Science.gov

Sample records for all-atom molecular dynamics

  1. Coupling all-atom molecular dynamics simulations of ions in water with Brownian dynamics

    PubMed Central

    2016-01-01

    Molecular dynamics (MD) simulations of ions (K+, Na+, Ca2+ and Cl−) in aqueous solutions are investigated. Water is described using the SPC/E model. A stochastic coarse-grained description for ion behaviour is presented and parametrized using MD simulations. It is given as a system of coupled stochastic and ordinary differential equations, describing the ion position, velocity and acceleration. The stochastic coarse-grained model provides an intermediate description between all-atom MD simulations and Brownian dynamics (BD) models. It is used to develop a multiscale method which uses all-atom MD simulations in parts of the computational domain and (less detailed) BD simulations in the remainder of the domain. PMID:27118886

  2. All-Atom Molecular Dynamics of Virus Capsids as Drug Targets

    PubMed Central

    2016-01-01

    Virus capsids are protein shells that package the viral genome. Although their morphology and biological functions can vary markedly, capsids often play critical roles in regulating viral infection pathways. A detailed knowledge of virus capsids, including their dynamic structure, interactions with cellular factors, and the specific roles that they play in the replication cycle, is imperative for the development of antiviral therapeutics. The following Perspective introduces an emerging area of computational biology that focuses on the dynamics of virus capsids and capsid–protein assemblies, with particular emphasis on the effects of small-molecule drug binding on capsid structure, stability, and allosteric pathways. When performed at chemical detail, molecular dynamics simulations can reveal subtle changes in virus capsids induced by drug molecules a fraction of their size. Here, the current challenges of performing all-atom capsid–drug simulations are discussed, along with an outlook on the applicability of virus capsid simulations to reveal novel drug targets. PMID:27128262

  3. Dissociation of a Dynamic Protein Complex Studied by All-Atom Molecular Simulations.

    PubMed

    Zhang, Liqun; Borthakur, Susmita; Buck, Matthias

    2016-02-23

    The process of protein complex dissociation remains to be understood at the atomic level of detail. Computers now allow microsecond timescale molecular-dynamics simulations, which make the visualization of such processes possible. Here, we investigated the dissociation process of the EphA2-SHIP2 SAM-SAM domain heterodimer complex using unrestrained all-atom molecular-dynamics simulations. Previous studies on this system have shown that alternate configurations are sampled, that their interconversion can be fast, and that the complex is dynamic by nature. Starting from different NMR-derived structures, mutants were designed to stabilize a subset of configurations by swapping ion pairs across the protein-protein interface. We focused on two mutants, K956D/D1235K and R957D/D1223R, with attenuated binding affinity compared with the wild-type proteins. In contrast to calculations on the wild-type complexes, the majority of simulations of these mutants showed protein dissociation within 2.4 μs. During the separation process, we observed domain rotation and pivoting as well as a translation and simultaneous rolling, typically to alternate and weaker binding interfaces. Several unsuccessful recapturing attempts occurred once the domains were moderately separated. An analysis of protein solvation suggests that the dissociation process correlates with a progressive loss of protein-protein contacts. Furthermore, an evaluation of internal protein dynamics using quasi-harmonic and order parameter analyses indicates that changes in protein internal motions are expected to contribute significantly to the thermodynamics of protein dissociation. Considering protein association as the reverse of the separation process, the initial role of charged/polar interactions is emphasized, followed by changes in protein and solvent dynamics. The trajectories show that protein separation does not follow a single distinct pathway, but suggest that the mechanism of dissociation is common in

  4. All-atom molecular dynamics simulation of a photosystem i/detergent complex.

    PubMed

    Harris, Bradley J; Cheng, Xiaolin; Frymier, Paul

    2014-10-01

    All-atom molecular dynamics (MD) simulation was used to investigate the solution structure and dynamics of the photosynthetic pigment-protein complex photosystem I (PSI) from Thermosynechococcus elongatus embedded in a toroidal belt of n-dodecyl-β-d-maltoside (DDM) detergent. Evaluation of root-mean-square deviations (RMSDs) relative to the known crystal structure show that the protein complex surrounded by DDM molecules is stable during the 200 ns simulation time, and root-mean-square fluctuation (RMSF) analysis indicates that regions of high local mobility correspond to solvent-exposed regions such as turns in the transmembrane α-helices and flexible loops on the stromal and lumenal faces. Comparing the protein-detergent complex to a pure detergent micelle, the detergent surrounding the PSI trimer is found to be less densely packed but with more ordered detergent tails, contrary to what is seen in most lipid bilayer models. We also investigated any functional implications for the observed conformational dynamics and protein-detergent interactions, discovering interesting structural changes in the psaL subunits associated with maintaining the trimeric structure of the protein. Importantly, we find that the docking of soluble electron mediators such as cytochrome c6 and ferredoxin to PSI is not significantly impacted by the solubilization of PSI in detergent.

