethanamine (DOG-PEG4-NH2) was chosen as a common platform while the reactive amine head was converted into several electrophilic functions. Thus, two dioleylglycerol-based cyclooctyne anchors were prepared: cyclooct-1-yn-3-glycolic acid-based anchor (DOG-COA) and 1-fluorocyclooct-2-ynecarboxylic acid-based anchor (DOG-FCOA). The last one differed from the first one in that a fluorine atom reinforces the electrophilic properties of the unsaturated bond. In addition, a third dioleylglycerol-based triphenylphosphine (DOG-PPh3) was synthesized for the first time. These three innovative amphiphilic anchors were designed to react with any azide-based biomolecule following copper-free Huisgen 1,4-cycloaddition and Staudinger ligation, respectively. A fourth anchor bearing a 3,4-dibromomaleimide ring (DOG-DBM) was also unprecedentedly synthesized, to be further substituted by two thiols. Model reactions conducted in solution with either model biotinyl azide or model biotinyl disulfide gave good to total conversions and excellent isolated yields. The four new anchors were inserted into SUVs whose formula is classically used in in vivo biology. Stability and surface overall electrostatic charge were in the expected range and constant over the study. Then, the functionalized liposomes were ligated to biotin-based reagents and the experimental conditions were finely tuned to optimize the conversion. The biotinyl liposomes were demonstrated functional and totally accessible in an affinity test based on biotin scaffold quantification. Finally, DOG-FCOA's reactivity was confronted to that of DOG-DBM in a 'one-pot' orthogonal reaction

  3. Glutathione Responsive Hyaluronic Acid Nanocapsules Obtained by Bioorthogonal Interfacial "Click" Reaction.

    PubMed

    Baier, Grit; Fichter, Michael; Kreyes, Andreas; Klein, Katja; Mailänder, Volker; Gehring, Stephan; Landfester, Katharina

    2016-01-11

    Azide-functionalized hyaluronic acid and disulfide dialkyne have been used for "click" reaction polymerization at the miniemulsion droplets interface leading to glutathione responsive nanocapsules (NCs). Inverse miniemulsion polymerization was chosen, due to its excellent performance properties, for example, tuning of size and size distribution, shell thickness/density, and high pay loading efficiency. The obtained size, size distribution, and encapsulation efficiency were checked via fluorescent spectroscopy, and the tripeptide glutathione was used to release an encapsulated fluorescent dye after cleavage of the nanocapsules shell. To show the glutathione-mediated intracellular cleavage of disulfide-containing NC shells, CellTracker was encapsulated into the nanocapsules. The cellular uptake in dendritic cells and the cleavage of the nanocapsules in the cells were studied using confocal laser scanning microscopy. Because of the mild reaction conditions used during the interfacial polymerization and the excellent cleavage properties, we believe that the synthesis of glutathione responsive hyaluronic acid NCs reported herein are of high interest for the encapsulation and release of sensitive compounds at high yields.

  4. Click with a boronic acid handle: a neighboring group-assisted click reaction that allows ready secondary functionalization.

    PubMed

    Draganov, Alexander B; Wang, Ke; Holmes, Jalisa; Damera, Krishna; Wang, Danzhu; Dai, Chaofeng; Wang, Binghe

    2015-10-21

    The feasibility of a neighboring boronic acid-facilitated facile condensation of an aldehyde is described. This reaction is bio-orthogonal, complete at room temperature within minutes, and suitable for bioconjugation chemistry. The boronic acid group serves the dual purpose of catalyzing the condensation reaction and being a handle for secondary functionalization.

  5. Electroactive carbon nanoforms: a comparative study via sequential arylation and click chemistry reactions

    NASA Astrophysics Data System (ADS)

    Mateos-Gil, Jaime; Rodríguez-Pérez, Laura; Moreno Oliva, María; Katsukis, Georgios; Romero-Nieto, Carlos; Herranz, M. Ángeles; Guldi, Dirk M.; Martín, Nazario

    2014-12-01

    The reactivity of several carbon nanoforms (CNFs), single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and graphene, has been investigated through a combination of arylation and click chemistry CuI-mediated azide-alkyne cycloaddition (CuAAC) reactions. The approach is based on the incorporation of electroactive π-extended tetrathiafulvalene (exTTF) units into the triazole linkers to modulate the electronic properties of the obtained conjugates. The introduction of strain, by bending the planar graphene sheet into a 3D carbon framework, is responsible for the singular reactivity observed in carbon nanotubes. The formed nanoconjugates were fully characterized by analytical, spectroscopic, and microscopic techniques (TGA, FTIR, Raman, UV-Vis-NIR, cyclic voltammetry, TEM and XPS). In the case of SWCNT conjugates, where the functionalization degree is higher, a series of steady-state and time resolved spectroscopy experiments revealed a photoinduced electron transfer from the exTTF unit to the electron-accepting SWCNT.The reactivity of several carbon nanoforms (CNFs), single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and graphene, has been investigated through a combination of arylation and click chemistry CuI-mediated azide-alkyne cycloaddition (CuAAC) reactions. The approach is based on the incorporation of electroactive π-extended tetrathiafulvalene (exTTF) units into the triazole linkers to modulate the electronic properties of the obtained conjugates. The introduction of strain, by bending the planar graphene sheet into a 3D carbon framework, is responsible for the singular reactivity observed in carbon nanotubes. The formed nanoconjugates were fully characterized by analytical, spectroscopic, and microscopic techniques (TGA, FTIR, Raman, UV-Vis-NIR, cyclic voltammetry, TEM and XPS). In the case of SWCNT conjugates, where the functionalization degree is higher, a series of steady-state and time resolved

  6. Computational studies on the regioselectivity of metal-catalyzed synthesis of 1,2,3 triazoles via click reaction: a review.

    PubMed

    Hosseinnejad, Tayebeh; Fattahi, Bahareh; Heravi, Majid M

    2015-10-01

    Recently, the experimental and computational chemists have been attracted widely to the click synthesis of 1,2,3 triazoles and their derivatives, mainly due to the fact that they are interesting from structural and mechanistic points of view. Moreover, catalyzed click have been well established as a successful strategy showing high regioselectivity and high yield for the synthesis of 1,2,3-triazoles. In this review, we try to highlight the recently reported computational assessments on the origins and predection of regioselectivity in the catalyzed click synthesis of triazoles from the mechanistic and thermodynamical points of view. In this light, density functional theory (DFT) calculations on the free energy profiles of azide-alkyne cycloaddition reactions have been underscored. The stereoelectronic features for the role of copper, ruthenium, and iridium as catalyst on regioselectivity of click reactions have also be discussed. Graphical Abstract Computational origins for the regioselective behavior of 1,2,3 triazoles click synthesis.

  7. Effective ascorbate-free and photolatent click reactions in water using a photoreducible copper(II)-ethylenediamine precatalyst

    PubMed Central

    Beniazza, Redouane; Bayo, Natalia; Molton, Florian; Duboc, Carole; Massip, Stéphane; McClenaghan, Nathan; Lastécouères, Dominique

    2015-01-01

    Summary The search for copper catalysts able to perform effectively click reactions in water in the absence of sodium ascorbate is an active area of current research with strong potential for applications in bioconjugation. The water-soluble and photoreducible copper(II)–EDA (EDA = ethylenediamine) complex 1, which has two 4-benzoylbenzoates acting as both counterion and photosensitizer, has been synthesized and characterized by different techniques including single crystal X-ray diffraction. Highly efficient photoreduction was demonstrated when solutions of 1 in hydrogen atom donating solvents, such as THF or MeOH, were exposed to UVA radiation (350–400 nm) provided by a low pressure mercury lamp (type TLC = thin-layer chromatography, 365 nm), or by a 23 W fluorescent bulb, or by ambient/sunlight. In water, a much poorer hydrogen atom donating solvent, the photoreduction of 1 proved inefficient. Interestingly, EPR studies revealed that complex 1 could nonetheless be effectively photoreduced in water when alkynes were present in solution. The catalytic activity of 1 for click reactions involving a range of water-soluble alkynes and azides, in particular saccharides, was tested under various illumination conditions. Complex 1 was found to exhibit a photolatent character, the photogenerated copper(I) being very reactive. On irradiating aqueous reaction mixtures containing 1 mol % of 1 at 365 nm (TLC lamp) for 1 h, click reactions were shown to proceed to full conversion. PMID:26664615

  8. Composition controlled synthesis of PCL-PEG Janus nanoparticles: magnetite nanoparticles prepared from one-pot photo-click reaction.

    PubMed

    Khoee, S; Bagheri, Y; Hashemi, A

    2015-03-07

    The aim of this study is to investigate the effect of polymer nature on the morphology of synthesized nanoparticles. Super paramagnetic iron oxide nanoparticles (SPIONs) were prepared by co-precipitation method and then reacted with (3-mercaptopropyl) trimethoxysilane to obtain thiol-decorated SPIONs. Acrylated poly(caprolactone) and methoxy poly(ethylene glycol) were prepared, and then "thiol-ene click" reaction was performed under UV irradiation to attach two types of polymers on the surface of magnetite nanoparticles via the "photo-click" reaction method. Computational modelling was used for the prediction of the self-assembly of polymers on the surface of SPIONs, which determines the morphology of polymer coated nanoparticles.

  9. Composition controlled synthesis of PCL-PEG Janus nanoparticles: magnetite nanoparticles prepared from one-pot photo-click reaction

    NASA Astrophysics Data System (ADS)

    Khoee, S.; Bagheri, Y.; Hashemi, A.

    2015-02-01

    The aim of this study is to investigate the effect of polymer nature on the morphology of synthesized nanoparticles. Super paramagnetic iron oxide nanoparticles (SPIONs) were prepared by co-precipitation method and then reacted with (3-mercaptopropyl) trimethoxysilane to obtain thiol-decorated SPIONs. Acrylated poly(caprolactone) and methoxy poly(ethylene glycol) were prepared, and then ``thiol-ene click'' reaction was performed under UV irradiation to attach two types of polymers on the surface of magnetite nanoparticles via the ``photo-click'' reaction method. Computational modelling was used for the prediction of the self-assembly of polymers on the surface of SPIONs, which determines the morphology of polymer coated nanoparticles.

  10. Biostability enhancement of oil core - polysaccharide multilayer shell via photoinitiator free thiol-ene 'click' reaction.

    PubMed

    Calcagno, Vincenzo; Vecchione, Raffaele; Sagliano, Angela; Carella, Antonio; Guarnieri, Daniela; Belli, Valentina; Raiola, Luca; Roviello, Antonio; Netti, Paolo A

    2016-06-01

    Layer-by-layer of polyelectrolytes has emerged as one of the easiest and most controlled techniques to deposit ultrathin polymer layers mainly driven by electrostatic interactions. However, this kind of interaction results to be weak and easily breakable in physiological environment. Here we report on the preparation of nanocapsules completely made of natural biomaterials: a lipophilic core (soybean oil and egg lecithin as surfactant) as nanometric template and a polysaccharide-based multilayer shell (glycol chitosan and heparin) covalently cross-linked. We first modified glycol chitosan with a thiol moiety and heparin with an alkene moiety, respectively, and then we built a polymer multilayer film with a covalent cross-linkage among layers, exploiting the light initiated thiol-ene reaction, known as click chemistry. We showed the possibility to perform the covalent cross-linkage without any photoinitiator or metal catalyst, thus avoiding cytotoxic effects and further purification steps. The so realized nanocapsules resulted to be stable and completely biocompatible and, therefore, of interest for the biotechnology fields, mainly for drug delivery.

  11. Rice straw modified by click reaction for selective extraction of noble metal ions.

    PubMed

    Wang, Jingjing; Wei, Jun; Li, Juan

    2015-02-01

    Rice straw was modified by azide-alkyne click reaction in order to realize selective extraction of noble metal ions. The ability of the modified straw to adsorb Pd(2+) and Pt(4+) was assessed using a batch adsorption technique. It was found that the sorption equilibrium could be reached within 1h and the adsorption capacity increased with temperature for both Pd(2+) and Pt(4+). The maximum sorption capacities for Pd(2+) and Pt(4+) were respectively attained in 1.0 and 0.1 mol/L HCl. The modified straw showed excellent selectivity for noble metal ions in comparison to the pristine straw. In addition, the modified straw was examined as a column packing material for extraction of noble metal ions. It was indicated that 1.0 mL/min was the best flow rate for Pd(2+) and Pt(4+). The modified straw could be repeatedly used for 10 times without any significant loss in the initial binding affinity.

  12. Functionalization of hybrid monolithic columns via thiol-ene click reaction for proteomics analysis.

    PubMed

    Liu, Zhongshan; Liu, Jing; Liu, Zheyi; Wang, Hongwei; Ou, Junjie; Ye, Mingliang; Zou, Hanfa

    2017-01-16

    The vinyl-functionalized hybrid monolithic columns (75 and 150μm i.d.) were prepared via sol-gel chemistry of tetramethoxysilane (TMOS) and vinyltrimethoxysilane (VTMS). The content of accessible vinyl groups was further improved after the monolithic column was post-treated with vinyldimethylethoxysilane (VDMES). The surface properties of monolithic columns were tailored via thiol-ene click reaction by using 1-octadecanethiol, sodium 3-mercapto-1-propanesulfonate and 2,2'-(ethylenedioxy)diethanethiol/vinylphosphonic acid, respectively. The preparing octadecyl-functionalized monolithic columns were adopted for proteomics analysis in cLC-MS/MS. A 37-cm-long×75-μm-i.d. monolithic column could identify 3918 unique peptides and 1067 unique proteins in the tryptic digest of proteins from HeLa cells. When a 90-cm-long×75-μm-i.d. monolithic column was used, the numbers of unique peptides and proteins were increased by 82% and 32%, respectively. Furthermore, strong cation exchange (SCX) monolithic columns (4cm in length×150μm i.d.) were also prepared and coupled with the 37-cm-long×75-μm-i.d. octadecyl-functionalized monolithic column for two-dimensional SCX-RPLC-MS/MS analysis, which could identify 17114 unique peptides and 3211 unique proteins.

  13. Fabrication of biodendrimeric β-cyclodextrin via click reaction with potency of anticancer drug delivery agent.

    PubMed

    Toomari, Yousef; Namazi, Hassan; Entezami, Ali Akbar

    2015-08-01

    The aim of this work was the synthesis of biodendrimeric β-cyclodextrin (β-CD) on the secondary face with encapsulation efficacy, with β-CDs moiety to preserve the biocompatibility properties, also particularly growth their loading capacity for drugs with certain size. The new dendrimer, having 14 β-CD residues attached to the core β-CD in secondary face (11), was prepared through click reaction. The encapsulation property of the prepared compound was evaluated by methotrexate (MTX) drug molecule. Characterization of compound 11 was performed with (1)H NMR, (13)C NMR and FTIR and its supramolecular inclusion complex structure was determined using FTIR, DLS, DSC and SEM techniques. In vitro cytotoxicity test results showed that compound 11 has very low or no cytotoxic effect on T47D cancer cells. In vitro drug release study at pHs 3, 5 and 7.4 showed that the release process was noticeably pH dependent and the dendrimer could be used as an appropriate controlled drug delivery system (DDS) for cancer treatment.

  14. Evaluation of a Cell Penetrating Prenylated Peptide Lacking an Intrinsic Fluorophore via in situ Click Reaction

    PubMed Central

    Ochocki, Joshua D.; Mullen, Daniel G.; Wattenberg, Elizabeth V.; Distefano, Mark D.

    2011-01-01

    Protein prenylation involves the addition of either a farnesyl (C15) or geranylgeranyl (C20) isoprenoid moiety onto the C-terminus of many proteins. This natural modification serves to direct a protein to the plasma membrane of the cell. A recently discovered application of prenylated peptides is that they have inherent cell-penetrating ability, and are hence termed cell penetrating prenylated peptides. These peptides are able to efficiently cross the cell membrane in an ATP independent, non-endocytotic manner and it was found that the sequence of the peptide does not affect uptake, so long as the geranylgeranyl group is still present. The present study investigates the effect of removing the fluorophore from the peptides and investigating the uptake by confocal microsopy and flow cytometry. Our results show that the fluorophore is not necessary for uptake of these peptides. This information is significant because it indicates that the prenyl group is the major determinant in allowing these peptides to enter cells; the hydrophobic fluorophore has little effect. Moreover, these studies demonstrate the utility of the Cu-catalyzed click reaction for monitoring the entry of nonfluorescent peptides into cells. PMID:21632248

  15. Evaluation of a cell penetrating prenylated peptide lacking an intrinsic fluorophore via in situ click reaction.

    PubMed

    Ochocki, Joshua D; Mullen, Daniel G; Wattenberg, Elizabeth V; Distefano, Mark D

    2011-09-01

    Protein prenylation involves the addition of either a farnesyl (C(15)) or geranylgeranyl (C(20)) isoprenoid moiety onto the C-terminus of many proteins. This natural modification serves to direct a protein to the plasma membrane of the cell. A recently discovered application of prenylated peptides is that they have inherent cell-penetrating ability, and are hence termed cell penetrating prenylated peptides. These peptides are able to efficiently cross the cell membrane in an ATP independent, non-endocytotic manner and it was found that the sequence of the peptide does not affect uptake, so long as the geranylgeranyl group is still present [Wollack, J. W.; Zeliadt, N. A.; Mullen, D. G.; Amundson, G.; Geier, S.; Falkum, S.; Wattenberg, E. V.; Barany, G.; Distefano, M. D. Multifunctional Prenylated Peptides for Live Cell Analysis. J. Am. Chem. Soc.2009, 131, 7293-7303]. The present study investigates the effect of removing the fluorophore from the peptides and investigating the uptake by confocal microscopy and flow cytometry. Our results show that the fluorophore is not necessary for uptake of these peptides. This information is significant because it indicates that the prenyl group is the major determinant in allowing these peptides to enter cells; the hydrophobic fluorophore has little effect. Moreover, these studies demonstrate the utility of the Cu-catalyzed click reaction for monitoring the entry of nonfluorescent peptides into cells.

  16. Click-chemistry reactions in radiopharmaceutical chemistry: fast & easy introduction of radiolabels into biomolecules for in vivo imaging.

    PubMed

    Wängler, C; Schirrmacher, R; Bartenstein, P; Wängler, B

    2010-01-01

    Today the term "click chemistry" is often used equivalent with the copper-catalyzed 1,3-dipolar Huisgen cycloaddition. Originally, the concept was introduced in 2001 to describe reactions fulfilling a set of criteria that are most useful for chemical syntheses in drug research. In radiopharmaceutical chemistry where short lived radioisotopes are introduced into various different substance classes for in vivo imaging of biochemical processes, the expanding field of radioactive bioconjugation has become predominant. Labeled biomolecules such as peptides, proteins and oligonucleotides generated via bioconjugation of chelators for radiometal introduction as well as novel valuable secondary precursors for (18)F labeling have enriched the growing field of molecular imaging substantially. When introducing radioactive nuclides with a very short half-life into biomolecules, some of the typical criteria defined by click-chemistry are more crucial than others. Time is always the most important issue, whereas avoiding the formation of by-products that have to be removed without chromatography is of minor importance. The short-lived radionuclide (11)C for example has a physical half-life of only 20 min so that the labeling procedure cannot exceed 40-60 minutes (2-3 half-lifes). In this contribution, we outline reactions and molecules which meet the requirements of click chemistry reactions and are suitable for radiosyntheses of short lived SPECT ((99m)Tc: t(1/2) = 6 h, (111)In: t(1/2) = 2.81 d) and PET ((11)C: t(1/2) = 20.3 min to (64)Cu: t(1/2) = 12.7 h) radiotracers for in vivo imaging of biological processes and review the contributions in the field of radiochemical "click-reactions" - 1,3-dipolar Huisgen cycloadditions and beyond.

  17. Glycopolymers Prepared by Ring-Opening Metathesis Polymerization Followed by Glycoconjugation Using a Triazole-Forming "Click" Reaction.

    PubMed

    Okoth, Ronald; Basu, Amit

    2016-01-01

    We describe a protocol for the preparation of glycopolymers derived from the ring-opening polymerization of a norbornene carboxylic acid derivative. Polymerization is followed by attachment of a linker and subsequent glycoconjugation via a triazole-forming azide-alkyne click reaction. The use of a protected amine-terminating agent allows for the attachment of a probe molecule such as a fluorescein dye. The syntheses of a neutral galactopolymer as well a polyanionic poly-3-O-sulfo-galactopolymer are described.

  18. Highly sensitive fluorescence and SERS detection of azide through a simple click reaction of 8-chloroquinoline and phenylacetylene.

    PubMed

    Zeng, Qing; Ye, Lingling; Ma, Lu; Yin, Wenqing; Li, Tingsheng; Liang, Aihui; Jiang, Zhiliang

    2015-05-01

    In 0.19 mol/L acetic acid (HAc), a click reaction of 8-chloroquinoline/azide/phenylacetylene take places in aqueous solution without Cu(I) as a catalyst. 8-Chloroquinoline (CQN) exhibited a strong fluorescence peak at 430 nm that was quenched linearly as the concentration of azide increased from 20 to 1000 ng/mL. This quenching was due to consumption of CQN in the click reaction and a decrease in the number of efficiently excited photons due to the presence of triazole-quinoline ramification molecules with strong hydrophobicity. Using blue nanosilver sol as the substrate, CQN absorbed onto the surface of nanosilver particles, showing a strong surface-enhanced Raman scattering (SERS) peak at 1585 cm(-1) that decreased linearly as the azide concentration increased from 8 to 500 ng/mL; the detection limit was 4 ng/mL. Thus, two new, simple and sensitive fluorescence and SERS methods have been developed for the determination of azide via the click reaction.

  19. Facile construction of macroporous hybrid monoliths via thiol-methacrylate Michael addition click reaction for capillary liquid chromatography.

    PubMed

    Lin, Hui; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2015-01-30

    A facile approach based on thiol-methacrylate Michael addition click reaction was developed for construction of porous hybrid monolithic materials. Three hybrid monoliths were prepared via thiol-methacrylate click polymerization by using methacrylate-polyhedral oligomeric silsesquioxane (POSS) (cage mixture, n=8, 10, 12, POSS-MA) and three multi-thiol crosslinkers, 1,6-hexanedithiol (HDT), trimethylolpropane tris(3-mercaptopropionate) (TPTM) and pentaerythritol tetrakis(3-mercaptopropionate) (PTM), respectively, in the presence of porogenic solvents (n-propanol and PEG 200) and a catalyst (dimethylphenylphosphine, DMPP). The obtained monoliths possessed high thermal and chemical stabilities. Besides, they all exhibited high column efficiencies and excellent separation abilities in capillary liquid chromatography (cLC). The highest column efficiency could reach ca. 195,000N/m for butylbenzene on the monolith prepared with POSS-MA and TPTM (monolith POSS-TPTM) in reversed-phase (RP) mode at 0.64mm/s. Good chromatographic performance were all achieved in the separations of polycyclic aromatic hydrocarbons (PAHs), phenols, anilines, EPA 610 as well as bovine serum albumin (BSA) digest. The high column efficiencies in the range of 51,400-117,000N/m (achieved on the monolith POSS-PTM in RP mode) convincingly demonstrated the high separation abilities of these thiol-methacrylate based hybrid monoliths. All the results demonstrated the feasibility of the phosphines catalyzed thiol-methacrylate Michael addition click reaction in fabrication of monolithic columns with high efficiency for cLC applications.

  20. Non-Catalyzed Click Reactions of ADIBO Derivatives with 5-Methyluridine Azides and Conformational Study of the Resulting Triazoles

    PubMed Central

    Smyslova, Petra; Popa, Igor; Lyčka, Antonín; Tejral, Gracian; Hlavac, Jan

    2015-01-01

    Copper-free click reactions between a dibenzoazocine derivative and azides derived from 5-methyluridine were investigated. The non-catalyzed reaction yielded both regioisomers in an approximately equivalent ratio. The NMR spectra of each regioisomer revealed conformational isomery. The ratio of isomers was dependent on the type of regioisomer and the type of solvent. The synthesis of various analogs, a detailed NMR study and computational modeling provided evidence that the isomery was dependent on the interaction of the azocine and pyrimidine parts. PMID:26673606

  1. Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.

    PubMed

    Xu, Chen; Hu, Xin; Wang, Jie; Zhang, Ye-Min; Liu, Xiao-Jiu; Xie, Bin-Bin; Yao, Chen; Li, Yi; Li, Xin-Song

    2015-08-12

    Biofouling is of great concern in numerous applications ranging from ophthalmological implants to catheters, and from bioseparation to biosensors. In this report, a general and facile strategy to combat surface fouling is developed by grafting of amino acids onto polymer substrates to form zwitterionic structure through amino groups induced epoxy ring opening click reaction. First of all, a library of poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) hydrogels with zwitterionic surfaces were prepared, resulting in the formation of pairs of carboxyl anions and protonated secondary amino cations. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the successful immobilization of amino acids on the hydrogel surfaces. After that, the contact angle and equilibrium water content of the modified hydrogels showed that the hydrogels exhibited improved hydrophilicity compared with the parent hydrogel. Furthermore, the protein deposition was evaluated by bicinchoninic acid assay using bovine serum albumin (BSA) and lysozyme as models. The results indicated that the performance of the hydrogels was determined by the nature of incorporated amino acid: the hydrogels incorporated with neutral amino acids had nonspecific antiadsorption capability to both BSA and lysozyme; the hydrogels incorporated with charged amino acids showed antiadsorption behaviors against protein with same charge and enhanced adsorption to the protein with opposite charge; the optimal antiadsorption performance was observed on the hydrogels incorporated with polar amino acids with a hydroxyl residual. The improvement of antiprotein fouling of the neutral amino acids grafted hydrogels can be ascribed to the formation of zwitterionic surfaces. Finally, a couple of soft contact lenses grafted with amino acids were fabricated having improved antifouling property and hydrophilicity. The result demonstrated the success of

  2. Curing of polymer thermosets via click reactions and on demand processes

    NASA Astrophysics Data System (ADS)

    Brei, Mark Richard

    In the first project, an azide functional resin and tetra propargyl aromatic diamines were fabricated for use as a composite matrix. These systems take already established epoxy/amine matrices and functionalize them with click moieties. This allows lower temperatures to be used in the production of a thermoset part. These new systems yield many better mechanical properties than their epoxy/amine derivatives, but their Tgs are low in comparison. The second project investigates the characterization of a linear system based off of the above azide functional resin and a difunctional alkyne. Through selectively choosing catalyst, the linear system can show regioselectivity to either a 1,4-disubstituted triazole, or a 1,5-disubstituted triazole. Without the addition of catalyst, the system produces both triazoles in almost an equal ratio. The differently catalyzed systems were cured and then analyzed by 1H and 13C NMR to better understand the structure of the material. The third project builds off of the utility of the aforementioned azide/alkyne system and introduces an on-demand aspect to the curing of the thermoset. With the inclusion of copper(II) within the azide/alkyne system, UV light is able to catalyze said reaction and cure the material. It has been shown that the copper(II) loading levels can be extremely small, which helps in reducing the copper's effect on mechanical properties The fourth project takes a look at polysulfide-based sealants. These sealants are normally cured via an oxidative reaction. This project took thiol-terminated polysulfides and fabricated alkene-terminated polysulfides for use as a thiol-ene cured material. By changing the mechanism for cure, the polysulfide can be cured via UV light with the use of a photoinitiator within the thiol/alkene polysulfide matrix. The final chapter will focus on a characterization technique, MALDI-TOF, which was used to help characterize the above materials as well as many others. By using MALDI-TOF, the

  3. Aptamer-based organic-silica hybrid affinity monolith prepared via "thiol-ene" click reaction for extraction of thrombin.

    PubMed

    Wang, Zheng; Zhao, Jin-cheng; Lian, Hong-zhen; Chen, Hong-yuan

    2015-06-01

    A novel strategy for preparing aptamer-based organic-silica hybrid monolithic column was developed via "thiol-ene" click chemistry. Due to the large specific surface area of the hybrid matrix and the simplicity, rapidness and high efficiency of "thiol-ene" click reaction, the average coverage density of aptamer on the organic-silica hybrid monolith reached 420 pmol μL(-1). Human α-thrombin can be captured on the prepared affinity monolithic column with high specificity and eluted by NaClO4 solution. N-p-tosyl-Gly-Pro-Arg p-nitroanilide acetate was used as the sensitive chromogenic substrate of thrombin. The thrombin enriched by this affinity column was detected with a detection of limit of 0.01 μM by spectrophotometry. Furthermore, the extraction recovery of thrombin at 0.15 μM in human serum was 91.8% with a relative standard deviation of 4.0%. These results indicated that "thiol-ene" click chemistry provided a promising technique to immobilize aptamer on organic-inorganic hybrid monolith and the easily-assembled affinity monolithic material could be used to realize highly selective recognition of trace proteins.

  4. Biodegradable Multiblock Poly[N-(2-hydroxypropyl)methacrylamide] via Reversible Addition-Fragmentation Chain Transfer Polymerization and Click Chemistry.

    PubMed

    Luo, Kui; Yang, Jiyuan; Kopečková, Pavla; Kopeček, Jindřich

    2011-04-26

    A new bifunctional chain transfer agent (CTA) containing alkyne end groups was designed, synthesized and used for direct synthesis of clickable telechelic polymers. Good control of reversible addition-fragmentation chain transfer (RAFT) polymerization of N-(2-hydroxypropyl)methacrylamide (HPMA) was achieved by using the new CTA, as indicated by a linear increase of number average molecular weight (Mn) with conversion and low polydispersity (PDI) (<1.1). In particular, enzymatically degradable multiblock HPMA polymers were readily prepared by subsequent reaction with αω, -diazido oligopeptide (GFLG) sequence via Cu(I) catalyzed alkyne-azide cycloaddition. Upon exposure of high molecular weight fractions of multiblock polyHPMA to papain or cathepsin B, the polymer was degraded into segments of molecular weight and narrow polydispersity similar to those of the initial telechelic polyHPMA.

  5. Simple preparation of new [(18) F]F-labeled synthetic amino acid derivatives with two click reactions in one-pot and SPE purification.

    PubMed

    Yook, Cheol-Min; Lee, Sang Ju; Oh, Seung Jun; Ha, Hyun-Joon; Lee, Jong Jin

    2015-06-30

    New [(18) F]fluorinated 1,2,3-triazolyl amino acid derivatives were efficiently prepared from Huisgen 1,3-dipolar cycloaddition reactions, well known as click reaction. We developed two simultaneous click reactions in one-pot with a simple solid-phase extraction (SPE) purification method. [(18) F]fluoro-1-propyne was obtained at a 45% non-decay corrected radiochemical yield based on the [(18) F]fluoride ion. The one-pot and simultaneous two click reactions were performed with unprotected azido-alkyl amino acid, [(18) F]fluoro-1-propyne, and lipophilic additive alkyne to produce three synthetic amino acid derivatives, AMC-101 ([(18) F]-6a), AMC-102 ([(18) F]-6b), and AMC-103 ([(18) F]-6c) with 29%, 28%, and 24% of non-decay corrected radiochemical yields, respectively. All radiotracers indicated that radiochemical purities were >95% without any residual organic solvent. Our new method involving two click reactions in one-pot showed high radiochemical and chemical purity by easy removal of the residual precursor from the simultaneous two click reactions.

  6. [Preparation of organic-inorganic hybrid boronate affinity monolith via thiol-ene click reaction for specific capture of glycoproteins].

    PubMed

    Yang, Fan; Mao, Jie; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2013-06-01

    A novel strategy for the preparation of the organic-inorganic hybrid boronate affinity monolith was developed via the "thiol-ene" click reaction. A thiol group-modified silica monolith was first synthesized via the sol-gel process by the in situ co-condensation with tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) as precursors. Then 3-acrylamidophenylboronic acid (AAPBA) was covalently immobilized on the hybrid monolith via the "thiol-ene" click reaction to form AAPBA-silica hybrid affinity monolith. The reaction conditions for the preparation of AAPBA-silica hybrid affinity monolith were optimized, including the ratio of TMOS to MPTMS, the contents of poly(ethylene glycol) (PEG) and methanol. The morphology and mechanical stability of the boronate affinity monolith were characterized and evaluated by scanning electron microscopy and Fourier-transform infrared spectroscopy. The obtained boronate affinity hybrid monolith exhibited excellent specificity toward the nucleosides containing cis-diols under neutral conditions. It was further applied to the specific capture of the glycoproteins ovalbumin and horseradish peroxidase. The method is novel and reliable, which has a great potential for the preparation of different kinds of the boronate affinity monoliths.

  7. Novel sesquiterpenes from Schisandra grandiflora: isolation, cytotoxic activity and synthesis of their triazole derivatives using "click" reaction.

    PubMed

    Poornima, B; Siva, Bandi; Shankaraiah, G; Venkanna, A; Nayak, V Lakshma; Ramakrishna, Sistla; Venkat Rao, C; Babu, K Suresh

    2015-03-06

    Phytochemical investigation of hexane extract from the fruits of Schisandra grandiflora afforded three novel sesquiterpenes (1-3) along with the three known compounds (4-6). The structures of these isolates were determined by extensive analysis of spectroscopic data (1D, 2D NMR). Further, a series of triazole analogues of 3 and 4 were prepared using "Click" reaction protocol. The reaction scheme involving one-carbon homologation of 3 and 4 using the Bestmann-Ohira reagent followed by regioselective Huisgen 1,3-dipolar cycloaddition reaction of various azides leading to the formation of triazole analogues (20a-20k &21a-21c) which is being reported for the first time. All the triazole products were characterized using spectral data analysis. The anti-proliferative activity of the isolates and the synthetic analogues were studied against Hela (Cervical cancer), A549 (Lung cancer), DU-145 (Prostate cancer), MCF-7 (Breast cancer) and B-16 (Mouse melanoma) cancer cell lines.

  8. Photodynamic therapy via FRET following bioorthogonal click reaction in cancer cells.

    PubMed

    Bio, Moses; Rajaputra, Pallavi; You, Youngjae

    2016-01-01

    Longer wavelength light (650-800nm) is desired to treat large tumors in photodynamic therapy (PDT). However, shorter wavelength light is needed in PDT for thin tumors, not to cause undesirable local side effects. We proposed a strategy for stepwise optical imaging and PDT using a bioorthogonal click chemistry and fluorescence resonance energy transfer (FRET). We prepared azidyl rhodamine (Rh-N3, clickable FD) and cyclooctynyl phthalocyanine [Pc-(DIBAC), clickable PS], with which, here, we demonstrate that the non-catalytic click chemistry is rapid and efficient in cancer cells and FRET from a fluorescence dye (FD) to a photosensitizer (PS) is sufficient to generate enough singlet oxygen killing cancer cells by using shorter wavelength light.

  9. Initiator and Photocatalyst-Free Visible Light Induced One-Pot Reaction: Concurrent RAFT Polymerization and CuAAC Click Reaction.

    PubMed

    Wang, Jie; Wang, Xinbo; Xue, Wentao; Chen, Gaojian; Zhang, Weidong; Zhu, Xiulin

    2016-05-01

    A new, visible light-catalyzed, one-pot and one-step reaction is successfully employed to design well-controlled side-chain functionalized polymers, by the combination of ambient temperature revisible addtion-fragmentation chain transfer (RAFT) polymerization and click chemistry. Polymerizations are well controlled in a living way under the irradiation of visible light-emitting diode (LED) light without photocatalyst and initiator, using the trithiocarbonate agent as iniferter (initiator-transfer agent-terminator) agent at ambient temperature. Fourier transfer infrared spectroscopy (FT-IR), NMR, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) data confirm the successful one-pot reaction. Compared to the reported zero-valent metal-catalyzed one-pot reaction, the polymerization rate is much faster than that of the click reaction, and the visible light-catalyzed one-pot reaction can be freely and easily regulated by turning on and off the light.

  10. Bifunctional nanoparticles with magnetism and NIR fluorescence: controlled synthesis from combination of AGET ATRP and 'click' reaction.

    PubMed

    He, Weiwei; Cheng, Liang; Zhang, Lifen; Jiang, Xiaowu; Liu, Zhuang; Cheng, Zhenping; Zhu, Xiulin

    2014-01-31

    In this work, bifunctional nanoparticles (NPs) capable of emitting near infrared (NIR) fluorescence and generating superparamagnetism under an external magnetic field were prepared by combination of 'click' reaction and surface-initiated activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP) of water-soluble poly(ethylene glycol) monomethyl ether methacrylate (PEGMA) and glycidyl methacrylate (GMA) using biocompatible iron as the catalyst on the surface of silica-coated iron oxide (Fe3O4@SiO2) NPs. The nanosized Fe3O4@SiO2@PPEGMA-co-PGMA@N3 was prepared through AGET ATRP and alkynyl bearing NIR dye was also prepared; afterwards they were integrated together by 'click' reaction. The different stages of surface modification were approved by employing different characterization techniques such as TEM, XRD, XPS, VSM and FT-IR, and the properties of the final NPs were thoroughly studied. Their suitability as dual model imaging agents for magnetic resonance (MR) and fluorescence imaging was investigated, indicating them to be a competitive candidate for imaging contrast agents.

  11. Ultrasensitive detection of DNA and RNA based on enzyme-free click chemical ligation chain reaction on dispersed gold nanoparticles.

    PubMed

    Kato, Daiki; Oishi, Motoi

    2014-10-28

    An ultrasensitive colorimetric DNA and RNA assay using a combination of enzyme-free click chemical ligation chain reaction (CCLCR) on dispersed gold nanoparticles (GNPs) and a magnetic separation process has been developed. The click chemical ligation between an azide-containing probe DNA-modified GNP and a dibenzocyclooctyne-containing probe biotinyl DNA occurred through hybridization with target DNA (RNA) to form the biotinyl-ligated GNPs (ligated products). Eventually, both the biotinyl-ligated GNPs and target DNA (RNA) were amplified exponentially using thermal cycling. After separation of the biotinyl-ligated GNPs using streptavidin-modified magnetic beads, the change in intensity of the surface plasmon band at 525 nm in the supernatants was observed by UV/vis measurement and was also evident visually. The CCLCR assay provides ultrasensitive detection (50 zM: several copies) of target DNA that is comparable to PCR-based approaches. Note that target RNA could also be detected with similar sensitivity without the need for reverse transcription to the corresponding cDNA. The amplification efficiency of the CCLCR assay was as high as 82% due to the pseudohomogeneous reaction behavior of CCLCR on dispersed GNPs. In addition, the CCLCR assay was able to discriminate differences in single-base mismatches and to specifically detect target DNA and target RNA from the cell lysate.

  12. Enhanced osteogenic differentiation of MC3T3-E1 on rhBMP-2-immobilized titanium via click reaction.

    PubMed

    Kim, Eun-Cheol; Kim, Tae-Hee; Jung, Jae-Hoon; Hong, Sung Ok; Lee, Deok-Won

    2014-03-15

    In the present study, we report about the efficacy of titanium surface-immobilized with bone morphogenetic protein-2 (BMP-2) via click reaction on enhanced osteogenic differentiation of MC3T3-E1 cells. The surface was characterized by static contact angles and XPS measurements, which indicated that pristine titanium (Ti-1) was successfully surface-modified via click chemistry (aminated titanium, Ti-4). By quantitative analysis of heparin immobilized on aminated titanium (Ti-4), we found that the Ti-4 can be used as a good candidate to immobilize biomolecules such as heparin. BMP-2 from titanium immobilized with BMP-2 (Ti-6) was released for a period of 28 days in a sustained manner. The highest proliferation rate of MC3T3-E1 cells was observed on Ti-6. Through in vitro tests including alkaline phosphatase (ALP) activity, calcium deposition and real-time polymerase chain reaction (real-time PCR), we found that Ti-6 can be used as a good implant to enhance the osteogenic differentiation of MC3T3-E1 cells.

  13. Quantitative fluorine NMR to determine carbohydrate density on glyconanomaterials synthesized from perfluorophenyl azide-functionalized silica nanoparticles by click reaction.

    PubMed

    Kong, Na; Zhou, Juan; Park, JaeHyeung; Xie, Sheng; Ramström, Olof; Yan, Mingdi

    2015-09-15

    A quantitative fluorine NMR ((19)F qNMR) method was developed to determine the carbohydrate density on glyconanomaterials. Mannose (Man)- and galactose (Gal)-conjugated silica nanoparticles (SNPs) were synthesized from perfluorophenyl azide (PFPA)-functionalized SNPs and propargylated Man or Gal by copper-catalyzed azide-alkyne cycloaddition (click reaction). After treating PFPA-SNPs or Man-SNPs with hydrofluoric acid followed by lyophilization, the remaining residues were directly subjected to (19)F NMR analysis. The density of PFPA on PFPA-SNP was determined to be 7.7 ± 0.2 × 10(-16) nmol/nm(2) and Man on Man-SNP to be 6.4 ± 0.2 × 10(-16) nmol/nm(2) giving a yield of ∼83% for the click coupling reaction. The apparent dissociation constant (Kd) of Man-SNPs with fluorescein isothiocyanate (FITC)-concanavalin A (Con A) was determined using a fluorescence competition assay to be 0.289 ± 0.003 μM, which represents more than 3 orders of magnitude affinity increase compared to free Man with Con A.

  14. Synthesis of the dendritic type β-cyclodextrin on primary face via click reaction applicable as drug nanocarrier.

    PubMed

    Toomari, Yousef; Namazi, Hassan; Akbar, Entezami Ali

    2015-11-05

    The objective of this study was the syntheses of well-defined glycodendrimer with entrapment efficiency by click reactions, with β-cyclodextrins (β-CDs) moiety to keep the biocompatibility properties, besides especially increase their capacity to load numerous appropriate sized guests. The original dendrimer containing β-CD in both periphery and central was synthesized using click reaction. The entrapment property of the β-CD-dendrimer was studied by methotrexate (MTX) drug. The chemical structure of β-CD-dendrimer was characterized by (1)H NMR, (13)C NMR and FTIR and its inclusion complex structure were investigated by SEM, DLS, DSC and FTIR techniques. The cytotoxic effect of obtained compound and its inclusion complex with MTX was analyzed using MTT test. The MTT test exhibited that the synthesized compound was not cytotoxic to the cell line considered. The in vitro drug release study turned out that the obtained β-CD dendrimer could be a suitable controlled drug delivery system for cancer treatment.

  15. Versatile method for AFM-tip functionalization with biomolecules: fishing a ligand by means of an in situ click reaction

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Ramakrishna, Shivaprakash N.; Naik, Vikrant V.; Chu, Zonglin; Drew, Michael E.; Spencer, Nicholas D.; Yamakoshi, Yoko

    2015-04-01

    A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions.A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions. Electronic supplementary information (ESI) available: Experimental details with synthesis and characterization of compounds. Procedures for modifications of Au surfaces and AFM tips. AFM images and full PM-IRRAS spectra of modified surfaces. Detailed procedure for QCM measurement. A table showing ligand-receptor interaction probability. NMR, IR and MS charts. See DOI: 10.1039/c5nr01495f

  16. Efficient method for iodine radioisotope labeling of cyclooctyne-containing molecules using strain-promoted copper-free click reaction.

    PubMed

    Jeon, Jongho; Kang, Jung Ae; Shim, Ha Eun; Nam, You Ree; Yoon, Seonhye; Kim, Hye Rim; Lee, Dong Eun; Park, Sang Hyun

    2015-07-01

    Herein we report an efficient method for iodine radioisotope labeling of cyclooctyne-containing molecules using copper-free click reaction. For this study, radioiodination using the tin precursor 2 was carried out at room temperature to give (125)I-labeled azide ([(125)I]1) with high radiochemical yield (85%) and excellent radiochemical purity. Dibenzocyclooctyne (DBCO) containing cRGD peptide and gold nanoparticle were labeled with [(125)I]1 at 37°C for 30min to give triazoles with good radiochemical yields (67-95%). We next carried out tissue biodistribution study of [(125)I]1 in normal ICR mice to investigate the level of organ accumulation which needs to be considered for pre-targeted in vivo imaging. Large amount of [(125)I]1 distributed rapidly in liver and kidney from bloodstream and underwent rapid renal and hepatobiliary clearance. Moreover [(125)I]1 was found to be highly stable (>92%) in mouse serum for 24h. Therefore [(125)I]1 could be used as a potentially useful radiotracer for pre-targeted imaging. Those results clearly indicated that the present radiolabeling method using copper free click reaction would be quite useful for both in vitro and in vivo labeling of DBCO group containing molecules with iodine radioisotopes.

  17. Chemical Modification of Cyclodextrin and Amylose by Click Reaction and Its Application to the Synthesis of Poly-alkylamine-Modified Antibacterial Sugars.

    PubMed

    Yamamura, Hatsuo

    2017-01-01

    Cyclodextrin (CD) can be chemically modified into desired and sophisticated functional molecules. However, poly-modification often produces complicated mixtures, resulting in a low yield of the desired product. As the most promising procedure to solve such problems and to achieve poly-modification of the CD molecule, we present here the Huisgen 1,3-dipolar cycloaddition, known as a click reaction. This review will describe the results of our microwave-assisted click reaction for the poly-modification of CD and amylose molecules, and its application to the study of synthetic membrane active antibacterial derivatives.

  18. Click Reaction on Solid Phase Enables High Fidelity Synthesis of Nucleobase-Modified DNA.

    PubMed

    Tolle, Fabian; Rosenthal, Malte; Pfeiffer, Franziska; Mayer, Günter

    2016-03-16

    The post-synthetic functionalization of nucleic acids via click chemistry (CuAAC) has seen tremendous implementation, extending the applicability of nucleobase-modified nucleic acids in fields like fluorescent labeling, nanotechnology, and in vitro selection. However, the production of large quantities of high-density functionalized material via solid phase synthesis has been hampered by oxidative by-product formation associated with the alkaline workup conditions. Herein, we describe a rapid and cost-effective protocol for the high fidelity large-scale production of nucleobase-modified nucleic acids, exemplified with a recently described nucleobase-modified aptamer.

  19. Copper Contamination of Self-Assembled Organic Monolayer Modified Silicon Surfaces Following a "Click" Reaction Characterized with LAPS and SPIM.

    PubMed

    Wu, Fan; Zhang, De-Wen; Wang, Jian; Watkinson, Michael; Krause, Steffi

    2017-04-04

    A copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) reaction combined with microcontact printing was used successfully to pattern alkyne-terminated self-assembled organic monolayer-modified silicon surfaces. Despite the absence of a copper peak in X-ray photoelectron spectra, copper contamination was found and visualized using light-addressable potentiometric sensors (LAPS) and scanning photo-induced impedance microscopy (SPIM) after the "click"-modified silicon surfaces were rinsed with hydrochloric acid (HCl) solution, which was frequently used to remove copper residues in the past. Even cleaning with an ethylenediaminetetraacetic acid (EDTA) solution did not remove the copper residue completely. Different strategies for avoiding copper contamination, including the use of bulky chelators for the copper(I) catalyst and rinsing with different reagents, were tested. Only cleaning of the silicon surfaces with an EDTA solution containing trifluoroacetic acid (TFA) after the click modification proved to be an effective method as confirmed by LAPS and SPIM results, which showed the expected potential shift due to the surface charge introduced by functional groups in the monolayer and allowed, for the first time, imaging the impedance of an organic monolayer.

  20. Tethering antimicrobial peptides onto chitosan: Optimization of azide-alkyne "click" reaction conditions.

    PubMed

    Barbosa, Mariana; Vale, Nuno; Costa, Fabíola M T A; Martins, M Cristina L; Gomes, Paula

    2017-06-01

    Antimicrobial peptides (AMP) are promising alternatives to classical antibiotics, due to their high specificity and potency at low concentrations, and low propensity to elicit pathogen resistance. Immobilization of AMP onto biomaterials is an emergent field of research, towards creation of novel antimicrobial materials able to avoid formation of biofilms on the surfaces of medical devices. Herein, we report the chemical route towards one such material, where chitosan was used as biocompatible carrier for the covalent grafting of Dhvar-5, a well-known potent AMP, via the chemoselective ("click") Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The material's structure, as well as peptide loading, were confirmed by Fourier-transformed infra-red (FT-IR) and X-ray photoelectron (XPS) spectroscopies, and by Amino Acid Analysis (AAA), respectively. Results herein reported demonstrate that, with proper optimization, the "click" CuAAC is an attractive approach for the tethering of AMP onto chitosan, in order to create novel antimicrobial materials potentially valuable for biomedical applications.

  1. Construction of triazolyl bidentate glycoligands (TBGs) by grafting of 3-azidocoumarin to epimeric pyranoglycosides via a fluorogenic dual click reaction.

    PubMed

    Xue, Jia-Lu; He, Xiao-Peng; Yang, Jin-Wei; Shi, De-Tai; Cheng, Chao-Ying; Xie, Juan; Chen, Guo-Rong; Chen, Kaixian

    2012-12-01

    Glycoligands, which feature a glycoside as the central template incorporating Lewis bases as metal chelation sites and various fluorophores as the chemical reporter, represent a range of interesting scaffolds for development of chemosensors. Here, new types of triazolyl bidentate glycoligands (TBGs) based on the grafting of 3-azidocoumarin to the C2,3- or C4,6-positions of three epimeric pyranoglycosides including a glucoside, a galactoside, and a mannoside were efficiently synthesized via a fluorogenic dual click reaction assisted by microwave irradiation. The desired TBGs were afforded in high conversion rates (>90%) and reasonable yields (∼70%). Moreover, a preliminary optical study of two hydroxyl-free glucoside-based TBGs indicates that these compounds are strongly fluorescent in pure water, implying their potential for ion detections in aqueous media.

  2. Facile fabrication of bactericidal and antifouling switchable chitosan wound dressing through a 'click'-type interfacial reaction.

    PubMed

    Wang, Xianghong; Yuan, Shuaishuai; Guo, Yu; Shi, Dean; Jiang, Tao; Yan, Shunjie; Ma, Jiao; Shi, Hengchong; Luan, Shifang; Yin, Jinghua

    2015-12-01

    A facile approach to functionalize chitosan (CS) non-woven surface with the bactericidal and antifouling switchable moieties is presented. Azlactone-cationic carboxybetaine ester copolymer was firstly prepared, then chemically attached onto CS non-woven surface through the fast and efficient 'click'-type interfacial reaction between CS primary amines and azlactone moieties. The CS non-woven surface functionalized with cationic carboxybetaine esters is able to kill bacteria effectively. Upon the hydrolysis of carboxybetaine esters into zwitterionic groups, the resulting zwitterionic surface can further prevent the attachment of proteins, platelets, erythrocytes and bacteria. This CS non-woven that switches from bactericidal performance during storage to antifouling property before its service has great potential in wound dressing applications.

  3. Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor.

    PubMed

    Yoon, Hong Yeol; Shin, Min Lee; Shim, Man Kyu; Lee, Sangmin; Na, Jin Hee; Koo, Heebeom; Lee, Hyukjin; Kim, Jong-Ho; Lee, Kuen Yong; Kim, Kwangmeyung; Kwon, Ick Chan

    2017-03-15

    Biological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles. We observed that azide-containing chemical reporters were successfully generated onto surface glycans of various tumor cells such as lung cancer (A549), brain cancer (U87), and breast cancer (BT-474, MDA-MB231, MCF-7) via metabolic engineering in vitro. In addition, we compared tumor targeting of artificial azide reporter with bicyclononyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-CNPs) and integrin αvβ3 with cyclic RGD-conjugated CNPs (cRGD-CNPs) in vitro and in vivo. Fluorescence intensity of azide-reporter-targeted BCN-CNPs in tumor tissues was 1.6-fold higher and with a more uniform distribution compared to that of cRGD-CNPs. Moreover, even in the isolated heterogeneous U87 cells, BCN-CNPs could bind artificial azide reporters on tumor cells more uniformly (∼92.9%) compared to cRGD-CNPs. Therefore, the artificial azide-reporter-targeting strategy can be utilized for targeting heterogeneous tumor cells via bioorthogonal click reaction and may provide an alternative method of tumor targeting for further investigation in cancer therapy.

  4. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry.

    PubMed

    Dong, Jiajia; Krasnova, Larissa; Finn, M G; Sharpless, K Barry

    2014-09-01

    Aryl sulfonyl chlorides (e.g. Ts-Cl) are beloved of organic chemists as the most commonly used S(VI) electrophiles, and the parent sulfuryl chloride, O2 S(VI) Cl2 , has also been relied on to create sulfates and sulfamides. However, the desired halide substitution event is often defeated by destruction of the sulfur electrophile because the S(VI) Cl bond is exceedingly sensitive to reductive collapse yielding S(IV) species and Cl(-) . Fortunately, the use of sulfur(VI) fluorides (e.g., R-SO2 -F and SO2 F2 ) leaves only the substitution pathway open. As with most of click chemistry, many essential features of sulfur(VI) fluoride reactivity were discovered long ago in Germany.6a Surprisingly, this extraordinary work faded from view rather abruptly in the mid-20th century. Here we seek to revive it, along with John Hyatt's unnoticed 1979 full paper exposition on CH2 CH-SO2 -F, the most perfect Michael acceptor ever found.98 To this history we add several new observations, including that the otherwise very stable gas SO2 F2 has excellent reactivity under the right circumstances. We also show that proton or silicon centers can activate the exchange of SF bonds for SO bonds to make functional products, and that the sulfate connector is surprisingly stable toward hydrolysis. Applications of this controllable ligation chemistry to small molecules, polymers, and biomolecules are discussed.

  5. Rapid approach to biobased telechelics through two one-pot thiol-ene click reactions.

    PubMed

    Lluch, Cristina; Ronda, Joan C; Galià, Marina; Lligadas, Gerard; Cádiz, Virginia

    2010-06-14

    The application of environmentally friendly thiol-ene chemistry to the preparation of biobased telechelics is presented in this work. This methodology is based on two one-pot photoinitiated thiol-ene click processes: step-growth polymerization using a 3,6-dioxa-1,8-octanedithiol and end-group postpolymerization modification with three functional thiols: 2-mercaptoethanol, 3-mercaptopropionic acid, and 3-mercaptopropyltrimethoxysilane. We applied this approach to a potentially 100% biomass-derived monomer, allyl ester of 10-undecenoic acid (UDA). To show the generality and scope of this methodology, a series of well-defined telechelics with molecular weight ranging from 1000-3000 g/mol and hydroxyl, carboxyl, or trimethoxysilyl groups at the polymer terminus were prepared. An exhaustive (1)H NMR and MALDI-TOF MS analyses demonstrates the highly end-group fidelity of this methodology being an interesting procedure for the accelerated preparation of telechelics derived from divinyl monomers. UDA-based thelechelic diol prepared using this methodology was reacted with 4,4'-methylenebis(phenylisocyanate) and 1,4-butanediol as the chain extender to obtain multiblock poly(ester urethane).