  5. Picosecond infrared laser-induced all-atom nonequilibrium molecular dynamics simulation of dissociation of viruses.

    PubMed

    Hoang Man, Viet; Van-Oanh, Nguyen-Thi; Derreumaux, Philippe; Li, Mai Suan; Roland, Christopher; Sagui, Celeste; Nguyen, Phuong H

    2016-04-28

    Since the discovery of the plant pathogen tobacco mosaic virus as the first viral entity in the late 1800s, viruses traditionally have been mainly thought of as pathogens for disease-resistances. However, viruses have recently been exploited as nanoplatforms with applications in biomedicine and materials science. To this aim, a large majority of current methods and tools have been developed to improve the physical stability of viral particles, which may be critical to the extreme physical or chemical conditions that viruses may encounter during purification, fabrication processes, storage and use. However, considerably fewer studies are devoted to developing efficient methods to degrade or recycle such enhanced stability biomaterials. With this in mind, we carry out all-atom nonequilibrium molecular dynamics simulation, inspired by the recently developed mid-infrared free-electron laser pulse technology, to dissociate viruses. Adopting the poliovirus as a representative example, we find that the primary step in the dissociation process is due to the strong resonance between the amide I vibrational modes of the virus and the tuned laser frequencies. This process is determined by a balance between the formation and dissociation of the protein shell, reflecting the highly plasticity of the virus. Furthermore, our method should provide a feasible approach to simulate viruses, which is otherwise too expensive for conventional equilibrium all-atom simulations of such very large systems. Our work shows a proof of concept which may open a new, efficient way to cleave or to recycle virus-based materials, provide an extremely valuable tool for elucidating mechanical aspects of viruses, and may well play an important role in future fighting against virus-related diseases.

  6. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    SciTech Connect

    Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S.; Fujimoto, K.; Nakagawa, A.; Nomoto, A.

    2014-10-28

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  7. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    NASA Astrophysics Data System (ADS)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Fujimoto, K.; Kojima, H.; Mizutani, K.; Nakagawa, A.; Nomoto, A.; Okazaki, S.

    2014-10-01

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 106 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  8. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore.

    PubMed

    Di Marino, Daniele; Bonome, Emma Letizia; Tramontano, Anna; Chinappi, Mauro

    2015-08-01

    Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.

  9. Dissociation of a Dynamic Protein Complex Studied by All-Atom Molecular Simulations.

    PubMed

    Zhang, Liqun; Borthakur, Susmita; Buck, Matthias

    2016-02-23

    The process of protein complex dissociation remains to be understood at the atomic level of detail. Computers now allow microsecond timescale molecular-dynamics simulations, which make the visualization of such processes possible. Here, we investigated the dissociation process of the EphA2-SHIP2 SAM-SAM domain heterodimer complex using unrestrained all-atom molecular-dynamics simulations. Previous studies on this system have shown that alternate configurations are sampled, that their interconversion can be fast, and that the complex is dynamic by nature. Starting from different NMR-derived structures, mutants were designed to stabilize a subset of configurations by swapping ion pairs across the protein-protein interface. We focused on two mutants, K956D/D1235K and R957D/D1223R, with attenuated binding affinity compared with the wild-type proteins. In contrast to calculations on the wild-type complexes, the majority of simulations of these mutants showed protein dissociation within 2.4 μs. During the separation process, we observed domain rotation and pivoting as well as a translation and simultaneous rolling, typically to alternate and weaker binding interfaces. Several unsuccessful recapturing attempts occurred once the domains were moderately separated. An analysis of protein solvation suggests that the dissociation process correlates with a progressive loss of protein-protein contacts. Furthermore, an evaluation of internal protein dynamics using quasi-harmonic and order parameter analyses indicates that changes in protein internal motions are expected to contribute significantly to the thermodynamics of protein dissociation. Considering protein association as the reverse of the separation process, the initial role of charged/polar interactions is emphasized, followed by changes in protein and solvent dynamics. The trajectories show that protein separation does not follow a single distinct pathway, but suggest that the mechanism of dissociation is common in

  10. All-atom molecular dynamics studies of the full-length β-amyloid peptides

    NASA Astrophysics Data System (ADS)

    Luttmann, Edgar; Fels, Gregor

    2006-03-01

    β-Amyloid peptides are believed to play an essential role in Alzheimer's disease (AD), due to their sedimentation in the form of β-amyloid aggregates in the brain of AD-patients, and the in vitro neurotoxicity of oligomeric aggregates. The monomeric peptides come in different lengths of 39-43 residues, of which the 42 alloform seems to be most strongly associated with AD-symptoms. Structural information on these peptides to date comes from NMR studies in acidic solutions, organic solvents, or on shorter fragments of the peptide. In addition X-ray and solid-state NMR investigations of amyloid fibrils yield insight into the structure of the final aggregate and therefore define the endpoint of any conformational change of an Aβ-monomer along the aggregation process. The conformational changes necessary to connect the experimentally known conformations are not yet understood and this process is an active field of research. In this paper, we report results from all-atom molecular dynamics simulations based on experimental data from four different peptides of 40 amino acids and two peptides consisting of 42 amino acids. The simulations allow for the analysis of intramolecular interactions and the role of structural features. In particular, they show the appearance of β-turn in the region between amino acid 21 and 33, forming a hook-like shape as it is known to exist in the fibrillar Aβ-structures. This folding does not depend on the formation of a salt bridge between Asp-23 and Lys-28 but requires the Aβ(1-42) as such structure was not observed in the shorter system Aβ(1-40).

  11. Elastic properties of dynein motor domain obtained from all-atom molecular dynamics simulations

    PubMed Central

    Kamiya, Narutoshi; Mashimo, Tadaaki; Takano, Yu; Kon, Takahide; Kurisu, Genji; Nakamura, Haruki

    2016-01-01

    Dyneins are large microtubule motor proteins that convert ATP energy to mechanical power. High-resolution crystal structures of ADP-bound cytoplasmic dynein have revealed the organization of the motor domain, comprising the AAA+ ring, the linker, the stalk/strut and the C sequence. Recently, the ADP.vanadate-bound structure, which is similar to the ATP hydrolysis transition state, revealed how the structure of dynein changes upon ATP binding. Although both the ADP- and ATP-bound state structures have been resolved, the dynamic properties at the atomic level remain unclear. In this work, we built two models named ‘the ADP model’ and ‘the ATP model’, where ADP and ATP are bound to AAA1 in the AAA+ ring, respectively, to observe the initial procedure of the structural change from the unprimed to the primed state. We performed 200-ns molecular dynamics simulations for both models and compared their structures and dynamics. The motions of the stalk, consisting of a long coiled coil with a microtubule-binding domain, significantly differed between the two models. The elastic properties of the stalk were analyzed and compared with the experimental results. PMID:27334455

  12. Elastic properties of dynein motor domain obtained from all-atom molecular dynamics simulations.

    PubMed

    Kamiya, Narutoshi; Mashimo, Tadaaki; Takano, Yu; Kon, Takahide; Kurisu, Genji; Nakamura, Haruki

    2016-08-01

    Dyneins are large microtubule motor proteins that convert ATP energy to mechanical power. High-resolution crystal structures of ADP-bound cytoplasmic dynein have revealed the organization of the motor domain, comprising the AAA(+) ring, the linker, the stalk/strut and the C sequence. Recently, the ADP.vanadate-bound structure, which is similar to the ATP hydrolysis transition state, revealed how the structure of dynein changes upon ATP binding. Although both the ADP- and ATP-bound state structures have been resolved, the dynamic properties at the atomic level remain unclear. In this work, we built two models named 'the ADP model' and 'the ATP model', where ADP and ATP are bound to AAA1 in the AAA(+) ring, respectively, to observe the initial procedure of the structural change from the unprimed to the primed state. We performed 200-ns molecular dynamics simulations for both models and compared their structures and dynamics. The motions of the stalk, consisting of a long coiled coil with a microtubule-binding domain, significantly differed between the two models. The elastic properties of the stalk were analyzed and compared with the experimental results. PMID:27334455