  6. 64Cu-labeled somatostatin analogues conjugated with cross-bridged phosphonate-based chelators via strain-promoted click chemistry for PET imaging: in silico through in vivo studies.

    PubMed

    Cai, Zhengxin; Ouyang, Qin; Zeng, Dexing; Nguyen, Kim N; Modi, Jalpa; Wang, Lirong; White, Alexander G; Rogers, Buck E; Xie, Xiang-Qun; Anderson, Carolyn J

    2014-07-24

    Somatostatin receptor subtype 2 (sstr2) is a G-protein-coupled receptor (GPCR) that is overexpressed in neuroendocrine tumors. The homology model of sstr2 was built and was used to aid the design of new somatostatin analogues modified with phosphonate-containing cross-bridged chelators for evaluation of using them as PET imaging radiopharmaceuticals. The new generation chelators were conjugated to Tyr3-octreotate (Y3-TATE) through bioorthogonal, strain-promoted alkyne azide cycloaddition (SPAAC) to form CB-TE1A1P-DBCO-Y3-TATE (AP) and CB-TE1K1P-PEG4-DBCO-Y3-TATE (KP) in improved yields compared to standard direct conjugation methods of amide bond formation. Consistent with docking studies, the clicked bioconjugates showed high binding affinities to sstr2, with Kd values ranging from 0.6 to 2.3 nM. Selected isomers of the clicked products were used in biodistribution and PET/CT imaging. Introduction of the bulky dibenzocyclooctyne group in AP decreased clearance rates from circulation. However, the additional carboxylate group and PEG linker from the KP conjugate significantly improved labeling conditions and in vivo stability of the copper complex and ameliorated the slower pharmacokinetics of the clicked somatostatin analogues.

  7. Sunlight-driven copper-catalyst activation applied to photolatent click chemistry.

    PubMed

    Beniazza, Rédouane; Lambert, Romain; Harmand, Lydie; Molton, Florian; Duboc, Carole; Denisov, Sergey; Jonusauskas, Gedeminas; McClenaghan, Nathan D; Lastécouères, Dominique; Vincent, Jean-Marc

    2014-10-06

    The synthesis, full characterization, photoreduction properties, and catalytic activity for the copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction of a copper(II)-DMEDA (N,N'-dimethylethylendiamine) complex is reported. Spectroscopic studies (UV/Vis, EPR) demonstrated that under daylight illumination highly effective copper(II) to copper(I) reduction occurs in this complex. These findings are in agreement with a high photoreduction quantum yield value of 0.22 in MeOH, and a value approaching unity as determined in THF. The reduction process, which can also be conducted by irradiation at 365 nm by using a standard TLC (thin layer chromatography) lamp, is ascribed to a highly efficient photoinduced electron transfer (PET) process mediated by the benzophenone photosensitizer present in the carboxylate counterion. Having deaerated the reaction mixture, the photogenerated copper(I) species proved to be highly active for the CuAAC reaction, demonstrated by reactions conducted with low catalyst loading (0.5 mol %) on a range of clickable protected and non-protected mono- and disaccharides. Once initiated, the reaction can be stopped at any time on introducing air into the reaction medium. Deoxygenation followed by irradiation restores the activity, making the copper(II)-DMEDA complex a switchable catalyst of practical value.

  8. The synthesis and characterization of nonperipherally tetra terminal alkynyl substituted phthalocyanines and glycoconjugation via the click reaction.

    PubMed

    Kanat, Zeliha; Dinçer, Hatice

    2014-06-21

    In order to obtain nonperipherally tetra terminal alkynyl substituted phthalocyanines (Pcs), new 3-pent-4-ynyloxy phthalonitrile (3) was prepared by the nucleophilic displacement reaction of 3-nitrophthalonitrile (1) and 4-pentyn-1-ol (2) and then cyclotetramerization was attained in the presence of zinc acetate, cobalt acetate, and/or DBU in n-pentanol without protection/deprotection. For the first time, the glycoconjugation of the nonperipherally tetra terminal alkynyl substituted zinc phthalocyanine (ZnPc) (6) can be easily achieved via the click reaction in a high yield. The electronic absorption spectrum of the glucopyranosyl substituted ZnPc (10) derivative showed a red-shifted Q band at 751 nm in dichloromethane due to the protonation of the meso nitrogens of the Pc macrocycle. Deacylation yielded ZnPc (11) bearing glucose substituents at nonperipheral positions with an improved water-solubility and non-aggregation in DMSO. The chemical structures of the new compounds were characterized by (1)H NMR, (13)C NMR, FT-IR, UV-Vis, mass spectrometry and elemental analysis. Moreover, the phthalonitrile compound was characterized using X-ray.

  9. The "click" reaction involving metal azides, metal alkynes, or both: an exploration into multimetal structures.

    PubMed

    Casarrubios, Luis; de la Torre, María C; Sierra, Miguel A

    2013-03-11

    Cu(I) -catalyzed 1,3-cycloaddition of azides and alkynes (CuAAC) is one of the most powerful synthetic methodologies known. However, its use to prepare well-defined multimetallic structures is underdeveloped. Apart from the applications of this reaction to anchor different organometallic reagents to surfaces, polymers, and dendrimers, only isolated examples of CuAAC with metal-η(1) -alkyne and metal-azide complexes to prepare multimetal entities have been reported. This concept sketches the potential of these reactions not only to prepare "a la carte" multimetal 1,2,3-triazole derivatives, but also to discover new and unprecedented reactions.

  10. Synthesis of Well-Defined Miktoarm Star Copolymer composed of Poly(3-hexylthiophene) and Poly(methyl methacrylate) via combining anionic polymerization and click reaction

    NASA Astrophysics Data System (ADS)

    Park, Jicheol; Moon, Hong Chul; Kim, Jin Kon

    2013-03-01

    We synthesized well-defined miktoarm star copolymer composed of regioregular poly(3-hexylthiophene) and poly(methyl methacrylate) ((P3HT)2- b-PMMA) by combining anionic polymerization and click reaction. First, we synthesized PMMA terminated with 1,3,5-tris(bromomethy)lbenzene (PMMA-(br)2) by anionic polymerization. Then, the bromide end groups transformed to azide group (PMMA-(N3)2) . For the synthesis (P3HT)2- b-PMMA, click reaction between ethynyl-capped P3HT and PMMA-(N3)2 was performed. The optical property and thin film morphology of (P3HT)2- b-PMMA were investigated by using UV-Vis spectra and atomic force microscopy, respectively.

  11. Synthesis: Click chemistry gets reversible

    NASA Astrophysics Data System (ADS)

    Fulton, David A.

    2016-10-01

    'Click' chemistry allows for the linking together of chemical modules, however, there are currently no methods that also allow for facile 'declicking' to unlink them. Now, a method has been developed to click together amines and thiols, and then allow a chemically triggered declick reaction to release the original molecular components.

  12. Synthesis of a Nanostructured Composite: Octakis(1-propyl-1H-1,2,3-triazole-4-yl(methyl 2-chlorobenzoate))octasilsesquioxane via Click Reaction.

    PubMed

    Ghodsi, Mohammadi Ziarani; Shakiba Nahad, Monireh; Lashgari, Negar; Alireza, Badiei

    2015-01-01

    Octakis(1-propyl-1H-1,2,3-triazole-4-yl(methyl 2-chlorobenzoate))octasilsesquioxanes as functionalized silsesquioxanes were synthesized via click reaction (copper-catalyzed Huisgen 1,3-dipolar cycloaddition reaction) between azidemoiety functionalized silsesquioxane and prop-2-ynyl 2-chlorobenzoate. The latter one was synthesized via the condensation reaction of propargyl alcohol and 2-chlorobenzoyl chloride in the presence of SBA-Pr-NH(2) (Santa Barbara Amorphous type material) as a nano basic catalyst. This approach provides a simple and convenient route to efficiently functionalize a wide range of new structures on the surface of silsesquioxanes.

  13. New Bio-Based Materials From Vegetable Oil: Amination and Click Reactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For some time we have been interested in utilizing vegetable oils as cheap and bio-renewable raw materials. We have found derivatization reactions with nitrogen-containing reagents to be good pathways to achieve a range of new vegetable oil-based products. One of our approaches is to derivatize ep...

  14. Adjusting the surface areal density of click-reactive azide groups by kinetic control of the azide substitution reaction on bromine-functional SAMs.

    PubMed

    Zhang, Shuo; Maidenberg, Yanir; Luo, Kai; Koberstein, Jeffrey T

    2014-06-03

    Azide-alkyne click chemistry has emerged as an important and versatile means for tethering a wide variety of guest molecules to virtually any substrate. In many of these applications, it is important to exercise control over the areal density of surface functional groups to achieve a desired areal density of the tethered guest molecule of interest. We demonstrate herein that the areal density of surface azide groups on flat germanium surfaces and nanoparticle substrates (silica and iron oxide) can be controlled kinetically by appropriately timed quenching of the S(N)2 substitution reaction of bromo-alkane-silane monolayers induced by the addition of sodium azide. The kinetics of the azide substitution reaction on monolayers formed on flat Ge substrates, determined by attenuated total reflection infrared spectroscopy (ATR-IR), are found to be identical to those for monolayers formed on both silica and iron oxide nanoparticles, the latter determined by transmission infrared spectroscopy. To validate the method, the percentages of surface bromine groups converted to azide groups after various reaction times were measured by quenching the S(N)2 reaction followed by analysis with ATR-IR (for Ge) and thermogravimetric analysis (after a subsequent click reaction with an alkyne-terminal polymer) for the nanoparticle substrates. The conversions found after quenching agree well with those expected from the standard kinetic curves. The latter result suggests that the kinetic method for the control of azide group areal density is a versatile means for functionalizing substrates with a prescribed areal density of azide groups for subsequent click reactions, and that the method is universal for any substrate, flat or nanoparticle, that can be modified with bromo-alkane-silane monolayers. Regardless of the surface geometry, we find that the azide substitution reaction is complete within 2-3 h, in sharp contrast to previous reports that indicate times of 48-60 h required for

  15. The Diels-Alder-Reaction with inverse-Electron-Demand, a very efficient versatile Click-Reaction Concept for proper Ligation of variable molecular Partners

    PubMed Central

    Wiessler, Manfred; Waldeck, Waldemar; Kliem, Christian; Pipkorn, Ruediger; Braun, Klaus

    2010-01-01

    The ligation of active pharmaceutical ingredients (API) for working with image processing systems in diagnostics (MRT) attracts increasing notice and scientific interest. The Diels-Alder ligation Reaction with inverse electron demand (DARinv) turns out to be an appropriate candidate. The DARinv is characterized by a specific distribution of electrons of the diene and the corresponding dienophile counterpart. Whereas the reactants in the classical Diels-Alder Reaction feature electron-rich diene and electron-poor dienophile compounds, the DARinv exhibits exactly the opposite distribution of electrons. Substituents with pushing electrones increase and, with pulling electrons reduce the electron density of the dienes as used in the DARinv. We report here that the DARinv is an efficient route for coupling of multifunctional molecules like active peptides, re-formulated drugs or small molecules like the alkyalting agent temozolomide (TMZ). This is an example of our contribution to the "Click chemistry" technology. In this case TMZ is ligated by DARinv as a cargo to transporter molecules facilitating the passage across the cell membranes into cells and subsequently into subcellular components like the cell nucleus by using address molecules. With such constructs we achieved high local concentrations at the desired target site of pharmacological action. The DARinv ligation was carried out using the combination of several technologies, namely: the organic chemistry and the solid phase peptide synthesis which can produce 'tailored' solutions for questions not solely restricted to the medical diagnostics or therapy, but also result in functionalizations of various surfaces qualified amongst others also for array development. We like to acquaint you with the DARinv and we like to exemplify that all ligation products were generated after a rapid and complete reaction in organic solutions at room temperature, in high purity, but also, hurdles and difficulties on the way to the

  16. "Click" reaction mediated synthesis of costunolide and dehydrocostuslactone derivatives and evaluation of their cytotoxic activity.

    PubMed

    Pavan Kumar, Ch; Devi, A; Ashok Yadav, P; Rao Vadaparthi, R; Shankaraiah, G; Sowjanya, P; Jain, Nishant; Suresh Babu, K

    2016-11-01

    As part of pharmacological-phytochemical integrated studies on medicinal plants from Indian flora, costunolide (1) and dehydrocostus lactone (2), were isolated as major phytochemicals from Saussurea lappa, a plant traditionally used in different Asian systems of medicine. A series of 1,4-disubstituted-1,2,3-triazoles conjugates were synthesized through diastereo selective Michael addition followed by regioselective Huisgen 1,3-dipolar cycloaddition reactions. All these triazolyl derivatives (5a-5j) & (7a-7j) were well characterized using modern spectroscopic techniques and evaluated for their anticancer activity against a panel of five human cancerous celllines. The results indicated that all the analogs displayed moderate cytotoxic activity.

  17. Simple plate-based, parallel synthesis of disulfide fragments using the CuAAC click reaction.

    PubMed

    Turner, David M; Tom, Christopher T M B; Renslo, Adam R

    2014-12-08

    Disulfide exchange screening is a site-directed approach to fragment-based lead discovery that requires a bespoke library of disulfide-containing fragments. Previously, we described a simple one-pot, two-step synthesis of disulfide fragments from amine- or acid-bearing starting materials. Here, we describe the synthesis of disulfide fragments that bear a 1,4-substituted-1,2,3-triazole linkage between disulfide and molecular diversity element. This work establishes the compatibility of copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry with a one-pot, two-step reaction sequence that can be readily parallelized. We performed 96 reactions in a single deep-well microtiter plate, employing 48 alkynes and two different azide linker reagents. From this effort, a total of 81 triazole-containing disulfide fragments were obtained in useful isolated yields. Thus, CuAAC chemistry offers an experimentally convenient method to rapidly prepare disulfide fragments that are structurally distinct from fragments accessed via amide, sulfonamide, or isocyanate chemistries.

  18. Enzyme-free and isothermal detection of microRNA based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction signal amplification.

    PubMed

    Oishi, Motoi

    2015-05-01

    An enzyme-free and isothermal microRNA (miRNA) detection method has been developed based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction (HCR) on magnetic beads (MBs). The click-chemical ligation between an azide-modified probe DNA and a dibenzocyclooctyne-modified probe DNA occurred through the hybridization of target miRNA (miR-141). HCR on MBs was performed by the addition of DNA hairpin monomers (H1 and H2). After magnetic separation and denaturation/rehybridization of HCR products ([H1/H2] n ), the resulting HCR products were analyzed by the fluorescence emitted from an intercalative dye, allowing amplification of the fluorescent signal. The proposed assay had a limit of detection of 0.55 fmol, which was 230-fold more sensitive than that of the HCR on the MBs coupled with a conventional sandwich hybridization assay (without click-chemical ligation) (limit of detection 127 fmol). Additionally, the proposed assay could discriminate between miR-141 and other miR-200 family members. In contrast to quantitative reverse transcription polymerase chain reaction techniques using enzymes and thermal cycling, this is an enzyme-free assay that can be conducted under isothermal conditions and can specifically detect miR-141 in fetal bovine serum.

  19. Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor

    NASA Astrophysics Data System (ADS)

    Diehl, Katharine L.; Kolesnichenko, Igor V.; Robotham, Scott A.; Bachman, J. Logan; Zhong, Ye; Brodbelt, Jennifer S.; Anslyn, Eric V.

    2016-10-01

    The coupling and decoupling of molecular units is a fundamental undertaking of organic chemistry. Herein we report the use of a very simple conjugate acceptor, derived from Meldrum's acid, for the sequential ‘clicking’ together of an amine and a thiol in aqueous conditions at neutral pH. Subsequently, this linkage can be ‘declicked’ by a chemical trigger to release the original amine and thiol undisturbed. The reactivity differs from that of other crosslinking agents because the selectivity for sequential functionalization derives from an altering of the electrophilicity of the conjugate acceptor on the addition of the amine. We describe the use of the procedure to modify proteins, create multicomponent libraries and synthesize oligomers, all of which can be declicked to their starting components in a controlled fashion when desired. Owing to the mild reaction conditions and ease of use in a variety of applications, the method is predicted to have wide utility.

  20. Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne "click reaction".

    PubMed

    Jin, Liqun; Tolentino, Daniel R; Melaimi, Mohand; Bertrand, Guy

    2015-06-01

    The copper-catalyzed 1,3-dipolar cycloaddition of an azide to a terminal alkyne (CuAAC) is one of the most popular chemical transformations, with applications ranging from material to life sciences. However, despite many mechanistic studies, direct observation of key components of the catalytic cycle is still missing. Initially, mononuclear species were thought to be the active catalysts, but later on, dinuclear complexes came to the front. We report the isolation of both a previously postulated π,σ-bis(copper) acetylide and a hitherto never-mentioned bis(metallated) triazole complex. We also demonstrate that although mono- and bis-copper complexes promote the CuAAC reaction, the dinuclear species are involved in the kinetically favored pathway.

  1. Copper-catalyzed cascade cyclization of 1,5-enynes via consecutive trifluoromethylazidation/diazidation and click reaction: self-assembly of triazole fused isoindolines.

    PubMed

    Yu, Liu-Zhu; Wei, Yin; Shi, Min

    2016-11-18

    Copper-catalyzed cascade cyclization of 1,5-enynes with two types of hypervalent reagents was developed via consecutive trifluoromethylazidation/diazidation and intramolecular click reaction (CUAAC), providing one-pot self-assembly of triazole fused isoindolines bearing a trifluoromethyl or an azide moiety. Moreover, the construction of a trifluoromethylcyclopropyl unit, which has been considered as a metabolically stable replacement for a tert-butyl moiety and was difficult to access, was also achieved under trifluoromethylazidation conditions. All these reactions exhibited excellent chemoselectivity, good to excellent yields and broad functional group tolerance.

  2. Synthesis of unsymmetric bipyridine-Pt(II) -alkynyl complexes through post-click reaction with emission enhancement characteristics and their applications as phosphorescent organic light-emitting diodes.

    PubMed

    Li, Yongguang; Tsang, Daniel Ping-Kuen; Chan, Carmen Ka-Man; Wong, Keith Man-Chung; Chan, Mei-Yee; Yam, Vivian Wing-Wah

    2014-10-13

    Two unsymmetric bipyridine-platinum(II)-alkynyl complexes have been synthesised by a post-click reaction. These metal complexes are found to exhibit emission enhancement properties. The photoluminescence quantum yield can be significantly increased from 0.03 in solution to 0.72 in solid-state thin films. Efficient solution-processable organic light-emitting diodes have been fabricated by utilizing these complexes as phosphorescent dopants. A high external quantum efficiency of up to 5.8% has been achieved.

  3. Chiroptical Probing of Lanthanide-Directed Self-Assembly Formation Using btp Ligands Formed in One-Pot Diazo-Transfer/Deprotection Click Reaction from Chiral Amines.

    PubMed

    Byrne, Joseph P; Martínez-Calvo, Miguel; Peacock, Robert D; Gunnlaugsson, Thorfinnur

    2016-01-11

    A series of enantiomeric 2,6-bis(1,2,3-triazol-4-yl)pyridines (btp)-containing ligands was synthesized by a one-pot two-step copper-catalyzed amine/alkyne click reaction. The Eu(III) - and Tb(III) -directed self-assembly formation of these ligands was studied in CH3 CN by monitoring their various photophysical properties, including their emerging circular dichroism and circularly polarized luminescence. The global analysis of the former enabled the determination of both the stoichiometry and the stability constants of the various chiral supramolecular species in solution.

  4. Rapid grafting of azido-labeled oligo(ethylene glycol)s onto an alkynyl-terminated monolayer on nonoxidized silicon via microwave-assisted "click" reaction.

    PubMed

    Li, Yan; Wang, Jun; Cai, Chengzhi

    2011-03-15

    Microwave (MW) irradiation was used for the grafting of azido-labeled oligo(ethylene oxide) (OEG) on alkynyl-terminated nonoxidized silicon substrates via copper-catalyzed "click" reaction. The "clickable" monolayers were prepared by photografting of an α,ω-alkynene, where the alkynyl terminus was protected by a trimethylgermanyl (TMG) group, onto hydrogen-terminated Si(111) surfaces. X-ray photoelectron spectroscopy (XPS) was primarily employed to characterize the monolayers, and the data obtained were utilized to calculate the surface density of the TMG-alkynyl-functionalized substrate. MW-assisted one-pot deprotection/click reaction was optimized on the surfaces using azido-tagged OEG derivatives. Using MW instead of conventional heating led to a substantial improvement in the rate of the reaction while suppressing the oxidation of the silicon interface and OEG degradation. The antifouling property of the resulting substrates was evaluated using fibrinogen as a model protein. Results show that the OEG-modification reduced the protein adsorption by >90%.

  5. Multifunctional Hydrogel with Good Structure Integrity, Self-Healing, and Tissue-Adhesive Property Formed by Combining Diels-Alder Click Reaction and Acylhydrazone Bond.

    PubMed

    Yu, Feng; Cao, Xiaodong; Du, Jie; Wang, Gang; Chen, Xiaofeng

    2015-11-04

    Hydrogel, as a good cartilage tissue-engineered scaffold, not only has to possess robust mechanical property but also has to have an intrinsic self-healing property to integrate itself or the surrounding host cartilage. In this work a double cross-linked network (DN) was designed and prepared by combining Diels-Alder click reaction and acylhydrazone bond. The DA reaction maintained the hydrogel's structural integrity and mechanical strength in physiological environment, while the dynamic covalent acylhydrazone bond resulted in hydrogel's self-healing property and controlled the on-off switch of network cross-link density. At the same time, the aldehyde groups contained in hydrogel further promote good integration of the hydrogel to surrounding tissue based on aldehyde-amine Schiff-base reaction. This kind of hydrogel has good structural integrity, autonomous self-healing, and tissue-adhesive property and simultaneously will have a good application in tissue engineering and tissue repair field.

  6. In vivo click reaction between Tc-99m-labeled azadibenzocyclooctyne-MAMA and 2-nitroimidazole-azide for tumor hypoxia targeting.

    PubMed

    Sun, Wenjing; Chu, Taiwei

    2015-10-15

    The bioactivity of nitroimidazole in Tc-99m-labeled 2-nitroimidazole, a traditional solid tumor hypoxia-imaging agent for single photon emission computed tomography (SPECT), is reduced by the presence of large ligand and metallic radionuclide, exhibiting lower tumor-to-nontumor ratios. In an effort to solve this general problem, a pretargeting strategy based on click chemistry (strain-promoted cyclooctyne-azide cycloaddition) was applied. The functional click synthons were synthesized as pretargeting components: an azide group linked to 2-nitroimidazole (2NIM-Az) serves for tumor hypoxia-targeting and azadibenzocyclooctyne conjugated with monoamine monoamide dithiol ligand (AM) functions as radiolabeling and binding group to azides in vivo. 2NIM-triazole-MAMA was obtained from in vitro click reaction with a reaction rate constant of 0.98M(-1)s(-1). AM and 2NIM-triazole-MAMA were radiolabeled with Tc-99m. The hypoxia-pretargeting biodistribution was studied in Kunming mice bearing S180 tumor; (99m)Tc-AM and (99m)Tc-triazole-2NIM were used as blank control and conventional control. Compared to the control groups, the pretargeting experiment exhibits the best radio-uptake and retention in tumor, with higher tumor-to-muscle and tumor-to-blood ratios (up to 8.55 and 1.44 at 8h post-(99m)Tc-complex-injection, respectively). To some extent, the pretargeting strategy protects the bioactivity of nitroimidazole and therefore provides an innovative approach for the development of tumor hypoxia-SPECT imaging agents.

  7. Cycloaddition reactivity studies of first-row transition metal-azide complexes and alkynes: an inorganic click reaction for metalloenzyme inhibitor synthesis.

    PubMed

    Evangelio, Emi; Rath, Nigam P; Mirica, Liviu M

    2012-07-14

    The studies described herein focus on the 1,3-dipolar cycloaddition reaction between first-row transition metal-azide complexes and alkyne reagents, i.e. an inorganic variant of the extensively used "click reaction". The reaction between the azide complexes of biologically-relevant metals (e.g., Fe, Co and Ni) found in metalloenzyme active sites and alkyne reagents has been investigated as a proof-of-principle for a novel method of developing metalloenzyme triazole-based inhibitors. Six Fe, Co and Ni mono-azide complexes employing salen- and cyclam-type ligands have been synthesized and characterized. The scope of the targeted inorganic azide-alkyne click reaction was investigated using the electron-deficient alkyne dimethyl acetylenedicarboxylate. Of the six metal-azide complexes tested, the Co and Ni complexes of the 1,4,8,11-tetrametyl-1,4,8,11-tetraazacyclotetradecane (Me(4)cyclam) ligand showed a successful cycloaddition reaction and formation of the corresponding metal-triazolate products, which were crystallographically characterized. Moreover, use of less electron deficient alkynes resulted in a loss of cycloaddition reactivity. Analysis of the structural parameters of the investigated metal-azide complexes suggests that a more symmetric structure and charge distribution within the azide moiety is needed for the formation of a metal-triazolate product. Overall, these results suggest that a successful cycloaddition reaction between a metal-azide complex and an alkyne substrate is dependent both on the ligand and metal oxidation state, that determine the electronic properties of the bound azide, as well as the electron deficient nature of the alkyne employed.

  8. Nanoplasmonics tuned ``click chemistry''

    NASA Astrophysics Data System (ADS)

    Tijunelyte, I.; Guenin, E.; Lidgi-Guigui, N.; Colas, F.; Ibrahim, J.; Toury, T.; Lamy de La Chapelle, M.

    2016-03-01

    Nanoplasmonics is a growing field of optical condensed matter science dedicated to optical phenomena at the nanoscale level in metal systems. Extensive research on noble metallic nanoparticles (NPs) has emerged within the last two decades due to their ability to keep the optical energy concentrated in the vicinity of NPs, in particular, the ability to create optical near-field enhancement followed by heat generation. We have exploited these properties in order to induce a localised ``click'' reaction in the vicinity of gold nanostructures under unfavourable experimental conditions. We demonstrate that this reaction can be controlled by the plasmonic properties of the nanostructures and we propose two physical mechanisms to interpret the observed plasmonic tuning of the ``click'' chemistry.Nanoplasmonics is a growing field of optical condensed matter science dedicated to optical phenomena at the nanoscale level in metal systems. Extensive research on noble metallic nanoparticles (NPs) has emerged within the last two decades due to their ability to keep the optical energy concentrated in the vicinity of NPs, in particular, the ability to create optical near-field enhancement followed by heat generation. We have exploited these properties in order to induce a localised ``click'' reaction in the vicinity of gold nanostructures under unfavourable experimental conditions. We demonstrate that this reaction can be controlled by the plasmonic properties of the nanostructures and we propose two physical mechanisms to interpret the observed plasmonic tuning of the ``click'' chemistry. Electronic supplementary information (ESI) available: NMR study on reaction initiation, SERS spectra and temperature calculations. See DOI: 10.1039/c5nr09018k

  9. Analysis of a temperature-sensitive mutation in Uba1: Effects of the click reaction on subsequent immunolabeling of proteins involved in DNA replication.

    PubMed

    Sugaya, Kimihiko; Ishihara, Yoshie; Inoue, Sonoe

    2015-01-01

    In our previous study, a Met-to-Ile substitution at amino acid 256 in the catalytic domain of Uba1 was determined in temperature-sensitive CHO-K1 mutant tsTM3 cells, which exhibited chromosomal instability and cell-cycle arrest in the S to G2 phases with decreased DNA synthesis at the nonpermissive temperature, 39 °C. Mutant cells were also characterized by a significant decrease of Uba1 in the nucleus with decreased ubiquitination activity at 39 °C. Defects of ubiquitination activity in the nucleus resulted in an inappropriate balance between Cdt1 and geminin, a licensing factor of DNA replication and its inhibitor. In the present study, we found that the Cu(I)-catalyzed [3 + 2] cycloaddition (click) reaction inhibits the subsequent indirect immunolabeling of Cdt1 but allows for the detection of PCNA with nascent DNA. Using a procedure without the click reaction, we also demonstrated that Cdt1 remained close to active replication sites in tsTM3 cells at the nonpermissive temperature. Analysis of genome replication by DNA fiber spreading revealed that DNA synthesis continues for at least 10 h after incubation at 39 °C, suggesting that impaired ubiquitination in the nucleus, caused by the defect of Uba1, affected DNA replication only after a long delay.

  10. Nanoplasmonics tuned "click chemistry".

    PubMed

    Tijunelyte, I; Guenin, E; Lidgi-Guigui, N; Colas, F; Ibrahim, J; Toury, T; Lamy de la Chapelle, M

    2016-04-07

    Nanoplasmonics is a growing field of optical condensed matter science dedicated to optical phenomena at the nanoscale level in metal systems. Extensive research on noble metallic nanoparticles (NPs) has emerged within the last two decades due to their ability to keep the optical energy concentrated in the vicinity of NPs, in particular, the ability to create optical near-field enhancement followed by heat generation. We have exploited these properties in order to induce a localised "click" reaction in the vicinity of gold nanostructures under unfavourable experimental conditions. We demonstrate that this reaction can be controlled by the plasmonic properties of the nanostructures and we propose two physical mechanisms to interpret the observed plasmonic tuning of the "click" chemistry.

  11. Determination of copper(II) in the dairy product by an electrochemical sensor based on click chemistry.

    PubMed

    Qiu, Suyan; Xie, Lidan; Gao, Sen; Liu, Qida; Lin, Zhenyu; Qiu, Bin; Chen, Guonan

    2011-11-30

    Herein, a novel sensitive electrochemical sensor for copper(II) based on Cu(I) catalyzed alkyne-azide cycloaddition reaction (CuAAC) is described. The catalyst of Cu(I) species is derived from electrochemical reduction of Cu(II) through bulk electrolysis (BE) with coulometry technique. The propargyl-functionalized ferrocene (propargyl-functionalized Fc) is covalently coupled onto the electrode surface via CuAAC reaction and forms propargyl-functionalized Fc modified gold electrode, which allows a good and stable electrochemical signal. The change of current at peak (dI), detected by differential pulse voltammetry (DPV), exhibits a linear response to the logarithm of Cu(II) concentration in the range of 1.0×10(-14)-1.0×10(-9) mol L(-1). It is also found that the proposed sensor has a good selectivity for copper(II) assay even in the presence of other common metal ions. Additionally, the proposed method has been applied to determine copper(II) in the dairy product (yoghurt) with satisfactory results.

  12. Click chemistry for rapid labeling and ligation of RNA.

    PubMed

    Paredes, Eduardo; Das, Subha R

    2011-01-03

    The copper(I)-promoted azide-alkyne cycloaddition reaction (click chemistry) is shown to be compatible with RNA (with free 2'-hydroxyl groups) in spite of the intrinsic lability of RNA. RNA degradation is minimized through stabilization of the Cu(I) in aqueous buffer with acetonitrile as cosolvent and no other ligand; this suggests the general possibility of "ligandless" click chemistry. With the viability of click chemistry validated on synthetic RNA bearing "click"-reactive alkynes, the scope of the reaction is extended to in-vitro-transcribed or, indeed, any RNA, as a click-reactive azide is incorporated enzymatically. Once clickable groups are installed on RNA, they can be rapidly click labeled or conjugated together in click ligations, which may be either templated or nontemplated. In click ligations the resultant unnatural triazole-linked RNA backbone is not detrimental to RNA function, thus suggesting a broad applicability of click chemistry in RNA biological studies.

  13. Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem "click" reaction/Cu-catalyzed D-homo rearrangement.

    PubMed

    Kotovshchikov, Yury N; Latyshev, Gennadij V; Lukashev, Nikolay V; Beletskaya, Irina P

    2014-06-14

    Copper-catalyzed 1,3-dipolar cycloaddition has been employed in the reaction of steroidal azides with various terminal alkynes. A number of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane were obtained in high yield (70-98%). The developed synthetic protocols allowed us to attach the triazolyl moiety to both the side chain and the steroidal backbone directly, despite the steric hindrance exerted by the polycyclic system. The presence of Cu(II) was shown to evoke d-homo rearrangement under mild conditions. A rational choice of the copper precatalyst permitted us to carry out the "click" reaction either along with tandem d-homo rearrangement or in the absence of this process. The tendency of 16-heterosubstituted steroids to undergo D-homo rearrangement under Cu(II) catalysis was studied.

  14. Polymethacrylate monoliths with immobilized poly-3-mercaptopropyl methylsiloxane film for high-coverage surface functionalization by thiol-ene click reaction.

    PubMed

    Carrasco-Correa, Enrique Javier; Ramis-Ramos, Guillermo; Herrero-Martínez, José Manuel; Lämmerhofer, Michael

    2014-11-07

    In this work, new polythiol-functionalized macroporous monolithic polymethacrylate-polysiloxane composite materials are presented which can be useful substrates for highly efficient immobilization of (chiral) catalysts, chromatographic ligands, and other functional moieties by thiol-ene click reaction. Poly(glycidyl methacrylate-co-ethylene dimethacrylate) (poly(GMA-co-EDMA)) monoliths were coated with a poly-3-mercaptopropyl methylsiloxane (PMPMS) film and subsequently the polymer was covalently immobilized by formation of crosslinks via nucleophilic substitution reaction with pendent 2,3-epoxypropyl groups on the monolith surface. This monolith, though, showed similar levels of surface coverage as a reference monolith obtained by opening of the epoxide groups with sodium hydrogen sulfide. However, a 3-step functionalization by amination of the epoxy monolith, followed by its vinylation with allylglycidyl ether and subsequent thiolation by coating of a thin polythiol (PMPMS) film and crosslinking by click reaction furnished a monolith with more than 2-fold elevated thiol coverage. Its further functionalization with a clickable chiral quinine carbamate selector clearly documented the benefit of highly dense thiol surfaces for such reactions and synthesis of functional materials with proper ligand loadings. The new monoliths were chromatographically tested in capillary electrochromatography mode using N-3,5-dinitrobenzoyl-leucine as chiral probe and the capillary column with the monolith having the highest selector coverage, produced from the precursor with the most thiols on the surface, showed the largest separation factor. By performic acid oxidation the surface characteristic could be tuned and strongly altered due to a delicate balance of enantioselective and non-specific interactions.

  15. The hydrazide/hydrazone click reaction as a biomolecule labeling strategy for M(CO)3 (M = Re, (99m)Tc) radiopharmaceuticals.

    PubMed

    Ganguly, Tanushree; Kasten, Benjamin B; Bučar, Dejan-Krešimir; MacGillivray, Leonard R; Berkman, Clifford E; Benny, Paul D

    2011-12-28

    Facile reactivity of hydrazides and aldehydes was explored as potential coupling partners for incorporation into M(CO)(3) (M = Re, (99m)Tc) based radiopharmaceuticals. Both 'click, then chelate' and 'prelabel, then click' synthetic routes produced identical products in high yields and lacked metal-hydrazide/-hydrazone interactions, highlighting the potential of this click strategy.

  16. Thiol-ene "click" reaction triggered by neutral ionic liquid: the "ambiphilic" character of [hmim]Br in the regioselective nucleophilic hydrothiolation.

    PubMed

    Kumar, Rajesh; Saima; Shard, Amit; Andhare, Nitin H; Richa; Sinha, Arun K

    2015-01-12

    Thiol-ene "click" chemistry has emerged as a powerful strategy to construct carbon-heteroatom (C-S) bonds, which generally results in the formation of two regioisomers. To this end, the neutral ionic liquid [hmim]Br has been explored as a solvent cum catalyst for the synthesis of linear thioethers from activated and inactivated styrene derivatives or secondary benzyl alcohols and thiols without the requirement of using a metal complex, base, or free radical initiator. Furthermore, detailed mechanistic investigations using (1)H NMR spectroscopy and quadrupole time-of-flight electrospray ionization mass spectrometry (Q-TOF ESI-MS) revealed that the "ambiphilic" character of the ionic liquid promotes the nucleophilic addition of thiol to styrene through an anti-Markovnikov pathway. The catalyst recyclability and the extension of the methodology for thiol-yne click chemistry are additional benefits. A competitive study among thiophenol, styrene, and phenyl acetylene revealed that the rate of reaction is in the order of thiol-yne>thiol-ene>dimerization of thiol in [hmim]Br.

  17. Click Triazoles for Bioconjugation

    PubMed Central

    Zheng, Tianqing; Rouhanifard, Sara H.; Jalloh, Abubakar S.

    2014-01-01

    Click Chemistry is a set of rapid, selective and robust reactions that give near-quantitative yield of the desired product in aqueous solutions. The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) that forms 1,4-disubstituted triazoles is a prototypical example of click chemistry that features exquisite selectivity and bioorthogonality—that is, non-interacting with biological components while proceeding under physiological conditions. Over the past ten years, CuAAC has found extensive applications in the field of chemical biology. In this chapter, we describe the discovery of Cu(I) catalysts for this transformation and the recent development of the strain-promoted azide-alkyne cycloaddition that eliminate the use of copper. We also highlight several recent applications toward conjugating biomolecules, including proteins, nucleic acids, lipids and glycans, with biophysical probes for both in vitro and in vivo studies. PMID:25431628

  18. Synthesis, click reaction, molecular structure, spectroscopic and DFT computational studies on 3-(2,6-bis(trifluoromethyl)phenoxy)-6-(prop-2-yn-1-yloxy)phthalonitrile

    NASA Astrophysics Data System (ADS)

    Hasan, Muhammad; Shalaby, Mona

    2016-06-01

    The compound 3-(2,6-bis(trifluoromethyl)phenoxy)-6-(prop-2-yn-1-yloxy)phthalonitrile has been synthesized and confirmed by different characterization techniques such as elemental analysis, IR, UV-vis spectroscopy, and X-ray single-crystal determination. The molecular geometry from X-ray determination of this compound in the ground state has been compared using the Hartree-Fock (HF) and density functional theory (DFT) with the 6-31G(d) basis set. This compound reacted with sugar azide via click reaction to form triazol ring. The synergy between carbohydrate molecule and fluorinated organic compound achieved novel synthetic pathways, properties, and applications in chemistry science.

  19. Porphyrin-based mixed-valent Ag(i)/Ag(ii) and Cu(i)/Cu(ii) networks as efficient heterogeneous catalysts for the azide-alkyne "click" reaction and promising oxidation of ethylbenzene.

    PubMed

    Jiang, Wei; Yang, Jin; Liu, Ying-Ying; Ma, Jian-Fang

    2016-01-25

    By using a new porphyrin-based linker, two unusual mixed-valent Ag(i,ii)- and Cu(i,ii)-organic networks were synthesized. Most strikingly, 1 and 2 exhibit highly efficient catalytic activities for the azide-alkyne "click" reaction and oxidation of ethylbenzene.

  20. Preparation of polyhedral oligomeric silsesquioxane-based hybrid monolith by ring-opening polymerization and post-functionalization via thiol-ene click reaction.

    PubMed

    Liu, Zhongshan; Ou, Junjie; Lin, Hui; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2014-05-16

    A polyhedral oligomeric silsesquioxane (POSS) hybrid monolith was simply prepared by using octaglycidyldimethylsilyl POSS (POSS-epoxy) and cystamine dihydrochloride as monomers via ring-opening polymerization. The effects of composition of prepolymerization solution and polycondensation temperature on the morphology and permeability of monolithic column were investigated in detail. The obtained POSS hybrid monolithic column showed 3D skeleton morphology and exhibited high column efficiency of ∼71,000 plates per meter in reversed-phase mechanism. Owing to this POSS hybrid monolith essentially possessing a great number of disulfide bonds, the monolith surface would expose thiol groups after reduction with dithiothreitol (DTT), which supplied active sites to functionalize with various alkene monomers via thiol-ene click reaction. The results indicated that the reduction with DTT could not destroy the 3D skeleton of hybrid monolith. Both stearyl methylacrylate (SMA) and benzyl methacrylate (BMA) were selected to functionalize the hybrid monolithic columns for reversed-phase liquid chromatography (RPLC), while [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)-ammonium hydroxide (MSA) was used to modify the hybrid monolithic column in hydrophilic interaction chromatography (HILIC). These modified hybrid monolithic columns could be successfully applied for separation of small molecules with high efficiency. It is demonstrated that thiol-ene click reaction supplies a facile way to introduce various functional groups to the hybrid monolith possessing thiol groups. Furthermore, due to good permeability of the resulting hybrid monoliths, we also prepared long hybrid monolithic columns in narrow-bore capillaries. The highest column efficiency reached to ∼70,000 plates using a 1-m-long column of 75μm i.d. with a peak capacity of 147 for isocratic chromatography, indicating potential application in separation and analysis of complex biosamples.

  1. Applications of click chemistry in radiopharmaceutical development.

    PubMed

    Walsh, Joseph C; Kolb, Hartmuth C

    2010-01-01

    Click chemistry, a concept that employs only practical and reliable transformations for compound synthesis, has made a significant impact in several areas of chemistry, including material sciences and drug discovery. The present article describes the use of click chemistry for the development of radiopharmaceuticals. Target templated in situ click chemistry was used for lead generation. The 1,2,3-triazole moiety was found to improve the pharmacokinetic properties of certain radiopharmaceuticals. The reliable Cu(I)-catalyzed click reaction was employed for radiolabeling of peptidic compounds without the need for protecting groups. In summary, the click chemistry approach for the discovery, optimization and labeling of new radiotracers, represents a very powerful tool for radiopharmaceutical development.

  2. Multifunctional phenylboronic acid-tagged fluorescent silica nanoparticles via thiol-ene click reaction for imaging sialic acid expressed on living cells.

    PubMed

    Cheng, Liwei; Zhang, Xianxia; Zhang, Zhengyong; Chen, Hui; Zhang, Song; Kong, Jilie

    2013-10-15

    Multifunctional fluorescent silica nanoparticles with phenylboronic acid tags were developed for labeling sialic acid on the surface of living cancer cells. In this paper, fluorescent silica nanoparticles (FSNPs) with strong and stable emission at 515 nm were firstly prepared through a reverse microemulsion process, and then modified with highly selective phenylboronic acid (PBA) tags on their surface via an aqueous 'thiol-ene' click reaction. These nanoparticles had a hydrodynamic diameter of 92.6 ± 9.1 nm, and a bright fluorescence signal, which is 366 times higher than that of a single dye molecule. Meanwhile, these PBA-tagged FSNPs were found very stable in aqueous solution as well as in cell culture medium, verified by transmission electron microscopy, X-ray photoelectron spectroscopy and zeta potential analysis. The over-expressed sialic acid (SA) on the membrane of living HeLa cells was visualized in situ by a confocal laser scanning microscopy, ascribed to the specific interaction between PBA and SA. Thus, the PBA-FSBPs showed a great potential in probing SA expressed on living cells with high selectivity and sensitivity.

  3. Developing Activity Localization Fluorescence Peptide Probe Using Thiol-Ene Click Reaction for Spatially Resolved Imaging of Caspase-8 in Live Cells.

    PubMed

    Liu, Wei; Liu, Si-Jia; Kuang, Yong-Qing; Luo, Feng-Yan; Jiang, Jian-Hui

    2016-08-02

    Small molecule probes suitable for high-resolution fluorescence imaging of enzyme activity pose a challenge in chemical biology. We developed a novel design of activity localization fluorescence (ALF) peptide probe, which enables spatially resolved, highly sensitive imaging of peptidase in live cells. The ALF probe was synthesized by a facile thiol-ene click reaction of a cysteine-appended peptide with an acryloylated fluorophore. Upon cleavage by peptidase, the probe undergoes a seven-membered intramolecular cyclization and releases the fluorophore with the excited-state intramolecular photon transfer (ESIPT) effect. A highly fluorescent, insoluble aggregate was formed around the enzyme, which facilitates high-sensitivity and high-resolution imaging. This design is demonstrated for detection of caspase-8 activation. The results show that our design allows easy, high-yield synthesis of the probe, and the probe affords high sensitivity for caspase-8 detection. Live cell imaging reveals that the probe is able to render highly localized and high-contrast fluorescence signal for caspase-8. Our design holds the potential as a generally applicable strategy for developing high-sensitivity and high-resolution imaging peptide probes in cell biology and diagnostics.

  4. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles

    PubMed Central

    Sarwar, Atif; Katas, Haliza; Samsudin, Siti Noradila; Zin, Noraziah Mohamad

    2015-01-01

    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future

  5. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles.

    PubMed

    Sarwar, Atif; Katas, Haliza; Samsudin, Siti Noradila; Zin, Noraziah Mohamad

    2015-01-01

    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future

  6. A novel fluoro-chromogenic click reaction for the labelling of proteins and nanoparticles with near-IR theranostic agents.

    PubMed

    Planas, Oriol; Gallavardin, Thibault; Nonell, Santi

    2015-04-04

    Reaction of porphycene isothiocyanates with primary and secondary amines leads to the formation of thiazolo[4,5-c]porphycenes, with a substantial shift in the absorption and fluorescence spectra. The conjugates show fluorescence in the near-infrared and are capable of photosensitizing the production of the cytotoxic species singlet oxygen.

  7. Growth of Thin, Anisotropic, π-Conjugated Molecular Films by Step-Wise `Click' Assembly of Molecular Building Blocks: Characterizing Reaction Yield, Surface Coverage, and Film Thickness vs. Addition Step Number

    NASA Astrophysics Data System (ADS)

    Demissie, Abel; Haugstad, Greg; Frisbie, C. Daniel

    2015-03-01

    Molecular electronics is an active field of nanotechnology that has gained much interest due to the advent of modern microscopy techniques, and thin film synthesis using click chemistry - an approach which has enabled scientists to achieve a sub-angstrom control of monolayer length. Among the major challenges to grow oriented, surface-confined wires by click chemistry is development of synthetic routes that yield monodisperse wires, and lack of systematic way to measure the surface coverage of molecules. In this work, we report a comprehensive characterization of π-conjugated oligophenylene imine (OPI) wires synthesized step-wise by imine condensation click chemistry. OPI wire synthesis began with a self-assembled monolayer (SAM) of 4-formylthiophenol or 4-aminothiophenol on Au, followed by alternate addition of terepthaldehyde or phenylenediamine. OPI wires were characterized after each monomer addition via Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, cyclic voltammetry, reflection-absorption infra-red spectroscopy, and nuclear reaction analysis. We have determined an average extent of reaction greater than 98% completion for each growth step using five different techniques. Overall, these nanoscale scale surface characterization techniques proved to be an extremely sufficient method for monitoring wire growth and surface coverage.

  8. Mechanochemical click reaction as a tool for making carbohydrate-based triazole-linked self-assembling materials (CTSAMs).

    PubMed

    Tyagi, Mohit; Taxak, Nikhil; Bharatam, Prasad V; Nandanwar, Hemraj; Kartha, K P Ravindranathan

    2015-04-30

    Various glycosides in which glycosylated triazole residues are anchored on to a central phenyl ring have been prepared under green reaction conditions by a solvent-free mechanochemical method. Some of the glycosides exhibited the ability to form gels when in contact with long chain hydrocarbons, e.g. hexane, heptane and octane, and this property was phase-selective. Thus, from a mixture of hexane-water, the compounds preferably absorbed the alkane to form a gel. The gelation ability was found to increase with an increasing number of substituents on the phenyl ring but only up to tetra-substitution. The hexa-substituted phenyl derivative did not swell in the hydrocarbon solvents investigated. The spontaneous self-assembling properties of these compounds in hexane have been investigated by transmission electron microscopy (TEM). Molecular modelling was used to optimize the structural geometry of these carbohydrate-based triazole-linked self-assembling materials (CTSAMs) and to rationalize their behaviour.

  9. Facile Synthesis of Prussian Blue Derivate-Modified Mesoporous Material via Photoinitiated Thiol-Ene Click Reaction for Cesium Adsorption.

    PubMed

    Qian, Jun; Ma, Jiaqi; He, Weiwei; Hua, Daoben

    2015-08-01

    A novel strategy to synthesize a functional mesoporous material for efficient removal of cesium is reported. Specifically, Prussian blue derivate-modified SBA-15 (SBA-15@FC) was prepared by photoinitiated thiol-ene reaction between thiol-modified SBA-15 and pentacyano(4-vinyl pyridine)ferrate complex. The effects of weight percentage of the Prussian blue derivate, pH, adsorbent dose, co-existing ions, and initial concentration were evaluated on the adsorption of cesium ions. The adsorption kinetically follows a pseudo-second-order model and reaches equilibrium within 2 h with a high adsorption capacity of about 13.90 mg Cs g(-1) , which indicates that SBA-15@FC is a promising adsorbent to effectively remove cesium from aqueous solutions.

  10. New strategy for the preparation of clickable peptides and labeling with 1-(azidomethyl)-4-[(18)F]-fluorobenzene for PET.

    PubMed

    Thonon, David; Kech, Cécile; Paris, Jérôme; Lemaire, Christian; Luxen, André

    2009-04-01

    The alkyne-azide Cu(I)-catalyzed Huisgen cycloaddition, a click type reaction was used to label a peptide with fluorine-18. A novel solid phase synthesis approach for the preparation of clickable peptides has been developed and has also permitted the straightforward preparation of reference compounds. A complementary azide labeling agent (1-(azidomethyl)-4-[(18)F]-fluorobenzene) has been produced in a four step procedure in 75 min with a 34% radiochemical yield (decay corrected). Conjugation of [(18)F]fluoroazide with a model alkyne-neuropeptide produced the desired (18)F-radiolabeled peptide in less than 15 min with a yield of 90% and excellent radiochemical purity.

  11. Intramolecular bridges formed by photoswitchable click amino acids.

    PubMed

    Hoppmann, Christian; Kühne, Ronald; Beyermann, Michael

    2012-01-01

    Photoswitchable click amino acids (PSCaa) are amino acids bearing a side chain consisting of a photoswitchable unit elongated with a functional group that allows for a specific click reaction, such as an alkene that can react with the thiol group of a cysteine residue. An intramolecular click reaction results in the formation of a photoswitchable bridge, which can be used for controlling conformational domains in peptides and proteins. The ability to control conformations as well as the efficiency of the intramolecular bridging depends on the length of the PSCaa side chain and the distance to the cysteine residue to be clicked with. On comparing i,i+4 and i,i+7 spacings of PSCaa and cysteine in a model peptide without a preferred conformation, it was seen that the thiol-ene click reaction takes place efficiently in both cases. Upon induction of an α-helical structure by the addition of trifluoroethanol, the thiol click reaction occurs preferentially with the i,i+4 spacing. Even in the presence of glutathione as an additional thiol the click reaction of the PSCaa occurs intramolecularly with the cysteine rather than with the glutathione, indicating that the click reaction may be used even under reducing conditions occurring in living cells.

  12. One pot Click chemistry: A three component reaction for the synthesis of 2-mercaptobenzimidazole linked coumarinyl triazoles as anti-tubercular agents.

    PubMed

    Anand, Ashish; Kulkarni, Manohar V; Joshi, Shrinivas D; Dixit, Sheshagiri R

    2016-10-01

    2-Propargylthiobenzimidazole 1, 4-bromomethyl coumarins/1-aza-coumarins 2/3 and sodium azide have been reacted in one pot under Click chemistry conditions to give exclusively 1,4-disubstituted triazoles 5a-n. Anti-tubercular assays against M. tuberculosis (H37Rv) coupled with in silico molecular docking studies indicated that dimethyl substituents 5c and 5d showed promising activity with higher C-score values.

  13. Preventing Alkyne-Alkyne (i.e., Glaser) Coupling Associated with the ATRP Synthesis of Alkyne-Functional Polymers/Macromonomers and for Alkynes under Click (i.e., CuAAC) Reaction Conditions.

    PubMed

    Leophairatana, Porakrit; Samanta, Sanjoy; De Silva, Chathuranga C; Koberstein, Jeffrey T

    2017-03-15

    Alkyne-functional polymers synthesized by ATRP exhibit bimodal molecular weight distributions indicating the occurrence of some undesirable side reaction. By modeling the molecular weight distributions obtained under various reaction conditions, we show that the side reaction is alkyne-alkyne (i.e., Glaser) coupling. Glaser coupling accounts for as much as 20% of the polymer produced, significantly compromising the polymer functionality and undermining the success of subsequent click reactions in which they are used. Glaser coupling does not occur during ATRP but during postpolymerization workup upon first exposure to air. Two strategies are reported that effectively eliminate these coupling reactions without the need for a protecting group for the alkyne-functional initiator: (1) maintaining low temperature post-ATRP upon exposure to air followed by immediate removal of copper catalyst; (2) adding excess reducing agents post-ATRP which prevent the oxidation of Cu(I) catalyst required by the Glaser coupling mechanism. Post-ATRP Glaser coupling was also influenced by the ATRP synthesis ligand used. The order of ligand activity for catalyzing Glaser coupling was: linear bidentate > tridentate > tetradentate. We find that Glaser coupling is not problematic in ARGET-ATRP of alkyne-terminated polymers because a reducing agent is present during polymerization, however the molecular weight distribution is broadened compared to ATRP due to the presence of oxygen. Glaser coupling can also occur for alkynes held under CuAAC reaction conditions but again can be eliminated by adding appropriate reducing agents.

  14. Copper Nanoparticles in Click Chemistry.

    PubMed

    Alonso, Francisco; Moglie, Yanina; Radivoy, Gabriel

    2015-09-15

    The challenges of the 21st century demand scientific and technological achievements that must be developed under sustainable and environmentally benign practices. In this vein, click chemistry and green chemistry walk hand in hand on a pathway of rigorous principles that help to safeguard the health of our planet against negligent and uncontrolled production. Copper-catalyzed azide-alkyne cycloaddition (CuAAC), the paradigm of a click reaction, is one of the most reliable and widespread synthetic transformations in organic chemistry, with multidisciplinary applications. Nanocatalysis is a green chemistry tool that can increase the inherent effectiveness of CuAAC because of the enhanced catalytic activity of nanostructured metals and their plausible reutilization capability as heterogeneous catalysts. This Account describes our contribution to click chemistry using unsupported and supported copper nanoparticles (CuNPs) as catalysts prepared by chemical reduction. Cu(0)NPs (3.0 ± 1.5 nm) in tetrahydrofuran were found to catalyze the reaction of terminal alkynes and organic azides in the presence of triethylamine at rates comparable to those achieved under microwave heating (10-30 min in most cases). Unfortunately, the CuNPs underwent dissolution under the reaction conditions and consequently could not be recovered. Compelling experimental evidence on the in situ generation of highly reactive copper(I) chloride and the participation of copper(I) acetylides was provided. The supported CuNPs were found to be more robust and efficient catalyst than the unsupported counterpart in the following terms: (a) the multicomponent variant of CuAAC could be applied; (b) the metal loading could be substantially decreased; (c) reactions could be conducted in neat water; and (d) the catalyst could be recovered easily and reutilized. In particular, the catalyst composed of oxidized CuNPs (Cu2O/CuO, 6.0 ± 2.0 nm) supported on carbon (CuNPs/C) was shown to be highly versatile and very

  15. Surface-crosslinked poly(3-mercaptopropyl)methylsiloxane-coatings on silica as new platform for low-bleed mass spectrometry-compatible functionalized stationary phases synthesized via thiol-ene click reaction.