  13. Effects of Lipid Composition on Bilayer Membranes Quantified by All-Atom Molecular Dynamics.

    PubMed

    Ding, Wei; Palaiokostas, Michail; Wang, Wen; Orsi, Mario

    2015-12-10

    Biological bilayer membranes typically contain varying amounts of lamellar and nonlamellar lipids. Lamellar lipids, such as dioleoylphosphatidylcholine (DOPC), are defined by their tendency to form the lamellar phase, ubiquitous in biology. Nonlamellar lipids, such as dioleoylphosphatidylethanolamine (DOPE), prefer instead to form nonlamellar phases, which are mostly nonbiological. However, nonlamellar lipids mix with lamellar lipids in biomembrane structures that remain overall lamellar. Importantly, changes in the lamellar vs nonlamellar lipid composition are believed to affect membrane function and modulate membrane proteins. In this work, we employ atomistic molecular dynamics simulations to quantify how a range of bilayer properties are altered by variations in the lamellar vs nonlamellar lipid composition. Specifically, we simulate five DOPC/DOPE bilayers at mixing ratios of 1/0, 3/1, 1/1, 1/3, and 0/1. We examine properties including lipid area and bilayer thickness, as well as the transmembrane profiles of electron density, lateral pressure, electric field, and dipole potential. While the bilayer structure is only marginally altered by lipid composition changes, dramatic effects are observed for the lateral pressure, electric field, and dipole potential profiles. Possible implications for membrane function are discussed.

  14. Structure and function of photosystem I–[FeFe] hydrogenase protein fusions: An all-atom molecular dynamics study

    SciTech Connect

    Harris, Bradley J.; Cheng, Xiaolin; Frymier, Paul

    2015-12-15

    All-atom molecular dynamics (MD) simulation was used to study the solution dynamics and protein protein interactions of protein fusions of photosystem I (PSI) from Thermosynechococcus elongatus and an [FeFe]-hydrogenase (FeFe H2ase) from Clostridium pasteurianum, a unique complex capable of photocatalytic hydrogen production. This study involved fusions of these two proteins via dithiol linkers of different length including decanedithiol, octanedithiol, and hexanedithiol, for which experimental data had previously been obtained. Evaluation of root-mean-squared deviations (RMSDs) relative to the respective crystal structures of PSI and the FeFe H2ase shows that these fusion complexes approach stable equilibrium conformations during the MD simulations. Investigating protein mobility via root-mean-squared fluctuations (RMSFs) reveals that tethering via the shortest hexanedithiol linker results in increased atomic fluctuations of both PSI and the hydrogenase in these fusion complexes. Furthermore, evaluation of the inter- and intraprotein electron transfer distances in these fusion complexes indicates that the structural changes in the FeFe H2ase arising from ligation to PSI via the shortest hexanedithiol linker may hinder electron transport in the hydrogenase, thus providing a molecular level explanation for the observation that the medium-length octanedithiol linker gives the highest hydrogen production rate.

  15. Insights into the Tunnel Mechanism of Cholesteryl Ester Transfer Protein through All-atom Molecular Dynamics Simulations.

    PubMed

    Lei, Dongsheng; Rames, Matthew; Zhang, Xing; Zhang, Lei; Zhang, Shengli; Ren, Gang

    2016-07-01

    Cholesteryl ester transfer protein (CETP) mediates cholesteryl ester (CE) transfer from the atheroprotective high density lipoprotein (HDL) cholesterol to the atherogenic low density lipoprotein cholesterol. In the past decade, this property has driven the development of CETP inhibitors, which have been evaluated in large scale clinical trials for treating cardiovascular diseases. Despite the pharmacological interest, little is known about the fundamental mechanism of CETP in CE transfer. Recent electron microscopy (EM) experiments have suggested a tunnel mechanism, and molecular dynamics simulations have shown that the flexible N-terminal distal end of CETP penetrates into the HDL surface and takes up a CE molecule through an open pore. However, it is not known whether a CE molecule can completely transfer through an entire CETP molecule. Here, we used all-atom molecular dynamics simulations to evaluate this possibility. The results showed that a hydrophobic tunnel inside CETP is sufficient to allow a CE molecule to completely transfer through the entire CETP within a predicted transfer time and at a rate comparable with those obtained through physiological measurements. Analyses of the detailed interactions revealed several residues that might be critical for CETP function, which may provide important clues for the effective development of CETP inhibitors and treatment of cardiovascular diseases. PMID:27143480