    PubMed

    Zimmermann, Aleksandra; Horak, Jeannie; Sievers-Engler, Adrian; Sanwald, Corinna; Lindner, Wolfgang; Kramer, Markus; Lämmerhofer, Michael

    2016-03-04

    A thin functional film of poly(3-mercaptopropyl)methylsiloxane was coated onto vinyl-modified silica particles (5μm, 100Å pore size) and chemically crosslinked to the surface. Excess of thiol functionalities allow bonding of alkene containing ligands by thiol-ene click reaction in a second step (QN-VII). Besides that a single step surface modification procedure was established in which alkene functional ligands were directly added to the polysiloxane coating solution and thus, after evaporation of the solvent, crosslinking to the vinylized surface and bonding of chromatographic ligand to the thiolated polysiloxane film occur simultaneously in one step (QN-VI). Successful bonding of the polysiloxane film was confirmed for both approaches by (29)Si cross-polarization/magic angle spinning NMR spectra. The new surface functionalization concept can be utilized as a new platform for the preparation of various low-bleed, mass spectrometry-compatible stationary phases with a variety of functional ligands. The concept was demonstrated by thiol-ene click reaction with quinine carbamate and its subsequent use for enantiomer separation by HPLC-UV and HPLC-ESI-QTOF-MS of acidic chiral analytes. Chromatographic enantioselectivities were similar to a comparable brush-type CSP (QN-V0). The greatly reduced background signal in LC-MS, however, comes at expense of somewhat lower chromatographic efficiencies (C-term by factor of 2 larger compared to brush-type CSP). For quantitative analysis in single reaction monitoring (MRM(HR)) in high sensitivity mode, limit of detection and limit of quantification results are comparable for both surface-polymer modified CSPs, with only slightly higher values for the conventional brush-type CSP (QN-V0).

  16. Applications of azide-based bioorthogonal click chemistry in glycobiology.

    PubMed

    Zhang, Xiu; Zhang, Yan

    2013-06-19

    Click chemistry is a powerful chemical reaction with excellent bioorthogonality features: biocompatible, rapid and highly specific in biological environments. For glycobiology, bioorthogonal click chemistry has created a new method for glycan non-invasive imaging in living systems, selective metabolic engineering, and offered an elite chemical handle for biological manipulation and glycomics studies. Especially the [3 + 2] dipolar cycloadditions of azides with strained alkynes and the Staudinger ligation of azides and triarylphosphines have been widely used among the extant click reactions. This review focuses on the azide-based bioorthogonal click chemistry, describing the characteristics and development of these reactions, introducing some recent applications in glycobiology research, especially in glycan metabolic engineering, including glycan non-invasive imaging, glycomics studies and viral surface manipulation for drug discovery as well as other applications like activity-based protein profiling and carbohydrate microarrays.

  17. Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry.

    PubMed

    Desai, Rajiv M; Koshy, Sandeep T; Hilderbrand, Scott A; Mooney, David J; Joshi, Neel S

    2015-05-01

    Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologically harmful due to their lack of chemoselectivity. In this work we introduce tetrazine and norbornene groups to alginate polymer chains and subsequently form covalently crosslinked click alginate hydrogels capable of encapsulating cells without damaging them. The rapid, bioorthogonal, and specific click reaction is irreversible and allows for easy incorporation of cells with high post-encapsulation viability. The swelling and mechanical properties of the click alginate hydrogel can be tuned via the total polymer concentration and the stoichiometric ratio of the complementary click functional groups. The click alginate hydrogel can be modified after gelation to display cell adhesion peptides for 2D cell culture using thiol-ene chemistry. Furthermore, click alginate hydrogels are minimally inflammatory, maintain structural integrity over several months, and reject cell infiltration when injected subcutaneously in mice. Click alginate hydrogels combine the numerous benefits of alginate hydrogels with powerful bioorthogonal click chemistry for use in tissue engineering applications involving the stable encapsulation or delivery of cells or bioactive molecules.

  18. Nucleotidyl transferase assisted DNA labeling with different click chemistries.

    PubMed

    Winz, Marie-Luise; Linder, Eva Christina; André, Timon; Becker, Juliane; Jäschke, Andres

    2015-09-30

    Here, we present a simple, modular and efficient strategy that allows the 3'-terminal labeling of DNA, regardless of whether it has been chemically or enzymatically synthesized or isolated from natural sources. We first incorporate a range of modified nucleotides at the 3'-terminus, using terminal deoxynucleotidyl transferase. In the second step, we convert the incorporated nucleotides, using either of four highly efficient click chemistry-type reactions, namely copper-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, Staudinger ligation or Diels-Alder reaction with inverse electron demand. Moreover, we create internal modifications, making use of either ligation or primer extension, after the nucleotidyl transferase step, prior to the click reaction. We further study the influence of linker variants on the reactivity of azides in different click reactions. We find that different click reactions exhibit distinct substrate preferences, a fact that is often overlooked, but should be considered when labeling oligonucleotides or other biomolecules with click chemistry. Finally, our findings allowed us to extend our previously published RNA labeling strategy to the use of a different copper-free click chemistry, namely the Staudinger ligation.

  19. Nucleotidyl transferase assisted DNA labeling with different click chemistries

    PubMed Central

    Winz, Marie-Luise; Linder, Eva Christina; André, Timon; Becker, Juliane; Jäschke, Andres

    2015-01-01

    Here, we present a simple, modular and efficient strategy that allows the 3′-terminal labeling of DNA, regardless of whether it has been chemically or enzymatically synthesized or isolated from natural sources. We first incorporate a range of modified nucleotides at the 3′-terminus, using terminal deoxynucleotidyl transferase. In the second step, we convert the incorporated nucleotides, using either of four highly efficient click chemistry-type reactions, namely copper-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, Staudinger ligation or Diels-Alder reaction with inverse electron demand. Moreover, we create internal modifications, making use of either ligation or primer extension, after the nucleotidyl transferase step, prior to the click reaction. We further study the influence of linker variants on the reactivity of azides in different click reactions. We find that different click reactions exhibit distinct substrate preferences, a fact that is often overlooked, but should be considered when labeling oligonucleotides or other biomolecules with click chemistry. Finally, our findings allowed us to extend our previously published RNA labeling strategy to the use of a different copper-free click chemistry, namely the Staudinger ligation. PMID:26013812

  20. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.

    PubMed

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten

    2016-01-11

    Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material.

  1. Click Here To Buy.

    ERIC Educational Resources Information Center

    Bridgman, Anne

    2000-01-01

    E-commerce is coming slowly to education, but some curious school purchasing officials are clicking on vendors' web sites. Pioneering districts include the Chicago, Detroit, and El Dorado (California) public schools. Vendors include Boise Cascade and Office Depot. Some vendors are joining institutional exchanges like Commerce One or marketing…

  2. Click Chemistry in the Development of Contrast Agents for Magnetic Resonance Imaging.

    PubMed

    Hapuarachchige, Sudath; Artemov, Dmitri

    2016-10-01

    Click chemistry provides fast, convenient, versatile, and reliable chemical reactions that take place between pairs of functional groups of small molecules that can be purified without chromatographic methods. Due to the fast kinetics and low or no elimination of byproducts, click chemistry is a promising approach that is rapidly gaining acceptance in drug discovery, radiochemistry, bioconjugation, and nanoscience applications. Increasing use of click chemistry in synthetic procedures or as a bioconjugation technique in diagnostic imaging is occurring because click reactions are fast, provide a quantitative yield, and produce a minimal amount of nontoxic byproducts. This review summarizes the recent application of click chemistry in magnetic resonance imaging and discusses the directions for applying novel click reactions and strategies for further improving magnetic resonance imaging performance.

  3. Recent advances in click chemistry applied to dendrimer synthesis.

    PubMed

    Arseneault, Mathieu; Wafer, Caroline; Morin, Jean-François

    2015-05-20

    Dendrimers are monodisperse polymers grown in a fractal manner from a central point. They are poised to become the cornerstone of nanoscale devices in several fields, ranging from biomedicine to light-harvesting. Technical difficulties in obtaining these molecules has slowed their transfer from academia to industry. In 2001, the arrival of the "click chemistry" concept gave the field a major boost. The flagship reaction, a modified Hüisgen cycloaddition, allowed researchers greater freedom in designing and building dendrimers. In the last five years, advances in click chemistry saw a wider use of other click reactions and a notable increase in the complexity of the reported structures. This review covers key developments in the click chemistry field applied to dendrimer synthesis from 2010 to 2015. Even though this is an expert review, basic notions and references have been included to help newcomers to the field.

  4. Click chemistry in peptide-based drug design.

    PubMed

    Li, Huiyuan; Aneja, Rachna; Chaiken, Irwin

    2013-08-16

    Click chemistry is an efficient and chemoselective synthetic method for coupling molecular fragments under mild reaction conditions. Since the advent in 2001 of methods to improve stereochemical conservation, the click chemistry approach has been broadly used to construct diverse chemotypes in both chemical and biological fields. In this review, we discuss the application of click chemistry in peptide-based drug design. We highlight how triazoles formed by click reactions have been used for mimicking peptide and disulfide bonds, building secondary structural components of peptides, linking functional groups together, and bioconjugation. The progress made in this field opens the way for synthetic approaches to convert peptides with promising functional leads into structure-minimized and more stable forms.

  5. Click Chemistry in Peptide-Based Drug Design

    PubMed Central

    Li, Huiyuan; Aneja, Rachna; Chaiken, Irwin

    2014-01-01

    Click chemistry is an efficient and chemoselective synthetic method for coupling molecular fragments under mild reaction conditions. Since the advent in 2001 of methods to improve stereochemical conservation, the click chemistry approach has been broadly used to construct diverse chemotypes in both chemical and biological fields. In this review, we discuss the application of click chemistry in peptide-based drug design. We highlight how triazoles formed by click reactions have been used for mimicking peptide and disulfide bonds, building secondary structural components of peptides, linking functional groups together, and bioconjugation. The progress made in this field opens the way for synthetic approaches to convert peptides with promising functional leads into structure-minimized and more stable forms. PMID:23959192

  6. Click chemistry, a potent tool in medicinal sciences.

    PubMed

    Musumeci, F; Schenone, S; Desogus, A; Nieddu, E; Deodato, D; Botta, L

    2015-01-01

    This review focuses on the application of click chemistry in medicinal sciences, and particularly on its role in drug discovery. Because of its high modularity, click chemistry helps to accelerate the current drug discovery process, which relies on massive screening of chemical libraries. This article describes examples of click chemistry applications that are aimed at finding new lead candidates against pathologies such as cancer, AIDS and Alzheimer's disease, and explores the impact that the technique could have in therapy and prevention in the near future, through application in drug delivery systems, bioconjugation and diagnostic. An introduction, addressed to researchers who intend to use this methodology, examines the opportunities to perform click reactions according to the most common and best studied techniques, such as synthesis in water, on solid phase, and under microwave or ultrasound irradiation. Every topic is furnished with examples which have appeared in the literature in the last five years and is clarified by schemes and figures.

  7. Double clicking for site-specific coupling of multiple enzymes.

    PubMed

    Lim, Sung In; Cho, Jinhwan; Kwon, Inchan

    2015-09-14

    A method to site-specifically couple multiple enzymes is reported. The approach is based on the site-specific incorporation of a clickable non-natural amino acid into enzymes and two compatible click reactions. The multi-enzyme reaction system exhibited enhanced catalytic efficiency over the respective free enzymes.

  8. Sequential and parallel dual labeling of nanoparticles using click chemistry.

    PubMed

    Zong, Hong; Goonewardena, Sascha N; Chang, Huai-Ning; Otis, James B; Baker, James R

    2014-11-01

    Bioorthogonal 'click' reactions have recently emerged as promising tools for chemistry and biological applications. By using a combination of two different 'click' reactions, 'double-click' strategies have been developed to attach multiple labels onto biomacromolecules. These strategies require multi-step modifications of the biomacromolecules that can lead to heterogeneity in the final conjugates. Herein, we report the synthesis and characterization of a set of three trifunctional linkers. The linkers having alkyne and cyclooctyne moieties that are capable of participating in sequential copper(I)-catalyzed and copper-free cycloaddition reactions with azides. We have also prepared a linker comprised of an alkyne and a 1,2,4,5-terazine moiety that allows for simultaneous cycloaddition reactions with azides and trans-cyclooctenes, respectively. These linkers can be attached to synthetic or biological macromolecules to create a platform capable of sequential or parallel 'double-click' labeling in biological systems. We show this potential using a generation 5 (G5) polyamidoamine (PAMAM) dendrimer in combination with the clickable linkers. The dendrimers were successfully modified with these linkers and we demonstrate both sequential and parallel 'double-click' labeling with fluorescent reporters. We anticipate that these linkers will have a variety of application including molecular imaging and monitoring of macromolecule interactions in biological systems.

  9. In vivo targeting through click chemistry.

    PubMed

    Brudno, Yevgeny; Desai, Rajiv M; Kwee, Brian J; Joshi, Neel S; Aizenberg, Michael; Mooney, David J

    2015-04-01

    Targeting small molecules to diseased tissues as therapy or diagnosis is a significant challenge in drug delivery. Drug-eluting devices implanted during invasive surgery allow the controlled presentation of drugs at the disease site, but cannot be modified once the surgery is complete. We demonstrate that bioorthogonal click chemistry can be used to target circulating small molecules to hydrogels resident intramuscularly in diseased tissues. We also demonstrate that small molecules can be repeatedly targeted to the diseased area over the course of at least one month. Finally, two bioorthogonal reactions were used to segregate two small molecules injected as a mixture to two separate locations in a mouse disease model. These results demonstrate that click chemistry can be used for pharmacological drug delivery, and this concept is expected to have applications in refilling drug depots in cancer therapy, wound healing, and drug-eluting vascular grafts and stents.

  10. Preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) monolithic column by in situ polymerization and a click reaction for capillary liquid chromatography of small molecules and proteins.

    PubMed

    Lin, Zian; Yu, Ruifang; Hu, Wenli; Zheng, Jiangnan; Tong, Ping; Zhao, Hongzhi; Cai, Zongwei

    2015-07-07

    Combining free radical polymerization with click chemistry via a copper-mediated azide/alkyne cycloaddition (CuAAC) reaction in a "one-pot" process, a facile approach was developed for the preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) (AZT-co-PMA-co-PETA) monolithic column. The resulting poly(AZT-co-PMA-co-PETA) monolith showed a relatively homogeneous monolithic structure, good permeability and mechanical stability. Different ratios of monomers and porogens were used for optimizing the properties of a monolithic column. A series of alkylbenzenes, amides, anilines, and benzoic acids were used to evaluate the chromatographic properties of the polymer monolith in terms of hydrophobic, hydrophilic and cation-exchange interactions, and the results showed that the poly(AZT-co-PMA-co-PETA) monolith exhibited more flexible adjustment in chromatographic selectivity than that of the parent poly(PMA-co-PETA) and AZT-modified poly(PMA-co-PETA) monoliths. Column efficiencies for toluene, DMF, and formamide with 35,000-48,000 theoretical plates per m could be obtained at a linear velocity of 0.17 mm s(-1). The run-to-run, column-to-column, and batch-to-batch repeatabilities of the retention factors were less than 4.2%. In addition, the proposed monolith was also applied to efficient separation of sulfonamides, nucleobases and nucleosides, anesthetics and proteins for demonstrating its potential.

  11. Ion Exchange and Antibiofouling Properties of Poly(ether sulfone) Membranes Prepared by the Surface Immobilization of Brønsted Acidic Ionic Liquids via Double-Click Reactions.

    PubMed

    Yi, Zhuan; Liu, Cui-Jing; Zhu, Li-Ping; Xu, You-Yi

    2015-07-28

    Brønsted acidic ionic liquids (BAILs) are unique ionic liquids that display chemical structures similar to zwitterions, and they were typically used as solvents and catalysts. In this work, an imidazole-based BAIL monolayer was fabricated onto poly(ether sulfone) (PES) membranes via surface clicking reactions, and the multifunctionality, including ion exchange and biofouling resistance to proteins and bacteria, was demonstrated, which was believed to be one of few works in which BAIL had been considered to be a novel fouling resistance layer for porous membranes. The successful immobilization of the BAILs onto a membrane surface was confirmed by X-ray photoelectron spectroscopy analysis, contact angle measurement, and ζ potential determination. The results from Raman spectroscopy showed that, as a decisive step prior to zwitterion, the BAIL was deprotonated in aqueous solution, and biofouling resistance to proteins and bacteria was found. However, BAIL displayed ion exchange ability at lower pH, and surface hydrophilicity/hydrophobicity of membranes could be tuned on purpose. Our results have demonstrated that the BAIL grafted onto membranes will not only act as an antibiofouling barrier like zwitterions but also provide a platform for surface chemical tailoring by ion exchange, the property of which will become especially important in acidic solutions where the fouling resistance performances of zwitterions are greatly weakened.

  12. Combining RAFT polymerization and thiol-ene click reaction for core-shell structured polymer@BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability.

    PubMed

    Yang, Ke; Huang, Xingyi; Zhu, Ming; Xie, Liyuan; Tanaka, Toshikatsu; Jiang, Pingkai

    2014-02-12

    Nanodielectric materials with high dielectric constant, low dielectric loss, and high energy storage capability are highly desirable in modern electric and electronics industries. It has been proved that the preparation of core-shell structured dielectric polymer nanocomposites via "grafting from" method is an effective approach to these materials. However, by using this approach, the deep understanding of the structure-dielectric property relationship of the core-shell structured nanodielectrics has been limited because of the lack of detailed information (e.g., molecular weight, grafting density) about the macromolecules grafted onto the nanoparticle surfaces. In this work, by the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and thiol-ene click reaction, two types of core-shell structured polymer@BaTiO3 (polymer@BT) nanocomposites with high dielectric constant and low dielectric loss were successfully prepared via a "grafting to" method. Compared with the "grafting from" method, this "grafting to" method has two merits: the molecular weight of the polymer chains in the shell layer can be easily controlled and the grafting density can be tailored by changing the molecular weight of the grafting polymer. Moreover, a clear insight into the relationship among the dielectric properties and energy storage capability of the core-shell structured polymer@BT nanocomposites, the molecular weight of the polymer chains, and the grafting density of the core-shell structured nanoparticles was achieved. The study provides new insights into the design and preparation of nanodielectric materials with desirable dielectric properties.

  13. Preparation of Lanthanide-Polymer Composite Material via Click Chemistry.

    PubMed

    Chen, Bin; Wen, Guian; Wu, Jiajie; Feng, Jiachun

    2015-10-01

    Covalently attaching lanthanide complexes to the polymer backbone can effectively reduce the clustering of lanthanides and thus become an important strategy to fully unleash their potential. In this Communication, a metal-free click reaction is used for the first time to link a lanthanide complex to the polymer matrix. A diene-bearing copolymer with anthracenylmethyl methacrylate as a monomer and a dienophile-bearing lanthanide complex with 5-maleimido-1,10-phenanthroline as the second ligand are synthesized and coupled together through a Diels-Alder cycloaddition (DA). A comparative investigation demonstrates that the composite material prepared by DA click reaction shows the highest quantum yields in the same lanthanide concentration as compared to materials prepared by widely used "directly doping" and "in situ coordinating lanthanide ions with macromolecular ligand" approaches. This work suggests that the "metal-free" DA click reaction can be a promising tool in the synthesis of high efficient lanthanide functionalized polymeric materials.

  14. Click Chemistry and Radiochemistry: The First 10 Years.

    PubMed

    Meyer, Jan-Philip; Adumeau, Pierre; Lewis, Jason S; Zeglis, Brian M

    2016-12-21

    The advent of click chemistry has had a profound influence on almost all branches of chemical science. This is particularly true of radiochemistry and the synthesis of agents for positron emission tomography (PET), single photon emission computed tomography (SPECT), and targeted radiotherapy. The selectivity, ease, rapidity, and modularity of click ligations make them nearly ideally suited for the construction of radiotracers, a process that often involves working with biomolecules in aqueous conditions with inexorably decaying radioisotopes. In the following pages, our goal is to provide a broad overview of the first 10 years of research at the intersection of click chemistry and radiochemistry. The discussion will focus on four areas that we believe underscore the critical advantages provided by click chemistry: (i) the use of prosthetic groups for radiolabeling reactions, (ii) the creation of coordination scaffolds for radiometals, (iii) the site-specific radiolabeling of proteins and peptides, and (iv) the development of strategies for in vivo pretargeting. Particular emphasis will be placed on the four most prevalent click reactions-the Cu-catalyzed azide-alkyne cycloaddition (CuAAC), the strain-promoted azide-alkyne cycloaddition (SPAAC), the inverse electron demand Diels-Alder reaction (IEDDA), and the Staudinger ligation-although less well-known click ligations will be discussed as well. Ultimately, it is our hope that this review will not only serve to educate readers but will also act as a springboard, inspiring synthetic chemists and radiochemists alike to harness click chemistry in even more innovative and ambitious ways as we embark upon the second decade of this fruitful collaboration.

  15. Combining click-multicomponent reaction: one-pot synthesis of triazolyl methoxy-phenyl indazolo[2,1-b]phthalazine-trione derivatives.

    PubMed

    Salehi, Peyman; MaGee, David I; Dabiri, Minoo; Torkian, Laleh; Donahue, Jordan

    2012-05-01

    [(1,2,3-Triazol-4-yl)methoxy-phenyl]-2H-indazolo[2,1-b]phthalazine-trione derivatives were synthesized in a simple and efficient method from the one-pot four-component condensation reaction of phthalhydrazide, aromatic propargyloxy aldehydes, active methylene compounds (dimedone and 1,3-cyclohexanedione), and azides in the presence of Cu(OAc)(2)/sodium ascorbate and p-toluenesulfonic acid as catalysts in good to excellent yields.

  16. A click chemistry strategy for visualization of plant cell wall lignification.

    PubMed

    Tobimatsu, Yuki; Van de Wouwer, Dorien; Allen, Eric; Kumpf, Robert; Vanholme, Bartel; Boerjan, Wout; Ralph, John

    2014-10-21

    Bioorthogonal click chemistry was commissioned to visualize the plant cell wall lignification process in vivo. This approach uses chemical reporter-tagged monolignol mimics that can be metabolically incorporated into lignins and subsequently derivatized via copper-assisted or copper-free click reactions.

  17. 18F-Labeling Using Click Cycloadditions

    PubMed Central

    Ross, Tobias L.

    2014-01-01

    Due to expanding applications of positron emission tomography (PET) there is a demand for developing new techniques to introduce fluorine-18 (t1/2 = 109.8 min). Considering that most novel PET tracers are sensitive biomolecules and that direct introduction of fluorine-18 often needs harsh conditions, the insertion of 18F in those molecules poses an exceeding challenge. Two major challenges during 18F-labeling are a regioselective introduction and a fast and high yielding way under mild conditions. Furthermore, attention has to be paid to functionalities, which are usually present in complex structures of the target molecule. The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) and several copper-free click reactions represent such methods for radiolabeling of sensitive molecules under the above-mentioned criteria. This minireview will provide a quick overview about the development of novel 18F-labeled prosthetic groups for click cycloadditions and will summarize recent trends in copper-catalyzed and copper-free click 18F-cycloadditions. PMID:25003110

  18. Fluorescence imaging of chromosomal DNA using click chemistry

    PubMed Central

    Ishizuka, Takumi; Liu, Hong Shan; Ito, Kenichiro; Xu, Yan

    2016-01-01

    Chromosome visualization is essential for chromosome analysis and genetic diagnostics. Here, we developed a click chemistry approach for multicolor imaging of chromosomal DNA instead of the traditional dye method. We first demonstrated that the commercially available reagents allow for the multicolor staining of chromosomes. We then prepared two pro-fluorophore moieties that served as light-up reporters to stain chromosomal DNA based on click reaction and visualized the clear chromosomes in multicolor. We applied this strategy in fluorescence in situ hybridization (FISH) and identified, with high sensitivity and specificity, telomere DNA at the end of the chromosome. We further extended this approach to observe several basic stages of cell division. We found that the click reaction enables direct visualization of the chromosome behavior in cell division. These results suggest that the technique can be broadly used for imaging chromosomes and may serve as a new approach for chromosome analysis and genetic diagnostics. PMID:27620982

  19. Fluorescence imaging of chromosomal DNA using click chemistry

    NASA Astrophysics Data System (ADS)

    Ishizuka, Takumi; Liu, Hong Shan; Ito, Kenichiro; Xu, Yan

    2016-09-01

    Chromosome visualization is essential for chromosome analysis and genetic diagnostics. Here, we developed a click chemistry approach for multicolor imaging of chromosomal DNA instead of the traditional dye method. We first demonstrated that the commercially available reagents allow for the multicolor staining of chromosomes. We then prepared two pro-fluorophore moieties that served as light-up reporters to stain chromosomal DNA based on click reaction and visualized the clear chromosomes in multicolor. We applied this strategy in fluorescence in situ hybridization (FISH) and identified, with high sensitivity and specificity, telomere DNA at the end of the chromosome. We further extended this approach to observe several basic stages of cell division. We found that the click reaction enables direct visualization of the chromosome behavior in cell division. These results suggest that the technique can be broadly used for imaging chromosomes and may serve as a new approach for chromosome analysis and genetic diagnostics.

  20. Control of regioselectivity over gold nanocrystals of different surfaces for the synthesis of 1,4-disubstituted triazole through the click reaction.

    PubMed

    Rej, Sourav; Chanda, Kaushik; Chiu, Chun-Ya; Huang, Michael H

    2014-11-24

    Gold nanocubes, octahedra, and rhombic dodecahedra were examined for facet-dependent catalytic activity in the formation of triazoles. Rhombic dodecahedra gave 100% regioselective 1,4-triazoles. The product yield was increased by decreasing the particle size. However, a mixture of 1,4- and 1,5-triazoles was obtained in lower yields when cubes and octahedra of similar sizes were used. The lowest Au-atom density on the {110} surface and largest unsaturated coordination number of surface Au atoms may explain their best catalytic efficiency and product regioselectivity. Various spectroscopic techniques were employed to verify the formation of the Au-acetylide intermediate and establish the reaction mechanism, in which phenylacetylene binds to the Au {110} surface through the terminal-binding mode to result in the exclusive formation of 1,4-triazoles. The smallest rhombic dodecahedra can give diverse 1,4-disubstituted triazoles in good yields by coupling a wide variety of alkynes and organic halides.

  1. A carborane-derivative "click" reaction under heterogeneous conditions for the synthesis of a promising lipophilic MRI/GdBNCT agent.

    PubMed

    Toppino, Antonio; Bova, Maria Elena; Geninatti Crich, Simonetta; Alberti, Diego; Diana, Eliano; Barge, Alessandro; Aime, Silvio; Venturello, Paolo; Deagostino, Annamaria

    2013-01-07

    In this study, the Huisgen reaction has been used to functionalise a carborane cage with a lipophilic moiety and a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) ligand to obtain a new Gd boron neutron-capture therapy (BNCT)/magnetic resonance imaging (MRI) agent. The introduction of the triazole units has been accomplished under both heterogeneous conditions, by the use of a Cu-supported ionic-liquid catalyst, and homogeneous conditions. The ability of the Gd complex of the synthesised ligand to form stable adducts with low-density lipoproteins (LDLs) has been evaluated and then MRI has been performed on tumour melanoma cells incubated in the presence of a Gd-complex/LDL imaging probe. It has been concluded that the high amount of intracellular boron necessary to perform BNCT can be reached even in the presence of a relatively low-boron-containing LDL concentration.

  2. Coupling of Ligands to the Liposome Surface by Click Chemistry.

    PubMed

    Spanedda, Maria Vittoria; De Giorgi, Marcella; Hassane, Fatouma Saïd; Schuber, Francis; Bourel-Bonnet, Line; Frisch, Benoît

    2017-01-01

    Click chemistry represents a new bioconjugation strategy that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition which can be performed under mild experimental conditions in aqueous media. Here we describe the application of a model click reaction to the conjugation, in a single step, of unprotected α-1-thiomannosyl ligands, functionalized with an azide group, to liposomes containing a terminal alkyne-functionalized lipid anchor. Excellent coupling yields have been obtained in the presence of bathophenanthroline disulfonate, a water soluble copper-ion chelator, acting as a catalyst. No vesicle leakage is triggered by this conjugation reaction and the coupled mannose ligands are exposed at the surface of the liposomes. The major limitation of Cu(I)-catalyzed click reactions is that this conjugation is restricted to liposomes made of saturated (phospho)lipids. To circumvent that constraint, an example of alternative copper-free azide-alkyne click reaction has been developed. Molecular tools and results are presented here.

  3. Chemical attachment of magnetic nanoparticles through ``click chemistry''

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Teplyakov, Andrew Y.; Hadjipanayis, George C.

    2013-03-01

    Iron nanoparticles were used as a test system to explore the functionalization and attachment of magnetic nanoparticles with two different functionalities through ``click chemistry.'' Two different samples of iron nanoparticles were modified with 5-azidopentanoic acid and with 5-hexynoic acid, respectively. This modification was followed by click chemistry to change the morphology of agglomeration. A combination of density functional theory calculations, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy was used to monitor each step of the process. Spectroscopies confirmed the success and completion of click reaction. Scanning electron microscopy images showed the change in size and morphology of the iron nanoparticles before and after click chemistry. Vibrating sample magnetometer study showed the majority of the magnetic properties were retained following functionalization and click reaction. Exploring similar approach for two types of materials with functionalization and attachment of hard magnetic materials and soft magnetic materials will be presented based on our initial studies of SmCo nanoparticles in a combination with iron nanoparticles. Work supported by DOE ARPA-E.

  4. Facile "one-pot" synthesis of poly(methacrylic acid)-based hybrid monolith via thiol-ene click reaction for hydrophilic interaction chromatography.

    PubMed

    Lv, Xumei; Tan, Wangming; Chen, Ye; Chen, Yingzhuang; Ma, Ming; Chen, Bo; Yao, Shouzhuo

    2016-07-08

    A novel sol-gel "one-pot" approach in tandem with a radical-mediated thiol-ene reaction for the synthesis of a methacrylic acid-based hybrid monolith was developed. The polymerization monomers, tetramethoxysilane (TMOS) and 3-mercaptopropyl trimethoxysilane (MPTS), were hydrolyzed in high-concentration methacrylic acid solution that also served as a hydrophilic functional monomer. The resulting solution was then mixed with initiator (2, 2'-azobis (2-methylpropionamide) dihydrochloride) and porogen (urea, polyethylene glycol 20,000) in a capillary column and polymerized in water bath. The column had a uniform porous structure and a good permeability. The evaluation of the monolith was performed by separation of small molecules including nucleosides, phenols, amides, bases and Triton X-100. The calibration curves for uridine, inosine, adenosine and cytidine were determined. All the calibration curves exhibited good linear regressions (R(2)≥0.995) within the test ranges of 0.5-40μg/mL for four nucleosides. Additionaliy, atypical hydrophilic mechanism was proved by elution order from low to high according to polarity retention time increased with increases in the content of the organic solvent in the mobile phase. Further studies indicated that hydrogen bond and electrostatic interactions existed between the polar analytes and the stationary phase. This was the mechanism of retention. The excellent separation of the BSA digest showed good hydrophility of the column and indicated the potential in separation of complex biological samples.

  5. Enantiopure 1,2,3-triazolyl-β-amino acids via click cycloaddition reaction on racemic alkynyl precursors followed by separation of stereoisomers.

    PubMed

    Escudero-Casao, Margarita; Vega-Penaloza, Alberto; Juaristi, Eusebio

    2014-01-01

    In recent years, peptidomimetics have gained enormous importance in drug design aiming to achieve increased drug metabolic stability and higher selectivity. In the field of peptidomimetics, β-peptides incorporating β2- and β3-amino acids (the higher homologs of natural α-amino acids) provide a powerful method for the synthesis of peptidomimetics with particular secondary structures. In this regard, 1,2,3-triazole-modified peptidomimetics can act as effective peptide surrogates, and therefore have gained considerable attention. In the present report, 1,4-disubstituted 1,2,3-triazoles attached to β-amino acids were prepared selectively from the corresponding alkynyl-β2-amino acids according to Huisgen's copper-catalyzed 1,3-dipolar cycloaddition (CuAAC), under mild conditions and with very high efficiency. Different azide derivatives, including some incorporating α-amino acids, were employed in this cycloaddition reaction. The enantiopure compounds were obtained via diastereomeric salt formation with chiral adjuvants, and subsequent separation.

  6. Surface-initiated Polymerization of Azidopropyl Methacrylate and its Film Elaboration via Click Chemistry.

    PubMed

    Saha, Sampa; Bruening, Merlin L; Baker, Gregory L

    2012-11-27

    Azidopropyl methacrylate (AzPMA), a functional monomer with a pendent azido group, polymerizes from surfaces and provides polymer brushes amenable to subsequent elaboration via click chemistry. In DMF at 50 °C, click reactions between poly(AzPMA) brushes and an alkynylated dye proceed with >90% conversion in a few minutes. However, in aqueous solutions, reaction with an alkyne-containing poly(ethylene glycol) methyl ether (mPEG, Mn=5000) gives <10% conversion after a 12-h reaction at room temperature. Formation of copolymers with AzPMA and polyethylene glycol methyl ether methacrylate (mPEGMA) enables control over the hydrophilicity and functional group density in the copolymer to increase the yield of aqueous click reactions. The copolymers show reaction efficiencies as high as 60%. These studies suggest that for aqueous applications such as bioconjugation via click chemistry, control over brush hydrophilicity is vital.

  7. A simple "clickable" biosensor for colorimetric detection of copper(II) ions based on unmodified gold nanoparticles.

    PubMed

    Shen, Qinpeng; Li, Wenhua; Tang, Shiyun; Hu, Yufang; Nie, Zhou; Huang, Yan; Yao, Shouzhuo

    2013-03-15

    A novel colorimetric copper(II) biosensor has been developed based on the high specificity of alkyne-azide click reaction to the catalysis of copper ions and unmodified gold nanoparticles (AuNPs) as the signal reporter. The clickable DNA probe consists of two parts: an azide group-modified double-stranded DNA (dsDNA) hybrid with an elongated tail and a short alkyne-modified single-stranded DNA (ssDNA). Because of low melting temperature of the short ssDNA, these two parts are separated in the absence of Cu(2+). Copper ion-induced azide-alkyne click ligation caused a structural change of probe from the separated form to entire dsDNA form. This structural change of probe can be monitored by the unmodified AuNPs via mediating their aggregation with a red-to-blue colorimetric read-out because of the differential ability of ssDNA and dsDNA to protect AuNPs against salt-induced aggregation. Under the optimum conditions, this biosensor can sensitively and specifically detect Cu(2+) with a low detection limit of 250 nM and a linear range of 0.5-10 μM. The method is simple and economic without dual-labeling DNA and AuNPs modification. It is also highly selective for Cu(2+) in the presence of high concentrations of other environmentally relevant metal ions because of the great specificity of the copper-caused alkyne-azide click reaction, which potentially meets the requirement of the detection in real samples.

  8. Click-iT assay with improved DNA distribution histograms.

    PubMed

    Hamelik, Ronald M; Krishan, Awtar

    2009-10-01

    The Click-iT Assay developed and commercialized by Invitrogen is based on incorporation of a new 5-bromo-2'-deoxyuridine analog, 5-ethynyl-2'-deoxyuridine (EdU) into newly synthesized DNA and its recognition by azide dyes via a copper mediated "click" reaction. This relatively convenient and useful procedure depends on fixation of cells with paraformaldehyde and staining of the DNA with 7-aminoactinomycin-D (7-AAD). Both of these procedures result in DNA histograms with broad coefficients of variation (CV's). In this report, we have shown that after EdU incorporation, nuclei isolated by lysis can be incubated with the Click-iT Assay and stained with propidium iodide for generation of DNA histograms with low CV's. This modified procedure results in better DNA histograms by replacing 7-AAD with propidium iodide and also saves processing time by eliminating the fixation and permeabilization steps.

  9. Click-iT proliferation assay with improved DNA histograms.

    PubMed

    Krishan, Awtar; Hamelik, Ronald M

    2010-04-01

    The Click-iT EdU cell proliferation assay (Invitrogen) for detection of replicating cells is based on incorporation of EdU into newly synthesized DNA and its recognition by azide dyes via a copper mediated "click" reaction. In the protocol provided by Invitrogen, cells are fixed with paraformaldehyde and stained with 7-aminoactinomycin D (7-AAD) for DNA content analysis. Both of these procedures result in DNA histograms with a broad coefficient of variation. We have modified this protocol and show that after EdU incorporation, nuclei isolated by hypotonic lysis of cells can be directly labeled using the Click-iT Alexa Fluor 488 Assay kit and stained with propidium iodide. This modified procedure using isolated nuclei and propidium iodide staining results in DNA histograms with better resolution (lower coefficient of variation of the G(1) peak) and shorter processing time by eliminating the fixation and permeabilization steps.

  10. Solvent-free copper-catalyzed azide-alkyne cycloaddition under mechanochemical activation.

    PubMed

    Rinaldi, Laura; Martina, Katia; Baricco, Francesca; Rotolo, Laura; Cravotto, Giancarlo

    2015-02-09

    The ball-mill-based mechanochemical activation of metallic copper powder facilitates solvent-free alkyne-azide click reactions (CuAAC). All parameters that affect reaction rate (i.e., milling time, revolutions/min, size and milling ball number) have been optimized. This new, efficient, facile and eco-friendly procedure has been tested on a number of different substrates and in all cases afforded the corresponding 1,4-disubstituted 1,2,3-triazole derivatives in high yields and purities. The final compounds were isolated in almost quantitative overall yields after simple filtration, making this procedure facile and rapid. The optimized CuAAC protocol was efficiently applied even with bulky functionalized β-cyclodextrins (β-CD) and scaled-up to 10 g of isolated product.

  11. Dendron avidity platforms with orthogonal focal point coupling site

    NASA Astrophysics Data System (ADS)

    McNerny, Daniel Quinn

    This thesis explores the design and synthesis of bifunctional or modular platforms from poly(amidoamine) (PAMAM) dendrons. PAMAM dendrons with an orthogonal focal point are evaluated, testing several click chemistry reactions for high conversion and mild conditions. The orthogonal reaction chemistry used at the dendron focal point gives a precise 1:1 ratio of the attachment of multiple functionalities to a small molecular weight, chemically stable high avidity molecule. In the first component of the thesis, dendrons were synthesized with c(RGDyK) peptide on the surface to create a scaffold for cellular targeting and multivalent binding. Binary dendron-RGD conjugates were synthesized with a single imaging agent, therapeutic drug, or additional functionalized dendron at the focal point after a copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction. The targeted-dendron platform was shown to specifically target alphaVbeta3 integrin expressing human umbilical vein endothelial cells (HUVEC) and human glioblastoma cells (U87MG) in vitro via flow cytometry. Specific targeting of the dendron-RGD platform was further confirmed by confocal microscopy. Biological activity of the targeted drug conjugate was confirmed via XTT assay. The remainder of the thesis explores click chemistry reactions that do not require a metal catalyst, which may cause undesired toxicity for some biological applications. Thiol-based click chemistry, specifically the thiol-ene and thiol-yne reactions, is explored on dendron platforms. The thiol click reactions provide an improved efficiency, compared to CuAAC, by reaching quantitative conversion of the focal point in most cases. The thiol click reactions suffer from some setbacks: the need for a thermal or photoinitiator may prevent the conjugation of some functional ligands and the thiol chemistry is more prone to side reactions. Finally, strain-promoted alkyne-azide cycloadditions are examined. The ring-strain click chemistry

  12. Asymmetric Synthesis of d-ribo-Phytosphingosine from 1-Tetradecyne and (4-Methoxyphenoxy)acetaldehyde

    PubMed Central

    Liu, Zheng; Byun, Hoe-Sup

    2010-01-01

    An asymmetric synthesis of d-ribo-phytosphingosine (1) was achieved by utilizing the ProPhenol-catalyzed alkynylation of aldehyde 8 to afford allylic propargylic alcohol (S)-6 followed by asymmetric epoxidation and opening of propargylic epoxy alcohol anti-5 with NaN3/NH4Cl. Deprotection and reduction of the resulting acyclic azide 3 then gave 1. Alkyne-azide 3 was subjected to an intramolecular click reaction, generating a bicyclic triazole, which was found to have unexpected vicinal coupling constants. Application of the advanced Mosher method verified the configurations of the three contiguous stereogenic centers of 1. An alkynyl-azide analogue of 1, which may be useful as a glycosyl acceptor in the synthesis of α-galactosylceramide derivatives, was also readily prepared by this route. PMID:20527744

  13. Asymmetric synthesis of D-ribo-phytosphingosine from 1-tetradecyne and (4-methoxyphenoxy)acetaldehyde.

    PubMed

    Liu, Zheng; Byun, Hoe-Sup; Bittman, Robert

    2010-07-02

    An asymmetric synthesis of d-ribo-phytosphingosine (1) was achieved by utilizing the ProPhenol (12)-catalyzed alkynylation of unsaturated aldehyde 8 to afford allylic propargylic alcohol (S)-6 followed by asymmetric epoxidation and opening of propargylic epoxy alcohol anti-5 with NaN(3)/NH(4)Cl. Deprotection and reduction of the resulting acyclic azide 3 then gave 1. Alkyne-azide 3 was subjected to an intramolecular click reaction, generating a bicyclic triazole, which was found to have unexpected vicinal coupling constants. Application of the advanced Mosher method verified the configurations of the three contiguous stereogenic centers of 1. An alkynyl azide analogue of 1, which may be useful as a glycosyl acceptor in the synthesis of alpha-galactosylceramide derivatives, was also readily prepared by this route.

  14. In-gel activity-based protein profiling of a clickable covalent ERK1/2 inhibitor.

    PubMed

    Lebraud, Honorine; Wright, David J; East, Charlotte E; Holding, Finn P; O'Reilly, Marc; Heightman, Tom D

    2016-08-16

    In-gel activity-based protein profiling (ABPP) offers rapid assessment of the proteome-wide selectivity and target engagement of a chemical tool. Here we demonstrate the use of the inverse electron demand Diels Alder (IEDDA) click reaction for in-gel ABPP by evaluating the selectivity profile and target engagement of a covalent ERK1/2 probe tagged with a trans-cyclooctene group. The chemical probe was shown to bind covalently to Cys166 of ERK2 using protein MS and X-ray crystallography, and displayed submicromolar GI50s in A375 and HCT116 cells. In both cell lines, the probe demonstrated target engagement and a good selectivity profile at low concentrations, which was lost at higher concentrations. The IEDDA cycloaddition enabled fast and quantitative fluorescent tagging for readout with a high background-to-noise ratio and thereby provides a promising alternative to the commonly used copper catalysed alkyne-azide cycloaddition.

  15. Legomedicine-A Versatile Chemo-Enzymatic Approach for the Preparation of Targeted Dual-Labeled Llama Antibody-Nanoparticle Conjugates.

    PubMed

    van Lith, Sanne A M; van Duijnhoven, Sander M J; Navis, Anna C; Leenders, William P J; Dolk, Edward; Wennink, Jos W H; van Nostrum, Cornelus F; van Hest, Jan C M

    2017-02-15

    Conjugation of llama single domain antibody fragments (Variable Heavy chain domains of Heavy chain antibodies, VHHs) to diagnostic or therapeutic nanoparticles, peptides, proteins, or drugs offers many opportunities for optimized targeted cancer treatment. Currently, mostly nonspecific conjugation strategies or genetic fusions are used that may compromise VHH functionality. In this paper we present a versatile modular approach for bioorthogonal VHH modification and conjugation. First, sortase A mediated transPEGylation is used for introduction of a chemical click moiety. The resulting clickable VHHs are then used for conjugation to other groups employing the Cu(+)-independent strain-promoted alkyne-azide cycloadition (SPAAC) reaction. Using this approach, tail-to-tail bispecific VHHs and VHH-targeted nanoparticles are generated without affecting VHH functionality. Furthermore, this approach allows the bioconjugation of multiple moieties to VHHs for simple and convenient production of VHH-based theranostics.

  16. The Click and Twitch in Contemporary Poetry.

    ERIC Educational Resources Information Center

    Meredith, Bernard

    It is the creative writing instructor's role to help the student turn "twitch" poems into "click" poems ("twitch" being a kind of verbal hypertension that takes shape in the absence of anything humanly important to say on the poet's part and "click" being the finished poem that makes a sound like the click of the lid on a perfectly made box).…

  17. Click chemistry: 1,2,3-triazoles as pharmacophores.

    PubMed

    Agalave, Sandip G; Maujan, Suleman R; Pore, Vandana S

    2011-10-04

    The copper(I)-catalyzed 1,2,3-triazole-forming reaction between azides and terminal alkynes has become the gold standard of 'click chemistry' due to its reliability, specificity, and biocompatibility. Applications of click chemistry are increasingly found in all aspects of drug discovery; they range from lead finding through combinatorial chemistry and target-templated in vitro chemistry, to proteomics and DNA research by using bioconjugation reactions. The triazole products are more than just passive linkers; they readily associate with biological targets, through hydrogen-bonding and dipole interactions. The present review will focus mainly on the recent literature for applications of this reaction in the field of medicinal chemistry, in particular on use of the 1,2,3-triazole moiety as pharmacophore.

  18. Low generation polyamine dendrimers bearing flexible tetraethylene glycol as nanocarriers for plasmids and siRNA

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi; Zhang, Issan; Shiao, Tze Chieh; Pavan, Giovanni M.; Maysinger, Dusica; Roy, René

    2016-02-01

    Low G1 generation polyamine dendrimers built around programmable, flexible, and short tetraethyleneglycol branches were readily prepared in a divergent manner using a combination of orthogonal AB3 or AB5 units and highly efficient chemical transformations based on Cu(i) catalyzed alkyne-azide cycloaddition (CUAAC) and thiol-ene click reactions. The constructs showed that the G1 polyamines with only twelve and eighteen amine surface groups can successfully deliver siRNA in human cells, with transfection efficiency comparable to that of Lipofectamine 2000®. Measurements of cell viability following transfection of plasmid DNA and siRNA showed that the dendritic polyamines are less cytotoxic than Lipofectamine 2000® and are thus preferable for biological applications.Low G1 generation polyamine dendrimers built around programmable, flexible, and short tetraethyleneglycol branches were readily prepared in a divergent manner using a combination of orthogonal AB3 or AB5 units and highly efficient chemical transformations based on Cu(i) catalyzed alkyne-azide cycloaddition (CUAAC) and thiol-ene click reactions. The constructs showed that the G1 polyamines with only twelve and eighteen amine surface groups can successfully deliver siRNA in human cells, with transfection efficiency comparable to that of Lipofectamine 2000®. Measurements of cell viability following transfection of plasmid DNA and siRNA showed that the dendritic polyamines are less cytotoxic than Lipofectamine 2000® and are thus preferable for biological applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06757j

  19. Making Sure Our Reading "CLICKS"

    ERIC Educational Resources Information Center

    Giordano, Linda

    2011-01-01

    The author, a veteran second-grade teacher, has spent the past three years developing a system to help her students find appropriate books to read during independent reading time. The article describes how the CLICKS system evolved and how to introduce it to a classroom of young readers. (Contains 7 figures.)

  20. SuFEx Click: New Materials from SOx F and Silyl Ethers.

    PubMed

    Yatvin, Jeremy; Brooks, Karson; Locklin, Jason

    2016-11-07

    New forms of click chemistry present new opportunities in materials science. Sulfur(VI) fluoride exchange (SuFEx) is a recently discovered click reaction between molecules containing SOx F groups and silyl ethers, two functionalities that are orthogonal to all other known click chemistries, that generates sulfate or sulfonate connections upon the addition of certain organobases or fluoride sources. SuFEx also has several important advantages over other click reactions in that it is insensitive to ambient oxygen and water, and its precursor materials, especially SOx F, are chemically, UV, and thermally inert. This Concept article focuses on the unique reactivity of SuFEx and its relation to building high molecular weight polymers and surface coatings, both of which make it a powerful new tool for materials science.

  1. Click-to-Chelate: development of technetium and rhenium-tricarbonyl labeled radiopharmaceuticals.

    PubMed

    Kluba, Christiane A; Mindt, Thomas L

    2013-03-12

    The Click-to-Chelate approach is a highly efficient strategy for the radiolabeling of molecules of medicinal interest with technetium and rhenium-tricarbonyl cores. Reaction of azide-functionalized molecules with alkyne prochelators by the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC; click reaction) enables the simultaneous synthesis and conjugation of tridentate chelating systems for the stable complexation of the radiometals. In many cases, the functionalization of (bio)molecules with the ligand system and radiolabeling can be achieved by convenient one-pot procedures. Since its first report in 2006, Click-to-Chelate has been applied to the development of numerous novel radiotracers with promising potential for translation into the clinic. This review summarizes the use of the Click-to-Chelate approach in radiopharmaceutical sciences and provides a perspective for future applications.

  2. The use of click chemistry in the emerging field of catalomics.

    PubMed

    Kalesh, Karunakaran A; Shi, Haibin; Ge, Jingyan; Yao, Shao Q

    2010-04-21

    Of the thousands of known chemical reactions, a handful of reactions, called "click" reactions, stand out with features such as good chemoselectivity, good solvent compatibilities, modularity, minimum synthetic demands, bioorthogonality and high yields. Among them, the Cu(i)-catalyzed 1,3-dipolar cycloaddition reaction between azides and terminal alkynes has emerged as a powerful tool in chemical biology and proteomics. This perspective surveys the significant contributions of click chemistry in catalomics (a sub-area in chemical proteomics), with special emphasis on activity-based protein profiling (ABPP), posttranslational modifications (PTMs) and enzyme inhibitor developments.

  3. Growing applications of "click chemistry" for bioconjugation in contemporary biomedical research.

    PubMed

    Nwe, Kido; Brechbiel, Martin W

    2009-06-01

    This update summarizes the growing application of "click" chemistry in diverse areas such as bioconjugation, drug discovery, materials science, and radiochemistry. This update also discusses click chemistry reactions that proceed rapidly with high selectivity, specificity, and yield. Two important characteristics make click chemistry so attractive for assembling compounds, reagents, and biomolecules for preclinical and clinical applications. First, click reactions are bio-orthogonal; neither the reactants nor their product's functional groups interact with functionalized biomolecules. Second, the reactions proceed with ease under mild nontoxic conditions, such as at room temperature and, usually, in water. The copper-catalyzed Huisgen cycloaddition, azide-alkyne [3 + 2] dipolar cycloaddition, Staudinger ligation, and azide-phosphine ligation each possess these unique qualities. These reactions can be used to modify one cellular component while leaving others unharmed or untouched. Click chemistry has found increasing applications in all aspects of drug discovery in medicinal chemistry, such as for generating lead compounds through combinatorial methods. Bioconjugation via click chemistry is rigorously employed in proteomics and nucleic research. In radiochemistry, selective radiolabeling of biomolecules in cells and living organisms for imaging and therapy has been realized by this technology. Bifunctional chelating agents for several radionuclides useful for positron emission tomography and single-photon emission computed tomography imaging have also been prepared by using click chemistry. This review concludes that click chemistry is not the perfect conjugation and assembly technology for all applications, but provides a powerful, attractive alternative to conventional chemistry. This chemistry has proven itself to be superior in satisfying many criteria (e.g., biocompatibility, selectivity, yield, stereospecificity, and so forth); thus, one can expect it will

  4. Just Click It: Undergraduate Procedures for the Copper(I)-Catalyzed Formation of 1,2,3-Triazoles from Azides and Terminal Acetylenes

    ERIC Educational Resources Information Center

    Sharpless, William D.; Peng Wu; Hansen, Trond Vidar; Lindberg, James G.

    2005-01-01

    The click chemistry uses only the most reliable reactions to build complex molecules from olefins, electrophiles and heteroatom linkers. A variation on Huisgen's azide-alkyne 1,2,3-triazole synthesis, the addition of the copper (I), the premium example of the click reaction, catalyst strongly activates terminal acetylenes towards the 1,3-dipole in…

  5. Problems and Solutions in Click Chemistry Applied to Drug Probes

    PubMed Central

    Zhong, Weilong; Sun, Bo; Lu, Cheng; Yu, Hengheng; Wang, Changhua; He, Lingfei; Gu, Ju; Chen, Shuang; Liu, Yanrong; Jing, Xiangyan; Bi, Zhun; Yang, Guang; Zhou, Honggang; Sun, Tao; Yang, Cheng

    2016-01-01

    Small-molecule fluorescent probes have been widely used in target identification, but this method has many disadvantages. For example, the identified proteins are usually complex, and additional biochemical studies are needed to distinguish real targets from interference results. To address this problem, we propose a series of strategies for improving the efficiency of target identification. First, pretreatment with a lower concentration of hydrogen peroxide can shield against thiol interference. Second, the use of benzophenone as a photo-affinity group is not appropriate, and diazirines are preferred. Third, if cytoskeleton proteins or stress proteins are captured, the interference must be carefully eliminated. The specificity of target identification can be improved by optimizing these three strategies. In this paper, we discuss the problems associated with the use of the click reaction in living cells and provide important complementary techniques for photo-affinity probes based on the click chemistry reaction. PMID:27782133

  6. Covalent layer-by-layer functionalization of multiwalled carbon nanotubes by click chemistry.

    PubMed

    Zhang, Yu; He, Hongkun; Gao, Chao; Wu, Jiayan

    2009-05-19

    The covalent functionalization of multiwalled carbon nanotubes (MWNTs) by layer-by-layer (LbL) click chemistry is reported. The clickable polymers of poly(2-azidoethyl methacrylate) and poly(propargyl methacrylate) were synthesized at first by atom transfer radical polymerization (ATRP) of 2-azidoethyl methacrylate and reverse addition-fragmentation chain transfer (RAFT) polymerization of propargyl methacrylate, respectively. The two polymers were then alternately coated on alkyne-modified multiwalled carbon nanotubes using Cu(I)-catalyzed click reaction of Huisgen 1,3-dipolar cycloaddition between azides and alkynes. Thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) measurements confirm that the quantity and thickness of the clicked polymer shell on MWNTs can be well controlled by adjusting the cycles or numbers of click reaction and the polymer shell is uniform and even. X-ray photoelectron spectroscopy (XPS) and Fourier tranform infrared (FTIR) measurements showed that there were still a great amount of residual azido groups on the surfaces of the functionalized MWNTs after clicking three layers of polymers. Furthermore, alkyne-modified rhodamine B and monoalkyne-terminated polystyrene were subsequently used to functionalize the clickable polymer grafted MWNTs, giving rise to fluorescent carbon nanotubes (CNTs) and CNT-based polystyrene brushes, respectively. It demonstrates that the residual azido groups on the surfaces of MWNTs are available for further click reaction with various functional molecules.

  7. Unique tetrameric and hexameric mannoside clusters prepared by click chemistry.

    PubMed

    Al-Mughaid, Hussein; Al-Zoubi, Raed M; Paul, Nawal K; Grindley, T Bruce

    2015-11-19

    The synthesis of novel tetrameric and hexameric mannoside clusters bearing 1,2,3-trizole linkages via Cu(I)-catalyzed azide-alkyne cycloaddition reaction ("click chemistry") is described. An attractive feature of these multiarmed mannoside clusters as potential inhibitors of uropathogenic Escherichia coli is the use of an aglycone whose length is designed to fit in the tyrosine gate. The acetylated mannosides were deprotected and the corresponding de-O-acetylated mannosides were found to exhibit good water solubility.

  8. Click synthesis of a polyamidoamine dendrimer-based camptothecin prodrug

    PubMed Central

    Zolotarskaya, Olga Yu.; Xu, Leyuan; Valerie, Kristoffer; Yang, Hu

    2015-01-01

    In the present work we report on the click synthesis of a new camptothecin (CPT) prodrug based on anionic polyamidoamine (PAMAM) dendrimer intended for cancer therapy. We applied ‘click’ chemistry to improve polymer-drug coupling reaction efficiency. Specifically, CPT was functionalized with a spacer, 1-azido-3,6,9,12,15-pentaoxaoctadecan-18-oic acid (APO), via EDC/DMAP coupling reaction. In parallel, propargylamine (PPA) and methoxypoly(ethylene glycol) amine were conjugated to PAMAM dendrimer G4.5 in sequence using an effective coupling agent 4-(4,6-dimethoxy-(1,3,5)triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM). CPT-APO was then coupled to PEGylated PAMAM dendrimer G4.5-PPA via a click reaction using copper bromide/2,2’-bipyridine/ dimethyl sulfoxide (catalyst/ligand/solvent). Human glioma cells were exposed to the CPT-conjugate to determine toxicity and cell cycle effects using WST-1 assay and flow cytometry. The CPT-conjugate displayed a dose-dependent toxicity with an IC50 of 5 μM, a 185-fold increase relative to free CPT, presumably as a result of slow release. As expected, conjugated CPT resulted in G2/M arrest and cell death while the dendrimer itself had little to no toxicity. Altogether, highly efficient click chemistry allows for the synthesis of multifunctional dendrimers for sustained drug delivery. PMID:26640689

  9. Optimization of acetonitrile co-solvent and copper stoichiometry for pseudo-ligandless click chemistry with nucleic acids.

    PubMed

    Paredes, Eduardo; Das, Subha R

    2012-08-15

    The copper(I) catalyzed azide-alkyne cycloaddition 'click' reaction yields a specific product under mild conditions and in some of the most chemically complex environments. This reaction has been used extensively to tag DNA, proteins, glycans and only recently RNA. Click reactions in aqueous buffer typically include a ligand for Cu(I), however we find that acetonitrile as a minor co-solvent can serve this role. Here we investigate the click labeling of RNA and DNA in aqueous buffer to determine the relationship between the stoichoimetry of Cu(I) and the acetonitrile co-solvent that affects nucleic acid stability. We find that very low concentrations of acetonitrile perform equally well and obviate the need for any additional Cu(I) stabilizing ligand. These pseudo-ligandless reaction conditions are optimal for nucleic acids click conjugations.

  10. Disruption of the auditory response to a regular click train by a single, extra click.

    PubMed

    Lütkenhöner, Bernd; Patterson, Roy D

    2015-06-01

    It has been hypothesized that the steady-state response to a periodic sequence of clicks can be modeled as the superposition of responses to single clicks. Here, this hypothesis is challenged by presenting an extra click halfway between two consecutive clicks of a regular series, while measuring the auditory evoked field. After a solitary click at time zero, the click series sounded from 100 to 900 ms, with the extra click presented around 500 ms. The silent period between two stimulus sequences was 310-390 ms (uniformly distributed) so that one stimulation cycle lasted, on average, 1250 ms. Five different click rates between 20 and 60 Hz were examined. The disturbance caused by the extra click was revealed by subtracting the estimated steady-state response from the joint response to the click series and the extra click. The early peaks of the single-click response effectively coincide with same-polarity peaks of the 20-Hz steady-state response. Nevertheless, prediction of the latter from the former proved impossible. However, the 40-Hz steady-state response can be predicted reasonably well from the 20-Hz steady-state response. Somewhat surprisingly, the amplitude of the evoked response to the extra click grew when the click rate of the train was increased from 20 to 30 Hz; the opposite effect would have been expected from research on adaptation. The smaller amplitude at lower click rates might be explained by forward suppression. In this case, the apparent escape from suppression at higher rates might indicate that the clicks belonging to the periodic train are being integrated into an auditory stream, possibly in much the same manner as in classical stream segregation experiments.

  11. Effect of Broadband Nature of Marine Mammal Echolocation Clicks on Click-Based Population Density Estimates

    DTIC Science & Technology

    2014-09-30

    and.ac.uk/len/ LONG-TERM GOALS The long-term aim of the project is to support passive acoustic monitoring (PAM) of Odontecetes. OBJECTIVES...using the passive sonar equation will be compared to other uncertainties introduced by variations in, e.g., click rate, group size, and click... filter detector Ward et al. (2008) Teager-Kaiser (TK) click detector Kandia and Stylianou (2005) Ishmael energy sum click detector Yack et al

  12. Click chemistry patents and their impact on drug discovery and chemical biology.

    PubMed

    Xu, Hua; Jones, Lyn H

    2015-01-01

    First introduced by K Barry Sharpless in 2001, the term 'click chemistry' soon became a widely used description of chemical reactions that proceed rapidly, cleanly and in a manner that is often compatible with aqueous solutions. Click chemistry is frequently employed throughout the process of drug discovery, and greatly helps advance research programs in the pharmaceutical industry. It facilitates library synthesis to support medicinal chemistry optimization, helps identify the targets and off-targets of drug candidates, and can facilitate the determination of drug efficacy in clinical trials. In the last decade, a large number of patent applications covering the various types and utilities of click chemistry have been filed. In this review, we provide the first analysis of click chemistry applications.

  13. The ZeroAccess Auto-Clicking and Search-Hijacking Click Fraud Modules

    DTIC Science & Technology

    2013-12-16

    payloads and instead began distributing Bitcoin miners and click fraud modules.3 From a technical perspective, the primary click fraud malware used in...this era operated in the indiscriminate “auto-clicking” fashion we describe in Section 5. Alongside the click fraud and Bitcoin payloads, ZeroAccess

  14. Growing Applications of “Click Chemistry” for Bioconjugation in Contemporary Biomedical Research

    PubMed Central

    Nwe, Kido

    2009-01-01

    Summation This update summarizes the growing application of “click” chemistry in diverse areas such as bioconjugation, drug discovery, materials science, and radiochemistry. This update also discusses click chemistry reactions that proceed rapidly with high selectivity, specificity, and yield. Two important characteristics make click chemistry so attractive for assembling compounds, reagents, and biomolecules for preclinical and clinical applications. First, click reactions are bio-orthogonal; neither the reactants nor their product's functional groups interact with functionalized biomolecules. Second, the reactions proceed with ease under mild nontoxic conditions, such as at room temperature and, usually, in water. The copper-catalyzed Huisgen cycloaddition, azide-alkyne [3 + 2] dipolar cycloaddition, Staudinger ligation, and azide-phosphine ligation each possess these unique qualities. These reactions can be used to modify one cellular component while leaving others unharmed or untouched. Click chemistry has found increasing applications in all aspects of drug discovery in medicinal chemistry, such as for generating lead compounds through combinatorial methods. Bioconjugation via click chemistry is rigorously employed in proteomics and nucleic research. In radiochemistry, selective radiolabeling of biomolecules in cells and living organisms for imaging and therapy has been realized by this technology. Bifunctional chelating agents for several radionuclides useful for positron emission tomography and single-photon emission computed tomography imaging have also been prepared by using click chemistry. This review concludes that click chemistry is not the perfect conjugation and assembly technology for all applications, but provides a powerful, attractive alternative to conventional chemistry. This chemistry has proven itself to be superior in satisfying many criteria (e.g., biocompatibility, selectivity, yield, stereospecificity, and so forth); thus, one can

  15. Click nucleic acid ligation: applications in biology and nanotechnology.

    PubMed

    El-Sagheer, Afaf H; Brown, Tom

    2012-08-21

    Biochemical strategies that use a combination of synthetic oligonucleotides, thermostable DNA polymerases, and DNA ligases can produce large DNA constructs up to 1 megabase in length. Although these ambitious targets are feasible biochemically, comparable technologies for the chemical synthesis of long DNA strands lag far behind. The best available chemical approach is the solid-phase phosphoramidite method, which can be used to assemble DNA strands up to 150 bases in length. Beyond this point, deficiencies in the chemistry make it impossible to produce pure DNA. A possible alternative approach to the chemical synthesis of large DNA strands is to join together carefully purified synthetic oligonucleotides by chemical methods. Click ligation by the copper-catalyzed azide-alkyne (CuAAC) reaction could facilitate this process. In this Account, we describe the synthesis, characterization, and applications of oligonucleotides prepared by click ligation. The alkyne and azide oligonucleotide strands can be prepared by standard protocols, and the ligation reaction is compatible with a wide range of chemical modifications to DNA and RNA. We have employed click ligation to synthesize DNA constructs up to 300 bases in length and much longer sequences are feasible. When the resulting triazole linkage is placed in a PCR template, various DNA polymerases correctly copy the entire base sequence. We have also successfully demonstrated both in vitro transcription and rolling circle amplification through the modified linkage. This linkage has shown in vivo biocompatibility: an antibiotic resistance gene containing triazole linkages functions in E. coli . Using click ligation, we have synthesized hairpin ribozymes up to 100 nucleotides in length and a hammerhead ribozyme with the triazole linkage located at the substrate cleavage site. At the opposite end of the length scale, click-ligated, cyclic mini-DNA duplexes have been used as models to study base pairing. Cyclic duplexes have

  16. Specific and quantitative labeling of biomolecules using click chemistry.

    PubMed

    Horisawa, Kenichi

    2014-01-01

    Specific and highly efficient fluorescent labeling techniques for biomolecules, especially for proteins, are required for the quantitative analyses of bio-phenomena and for subsequent systems biology. Although expression of exogenous proteins fused with fluorescent tags, such as green fluorescent protein, is the most widely used method for quantitative bio-analysis, the following problems need to be considered carefully: (1) precise stoichiometric control in living cells is difficult, and (2) the bulkiness of the fluorescent tags restricts analysis of the inherent physical and biological properties of the proteins. Therefore, novel techniques to specifically and stoichiometrically label intrinsic proteins or other biomolecules in living cells should be developed. Click chemistry reactions (e.g., Huisgen cycloaddition and Staudinger ligation) are the most promising approaches for this purpose, because these chemical reactions have following advantages: (1) bioorthogonal reactions; (2) mild reaction conditions suitable for fragile biomolecules, cells, and tissues; (3) extremely high reaction ratio; (4) small size of the functional groups for the cross-coupling reactions; (5) stable covalent bonding; and (6) simple metabolic labeling procedures in living cells, using various biomolecular analogs. Diverse quantitative biological studies have been carried out using this technology (e.g., quantification of novel synthesized proteins and observation of post-translational modifications). In this review, I explain the basics of chemical probing with click chemistry, and discuss its recent applications in the field of quantitative biology. Furthermore, I discuss the capability, significance, and future of the chemical probing of proteins, with an emphasis on the use of click chemistry in the field of the quantitative biology.

  17. High-density DNA functionalization by a combination of Cu-catalyzed and cu-free click chemistry.

    PubMed

    Gutsmiedl, Katrin; Fazio, Danila; Carell, Thomas

    2010-06-18

    We report the regioselective Cu-free click modification of styrene functionalized DNA with nitrile oxides. A series of modified oligodeoxynucleotides (nine base pairs) was prepared with increasing styrene density. 1,3-Dipolar cycloaddition with nitrile oxides allows the high density functionalization of the styrene modified DNA directly on the DNA solid support and in solution. This click reaction proceeds smoothly even directly in the DNA synthesizer and gives exclusively 3,5-disubstituted isoxazolines. Additionally, PCR products (300 and 900 base pairs) were synthesized with a styrene triphosphate and KOD XL polymerase. The click reaction on the highly modified PCR fragments allows functionalization of hundreds of styrene units on these large DNA fragments simultaneously. Even sequential Cu-free and Cu-catalyzed click reaction of PCR amplicons containing styrene and alkyne carrying nucleobases was achieved. This new approach towards high-density functionalization of DNA is simple, modular, and efficient.

  18. The monopulsed nature of sperm whale clicks

    NASA Astrophysics Data System (ADS)

    Møhl, Bertel; Wahlberg, Magnus; Madsen, Peter T.; Heerfordt, Anders; Lund, Anders

    2003-08-01

    Traditionally, sperm whale clicks have been described as multipulsed, long duration, nondirectional signals of moderate intensity and with a spectrum peaking below 10 kHz. Such properties are counterindicative of a sonar function, and quite different from the properties of dolphin sonar clicks. Here, data are presented suggesting that the traditional view of sperm whale clicks is incomplete and derived from off-axis recordings of a highly directional source. A limited number of assumed on-axis clicks were recorded and found to be essentially monopulsed clicks, with durations of 100 μs, with a composite directionality index of 27 dB, with source levels up to 236 dB re: 1 μPa (rms), and with centroid frequencies of 15 kHz. Such clicks meet the requirements for long-range biosonar purposes. Data were obtained with a large-aperture, GPS-synchronized array in July 2000 in the Bleik Canyon off Vestera˚len, Norway (69°28' N, 15°40' E). A total of 14 h of sound recordings was collected from five to ten independent, simultaneously operating recording units. The sound levels measured make sperm whale clicks by far the loudest of sounds recorded from any biological source. On-axis click properties support previous work proposing the nose of sperm whales to operate as a generator of sound.

  19. Triazolinediones enable ultrafast and reversible click chemistry for the design of dynamic polymer systems

    NASA Astrophysics Data System (ADS)

    Billiet, Stijn; de Bruycker, Kevin; Driessen, Frank; Goossens, Hannelore; van Speybroeck, Veronique; Winne, Johan M.; Du Prez, Filip E.

    2014-09-01

    With its focus on synthetic reactions that are highly specific and reliable, ‘click’ chemistry has become a valuable tool for many scientific research areas and applications. Combining the modular, covalently bonded nature of click-chemistry linkages with an ability to reverse these linkages and reuse the constituent reactants in another click reaction, however, is a feature that is not found in most click reactions. Here we show that triazolinedione compounds can be used in click-chemistry applications. We present examples of simple and ultrafast macromolecular functionalization, polymer-polymer linking and polymer crosslinking under ambient conditions without the need for a catalyst. Moreover, when triazolinediones are combined with indole reaction partners, the reverse reaction can also be induced at elevated temperatures, and the triazolinedione reacted with a different reaction partner, reversibly or irreversibly dependent on its exact nature. We have used this ‘transclick’ reaction to introduce thermoreversible links into polyurethane and polymethacrylate materials, which allows dynamic polymer-network healing, reshaping and recycling.

  20. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering.

    PubMed

    Jiang, Yanjiao; Chen, Jing; Deng, Chao; Suuronen, Erik J; Zhong, Zhiyuan

    2014-06-01

    Hydrogels, microgels and nanogels have emerged as versatile and viable platforms for sustained protein release, targeted drug delivery, and tissue engineering due to excellent biocompatibility, a microporous structure with tunable porosity and pore size, and dimensions spanning from human organs, cells to viruses. In the past decade, remarkable advances in hydrogels, microgels and nanogels have been achieved with click chemistry. It is a most promising strategy to prepare gels with varying dimensions owing to its high reactivity, superb selectivity, and mild reaction conditions. In particular, the recent development of copper-free click chemistry such as strain-promoted azide-alkyne cycloaddition, radical mediated thiol-ene chemistry, Diels-Alder reaction, tetrazole-alkene photo-click chemistry, and oxime reaction renders it possible to form hydrogels, microgels and nanogels without the use of potentially toxic catalysts or immunogenic enzymes that are commonly required. Notably, unlike other chemical approaches, click chemistry owing to its unique bioorthogonal feature does not interfere with encapsulated bioactives such as living cells, proteins and drugs and furthermore allows versatile preparation of micropatterned biomimetic hydrogels, functional microgels and nanogels. In this review, recent exciting developments in click hydrogels, microgels and nanogels, as well as their biomedical applications such as controlled protein and drug release, tissue engineering, and regenerative medicine are presented and discussed.

  1. Selective C(sp(2))-H Halogenation of "Click" 4-Aryl-1,2,3-triazoles.

    PubMed

    Goitia, Asier; Gómez-Bengoa, Enrique; Correa, Arkaitz

    2017-02-17

    Selective bromination reactions of "click compounds" are described. Electron-neutral and electron-deficient arenes selectively undergo unprecedented Pd-catalyzed C-H ortho-halogenations assisted by simple triazoles as modular directing groups, whereas electron-rich arenes are regioselectively halogenated following an electrophilic aromatic substitution reaction pathway. These C-H halogenation procedures exhibit a wide group tolerance, complement existing bromination procedures, and represent versatile synthetic tools of utmost importance for the late-stage diversification of "click compounds". The characterization of a triazole-containing palladacycle and density functional theory studies supported the mechanism proposal.

  2. Modification of chemical and conformational properties of natural organic matter by click chemistry as revealed by ESI-Orbitrap mass spectrometry.

    PubMed

    Nebbioso, Antonio; Piccolo, Alessandro

    2015-11-01

    A click reaction is reported here for the first time as a useful technique to control the conformational stability of natural organic matter (NOM) suprastructures. Click conjugates were successfully formed between a previously butynylated NOM hydrophobic fraction and a hydrophilic polyethylene glycol (PEG)-amino chain. The click products were shown by size exclusion chromatography (HPSEC) hyphenated with Orbitrap mass spectrometry (MS) in electrospray ionization (ESI) (+), while precursors were visible in ESI (-). Despite their increase in molecular weight, HPSEC elution of click conjugates occurred after that of precursors, thus showing their departure from the NOM supramolecular association. This indicates that the click-conjugated NOM molecules were varied in their hydrophilic and cationic character and lost the capacity to accommodate in the original hydrophobic suprastructures. The most abundant product had the C16H30O5N4 formula, a click conjugate of butanoic acid, while other products were short-chained (C4-C8) linear unsaturated and hydroxylated carboxylic acids. Tandem MS revealed formation of triazole rings in clicked conjugates and their two fragmentations at the ester and the C-N alkyl-aryl bonds. The behavior of NOM molecules modified by click chemistry confirms that hydrophobicity and ionic charge of humic molecules play a pivotal role in stabilizing intermolecular forces in NOM. Moreover, the versatility of the click reaction may become useful to decorate NOM molecules with a variety of substrates, in order to alter NOM conformational and chemical properties and diversify its applications in the environment.

  3. Lanthanide complexes of azidophenacyl-DO3A as new synthons for click chemistry and the synthesis of heterometallic lanthanide arrays.

    PubMed

    Tropiano, Manuel; Kenwright, Alan M; Faulkner, Stephen

    2015-04-07

    Lanthanide complexes of azidophenacyl DO3A are effective substrates for click reactions with ethyne derivatives, giving rise to aryl triazole appended lanthanide complexes, in which the aryl triazole acts as an effective sensitising chromophore for lanthanide luminescence. They also undergo click chemistry with propargylDO3A derivatives, giving rise to heterometallic complexes.

  4. Site-directed spin-labeling of DNA by the azide-alkyne 'click' reaction: nanometer distance measurements on 7-deaza-2'-deoxyadenosine and 2'-deoxyuridine nitroxide conjugates spatially separated or linked to a 'dA-dT' base pair.

    PubMed

    Ding, Ping; Wunnicke, Dorith; Steinhoff, Heinz-Jürgen; Seela, Frank

    2010-12-27

    Nucleobase-directed spin-labeling by the azide-alkyne 'click' (CuAAC) reaction has been performed for the first time with oligonucleotides. 7-Deaza-7-ethynyl-2'-deoxyadenosine (1) and 5-ethynyl-2'-deoxyuridine (2) were chosen to incorporate terminal triple bonds into DNA. Oligonucleotides containing 1 or 2 were synthesized on a solid phase and spin labeling with 4-azido-2,2,6,6-tetramethylpiperidine 1-oxyl (4-azido-TEMPO, 3) was performed by post-modification in solution. Two spin labels (3) were incorporated with high efficiency into the DNA duplex at spatially separated positions or into a 'dA-dT' base pair. Modification at the 5-position of the pyrimidine base or at the 7-position of the 7-deazapurine residue gave steric freedom to the spin label in the major groove of duplex DNA. By applying cw and pulse EPR spectroscopy, very accurate distances between spin labels, within the range of 1-2 nm, were measured. The spin-spin distance was 1.8±0.2 nm for DNA duplex 17(dA*(7,10))⋅11 containing two spin labels that are separated by two nucleotides within one individual strand. A distance of 1.4±0.2 nm was found for the spin-labeled 'dA-dT' base pair 15(dA*(7))⋅16(dT*(6)). The 'click' approach has the potential to be applied to all four constituents of DNA, which indicates the universal applicability of the method. New insights into the structural changes of canonical or modified DNA are expected to provide additional information on novel DNA structures, protein interaction, DNA architecture, and synthetic biology.

  5. Separation of sperm whale click-trains for multipath rejection.

    PubMed

    Baggenstoss, Paul M

    2011-06-01

    In this paper an algorithm is described for grouping sperm whale clicks received at a single hydrophone into click-trains associated with a given whale and propagation path. To accomplish this, features are extracted from pairs of clicks in order to derive a statistical measure of click similarity. Then, the algorithm maximizes a global measure of similarity between the associated clicks. In addition to grouping clicks according to click-trains, it classifies click-trains into a propagation path (direct, surface, bottom reverberation). The propagation path is identified using a combination of (1) a statistical classifier operating on features extracted from individual clicks and (2) the cross-correlation of click-trains to identify the relative time delays. The algorithm is demonstrated on at-sea recorded data, showing the elimination of time-delay ambiguities associated with the reverberation paths observed at sensor pairs.

  6. High-Tg Thiol-Click Thermoset Networks via the Thiol-Maleimide Michael Addition.

    PubMed

    Parker, Shelbi; Reit, Radu; Abitz, Haley; Ellson, Gregory; Yang, Kejia; Lund, Benjamin; Voit, Walter E

    2016-07-01

    Thiol-click reactions lead to polymeric materials with a wide range of interesting mechanical, electrical, and optical properties. However, this reaction mechanism typically results in bulk materials with a low glass transition temperature (Tg ) due to rotational flexibility around the thioether linkages found in networks such as thiol-ene, thiol-epoxy, and thiol-acrylate systems. This report explores the thiol-maleimide reaction utilized for the first time as a solvent-free reaction system to synthesize high-Tg thermosetting networks. Through thermomechanical characterization via dynamic mechanical analysis, the homogeneity and Tg s of thiol-maleimide networks are compared to similarly structured thiol-ene and thiol-epoxy networks. While preliminary data show more heterogeneous networks for thiol-maleimide systems, bulk materials exhibit Tg s 80 °C higher than other thiol-click systems explored herein. Finally, hollow tubes are synthesized using each thiol-click reaction mechanism and employed in low- and high-temperature environments, demonstrating the ability to withstand a compressive radial 100 N deformation at 100 °C wherein other thiol-click systems fail mechanically.

  7. Direct Synthesis of Poly(dimethylsiloxane) Copolymers with TPE-Properties via CuAAC (Click Chemistry).

    PubMed

    Schmidt, Udo; Zehetmaier, Philip C; Rieger, Bernhard

    2010-03-16

    Poly(dimethylsiloxane) copolymers were synthesized directly from AA/BB monomers employing a CuAAC reaction (click chemistry) in a polyaddition approach. Using organic dialkynes and oligo(siloxane)s end-functionalized with azide moieties it was possible to obtain siloxane-based copolymers with TPE properties by click chemistry for the first time. As seen from DSC experiments, properties were strongly dependent on the incorporated organic comonomer.

  8. Effect of Broadband Nature of Marine Mammal Echolocation Clicks on Click-Based Population Density Estimates

    DTIC Science & Technology

    2014-09-30

    of the project is to support passive acoustic monitoring (PAM) of Odontecetes. OBJECTIVES This project aims to demonstrate how the detection...various simplifications using the passive sonar equation will be compared to other uncertainties introduced by variations in, e.g., click rate, group...Beerens (2004) Matched- filter detector Ward et al. (2008) Teager-Kaiser (TK) click detector Kandia and Stylianou (2005) Ishmael energy sum click

  9. Effect of Broadband Nature of Marine Mammal Echolocation Clicks on Click-Based Population Density Estimates

    DTIC Science & Technology

    2015-09-30

    clicks used to estimate animal abudance. OBJECTIVES This project aims to demonstrate how the detection process of broadband clicks can be...system provided an independent check to ensure absence of animals near the array (Ward et al. 2008; von Benda-Beckmann et al. 2010). WORK...energy contribution in the source click spectrum transmitted by the animal occurs at higher frequencies, When neglected, this may lead to an

  10. Development of a microfluidic "click chip" incorporating an immobilized Cu(I) catalyst.

    PubMed

    Li, Hairong; Whittenberg, Joseph J; Zhou, Haiying; Ranganathan, David; Desai, Amit V; Koziol, Jan; Zeng, Dexing; Kenis, Paul J A; Reichert, David E

    2015-01-01

    We have developed a microfluidic "click chip" incorporating an immobilized Cu(I) catalyst for click reactions. The microfluidic device was fabricated from polydimethylsiloxane (PDMS) bonded to glass and featured ~14,400 posts on the surface to improve catalyst immobilization. This design increased the immobilization efficiency and reduces the reagents' diffusion time to active catalyst site. The device also incorporates five reservoirs to increase the reaction volume with minimal hydrodynamic pressure drop across the device. A novel water-soluble tris-(benzyltriazolylmethyl)amine (TBTA) derivative capable of stabilizing Cu(I), ligand 2, was synthesized and successfully immobilized on the chip surface. The catalyst immobilized chip surface was characterized by X-ray photoelectron spectroscopy (XPS). The immobilization efficiency was evaluated via radiotracer methods: the immobilized Cu(I) was measured as 1136±272 nmol and the surface immobilized Cu(I) density was 81±20 nmol cm(-2). The active Cu(I)-ligand 2 could be regenerated up to five times without losing any catalyst efficiency. The "click" reaction of Flu568-azide and propargylamine was studied on chip for proof-of-principle. The on-chip reaction yields were ca. 82% with a 50 min reaction time or ca. 55% with a 15 min period at 37 °C, which was higher than those obtained in the conventional reaction. The on-chip "click" reaction involving a biomolecule, cyclo(RGDfK) peptide was also studied and demonstrated a conversion yield of ca. 98%. These encouraging results show promise on the application of the Cu(I) catalyst immobilized "click chip" for the development of biomolecule based imaging agents.

  11. Specific surface modification of the acetylene-linked glycolipid vesicle by click chemistry.

    PubMed

    Ito, Hidehiro; Kamachi, Toshiaki; Yashima, Eiji

    2012-06-07

    A novel glycolipid with a terminal acetylene was synthesized and used to prepare unilamellar vesicles. Using these vesicles, a convenient method was developed for the specific modification of the vesicle surface using the photoresponsive copper complex [Cu(OH(2))(cage)] as the catalyst for a click reaction.

  12. A Click Chemistry Approach towards Flavin-Cyclodextrin Conjugates-Bioinspired Sulfoxidation Catalysts.

    PubMed

    Tomanová, Petra; Šturala, Jiří; Buděšínský, Miloš; Cibulka, Radek

    2015-11-04

    A click chemistry approach based on the reaction between alkynylflavins and mono(6-azido-6-deoxy)-β-cyclodextrin has proven to be a useful tool for the synthesis of flavin-cyclodextrin conjugates studied as monooxygenase mimics in enantioselective sulfoxidations.

  13. Bis-clickable Mesoporous Silica Nanoparticles: Straightforward Preparation of Light-Actuated Nanomachines for Controlled Drug Delivery with Active Targeting.

    PubMed

    Noureddine, Achraf; Gary-Bobo, Magali; Lichon, Laure; Garcia, Marcel; Zink, Jeffrey I; Wong Chi Man, Michel; Cattoën, Xavier

    2016-07-04

    Bis(clickable) mesoporous silica nanospheres (ca. 100 nm) were obtained by the co-condensation of TEOS with variable amounts (2-5 % each) of two clickable organosilanes in the presence of CTAB. Such nanoparticles could be easily functionalized with two independent functions using the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to transform them into nanomachines bearing cancer cell targeting ligands with the ability to deliver drugs on-demand. The active targeting was made possible after anchoring folic acid by CuAAC click reaction, whereas the controlled delivery was performed by clicked azobenzene fragments. Indeed, the azobenzene groups are able to obstruct the pores of the nanoparticles in the dark whereas upon irradiation in the UV or in the blue range, their trans-to-cis photoisomerization provokes disorder in the pores, enabling the delivery of the cargo molecules. The on-command delivery was proven in solution by dye release experiments, and in vitro by doxorubicin delivery. The added value of the folic acid ligand was clearly evidenced by the difference of cell killing induced by doxorubicin-loaded nanoparticles under blue irradiation, depending on whether the particles featured the clicked folic acid ligand or not.

  14. Click Chemistry, a Powerful Tool for Pharmaceutical Sciences

    PubMed Central

    Hein, Christopher D.; Liu, Xin-Ming; Wang, Dong

    2008-01-01

    Click chemistry refers to a group of reactions that are fast, simple to use, easy to purify, versatile, regiospecific, and give high product yields. While there are a number of reactions that fulfill the criteria, the Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes has emerged as the frontrunner. It has found applications in a wide variety of research areas, including materials sciences, polymer chemistry, and pharmaceutical sciences. In this manuscript, important aspects of the Huisgen cycloaddition will be reviewed, along with some of its many pharmaceutical applications. Bioconjugation, nanoparticle surface modification, and pharmaceutical-related polymer chemistry will all be covered. Limitations of the reaction will also be discussed. PMID:18509602

  15. The growing impact of bioorthogonal click chemistry on the development of radiopharmaceuticals.

    PubMed

    Zeng, Dexing; Zeglis, Brian M; Lewis, Jason S; Anderson, Carolyn J

    2013-06-01

    Click chemistry has become a ubiquitous chemical tool with applications in nearly all areas of modern chemistry, including drug discovery, bioconjugation, and nanoscience. Radiochemistry is no exception, as the canonical Cu(I)-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, inverse electron demand Diels-Alder reaction, and other types of bioorthogonal click ligations have had a significant impact on the synthesis and development of radiopharmaceuticals. This review will focus on recent applications of click chemistry ligations in the preparation of imaging agents for SPECT and PET, including small molecules, peptides, and proteins labeled with radionuclides such as (18)F, (64)Cu, (111)In, and (99m)Tc.

  16. Peptidyl Materials Formed Through Click Chemistry Enhanced Coiled-Coil Interactions

    NASA Astrophysics Data System (ADS)

    Koehler, Kenneth

    2014-03-01

    Biologically derived materials offer a level of sophistication synthetically fabricated materials have only attempted to mimic. This level of complexity may be found in materials such as peptides. Implementing new theory and modeling, peptides with the propensity to form coiled-coil (CC) bundles were designed and synthesized. Through the use of this de novo approach, modeling allowed prediction of the feasibility to include non-natural amino acids conducive to click chemistry into the peptide. Amino acids showcasing thiol or alkyne functionalities were considered owing to the ability of these moieties to participate in the thiol-ene and copper click reactions respectively. Once synthesized, the peptides decorated with these clickable motifs were placed in solution and allowed to self-assemble into CC's. CD spectroscopy and DLS experiments confirmed the formation and assembly of CC's. Click reactions were then incited to link the CC assemblies together and form a network with predictable dimensionality and pore size between CC bundles. To incite network formation, click reactions between CC side chain residues and suitably functionalized crosslinkers were implemented. The linking of coiled-coils and material formation were assessed using DLS and TEM.

  17. Expanding iClick to group 9 metals

    DOE PAGES

    Beto, Christopher C.; Yang, Xi; Powers, Andrew R.; ...

    2015-09-01

    In this study, the iClick (inorganic click) reactions between gold-acetylides and group 9 transition metal-azide complexes are presented. Complexes [Rh(CO)(PPh3)2][PPh3Au](μ-N3C2C6H4NO2) (3), {[Rh(CO)(PPh3)][PPh3Au](μ-N3C2C6H4NO2)}2 (4), and [(CO)(PPh3)2IrAuPPh3](μ-N3C2C6H4NO2) (6) have been synthesized via M-azide/M-acetylide cycloaddition reactions between PPh3Au(Ctriple bond; length of mdashCC6H4NO2) (2) and either Rh(CO)(PPh3)2N3 (1), or Ir(CO)(PPh3)2N3 (5). Complexes 3, 4, and 6 have been characterized by a combination of NMR spectroscopies, crystallography and combustion analysis.

  18. Expanding iClick to group 9 metals

    SciTech Connect

    Beto, Christopher C.; Yang, Xi; Powers, Andrew R.; Ghiviriga, Ion; Abboud, Khalil A.; Veige, Adam S.

    2015-09-01

    In this study, the iClick (inorganic click) reactions between gold-acetylides and group 9 transition metal-azide complexes are presented. Complexes [Rh(CO)(PPh3)2][PPh3Au](μ-N3C2C6H4NO2) (3), {[Rh(CO)(PPh3)][PPh3Au](μ-N3C2C6H4NO2)}2 (4), and [(CO)(PPh3)2IrAuPPh3](μ-N3C2C6H4NO2) (6) have been synthesized via M-azide/M-acetylide cycloaddition reactions between PPh3Au(Ctriple bond; length of mdashCC6H4NO2) (2) and either Rh(CO)(PPh3)2N3 (1), or Ir(CO)(PPh3)2N3 (5). Complexes 3, 4, and 6 have been characterized by a combination of NMR spectroscopies, crystallography and combustion analysis.

  19. Taking the Click It or Ticket model nationwide.

    PubMed

    Solomon, Mark G; Compton, Richard P; Preusser, David F

    2004-01-01

    Click It or Ticket is an occupant protection Selective Traffic Enforcement Program (sTEP) combining intensive paid and earned publicity with enforcement during a brief two to four week period. North Carolina demonstrated substantial increases in safety belt use associated with their implementation of the first statewide Click It or Ticket program in 1993. In 2000, Click It or Ticket was implemented in South Carolina. In 2001, Click It or Ticket was implemented across all eight states of the southeast. In 2002, ten states in various parts of the country implemented Click It or Ticket; four states implemented parts of the full Click It or Ticket program; and four states were used as comparisons. Belt use increases were greatest in the full implementation states. Click It or Ticket was implemented nationally in 2003. This paper presents a historical perspective on the implementation and evaluation of Click It or Ticket programs.

  20. Host-guest complexation of [60]fullerenes and porphyrins enabled by "click chemistry".

    PubMed

    Ho, Khanh-Hy Le; Hijazi, Ismail; Rivier, Lucie; Gautier, Christelle; Jousselme, Bruno; de Miguel, Gustavo; Romero-Nieto, Carlos; Guldi, Dirk M; Heinrich, Benoit; Donnio, Bertrand; Campidelli, Stéphane

    2013-08-19

    Herein the synthesis, characterization, and organization of a first-generation dendritic fulleropyrrolidine bearing two pending porphyrins are reported. Both the dendron and the fullerene derivatives were synthesized by Cu(I) -catalyzed alkyne-azide cycloaddition (CuAAC). The electron-donor-acceptor conjugate possesses a shape that allows the formation of supramolecular complexes by encapsulation of C60 within the jaws of the two porphyrins of another molecule. The interactions between the two photoactive units (i.e., C60 and Zn-porphyrin) were confirmed by cyclic voltammetry as well as by steady-state and time-resolved spectroscopy. For example, a shift of about 85 mV was found for the first reduction of C60 in the electron-donor-acceptor conjugate compared with the parent molecules, which indicates that C60 is included in the jaws of the porphyrin. The fulleropyrrolidine compound exhibits a rich polymorphism, which was corroborated by AFM and SEM. In particular, it was found to form supramolecular fibrils when deposited on substrates. The morphology of the fibrils suggests that they are formed by several rows of fullerene-porphyrin complexes.

  1. Click chemistry for the conservation of cellular structures and fluorescent proteins: ClickOx.

    PubMed

    Löschberger, Anna; Niehörster, Thomas; Sauer, Markus

    2014-05-01

    Reactive oxygen species (ROS), including hydrogen peroxide, are known to cause structural damage not only in living, but also in fixed, cells. Copper-catalyzed azide-alkyne cycloaddition (click chemistry) is known to produce ROS. Therefore, fluorescence imaging of cellular structures, such as the actin cytoskeleton, remains challenging when combined with click chemistry protocols. In addition, the production of ROS substantially weakens the fluorescence signal of fluorescent proteins. This led us to develop ClickOx, which is a new click chemistry protocol for improved conservation of the actin structure and better conservation of the fluorescence signal of green fluorescent protein (GFP)-fusion proteins. Herein we demonstrate that efficient oxygen removal by addition of an enzymatic oxygen scavenger system (ClickOx) considerably reduces ROS-associated damage during labeling of nascent DNA with ATTO 488 azide by Cu(I)-catalyzed click chemistry. Standard confocal and super-resolution fluorescence images of phalloidin-labeled actin filaments and GFP/yellow fluorescent protein-labeled cells verify the conservation of the cytoskeleton microstructure and fluorescence intensity, respectively. Thus, ClickOx can be used advantageously for structure preservation in conventional and most notably in super-resolution microscopy methods.

  2. Copper and silver complexes of tris(triazole)amine and tris(benzimidazole)amine ligands: evidence that catalysis of an azide-alkyne cycloaddition ("click") reaction by a silver tris(triazole)amine complex arises from copper impurities.

    PubMed

    Connell, Timothy U; Schieber, Christine; Silvestri, Ilaria Proietti; White, Jonathan M; Williams, Spencer J; Donnelly, Paul S

    2014-07-07

    The synthesis and characterization of a silver complex of the tripodal triazole ligand, tris(benzyltriazolylmethyl)amine (TBTA, L(1)), that is used as promoter to enhance Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions is reported. X-ray analysis of the silver(I) complex with L(1) reveals a dinuclear cation, [Ag2(L(1))2](2+), that is essentially isostructural to the copper(I) analogue. While the [Ag2(L(1))2](BF4)2 complex provides catalysis for the azide-alkyne cycloaddition process, evidence is presented that this arises from trace copper contamination. The synthesis of silver(I), copper(II), and copper(I) complexes of a second tripodal ligand, tris(2-benzimidazolymethyl)amine (L(2)), which is used to enhance the rate of CuAAC reactions, is also reported. X-ray crystallography of the Cu(I) complex [Cu(I)3(L(2))2(CH3CN)2](BF4)3 offers structural insight into previous mechanistic speculation about the role of this ligand in the CuAAC reaction.

  3. Thiol–ene click hydrogels for therapeutic delivery

    PubMed Central

    Kharkar, Prathamesh M.; Rehmann, Matthew S.; Skeens, Kelsi M.; Maverakis, Emanual; Kloxin, April M.

    2016-01-01

    Hydrogels are of growing interest for the delivery of therapeutics to specific sites in the body. For use as a delivery vehicle, hydrophilic precursors are usually laden with bioactive moieties and then directly injected to the site of interest for in situ gel formation and controlled release dictated by precursor design. Hydrogels formed by thiol–ene click reactions are attractive for local controlled release of therapeutics owing to their rapid reaction rate and efficiency under mild aqueous conditions, enabling in situ formation of gels with tunable properties often responsive to environmental cues. Herein, we will review the wide range of applications for thiol–ene hydrogels, from the prolonged release of anti-inflammatory drugs in the spine to the release of protein-based therapeutics in response to cell-secreted enzymes, with a focus on their clinical relevance. We will also provide a brief overview of thiol–ene click chemistry and discuss the available alkene chemistries pertinent to macromolecule functionalization and hydrogel formation. These chemistries include functional groups susceptible to Michael type reactions relevant for injection and radically-mediated reactions for greater temporal control of formation at sites of interest using light. Additionally, mechanisms for the encapsulation and controlled release of therapeutic cargoes are reviewed, including i) tuning the mesh size of the hydrogel initially and temporally for cargo entrapment and release and ii) covalent tethering of the cargo with degradable linkers or affinity binding sequences to mediate release. Finally, myriad thiol–ene hydrogels and their specific applications also are discussed to give a sampling of the current and future utilization of this chemistry for delivery of therapeutics, such as small molecule drugs, peptides, and biologics. PMID:28361125

  4. Heat-induced-radiolabeling and click chemistry: A powerful combination for generating multifunctional nanomaterials

    PubMed Central

    Wilks, Moses Q.; El Fakhri, Georges; Normandin, Marc D.; Kaittanis, Charalambos; Josephson, Lee

    2017-01-01

    A key advantage of nanomaterials for biomedical applications is their ability to feature multiple small reporter groups (multimodality), or combinations of reporter groups and therapeutic agents (multifunctionality), while being targeted to cell surface receptors. Here a facile combination of techniques for the syntheses of multimodal, targeted nanoparticles (NPs) is presented, whereby heat-induced-radiolabeling (HIR) labels NPs with radiometals and so-called click chemistry is used to attach bioactive groups to the NP surface. Click-reactive alkyne or azide groups were first attached to the nonradioactive clinical Feraheme (FH) NPs. Resulting “Alkyne-FH” and “Azide-FH” intermediates, like the parent NP, tolerated 89Zr labeling by the HIR method previously described. Subsequently, biomolecules were quickly conjugated to the radioactive NPs by either copper-catalyzed or copper-free click reactions with high efficiency. Synthesis of the Alkyne-FH or Azide-FH intermediates, followed by HIR and then by click reactions for biomolecule attachment, provides a simple and potentially general path for the synthesis of multimodal, multifunctional, and targeted NPs for biomedical applications. PMID:28225818

  5. Learning Clicks: Year End Report 2008/2009

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2009

    2009-01-01

    Learning Clicks was developed in 2003 as an interactive, fun way for Alberta students to learn about these opportunities. Learning Clicks is a program designed to support Strategy 2.4 in Alberta Advanced Education and Technology's 2007-10 Business Plan. The 2008/2009 season was the 5th year of the Learning Clicks program. This paper offers a…

  6. Classification and identification of marine mammals by their click signatures

    NASA Astrophysics Data System (ADS)

    Goo, Gee-In

    2003-09-01

    In this paper, the author presents recent findings of applying passive Broadband Bionic Sonar technique to same data files with marine mammal "clicks". Using a resonance detection technique, a number of data files with mammal clicks were analyzed. From these data files, many unique mammal "click" signatures were observed. These results seem to indicate that individual marine mammals can be classified and possibly identified.

  7. Diazo transfer-click reaction route to new, lipophilic teicoplanin and ristocetin aglycon derivatives with high antibacterial and anti-influenza virus activity: an aggregation and receptor binding study.

    PubMed

    Pintér, Gábor; Batta, Gyula; Kéki, Sándor; Mándi, Attila; Komáromi, István; Takács-Novák, Krisztina; Sztaricskai, Ferenc; Röth, Erzsébet; Ostorházi, Eszter; Rozgonyi, Ferenc; Naesens, Lieve; Herczegh, Pál

    2009-10-08

    Semisynthetic, lipophilic ristocetin and teicoplanin derivatives were prepared starting from ristocetin aglycon and teicoplanin psi-aglycon (N-acetyl-D-glucosaminyl aglycoteicoplanin). The terminal amino functions of the aglycons were converted into azido form by triflic azide. Copper catalyzed 1,3-dipolar cycloaddition reaction with lipophilic alkynes resulted in the title compounds. Two of the teicoplanin derivatives showed very good MIC and MBC values against various Gram-positive bacteria, including vanA enterococci. The aggregation and interaction of a n-decyl derivative with bacterial cell wall components was studied. One of the lipophilic ristocetin derivatives displayed favorable anti-influenza virus activity.

  8. Transcription of click-linked DNA in human cells.

    PubMed

    Birts, Charles N; Sanzone, A Pia; El-Sagheer, Afaf H; Blaydes, Jeremy P; Brown, Tom; Tavassoli, Ali

    2014-02-24

    Click DNA ligation promises an alternative to the current enzymatic approaches for DNA assembly, with the ultimate goal of using efficient chemical reactions for the total chemical synthesis and assembly of genes and genomes. Such an approach would enable the incorporation of various chemically modified bases throughout long stretches of DNA, a feat not possible with current polymerase-based methods. An unequivocal requirement for this approach is the biocompatibility of the resulting triazole-linked DNA. The correct function of this unnatural DNA linker in human cells is demonstrated here by using a click-linked gene encoding the fluorescent protein mCherry. Reverse transcription of mRNA isolated from these cells and subsequent sequencing of the mCherry cDNA shows error-free transcription. Nucleotide excision repair (NER) is shown to not play a role in the observed biocompatibility by using a NER-deficient human cell line. This is the first example of a non-natural DNA linker being functional in a eukaryotic cell.

  9. In situ click chemistry generation of cyclooxygenase-2 inhibitors.

    PubMed

    Bhardwaj, Atul; Kaur, Jatinder; Wuest, Melinda; Wuest, Frank

    2017-12-01

    Cyclooxygenase-2 isozyme is a promising anti-inflammatory drug target, and overexpression of this enzyme is also associated with several cancers and neurodegenerative diseases. The amino-acid sequence and structural similarity between inducible cyclooxygenase-2 and housekeeping cyclooxygenase-1 isoforms present a significant challenge to design selective cyclooxygenase-2 inhibitors. Herein, we describe the use of the cyclooxygenase-2 active site as a reaction vessel for the in situ generation of its own highly specific inhibitors. Multi-component competitive-binding studies confirmed that the cyclooxygenase-2 isozyme can judiciously select most appropriate chemical building blocks from a pool of chemicals to build its own highly potent inhibitor. Herein, with the use of kinetic target-guided synthesis, also termed as in situ click chemistry, we describe the discovery of two highly potent and selective cyclooxygenase-2 isozyme inhibitors. The in vivo anti-inflammatory activity of these two novel small molecules is significantly higher than that of widely used selective cyclooxygenase-2 inhibitors.Traditional inflammation and pain relief drugs target both cyclooxygenase 1 and 2 (COX-1 and COX-2), causing severe side effects. Here, the authors use in situ click chemistry to develop COX-2 specific inhibitors with high in vivo anti-inflammatory activity.

  10. Glycoprotein labeling with click chemistry (GLCC) and carbohydrate detection.

    PubMed

    Wu, Zhengliang L; Huang, Xinyi; Burton, Andrew J; Swift, Karl A D

    2015-08-14

    Molecular labeling and detection techniques are essential to research in life science. Here, a method for glycoprotein labeling/carbohydrate detection through glycan replacement, termed glycoprotein labeling with click chemistry (GLCC), is described. In this method, a glycoprotein is first treated with specific glycosidases to remove certain sugar residues, a procedure that creates acceptor sites for a specific glycosyltransferase. A 'clickable' monosaccharide is then installed onto these sites by the glycosyltransferase. This modified glycoprotein is then conjugated to a reporter molecule using a click chemistry reaction. For glycoproteins that already contain vacant glycosylation sites, deglycosylation is not needed before the labeling step. As a demonstration, labeling on fetal bovine fetuin, mouse immunoglobulin IgG and bacterial expressed human TNFα and TNFβ are shown. Compared to traditional ways of protein labeling, labeling at glycosylation sites with GLCC is considerably more specific and less likely to have adverse effects, and, when utilized as a method for carbohydrate detection, this method is also highly specific and sensitive.

  11. Click chemistry with polymers, dendrimers, and hydrogels for drug delivery.

    PubMed

    Lallana, Enrique; Fernandez-Trillo, Francisco; Sousa-Herves, Ana; Riguera, Ricardo; Fernandez-Megia, Eduardo

    2012-04-01

    During the last decades, great efforts have been devoted to design polymers for reducing the toxicity, increasing the absorption, and improving the release profile of drugs. Advantage has been also taken from the inherent multivalency of polymers and dendrimers for the incorporation of diverse functional molecules of interest in targeting and diagnosis. In addition, polymeric hydrogels with the ability to encapsulate drugs and cells have been developed for drug delivery and tissue engineering applications. In the long road to this successful story, pharmaceutical sciences have been accompanied by parallel advances in synthetic methodologies allowing the preparation of precise polymeric materials with enhanced properties. In this context, the introduction of the click concept by Sharpless and coworkers in 2001 focusing the attention on modularity and orthogonality has greatly benefited polymer synthesis, an area where reaction efficiency and product purity are significantly challenged. The purpose of this Expert Review is to discuss the impact of click chemistry in the preparation and functionalization of polymers, dendrimers, and hydrogels of interest in drug delivery.

  12. Facile and Efficient Synthesis of Carbosiloxane Dendrimers via Orthogonal Click Chemistry Between Thiol and Ene.

    PubMed

    Zhang, Zhida; Feng, Shengyu; Zhang, Jie

    2016-02-01

    A combination of a thiol-Michael addition reaction and a free radical mediated thiol-ene reaction is employed as a facile and efficient approach to carbosiloxane dendrimer synthesis. For the first time, carbosiloxane dendrimers are constructed rapidly by an orthogonal click strategy without protection/deprotection procedures. The chemoselectivity of these two thiol-ene click reactions leads to a design of a new monomer containing both electron-deficient carbon-carbon double bonds and unconjugated carbon-carbon double bonds. Siloxane bonds are introduced as the linker between these two kinds of carbon-carbon double bonds. Starting from a bifunctional thiol core, the dendrimers are constructed by iterative thiol-ene click reactions under different but both mild reaction conditions. After simple purification steps the fifth dendrimer with 54 peripheral functional groups is obtained with an excellent overall yield in a single day. Furthermore, a strong blue glow is observed when the dendrimer is excited by a UV lamp.

  13. Learning Clicks, 2006-2007. Final Report

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2007

    2007-01-01

    Now progressing into its fourth year, Learning Clicks is an interactive, dynamic, and informative program to help students in Grades 9-12 learn about the importance, long-term benefits, and opportunities of post-secondary education. This program also serves as a portal to provide students with the necessary information to assist in planning and…

  14. Ultrafast Click Chemistry with Fluorosydnones.

    PubMed

    Liu, Hui; Audisio, Davide; Plougastel, Lucie; Decuypere, Elodie; Buisson, David-Alexandre; Koniev, Oleksandr; Kolodych, Sergii; Wagner, Alain; Elhabiri, Mourad; Krzyczmonik, Anna; Forsback, Sarita; Solin, Olof; Gouverneur, Véronique; Taran, Frédéric

    2016-09-19

    We report the synthesis and reactivity of 4-fluorosydnones, a unique class of mesoionic dipoles displaying exquisite reactivity towards both copper-catalyzed and strain-promoted cycloaddition reactions with alkynes. Synthetic access to these new mesoionic compounds was granted by electrophilic fluorination of σ-sydnone Pd(II) precursors in the presence of Selectfluor. Their reactions with terminal and cyclic alkynes were found to proceed very rapidly and selectively, affording 5-fluoro-1,4-pyrazoles with bimolecular rate constants up to 10(4)  m(-1)  s(-1) , surpassing those documented in the literature with cycloalkynes. Kinetic studies were carried out to unravel the mechanism of the reaction, and the value of 4-fluorosydnones was further highlighted by successful radiolabeling with [(18) F]Selectfluor.

  15. Click Chemistry Route to the Synthesis of Unusual Amino Acids, Peptides, Triazole-Fused Heterocycles and Pseudodisaccharides.

    PubMed

    Chandrasekaran, Srinivasan; Ramapanicker, Ramesh

    2017-01-01

    Conjugation of different molecular species using copper(I)-catalyzed click reaction between azides and terminal alkynes is among the best available methods to prepare multifunctional compounds. The effectiveness of this method has provided wider acceptance to the concept of click chemistry, which is now widely employed to synthesize densely functionalized organic molecules. This article summarizes the contributions from our group in the development of new methods for the synthesis of functional molecules using copper(I)-catalyzed click reactions. We have developed very efficient methods for the synthesis of peptides and amino acids conjugated with carbohydrates, thymidine and ferrocene. We have also developed an efficient strategy to synthesize triazole-fused heterocycles from primary amines, amino alochols and diols. Finally, an interesting method for the synthesis of pseudodisaccharides linked through triazoles, starting from carbohydrate-derived donor-acceptor cyclopropanes is discussed.

  16. Orthogonal spin labeling using click chemistry for in vitro and in vivo applications.

    PubMed

    Kucher, Svetlana; Korneev, Sergei; Tyagi, Swati; Apfelbaum, Ronja; Grohmann, Dina; Lemke, Edward A; Klare, Johann P; Steinhoff, Heinz-Jürgen; Klose, Daniel

    2017-02-01

    Site-directed spin labeling for EPR- and NMR spectroscopy has mainly been achieved exploiting the specific reactivity of cysteines. For proteins with native cysteines or for in vivo applications, an alternative coupling strategy is required. In these cases click chemistry offers major benefits by providing a fast and highly selective, biocompatible reaction between azide and alkyne groups. Here, we establish click chemistry as a tool to target unnatural amino acids in vitro and in vivo using azide- and alkyne-functionalized spin labels. The approach is compatible with a variety of labels including reduction-sensitive nitroxides. Comparing spin labeling efficiencies from the copper-free with the strongly reducing copper(I)-catalyzed azide-alkyne click reaction, we find that the faster kinetics for the catalyzed reaction outrun reduction of the labile nitroxide spin labels and allow quantitative labeling yields within short reaction times. Inter-spin distance measurements demonstrate that the novel side chain is suitable for paramagnetic NMR- or EPR-based conformational studies of macromolecular complexes.