  16. Structure and function of photosystem I–[FeFe] hydrogenase protein fusions: An all-atom molecular dynamics study

    DOE PAGES

    Harris, Bradley J.; Cheng, Xiaolin; Frymier, Paul

    2015-12-15

    All-atom molecular dynamics (MD) simulation was used to study the solution dynamics and protein protein interactions of protein fusions of photosystem I (PSI) from Thermosynechococcus elongatus and an [FeFe]-hydrogenase (FeFe H2ase) from Clostridium pasteurianum, a unique complex capable of photocatalytic hydrogen production. This study involved fusions of these two proteins via dithiol linkers of different length including decanedithiol, octanedithiol, and hexanedithiol, for which experimental data had previously been obtained. Evaluation of root-mean-squared deviations (RMSDs) relative to the respective crystal structures of PSI and the FeFe H2ase shows that these fusion complexes approach stable equilibrium conformations during the MD simulations. Investigatingmore » protein mobility via root-mean-squared fluctuations (RMSFs) reveals that tethering via the shortest hexanedithiol linker results in increased atomic fluctuations of both PSI and the hydrogenase in these fusion complexes. Furthermore, evaluation of the inter- and intraprotein electron transfer distances in these fusion complexes indicates that the structural changes in the FeFe H2ase arising from ligation to PSI via the shortest hexanedithiol linker may hinder electron transport in the hydrogenase, thus providing a molecular level explanation for the observation that the medium-length octanedithiol linker gives the highest hydrogen production rate.« less

  17. Insights into the Tunnel Mechanism of Cholesteryl Ester Transfer Protein through All-atom Molecular Dynamics Simulations*

    PubMed Central

    Lei, Dongsheng; Rames, Matthew; Zhang, Xing; Zhang, Lei; Zhang, Shengli; Ren, Gang

    2016-01-01

    Cholesteryl ester transfer protein (CETP) mediates cholesteryl ester (CE) transfer from the atheroprotective high density lipoprotein (HDL) cholesterol to the atherogenic low density lipoprotein cholesterol. In the past decade, this property has driven the development of CETP inhibitors, which have been evaluated in large scale clinical trials for treating cardiovascular diseases. Despite the pharmacological interest, little is known about the fundamental mechanism of CETP in CE transfer. Recent electron microscopy (EM) experiments have suggested a tunnel mechanism, and molecular dynamics simulations have shown that the flexible N-terminal distal end of CETP penetrates into the HDL surface and takes up a CE molecule through an open pore. However, it is not known whether a CE molecule can completely transfer through an entire CETP molecule. Here, we used all-atom molecular dynamics simulations to evaluate this possibility. The results showed that a hydrophobic tunnel inside CETP is sufficient to allow a CE molecule to completely transfer through the entire CETP within a predicted transfer time and at a rate comparable with those obtained through physiological measurements. Analyses of the detailed interactions revealed several residues that might be critical for CETP function, which may provide important clues for the effective development of CETP inhibitors and treatment of cardiovascular diseases. PMID:27143480

  18. All-atom molecular dynamics analysis of multi-peptide systems reproduces peptide solubility in line with experimental observations

    PubMed Central

    Kuroda, Yutaka; Suenaga, Atsushi; Sato, Yuji; Kosuda, Satoshi; Taiji, Makoto

    2016-01-01

    In order to investigate the contribution of individual amino acids to protein and peptide solubility, we carried out 100 ns molecular dynamics (MD) simulations of 106 Å3 cubic boxes containing ~3 × 104 water molecules and 27 tetra-peptides regularly positioned at 23 Å from each other and composed of a single amino acid type for all natural amino acids but cysteine and glycine. The calculations were performed using Amber with a standard force field on a special purpose MDGRAPE-3 computer, without introducing any “artificial” hydrophobic interactions. Tetra-peptides composed of I, V, L, M, N, Q, F, W, Y, and H formed large amorphous clusters, and those containing A, P, S, and T formed smaller ones. Tetra-peptides made of D, E, K, and R did not cluster at all. These observations correlated well with experimental solubility tendencies as well as hydrophobicity scales with correlation coefficients of 0.5 to > 0.9. Repulsive Coulomb interactions were dominant in ensuring high solubility, whereas both Coulomb and van der Waals (vdW) energies contributed to the aggregations of low solubility amino acids. Overall, this very first all-atom molecular dynamics simulation of a multi-peptide system appears to reproduce the basic properties of peptide solubility, essentially in line with experimental observations. PMID:26817663