  17. Orthogonal spin labeling using click chemistry for in vitro and in vivo applications

    NASA Astrophysics Data System (ADS)

    Kucher, Svetlana; Korneev, Sergei; Tyagi, Swati; Apfelbaum, Ronja; Grohmann, Dina; Lemke, Edward A.; Klare, Johann P.; Steinhoff, Heinz-Jürgen; Klose, Daniel

    2017-02-01

    Site-directed spin labeling for EPR- and NMR spectroscopy has mainly been achieved exploiting the specific reactivity of cysteines. For proteins with native cysteines or for in vivo applications, an alternative coupling strategy is required. In these cases click chemistry offers major benefits by providing a fast and highly selective, biocompatible reaction between azide and alkyne groups. Here, we establish click chemistry as a tool to target unnatural amino acids in vitro and in vivo using azide- and alkyne-functionalized spin labels. The approach is compatible with a variety of labels including reduction-sensitive nitroxides. Comparing spin labeling efficiencies from the copper-free with the strongly reducing copper(I)-catalyzed azide-alkyne click reaction, we find that the faster kinetics for the catalyzed reaction outrun reduction of the labile nitroxide spin labels and allow quantitative labeling yields within short reaction times. Inter-spin distance measurements demonstrate that the novel side chain is suitable for paramagnetic NMR- or EPR-based conformational studies of macromolecular complexes.

  18. Core-shell morphology and characterization of carbon nanotube nanowires click coupled with polypyrrole.

    PubMed

    Rana, Sravendra; Cho, Jae Whan

    2011-07-08

    Core-shell nanowires having multiwalled carbon nanotubes (MWNT) as a core and polypyrrole (PPy) as a shell were synthesized using Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry. According to transmission electron microscopy measurements, the uniform PPy layers of 10-20 nm in thickness were formed well on the MWNT's surface. In particular 'grafting from' click coupling was more effective in obtaining uniform and stable core-shell nanowires as well as in the reaction yield, compared to 'grafting to' click coupling. This is due to chemical bond formation between PPy and MWNT in equal intervals along the longitudinal direction of the MWNT, achieved by 'grafting from' click coupling. As a result, the core-shell nanowires were very stable even in the sonication of nanowires and showed an enhanced electrical conductivity of 80 S cm(-1), due to the synergetic interaction between MWNTs and PPy, which is higher than the conductivity of pure MWNTs and pure PPy. In addition, the core-shell nanowires could show better NO2 gas sensing properties compared to pure MWNTs and pure PPy as well as MWNT/PPy composites prepared by in situ polymerization. The synthesized core-shell nanowires would play an important role in preparing electrical and sensing devices.

  19. Preparation of weak cation exchange packings for chromatographic separation of proteins using "click chemistry''.

    PubMed

    Zhao, Kailou; Bai, Quan; Song, Chao; Wang, Fei; Yang, Fan

    2012-04-01

    "Click chemistry" is defined as a class of robust and selective chemical reactions affording high yields and is tolerant to a variety of solvents (including water), functional groups, and air. In this study, click chemistry was used as an effective strategy for coupling three alkyne-carboxylic acids onto the azide-silica to obtain three novel stationary phases of weak cation exchange chromatography, which were characterized with FTIR and elemental analysis. Six kinds of standard proteins, such as myoglobin, RNase A, RNase B, cytochrome C, α-chymotrypsin A, and lysozyme, were separated completely with the three novel weak cation exchange chromatography stationary phases. Compared with commercial weak cation exchange chromatography columns, the three kinds of novel weak cation exchange chromatography packings prepared by click chemistry approach have better resolution and selectivity. The mass recovery of more than 97% was obtained for all the tested proteins, and the bioactivity recovery of lysozyme on the prepared column was determined to be 96%. In addition, lysozyme was purified successfully from egg white with the novel weak cation exchange chromatography column by one step. The purity was more than 97% and a high specific activity was achieved to be 81 435 U/mg. The results illustrate the potential of click chemistry for preparing stationary phase for ion-exchange chromatography.

  20. Click Chemistry Immobilization of Antibodies on Polymer Coated Gold Nanoparticles.

    PubMed

    Finetti, Chiara; Sola, Laura; Pezzullo, Margherita; Prosperi, Davide; Colombo, Miriam; Riva, Benedetta; Avvakumova, Svetlana; Morasso, Carlo; Picciolini, Silvia; Chiari, Marcella

    2016-07-26

    The goal of this work is to develop an innovative approach for the coating of gold nanoparticles (AuNPs) with a synthetic functional copolymer. This stable coating with a thickness of few nanometers provides, at the same time, stabilization and functionalization of the particles. The polymeric coating consists of a backbone of polydimethylacrylamide (DMA) functionalized with an alkyne monomer that allows the binding of azido modified molecules by Cu(I)-catalyzed azide/alkyne 1,3-dipolar cycloaddition (CuAAC, click chemistry). The thin polymer layer on the surface stabilizes the colloidal suspension whereas the alkyne functions pending from the backbone are available for the reaction with azido-modified proteins. The reactivity of the coating is demonstrated by immobilizing an azido modified anti-mouse IgG antibody on the particle surface. This approach for the covalent binding of antibody to a gold-NPs is applied to the development of gold labels in biosensing techniques.

  1. Reductive alkylation of hyaluronic acid for the synthesis of biocompatible hydrogels by click chemistry.

    PubMed

    Huerta-Angeles, Gloria; Němcová, Miroslava; Příkopová, Eva; Šmejkalová, Daniela; Pravda, Martin; Kučera, Lukáš; Velebný, Vladimír

    2012-11-06

    Hyaluronan (HA) based hydrogels have been synthesized combining chemical modification of the polysaccharide by partial oxidation, reductive amination and 'click chemistry'. HA was oxidized by 4-acetamido-TEMPO-mediated reaction, using sodium hypochlorite as primary oxidant and NaBr in buffered pH, so that the produced aldehyde moieties (hemiacetals) were trapped in situ by adding primary amines containing azide or alkyne-terminal groups. The structure of the reaction products, oxidized-HA and primary amines bonded to HA, was elucidated using 2D NMR spectroscopy. SEC-MALLS analysis of the modified substrates showed a negligible degradation of the polysaccharide using this procedure. Furthermore, azido- and alkynyl derivatives underwent cross-linking by click chemistry into hydrogels, which were characterized by NMR, FT-IR, swelling degree and mechanical properties. Possible application of the material as scaffold for tissue engineering was tested by seeding and proliferation of chondrocytes for up to 15 days.

  2. Instantaneous Click Chemistry by a Copper-Containing Polymeric-Membrane-Installed Microflow Catalytic Reactor.

    PubMed

    Yamada, Yoichi M A; Ohno, Aya; Sato, Takuma; Uozumi, Yasuhiro

    2015-11-23

    The copper(I)-catalyzed Huisgen cycloaddition (azide-alkyne cycloaddition) is an important reaction in click chemistry that ideally proceeds instantaneously. An instantaneous Huisgen cycloaddition has been developed that uses a novel catalytic dinuclear copper complex-containing polymeric membrane-installed microflow device. A polymeric membranous copper catalyst was prepared from poly(4-vinylpyridine), copper(II) sulfate, sodium chloride, and sodium ascorbate at the interface of two laminar flows inside microchannels. Elucidation of the structure by XANES, EXAFS, and elemental analysis, as well as second-order Møller-Plesset perturbation theory (MP2) calculations and density functional theory (DFT) calculations assigned the local structure near Cu as a μ-chloro dinuclear Cu(I) complex. The microflow device promotes the instantaneous click reaction of a variety of alkynes and organic azides to afford the corresponding triazoles in quantitative yield.

  3. Synthesis and Characterization of Multiwalled Carbon Nanotubes/Poly(HEMA-co-MMA) by Utilizing Click Chemistry.

    PubMed

    Bach, Long Giang; Cao, Xuan Thang; Islam, Md Rafiqul; Jeong, Yeon Tae; Kim, Jong Su; Lim, Kwon Taek

    2016-03-01

    The hybrid material consisting of multi walled carbon nanotubes (MWNTs) and poly(2-hydroxyethylmethacrylate-co-methylmethacrylate) [poly(HEMA-co-MMA)] was synthesized by a combination of RAFT and Click chemistry. In the primary stage, the copolymer poly(HEMA-co-MMA) was prepared by applying RAFT technique. Alkynyl side groups were incorporated onto the poly(HEMA-co-MMA) backbone by esterification reaction. Then, MWNTs-N3 was prepared by treating MWNTs with 4-azidobutylamine. The click coupling reaction between azide-functionalized MWNTs (MWNTs-N3) and the alkyne-functionalized random copolymer ((HEMA-co-MMA)-Alkyne) with the Cu(I)-catalyzed [3+2] Huisgen cycloaddition afforded the hybrid compound. The structure and properties of poly(MMA-co-HEMA)-g-MWNTs were investigated by FT-IR, EDX and TGA measurements. The copolymer brushes were observed to be immobilized onto the functionalized MWNTs by SEM and TEM analysis.

  4. Click chemistry in CuI-zeolites: the Huisgen [3 + 2]-cycloaddition.

    PubMed

    Chassaing, Stefan; Kumarraja, Mayilvasagam; Souna Sido, Abdelkarim Sani; Pale, Patrick; Sommer, Jean

    2007-03-01

    [reaction: see text] CuI-exchanged solids based on zeolite materials were investigated for the first time as catalysts in organic synthesis. The catalytic potential of these materials was evaluated in the Huisgen [3 + 2]-cycloaddition. Five CuI-exchanged zeolites were examined and CuI-USY proved to be a novel and efficient heterogeneous ligand-free catalyst for this "click chemistry"-type transformation.

  5. A fast click-slow release strategy towards the HPLC-free synthesis of RNA.

    PubMed

    Agustin, E; Asare Okai, P N; Khan, I; Miller, M R; Wang, R; Sheng, J; Royzen, M

    2016-01-25

    A general strategy for purification of oligonucleotides synthesized by solid phase synthesis is described. It is based on a recently developed concept involving a bio-orthogonal inverse electron demand Diels-Alder reaction between trans-cyclooctene and tetrazine, termed 'click-to-release'. The strategy has been applied towards the synthesis and purification of a model hairpin RNA strand, as well as a 34 nt long aptamer.

  6. Luminescence of polyethylene glycol coated CdSeTe/ZnS and InP/ZnS nanoparticles in the presence of copper cations.

    PubMed

    Beaune, Grégory; Tamang, Sudarsan; Bernardin, Aude; Bayle-Guillemaud, Pascale; Fenel, Daphna; Schoehn, Guy; Vinet, Françoise; Reiss, Peter; Texier, Isabelle

    2011-08-22

    The use of click chemistry for quantum dot (QD) functionalization could be very promising for the development of bioconjugates dedicated to in vivo applications. Alkyne-azide ligation usually requires copper(I) catalysis. The luminescence response of CdSeTe/ZnS nanoparticles coated with polyethylene glycol (PEG) is studied in the presence of copper cations, and compared to that of InP/ZnS QDs coated with mercaptoundecanoic acid (MUA). The quenching mechanisms appear different. Luminescence quenching occurs without any wavelength shift in the absorption and emission spectra for the CdSeTe/ZnS/PEG nanocrystals. In this case, the presence of copper in the ZnS shell is evidenced by energy-filtered transmission electron microscopy (EF-TEM). By contrast, in the case of InP/ZnS/MUA nanocrystals, a redshift of the excitation and emission spectra, accompanied by an increase in absorbance and a decrease in photoluminescence, is observed. For CdSeTe/ZnS/PEG nanocrystals, PL quenching is enhanced for QDs with 1) smaller inorganic-core diameter, 2) thinner PEG shell, and 3) hydroxyl terminal groups. Whereas copper-induced PL quenching can be interesting for the design of sensitive cation sensors, copper-free click reactions should be used for the efficient functionalization of nanocrystals dedicated to bioapplications, in order to achieve highly luminescent QD bioconjugates.

  7. The simulation of click and double-click through EMG signals.

    PubMed

    Pinheiro, Carlos G; Andrade, Adriano O

    2012-01-01

    Patients with severe motor impairments, victims of stroke, amyotrophic lateral sclerosis and spinal cord injury are prevented from oral and gesture communication, demanding alternative channels and methods of communication, possibly using a computer. In order to obtain the complete emulation of a standard mouse, the single-click and double-click actions are desirable functionalities. In this study, the implementation of such actions is executed by the analysis of the electromyographic signal recorded from the Frontalis muscle. Muscle activity is discriminated from noise and this information is used to feed a state-machine that in turn decides which action is intended. The method uses an adaptive threshold, which offers freedom for the selection of the parameters of the system. The rate of successfully detected commands found was up to 100% for the single-click and 92% for the double-click. Even though good results were found for double-clicks, the experiment indicate muscle fatigue in the short term. The time response found was below 300 ms suggesting real-time implementation is feasible. Also, other devices can be operated with this approach, if it is accepted as a two symbols system generator.

  8. Direct calibration of click-counting detectors

    NASA Astrophysics Data System (ADS)

    Bohmann, M.; Kruse, R.; Sperling, J.; Silberhorn, C.; Vogel, W.

    2017-03-01

    We introduce and experimentally implement a method for the detector calibration of photon-number-resolving time-bin multiplexing layouts based on the measured click statistics of superconducting nanowire detectors. In particular, the quantum efficiencies, the dark count rates, and the positive operator-valued measures of these measurement schemes are directly obtained with high accuracy. The method is based on the moments of the click-counting statistics for coherent states with different coherent amplitudes. The strength of our analysis is that we can directly conclude—on a quantitative basis—that the detection strategy under study is well described by a linear response function for the light-matter interaction and that it is sensitive to the polarization of the incident light field. Moreover, our method is further extended to a two-mode detection scenario. Finally, we present possible applications for such well-characterized detectors, such as sensing of atmospheric loss channels and phase sensitive measurements.

  9. Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry.

    PubMed

    Zheng, Zhan-Jiang; Wang, Ding; Xu, Zheng; Xu, Li-Wen

    2015-01-01

    The Cu(I)-catalyzed azide-alkyne cycloaddition reaction, also known as click chemistry, has become a useful tool for the facile formation of 1,2,3-triazoles. Specifically, the utility of this reaction has been demonstrated by the synthesis of structurally diverse bi- and bis-1,2,3-triazoles. The present review focuses on the synthesis of such bi- and bistriazoles and the importance of using copper-promoted click chemistry (CuAAC) for such transformations. In addition, the application of bitriazoles and the related CuAAAC reaction in different fields, including medicinal chemistry, coordination chemistry, biochemistry, and supramolecular chemistry, have been highlighted.

  10. Development of a microfluidic “click chip” incorporating an immobilized Cu(I) catalyst

    PubMed Central

    Li, Hairong; Whittenberg, Joseph J.; Zhou, Haiying; Ranganathan, David; Desai, Amit V.; Koziol, Jan; Zeng, Dexing; Kenis, Paul J. A.; Reichert, David E.

    2015-01-01

    We have developed a microfluidic “click chip” incorporating an immobilized Cu(I) catalyst for click reactions. The microfluidic device was fabricated from polydimethylsiloxane (PDMS) bonded to glass and featured ~14,400 posts on the surface to improve catalyst immobilization. This design increased the immobilization efficiency and reduces the reagents’ diffusion time to active catalyst site. The device also incorporates five reservoirs to increase the reaction volume with minimal hydrodynamic pressure drop across the device. A novel water-soluble tris-(benzyltriazolylmethyl)amine (TBTA) derivative capable of stabilizing Cu(I), ligand 2, was synthesized and successfully immobilized on the chip surface. The catalyst immobilized chip surface was characterized by X-ray photoelectron spectroscopy (XPS). The immobilization efficiency was evaluated via radiotracer methods: the immobilized Cu(I) was measured as 1136±272 nmol and the surface immobilized Cu(I) density was 81±20 nmol cm−2. The active Cu(I)-ligand 2 could be regenerated up to five times without losing any catalyst efficiency. The “click” reaction of Flu568-azide and propargylamine was studied on chip for proof-of-principle. The on-chip reaction yields were ca. 82% with a 50 min reaction time or ca. 55% with a 15 min period at 37 °C, which was higher than those obtained in the conventional reaction. The on-chip “click” reaction involving a biomolecule, cyclo(RGDfK) peptide was also studied and demonstrated a conversion yield of ca. 98%. These encouraging results show promise on the application of the Cu(I) catalyst immobilized “click chip” for the development of biomolecule based imaging agents. PMID:25598970

  11. Reagent based DOS: a "Click, Click, Cyclize" strategy to probe chemical space.

    PubMed

    Rolfe, Alan; Lushington, Gerald H; Hanson, Paul R

    2010-05-07

    The synthesis of small organic molecules as probes for discovering new therapeutic agents has been an important aspect of chemical-biology. Herein we report a reagent-based, diversity-oriented synthetic (DOS) strategy to probe chemical and biological space via a "Click, Click, Cyclize" protocol. In this DOS approach, three sulfonamide linchpins underwent cyclization protocols with a variety of reagents to yield a collection of structurally diverse S-heterocycles. In silico analysis is utilized to evaluate the diversity of the compound collection against chemical space (PC analysis), shape space (PMI) and polar surface area (PSA) calculations.

  12. Click-crosslinkable and photodegradable gelatin hydrogels for cytocompatible optical cell manipulation in natural environment.

    PubMed

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Kanamori, Toshiyuki

    2015-10-09

    This paper describes the generation of "click-crosslinkable" and "photodegaradable" gelatin hydrogels from the reaction between dibenzocycloctyl-terminated photoclevable tetra-arm polyethylene glycol and azide-modified gelatin. The hydrogels were formed in 30 min through the click-crosslinking reaction. The micropatterned features in the hydrogels were created by micropatterned light irradiation; the minimum resolution of micropatterning was 10-μm widths for line patterns and 20-μm diameters for circle patterns. Cells were successfully encapsulated in the hydrogels without any loss of viability across a wide concentration range of crosslinker. In contrast, an activated-ester-type photocleavable crosslinker, which we previously used to prepare photodegradable gelatin hydrogels, induced a decrease in cell viability at crosslinker concentrations greater than 1.8 mM. We also observed morphology alteration and better growth of cancer cells in the click-crosslinked photodegradable gelatin hydrogels that included matrigel than in the absence of matrigel. We also demonstrated micropatterning of the hydrogels encapsulating cells and optical cell separation. Both of the cells that remained in the non-irradiated area and the cells collected from the irradiated area maintained their viability.

  13. Click-crosslinkable and photodegradable gelatin hydrogels for cytocompatible optical cell manipulation in natural environment

    PubMed Central

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Kanamori, Toshiyuki

    2015-01-01

    This paper describes the generation of “click-crosslinkable“ and “photodegaradable“ gelatin hydrogels from the reaction between dibenzocycloctyl-terminated photoclevable tetra-arm polyethylene glycol and azide-modified gelatin. The hydrogels were formed in 30 min through the click-crosslinking reaction. The micropatterned features in the hydrogels were created by micropatterned light irradiation; the minimum resolution of micropatterning was 10-μm widths for line patterns and 20-μm diameters for circle patterns. Cells were successfully encapsulated in the hydrogels without any loss of viability across a wide concentration range of crosslinker. In contrast, an activated-ester-type photocleavable crosslinker, which we previously used to prepare photodegradable gelatin hydrogels, induced a decrease in cell viability at crosslinker concentrations greater than 1.8 mM. We also observed morphology alteration and better growth of cancer cells in the click-crosslinked photodegradable gelatin hydrogels that included matrigel than in the absence of matrigel. We also demonstrated micropatterning of the hydrogels encapsulating cells and optical cell separation. Both of the cells that remained in the non-irradiated area and the cells collected from the irradiated area maintained their viability. PMID:26450015

  14. Triple aryne–tetrazine reaction enabling rapid access to a new class of polyaromatic heterocycles† †Electronic supplementary information (ESI) available: Experimental protocols, characterization data, X-ray crystallographic data (CIF) and NMR spectra of all new compounds. CCDC 1400529. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01726b Click here for additional data file. Click here for additional data file.

    PubMed Central

    Suh, Sung-Eun; Barros, Stephanie A.

    2015-01-01

    One of the most challenging goals of modern synthetic chemistry is to develop multi-step reactions for rapid and efficient access to complex molecules. We report a triple aryne–tetrazine reaction that enables rapid access to a new class of polyaromatic heterocycles. This new reaction, which couples diverse reactivity modes between simple aryne and tetrazine starting materials, proceeds in a single operation and takes less than 5 minutes in air with no metal catalyst. PMID:26388984

  15. Graphene functionalisation with a conjugated poly(fluorene) by click coupling: striking electronic properties in solution.

    PubMed

    Castelaín, Marta; Martínez, Gerardo; Merino, Pablo; Martín-Gago, José Á; Segura, José L; Ellis, Gary; Salavagione, Horacio J

    2012-04-16

    Graphene flakes covalently modified with a conjugated polymer, poly[(9,9-dihexylfluorene)-co-alt-(9,9-bis-(6-azidohexyl)fluorene)] (PFA), were efficiently synthesised by a Cu-catalysed Huisgen 1,3-dipolar cycloaddition between alkyne-modified graphene and an azide-functionalised polymer. Two approaches for the modification of graphene with alkyne groups were investigated (coupling with a diazonium salt generated in situ or an amidation reaction) and the optimum conditions determined. The success of the click-coupling approach was confirmed by FTIR, (1)H NMR, Raman, and X-ray photoelectron spectroscopy (XPS). The absorption and emission spectra of the click product show a strong solvent dependency.

  16. Get the right mix of bricks & clicks.

    PubMed

    Gulati, R; Garino, J

    2000-01-01

    The bright line that once distinguished the dot-com from the incumbent is rapidly fading. Success in the new economy will go to those who can execute clicks-and-mortar strategies that bridge the physical and virtual worlds. But how executives forge such strategies is under considerable debate. Despite the obvious benefits that integration offers--cross-promotion, shared information, purchasing leverage, distribution economies, and the like--many executives now assume that Internet businesses have to be separate to thrive. They believe that the very nature of traditional business--its protectiveness of current customers, its fear of cannibalization, its general myopia--will smother any Internet initiative. Authors Ranjay Gulati and Jason Garino contend that executives don't have to make an either- or choice when it comes to their clicks-and-mortar strategies. The question isn't, "Should we develop our Internet channel in-house or launch a spin-off?" but rather, "What degree of integration makes sense for our company?" To determine the best level of integration for their companies, executives should examine four business dimensions: brand, management, operations, and equity. Drawing on the experiences of three established retailers--Office Depot, KB Toys, and Rite Aid--the authors show the spectrum of strategies available and discuss the trade-offs involved in each choice. By thinking carefully about which aspects of a business to integrate and which to keep distinct, companies can tailor their clicks-and-mortar strategy to their own particular market and competitive situation, dramatically increasing their odds of e-business success.

  17. Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Xu, Zejing; Li, Yejia; Zhang, Boyu; Purkait, Tapas; Alb, Alina; Mitchell, Brian S.; Grayson, Scott M.; Fink, Mark J.

    2015-01-01

    Water-soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water-stable chloroalkyl or alkynyl-terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the Si nanoparticles with sodium azide in DMF. The azido-terminated nanoparticles were then grafted with mono-alkynyl-PEG polymers using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked Si nanoparticle clusters were synthesized via the CuAAC "click" reaction of functional Si NPs with α,ω-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle aggregates undergo a solvent-dependent change in volume (ethanol > dichloromethane > toluene) similar in behavior to hydrogel nanocomposites.

  18. Click modification of multifunctional liposomes bearing hyperbranched polyether chains.

    PubMed

    Fritz, Thomas; Hirsch, Markus; Richter, Felix C; Müller, Sophie S; Hofmann, Anna M; Rusitzka, Kristiane A K; Markl, Jürgen; Massing, Ulrich; Frey, Holger; Helm, Mark

    2014-07-14

    Aiming at controlled modification of liposomal surface structures, we describe a postpreparational approach for surface derivatization of a new type of multifunctional, sterically stabilized liposomes. Application of dual centrifugation (DC) resulted in high encapsulation efficiencies above 50% at very small batch sizes with a total volume of 150 μL, which were conductive to fast and efficient optimization of variegated surface modification reactions. Cholesterol-polymer amphiphiles, including complex hyperbranched polyether structures bearing 1-4 terminal alkynes, were used in DC formulations to provide steric stabilization. The alkyne moieties were explored as anchors for the conjugation of small molecules to the liposomal surface via click chemistry, binding 350-450 fluorophores per liposome as examples for surface active molecules. Using Förster resonance energy transfer (FRET) spectroscopy, the conjugation reaction as well as the uptake of FRET-labeled liposomes by RBE4 cells was monitored, and the distribution of the fluorescent lipids among cellular structures and membranes could be studied. Thus, the combination of clickable hyperbranched amphiphiles and dual centrifugation provides access to well-defined liposomal formulations with a variety of surface moieties.

  19. Application of Near‐IR Absorption Porphyrin Dyes Derived from Click Chemistry as Third‐Order Nonlinear Optical Materials

    PubMed Central

    Mi, Yongsheng; Liang, Pengxia; Cao, Hui; He, Wanli

    2015-01-01

    Abstract Recently, third‐order nonlinear properties of porphyrins and porphyrin polymers and coordination compounds have been extensively studied in relation to their use in photomedicine and molecular photonics. A new functionalized porphyrin dye containing electron‐rich alkynes was synthesized and further modified by formal [2+2] click reactions with click reagents tetracyanoethylene (TCNE) and 7, 7, 8, 8‐tetracyanoquinodimethane (TCNQ). The photophysical properties of these porphyrin dyes, as well as the click reaction, were studied by UV/Vis spectroscopy. In particular, third‐order nonlinear optical properties of the dyes, which showed typical d‐π‐A structures, were characterized by Z‐scan techniques. In addition, the self‐assembly properties were investigated through the phase‐exchange method, and highly organized morphologies were observed by scanning electron microscopy (SEM). The effects of the click post‐functionalization on the properties of the porphyrins were studied, and these functionalized porphyrin dyes represent an interesting set of candidates for optoelectronic device components. PMID:27308215

  20. Biofunctionalization on alkylated silicon substrate surfaces via "click" chemistry.

    PubMed

    Qin, Guoting; Santos, Catherine; Zhang, Wen; Li, Yan; Kumar, Amit; Erasquin, Uriel J; Liu, Kai; Muradov, Pavel; Trautner, Barbara Wells; Cai, Chengzhi

    2010-11-24

    Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.

  1. Liposome functionalization with copper-free "click chemistry".

    PubMed

    Oude Blenke, Erik; Klaasse, Gruson; Merten, Hannes; Plückthun, Andreas; Mastrobattista, Enrico; Martin, Nathaniel I

    2015-03-28

    The modification of liposomal surfaces is of interest for many different applications and a variety of chemistries are available that makes this possible. A major disadvantage of commonly used coupling chemistries (e.g. maleimide-thiol coupling) is the limited control over the site of conjugation in cases where multiple reactive functionalities are present, leading to heterogeneous products and in some cases dysfunctional conjugates. Bioorthogonal coupling approaches such as the well-established copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction are attractive alternatives as the reaction kinetics are favorable and azide-containing reagents are widely available. In the work described here, we prepared lipids containing a reactive cyclooctyne group and, after incorporation into liposomes, demonstrated successful conjugation of both a small molecule dye (5'-TAMRA-azide) as well as a larger azide-containing model protein based upon a designed ankyrin repeat protein (azido-DARPin). By applying the strain-promoted azido-alkyne cycloaddition (SPAAC) the use of Cu(I) as a catalyst is avoided, an important advantage considering the known deleterious effects associated with copper in cell and protein studies. We demonstrate complete control over the number of ligands coupled per liposome when using a small molecule azide with conjugation occurring at a reasonable reaction rate. By comparison, the conjugation of a larger azide-modified protein occurs more slowly, however the number of protein ligands coupled was found to be sufficient for liposome targeting to cells. Importantly, these results provide a strong proof of concept for the site-specific conjugation of protein ligands to liposomal surfaces via SPAAC. Unlike conventional approaches, this strategy provides for the homogeneous coupling of proteins bearing a single site-specific azide modification and eliminates the chance of forming dysfunctional ligands on the liposome. Furthermore, the absence of

  2. ;Click; analytics for ;click; chemistry - A simple method for calibration-free evaluation of online NMR spectra

    NASA Astrophysics Data System (ADS)

    Michalik-Onichimowska, Aleksandra; Kern, Simon; Riedel, Jens; Panne, Ulrich; King, Rudibert; Maiwald, Michael

    2017-04-01

    Driven mostly by the search for chemical syntheses under biocompatible conditions, so called ;click; chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques possessing short set-up times. Here, we report on a fast and reliable calibration-free online NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement of 1H spectra with a time interval of 20 s per spectrum, and a robust, fully automated algorithm to interpret the obtained data. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in a variety of non-deuterated solvents while its time-resolved behaviour was characterized with step tracer experiments. Overlapping signals in online spectra during thiol-ene coupling could be deconvoluted with a spectral model using indirect hard modeling and were subsequently converted to either molar ratios (using a calibration-free approach) or absolute concentrations (using 1-point calibration). For various solvents the kinetic constant k for pseudo-first order reaction was estimated to be 3.9 h-1 at 25 °C. The obtained results were compared with direct integration of non-overlapping signals and showed good agreement with the implemented mass balance.

  3. "Click" analytics for "click" chemistry - A simple method for calibration-free evaluation of online NMR spectra.

    PubMed

    Michalik-Onichimowska, Aleksandra; Kern, Simon; Riedel, Jens; Panne, Ulrich; King, Rudibert; Maiwald, Michael

    2017-03-01

    Driven mostly by the search for chemical syntheses under biocompatible conditions, so called "click" chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques possessing short set-up times. Here, we report on a fast and reliable calibration-free online NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement of (1)H spectra with a time interval of 20s per spectrum, and a robust, fully automated algorithm to interpret the obtained data. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in a variety of non-deuterated solvents while its time-resolved behaviour was characterized with step tracer experiments. Overlapping signals in online spectra during thiol-ene coupling could be deconvoluted with a spectral model using indirect hard modeling and were subsequently converted to either molar ratios (using a calibration-free approach) or absolute concentrations (using 1-point calibration). For various solvents the kinetic constant k for pseudo-first order reaction was estimated to be 3.9h(-1) at 25°C. The obtained results were compared with direct integration of non-overlapping signals and showed good agreement with the implemented mass balance.

  4. Polymer multilayer films obtained by electrochemically catalyzed click chemistry.

    PubMed

    Rydzek, Gaulthier; Thomann, Jean-Sébastien; Ben Ameur, Nejla; Jierry, Loïc; Mésini, Philippe; Ponche, Arnaud; Contal, Christophe; El Haitami, Alae E; Voegel, Jean-Claude; Senger, Bernard; Schaaf, Pierre; Frisch, Benoît; Boulmedais, Fouzia

    2010-02-16

    We report the covalent layer-by-layer construction of polyelectrolyte multilayer (PEM) films by using an efficient electrochemically triggered Sharpless click reaction. The click reaction is catalyzed by Cu(I) which is generated in situ from Cu(II) (originating from the dissolution of CuSO(4)) at the electrode constituting the substrate of the film. The film buildup can be controlled by the application of a mild potential inducing the reduction of Cu(II) to Cu(I) in the absence of any reducing agent or any ligand. The experiments were carried out in an electrochemical quartz crystal microbalance cell which allows both to apply a controlled potential on a gold electrode and to follow the mass deposited on the electrode through the quartz crystal microbalance. Poly(acrylic acid) (PAA) modified with either alkyne (PAA(Alk)) or azide (PAA(Az)) functions grafted onto the PAA backbone through ethylene glycol arms were used to build the PEM films. Construction takes place on gold electrodes whose potentials are more negative than a critical value, which lies between -70 and -150 mV vs Ag/AgCl (KCl sat.) reference electrode. The film thickness increment per bilayer appears independent of the applied voltage as long as it is more negative than the critical potential, but it depends upon Cu(II) and polyelectrolyte concentrations in solution and upon the reduction time of Cu(II) during each deposition step. An increase of any of these latter parameters leads to an increase of the mass deposited per layer. For given buildup conditions, the construction levels off after a given number of deposition steps which increases with the Cu(II) concentration and/or the Cu(II) reduction time. A model based on the diffusion of Cu(II) and Cu(I) ions through the film and the dynamics of the polyelectrolyte anchoring on the film, during the reduction period of Cu(II), is proposed to explain the major buildup features.

  5. People's Ability to Detect Objects Using Click-Based Echolocation: A Direct Comparison between Mouth-Clicks and Clicks Made by a Loudspeaker.

    PubMed

    Thaler, Lore; Castillo-Serrano, Josefina

    2016-01-01

    Echolocation is the ability to use reflected sound to obtain information about the spatial environment. Echolocation is an active process that requires both the production of the emission as well as the sensory processing of the resultant sound. Appreciating the general usefulness of echo-acoustic cues for people, in particular those with vision impairments, various devices have been built that exploit the principle of echolocation to obtain and provide information about the environment. It is common to all these devices that they do not require the person to make a sound. Instead, the device produces the emission autonomously and feeds a resultant sound back to the user. Here we tested if echolocation performance in a simple object detection task was affected by the use of a head-mounted loudspeaker as compared to active clicking. We found that 27 sighted participants new to echolocation did generally better when they used a loudspeaker as compared to mouth-clicks, and that two blind participants with experience in echolocation did equally well with mouth clicks and the speaker. Importantly, performance of sighted participants' was not statistically different from performance of blind experts when they used the speaker. Based on acoustic click data collected from a subset of our participants, those participants whose mouth clicks were more similar to the speaker clicks, and thus had higher peak frequencies and sound intensity, did better. We conclude that our results are encouraging for the consideration and development of assistive devices that exploit the principle of echolocation.

  6. People’s Ability to Detect Objects Using Click-Based Echolocation: A Direct Comparison between Mouth-Clicks and Clicks Made by a Loudspeaker

    PubMed Central

    Thaler, Lore; Castillo-Serrano, Josefina

    2016-01-01

    Echolocation is the ability to use reflected sound to obtain information about the spatial environment. Echolocation is an active process that requires both the production of the emission as well as the sensory processing of the resultant sound. Appreciating the general usefulness of echo-acoustic cues for people, in particular those with vision impairments, various devices have been built that exploit the principle of echolocation to obtain and provide information about the environment. It is common to all these devices that they do not require the person to make a sound. Instead, the device produces the emission autonomously and feeds a resultant sound back to the user. Here we tested if echolocation performance in a simple object detection task was affected by the use of a head-mounted loudspeaker as compared to active clicking. We found that 27 sighted participants new to echolocation did generally better when they used a loudspeaker as compared to mouth-clicks, and that two blind participants with experience in echolocation did equally well with mouth clicks and the speaker. Importantly, performance of sighted participants’ was not statistically different from performance of blind experts when they used the speaker. Based on acoustic click data collected from a subset of our participants, those participants whose mouth clicks were more similar to the speaker clicks, and thus had higher peak frequencies and sound intensity, did better. We conclude that our results are encouraging for the consideration and development of assistive devices that exploit the principle of echolocation. PMID:27135407

  7. Immobilization of antimicrobial peptide IG-25 onto fluoropolymers via fluorous interactions and click chemistry.

    PubMed

    Santos, Catherine M; Kumar, Amit; Kolar, Satya S; Contreras-Caceres, Rafael; McDermott, Alison; Cai, Chengzhi

    2013-12-26

    We report a practical method for biofunctionalization of fluoropolymers based on noncovalent, fluorous interactions and click chemistry that allows incorporation of biomolecules under physiological solutions. We demonstrate the method by immobilization of an antimicrobial peptide (AMP) on fluorous thin films and fluorosilicone contact lens. The fluorous surfaces were dip-coated with fluorous-tagged oligo(ethylene) chain terminated with a reactive group, such as an alkynyl group. This simple step generates a "clickable" surface. The noncovalent fluorous interaction was strong enough to allow subsequent covalent attachment of IG-25, a truncated version of the most extensively studied human AMP LL-37. The attachment was through copper-catalyzed click reaction between the alkynyl group on the surface and the azido-OEG tag at the N-terminus of IG-25. In comparison to surfaces presenting IG-25 randomly bound via carbodiimide chemistry, the surfaces presenting IG-25 tethering to the surface at the N-terminus via click chemistry displayed higher antibacterial activities against an ocular pathogen Pseudomonas aeruginosa (strain PA-O1).

  8. Click-electron microscopy for imaging metabolically tagged non-protein biomolecules

    PubMed Central

    Ngo, John T.; Adams, Stephen R.; Deerinck, Thomas J.; Boassa, Daniela; Rodriguez-Rivera, Frances; Palida, Sakina F.; Bertozzi, Carolyn R.; Ellisman, Mark H.; Tsien, Roger Y.

    2016-01-01

    Electron microscopy (EM) has long been the main technique to image cell structures with nanometer resolution, but has lagged behind light microscopy in the crucial ability to make specific molecules stand out. Here we introduce “Click-EM,” a labeling technique for correlative light microscopy and EM imaging of non-protein biomolecules. In this approach, metabolic labeling substrates containing bioorthogonal functional groups are provided to cells for incorporation into biopolymers by endogenous biosynthetic machinery. The unique chemical functionality of these analogs is exploited for selective attachment of singlet oxygen-generating fluorescent dyes via bioorthogonal “click chemistry” ligations. Illumination of dye-labeled structures generates singlet oxygen to locally catalyze the polymerization of diaminobenzidine into an osmiophilic reaction product that is readily imaged by EM. We describe the application of Click-EM in imaging metabolically tagged DNA, RNA, and lipids in cultured cells and neurons, and highlight its use in tracking peptidoglycan synthesis in the Gram-positive bacterium Listeria monocytogenes. PMID:27110681

  9. Clickable di- and tetrafunctionalized pillar[n]arenes (n = 5, 6) by oxidation-reduction of pillar[n]arene units.

    PubMed

    Ogoshi, Tomoki; Yamafuji, Daiki; Kotera, Daisuke; Aoki, Takamichi; Fujinami, Shuhei; Yamagishi, Tada-aki

    2012-12-21

    We report a new route for the selective synthesis of di- and tetrafunctionalized pillararenes via oxidation and reduction of the pillararene units. Hypervalent-iodine oxidation of perethylated pillar[5]arene afforded pillar[5]arene derivatives containing one benzoquinone unit and two benzoquinones at the A,B- and A,C-units. A pillar[6]arene derivative containing one benzoquinone unit was also synthesized. Reduction of the benzoquinone units yielded position-selective di- and tetrahydroxylated pillararene derivatives. This methodology avoids the generation of many constitutional isomers and overcomes the isolation problem of numerous constitutional isomers. From these hydroxylated pillararenes, Huisgen reaction-based clickable di- and tetraalkynylated pillar[5]arenes were prepared. Because of the highly selective and reactive nature of Huisgen alkyne-azide cycloaddition, these pillar[5]arenes can serve as key compounds for a large library of di- and tetrafunctionalized pillararenes. Based on these di- and tetrafunctionalized pillar[5]arenes as key compounds, fluorescent sensors were created by the modification of di- and tetrapyrene moieties via Huisgen-type click reactions.

  10. Clicks versus Citations: Click Count as a Metric in High Energy Physics Publishing

    SciTech Connect

    Bitton, Ayelet; /UC, San Diego /SLAC

    2011-06-22

    High-energy physicists worldwide rely on online resources such as SPIRES and arXiv to perform gather research and share their own publications. SPIRES is a tool designed to search the literature within high-energy physics, while arXiv provides the actual full-text documents of this literature. In high-energy physics, papers are often ranked according to the number of citations they acquire - meaning the number of times a later paper references the original. This paper investigates the correlation between the number of times a paper is clicked in order to be downloaded and the number of citations it receives following the click. It explores how physicists truly read what they cite.

  11. Spectrogram analysis of low to mid frequency marine mammal clicks

    NASA Astrophysics Data System (ADS)

    Ioup, George E.; Ioup, Juliette W.; Larue, James P.; Sidorovskaia, Natalia A.; Kuczaj, Stan A.; Rayborn, Grayson H.; Walker, Christopher D.

    2004-05-01

    Previous investigators have proposed explanations for some sperm whale click structure and pointed out that the separation of individual pulses within the click might be used to determine approximately the size of the sperm whales. Recently, Mohl et al. [J. Acoust. Soc. Am. 114, 1124-1154 (2003)] have shown that echo-location click structure is highly dependent on the received angle. In data measured by the Littoral Acoustic Demonstration Center using bottom-moored hydrophones in the northern Gulf of Mexico in the summers of 2001 and 2002, rich click structures were observed in the spectrograms of many click trains, some of which exhibit strikingly consistent spectral nulls across the train. Although this structure in the spectra could be due to propagation effects, investigations to date suggest this possibility is highly unlikely, as discussed in the next abstract. Therefore it is at least plausible that the structure could be used to identify individual animals. This is known to be a difficult problem in the case of sperm whales because of the angle dependence of at least some of their clicks. These difficulties are discussed, as is the possible use of the spectrograms of the clicks to identify individuals. [Research supported by ONR.

  12. In situ forming hydrogels via catalyst-free and bioorthogonal "tetrazole-alkene" photo-click chemistry.

    PubMed

    Fan, Yaping; Deng, Chao; Cheng, Ru; Meng, Fenghua; Zhong, Zhiyuan

    2013-08-12

    In situ forming hydrogels were developed from 4-arm poly(ethylene glycol)-methacrylate (PEG-4-MA) and -tetrazole (PEG-4-Tet) derivatives through catalyst-free and bioorthogonal "tetrazole-alkene" photo-click chemistry. PEG-4-MA and PEG-4-Tet (Mn = 10 kg/mol) were soluble at 37 °C in phosphate buffer (PB, pH 7.4, 10 mM) at total polymer concentrations ranging from 20 to 60 wt % but formed fluorescent hydrogels upon 365 nm UV irradiation at an intensity of 20.6, 30.7, or 60 mW/cm(2). The gelation times ranged from ca. 50 s to 5 min, and storage moduli varied from 0.65 to 25.2 kPa depending on polymer concentrations and degrees of Tet substitution in PEG-4-Tet conjugates. The cell experiments via an indirect contact assay demonstrated that these "tetrazole-alkene" photo-click PEG hydrogels were noncytotoxic. The high specificity of photo-click reaction renders thus obtained PEG hydrogels particularly interesting for controlled protein release. Notably, in vitro release studies showed that cytochrome c (CC), γ-globulins (Ig), and recombinant human interleukin-2 (rhIL-2) all were released from PEG hydrogels in a sustained and quantitative manner over a period of 14-20 days. Importantly, released CC and rhIL-2 exhibited comparable biological activities to native CC and rhIL-2, respectively. These results confirm that "tetrazole-alkene" photo-click reaction is highly compatible with these loaded proteins. This photo-controlled, specific, efficient, and catalyst-free click chemistry provides a new and versatile strategy to in situ forming hydrogels that hold tremendous potentials for protein delivery and tissue engineering.

  13. Visible-Light-Induced Click Chemistry.

    PubMed

    Mueller, Jan O; Schmidt, Friedrich G; Blinco, James P; Barner-Kowollik, Christopher

    2015-08-24

    A rapid and catalyst-free cycloaddition system for visible-light-induced click chemistry is reported. A readily accessible photoreactive 2H-azirine moiety was designed to absorb light at wavelengths above 400 nm. Irradiation with low-energy light sources thus enables efficient small-molecule synthesis with a diverse range of multiple-bond-containing compounds. Moreover, in order to demonstrate the efficiency of the current approach, quantitative ligation of the photoactivatable chromophore with functional polymeric substrates was performed and full conversion with irradiation times of only 1 min at ambient conditions was achieved. The current report thus presents a highly efficient method for applications involving selective cycloaddition to electron-deficient multiple-bond-containing materials.

  14. Click production during breathing in a sperm whale (Physeter macrocephalus)

    NASA Astrophysics Data System (ADS)

    Wahlberg, Magnus; Frantzis, Alexandros; Alexiadou, Paraskevi; Madsen, Peter T.; Møhl, Bertel

    2005-12-01

    A sperm whale (Physeter macrocephalus) was observed at the surface with above- and underwater video and synchronized underwater sound recordings. During seven instances the whale ventilated its lungs while clicking. From this observation it is inferred that click production is achieved by pressurizing air in the right nasal passage, pneumatically disconnected from the lungs and the left nasal passage, and that air flows anterior through the phonic lips into the distal air sac. The capability of breathing and clicking at the same time is unique among studied odontocetes and relates to the extreme asymmetry of the sperm whale sound-producing forehead.

  15. Predicting clicks of PubMed articles

    PubMed Central

    Mao, Yuqing; Lu, Zhiyong

    2013-01-01

    Predicting the popularity or access usage of an article has the potential to improve the quality of PubMed searches. We can model the click trend of each article as its access changes over time by mining the PubMed query logs, which contain the previous access history for all articles. In this article, we examine the access patterns produced by PubMed users in two years (July 2009 to July 2011). We explore the time series of accesses for each article in the query logs, model the trends with regression approaches, and subsequently use the models for prediction. We show that the click trends of PubMed articles are best fitted with a log-normal regression model. This model allows the number of accesses an article receives and the time since it first becomes available in PubMed to be related via quadratic and logistic functions, with the model parameters to be estimated via maximum likelihood. Our experiments predicting the number of accesses for an article based on its past usage demonstrate that the mean absolute error and mean absolute percentage error of our model are 4.0% and 8.1% lower than the power-law regression model, respectively. The log-normal distribution is also shown to perform significantly better than a previous prediction method based on a human memory theory in cognitive science. This work warrants further investigation on the utility of such a log-normal regression approach towards improving information access in PubMed. PMID:24551386

  16. Predicting clicks of PubMed articles.

    PubMed

    Mao, Yuqing; Lu, Zhiyong

    2013-01-01

    Predicting the popularity or access usage of an article has the potential to improve the quality of PubMed searches. We can model the click trend of each article as its access changes over time by mining the PubMed query logs, which contain the previous access history for all articles. In this article, we examine the access patterns produced by PubMed users in two years (July 2009 to July 2011). We explore the time series of accesses for each article in the query logs, model the trends with regression approaches, and subsequently use the models for prediction. We show that the click trends of PubMed articles are best fitted with a log-normal regression model. This model allows the number of accesses an article receives and the time since it first becomes available in PubMed to be related via quadratic and logistic functions, with the model parameters to be estimated via maximum likelihood. Our experiments predicting the number of accesses for an article based on its past usage demonstrate that the mean absolute error and mean absolute percentage error of our model are 4.0% and 8.1% lower than the power-law regression model, respectively. The log-normal distribution is also shown to perform significantly better than a previous prediction method based on a human memory theory in cognitive science. This work warrants further investigation on the utility of such a log-normal regression approach towards improving information access in PubMed.

  17. Retrospectively supervised click decoder calibration for self-calibrating point-and-click brain-computer interfaces.

    PubMed

    Jarosiewicz, Beata; Sarma, Anish A; Saab, Jad; Franco, Brian; Cash, Sydney S; Eskandar, Emad N; Hochberg, Leigh R

    2017-03-08

    Brain-computer interfaces (BCIs) aim to restore independence to people with severe motor disabilities by allowing control of acursor on a computer screen or other effectors with neural activity. However, physiological and/or recording-related nonstationarities in neural signals can limit long-term decoding stability, and it would be tedious for users to pause use of the BCI whenever neural control degrades to perform decoder recalibration routines. We recently demonstrated that a kinematic decoder (i.e. a decoder that controls cursor movement) can be recalibrated using data acquired during practical point-and-click control of the BCI by retrospectively inferring users' intended movement directions based on their subsequent selections. Here, we extend these methods to allow the click decoder to also be recalibrated using data acquired during practical BCI use. We retrospectively labeled neural data patterns as corresponding to "click" during all time bins in which the click log-likelihood (decoded using linear discriminant analysis, or LDA) had been above the click threshold that was used during real-time neural control. We labeled as "non-click" those periods that the kinematic decoder's retrospective target inference (RTI) heuristics determined to be consistent with intended cursor movement. Once these neural activity patterns were labeled, the click decoder was calibrated using standard supervised classifier training methods. Combined with real-time bias correction and baseline firing rate tracking, this set of "retrospectively labeled" decoder calibration methods enabled a BrainGate participant with amyotrophic lateral sclerosis (T9) to type freely across 11 research sessions spanning 29days, maintaining high-performance neural control over cursor movement and click without needing to interrupt virtual keyboard use for explicit calibration tasks. By eliminating the need for tedious calibration tasks with prescribed targets and pre-specified click times, this

  18. clickECM: Development of a cell-derived extracellular matrix with azide functionalities.

    PubMed

    Ruff, S M; Keller, S; Wieland, D E; Wittmann, V; Tovar, G E M; Bach, M; Kluger, P J

    2016-12-10

    In vitro cultured cells produce a complex extracellular matrix (ECM) that remains intact after decellularization. The biological complexity derived from the variety of distinct ECM molecules makes these matrices ideal candidates for biomaterials. Biomaterials with the ability to guide cell function are a topic of high interest in biomaterial development. However, these matrices lack specific addressable functional groups, which are often required for their use as a biomaterial. Due to the biological complexity of the cell-derived ECM, it is a challenge to incorporate such functional groups without affecting the integrity of the biomolecules within the ECM. The azide-alkyne cycloaddition (click reaction, Huisgen-reaction) is an efficient and specific ligation reaction that is known to be biocompatible when strained alkynes are used to avoid the use of copper (I) as a catalyst. In our work, the ubiquitous modification of a fibroblast cell-derived ECM with azides was achieved through metabolic oligosaccharide engineering by adding the azide-modified monosaccharide Ac4GalNAz (1,3,4,6-tetra-O-acetyl-N-azidoacetylgalactosamine) to the cell culture medium. The resulting azide-modified network remained intact after removing the cells by lysis and the molecular structure of the ECM proteins was unimpaired after a gentle homogenization process. The biological composition was characterized in order to show that the functionalization does not impair the complexity and integrity of the ECM. The azides within this "clickECM" could be accessed by small molecules (such as an alkyne-modified fluorophore) or by surface-bound cyclooctynes to achieve a covalent coating with clickECM.

  19. Click-chemistry strategy for labeling antibodies with copper-64 via a cross-bridged tetraazamacrocyclic chelator scaffold.

    PubMed

    Kumar, Amit; Hao, Guiyang; Liu, Li; Ramezani, Saleh; Hsieh, Jer-Tsong; Öz, Orhan K; Sun, Xiankai

    2015-04-15

    We report a click-chemistry based modular strategy for antibody labeling with (64)Cu (t1/2 = 12.7 h; β(+) 0.656 MeV, 17.4%; β(-) 0.573 MeV, 39%; EC 43%) under ambient condition utilizing a cross-bridged tetraazamacrocyclic (CB-TE2A) analogue, which otherwise requires harsh conditions that make the CB-TE2A analogues under-utilized for protein labeling despite the fact that they form kinetically inert copper complexes with high in vivo stability. Our strategy involves prelabeling a CB-TE2A based scaffold (CB-TE2A-1C) with (64)Cu and its subsequent reaction with an antibody via the tetrazine-norbornene mediated click chemistry. The effectiveness of this strategy was demonstrated by labeling two monoclonal antibodies, an anti-PSMA antibody (YPSMA-1) and a chimeric anti-phosphatidylserine antibody (Bavituximab). The immunoreactivity of the antibodies remained unchanged after the tetrazine modification and click-chemistry (64)Cu labeling. To further demonstrate the practicality of the modular (64)Cu labeling strategy, we tested positron emission tomography (PET) imaging of tumor with the (64)Cu-labeled bavituximab in a mouse xenograft model. The tumor visualization and uptake of the labeled antibody exhibited the versatility of the click-chemistry strategy.

  20. "Bis-Click" Ligation of DNA: Template-Controlled Assembly, Circularisation and Functionalisation with Bifunctional and Trifunctional Azides.

    PubMed

    Yang, Haozhe; Seela, Frank

    2017-03-08

    Ligation and circularisation of oligonucleotides containing terminal triple bonds was performed with bifunctional or trifunctional azides. Both reactions are high yielding. Template-assisted bis-click ligation of two individual non-complementary oligonucleotide strands was accomplished to yield heterodimers exclusively. In this context, the template fulfils two functions: it accelerates the ligation reaction and controls product assembly (heterodimer vs. homodimer formation). Intermolecular bis-click circularisation of one oligonucleotide strand took place without template assistance. For construction of oligonucleotides with terminal triple bonds in the nucleobase side chain, 7- or 5-functionalised 7-deaza-dA and dU residues were used. These oligonucleotides are directly accessible by solid-phase synthesis. When trifunctional azides were employed instead of bifunctional linkers, functionalisation of the remaining azido group was performed with small molecules such as 1-ethynyl pyrene, biotin propargyl amide or with ethynylated oligonucleotides. By this means, branched DNA was constructed.

  1. One-pot synthesis of Au@SiO(2) catalysts: a click chemistry approach.

    PubMed

    Solovyeva, Vera A; Vu, Khanh B; Merican, Zulkifli; Sougrat, Rachid; Rodionov, Valentin O

    2014-10-13

    Using the copper-catalyzed azide-alkyne cycloaddition "click" reaction, a library of triazole amphiphiles with a variety of functional polar "heads" and hydrophobic or superhydrophobic "tails" was synthesized. The amphiphiles were evaluated for their ability to stabilize small Au nanoparticles, and, at the same time, serve as templates for nanocasting porous SiO2. One of the Au@SiO2 materials thus prepared was found to be a highly active catalyst for the Au nanoparticle-catalyzed regioselective hydroamination of alkynes.

  2. "Click" immobilization of a VEGF-mimetic peptide on decellularized endothelial extracellular matrix to enhance angiogenesis.

    PubMed

    Wang, Lin; Zhao, Meirong; Li, Siheng; Erasquin, Uriel J; Wang, Hao; Ren, Li; Chen, Changyi; Wang, Yingjun; Cai, Chengzhi

    2014-06-11

    We show that coating of decellularized extracellular matrix (DC-ECM) on substrate surfaces is an efficient way to generate a platform mimicking the native ECM environment. Moreover, the DC-ECM can be modified with a peptide (QK) mimicking vascular endothelial growth factor without apparently compromising its integrity. The modification was achieved through metabolic incorporation of a "clickable" handle to DC-ECM followed by rapid attachment of the QK peptide with an azido tag using copper-catalyzed click reaction. The attachment of the QK peptide on to DC-ECM in this way further enhanced the angiogenic responses (formation of branched tubular networks) of endothelial cells.

  3. Bio-orthogonal conjugation and enzymatically triggered release of proteins within multi-layered hydrogels.

    PubMed

    Guo, Chen; Kim, Heejae; Ovadia, Elisa M; Mourafetis, Christine M; Yang, Mingrui; Chen, Wilfred; Kloxin, April M

    2017-04-05

    Hydrogels are facile architectures for the controlled presentation of proteins with far-reaching applications, from fundamental biological studies in three-dimensional culture to new regenerative medicine and therapeutic delivery strategies. Here, we demonstrate a versatile approach for spatially-defined presentation of engineered proteins within hydrogels through i) immobilization using bio-orthogonal strain-promoted alkyne-azide click chemistry and ii) dynamic proteasedriven protein release using exogenously applied enzyme. Model fluorescent proteins were expressed using nonsense codon replacement to incorporate azide-containing unnatural amino acids in a site-specific manner toward maintaining protein activity: here, cyan fluorescent protein (AzCFP), mCherry fluorescent protein (AzmCh), and mCh decorated with a thrombin cut-site. (AzTMBmCh). Eight-arm poly(ethylene glycol) (PEG) was modified with dibenzylcyclooctyne (DBCO) groups and reacted with azide functionalized PEG in aqueous solution for rapid formation of hydrogels. Azide functionalized full-length fluorescent proteins were successfully incorporated into the hydrogel network by reaction with PEGDBCO prior to gel formation. Temporal release and removal of select proteins (AzTMBmCh) was triggered with the application of thrombin and monitored in real-time with confocal microscopy, providing a responsive handle for controlling matrix properties. Hydrogels with regions of different protein compositions were created using a layering technique with thicknesses of hundreds of micrometers, affording opportunities for the creation of complex geometries on size scales relevant for controlling cellular microenvironments.

  4. Novel oligonuclear copper complexes featuring exciting luminescent characteristics

    NASA Astrophysics Data System (ADS)

    Zink, Daniel M.; Volz, Daniel; Bergmann, Larissa; Nieger, Martin; Bräse, Stefan; Yersin, Hartmut; Baumann, Thomas

    2013-09-01

    A series of highly luminescent mono-, di-, and trinuclear copper(I) complexes has been synthesized using modular ligand systems of easily accessible N^N, P^P or P^N ligands in order to show the rich structural diversity of copper(I) compounds. Those systems allow for the design of various emitting materials with desired photophysical properties, such as emission colors and high efficiencies. The complexes were characterized with well-established methods such as X-ray crystallographic studies or elemental analysis and, in addition, due to their interesting photoluminescence characteristics, their emission properties were further investigated by means of spectroscopic methods as well as DFT-calculations. In detail, various cationic and neutral mononuclear complexes have been synthesized in order to investigate the photophysical properties of this these different types of emitting compounds. It has been found that neutral copper(I) complexes show superior emission properties (with PLQY up to 89%) compared to their cationic counterparts. Furthermore, a series of dinuclear and trinuclear copper(I) complexes has been synthesized featuring an easy tunable emission maximum from sky blue to deep red (481 nm to 713 nm) with extraordinary high photoluminescence quantum yields up to 99%. In addition, a new crosslinking-technique has been developed to open up the door for a new way to fully solution processed OLED using these promising emitting compounds: Alkyne-substituted emitting complexes crosslink automatically with azide-polymers in a copper-catalyzed alkyne-azide Click reaction.

  5. Acid-Cleavable Unimolecular Micelles from Amphiphilic Star Copolymers for Triggered Release of Anticancer Drugs.

    PubMed

    Zhang, Shan; Xu, Jianbin; Chen, Heng; Song, Zhangfa; Wu, Yalan; Dai, Xingyi; Kong, Jie

    2017-03-01

    In this contribution, amphiphilic star copolymers (H40-star-PCL-a-PEG) with an H40 hyperbranched polyester core and poly(ε-caprolactone)-a-poly(ethylene glycol) copolymer arms linked with acetal groups are synthesized using ring-opening polymerization and a copper (I)-catalyzed alkyne-azide cycloaddition click reaction. The acid-cleavable acetal groups between the hydrophilic and hydrophobic segments of the arms endow the amphiphilic star copolymers with pH responsiveness. In aqueous solution, unimolecular micelles can be formed with good stability and a unique acid degradability, as is desirable for anticancer drug carriers. For the model drug of doxorubicin, the in vitro release behavior, intracellular release, and inhibition of proliferation of HeLa cells show that the acid-cleavable unimolecular micelles with anticancer activity can be dissociated in an acidic environment and efficiently internalized by HeLa cells. Due to the acid-cleavable and biodegradable nature, unimolecular micelles from amphiphilic star copolymers are promising for applications in intracellular drug delivery for cancer chemotherapy.

  6. Sensory biology: echolocation from click to call, mouth to wing.

    PubMed

    Fenton, M Brock; Ratcliffe, John M

    2014-12-15

    Echolocators use echoes of sounds they produce, clicks or calls, to detect objects. Usually, these signals originate from the head. New work reveals that three species of bats use their wings to generate echolocation signals.

  7. Click Chemistry-Mediated Nanosensors for Biochemical Assays

    PubMed Central

    Chen, Yiping; Xianyu, Yunlei; Wu, Jing; Yin, Binfeng; Jiang, Xingyu

    2016-01-01

    Click chemistry combined with functional nanoparticles have drawn increasing attention in biochemical assays because they are promising in developing biosensors with effective signal transformation/amplification and straightforward signal readout for clinical diagnostic assays. In this review, we focus on the latest advances of biochemical assays based on Cu (I)-catalyzed 1, 3-dipolar cycloaddition of azides and alkynes (CuAAC)-mediated nanosensors, as well as the functionalization of nanoprobes based on click chemistry. Nanoprobes including gold nanoparticles, quantum dots, magnetic nanoparticles and carbon nanomaterials are covered. We discuss the advantages of click chemistry-mediated nanosensors for biochemical assays, and give perspectives on the development of click chemistry-mediated approaches for clinical diagnosis and other biomedical applications. PMID:27217831

  8. Click Chemistry-Mediated Nanosensors for Biochemical Assays.

    PubMed

    Chen, Yiping; Xianyu, Yunlei; Wu, Jing; Yin, Binfeng; Jiang, Xingyu

    2016-01-01

    Click chemistry combined with functional nanoparticles have drawn increasing attention in biochemical assays because they are promising in developing biosensors with effective signal transformation/amplification and straightforward signal readout for clinical diagnostic assays. In this review, we focus on the latest advances of biochemical assays based on Cu (I)-catalyzed 1, 3-dipolar cycloaddition of azides and alkynes (CuAAC)-mediated nanosensors, as well as the functionalization of nanoprobes based on click chemistry. Nanoprobes including gold nanoparticles, quantum dots, magnetic nanoparticles and carbon nanomaterials are covered. We discuss the advantages of click chemistry-mediated nanosensors for biochemical assays, and give perspectives on the development of click chemistry-mediated approaches for clinical diagnosis and other biomedical applications.

  9. Bio-orthogonal "click-and-release" donation of caged carbonyl sulfide (COS) and hydrogen sulfide (H2S).

    PubMed

    Steiger, Andrea K; Yang, Yang; Royzen, Maksim; Pluth, Michael D

    2017-01-24

    Hydrogen sulfide (H2S) is an important biomolecule with high therapeutic potential. Here we leverage the inverse-electron demand Diels-Alder (IEDDA) click reaction between a thiocarbamate-functionalized trans-cyclooctene and a tetrazine to deliver carbonyl sulfide (COS), which is quickly converted to H2S by the uniquitous enzyme carbonic anhydrase (CA), thus providing a new strategy for bio-orthogonal COS/H2S donation.

  10. Copper-free click chemistry with the short-lived positron emitter fluorine-18.

    PubMed

    Bouvet, Vincent; Wuest, Melinda; Wuest, Frank

    2011-11-07

    The copper-free strain-promoted click chemistry between (18)F-labeled aza-dibenzocyclooctyne [(18)F]FB-DBCO and various azides is described. [(18)F]FB-DBCO was prepared in 85% isolated radiochemical yield (decay-corrected) through acylation of amino aza-dibenzocyclooctyne 1 with N-succinimidyl 4-[(18)F]fluorobenzoate ([(18)F]SFB). [(18)F]FB-DBCO showed promising radiopharmacological profil with fast blood clearance as assessed with dynamic small animal PET studies. Metabolic stability of [(18)F]FB-DBCO was 60% of intact compound after 60 min post injection in normal Balb/C mice and blood clearance half-life was determined to be 53 s based on the time-activity-curve (TAC). Copper-free click chemistry was performed with various azides at low concentrations (1-2 μM) which differed in their structural complexity in different solvents (methanol, water, phosphate buffer and in bovine serum albumin (BSA) solution). Reaction proceeded best in methanol (>95% yield after 15 min at room temperature), whereas reaction in BSA required longer reaction times of 60 min and 40 °C upon completion.

  11. Click and release: fluoride cleavable linker for mild bioorthogonal separation.

    PubMed

    Schneider, Elia M; Zeltner, Martin; Zlateski, Vladimir; Grass, Robert N; Stark, Wendelin J

    2016-01-18

    Herein, we present a water dispersable, magnetic nanoparticle supported "click and release" system. The cleavable linker has been synthesized by using a strain-promoted copper-free "click" reagent to establish the specific link and a fluoride cleavable silane moiety for mild cleavage. Small organic molecules, azide-bearing dyes and functionalized enzymes have been bound to the magnetic particle and released in a bioorthogonal way.

  12. Clickable Cγ-azido(methylene/butylene) peptide nucleic acids and their clicked fluorescent derivatives: synthesis, DNA hybridization properties, and cell penetration studies.

    PubMed

    Jain, Deepak R; Ganesh, Krishna N

    2014-07-18

    Synthesis, characterization, and DNA complementation studies of clickable C(γ)-substituted methylene (azm)/butylene (azb) azido PNAs show that these analogues enhance the stability of the derived PNA:DNA duplexes. The fluorescent PNA oligomers synthesized by their click reaction with propyne carboxyfluorescein are seen to accumulate around the nuclear membrane in 3T3 cells.

  13. Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers.

    PubMed

    Ma, Xinpeng; Tang, Jianbin; Shen, Youqing; Fan, Maohong; Tang, Huadong; Radosz, Maciej

    2009-10-21

    Polyester dendrimers are attractive for in vivo delivery of bioactive molecules due to their biodegradability, but their synthesis generally requires multistep reactions with intensive purifications. A highly efficient approach to the synthesis of dendrimers by simply "sticking" generation by generation together is achieved by combining kinetic or mechanistic chemoselectivity with click reactions between the monomers. In each generation, the targeted molecules are the major reaction product as detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The only separation needed is to remove the little unreacted monomer by simple precipitation or washing. This simple clicklike process without complicated purification is particularly suitable for the synthesis of custom-made polyester dendrimers.

  14. The application of click chemistry in the synthesis of agents with anticancer activity

    PubMed Central

    Ma, Nan; Wang, Ying; Zhao, Bing-Xin; Ye, Wen-Cai; Jiang, Sheng

    2015-01-01

    The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. PMID:25792812

  15. The application of click chemistry in the synthesis of agents with anticancer activity.

    PubMed

    Ma, Nan; Wang, Ying; Zhao, Bing-Xin; Ye, Wen-Cai; Jiang, Sheng

    2015-01-01

    The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents.

  16. Water-soluble NHC-Cu catalysts: applications in click chemistry, bioconjugation and mechanistic analysis.

    PubMed

    Díaz Velázquez, Heriberto; Ruiz García, Yara; Vandichel, Matthias; Madder, Annemieke; Verpoort, Francis

    2014-12-14

    Copper(I)-catalyzed 1,3-dipolar cycloaddition of azides and terminal alkynes (CuAAC), better known as "click" reaction, has triggered the use of 1,2,3-triazoles in bioconjugation, drug discovery, materials science and combinatorial chemistry. Here we report a new series of water-soluble catalysts based on N-heterocyclic carbene (NHC)-Cu complexes which are additionally functionalized with a sulfonate group. The complexes show superior activity towards CuAAC reactions and display a high versatility, enabling the production of triazoles with different substitution patterns. Additionally, successful application of these complexes in bioconjugation using unprotected peptides acting as DNA binding domains was achieved for the first time. Mechanistic insight into the reaction mechanism is obtained by means of state-of-the-art first principles calculations.

  17. Propargyl 4-[18F]fluorobenzoate: A Putatively More Stable Prosthetic group for the Fluorine-18 Labeling of Biomolecules via Click Chemistry

    PubMed Central

    Vaidyanathan, Ganesan; White, Benjamin J.; Zalutsky, Michael R.

    2010-01-01

    Faster and more efficient approaches for radiolabeling biomolecules with short-lived 18F are in dire need. Herein we report a new 18F-labeled prosthetic group containing an acetylene function that permits the labeling of biomolecules via click chemistry. This template, propargyl 4-[18F]fluorobenzoate ([18F]PFB) was synthesized from a quaternary salt precursor in decay-corrected radiochemical yields of 58 ± 31%. Several model compounds containing an azide moiety—benzyl azide, two lysine derivatives and a transglutaminase-reactive peptide—were labeled using [18F]PFB via a click reaction in decay-corrected radiochemical yields of 88 ± 4%, 79 ± 33%, 75 ± 5%, and 37 ± 31%, respectively. Our results suggest that the novel agent [18F]PFB is a potentially useful template for the 18F-labeling of biomolecules via click chemistry. PMID:20414475

  18. Dual mechanisms in the perceptual processing of click train temporal regularity.

    PubMed

    Phillips, Dennis P; Dingle, Rachel N; Hall, Susan E; Jang, Moragh

    2012-07-01

    Two experiments measured human sensitivity to temporal jitter in 25-click trains with inter-click intervals (ICIs) between 5 and 100 ms. In a naturalistic experiment using wideband clicks, jitter thresholds were a nonmonotonic function of ICI, peaking for ICIs near 40-60 ms. In a subsequent experiment, clicks were high-passed and presented against a low-frequency noise masker. Jitter threshold vs ICI functions lost the positive slope over short ICIs but retained the negative slope at long ICIs. The same behavior was seen in click rate discrimination tasks. Different processes mediate regularity analysis for click trains with ICIs above and below 40-60 ms.

  19. 'Clickable' ZnO nanocrystals: the superiority of a novel organometallic approach over the inorganic sol-gel procedure.

    PubMed

    Grala, Agnieszka; Wolska-Pietkiewicz, Małgorzata; Danowski, Wojciech; Wróbel, Zbigniew; Grzonka, Justyna; Lewiński, Janusz

    2016-05-31

    We demonstrate for the first time a highly efficient Cu(i)-catalyzed alkyne-azide cycloaddition reaction on the surface of ZnO nanocrystals with retention of their photoluminescence properties. Our comparative studies highlight the superiority of a novel self-supporting organometallic method for the preparation of brightly luminescent and well-passivated ZnO nanocrystals over the traditional sol-gel procedure.

  20. Construction of macroscopic cytomimetic vesicle aggregates based on click chemistry: controllable vesicle fusion and phase separation.

    PubMed

    Jin, Haibao; Huang, Wei; Zheng, Yongli; Zhou, Yongfeng; Yan, Deyue

    2012-07-09

    Vesicle-vesicle aggregation to mimic cell-cell aggregation has attracted much attention. Here, hyperbranched polymer vesicles (branched-polymersomes, BPs) with a cell-like size were selected as model membranes, and the vesicle aggregation process, triggered by click chemistry of the copper-catalysed azide-alkyne cycloaddition reaction, was systematically studied. For this purpose, azide and alkynyl groups were loaded on the membranes of BPs through the co-assembly method to obtain N(3)-BPs and Alk-BPs, respectively. Subsequently, macroscopic vesicle aggregates were obtained when these two kinds of functional BPs were mixed together with the ratio of azide to alkynyl groups of about 1:1. Both the vesicle fusion events and lateral phase separation on the vesicle membrane occurred during such a vesicle aggregation process, and the fusion rate and phase-separation degree could be controlled by adjusting the clickable group content. The vesicle aggregation process with N(3) -micelles as desmosome mimics to connect with Alk-BPs through click-chemistry reaction was also studied, and large-scale vesicle aggregates without vesicle fusion were obtained in this process. The present work has extended the controllable cytomimetic vesicle aggregation process with the use of covalent bonds, instead of noncovalent bonds, as the driving force.

  1. Novel affinity membranes with macrocyclic spacer arms synthesized via click chemistry for lysozyme binding.

    PubMed

    Lin, Ligang; Sun, Hui; Zhang, Kaiyu; Zhong, Yonghui; Cheng, Qi; Bian, Xihui; Xin, Qingping; Cheng, Bowen; Feng, Xianshe; Zhang, Yuzhong

    2017-04-05

    Affinity membrane has great potential for applications in bioseparation and purification. Disclosed herein is the design of a novel affinity membrane with macrocyclic spacer arms for lysozyme binding. The clickable azide-cyclodextrin (CD) arms and clickable alkyne ethylene-vinyl alcohol (EVAL) chains are designed and prepared. By the azide-alkyne click reaction, the EVAL-CD-ligands affinity membranes with CD spacer arms in three-dimensional micro channels have been successfully fabricated. The FT-IR, XPS, NMR, SEM and SEM-EDS results give detailed information of structure evolution. The abundant pores in membrane matrix provide efficient working channels, and the introduced CD arms with ligands (affinity sites) provide supramolecular atmosphere. Compared with that of raw EVAL membrane, the adsorption capacity of EVAL-CD-ligands membrane (26.24mg/g) show a triple increase. The study indicates that three effects (inducing effect, arm effect, site effect) from CD arms render the enhanced performance. The click reaction happened in membrane matrix in bulk. The effective lysozyme binding and higher adsorption performance of affinity membranes described herein compared with other reported membranes are markedly related with the proposed strategy involving macrocyclic spacer arms and supramolecular working channels.

  2. Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels.

    PubMed

    Filpponen, Ilari; Argyropoulos, Dimitris S

    2010-04-12

    Over a number of years work in our laboratory has been developing new chemistry for the use of cellulose nanocrystals (CNCs) as scaffolds for the creation of nanomaterials with novel, stimuli responsive characteristics. Our work takes advantage of the rigid nature of CNCs, the unique nanopattern etched on their surface in the form of regularly spaced primary OH groups, and the fact that these materials have all reducing end groups located on one end. In this communication, a method for the grafting of amine-terminated monomers onto surface-modified CNCs followed by click chemistry is demonstrated. Initially the primary hydroxyl groups on the surface of the CNCs were selectively activated by converting them to carboxylic acids by the use of TEMPO-mediated hypohalite oxidation. Further reactions using the activated TEMPO-oxidized CNCs were carried out via carbodiimide-mediated formation of an amide linkage between precursors carrying an amine functionality and the carboxylic acid groups on the surface of the TEMPO-oxidized CNCs. Subsequently, two sets of CNCs were prepared, containing on their surface an azide derivative and an alkyne derivative, respectively. Finally, the click chemistry reaction, that is, the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition between the azide and the alkyne, surface-activated CNC was employed, bringing together the nanocrystalline materials in a unique regularly packed arrangement demonstrating a degree of molecular control for creating these structures at the nano level.

  3. Simple Method To Prepare Oligonucleotide-Conjugated Antibodies and Its Application in Multiplex Protein Detection in Single Cells.

    PubMed

    Gong, Haibiao; Holcomb, Ilona; Ooi, Aik; Wang, Xiaohui; Majonis, Daniel; Unger, Marc A; Ramakrishnan, Ramesh

    2016-01-20

    The diversity of nucleic acid sequences enables genomics studies in a highly multiplexed format. Since multiplex protein detection is still a challenge, it would be useful to use genomics tools for this purpose. This can be accomplished by conjugating specific oligonucleotides to antibodies. Upon binding of the oligonucleotide-conjugated antibodies to their targets, the protein levels can be converted to oligonucleotide levels. In this report we describe a simple method for preparing oligonucleotide-conjugated antibodies and discuss this method's application in oligonucleotide extension reaction (OER) for multiplex protein detection. Conjugation is based on strain-promoted alkyne-azide cycloaddition (the Cu-free click reaction), in which the antibody is activated with a dibenzocyclooctyne (DBCO) moiety and subsequently linked covalently with an azide-modified oligonucleotide. In the functional test, the reaction conditions and purification processes were optimized to achieve maximum yield and best performance. The OER assay employs a pair of antibody binders (two antibodies, each conjugated with its own oligonucleotide) developed for each protein target. The two oligonucleotides contain unique six-base complementary regions at their 3' prime ends to allow annealing and extension by DNA synthesis enzymes to form a DNA template. Following preamplification, the DNA template is detected by qPCR. Distinct oligonucleotide sequences are assigned to different antibody binders to enable multiplex protein detection. When tested using recombinant proteins, some antibody binders, such as those specific to CSTB, MET, EpCAM, and CASP3, had dynamic ranges of 5-6 logs. The antibody binders were also used in a multiplexed format in OER assays, and the binders successfully detected their protein targets in cell lysates, and in single cells in combination with the C1 system. This click reaction-based antibody conjugation procedure is cost-effective, needs minimal hands-on time, and

  4. Hearing sensation levels of emitted biosonar clicks in an echolocating Atlantic bottlenose dolphin.

    PubMed

    Li, Songhai; Nachtigall, Paul E; Breese, Marlee; Supin, Alexander Ya

    2012-01-01

    Emitted biosonar clicks and auditory evoked potential (AEP) responses triggered by the clicks were synchronously recorded during echolocation in an Atlantic bottlenose dolphin (Tursiops truncatus) trained to wear suction-cup EEG electrodes and to detect targets by echolocation. Three targets with target strengths of -34, -28, and -22 dB were used at distances of 2 to 6.5 m for each target. The AEP responses were sorted according to the corresponding emitted click source levels in 5-dB bins and averaged within each bin to extract biosonar click-related AEPs from noise. The AEP amplitudes were measured peak-to-peak and plotted as a function of click source levels for each target type, distance, and target-present or target-absent condition. Hearing sensation levels of the biosonar clicks were evaluated by comparing the functions of the biosonar click-related AEP amplitude-versus-click source level to a function of external (in free field) click-related AEP amplitude-versus-click sound pressure level. The results indicated that the dolphin's hearing sensation levels to her own biosonar clicks were equal to that of external clicks with sound pressure levels 16 to 36 dB lower than the biosonar click source levels, varying with target type, distance, and condition. These data may be assumed to indicate that the bottlenose dolphin possesses effective protection mechanisms to isolate the self-produced intense biosonar beam from the animal's ears during echolocation.

  5. Hearing Sensation Levels of Emitted Biosonar Clicks in an Echolocating Atlantic Bottlenose Dolphin

    PubMed Central

    Li, Songhai; Nachtigall, Paul E.; Breese, Marlee; Supin, Alexander Ya.

    2012-01-01

    Emitted biosonar clicks and auditory evoked potential (AEP) responses triggered by the clicks were synchronously recorded during echolocation in an Atlantic bottlenose dolphin (Tursiops truncatus) trained to wear suction-cup EEG electrodes and to detect targets by echolocation. Three targets with target strengths of −34, −28, and −22 dB were used at distances of 2 to 6.5 m for each target. The AEP responses were sorted according to the corresponding emitted click source levels in 5-dB bins and averaged within each bin to extract biosonar click-related AEPs from noise. The AEP amplitudes were measured peak-to-peak and plotted as a function of click source levels for each target type, distance, and target-present or target-absent condition. Hearing sensation levels of the biosonar clicks were evaluated by comparing the functions of the biosonar click-related AEP amplitude-versus-click source level to a function of external (in free field) click-related AEP amplitude-versus-click sound pressure level. The results indicated that the dolphin's hearing sensation levels to her own biosonar clicks were equal to that of external clicks with sound pressure levels 16 to 36 dB lower than the biosonar click source levels, varying with target type, distance, and condition. These data may be assumed to indicate that the bottlenose dolphin possesses effective protection mechanisms to isolate the self-produced intense biosonar beam from the animal's ears during echolocation. PMID:22238654

  6. Sweet graphene I: toward hydrophilic graphene nanosheets via click grafting alkyne-saccharides onto azide-functionalized graphene oxide.

    PubMed

    Namvari, Mina; Namazi, Hassan

    2014-09-19

    Water-soluble graphene nanosheets (GNS) were fabricated via functionalization of graphene oxide (GO) with mono and disaccharides on the basal plane and edges using Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes (Click chemistry). To graft saccharides onto the plane of GO, it was reacted with sodium azide to introduce azide groups on the plane. Then, it was treated with alkyne-modified glucose, mannose, galactose, and maltose. In the next approach, we attached 1,3-diazideoprop-2-ol onto the edges of GO and it was subsequently clicked with alkyne-glucose. The products were analyzed by Fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy, thermogravimetric analysis (TGA), and X-ray diffraction spectrometry. FTIR and TGA results showed both sugar-grafted GO sheets were reduced by sodium ascorbate during click-coupling reaction which is an advantage for this reaction. Besides, glycoside-grafted GNS were easily dispersed in water and stable for two weeks.

  7. Synthesis of Zwitterionic Polymer Particles via Combined Distillation Precipitation Polymerization and Click Chemistry for Highly Efficient Enrichment of Glycopeptide.

    PubMed

    Liu, Jianxi; Yang, Kaiguang; Shao, Wenya; Li, Senwu; Wu, Qi; Zhang, Shen; Qu, Yanyan; Zhang, Lihua; Zhang, Yukui

    2016-08-31

    Because of the low abundance of glycopeptide in natural biological samples, methods for efficient and selective enrichment of glycopeptides play a significant role in mass spectrometry (MS)-based glycoproteomics. In this study, a novel kind of zwitterionic hydrophilic interaction chromatography polymer particles, namely, poly(N,N-methylenebisacrylamide-co-methacrylic acid)@l-Cys (poly(MBAAm-co-MAA)@l-Cys), for the enrichment of glycopeptides was synthesized by a facile and efficient approach that combined distillation precipitation polymerization (DPP) and "thiol-ene" click reaction. In the DPP approach, residual vinyl groups explored outside the core with high density, then the functional ligand cysteine was immobilized onto the surface of core particles by highly efficient thiol-ene click reaction. Taking advantage of the unique structure of poly(MBAAm-co-MAA)@l-Cys, the resulting particles possess remarkable enrichment selectivity for glycopeptides from the tryptic digested human immunoglobulin G. The polymer particles were successfully employed for the analysis of human plasma, and 208 unique glycopeptides corresponding to 121 glycoproteins were reliably identified in triple independent nano-LC-MS/MS runs. The selectivity toward glycopeptides of these particles poly(MBAAm-co-MAA)@l-Cys is ∼2 times than that of the commercial beads. These results demonstrated that these particles had great potential for large-scale glycoproteomics research. Moreover, the strategy with the combination of DPP and thiol-ene click chemistry might be a facile method to produce functional polymer particles for bioenrichment application.

  8. Click- and chirp-evoked human compound action potentials.

    PubMed

    Chertoff, Mark; Lichtenhan, Jeffery; Willis, Marie

    2010-05-01

    In the experiments reported here, the amplitude and the latency of human compound action potentials (CAPs) evoked from a chirp stimulus are compared to those evoked from a traditional click stimulus. The chirp stimulus was created with a frequency sweep to compensate for basilar membrane traveling wave delay using the O-Chirp equations from Fobel and Dau [(2004). J. Acoust. Soc. Am. 116, 2213-2222] derived from otoacoustic emission data. Human cochlear traveling wave delay estimates were obtained from derived compound band action potentials provided by Eggermont [(1979). J. Acoust. Soc. Am. 65, 463-470]. CAPs were recorded from an electrode placed on the tympanic membrane (TM), and the acoustic signals were monitored with a probe tube microphone attached to the TM electrode. Results showed that the amplitude and latency of chirp-evoked N1 of the CAP differed from click-evoked CAPs in several regards. For the chirp-evoked CAP, the N1 amplitude was significantly larger than the click-evoked N1s. The latency-intensity function was significantly shallower for chirp-evoked CAPs as compared to click-evoked CAPs. This suggests that auditory nerve fibers respond with more unison to a chirp stimulus than to a click stimulus.

  9. Facile purification and click labeling with 2-[18F]fluoroethyl azide using solid phase extraction cartridges

    SciTech Connect

    Zhou, Dong; Chu, Wenhua; Peng, Xin; McConathy, Jonathan; Mach, Robert H.; Katzenellenbogen, John A.

    2014-11-04

    In this paper, a facile method was developed to purify 2-[18F]fluoroethyl azide ([18F]FEA) using a C18 cartridge and an Oasis® HLB cartridge in series, in which [18F]FEA was exclusively trapped on the HLB cartridge. [18F]FEA can be eluted for reactions in solution; alternatively click labeling can be carried out on the HLB cartridge itself by loading an alkyne substrate and copper (I) catalyst dissolved in DMF onto the cartridge. Finally, this solid phase extraction methodology for purification and click labeling with [18F]FEA, either in solution or on the cartridge, is safe, simple, reproducible in high yield, and compatible with automated synthesis of 18F-labeled PET tracers.

  10. Facile purification and click labeling with 2-[18F]fluoroethyl azide using solid phase extraction cartridges

    DOE PAGES

    Zhou, Dong; Chu, Wenhua; Peng, Xin; ...

    2014-11-04

    In this paper, a facile method was developed to purify 2-[18F]fluoroethyl azide ([18F]FEA) using a C18 cartridge and an Oasis® HLB cartridge in series, in which [18F]FEA was exclusively trapped on the HLB cartridge. [18F]FEA can be eluted for reactions in solution; alternatively click labeling can be carried out on the HLB cartridge itself by loading an alkyne substrate and copper (I) catalyst dissolved in DMF onto the cartridge. Finally, this solid phase extraction methodology for purification and click labeling with [18F]FEA, either in solution or on the cartridge, is safe, simple, reproducible in high yield, and compatible with automatedmore » synthesis of 18F-labeled PET tracers.« less

  11. Colorimetric and plasmonic detection of lectins using core-shell gold glyconanoparticles prepared by copper-free click chemistry.

    PubMed

    Hu, Xi-Le; Jin, Hong-Ying; He, Xiao-Peng; James, Tony D; Chen, Guo-Rong; Long, Yi-Tao

    2015-01-28

    This study describes the simple preparation of core-shell glycosyl gold nanoparticles (AuNPs) using stepwise, copper-free click chemistry-promoted self-assembly. The as-formed glyco-AuNPs can be used for the selective detection of sugar-lectin interactions, which are vital to many important physiological and pathological processes. The approach uses AuNPs as bioprobes since they produce, sensitively, changes in both color visible to the naked eye and surface plasmon resonance (SPR), on aggregation. Strain-promoted click reaction of an azido galactoside with a lipid cyclooctyne affords a galactolipid that can be embedded into polyethylene glycol (PEG)-coated AuNP via self-assembly. Subsequently, using naked-eye and plasmon resonance scattering spectroscopy, we were able to observe the colorimetric and plasmonic variations of the glyco-AuNPs, respectively, in the presence of a selective lectin over other proteins.

  12. The use of azide-alkyne click chemistry in recent syntheses and applications of polytriazole-based nanostructured polymers

    NASA Astrophysics Data System (ADS)

    Shi, Yi; Cao, Xiaosong; Gao, Haifeng

    2016-02-01

    The rapid development of efficient organic click coupling reactions has significantly facilitated the construction of synthetic polymers with sophisticated branched nanostructures. This Feature Article summarizes the recent progress in the application of efficient copper-catalyzed and copper-free azide-alkyne cycloaddition (CuAAC and CuFAAC) reactions in the syntheses of dendrimers, hyperbranched polymers, star polymers, graft polymers, molecular brushes, and cyclic graft polymers. Literature reports on the interesting properties and functions of these polytriazole-based nanostructured polymers are also discussed to illustrate their potential applications as self-healing polymers, adhesives, polymer catalysts, opto-electronic polymer materials and polymer carriers for drug and imaging molecules.

  13. Short first click intervals in echolocation trains of three species of deep diving odontocetes.

    PubMed

    Dunn, Charlotte A; Tyack, Peter; Miller, Patrick J O; Rendell, Luke

    2017-02-01

    All odontocetes produce echolocation clicks as part of their vocal repertoire. In this paper the authors analysed inter-click-intervals in recordings from suction cup tags with a focus on the first inter-click interval of each click train. The authors refer to shorter first inter-click intervals as short first intervals (SFIs). The authors found that the context of SFI occurrence varies across three deep-diving species. In Blainville's beaked whales, 87% of click trains that were preceded by a terminal buzz started with SFIs. In Cuvier's beaked whales, only sub-adult animals produced notable amounts of SFIs. In contrast, sperm whales were much more likely to produce SFIs on the first click train of a dive. While the physiological and/or behavioural reasons for SFI click production are unknown, species differences in their production could provide a window into the evolution of odontocete echolocation.

  14. Polyisobutylene chain end transformations: Block copolymer synthesis and click chemistry functionalizations

    NASA Astrophysics Data System (ADS)

    Magenau, Andrew Jackson David

    The primary objectives of this research were twofold: (1) development of synthetic procedures for combining quasiliving carbocationic polymerization (QLCCP) of isobutylene (IB) and reversible addition fragmentation chain transfer (RAFT) polymerization for block copolymer synthesis; (2) utilization of efficient, robust, and modular chemistries for facile functionalization of polyisobutylene (PIB). In the first study block copolymers consisting of PIB, and either PMMA or PS block segments, were synthesized by a site transformation approach combining living cationic and reversible addition-fragmentation chain transfer (RAFT) polymerizations. The initial PIB block was synthesized via quasiliving cationic polymerization using the TMPCl/TiCl4 initiation system and was subsequently converted into a hydroxylterminated PIB. Site transformation of the hydroxyl-terminated PIB into a macro chain transfer agent (PIB-CTA) was accomplished by N,N'-dicyclohexylcarbodiimide/dimethylaminopyridine-catalyzed esterification with 4-cyano-4-(dodecylsulfanylthiocarbonylsulfanyl)pentanoic acid. In the second study another site transformation approach was developed to synthesize a novel block copolymer, composed of PIB and PNIPAM segments. The PIB block was prepared via quasiliving cationic polymerization and end functionalized by in-situ quenching to yield telechelic halogen-terminated PIB. Azido functionality was obtained by displacement of the terminal halogen through nucleophilic substitution, which was confirmed by both 1H and 13C NMR. Coupling of an alkyne-functional chain transfer agent (CTA) to azido PIB was successfully accomplished through a copper catalyzed click reaction. Structure of the resulting PIB-based macro-CTA was verified with 1H NMR, FTIR, and GPC; whereas coupling reaction kinetics were monitored by real time variable temperature (VT) 1H NMR. In a third study, a click chemistry functionalization procedure was developed based upon the azide-alkyne 1,3-dipolar

  15. Post-synthesis DNA Modifications Using a trans-Cyclooctene Click Handle

    PubMed Central

    Wang, Ke; Wang, Danzhu; Ji, Kaili; Chen, Weixuan; Zheng, Yueqin; Dai, Chaofeng

    2015-01-01

    Post-synthesis DNA modification is a very useful method for DNA functionalization. This is achieved by using a modified NTP, which has a handle for further modifications, replacing the corresponding natural NTP in polymerase-catalyzed DNA synthesis. Subsequently, the handle can be used for further functionalization after PCR, preferably through a very fast reaction. Herein we describe polymerase-mediated incorporation of trans-cyclooctene modified thymidine triphosphate (TCO-TTP). Subsequently, the trans-cyclooctene group was reacted with a tetrazine tethered to other functional groups through a very fast click reaction. The utility of this DNA functionalization method was demonstrated with the incorporation of a boronic acid group and a fluorophore. The same approach was also successfully used in modifying a known aptamer for fluorescent labelling applications. PMID:25407744

  16. Medclic: the Mediterranean in one click

    NASA Astrophysics Data System (ADS)

    Troupin, Charles; Frontera, Biel; Sebastián, Kristian; Pau Beltran, Joan; Krietemeyer, Andreas; Gómara, Sonia; Gomila, Mikel; Escudier, Romain; Juza, Mélanie; Mourre, Baptiste; Garau, Angels; Cañellas, Tomeu; Tintoré, Joaquín

    2016-04-01

    "Medclic: the Mediterranean in one click" is a research and dissemination project focused on the scientific, technological and societal approaches of the Balearic Islands Coastal Observing and Forecasting System ({SOCIB}{www.socib.es}) in a collaboration with "la Caixa" Foundation. SOCIB aims at research excellence and the development of technology which enables progress toward the sustainable management of coastal and marine environments, providing solutions to meet the needs of society. Medclic goes one step forward and has two main goals: at the scientific level, to advance in establishing and understanding the mesoscale variability at the regional scale and its interaction, and thus improving the characterisation of the "oceanic weather" in the Mediterranean; at the outreach level: to bring SOCIB and the new paradigm of multi-platform observation in real time closer to society, through scientific outreach. SOCIB Data Centre is the core of the new multi-platform and real time oceanography and is responsible for directing the different stages of data management, ranging from data acquisition to its distribution and visualization through web applications. The system implemented relies on open source solutions and provides data in line with international standards and conventions (INSPIRE, netCDF Climate and Forecast, ldots). In addition, the Data Centre has implemented a REST web service, called Data Discovery. This service allows data generated by SOCIB to be integrated into applications developed by the Data Centre itself or by third parties, as it is the case with Medclic. Relying on this data distribution, the new web Medclic, www.medclic.es, constitutes an interactive scientific and educational area of communication that contributes to the rapprochement of the general public with the new marine and coastal observing technologies. Thanks to the Medclic web, data coming from new observing technologies in oceanography are available in real time and in one clic

  17. Click Chemistry in Complex Mixtures: Bioorthogonal Bioconjugation

    PubMed Central

    McKay, Craig S.; Finn, M.G.

    2014-01-01

    The selective chemical modification of biological molecules drives a good portion of modern drug development and fundamental biological research. While a few early examples of reactions that engage amine and thiol groups on proteins helped establish the value of such processes, the development of reactions that avoid most biological molecules so as to achieve selectivity in desired bond-forming events has revolutionized the field. We provide an update on recent developments in bioorthogonal chemistry that highlights key advances in reaction rates, biocompatibility, and applications. While not exhaustive, we hope this summary allows the reader to appreciate the rich continuing development of good chemistry that operates in the biological setting. PMID:25237856

  18. Tetrazine Click Chemistry for the Modification of 1-Hydroxy-1,1-methylenebisphosphonic Acids: Towards Bio-orthogonal Functionalization of Gold Nanoparticles.

    PubMed

    Aufaure, Romain; Hardouin, Julie; Millot, Nadine; Motte, Laurence; Lalatonne, Yoann; Guénin, Erwann

    2016-11-02

    Inverse electron demand Diels-Alder (iEDDA) was evaluated for the functionalization of gold nanoparticles. The reaction was first modelled with the free coating molecule 1-hydroxy-1,1-methylenebisphosphonate bearing an alkene functionality (HMBPene). A model tetrazine 3,6-dipyridin-2-yl-1,2,4,5-tetrazine (pyTz) was used, kinetic of the reaction was calculated and coupling products were analysed by NMR and HRMS. The reaction was then transposed at the nanoparticle surface. Gold nanoparticles bearing an alkene functionality were obtained using a one-pot methodology with HMBPene and the tetrazine click chemistry was evaluated at their surface using pyTz. The successful coupling was assessed by XPS measurements. This click-methodology was extended to the conjugation of a NIR probe at the NP surface.

  19. "Click" and Olefin Metathesis Chemistry in Water at Room Temperature Enabled by Biodegradable Micelles.

    PubMed

    Lipshutz, Bruce H; Bošković, Zarko; Crowe, Christopher S; Davis, Victoria K; Whittemore, Hannah C; Vosburg, David A; Wenzel, Anna G

    2013-11-12

    The two laboratory reactions focus on teaching several concepts associated with green chemistry. Each uses a commercial, nontoxic, and biodegradable surfactant, TPGS-750-M, to promote organic reactions within the lipophilic cores of nanoscale micelles in water. These experiments are based on work by K. Barry Sharpless (an azide-alkyne "click" reaction) and Robert Grubbs (an olefin cross-metathesis reaction); both are suitable for an undergraduate organic laboratory. The copper-catalyzed azide-alkyne [3+2] cycloaddition of benzyl azide and 4-tolylacetylene is very rapid: the triazole product is readily isolated by filtration and is characterized by thin-layer chromatography and melting point analysis. The ruthenium-catalyzed olefin cross-metathesis reaction of benzyl acrylate with 1-hexene is readily monitored by thin-layer chromatography and gas chromatography. The metathesis experiment comparatively evaluates the efficacy of a TPGS-750-M/water medium relative to a traditional reaction performed in dichloromethane (a common solvent used for olefin metathesis).

  20. 99mTc-bioorthogonal click chemistry reagent for in vivo pretargeted imaging

    PubMed Central

    García, María Fernanda; Zhang, Xiuli; Shah, Manankumar; Newton-Northup, Jessica; Cabral, Pablo; Cerecetto, Hugo; Quinn, Thomas

    2016-01-01

    Metal-free click chemistry has become an important tool for pretargeted approaches in the molecular imaging field. The application of bioorthogonal click chemistry between a pretargeted trans-cyclooctene (TCO) derivatized monoclonal antibody (mAb) and a 99mTc-modified 1,2,4,5-tetrazine for tumor imaging was examined in vitro and in vivo. The HYNIC tetrazine compound was synthesized and structurally characterized, confirming its identity. Radiolabeling studies demonstrated that the HYNIC tetrazine was labeled with 99mTc at an efficiency of >95% and was radiochemically stable. 99mTc-HYNIC tetrazine reacted with the TCO-CC49 mAb in vitro demonstrating its selective reactivity. In vivo biodistribution studies revealed non-specific liver and GI uptake due to the hydrophobic property of the compound, however pretargeted SPECT imaging studies demonstrated tumor visualization confirming the success of the cycloaddition reaction in vivo. These results demonstrated the potential of 99mTc- HYNIC-tetrazine for tumor imaging with pretargeted mAbs. PMID:26875936

  1. (99m)Tc-bioorthogonal click chemistry reagent for in vivo pretargeted imaging.

    PubMed

    García, María Fernanda; Zhang, Xiuli; Shah, Manankumar; Newton-Northup, Jessica; Cabral, Pablo; Cerecetto, Hugo; Quinn, Thomas

    2016-03-15

    Metal-free click chemistry has become an important tool for pretargeted approaches in the molecular imaging field. The application of bioorthogonal click chemistry between a pretargeted trans-cyclooctene (TCO) derivatized monoclonal antibody (mAb) and a (99m)Tc-modified 1,2,4,5-tetrazine for tumor imaging was examined in vitro and in vivo. The HYNIC tetrazine compound was synthesized and structurally characterized, confirming its identity. Radiolabeling studies demonstrated that the HYNIC tetrazine was labeled with (99m)Tc at an efficiency of >95% and was radiochemically stable. (99m)Tc-HYNIC tetrazine reacted with the TCO-CC49 mAb in vitro demonstrating its selective reactivity. In vivo biodistribution studies revealed non-specific liver and GI uptake due to the hydrophobic property of the compound, however pretargeted SPECT imaging studies demonstrated tumor visualization confirming the success of the cycloaddition reaction in vivo. These results demonstrated the potential of (99m)Tc-HYNIC-tetrazine for tumor imaging with pretargeted mAbs.

  2. Click chemistry approach for fabricating PVA/gelatin nanofibers for the differentiation of ADSCs to keratinocytes.

    PubMed

    Ravichandran, Rajeswari; Venugopal, Jayarama Reddy; Sundarrajan, Subramanian; Mukherjee, Shayanti; Forsythe, John; Ramakrishna, Seeram

    2013-12-01

    Every year, millions of people suffer from dermal wounds caused by heat, fire, chemicals, electricity, ultraviolet radiation or disease. Tissue engineering and nanotechnology have enabled the engineering of nanostructured materials to meet the current challenges in skin treatments owing to such rising occurrences of accidental damages, skin diseases and defects. The abundance and accessibility of adipose derived stem cells (ADSCs) may prove to be novel cell therapeutics for skin regeneration. The nanofibrous PVA/gelatin/azide scaffolds were then fabricated by electrospinning using water as solvent and allowed to undergo click reaction. The scaffolds were characterized by SEM, contact angle and FTIR. The cell-scaffold interactions were analyzed by cell proliferation and the results observed that the rate of cell proliferation was significantly increased (P ≤ 0.05) on PVA/gelatin/azide scaffolds compared to PVA/gelatin nanofibers. In the present study, manipulating the biochemical cues by the addition of an induction medium, in combination with environmental and physical factors of the culture substrate by functionalizing with click moieties, we were able to drive ADSCs into epidermal lineage with the development of epidermis-like structures, was further confirmed by the expression of early and intermediate epidermal differentiation markers like keratin and filaggrin. This study not only provides an insight into the design of a site-specific niche-like microenvironment for stem cell lineage commitment, but also sheds light on the therapeutic application of an alternative cell source-ADSCs, for wound healing and skin tissue reconstitution.

  3. A clickable UTP analog for the posttranscriptional chemical labeling and imaging of RNA.

    PubMed

    Sawant, Anupam A; Mukherjee, Progya P; Jangid, Rahul K; Galande, Sanjeev; Srivatsan, Seergazhi G

    2016-06-28

    The development of robust tools and practical RNA labeling strategies that would facilitate the biophysical analysis of RNA in both cell-free and cellular systems will have profound implications in the discovery of new RNA diagnostic tools and therapeutic strategies. In this context, we describe the development of a new alkyne-modified UTP analog, 5-(1,7-octadinyl)uridine triphosphate (ODUTP), which serves as an efficient substrate for the introduction of a clickable alkyne label into RNA transcripts by bacteriophage T7 RNA polymerase and mammalian cellular RNA polymerases. The ODU-labeled RNA is effectively used by reverse transcriptase to produce cDNA, a property which could be utilized in expanding the chemical space of a RNA library in the aptamer selection scheme. Further, the alkyne label on RNA provides a convenient tool for the posttranscriptional chemical functionalization with a variety of biophysical tags (fluorescent, affinity, amino acid and sugar) by using alkyne-azide cycloaddition reaction. Importantly, the ability of endogenous RNA polymerases to specifically incorporate ODUTP into cellular RNA transcripts enabled the visualization of newly transcribing RNA in cells by microscopy using click reactions. In addition to a clickable alkyne group, ODU contains a Raman scattering label (internal disubstituted alkyne), which exhibits characteristic Raman shifts that fall in the Raman-silent region of cells. Our results indicate that an ODU label could potentially facilitate two-channel visualization of RNA in cells by using click chemistry and Raman spectroscopy. Taken together, ODU represents a multipurpose ribonucleoside tool, which is expected to provide new avenues to study RNA in cell-free and cellular systems.

  4. Making It CLICK: Planning, Creating, and Using CPCC Libraries' Logo

    ERIC Educational Resources Information Center

    Moore, Gena

    2005-01-01

    The Central Piedmont Community College Libraries have been successful in creating positive expectations from the CPCC community by connecting an official library logo with quality library service. The creation of the CPCC Libraries' logo CLICK was a process that spanned several months. A history of this process details the meetings and design work…

  5. Modular 'click-in-emulsion' bone-targeted nanogels.

    PubMed

    Heller, Daniel A; Levi, Yair; Pelet, Jeisa M; Doloff, Joshua C; Wallas, Jasmine; Pratt, George W; Jiang, Shan; Sahay, Gaurav; Schroeder, Avi; Schroeder, Josh E; Chyan, Yieu; Zurenko, Christopher; Querbes, William; Manzano, Miguel; Kohane, Daniel S; Langer, Robert; Anderson, Daniel G

    2013-03-13

    A new class of nanogel demonstrates modular biodistribution and affinity for bone. Nanogels, ∼70 nm in diameter and synthesized via an astoichiometric click-chemistry in-emulsion method, controllably display residual, free clickable functional groups. Functionalization with a bisphosphonate ligand results in significant binding to bone on the inner walls of marrow cavities, liver avoidance, and anti-osteoporotic effects.

  6. Decoration of silk fibroin by click chemistry for biomedical application.

    PubMed

    Zhao, Hongshi; Heusler, Eva; Jones, Gabriel; Li, Linhao; Werner, Vera; Germershaus, Oliver; Ritzer, Jennifer; Luehmann, Tessa; Meinel, Lorenz

    2014-06-01

    Silkfibroin (SF) has an excellent biocompatibility and its remarkable structure translates into exciting mechanical properties rendering this biomaterial particularly fascinating for biomedical application. To further boost the material's biological/preclinical impact, SF is decorated with biologics, typically by carbodiimide/N-hydroxysuccinimide coupling (EDC/NHS). For biomedical application, this chemistry challenges the product risk profile due to the formation of covalent aggregates, particularly when decoration is with biologics occurring naturally in humans as these aggregates may prime for autoimmunity. Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC; click chemistry) provides the necessary specificity to avoid such intermolecular, covalent aggregates. We present a blueprint outlining the necessary chemistry rendering SF compatible with CuAAC and with a particular focus on structural consequences. For that, the number of SF carboxyl groups (carboxyl-SF; required for EDC/NHS chemistry) or azido groups (azido-SF; required for click chemistry) was tailored by means of diazonium coupling of the SF tyrosine residues. Structural impact on SF and decorated SF was characterized by Fourier transform infrared spectroscopy (FTIR). The click chemistry yielded a better controlled product as compared to the EDC/NHS chemistry with no formation of inter- and intramolecular crosslinks as demonstrated for SF decorated with fluorescent model compounds or a biologic, fibroblast growth factor 2 (FGF2), respectively. In conclusion, SF can readily be translated into a scaffold compatible with click chemistry yielding decorated products with a better risk profile for biomedical application.

  7. Click, Clack, Move: Facilitation of the Arts as Transformative Pedagogy

    ERIC Educational Resources Information Center

    Vettraino, Elinor; Linds, Warren; Goulet, Linda

    2013-01-01

    This article explores the arts' potential to transform the relationships between students and teachers, so that education becomes an "as if" world, where education is an act of social justice. Interweaving themes from the children's book "Click Clack Moo, Cows that Type" with theories of transformative pedagogy and their own…

  8. Flipping & Clicking Your Way to Higher-Order Learning

    ERIC Educational Resources Information Center

    Garver, Michael S.; Roberts, Brian A.

    2013-01-01

    This innovative system of teaching and learning includes the implementation of two effective learning technologies: podcasting ("flipping") and classroom response systems ("clicking"). Students watch lectures in podcast format before coming to class, which allows the "entire" class period to be devoted to active…

  9. ClickDiary: Online Tracking of Health Behaviors and Mood

    PubMed Central

    Chan, Ta-Chien; Yen, Tso-Jung; Fu, Yang-Chih

    2015-01-01

    Background Traditional studies of health behaviors are typically conducted using one-shot, cross-sectional surveys. Thus, participants’ recall bias may undermine the reliability and validity of the data. To capture mood changes and health behaviors in everyday life, we designed an online survey platform, ClickDiary, which helped collect more complete information for comprehensive data analyses. Objective We aim to understand whether daily mood changes are related to one’s personal characteristics, demographic factors, and daily health behaviors. Methods The ClickDiary program uses a Web-based platform to collect data on participants’ health behaviors and their social-contact networks. The name ClickDiary comes from the platform’s interface, which is designed to allow the users to respond to most of the survey questions simply by clicking on the options provided. Participants were recruited from the general population and came from various backgrounds. To keep the participants motivated and interested, the ClickDiary program included a random drawing for rewards. We used descriptive statistics and the multilevel proportional-odds mixed model for our analysis. Results We selected 130 participants who had completed at least 30 days of ClickDiary entries from May 1 to October 31, 2014 as our sample for the study. According to the results of the multilevel proportional-odds mixed model, a person tended to be in a better mood on a given day if he or she ate more fruits and vegetables, took in more sugary drinks, ate more fried foods, showed no cold symptoms, slept better, exercised longer, and traveled farther away from home. In addition, participants were generally in a better mood during the weekend than on weekdays. Conclusions Sleeping well, eating more fruits and vegetables, and exercising longer each day all appear to put one in a better mood. With the online ClickDiary survey, which reduces the recall biases that are common in traditional one-shot surveys

  10. High-density functionalization and cross-linking of DNA: "click" and "bis-click" cycloadditions performed on alkynylated oligonucleotides with fluorogenic anthracene azides.

    PubMed

    Pujari, Suresh S; Ingale, Sachin A; Seela, Frank

    2014-10-15

    High density functionalization of DNA with ethynyl and octadiynyl side chains followed by CuAAC "click labeling" with 9-azidomethylanthracene was performed. Alkynyl DNA was also cross-linked with fluorogenic 9,10-bis-azidomethylanthracene employing the "bis-click" reaction. By this means the fluorescence of the anthracene moiety was imparted to the virtually nonfluorescent DNA. Phosphoramidites of 8-aza-7-deaza-2'-deoxyadenosine with short and long linker arms in a steric nondemanding 7-position were utilized in solid phase oligodeoxynucleotide synthesis. High density alkynylated DNA-without anthracene residues-was found to be of comparable stability with both long and short linker arms. High density anthracene functionalized DNA became less stable with the short linker compared to that with the long linker connectivity. Interstrand cross-linked homodimers constructed from alkynylated oligonucleotides with fluorogenic 9,10-bis-azidomethylanthracene were hybridized with complementary strands to form double helices. They are more stable when the linker was located at a terminus than in a central position. Short linker anthracene adducts were destabilizing compared to long linker adducts. The fluorogenic anthracene residues not only have a significant effect on the duplex stability, but also impart fluorescence to the species. Fluorescence of cross-linked double helices with long linker connectivity was quenched when the cross-link was in a terminal position and was dequenched when the linker was connecting the two double helices at the center of the molecule. The fluorescence of the anthracene cross-linked double helices was strongly increased (dequenched) when the correct base pair was formed, while no change occurred upon mismatch formation.

  11. Atom tunnelling in the reaction NH3 + + H2 → NH4 + + H and its astrochemical relevance† †Electronic supplementary information (ESI) available: Rate constants, energies of the benchmark, coordinates of stationary points. See DOI: 10.1039/c6fd00096g Click here for additional data file.

    PubMed Central

    Álvarez-Barcia, Sonia; Russ, Marie-Sophie; Meisner, Jan

    2016-01-01

    The title reaction is involved in the formation of ammonia in the interstellar medium. We have calculated thermal rates including atom tunnelling using different rate theories. Canonical variational theory with microcanonically optimised multidimensional tunnelling was used for bimolecular rates, modelling the gas-phase reaction and also a surface-catalysed reaction of the Eley–Rideal type. Instanton theory provided unimolecular rates, which model the Langmuir–Hinshelwood type surface reaction. The potential energy was calculated on the CCSD(T)-F12 level of theory on the fly. We report thermal rates and H/D kinetic isotope effects. The latter have implications for observed H/D fractionation in molecular clouds. Tunnelling causes rate constants to be sufficient for the reaction to play a role in interstellar chemistry even at cryogenic temperature. We also discuss intricacies and limitations of the different tunnelling approximations to treat this reaction, including its pre-reactive minimum. PMID:27711847

  12. A study on the AMACR catalysed elimination reaction and its application to inhibitor testing† †Electronic supplementary information (ESI) available: 1H NMR spectra of synthesised compounds; details of X-ray crystal structure determination of compound 35; original data for Table 1; plots of fluorescence resulting from reaction of sensors 33 and 34 with fluoride solutions. CCDC 1408401. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ob01541c Click here for additional data file. Click here for additional data file.

    PubMed Central

    Yevglevskis, Maksims; Lee, Guat L.; Sun, Jenny; Zhou, Shiyi; Sun, Xiaolong; Kociok-Köhn, Gabriele; James, Tony D.; Woodman, Timothy J.

    2016-01-01

    α-Methylacyl-CoA racemase (AMACR; P504S) catalyses a key step in the degradation of branched-chain fatty acids and is important for the pharmacological activation of Ibuprofen and related drugs. Levels of AMACR are increased in prostate and other cancers, and it is a drug target. Development of AMACR as a drug target is hampered by lack of a convenient assay. AMACR irreversibly catalyses the elimination of HF from 3-fluoro-2-methylacyl-CoA substrates, and this reaction was investigated for use as an assay. Several known inhibitors and alternative substrates reduced conversion of 3-fluoro-2-methyldecanoyl-CoA by AMACR, as determined by 1H NMR. The greatest reduction of activity was observed with known potent inhibitors. A series of novel acyl-CoA esters with aromatic side chains were synthesised for testing as chromophoric substrates. These acyl-CoA esters were converted to unsaturated products by AMACR, but their use was limited by non-enzymatic elimination. Fluoride sensors were also investigated as a method of quantifying released fluoride and thus AMACR activity. These sensors generally suffered from high background signal and lacked reproducibility under the assay conditions. In summary, the elimination reaction can be used to characterise inhibitors, but it was not possible to develop a convenient colorimetric or fluorescent assay using 3-fluoro-2-methylacyl-CoA substrates. PMID:26537174

  13. Planning for Post-Secondary Is Just a Click Away! Learning Clicks Final Report. 2007/2008 School Year

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2008

    2008-01-01

    Learning Clicks is a program under the provincial department of Advanced Education and Technology's "Raising Awareness about Planning for Post-Secondary" (RAPPS) umbrella; an initiative that supports Strategy 2.4 in Alberta Advanced Education and Technology's 2007-10 Business Plan to enhance parents' and learners' knowledge and awareness…

  14. Au-iClick mirrors the mechanism of copper catalyzed azide–alkyne cycloaddition (CuAAC)

    DOE PAGES

    Powers, Andrew R.; Ghiviriga, Ion; Abboud, Khalil A.; ...

    2015-07-20

    This report outlines the investigation of the iClick mechanism between gold(I)-azides and gold(I)-acetylides to yield digold triazolates. Isolation of digold triazolate complexes offer compelling support for the role of two copper(I) ions in CuAAC. In addition, a kinetic investigation reveals the reaction is first order in both Au(I)-N3 and Au(I)-C≡C-R equivalent to C-R, thus second order overall. A Hammett plot with a ρ = 1.02(5) signifies electron-withdrawing groups accelerate the cycloaddition by facilitating the coordination of the second gold ion in a π-complex. Rate inhibition by the addition of free triphenylphosphine to the reaction indicates that ligand dissociation is amore » prerequisite for the reaction. The mechanistic conclusions mirror those proposed for the CuAAC reaction.« less

  15. Au-iClick mirrors the mechanism of copper catalyzed azide–alkyne cycloaddition (CuAAC)

    SciTech Connect

    Powers, Andrew R.; Ghiviriga, Ion; Abboud, Khalil A.; Veige, Adam S.

    2015-07-20

    This report outlines the investigation of the iClick mechanism between gold(I)-azides and gold(I)-acetylides to yield digold triazolates. Isolation of digold triazolate complexes offer compelling support for the role of two copper(I) ions in CuAAC. In addition, a kinetic investigation reveals the reaction is first order in both Au(I)-N3 and Au(I)-C≡C-R equivalent to C-R, thus second order overall. A Hammett plot with a ρ = 1.02(5) signifies electron-withdrawing groups accelerate the cycloaddition by facilitating the coordination of the second gold ion in a π-complex. Rate inhibition by the addition of free triphenylphosphine to the reaction indicates that ligand dissociation is a prerequisite for the reaction. The mechanistic conclusions mirror those proposed for the CuAAC reaction.

  16. Conjugating folate on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles using click chemistry

    SciTech Connect

    Shen, Xiaofang Ge, Zhaoqiang; Pang, Yuehong

    2015-02-15

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe{sub 3}O{sub 4}@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe{sub 3}O{sub 4}@Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe{sub 3}O{sub 4}@Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry.

  17. Ribosome-templated azide–alkyne cycloadditions: synthesis of potent macrolide antibiotics by in situ click chemistry

    PubMed Central

    Glassford, Ian; Teijaro, Christiana N.; Daher, Samer S.; Weil, Amy; Small, Meagan C.; Redhu, Shiv K.; Colussi, Dennis J.; Jacobson, Marlene A.; Childers, Wayne E.; Buttaro, Bettina; Nicholson, Allen W.; MacKerell, Alexander D.; Cooperman, Barry S.; Andrade, Rodrigo B.

    2016-01-01

    Over half of all antibiotics target the bacterial ribosome—Nature's complex, 2.5 MDa nanomachine responsible for decoding mRNA and synthesizing proteins. Macrolide antibiotics, exemplified by erythromycin, bind the 50S subunit with nM affinity and inhibit protein synthesis by blocking the passage of nascent oligopeptides. Solithromycin (1), a third-generation semi-synthetic macrolide discovered by combinatorial copper-catalyzed click chemistry, was synthesized in situ by incubating either E. coli 70S ribosomes or 50S subunits with macrolidefunctionalized azide 2 and 3-ethynylaniline (3) precursors. The ribosome-templated in situ click method was expanded from a binary reaction (i.e., one azide and one alkyne) to a six-component reaction (i.e., azide 2 and five alkynes) and ultimately to a sixteen-component reaction (i.e., azide 2 and fifteen alkynes). The extent of triazole formation correlated with ribosome affinity for the anti (1,4)-regioisomers as revealed by measured Kd values. Computational analysis using the Site-Identification by Ligand Competitive Saturation (SILCS) approach indicated that the relative affinity of the ligands was associated with the alteration of macrolactone+desosamine-ribosome interactions caused by the different alkynes. Protein synthesis inhibition experiments confirmed the mechanism of action. Evaluation of the minimal inhibitory concentrations (MIC) quantified the potency of the in situ click products and demonstrated the efficacy of this method in the triaging and prioritization of potent antibiotics that target the bacterial ribosome. Cell viability assays in human fibroblasts confirmed 2 and four analogs with therapeutic indices for bactericidal activity over in vitro mammalian cytotoxicity as essentially identical to solithromycin (1). PMID:26878192

  18. Ribosome-Templated Azide-Alkyne Cycloadditions: Synthesis of Potent Macrolide Antibiotics by In Situ Click Chemistry.

    PubMed

    Glassford, Ian; Teijaro, Christiana N; Daher, Samer S; Weil, Amy; Small, Meagan C; Redhu, Shiv K; Colussi, Dennis J; Jacobson, Marlene A; Childers, Wayne E; Buttaro, Bettina; Nicholson, Allen W; MacKerell, Alexander D; Cooperman, Barry S; Andrade, Rodrigo B

    2016-03-09

    Over half of all antibiotics target the bacterial ribosome-nature's complex, 2.5 MDa nanomachine responsible for decoding mRNA and synthesizing proteins. Macrolide antibiotics, exemplified by erythromycin, bind the 50S subunit with nM affinity and inhibit protein synthesis by blocking the passage of nascent oligopeptides. Solithromycin (1), a third-generation semisynthetic macrolide discovered by combinatorial copper-catalyzed click chemistry, was synthesized in situ by incubating either E. coli 70S ribosomes or 50S subunits with macrolide-functionalized azide 2 and 3-ethynylaniline (3) precursors. The ribosome-templated in situ click method was expanded from a binary reaction (i.e., one azide and one alkyne) to a six-component reaction (i.e., azide 2 and five alkynes) and ultimately to a 16-component reaction (i.e., azide 2 and 15 alkynes). The extent of triazole formation correlated with ribosome affinity for the anti (1,4)-regioisomers as revealed by measured Kd values. Computational analysis using the site-identification by ligand competitive saturation (SILCS) approach indicated that the relative affinity of the ligands was associated with the alteration of macrolactone+desosamine-ribosome interactions caused by the different alkynes. Protein synthesis inhibition experiments confirmed the mechanism of action. Evaluation of the minimal inhibitory concentrations (MIC) quantified the potency of the in situ click products and demonstrated the efficacy of this method in the triaging and prioritization of potent antibiotics that target the bacterial ribosome. Cell viability assays in human fibroblasts confirmed 2 and four analogues with therapeutic indices for bactericidal activity over in vitro mammalian cytotoxicity as essentially identical to solithromycin (1).

  19. Palladium(II) complexes of readily functionalized bidentate 2-pyridyl-1,2,3-triazole "click" ligands: a synthetic, structural, spectroscopic, and computational study.

    PubMed

    Kilpin, Kelly J; Gavey, Emma L; McAdam, C John; Anderson, Christopher B; Lind, Samuel J; Keep, Courtney C; Gordon, Keith C; Crowley, James D

    2011-07-04

    The Cu(I)-catalyzed 1,3-cycloaddition of organic azides with terminal alkynes, the CuAAC "click" reaction is currently receiving considerable attention as a mild, modular method for the generation of functionalized ligand scaffolds. Herein we show that mild one-pot "click" methods can be used to readily and rapidly synthesize a family of functionalized bidentate 2-pyridyl-1,2,3-triazole ligands, containing electrochemically, photochemically, and biologically active functional groups in good to excellent yields (47-94%). The new ligands have been fully characterized by elemental analysis, HR-ESI-MS, IR, (1)H and (13)C NMR and in three cases by X-ray crystallography. Furthermore we have demonstrated that this family of functionalized "click" ligands readily form bis-bidentate Pd(II) complexes. Solution studies, X-ray crystallography, and density functional theory (DFT) calculations indicate that the Pd(II) complexes formed with the 2-(1-R-1H-1,2,3-triazol-4-yl)pyridine series of ligands are more stable than those formed with the [4-R-1H-1,2,3-triazol-1-yl)methyl]pyridine "click" ligands.

  20. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    NASA Astrophysics Data System (ADS)

    Shen, Xiaofang; Ge, Zhaoqiang; Pang, Yuehong

    2015-02-01

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe3O4@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe3O4@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe3O4@Au-FA nanoparticles.

  1. Click chemistry-based functionalization on non-oxidized silicon substrates.

    PubMed

    Li, Yan; Cai, Chengzhi

    2011-10-04

    Copper-catalyzed azide-alkyne cycloaddition (CuAAC), combined with the chemical stability of the Si-C-bound organic layer, serves as an efficient tool for the modification of silicon substrates, particularly for the immobilization of complex biomolecules. This review covers recent advances in the preparation of alkynyl- or azido-terminated "clickable" platforms on non-oxidized silicon and their further derivatization by means of the CuAAC reaction. The exploitation of these "click"-functionalized organic thin films as model surfaces to study many biological events was also addressed, as they are directly relevant to the on-going effort of creating silicon-based molecular electronics and chemical/biomolecular sensors.

  2. Surface modification of silicon nanowires via copper-free click chemistry.

    PubMed

    Henriksson, Anders; Friedbacher, Gernot; Hoffmann, Helmuth

    2011-06-21

    A two-step process based on copper-free click chemistry is described, by which the surface of silicon nanowires can be functionalized with specific organic substituents. A hydrogen-terminated nanowire surface is first primed with a monolayer of an α,ω-diyne and thereby turned into an alkyne-terminated, clickable platform, which is subsequently coupled with an overlayer of an organic azide carrying the desired terminal functionality. The reactive, electron-deficient character of the employed diyne enabled a quantitative coupling reaction at 50 °C without metal catalysis, which opens up a simple and versatile route for surface functionalization under mild conditions without any potentially harmful additives.

  3. Click chemistry modification of natural keratin fibers for sustained shrink-resist performance.

    PubMed

    Yu, Dan; Cai, Jackie Y; Church, Jeffrey S; Wang, Lijing

    2015-01-01

    This paper introduces a novel chemical treatment for achieving sustained shrink-resist performance on natural keratin fibers. The new treatment involves the controlled reduction of keratin in the cuticle region of the fiber, and the application of a water soluble diacrylate, namely glycerol 1,3-diglycerolate diacrylate (GDA), on the reduced keratin substrate. The acrylate groups of the GDA react with cysteine residues in the reduced keratin through thiol-ene click reactions at room temperature, leading to GDA grafting and the formation of GDA crosslinks in the keratin structure. The modified substrates were characterized by infrared spectroscopy and scanning electron microscopy, and assessed for its shrink-resistance and wet burst strength. This chemical modification has shown to alter the fiber surface morphology and hydrophilicity, resulting in substantially improved shrink-resistance with good fiber strength retention. Possible shrink-resistance mechanisms were also discussed.

  4. Solvent-Free Click-Mechanochemistry for the Preparation of Cancer Cell Targeting Graphene Oxide

    PubMed Central

    2015-01-01

    Polyethylene glycol-functionalized nanographene oxide (PEGylated n-GO) was synthesized from alkyne-modified n-GO, using solvent-free click-mechanochemistry, i.e., copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC). The modified n-GO was subsequently conjugated to a mucin 1 receptor immunoglobulin G antibody (anti-MUC1 IgG) via thiol–ene coupling reaction. n-GO derivatives were characterized with Fourier-transformed infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), Bradford assay, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and atomic force microscopy (AFM). Cell targeting was confirmed in vitro in MDA-MB-231 cells, either expressing or lacking MUC1 receptors, using flow cytometry, confocal laser scanning microscopy (CLSM) and multiphoton (MP) fluorescence microscopy. Biocompatibility was assessed using the modified lactate dehydrongenase (mLDH) assay. PMID:26278410

  5. Is Single-Molecule Fluorescence Spectroscopy Ready To Join the Organic Chemistry Toolkit? A Test Case Involving Click Chemistry.

    PubMed

    Scaiano, Juan C; Lanterna, Anabel E

    2017-04-06

    Single molecule spectroscopy (SMS) has matured to a point where it can be used as a convenient tool to guide organic synthesis and drug discovery, particularly applicable to catalytic systems where questions related to homogeneous vs heterogeneous pathways are important. SMS can look at intimate mechanistic details that can inspire major improvements of the catalyst performance, its recovery, and reuse. Here, we use the click reaction between alkynes and azides as an example where improvements at the bench have been inspired and validated using single-molecule fluorescence spectroscopy.

  6. Ammonium and guanidinium dendron-carbon nanotubes by amidation and click chemistry and their use for siRNA delivery.

    PubMed

    Battigelli, Alessia; Wang, Julie Tzu-Wen; Russier, Julie; Da Ros, Tatiana; Kostarelos, Kostas; Al-Jamal, Khuloud T; Prato, Maurizio; Bianco, Alberto

    2013-11-11

    A series of multi-walled carbon nanotube (MWCNT) conjugates is described, functionalized with different dendrons bearing positive charges at their termini (i.e. ammonium or guanidinium groups). The dendrimeric units are anchored to the nanotube scaffolds using two orthogonal synthetic approaches, amidation and click reactions. The final nanohybrids are characterized by complementary analytical techniques, while their ability to interact with siRNA is investigated by means of agarose gel electrophoresis. The demonstration of the cell uptake capacity, the low cytotoxicity, and the ability of these cationic conjugates to silence cytotoxic genes suggests them to be promising carriers for genetic material.

  7. Click rates and silences of sperm whales at Kaikoura, New Zealand

    NASA Astrophysics Data System (ADS)

    Douglas, Lesley A.; Dawson, Stephen M.; Jaquet, Nathalie

    2005-07-01

    Analysis of the usual click rates of sperm whales (Physeter macrocephalus) at Kaikoura, New Zealand, confirms the potential for assessing abundance via ``click counting.'' Usual click rates over three dive cycles each of three photographically identified whales showed that 5 min averages of usual click rate did not differ significantly within dives, among dives of the same whale or among whales. Over the nine dives (n=13 728 clicks) mean usual click rate was 1.272 clicks s-1 (95% CI=0.151). On average, individual sperm whales at Kaikoura spent 60% of their time usual clicking in winter and in summer. There was no evidence that whale identity or stage of the dive recorded affects significantly the percentage of time spent usual clicking. Differences in vocal behavior among sperm whale populations worldwide indicate that estimates of abundance that are based on click rates need to based on data from the population of interest, rather than from another population or some global average.

  8. Click rates and silences of sperm whales at Kaikoura, New Zealand.

    PubMed

    Douglas, Lesley A; Dawson, Stephen M; Jaquet, Nathalie

    2005-07-01

    Analysis of the usual click rates of sperm whales (Physeter macrocephalus) at Kaikoura, New Zealand, confirms the potential for assessing abundance via "click counting." Usual click rates over three dive cycles each of three photographically identified whales showed that 5 min averages of usual click rate did not differ significantly within dives, among dives of the same whale or among whales. Over the nine dives (n= 13 728 clicks) mean usual click rate was 1.272 clicks s(-1) (95% CI= 0.151). On average, individual sperm whales at Kaikoura spent 60% of their time usual clicking in winter and in summer. There was no evidence that whale identity or stage of the dive recorded affects significantly the percentage of time spent usual clicking. Differences in vocal behavior among sperm whale populations worldwide indicate that estimates of abundance that are based on click rates need to based on data from the population of interest, rather than from another population or some global average.

  9. Flexible Piezoelectric Energy Harvesting from Mouse Click Motions.

    PubMed

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2016-07-06

    In this paper, we study energy harvesting from the mouse click motions of a robot finger and a human index finger using a piezoelectric material. The feasibility of energy harvesting from mouse click motions is experimentally and theoretically assessed. The fingers wear a glove with a pocket for including the piezoelectric material. We model the energy harvesting system through the inverse kinematic framework of parallel joints in a finger and the electromechanical coupling equations of the piezoelectric material. The model is validated through energy harvesting experiments in the robot and human fingers with the systematically varying load resistance. We find that energy harvesting is maximized at the matched load resistance to the impedance of the piezoelectric material, and the harvested energy level is tens of nJ.

  10. Carbohydrate CuAAC click chemistry for therapy and diagnosis.

    PubMed

    He, Xiao-Peng; Zeng, Ya-Li; Zang, Yi; Li, Jia; Field, Robert A; Chen, Guo-Rong

    2016-06-24

    Carbohydrates are important as signaling molecules and for cellular recognition events, therefore offering scope for the development of carbohydrate-mimetic diagnostics and drug candidates. As a consequence, the construction of carbohydrate-based bioactive compounds and sensors has become an active research area. While the advent of click chemistry has greatly accelerated the progress of medicinal chemistry and chemical biology, recent literature has seen an extensive use of such approaches to construct functionally diverse carbohydrate derivatives. Here we summarize some of the progress, covering the period 2010 to mid-2015, in Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition CuAAC "click chemistry" of carbohydrate derivatives, in the context of potential therapeutic and diagnostic tool development.

  11. Flexible Piezoelectric Energy Harvesting from Mouse Click Motions

    PubMed Central

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2016-01-01

    In this paper, we study energy harvesting from the mouse click motions of a robot finger and a human index finger using a piezoelectric material. The feasibility of energy harvesting from mouse click motions is experimentally and theoretically assessed. The fingers wear a glove with a pocket for including the piezoelectric material. We model the energy harvesting system through the inverse kinematic framework of parallel joints in a finger and the electromechanical coupling equations of the piezoelectric material. The model is validated through energy harvesting experiments in the robot and human fingers with the systematically varying load resistance. We find that energy harvesting is maximized at the matched load resistance to the impedance of the piezoelectric material, and the harvested energy level is tens of nJ. PMID:27399705

  12. An injectable and fast-degradable poly(ethylene glycol) hydrogel fabricated via bioorthogonal strain-promoted azide-alkyne cycloaddition click chemistry.

    PubMed

    Jiang, Huafang; Qin, Siyong; Dong, Hui; Lei, Qi; Su, Xin; Zhuo, Renxi; Zhong, Zhenlin

    2015-08-14

    Biocompatible and degradable injectable materials prepared via bioorthogonal reactions are highly promising for biomedical applications because they can be formed in situ and administered in a minimally invasive way. In this work, a PEG-based injectable hydrogel was fabricated via a copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Azide and cyclooctyne moieties on the PEG backbones underwent a rapid click reaction to trigger the formation of the hydrogel within several minutes. Resulting from the introduction of ester groups into the cross-linked network, the hydrogel presented pH-dependent hydrolysis and biological fast degradability. Good biocompatibility of the hydrogel was verified by in vitro cytotoxicity assay and in vivo studies. The hydrogel formed in situ after subcutaneously injecting the gel precursors into Kungming (KM) mice. The implanted hydrogel caused a mild inflammatory response in vivo, and the surrounding tissues fully recovered a week after the injection. The injectable and fast-degradable hydrogel fabricated by the bioorthogonal click reaction may be useful as biomaterials such as embolic agents for interventional therapy.

  13. Conductive dendrimers obtained by click chemistry

    NASA Astrophysics Data System (ADS)

    Lewis, Donald G.; Krasnova, Larissa B.; Skinner, Philip J.; Fokin, Valery V.

    2010-08-01

    First generation dendrimers having a high level of size/shape/symmetry homogeneity were fabricated using a synthetic scheme that employs highly quantitative copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions in combination with a molecular architecture that favors homogeneity. An "outside-in" or convergent synthetic approach was employed wherein dendrons having Sierpinski triangular fractal architectures were coupled to core structures having D2h or D3h point group symmetries to form the desired dendrimers. The individual dendrons consisted of branched-backbone conductive polymers having benzene branch points and 1,2,3-triazole linkages with uninterrupted π-electron cloud overlap throughout. Each dendron was then coupled to a benzene core structure having acetylene substituents by means of a CuAAC reaction so as to extend the uninterrupted π-conjugation from the dendron to the core structure for imparting conductivity throughout the entire dendrimer. The resulting dendrimers maintained the point group symmetry of their core structure, with the core structure serving to electronically couple the dendrons to one another by extension of their uninterrupted π-electron systems. Synthesis of these first generation dendrimers provides a proof of principle for the synthesis of higher generation conductive dendrimers. Since the nanophotonic properties of conductive dendrimers may be dependent, at least in some instances, upon their size, shape, and symmetry, enhancements with respect to their homogeneity may unmask new nanophotonic properties.

  14. Chirp and Click Evoked Auditory Steady State Responses

    DTIC Science & Technology

    2007-11-02

    state evoked potentials: A new tool for the accurate assessment of hearing in cochlear implant candidates. Advances in Otorhinolaryngology, 1993. 48...State Responses (ASSR) to 100 µsec clicks and 4 msec cochlear chirps are recorded in adult subjects at repetition rates of 20 to 100 Hz in 10 Hz...differences in the cochlea according to the DeBoer’s cochlear model [14] in order to determine if it will generate better ASSR. We also attempted to

  15. Sperm whale clicks: directionality and source level revisited.

    PubMed

    Møhl, B; Wahlberg, M; Madsen, P T; Miller, L A; Surlykke, A

    2000-01-01

    In sperm whales (Physeter catodon L. 1758) the nose is vastly hypertrophied, accounting for about one-third of the length or weight of an adult male. Norris and Harvey [in Animal Orientation and Navigation, NASA SP-262 (1972), pp. 397-417] ascribed a sound-generating function to this organ complex. A sound generator weighing upward of 10 tons and with a cross-section of 1 m is expected to generate high-intensity, directional sounds. This prediction from the Norris and Harvey theory is not supported by published data for sperm whale clicks (source levels of 180 dB re 1 microPa and little, if any, directionality). Either the theory is not borne out or the data is not representative for the capabilities of the sound-generating mechanism. To increase the amount of relevant data, a five-hydrophone array, suspended from three platforms separated by 1 km and linked by radio, was deployed at the slope of the continental shelf off Andenes, Norway, in the summers of 1997 and 1998. With this system, source levels up to 223 dB re 1 microPa peRMS were recorded. Also, source level differences of 35 dB for the same click at different directions were seen, which are interpreted as evidence for high directionality. This implicates sonar as a possible function of the clicks. Thus, previously published properties of sperm whale clicks underestimate the capabilities of the sound generator and therefore cannot falsify the Norris and Harvey theory.

  16. One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces

    NASA Astrophysics Data System (ADS)

    Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J.

    2017-02-01

    The Huisgen cycloaddition reaction ("click" chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.

  17. Shielding of quantum dots using diblock copolymers: implementing copper catalyzed click chemistry to fluorescent quantum dots

    NASA Astrophysics Data System (ADS)

    Merkl, Jan-Philip; Ostermann, Johannes; Schmidtke, Christian; Kloust, Hauke; Eggers, Robin; Feld, Artur; Wolter, Christopher; Kreuziger, Anna-Marlena; Flessau, Sandra; Mattoussi, Hedi; Weller, Horst

    2014-03-01

    We describe the design and optimization of an amphiphilic diblock copolymer and its use to provide surface functionalization of colloidal semiconductor nanoparticles (quantum dots, QDs). This polymer coating promotes hydrophilicity of the nanocrystals while providing numerous functional groups ideally suited for biofunctionalization of the QDs using copper-catalyzed azide alkyne Husigen 1,3-cyloaddition (i.e., cupper catalyzed "click" reaction). Copper ions are known to quench the fluorescence of QDs in solution. Thus effective shielding of the nanocrystal surface is essential to apply copper-catalyzed reactions to luminescent QDs without drastically quenching their emission. We have applied a strategy based on micellar encapsulation within poly(isoprene-block- ethylene oxide) diblock-copolymers (PI-b-PEO), where three critical factors promote and control the effectiveness of the shielding of copper ion penetration: 1) The excess of PI-b-PEO, 2) the size of PI-b-PEO and 3) insertion of an additional PS-shell grown via seeded emulsion polymerization (EP) reaction. Due to the amphiphilic character of the block-copolymer, this approach provides a shielding layer surrounding the particles, preventing metal ions from reaching the QD surfaces and maintaining high photoluminescence. The effective shielding allowed the use of copper-catalyzed azide-alkyne 1,3-cycloaddition (CuAAC) to hydrophilic and highly fluorescent QDs, opening up great possibilities for the bio functionalization of QDs.

  18. Simple thiol-ene click chemistry modification of SBA-15 silica pores with carboxylic acids.

    PubMed

    Bordoni, Andrea V; Lombardo, M Verónica; Regazzoni, Alberto E; Soler-Illia, Galo J A A; Wolosiuk, Alejandro

    2015-07-15

    A straightforward approach for anchoring tailored carboxylic groups in mesoporous SiO2 colloidal materials is presented. The thiol-ene photochemical reaction between vinyltrimethoxysilane precursors and various thiocarboxylic acids which has, click chemistry features (i.e. high conversion yields, insensitivity to oxygen, mild reaction conditions), results in carboxylated silane precursors that can be readily used as surface modifiers. The carboxylic groups of acetic, undecanoic and succinic acid were immobilized on the silica mesopore walls of SBA-15 powders employing the synthesized silane precursors. Post-grafting has been confirmed through infrared spectrometry (FTIR), energy dispersive X-ray spectroscopy (EDS), elemental analysis (EA) and zeta potential measurements. Detailed field-emission gun scanning electron microscopy (FESEM) images and small angle X-ray scattering (SAXS) data revealed parallel mesopores and ordered mesostructures. It is shown that the immobilized COOH groups are chemically accessible for acid-base reactions as well as copper adsorption. Immobilization of easily synthesized tailored carboxylic modified alkoxide precursors within mesoporous systems provides a unique chemical nanoenvironment within these ordered frameworks.

  19. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions† †Electronic supplementary information (ESI) available: Formulae for calculating aggregation parameters and fitting of kinetic constants and copies of NMR spectra. See DOI: 10.1039/c6cp00493h Click here for additional data file.

    PubMed Central

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian

    2016-01-01

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions. PMID:27121134

  20. Quantum tunneling during interstellar surface-catalyzed formation of water: the reaction H + H2O2 → H2O + OH† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6cp06457d Click here for additional data file.

    PubMed Central

    Samanta, Pradipta Kumar; Köhn, Andreas; Kästner, Johannes

    2016-01-01

    The final step of the water formation network on interstellar grain surfaces starting from the H + O2 route is the reaction between H and H2O2. This reaction is known to have a high activation energy and therefore at low temperatures it can only proceed via tunneling. To date, however, no rate constants are available at temperatures below 200 K. In this work, we use instanton theory to compute rate constants for the title reaction with and without isotopic substitutions down to temperatures of 50 K. The calculations are based on density functional theory, with additional benchmarks for the activation energy using unrestricted single-reference and multireference coupled-cluster single-point energies. Gas-phase bimolecular rate constants are calculated and compared with available experimental data not only for H + H2O2 → H2O + OH, but also for H + H2O2 → H2 + HO2. We find a branching ratio where the title reaction is favored by at least two orders of magnitude at 114 K. In the interstellar medium this reaction predominantly occurs on water surfaces, which increases the probability that the two reactants meet. To mimic this, one, two, or three spectator H2O molecules are added to the system. Eley–Rideal bimolecular and Langmuir–Hinshelwood unimolecular rate constants are presented here. The kinetic isotope effects for the various cases are compared to experimental data as well as to expressions commonly used in astrochemical models. Both the rectangular barrier and the Eckart approximations lead to errors of about an order of magnitude. Finally, fits of the rate constants are provided as input for astrochemical models. PMID:27886292

  1. A Metal-free Click Chemistry Approach for the Assembly and Probing of Biomolecules

    PubMed Central

    Maity, Sibaprasad; Viazovkina, Ekaterina; Gall, Alexander; Lyubchenko, Yuri

    2016-01-01

    Probing of biomolecular complexes by single-molecule force spectroscopy (SMFS) methods including AFM requires proper and suitable coupling methods for immobilization of biomolecules onto the AFM tip and the surface. The use of flexible tethers for the coupling process has dual advantages. First, they allow the specific immobilization of interacting molecules, and second, their flexibility facilitates the proper orientation of the interacting partners. Recently, we developed an approach termed Flexible Nano Array (FNA) in which interacting partners are located on the same polymeric FNA molecule separated by a flexible segment with a defined length. In this paper, we modified the FNA tether approach by incorporating click chemistry with non-metal modification. FNA was synthesized using DNA synthesis chemistry, in which phosphoramidite (PA) spacers containing six ethylene glycol units were used instead of nucleoside triphosphates. During the synthesis, two T modifiers conjugated to two dibenzocyclooctyl (DBCO) residues were incorporated at selected positions within the FNA. The DBCO functionality allows for coupling azide labeled biomolecules via click chemistry. Amyloid peptide Aβ(14–23) terminated with azide was incorporated into the FNA and the reaction was controlled with mass-spectrometry. Assembly of tethered Aβ(14–23) peptides into dimers was characterized by AFM force spectroscopy experiments in which the AFM tip functionalized with FNA terminated with biotin probed a streptavidin-coated mica surface. The formation of the peptide dimer was verified with force spectroscopy that showed the appearance of a specific fingerprint for dimer dissociation followed by a rupture event for the biotin-streptavidin link. The developed approach is capable of multiple probing events to allow the collection of a large set of data for a quantitative analysis of the force spectroscopy events. PMID:27722203

  2. A Metal-free Click Chemistry Approach for the Assembly and Probing of Biomolecules.

    PubMed

    Maity, Sibaprasad; Viazovkina, Ekaterina; Gall, Alexander; Lyubchenko, Yuri

    2016-01-01

    Probing of biomolecular complexes by single-molecule force spectroscopy (SMFS) methods including AFM requires proper and suitable coupling methods for immobilization of biomolecules onto the AFM tip and the surface. The use of flexible tethers for the coupling process has dual advantages. First, they allow the specific immobilization of interacting molecules, and second, their flexibility facilitates the proper orientation of the interacting partners. Recently, we developed an approach termed Flexible Nano Array (FNA) in which interacting partners are located on the same polymeric FNA molecule separated by a flexible segment with a defined length. In this paper, we modified the FNA tether approach by incorporating click chemistry with non-metal modification. FNA was synthesized using DNA synthesis chemistry, in which phosphoramidite (PA) spacers containing six ethylene glycol units were used instead of nucleoside triphosphates. During the synthesis, two T modifiers conjugated to two dibenzocyclooctyl (DBCO) residues were incorporated at selected positions within the FNA. The DBCO functionality allows for coupling azide labeled biomolecules via click chemistry. Amyloid peptide Aβ(14-23) terminated with azide was incorporated into the FNA and the reaction was controlled with mass-spectrometry. Assembly of tethered Aβ(14-23) peptides into dimers was characterized by AFM force spectroscopy experiments in which the AFM tip functionalized with FNA terminated with biotin probed a streptavidin-coated mica surface. The formation of the peptide dimer was verified with force spectroscopy that showed the appearance of a specific fingerprint for dimer dissociation followed by a rupture event for the biotin-streptavidin link. The developed approach is capable of multiple probing events to allow the collection of a large set of data for a quantitative analysis of the force spectroscopy events.

  3. "Click-functional" block copolymers provide precise surface functionality via spin coating.

    PubMed

    Rengifo, Hernán R; Chen, Lu; Grigoras, Cristian; Ju, Jingyue; Koberstein, Jeffrey T

    2008-07-15

    There are few existing methods for the quantitative functionalization of surfaces, especially for polymeric substrates. We demonstrate that alkyne end-functional diblock copolymers can be used to provide precise areal densities of reactive functionality on both hard (e.g., glass and silicon oxide) and soft (i.e., polymeric) substrates. Alkyne functionality is extremely versatile because the resultant functional surfaces are reactive toward azide functional molecules by Sharpless click chemistry. Spin-coated films of alpha-alkyne-omega-Br-poly( tert-butylacrylate- b-methylmethacrylate) (poly( tBA-MMA)) spontaneously self-assemble on the aforementioned substrates to present a surface monolayer of PtBA with a thickness in the range of 1 to 9 nm. The PMMA block physisorbs to provide multivalent anchoring onto hard substrates and is fixed onto polymer surfaces by interpenetration with the substrate polymer. The areal density of alkyne functional groups is precisely controlled by adjusting the thickness of the block copolymer monolayer, which is accomplished by changing either the spin coating conditions (i.e., rotational speed and solution concentration) or the copolymer molecular weight. The reactivity of surface-bound alkynes, in 1,3-dipolar cycloaddition reactions or by so-called "click chemistry", is demonstrated by covalent surface immobilization of fluorescently labeled azides. The modificed surfaces are characterized by atomic force microscopy (AFM), contact angle, ellipsometry, fluorescent imaging and angle-dependent X-ray photoelectron spectroscopy (ADXPS) measurements. Microarrays of covalently bound fluorescent molecules are created to demonstrate the approach and their performance is evaluated by determining their fluorescence signal-to-noise ratios.

  4. The immobilization of proteins on biodegradable polymer fibers via click chemistry.

    PubMed

    Shi, Quan; Chen, Xuesi; Lu, Tiancheng; Jing, Xiabin

    2008-03-01

    A facile and efficient method to immobilize bioactive proteins onto polymeric substrate was established. Testis-specific protease 50 (TSP50) was immobilized on ultrafine biodegradable polymer fibers, i.e., (1) to prepare a propargyl-containing polymer P(LA90-co-MPC10) by introducing propargyl group into a cyclic carbonate monomer (5-methyl-5-propargyloxycarbonyl-1,3-dioxan-2-one, MPC) and copolymerizing it with l-lactide; (2) to electrospin the functionalized polymer into ultrafine fibers; (3) to azidize the TSP50, and (4) to perform the click reaction between the propargyl groups on the fibers and the azido groups on the protein. The TSP50-immobilized fibers can resist non-specific protein adsorptions but preserve specific recognition and combination with anti-TSP50. ELISA tests were carried out by using HRP-goat-anti-mouse-IgG(H+L) as secondary antibody and o-phenylenediamine (OPDA)/H(2)O(2) as substrate to detect the combination of immobilized TSP50 with anti-TSP50. The results showed that anti-TSP50 can be selectively adsorbed from its solution onto the TSP50-immobilized fibers in the presence of BSA of as high as 10(4) times concentration. TSP50 immobilized on the fiber and anti-TSP50 combined to the fiber were also quantitatively determined. Anti-TSP50 can be then eluted off from the fiber when pH changes. The eluted fiber can re-combine anti-TSP50 at an efficiency of 75% compared to the original TSP50-immobilized fiber. Therefore, the TSP50-immobilized fibers can be used in the detection, separation, and purification of anti-TSP50. The "click" method can lead to a universal strategy to protein immobilization.

  5. CuAAC click chemistry accelerates the discovery of novel chemical scaffolds as promising protein tyrosine phosphatases inhibitors.

    PubMed

    He, X-P; Xie, J; Tang, Y; Li, J; Chen, G-R

    2012-01-01

    Protein tyrosine phosphatases (PTPs) are crucial regulators for numerous biological processes in nature. The dysfunction and overexpression of many PTP members have been demonstrated to cause fatal human diseases such as cancers, diabetes, obesity, neurodegenerative diseases and autoimmune disorders. In the past decade, considerable efforts have been devoted to the production of PTPs inhibitors by both academia and the pharmaceutical industry. However, there are only limited drug candidates in clinical trials and no commercial drugs have been approved, implying that further efficient discovery of novel chemical entities competent for inhibition of the specific PTP target in vivo remains yet a challenge. In light of the click-chemistry paradigm which advocates the utilization of concise and selective carbon-heteroatom ligation reactions for the modular construction of useful compound libraries, the Cu(I)-catalyzed azidealkyne 1,3-dipolar cycloaddition reaction (CuAAC) has fueled enormous energy into the modern drug discovery. Recently, this ingenious chemical ligation tool has also revealed efficacious and expeditious in establishing large combinatorial libraries for the acquisition of novel PTPs inhibitors with promising pharmacological profiles. We thus offer here a comprehensive review highlighting the development of PTPs inhibitors accelerated by the CuAAC click chemistry.

  6. Site-Specific Labeling of Protein Kinase CK2: Combining Surface Display and Click Chemistry for Drug Discovery Applications †

    PubMed Central

    Nienberg, Christian; Retterath, Anika; Becher, Kira-Sophie; Saenger, Thorsten; Mootz, Henning D.; Jose, Joachim

    2016-01-01

    Human CK2 is a heterotetrameric constitutively active serine/threonine protein kinase and is an emerging target in current anti-cancer drug discovery. The kinase is composed of two catalytic CK2α subunits and two regulatory CK2β subunits. In order to establish an assay to identify protein-protein-interaction inhibitors (PPI) of the CK2α/CK2β interface, a bioorthogonal click reaction was used to modify the protein kinase α-subunit with a fluorophore. By expanding the genetic code, the unnatural amino acid para azidophenylalanine (pAzF) could be incorporated into CK2α. Performing the SPAAC click reaction (Strain-Promoted Azide-Alkyne Cycloaddition) by the use of a dibenzylcyclooctyne-fluorophore (DBCO-fluorophore) led to a specifically labeled human protein kinase CK2α. This site-specific labeling does not impair the phosphorylation activity of CK2, which was evaluated by capillary electrophoresis. Furthermore a dissociation constant (KD) of 631 ± 86.2 nM was determined for the substrate αS1-casein towards CK2α. This labeling strategy was also applied to CK2β subunit on Escherichia coli, indicating the site-specific modifications of proteins on the bacterial cell surface when displayed by Autodisplay. PMID:27355959

  7. Site-Specific Labeling of Protein Kinase CK2: Combining Surface Display and Click Chemistry for Drug Discovery Applications.

    PubMed

    Nienberg, Christian; Retterath, Anika; Becher, Kira-Sophie; Saenger, Thorsten; Mootz, Henning D; Jose, Joachim

    2016-06-27

    Human CK2 is a heterotetrameric constitutively active serine/threonine protein kinase and is an emerging target in current anti-cancer drug discovery. The kinase is composed of two catalytic CK2α subunits and two regulatory CK2β subunits. In order to establish an assay to identify protein-protein-interaction inhibitors (PPI) of the CK2α/CK2β interface, a bioorthogonal click reaction was used to modify the protein kinase α-subunit with a fluorophore. By expanding the genetic code, the unnatural amino acid para azidophenylalanine (pAzF) could be incorporated into CK2α. Performing the SPAAC click reaction (Strain-Promoted Azide-Alkyne Cycloaddition) by the use of a dibenzylcyclooctyne-fluorophore (DBCO-fluorophore) led to a specifically labeled human protein kinase CK2α. This site-specific labeling does not impair the phosphorylation activity of CK2, which was evaluated by capillary electrophoresis. Furthermore a dissociation constant (KD) of 631 ± 86.2 nM was determined for the substrate αS1-casein towards CK2α. This labeling strategy was also applied to CK2β subunit on Escherichia coli, indicating the site-specific modifications of proteins on the bacterial cell surface when displayed by Autodisplay.

  8. One-step post-imprint modification achieve dual-function of glycoprotein fluorescent sensor by "Click Chemistry".

    PubMed

    Zhao, Tao; Wang, Junping; He, Jianli; Deng, Qiliang; Wang, Shuo

    2017-05-15

    A novel molecular imprinting fluorescent sensor synthesized avoiding complicated design and synthesis of a fluorescent functional monomer, and without the extra cost of additional fluorescence materials (quantum dots, carbon dots and fluorescein), only by a click reaction making the common protein imprinting polymers upgraded to a fluorescent sensing material which can be applied to the fast detection of glycoproteins. In this study, a common protein imprinted polymer (protein-IP) which containing a disulfide bond in the imprinted cavities was first synthesized, then the disulfide linkage was cleaved by reduction, the exposed thiol groups were used for the click reaction to introduce 4-vinyl phenylboronic acid to improve the imprinted recognition for glycoproteins and convert recognition behavior into fluorescent signal simultaneously in one-step site-specific post-imprinting modifications (PIMs). Good linear relationship was obtained in the range of 0.1-10mgmL(-1) by fluorescence assay, comparison of the adsorption capacity of the MIPs before and after modification proved that the method has no negative impact on the imprinting effect and exhibit good imprinting effect for glycoproteins of different molecular size and weight.

  9. Facile preparation of organic-silica hybrid monolith for capillary hydrophilic liquid chromatography based on "thiol-ene" click chemistry.

    PubMed

    Chen, Ming-Luan; Zhang, Jun; Zhang, Zheng; Yuan, Bi-Feng; Yu, Qiong-Wei; Feng, Yu-Qi

    2013-04-05

    In this work, a one-step approach to facile preparation of organic-inorganic hybrid monoliths was successfully developed. After vinyl-end organic monomers and azobisisobutyronitrile (AIBN) were mixed with hydrolyzed tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS), the homogeneous mixture was introduced into a fused-silica capillary for simultaneous polycondensation and "thiol-ene" click reaction to form the organic-silica hybrid monoliths. By employing this strategy, two types of organic-silica hybrid monoliths with positively charged quaternary ammonium and amide groups were prepared, respectively. The functional groups were successfully introduced onto the monoliths during the sol-gel process with "thiol-ene" click reaction, which was demonstrated by ζ-potential assessment, energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) spectroscopy. The porous structure of the prepared monolithic columns was examined by scanning electron microscopy (SEM), nitrogen adsorption-desorption measurement, and mercury intrusion porosimetry. These results indicate the prepared organic-silica hybrid monoliths possess homogeneous column bed, large specific surface area, good mechanical stability, and excellent permeability. The prepared monolithic columns were then applied for anion-exchange/hydrophilic interaction liquid chromatography. Different types of analytes, including benzoic acids, inorganic ions, nucleosides, and nucleotides, were well separated with high column efficiency around 80,000-130,000 plates/m. Taken together, we present a facile and universal strategy to prepare organic-silica hybrid monoliths with a variety of organic monomers using one-step approach.

  10. Development of ultra-high sensitive and selective electrochemiluminescent sensor for copper(II) ions: a novel strategy for modification of gold electrode using click chemistry.

    PubMed

    Qiu, Suyan; Gao, Sen; Zhu, Xi; Lin, Zhenyu; Qiu, Bin; Chen, Guonan

    2011-04-21

    A promising and highly sensitive electrochemiluminescence (ECL) sensor for the detection of Cu(2+) based on Cu(+)-catalyzed click reaction is described in this paper. Firstly, 1-azidoundecan-11-thiol was assembled on the Au electrode surface via a simple thiol-Au reaction, then the propargyl-functionalized Ru(bpy)(3)(2+)-doped SiO(2) nanoparticles (Ru-SNPs) ECL probe was covalently coupled on the electrode surfaces via click chemistry. Cu(+), the catalyst for click chemistry, is derived from the electrolytic reduction of Cu(2+)via the Bulk Electrolysis with coulometry (BE) technique and without any reductants. It is found that the ECL intensity detected from the electrode surface has a linear relationship with the logarithm of Cu(2+) concentration in the range of 1.0 × 10(-15) to 1.0 × 10(-11) M with a detection limit of 1.0 × 10(-16) M. Also, the method is highly specific even in the presence of high concentrations of other metal cations. It has been applied to detect trace Cu(2+) in complex samples (hepatoma cell) without sample treatment.

  11. Study of the Effect of Grafting Method on Surface Polarity of Tempo-Oxidized Nanocellulose Using Polycaprolactone as the Modifying Compound: Esterification versus Click-Chemistry

    PubMed Central

    Benkaddour, Abdelhaq; Jradi, Khalil; Robert, Sylvain; Daneault, Claude

    2013-01-01

    Esterification and click-chemistry were evaluated as surface modification treatments for TEMPO-oxidized nanocelluloses (TONC) using Polycaprolactone-diol (PCL) as modifying compound in order to improve the dispersion of nanofibers in organic media. These two grafting strategies were analyzed and compared. The first consists of grafting directly the PCL onto TONC, and was carried out by esterification between hydroxyl groups of PCL and carboxyl groups of TONC. The second strategy known as click-chemistry is based on the 1,3-dipolar cycloaddition reaction between azides and alkyne terminated moieties to form the triazole ring between PCL and TONC. The grafted samples were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Thermogravimetry analysis (TGA). Further, the effects of the two treatments on the surface hydrophobization of TONC were investigated by contact angle measurements. The results show that both methods confirm the success of such a modification and the click reaction was significantly more effective than esterification.

  12. A versatile approach for the site-specific modification of recombinant antibodies using a combination of enzyme-mediated bioconjugation and click chemistry.

    PubMed

    Alt, Karen; Paterson, Brett M; Westein, Erik; Rudd, Stacey E; Poniger, Stan S; Jagdale, Shweta; Ardipradja, Katie; Connell, Timothy U; Krippner, Guy Y; Nair, Ashish K N; Wang, Xiaowei; Tochon-Danguy, Henri J; Donnelly, Paul S; Peter, Karlheinz; Hagemeyer, Christoph E

    2015-06-22

    A unique two-step modular system for site-specific antibody modification and conjugation is reported. The first step of this approach uses enzymatic bioconjugation with the transpeptidase Sortase A for incorporation of strained cyclooctyne functional groups. The second step of this modular approach involves the azide-alkyne cycloaddition click reaction. The versatility of the two-step approach has been exemplified by the selective incorporation of fluorescent dyes and a positron-emitting copper-64 radiotracer for fluorescence and positron-emission tomography imaging of activated platelets, platelet aggregates, and thrombi, respectively. This flexible and versatile approach could be readily adapted to incorporate a large array of tailor-made functional groups using reliable click chemistry whilst preserving the activity of the antibody or other sensitive biological macromolecules.

  13. Carbodiimide versus click chemistry for nanoparticle surface functionalization: a comparative study for the elaboration of multimodal superparamagnetic nanoparticles targeting αvβ3 integrins.

    PubMed

    Bolley, Julie; Guenin, Erwann; Lievre, Nicole; Lecouvey, Marc; Soussan, Michael; Lalatonne, Yoann; Motte, Laurence

    2013-11-26

    Superparamagnetic fluorescent nanoparticles targeting αvβ3 integrins were elaborated using two methodologies: carbodiimide coupling and click chemistries (CuACC and thiol-yne). The nanoparticles are first functionalized with hydroxymethylenebisphonates (HMBP) bearing carboxylic acid or alkyne functions. Then, a large number of these reactives functions were used for the covalent coupling of dyes, poly(ethylene glycol) (PEG), and cyclic RGD. Several methods were used to characterize the nanoparticle surface functionalization, and the magnetic properties of these contrast agents were studied using a 1.5 T clinical MRI. The affinity toward integrins was evidenced by solid-phase receptor-binding assay. In addition to their chemoselective natures, click reactions were shown to be far more efficient than the carbodiimide coupling. The grafting increase was shown to enhance targeting affinity to integrin without imparing MRI and fluorescent properties.

  14. Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives.

    PubMed

    Hu, Jianqing; Peng, Kaimei; Guo, Jinshan; Shan, Dingying; Kim, Gloria B; Li, Qiyao; Gerhard, Ethan; Zhu, Liang; Tu, Weiping; Lv, Weizhong; Hickner, Michael A; Yang, Jian

    2016-07-13

    Waterborne polymers, including waterborne polyurethanes (WPU), polyester dispersions (PED), and polyacrylate emulsions (PAE), are employed as environmentally friendly water-based coatings and adhesives. An efficient, fast, stable, and safe cross-linking strategy is always desirable to impart waterborne polymers with improved mechanical properties and water/solvent/thermal and abrasion resistance. For the first time, click chemistry was introduced into waterborne polymer systems as a cross-linking strategy. Click cross-linking rendered waterborne polymer films with significantly improved tensile strength, hardness, adhesion strength, and water/solvent resistance compared to traditional waterborne polymer films. For example, click cross-linked WPU (WPU-click) has dramatically improved the mechanical strength (tensile strength increased from 0.43 to 6.47 MPa, and Young's modulus increased from 3 to 40 MPa), hardness (increased from 59 to 73.1 MPa), and water resistance (water absorption percentage dropped from 200% to less than 20%); click cross-linked PED (PED-click) film also possessed more than 3 times higher tensile strength (∼28 MPa) than that of normal PED (∼8 MPa). The adhesion strength of click cross-linked PAE (PAE-click) to polypropylene (PP) was also improved (from 3 to 5.5 MPa). In addition, extra click groups can be preserved after click cross-linking for further functionalization of the waterborne polymeric coatings/adhesives. In this work, we have demonstrated that click modification could serve as a convenient and powerful approach to significantly improve the performance of a variety of traditional coatings and adhesives.

  15. Degradable polymeric nanoparticles by aggregation of thermoresponsive polymers and ``click'' chemistry

    NASA Astrophysics Data System (ADS)

    Dworak, Andrzej; Lipowska, Daria; Szweda, Dawid; Suwinski, Jerzy; Trzebicka, Barbara; Szweda, Roza

    2015-10-01

    This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent stabilization of aggregated chains was performed by a ``click'' reaction between the azide and alkyne groups. Due to the presence of a carbamate bond the nanoparticles undergo pH dependent degradation under mild basic conditions. The proposed procedure opens a route to new carriers for the controlled release of active species.This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent

  16. Identification of Protein Targets of 4-Hydroxynonenal Using Click Chemistry for Ex Vivo Biotinylation of Azido and Alkynyl Derivatives

    PubMed Central

    Vila, Andrew; Tallman, Keri A.; Jacobs, Aaron T.; Liebler, Daniel C.; Porter, Ned A.; Marnett, Lawrence J.

    2009-01-01

    Polyunsaturated fatty acids (PUFA) are primary targets of free radical damage during oxidative stress. Diffusible electrophilic α, β-unsaturated aldehydes, such as 4-hydroxynonenal (HNE), have been shown to modify proteins that mediate cell signaling (e.g. IKK and Keap1) and alter gene expression pathways responsible for inducing antioxidant genes, heat shock proteins, and the DNA damage response. To fully understand cellular responses to HNE, it is important to determine its protein targets in an unbiased fashion. This requires a strategy for detecting and isolating HNE-modified proteins regardless of the nature of the chemical linkage between HNE and its targets. Azido or alkynyl derivatives of HNE were synthesized and demonstrated to be equivalent to HNE in their ability to induce heme oxygenase induction and induce apoptosis in colon cancer (RKO) cells. Cells exposed to the tagged HNE derivatives were lysed and exposed to reagents to effect Staudinger ligation or copper-catalyzed Huisgen 1,3 dipolar cycloaddition reaction (click chemistry) to conjugate HNE-adducted proteins with biotin for subsequent affinity purification. Both strategies yielded efficient biotinylation of tagged HNE-protein conjugates but click chemistry was found to be superior for recovery of biotinylated proteins from streptavidin-coated beads. Biotinylated proteins were detected in lysates from RKO cell incubations with azido-HNE at concentrations as low as 1 μM. These proteins were affinity purified with streptavidin beads and proteomic analysis was performed by linear ion trap mass spectrometry. Proteomic analysis revealed a dose-dependent increase in labeled proteins with increased sequence coverage at higher concentrations. Several proteins involved in stress signaling (heat shock proteins 70 and 90, and the 78-kDa glucose-regulated protein) were selectively adducted by azido- and alkynyl-HNE. The use of azido and alkynyl derivatives in conjunction with click chemistry appears to be

  17. A multi-hypothesis tracker for clicking whales.

    PubMed

    Baggenstoss, Paul M

    2015-05-01

    This paper describes a tracker specially designed to track clicking beaked whales using widely spaced bottom-mounted hydrophones, although it can be adapted to different species and sensors. The input to the tracker is a sequence of static localization solutions obtained using time difference of arrival information at widely spaced hydrophones. To effectively handle input localizations with high ambiguity, the tracker is based on multi-hypothesis tracker concepts, so it considers all potential association hypotheses and keeps a large number of potential tracks in memory. The method is demonstrated on actual data and shown to successfully track multiple beaked whales at depth.

  18. Comparison of echolocation clicks from geographically sympatric killer whales and long-finned pilot whales (L).

    PubMed

    Eskesen, Ida G; Wahlberg, Magnus; Simon, Malene; Larsen, Ole Næsbye

    2011-07-01

    The source characteristics of biosonar signals from sympatric killer whales and long-finned pilot whales in a Norwegian fjord were compared. A total of 137 pilot whale and more than 2000 killer whale echolocation clicks were recorded using a linear four-hydrophone array. Of these, 20 pilot whale clicks and 28 killer whale clicks were categorized as being recorded on-axis. The clicks of pilot whales had a mean apparent source level of 196 dB re 1 μPa pp and those of killer whales 203 dB re 1 μPa pp. The duration of pilot whale clicks was significantly shorter (23 μs, S.E.=1.3) and the centroid frequency significantly higher (55 kHz, S.E.=2.1) than killer whale clicks (duration: 41 μs, S.E.=2.6; centroid frequency: 32 kHz, S.E.=1.5). The rate of increase in the accumulated energy as a function of time also differed between clicks from the two species. The differences in duration, frequency, and energy distribution may have a potential to allow for the distinction between pilot and killer whale clicks when using automated detection routines for acoustic monitoring.

  19. Facile modification of silica substrates provides a platform for direct-writing surface click chemistry.

    PubMed

    Oberhansl, Sabine; Hirtz, Michael; Lagunas, Anna; Eritja, Ramon; Martinez, Elena; Fuchs, Harald; Samitier, Josep

    2012-02-20

    Please click here: a facile two-step functionalization strategy for silicon oxide-based substrates generates a stable platform for surface click chemistry via direct writing. The suitability of the obtained substrates is proven by patterning with two different direct-writing techniques and three different molecules.

  20. Click modification of diazido acridine intercalators: a versatile route towards decorated DNA nanostructures.

    PubMed

    Moradpour Hafshejani, Shahrbanou; Watson, Scott M D; Tuite, Eimer M; Pike, Andrew R

    2015-09-01

    Diazido derivatives of 3,6-diamino acridine (proflavine) intercalate into DNA and undergo functionalization through click chemistry to form 1D nanostructures with redox active, conductive nanowire, and fluorescent properties. This two-step approach, intercalation followed by click modification allows for the controlled decoration of DNA nanostructures.

  1. Selective Bifunctional Modification of a Non-catenated Metal-Organic Framework Material via 'Click' Chemistry

    SciTech Connect

    Gadzikwa, Tendai; Farha, Omar K.; Malliakas, Christos D.; Kanatzidis, Mercouri G.; Hupp, Joseph T.; Nguyen, SonBinh T.; NWU

    2009-12-01

    A noncatenated, Zn-based metal-organic framework (MOF) material bearing silyl-protected acetylenes was constructed and postsynthetically modified using 'click' chemistry. Using a solvent-based, selective deprotection strategy, two different organic azides were 'clicked' onto the MOF crystals, resulting in a porous material whose internal and external surfaces are differently functionalized.

  2. Separation of Sperm Whale Click-Trains for Multipath Rejection and Localization

    DTIC Science & Technology

    2010-03-05

    two events in the case of two very close clicks . It also allows for slight temporary increases in power on the tail end, such as may occur in...classification statistics in table 8 are consistently for reverberation except for one click . It can be seen that a classification of the entire

  3. Sex and Ear Differences in Spontaneous and Click-Evoked Otoacoustic Emissions in Young Adults

    ERIC Educational Resources Information Center

    Snihur, Adrian W. K.; Hampson, Elizabeth

    2011-01-01

    Effects of sex and handedness on the production of spontaneous and click-evoked otoacoustic emissions (OAEs) were explored in a non-hearing impaired population (ages 17-25 years). A sex difference in OAEs, either produced spontaneously (spontaneous OAEs or SOAEs) or in response to auditory stimuli (click-evoked OAEs or CEOAEs) has been reported in…

  4. Aqueous Modification of Nano- and Microfibrillar Cellulose with a Click Synthon.

    PubMed

    Hettegger, Hubert; Beaumont, Marco; Potthast, Antje; Rosenau, Thomas

    2016-01-08

    The modification of cellulose as a renewable resource has received wide attention in research and industry. A major problem regarding chemical modification, including heating and drying, is related to hornification that causes pore-system collapse and results in decreased reactivity and changes in the 3D structure of the material. A mild and green approach for the modification of different never-dried and thus wet cellulose substrates (pulp, nanostructured celluloses, and viscose fibers) by an alkoxysilane-azide in water is presented. A kinetic study of the silanization reaction demonstrates that alkoxy-trans-silanization of the cellulose surface is accomplished in water as a suspension medium within a few hours at room temperature. The resulting, azido-equipped celluloses are widely applicable precursor materials for subsequent functionalization by so-called click chemistry, for example, with a fluorescent Rhodamine derivative as a representative reagent. Successful covalent bonding was shown by GPC and a model reaction. The 3D structure of the materials remained intact, as was inter alia visualized by optical and fluorescence microscopy.

  5. Characterization of peptide immobilization on an acetylene terminated surface via click chemistry

    NASA Astrophysics Data System (ADS)

    Shamsi, Fahimeh; Coster, Hans; Jolliffe, Katrina A.

    2011-10-01

    Peptide (A-A-A-A-G-G-G-E-R-G-D)1A: Alanine; D: Glutamic acid; E: Aspartic acid; G: Glycine; R: Arginine. conjugated surfaces were prepared on silicon surfaces through click chemistry. The amino acid sequence RGD is the cellular attachment site of a large number of extracellular matrices such as blood and cell surface proteins. Recent research has focused on developing RGD peptides which mimic cell adhesion proteins and integrins [1,2].The steps involved the formation of an alkyne-terminated monolayer on Si(111), followed by linking the peptide to 4-azidophenyl isothiocyanate via a specific and gentle reaction. This was followed by the attachment of the azido peptide to the surface-bound alkynes using the Cu (I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The surface structures of the alkyne terminated monolayer and the attached peptide were characterized using high resolution impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared (ATR-FTIR) Spectroscopy. EIS characterization revealed the alkyne layer and the hydrophobic and polar regions of the attached peptide. XPS analysis showed a high surface coverage of the peptide on the silicon substrates and this was confirmed by FTIR.Our results confirmed a specific covalent attachment of the peptide on the silicon surfaces. This approach offers a versatile, experimentally simple, method for the specific attachment of peptide ligands. This approach would have applications for cell attachment and biosensors.

  6. Modification of symmetrically substituted phthalocyanines using click chemistry: phthalocyanine nanostructures by nanoimprint lithography.

    PubMed

    Chen, Xiaochun; Thomas, Jayan; Gangopadhyay, Palash; Norwood, Robert A; Peyghambarian, N; McGrath, Dominic V

    2009-09-30

    Phthalocyanines (Pcs) are commonly applied to advanced technologies such as optical limiting, photodynamic therapy (PDT), organic field-effect transistors (OFETs), and organic photovoltaic (OPV) devices, where they are used as the p-type layer. An approach to Pc structural diversity and the incorporation of a functional group that allows fabrication of solvent resistant Pc nanostructures formed by using a newly developed nanoimprint by melt processing (NIMP) technique, a variant of standard nanoimprint lithography (NIL), is reported. Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), a click chemistry reaction, serves as an approach to structural diversity in Pc macrocycles. We have prepared octaalkynyl Pc 1b and have modified this Pc using the CuAAC reaction to yield four Pc derivatives 5a-5d with different peripheral substituents on the macrocycle. One of these derivatives, 5c, has photo-cross-linkable cinnamate residues, and we have demonstrated the fabrication of robust cross-linked photopatterned and imprinted nanostructures from this material.

  7. Evoked-potential recovery during double click stimulation in a whale: a possibility of biosonar automatic gain control.

    PubMed

    Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee

    2007-01-01

    False killer whale Pseudorca crassidens auditory brainstem responses (ABR) were recorded using a double-click stimulation paradigm specifically measuring the recovery of the second response (to the test click) as a function of the inter-click interval (ICI) at various levels of the conditioning and test click. At all click intensities, the slopes of recovery functions were almost constant: 0.6-0.8 microV per ICI decade. Therefore, even when the conditioning-to-test-click level ratio was kept constant, the duration of recovery was intensity-dependent: The higher intensity the longer the recovery. The conditioning-to-test-click level ratio strongly influenced the recovery time: The higher the ratio, the longer the recovery. The dependence was almost linear using a logarithmic ICI scale with a rate of 25-30 dB per ICI decade. These data were used for modeling the interaction between the emitted click and the echo during echolocation, assuming that the two clicks simulated the transmitted and echo clicks. This simulation showed that partial masking of the echo by the preceding emitted click may explain the independence of echo-response amplitude of target distance. However, the distance range where this mechanism is effective depends on the emitted click level: The higher the level, the greater the range. @ 2007 Acoustical Society of America.

  8. Clicking in a Killer Whale Habitat: Narrow-Band, High-Frequency Biosonar Clicks of Harbour Porpoise (Phocoena phocoena) and Dall’s Porpoise (Phocoenoides dalli)

    PubMed Central

    Kyhn, Line A.; Tougaard, Jakob; Beedholm, Kristian; Jensen, Frants H.; Ashe, Erin; Williams, Rob; Madsen, Peter T.

    2013-01-01

    Odontocetes produce a range of different echolocation clicks but four groups in different families have converged on producing the same stereotyped narrow band high frequency (NBHF) click. In microchiropteran bats, sympatric species have evolved the use of different acoustic niches and subtly different echolocation signals to avoid competition among species. In this study, we examined whether similar adaptations are at play among sympatric porpoise species that use NBHF echolocation clicks. We used a six-element hydrophone array to record harbour and Dall’s porpoises in British Columbia (BC), Canada, and harbour porpoises in Denmark. The click source properties of all porpoise groups were remarkably similar and had an average directivity index of 25 dB. Yet there was a small, but consistent and significant 4 kHz difference in centroid frequency between sympatric Dall’s (137±3 kHz) and Canadian harbour porpoises (141±2 kHz). Danish harbour porpoise clicks (136±3 kHz) were more similar to Dall’s porpoise than to their conspecifics in Canada. We suggest that the spectral differences in echolocation clicks between the sympatric porpoises are consistent with evolution of a prezygotic isolating barrier (i.e., character displacement) to avoid hybridization of sympatric species. In practical terms, these spectral differences have immediate application to passive acoustic monitoring. PMID:23723996

  9. Clicking in a killer whale habitat: narrow-band, high-frequency biosonar clicks of harbour porpoise (Phocoena phocoena) and Dall's porpoise (Phocoenoides dalli).

    PubMed

    Kyhn, Line A; Tougaard, Jakob; Beedholm, Kristian; Jensen, Frants H; Ashe, Erin; Williams, Rob; Madsen, Peter T

    2013-01-01

    Odontocetes produce a range of different echolocation clicks but four groups in different families have converged on producing the same stereotyped narrow band high frequency (NBHF) click. In microchiropteran bats, sympatric species have evolved the use of different acoustic niches and subtly different echolocation signals to avoid competition among species. In this study, we examined whether similar adaptations are at play among sympatric porpoise species that use NBHF echolocation clicks. We used a six-element hydrophone array to record harbour and Dall's porpoises in British Columbia (BC), Canada, and harbour porpoises in Denmark. The click source properties of all porpoise groups were remarkably similar and had an average directivity index of 25 dB. Yet there was a small, but consistent and significant 4 kHz difference in centroid frequency between sympatric Dall's (137±3 kHz) and Canadian harbour porpoises (141±2 kHz). Danish harbour porpoise clicks (136±3 kHz) were more similar to Dall's porpoise than to their conspecifics in Canada. We suggest that the spectral differences in echolocation clicks between the sympatric porpoises are consistent with evolution of a prezygotic isolating barrier (i.e., character displacement) to avoid hybridization of sympatric species. In practical terms, these spectral differences have immediate application to passive acoustic monitoring.

  10. Grafting of Polycaprolactone on Oxidized Nanocelluloses by Click Chemistry

    PubMed Central

    Benkaddour, Abdelhaq; Jradi, Khalil; Robert, Sylvain; Daneault, Claude

    2013-01-01

    The main objective of this work is the grafting of polycaprolactone diol (PCL) on the surface of oxidized nanocelluloses (ONC) in order to enhance the compatibility between the hydrophilic cellulose nanofibres and the hydrophobic polymer matrix. This grafting was successfully realized with a new strategy known as click chemistry. In this context, the oxidized nanocelluloses bearing alkyl groups (ONC-PR) were prepared by reacting amino groups of propargylamine (PR) with carboxyl groups of ONC. In parallel, PCL was converted into azido-polycaprolactone (PCL-N3) in two steps: (i) tosylation of polycaprolactone (PCL-OTs) and (ii) conversion of PCL-OTs into PCL-N3 by nucleophilic displacement using sodium azide. Finally, ONC-PR was reacted with PCL-N3 in heterogeneous conditions through click chemistry in order to prepare polycaprolactone grafted oxidized nanocellulose (ONC-g-PCL), which could be suitable for improving the interfacial adhesion in the composite materials. The grafted samples were characterized by transmission electron microscopy and by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and Carbon-13 nuclear magnetic resonance spectroscopy (13C-NMR) spectroscopic techniques.

  11. Multiresponsive hyaluronan-p(NiPAAm) "click"-linked hydrogels.

    PubMed

    Pasale, Sharad K; Cerroni, Barbara; Ghugare, Shivkumar V; Paradossi, Gaio

    2014-07-01

    Combined reversible addition-fragmentation chain transfer (RAFT) and chemoselective "click" chemistry are used for assembling two polymeric chains into a hybrid network capable to respond simultaneously or separately to different external stimuli. An azido-derivative of hyaluronate is clicked together with a new telechelic RAFT-generated p(NiPAAm), carrying a propargyl function at both ends, suitable as macromolecular "clickable" cross-linker with controlled molecular weight. This hybrid system displays a multiresponsive behavior versus temperature, pH, and ionic strength, maintaining cumulative as well as separate sensitivities to the external stimuli. Hyaluronidase catalyzed degradation of the hydrogels, mimicking the extracellular matrix degradation process, is an additional asset for the use of this class of hydrogels as scaffold. Tumor cells, HT-29, grow on the surface of these hybrid hydrogels more than the healthy ones, as NIH3T3. This finding opens a road to micro- and nano-devices based on hyaluronic acid as a promising biopolymer to pursue localized drug delivery.

  12. Probing Gorge Dimensions of Cholinesterases by Freeze-Frame Click Chemistry

    PubMed Central

    Radić, Zoran; Manetsch, Roman; Fournier, Didier; Sharpless, K. Barry; Taylor, Palmer

    2008-01-01

    Freeze-frame click chemistry is a proven approach for design in situ of high affinity ligands from bioorthogonal, reactive building blocks and macromolecular template targets. We recently described in situ design of femtomolar reversible inhibitors of fish and mammalian acetylcholinesterases (EC 3.1.1.7; AChEs) using several different libraries of acetylene and azide building blocks. Active center gorge geometries of those AChEs are rather similar and identical triazole inhibitors were detected in situ when incubating the same building block libraries in different AChEs. Drosophila melanogaster AChE crystal structure and other insect AChE homology models differ more in their overall 3D structure than other members of the cholinesterase family. The portion of the gorge proximal to the catalytic triad and choline binding site has a ~50% reduction in volume, and the gorge entrance at the peripheral anionic site (PAS) is more constricted than in the fish and mammalian AChE’s. In this communication we describe rationale for using purified recombinant Drosophila AChE as a template for in situ reaction of tacrine and propidium based libraries of acetylene and azide building blocks. The structures of resulting triazole inhibitors synthesized in situ are expected to differ appreciably from the fish and mammalian AChEs. While the latter AChEs exclusively promote synthesis of syn-substituted triazoles, the best Drosophila AChE triazole inhibitors were always anti-substituted. The anti- regioisomer triazoles were by about one order of magnitude better inhibitors of Drosophila than mammalian and fish AChEs. Moreover, the preferred site of acetylene + azide reaction in insect AChE and the resulting triazole ring formation shifts from near the base of the gorge to closer to its rim due to substantial differences of the gorge geometry in Drosophila AChE. Thus, in addition to synthesizing high affinity, lead inhibitors in situ, freeze-frame, click chemistry has capacity to

  13. Click synthesis of quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide with improved antibacterial and antifouling ability.

    PubMed

    Tu, Qin; Tian, Chang; Ma, Tongtong; Pang, Long; Wang, Jinyi

    2016-05-01

    A quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide (GO-QPDMAEMA) was successfully prepared in this study via click chemistry. Alkyne-functionalized graphene oxide (GO-alkyne) was first synthesized through a two-step amidation reaction of GO-COOH. Meanwhile, azide-terminated poly(dimethylaminoethyl methacrylate) (PDMAEMA-N3) was prepared via the atom-transfer radical-polymerization of dimethylaminoethyl methacrylate (DMAEMA). Subsequently, PDMAEMA-N3 was grafted onto the GO-alkyne through click chemistry to obtain PDMAEMA modified graphene oxide (GO-PDMAEMA). Finally, the tertiary amino groups of GO-PDMAEMA were quaternized by ethyl bromide to provide a quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide (GO-QPDMAEMA). Various characterization techniques, including Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis spectrometry, ζ potential, Raman, contact angle analyses and field emission scanning electron microscope were used to ascertain the successful preparation of the quaternized GO-QPDMAEMA. Furthermore, antibacterial and antifouling activities of GO-QPDMAEMA were investigated via protein adsorption, as well as bacterial and cell adhesion studies. The results suggest that the GO-QPDMAEMA surface exhibited significant antibacterial and antifouling properties, compared with the GO-COOH and GO-PDMAEMA surfaces.

  14. Investigating the cellular fate of a DNA-targeted platinum-based anticancer agent by orthogonal double-click chemistry.

    PubMed

    Qiao, Xin; Ding, Song; Liu, Fang; Kucera, Gregory L; Bierbach, Ulrich

    2014-03-01

    Confocal fluorescence microscopy was used to study a platinum-based anticancer agent in intact NCI-H460 lung cancer cells. Orthogonal copper-catalyzed azide-alkyne cycloaddition (click) reactions were used to simultaneously determine the cell-cycle-specific localization of the azide-functionalized platinum-acridine agent 1 and monitor its effects on nucleic acid metabolism. Copper-catalyzed postlabeling showed advantages over copper-free click chemistry using a dibenzocyclooctyne (DIBO)-modified reporter dye, which produced high background levels in microscopic images and failed to efficiently label platinum adducts in chromatin. Compound 1 was successfully labeled with the fluorophore DIBO to yield 1* (characterized by in-line high-performance liquid chromatography/electrospray mass spectrometry). 1 and 1* show a high degree of colocalization in the confocal images, but the ability of 1* to target the (compacted) chromatin was markedly reduced, most likely owing to the steric bulk introduced by the DIBO tag. Nuclear platinum levels correlated inversely with the ability of the cells to synthesize DNA and cause cell cycle arrest, as confirmed by bivariate flow cytometry analysis. In addition, a decrease in the level of cellular transcription, shrinkage of the nucleolar regions, and redistribution of RNA into the cytosol were observed. Postlabeling in conjunction with colocalization experiments is a useful tool for studying the cell killing mechanism of this type of DNA-targeted agent.

  15. Investigating the cellular fate of a DNA-targeted platinum-based anticancer agent by orthogonal double-click chemistry

    PubMed Central

    Qiao, Xin; Ding, Song; Liu, Fang; Kucera, Gregory L.

    2014-01-01

    Confocal fluorescence microscopy was used to study a platinum-based anticancer agent in intact NCI-H460 lung cancer cells. Orthogonal copper-catalyzed azide–alkyne cycloaddition (click) reactions were used to simultaneously determine the cell-cycle-specific localization of the azide-functionalized platinum–acridine agent 1 and monitor its effects on nucleic acid metabolism. Copper-catalyzed postlabeling showed advantages over copper-free click chemistry using a dibenzocyclooctyne (DIBO)-modified reporter dye, which produced high background levels in microscopic images and failed to efficiently label platinum adducts in chromatin. Compound 1 was successfully labeled with the fluorophore DIBO to yield 1* (characterized by in-line high-performance liquid chromatography/electrospray mass spectrometry). 1 and 1* show a high degree of colocalization in the confocal images, but the ability of 1* to target the (compacted) chromatin was markedly reduced, most likely owing to the steric bulk introduced by the DIBO tag. Nuclear platinum levels correlated inversely with the ability of the cells to synthesize DNA and cause cell cycle arrest, as confirmed by bivariate flow cytometry analysis. In addition, a decrease in the level of cellular transcription, shrinkage of the nucleolar regions, and redistribution of RNA into the cytosol were observed. Postlabeling in conjunction with colocalization experiments is a useful tool for studying the cell killing mechanism of this type of DNA-targeted agent. PMID:24407462

  16. Facile fabrication of ultrafine palladium nanoparticles with size- and location-control in click-based porous organic polymers.

    PubMed

    Li, Liuyi; Zhao, Huaixia; Wang, Jinyun; Wang, Ruihu

    2014-05-27

    Two click-based porous organic polymers (CPP-1 and CPP-2) are readily synthesized through a click reaction. Using CPP-1 and CPP-2 as supports, palladium nanoparticles (NPs) with uniform and dual distributions were prepared through H2 and NaBH4 reduction routes, respectively. Ultrafine palladium NPs are effectively immobilized in the interior cavities of polymers. The coordination of 1,2,3-triazolyl to palladium and the confinement effect of polymers on palladium NPs are verified by solid-state (13)C NMR and IR spectra, XPS analyses, EDX mapping, and computational calculation. The steric and electronic properties of polymers have a considerable influence on the interaction between polymers and palladium NPs, as well as the catalytic performances of NPs. The ultrafine palladium NPs with uniform distribution exhibit superior stability and recyclability over palladium NPs with dual distributions and palladium on charcoal in the hydrogenation of nitroarenes, and no obvious agglomeration and loss of catalytic activity were observed after recycling several times. The excellent performances mainly result from synergetic effects between palladium NPs and polymers.

  17. Modification of fluorous substrates with oligo(ethylene glycol) via "click" chemistry for long-term resistance of cell adhesion.

    PubMed

    Contreras-Caceres, Rafael; Santos, Catherine M; Li, Siheng; Kumar, Amit; Zhu, Zhiling; Kolar, Satya S; Casado-Rodriguez, Miguel A; Huang, Yongkai; McDermott, Alison; Lopez-Romero, Juan Manuel; Cai, Chengzhi

    2015-11-15

    In this work perfluorinated substrates fabricated from SiO2 glass slides are modified with oligo(ethylene glycol) (OEG) units for long-term resistance of cell adhesion purposes, based on fluorous interactions and click chemistry. Specifically, fluorous substrates, prepared by treatment of glass slides with 1H, 1H, 2H, 2H-perfluorodecyltrimethoxysilane (FAS17), were coated with ethynyl-OEG-C8F17, followed by covalent attachment of an azido-OEG via copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction. We demonstrate that the resultant surface avoid fibrinogen adsorption and resisted cell adhesion for over 14days. X-ray photoemission spectroscopy (XPS) analysis and contact angle goniometry measurements confirm the presence of the OEG molecules on the fluorous substrates. Bright field optical images show total absence of 3T3 fibroblast cells on the OEG modified fluorinated substrate for 1 and 5days, and a remarkably decrease of cell adhesion at 14days.

  18. Rapidly Polymerizing Injectable Click Hydrogel Therapy to Delay Bone Growth in a Murine Re-synostosis Model

    PubMed Central

    Hermann, Christopher D.; Wilson, David S.; Lawrence, Kelsey A.; Ning, Xinghai; Olivares-Navarrete, Rene; Williams, Joseph K.; Guldberg, Robert E.; Murthy, Niren; Schwartz, Zvi; Boyan, Barbara D.

    2014-01-01

    Craniosynostosis is the premature fusion of cranial sutures, which can result in progressive cranial deformations, increased intracranial pressure, and restricted brain growth. Most cases of craniosynostosis require surgical reconstruction of the cranial vault with the goal of increasing the intracranial volume and correcting the craniofacial deformities. However, patients often experience rapid post-operative bone re-growth, known as re-synostosis, which necessitates additional surgical intervention. Bone morphogenic protein (BMP) inhibitors have tremendous potential to treat re-synostosis, but the realization of a clinically viable inhibitor-based therapeutic requires the development of a delivery vehicle that can localize the release to the site of administration. Here, we present an in situ rapidly crosslinking injectable hydrogel that has the properties necessary to encapsulate co-administered proteins and demonstrate that the delivery of rmGremlin1 via our hydrogel system delays bone re-growth in a weanling mouse model of re-synostosis. Our hydrogel is composed of two mutually reactive poly(ethylene glycol) macromolecules, which when mixed crosslink via a bio-orthogonal Cu free click reaction. Hydrogels containing Gremlin caused a dose-dependent inhibition of bone regrowth. In addition to craniofacial applications, our injectable click hydrogel has the potential to provide customizable protein, small molecule, and cell delivery to any site accessible via needle or catheter. PMID:25176067

  19. In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells.

    PubMed

    Truong, Vinh X; Hun, Michael L; Li, Fanyi; Chidgey, Ann P; Forsythe, John S

    2016-07-21

    Hydrogels prepared from naturally derived gelatin can provide a suitable environment for cell attachment and growth, making them favourable materials in tissue engineering. However, physically crosslinked gelatin hydrogels are not stable under physiological conditions while chemical crosslinking of gelatin by radical polymerization may be harmful to cells. In this study, we attached the norbornene functional group to gelatin, which was subsequently crosslinked with a polyethylene glycol (PEG) linker via the nitrile oxide-norbornene click reaction. The rapid crosslinking process allows the hydrogel to be formed within minutes of mixing the polymer solutions under physiological conditions, allowing the gels to be used as injectable materials. The hydrogels properties including mechanical strength, swelling and degradation, can be tuned by changing either the ratio of the reacting groups or the total concentration of the polymer precursors. Murine embryonic fibroblastic cells cultured in soft gels (2 wt% of gelatin and 1 wt% of PEG linker) demonstrated high cell viability as well as similar phenotypic profiles (PDGFRα and MTS15) to Matrigel cultures over 5 days. Thymic epithelial cell and fibroblast co-cultures produced epithelial colonies in these gels following 7 days incubation. These studies demonstrate that gelatin based hydrogels, prepared using "click" crosslinking, provide a robust cell culture platform with retained benefits of the gelatin material, and are therefore suitable for use in various tissue engineering applications.

  20. Synthesis and antioxidant property of novel 1,2,3-triazole-linked starch derivatives via 'click chemistry'.

    PubMed

    Tan, Wenqiang; Li, Qing; Li, Wancong; Dong, Fang; Guo, Zhanyong

    2016-01-01

    Based on the copper (I) catalyzed Huisgen azide-alkyne cycloaddition (click chemistry), the novel synthesis of a variety of 1,2,3-triazole-linked starch derivatives was developed, including 6-hydroxymethyltriazole-6-deoxy starch (HMTST), 6-hydroxyethyltriazole-6-deoxy starch (HETST), 6-hydroxypropyltriazole-6-deoxy starch (HPTST), and 6-hydroxybutyltriazole-6-deoxy starch (HBTST). Their antioxidant properties against hydroxyl-radical, DPPH-radical, and superoxide-radical were evaluated in vitro, respectively. The antioxidant activity of the obtained novel amphiprotic starch derivatives via 'click reaction' exhibited remarkable improvement over starch. And the scavenging effect indices of most of the products were higher than 60% at 1.6 mg/mL against hydroxyl-radical and DPPH-radical. Moreover, the scavenging effect of the products against superoxide-radical attained 90% above at 0.1mg/mL. Generally, the antioxidant activity decreased in the order: HBTST>HPTST>HETST>HMTST>starch. Furthermore, the order of their antioxidant activity was consistent with the electron-donating ability of different substituted groups of the 1,2,3-triazoles. The substituted groups with stronger electron supplying capacity provided more electrons to the various radicals, which relatively enhanced the capacity for scavenging free radicals.

  1. Fluorescent porous film modified polymer optical fiber via "click" chemistry: stable dye dispersion and trace explosive detection.

    PubMed

    Ma, Jiajun; Lv, Ling; Zou, Gang; Zhang, Qijin

    2015-01-14

    In this paper, we report a facile strategy to fabricate fluorescent porous thin film on the surface of U-bent poly(methyl methacrylate) optical fiber (U-bent POF) in situ via "click" polymerization for vapor phase sensing of explosives. Upon irradiation of evanescent UV light transmitting within the fiber under ambient condition, a porous film (POSS-thiol cross-linking film, PTCF) is synthesized on the side surface of the fiber by a thiol-ene "click" reaction of vinyl-functionalized polyhedral oligomeric silsesquioxanes (POSS-V8) and alkane dithiols. When vinyl-functionalized porphyrin, containing four allyl substituents at the periphery, is added into precursors for the polymerization, fluorescence porphyrin can be covalently bonded into the cross-linked network of PTCF. This "fastened" way reduces the aggregation-induced fluorescence self-quenching of porphyrin and enhances the physicochemical stability of the porous film on the surface of U-bent POF. Fluorescent signals of the PTCF/U-bent POF probe made by this method exhibit high fluorescence quenching toward trace TNT and DNT vapor and the highest fluorescence quenching efficiency is observed for 1, 6-hexanedimercaptan-based film. In addition, because of the presence of POSS-V8 with multi cross-linkable groups, PTCF exhibits well-organized pore network and stable dye dispersion, which not only causes fast and sensitive fluorescence quenching against vapors of nitroaromatic compounds, but also provides a repeatability of the probing performance.

  2. Effect of Electron Donating Groups on Polyphenol-based Antioxidant Dendrimers

    PubMed Central

    Lee, Choon Young; Nanah, Cyprien; Held, Rich; Clark, Amanda; Huynh, Uyen; Maraskine, Marina C.; Uzarski, Rebecca L.; McCracken, John; Sharma, Ajit

    2015-01-01

    Numerous studies have reported the beneficial effects of antioxidants in human diseases. Among their biological effects, a majority of antioxidants scavenge reactive radicals in the body, thereby reducing oxidative stress that is associated with the pathogenesis of many diseases. Antioxidant dendrimers are a new class of potent antioxidant compounds reported recently. In this study, six polyphenol-based antioxidant dendrimers with or without electron donating groups (methoxy group) were synthesized in order to elucidate the influence of electron donating groups (EDG) on their antioxidant activities. Syringaldehyde (2 ortho methoxy groups), vanillin (1 ortho methoxy group), and 4-hydroxybenzaldehyde (0 methoxy group) were derivatized with propargylamine to form building blocks for the dendrimers. All the six dendrimers contain polyether cores, which were synthesized by attaching pentaerythritol and methyl α-D-glucopyranoside to in-house prepared spacer units. To prepare generation 1 antioxidant dendrimers, microwave energy and granulated metallic copper catalyst were used to link the cores and building blocks together via alkyne-azide 1,3-cycloaddition click chemistry. These reaction conditions resulted in high yields of the target dendrimers that were free from copper contamination. Based on DPPH antioxidant assay, antioxidant dendrimers decorated with syringaldehyde and vanillin exhibited over 70- and 170-fold increase in antioxidant activity compared to syringaldehyde and vanillin, respectively. The antioxidant activity of dendrimers increased with increasing number of EDG groups. Similar results were obtained when the dendrimers were used to protect DNA and human LDL against organic carbon and nitrogen-based free radicals. In addition, the antioxidant dendrimers did not show any pro-oxidant activity on DNA in the presence of physiological amounts of copper. Although the dendrimers showed potent antioxidant activities against carbon and nitrogen free radicals

  3. "Click" Patterning of Self-Assembled Monolayers on Hydrogen-Terminated Silicon Surfaces and Their Characterization Using Light-Addressable Potentiometric Sensors.

    PubMed

    Wang, Jian; Wu, Fan; Watkinson, Michael; Zhu, Jingyuan; Krause, Steffi

    2015-09-08

    Two potential strategies for chemically patterning alkyne-terminated self-assembled monolayers (SAMs) on oxide-free silicon or silicon-on-sapphire (SOS) substrates were investigated and compared. The patterned surfaces were validated using a light-addressable potentiometric sensor (LAPS) for the first time. The first strategy involved an integration of photolithography with "click" chemistry. Detailed surface characterization (i.e. water contact angle, ellipsometry, AFM, and XPS) and LAPS measurements showed that photoresist processing not only decreases the coverage of organic monolayers but also introduces chemically bonded contaminants on the surfaces, thus significantly reducing the quality of the SAMs and the utility of "click" surface modification. The formation of chemical contaminants in photolithography was also observed on carboxylic acid- and alkyl-terminated monolayers using LAPS. In contrast, a second approach combined microcontact printing (μCP) with "click" chemistry; that is azide (azido-oligo(ethylene glycol) (OEG)-NH2) inks were printed on alkyne-terminated SAMs on silicon or SOS through PDMS stamps. The surface characterization results for the sample printed with a flat featureless PDMS stamp demonstrated a nondestructive and efficient method of μCP to perform "click" reactions on alkyne-terminated, oxide-free silicon surfaces for the first time. For the sample printed with a featured PDMS stamp, LAPS imaging showed a good agreement with the pattern of the PDMS stamp, indicating the successful chemical patterning on non-oxidized silicon and SOS substrates and the capability of LAPS to image the molecular patterns with high sensitivity.

  4. Click-based echolocation in bats: not so primitive after all.

    PubMed

    Yovel, Yossi; Geva-Sagiv, Maya; Ulanovsky, Nachum

    2011-05-01

    Echolocating bats of the genus Rousettus produce click sonar signals, using their tongue (lingual echolocation). These signals are often considered rudimentary and are believed to enable only crude performance. However, the main argument supporting this belief, namely the click's reported long duration, was recently shown to be an artifact. In fact, the sonar clicks of Rousettus bats are extremely short, ~50-100 μs, similar to dolphin vocalizations. Here, we present a comparison between the sonar systems of the 'model species' of laryngeal echolocation, the big brown bat (Eptesicus fuscus), and that of lingual echolocation, the Egyptian fruit bat (Rousettus aegyptiacus). We show experimentally that in tasks, such as accurate landing or detection of medium-sized objects, click-based echolocation enables performance similar to laryngeal echolocators. Further, we describe a sophisticated behavioral strategy for biosonar beam steering in clicking bats. Finally, theoretical analyses of the signal design--focusing on their autocorrelations and wideband ambiguity functions--predict that in some aspects, such as target ranging and Doppler-tolerance, click-based echolocation might outperform laryngeal echolocation. Therefore, we suggest that click-based echolocation in bats should be regarded as a viable echolocation strategy, which is in fact similar to the biosonar used by most echolocating animals, including whales and dolphins.

  5. Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli.

    PubMed

    Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F

    2016-09-01

    Transient-evoked otoacoustic emission (TEOAE) responses (0.7-8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data.

  6. Click train encoding in primary and non-primary auditory cortex of anesthetized macaque monkeys.

    PubMed

    Oshurkova, E; Scheich, H; Brosch, M

    2008-06-02

    We studied encoding of temporally modulated sounds in 28 multiunits in the primary auditory cortical field (AI) and in 35 multiunits in the secondary auditory cortical field (caudomedial auditory cortical field, CM) by presenting periodic click trains with click rates between 1 and 300 Hz lasting for 2-4 s. We found that all multiunits increased or decreased their firing rate during the steady state portion of the click train and that all except two multiunits synchronized their firing to individual clicks in the train. Rate increases and synchronized responses were most prevalent and strongest at low click rates, as expressed by best modulation frequency, limiting frequency, percentage of responsive multiunits, and average rate response and vector strength. Synchronized responses occurred up to 100 Hz; rate response occurred up to 300 Hz. Both auditory fields responded similarly to low click rates but differed at click rates above approximately 12 Hz at which more multiunits in AI than in CM exhibited synchronized responses and increased rate responses and more multiunits in CM exhibited decreased rate responses. These findings suggest that the auditory cortex of macaque monkeys encodes temporally modulated sounds similar to the auditory cortex of other mammals. Together with other observations presented in this and other reports, our findings also suggest that AI and CM have largely overlapping sensitivities for acoustic stimulus features but encode these features differently.

  7. Bioorthogonal Click Chemistry-Based Synthetic Cell Glue.

    PubMed

    Koo, Heebeom; Choi, Myunghwan; Kim, Eunha; Hahn, Sei Kwang; Weissleder, Ralph; Yun, Seok Hyun

    2015-12-22

    Artificial methods of cell adhesion can be effective in building functional cell complexes in vitro, but methods for in vivo use are currently lacking. Here, a chemical cell glue based on bioorthogonal click chemistry with high stability and robustness is introduced. Tetrazine (Tz) and trans-cyclooctene (TCO) conjugated to the cell surface form covalent bonds between cells within 10 min in aqueous conditions. Glued, homogeneous, or heterogeneous cell pairs remain viable and stably attached in a microfluidic flow channel at a shear stress of 20 dyn cm(-2) . Upon intravenous injection of assembled Jurkat T cells into live mice, fluorescence microscopy shows the trafficking of cell pairs in circulation and their infiltration into lung tissues. These results demonstrate the promising potential of chemically glued cell pairs for various applications ranging from delivering therapeutic cells to studying cell-cell interactions in vivo.

  8. Echolocation clicks from killer whales (Orcinus orca) feeding on herring (Clupea harengus).

    PubMed

    Simon, Malene; Wahlberg, Magnus; Miller, Lee A

    2007-02-01

    Echolocation clicks from Norwegian killer whales feeding on herring schools were recorded using a four-hydrophone array. The clicks had broadband bimodal frequency spectra with low and high frequency peaks at 24 and 108 kHz, respectively. The -10 dB bandwidth was 35 kHz. The average source level varied from 173 to 202 dB re 1 microPa (peak-to-peak) at 1 m. This is considerably lower than source levels described for Canadian killer whales foraging on salmon. It is suggested that biosonar clicks of Norwegian killer whales are adapted for localization of prey with high target strength and acute hearing abilities.

  9. In Situ Click Chemistry for the Identification of a Potent D-Amino Acid Oxidase Inhibitor.

    PubMed

    Toguchi, Shohei; Hirose, Tomoyasu; Yorita, Kazuko; Fukui, Kiyoshi; Sharpless, K Barry; Ōmura, Satoshi; Sunazuka, Toshiaki

    2016-07-01

    In situ click chemistry is a target-guided synthesis approach for discovering novel lead compounds by assembling organic azides and alkynes into triazoles inside the affinity site of target biogenic molecules such as proteins. We report in situ click chemistry screening with human D-amino acid oxidase (hDAO), which led to the identification of a more potent hDAO inhibitor. The hDAO inhibitors have chemotherapeutic potential as antipsychotic agents. The new inhibitor displayed competitive inhibition of hDAO and showed significantly increased inhibitory activity against hDAO compared with that of an anchor molecule of in situ click chemistry.

  10. Redox behavior of a ferrocene monolayer on SiO2 obtained after click-coupling

    NASA Astrophysics Data System (ADS)

    Aiello, V.; Joo, N.; Buckley, J.; Nonglaton, G.; Duclairoir, F.; Dubois, L.; Marchon, J. C.; Gély, M.; Chevalier, N.; De Salvo, B.

    2013-06-01

    Redox active ferrocene derivatives were grafted upon SiO2 surface via a carbon-based linker. The indirect grafting procedure consisted in a silanization followed by a click-chemistry reaction. This immobilization method of ethynyl-ferrocene yields a mixed organic/inorganic charge transfer modulation medium made of a C3 linker ended by a 1,2,3-triazole, bound to a thin SiO2 layer. Such a linker has never been tested before. Its use combines the advantages of a thin dielectric layer (SiO2+ > C3 linker) to the versatility of a two-step process that could easily be transferred to other sensitive or hard to synthesize compounds. Such organic/inorganic linker has been tested to tune the redox properties and charge transfer kinetics of the overall hybrid system and the results could be of importance for hybrid memory devices applications. Cyclic voltammetry studies conducted on this hybrid system were indeed used to confirm ferrocene immobilization, determine the molecular surface coverage and study the redox charge/discharge kinetics. The obtained results show the good surface coverage and charge retention properties, achieved by grafting upon SiO2 via a > C3 linker. For comparison, the ferrocene compound was also immobilized on Si (C2 linker).

  11. Cell Proliferation Method: Click Chemistry Based on BrdU Coupling for Multiplex Antibody Staining.

    PubMed

    Cappella, Paolo; Gasparri, Fabio; Pulici, Maurizio; Moll, Jürgen

    2015-04-01

    Determination of incorporation of the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) into DNA is a widely used method to analyze the cell cycle. However, DNA denaturation is required for BrdU detection with the consequence that most protein epitopes are destroyed and their immunocytochemical detection for multiplex analysis is not possible. A novel assay is presented for identifying cells in active S-phase that does not require the DNA denaturation step but nevertheless detects BrdU. For this purpose, cells were pulsed for a short time by 5-ethynyl-2'-deoxyuridine (EdU) which is incorporated into DNA. The nucleotide-exposed ethynyl residue was then derivatized by a copper-catalyzed cycloaddition reaction ("click chemistry" coupling) using a BrdU azide probe. The resulting DNA-bound bromouracil moieties were then detected by commercial anti-BrdU monoclonal antibodies without the need for a denaturation step. This method has been tested using several cell lines and is more sensitive than traditional BrdU and allows multicolor and multiplex analysis in flow cytometry (FCM) and image-based cytometry.

  12. Fluorometric method for inorganic pyrophosphatase activity detection and inhibitor screening based on click chemistry.

    PubMed

    Xu, Kefeng; Chen, Zhonghui; Zhou, Ling; Zheng, Ou; Wu, Xiaoping; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Chen, Guonan

    2015-01-06

    A fluorometric method for pyrophosphatase (PPase) activity detection was developed based on click chemistry. Cu(II) can coordinate with pyrophosphate (PPi), the addition of pyrophosphatase (PPase) into the above system can destroy the coordinate compound because PPase catalyzes the hydrolysis of PPi into inorganic phosphate and produces free Cu(II), and free Cu(II) can be reduced by sodium ascorbate (SA) to form Cu(I), which in turn initiates the ligating reaction between nonfluorescent 3-azidocoumarins and terminal alkynes to produce a highly fluorescent triazole complex, based on which, a simple and sensitive turn on fluorometric method for PPase can be developed. The fluorescence intensity of the system has a linear relationship with the logarithm of the PPase concentration in the range of 0.5 and 10 mU with a detection limit down to 0.2 mU (S/N = 3). This method is cost-effective and convenient without any labels or complicated operations. The proposed system was applied to screen the potential PPase inhibitor with high efficiency. The proposed method can be applied to diagnosis of PPase-related diseases.

  13. Facile functionalization of PDMS elastomer surfaces using thiol-ene click chemistry.

    PubMed

    Zhang, Jianfeng; Chen, Yang; Brook, Michael A

    2013-10-08

    A variety of methods have been developed for polydimethylsiloxane (PDMS) elastomer surface functionalization, particularly for the improvement of hydrophilicity. However, in addition to difficulties in avoiding undesired physical changes to the modified surface, including surface cracking, "hydrophobic recovery" frequently leads hydrophilically modified surfaces to completely return over time to their hydrophobic nature, with accompanying loss of accessible functional groups. Thiol-ene chemistry provides a mild and robust technology for synthetic elaboration. We demonstrate the introduction of thiol groups onto the PDMS surface via base-catalyzed equilibration of MTS ((MeO)3Si(CH2)3SH). Thiols in the product elastomer were shown to be located primarily at the air interface using EDX, XPS, and fluorescence labeling initially, and after extended periods of time: total thiol concentrations at the surface and in the bulk were established by complementary chemical titrations with DTDP (4,4'-dithiodipyridine) and iodine titrations in different solvents. The surface density of thiols was readily controlled by reaction conditions: the rate of hydrophobic recovery, which led to incomplete loss of accessible functional groups, was determined. Thiol-ene click chemistry was then used to introduce a variety of hydrophilic moieties onto the surface including a silicone surfactant and maleic anhydride, respectively. In the latter case, molecular functionalization with both small (fluorescent labels) and polymeric nucleophiles (poly(ethylene glycol), chitosan) could be subsequently induced by simple ring-opening nucleophilic attack leading to permanently functional surfaces.

  14. Novel antifouling surface with improved hemocompatibility by immobilization of polyzwitterions onto silicon via click chemistry

    NASA Astrophysics Data System (ADS)

    Zheng, Sunxiang; Yang, Qian; Mi, Baoxia

    2016-02-01

    A novel procedure is presented to develop an antifouling silicon surface with improved hemocompatibility by using a zwitterionic polymer, poly(sulfobetaine methacrylate) (polySBMA). Functionalization of the silicon surface with polySBMA involved the following three steps: (1) an alkyne terminated polySBMA was synthesized by RAFT polymerization; (2) a self-assembled monolayer with bromine end groups was constructed on the silicon surface, and then the bromine end groups were replaced by azide groups; and (3) the polySBMA was attached to the silicon surface by azide-alkyne cycloaddition click reaction. Membrane characterization confirmed a successful silicon surface modification with almost 100% coverage by polySBMA and an extremely hydrophilic surface after such modification. The polySBMA-modified silicon surface was found to have excellent anti-nonspecific adsorption properties for both bovine serum albumin (BSA) protein and model bacterial cells. Whole blood adsorption experiments showed that the polySBMA-modified silicon surface exhibited excellent hemocompatibility and effective anti-adhesion to blood cells. Silicon membranes with such antifouling and hemocompatible surfaces can be advantageously used to drastically extend the service life of implantable medical devices such as artificial kidney devices.

  15. Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry.

    PubMed

    Barker, Karolyn; Rastogi, Shiva K; Dominguez, Jose; Cantu, Travis; Brittain, William; Irvin, Jennifer; Betancourt, Tania

    2016-01-01

    Significant research has focused on investigating the potential of hydrogels in various applications and, in particular, in medicine. Specifically, hydrogels that are biodegradable lend promise to many therapeutic and biosensing applications. Endonucleases are critical for mechanisms of DNA repair. However, they are also known to be overexpressed in cancer and to be present in wounds with bacterial contamination. In this work, we set out to demonstrate the preparation of DNA-enabled hydrogels that could be degraded by nucleases. Specifically, hydrogels were prepared through the reaction of dibenzocyclooctyne-functionalized multi-arm poly(ethylene glycol) with azide-functionalized single-stranded DNA in aqueous solutions via copper-free click chemistry. Through the use of this method, biodegradable hydrogels were formed at room temperature in buffered saline solutions that mimic physiological conditions, avoiding possible harmful effects associated with other polymerization techniques that can be detrimental to cells or other bioactive molecules. The degradation of these DNA-cross-linked hydrogels upon exposure to the model endonucleases Benzonase(®) and DNase I was studied. In addition, the ability of the hydrogels to act as depots for encapsulation and nuclease-controlled release of a model protein was demonstrated. This model has the potential to be tailored and expanded upon for use in a variety of applications where mild hydrogel preparation techniques and controlled material degradation are necessary including in drug delivery and wound healing systems.

  16. An activated triple bond linker enables 'click' attachment of peptides to oligonucleotides on solid support.

    PubMed

    Wenska, Malgorzata; Alvira, Margarita; Steunenberg, Peter; Stenberg, Asa; Murtola, Merita; Strömberg, Roger

    2011-11-01

    A general procedure, based on a new activated alkyne linker, for the preparation of peptide-oligonucleotide conjugates (POCs) on solid support has been developed. With this linker, conjugation is effective at room temperature (RT) in millimolar concentration and submicromolar amounts. This is made possible since the use of a readily attachable activated triple bond linker enhances the Cu(I) catalyzed 1,3-dipolar cycloaddition ('click' reaction). The preferred scheme for conjugate preparation involves sequential conjugation to oligonucleotides on solid support of (i) an H-phosphonate-based aminolinker; (ii) the triple bond donor p-(N-propynoylamino)toluic acid (PATA); and (iii) azido-functionalized peptides. The method gives conversion of oligonucleotide to the POC on solid support, and only involves a single purification step after complete assembly. The synthesis is flexible and can be carried out without the need for specific automated synthesizers since it has been designed to utilize commercially available oligonucleotide and peptide derivatives on solid support or in solution. Methodology for the ready conversion of peptides into 'clickable' azidopeptides with the possibility of selecting either N-terminus or C-terminus connection also adds to the flexibility and usability of the method. Examples of synthesis of POCs include conjugates of oligonucleotides with peptides known to be membrane penetrating and nuclear localization signals.

  17. RNA synthesis and turnover in the molluscan nervous system studied by Click-iT method.

    PubMed

    Ierusalimsky, Victor N; Balaban, Pavel M

    2016-02-15

    RNA synthesis can be detected by means of the in vivo incorporation of 5-ethynyluridine (EU) in newly-synthesized RNA with the relatively simple Click-iT method. We used this method to study the RNA synthesis in the CNS tissue of adult and juvenile terrestrial snails Helix lucorum L. Temporally, first labeled neurons were detected in the adult CNS after 4-h of isolated CNS incubation in EU solution, while 12-h of incubation led to extensive labeling of most CNS neurons. The EU labeling was present as the nuclear and nucleolar staining. The cytoplasm staining was observed after 2-3 days of CNS washout following the EU exposure for 16 h. In juvenile CNS, the first staining reaction was apparent as the staining of apical region in the procerebral lobe of cerebral ganglia after 1h of CNS incubation in EU, while the maximum pattern of staining was obtained after 4h of CNS incubation. Thus, age-related differences in RNA synthesis are present. Activation of neurons elicited by serotonin and caffeine applications noticeably increased the intensity of staining. EU readily penetrates into the bodies of juvenile snails immersed in the EU solution. When the intact juvenile animals were immersed in the EU solution for 1h, the procerebrum staining, similar to the one detected in the incubated juvenile CNS, was observed.

  18. A portable chemical sensor for histidine based on the strategy of click chemistry.

    PubMed

    Zhou, Jin; Xu, Kefeng; Zhou, Ping; Zheng, Ou; Lin, Zhenyu; Guo, Longhua; Qiu, Bin; Chen, Guonan

    2014-01-15

    A novel portable chemical sensor is developed in combination of the personal glucose meters (PGM) with click chemistry for sensitive and selective determination of histidine. Invertase-labeled alkynyl-DNA can be modified onto the surfaces of Streptavidin Magnespheres Paramagnetic Particles (PMPs) through copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) reaction and formed invertase-functionalized PMPs, which can be separated easily. The presence of invertase can convert sucrose to glucose and can be monitored by the PGM easily. The presence of histidine can inhibit the CuAAC, so the read-out signal of PGM decreased. The difference in signals from the PGM before and after addition of histidine has a good linear correlation with the logarithm of the histidine concentrations in the range of 0.01~100 μM with a detection limit of 3.4 nM, which is lower than those of many other chemical sensors. Moreover, the assay of histidine in milk samples is demonstrated with satisfactory results.

  19. Synthesis of DOTA-conjugated multimeric [Tyr3]octreotide peptides via a combination of Cu(I)-catalyzed "click" cycloaddition and thio acid/sulfonyl azide "sulfo-click" amidation and their in vivo evaluation.

    PubMed

    Yim, Cheng-Bin; Dijkgraaf, Ingrid; Merkx, Remco; Versluis, Cees; Eek, Annemarie; Mulder, Gwenn E; Rijkers, Dirk T S; Boerman, Otto C; Liskamp, Rob M J

    2010-05-27

    Herein, we describe the design, synthesis, and biological evaluation of a series of DOTA-conjugated monomeric, dimeric, and tetrameric [Tyr(3)]octreotide-based analogues as a tool for tumor imaging and/or radionuclide therapy. These compounds were synthesized using a Cu(I)-catalyzed 1,3-dipolar cycloaddition ("click" reaction) between peptidic azides and dendrimer-derived alkynes and a subsequent metal-free introduction of DOTA via the thio acid/sulfonyl azide amidation ("sulfo-click" reaction). In a competitive binding assay using rat pancreatic AR42J tumor cells, the monomeric [Tyr(3)]octreotide conjugate displayed the highest binding affinity (IC(50) = 1.32 nM) followed by dimeric [Tyr(3)]octreotide (2.45 nM), [DOTA(0),Tyr(3)]octreotide (2.45 nM), and tetrameric [Tyr(3)]octreotide (14.0 nM). Biodistribution studies with BALB/c nude mice with subcutaneous AR42J tumors showed that the (111)In-labeled monomeric [Tyr(3)]octreotide conjugate had the highest tumor uptake (42.3 +/- 2.8 %ID/g) at 2 h p.i., which was better than [(111)In-DOTA(0),Tyr(3)]octreotide (19.5 +/- 4.8 %ID/g). The (111)In-labeled dimeric [Tyr(3)]octreotide conjugate showed a long tumor retention (25.3 +/- 5.9 %ID/g at 2 h p.i. and 12.1 +/- 1.3 %ID/g at 24 h p.i.). These promising results can be exploited for therapeutic applications.

  20. Ortho-stabilized 18F-azido click agents and application in PET imaging of single-stranded DNA aptamer

    PubMed Central

    Wang, Lu; Jacobson, Orit; Avdic, Din; Rotstein, Benjamin H.; Weiss, Ido D.; Collier, Lee

    2015-01-01

    Azido 18F-arenes are important and versatile building blocks for radiolabeling of biomolecules via Huisgen cycloaddition (‘click chemistry’) in positron emission tomography (PET). However, routine access of such clickable agents is challenged by inefficient multi-step and esoteric radiochemical approaches. Herein we describe a high-yielding direct radiofluorination for azido 18F-arenes by developing an oxygen ortho-stabilized iodonium derivative (OID). This OID strategy addresses an unmet need for a reliable azido 18F-arene clickable agent in bioconjugation reactions. A ssDNA aptamer is radiolabeled and visualized in a xenograft mouse model of human colon cancer by PET, which demonstrates a convenient and highly efficient way of labeling biomolecules and tracking them by OID approach. PMID:26308650