  19. A coarse-graining approach for molecular simulation that retains the dynamics of the all-atom reference system by implementing hydrodynamic interactions

    SciTech Connect

    Markutsya, Sergiy; Lamm, Monica H

    2014-11-07

    We report on a new approach for deriving coarse-grained intermolecular forces that retains the frictional contribution that is often discarded by conventional coarse-graining methods. The approach is tested for water and an aqueous glucose solution, and the results from the new implementation for coarse-grained molecular dynamics simulation show remarkable agreement with the dynamics obtained from reference all-atom simulations. The agreement between the structural properties observed in the coarse-grained and all-atom simulations is also preserved. We discuss how this approach may be applied broadly to any existing coarse-graining method where the coarse-grained models are rigorously derived from all-atom reference systems.

  20. Solvated molecular dynamics of LiCN isomerization: All-atom argon solvent versus a generalized Langevin bath.

    PubMed

    Junginger, Andrej; Garcia-Muller, Pablo L; Borondo, F; Benito, R M; Hernandez, Rigoberto

    2016-01-14

    The reaction rate rises and falls with increasing density or friction when a molecule is activated by collisions with the solvent particles. This so-called Kramers turnover has recently been observed in the isomerization reaction of LiCN in an argon bath. In this paper, we demonstrate by direct comparison with those results that a reduced-dimensional (generalized) Langevin description gives rise to similar reaction dynamics as the corresponding (computationally expensive) full molecular dynamics calculations. We show that the density distributions within the Langevin description are in direct agreement with the full molecular dynamics results and that the turnover in the reaction rates is reproduced qualitatively and quantitatively at different temperatures. PMID:26772551

  1. Charge-leveling and proper treatment of long-range electrostatics in all-atom molecular dynamics at constant pH

    NASA Astrophysics Data System (ADS)

    Wallace, Jason A.; Shen, Jana K.

    2012-11-01

    Recent development of constant pH molecular dynamics (CpHMD) methods has offered promise for adding pH-stat in molecular dynamics simulations. However, until now the working pH molecular dynamics (pHMD) implementations are dependent in part or whole on implicit-solvent models. Here we show that proper treatment of long-range electrostatics and maintaining charge neutrality of the system are critical for extending the continuous pHMD framework to the all-atom representation. The former is achieved here by adding forces to titration coordinates due to long-range electrostatics based on the generalized reaction field method, while the latter is made possible by a charge-leveling technique that couples proton titration with simultaneous ionization or neutralization of a co-ion in solution. We test the new method using the pH-replica-exchange CpHMD simulations of a series of aliphatic dicarboxylic acids with varying carbon chain length. The average absolute deviation from the experimental pKa values is merely 0.18 units. The results show that accounting for the forces due to extended electrostatics removes the large random noise in propagating titration coordinates, while maintaining charge neutrality of the system improves the accuracy in the calculated electrostatic interaction between ionizable sites. Thus, we believe that the way is paved for realizing pH-controlled all-atom molecular dynamics in the near future.

  2. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Guo, Hao; Sakuraba, Shun; Matubayasi, Nobuyuki; Kitao, Akio

    2012-12-01

    We propose a method to evaluate binding free energy differences among distinct protein-protein complex model structures through all-atom molecular dynamics simulations in explicit water using the solution theory in the energy representation. Complex model structures are generated from a pair of monomeric structures using the rigid-body docking program ZDOCK. After structure refinement by side chain optimization and all-atom molecular dynamics simulations in explicit water, complex models are evaluated based on the sum of their conformational and solvation free energies, the latter calculated from the energy distribution functions obtained from relatively short molecular dynamics simulations of the complex in water and of pure water based on the solution theory in the energy representation. We examined protein-protein complex model structures of two protein-protein complex systems, bovine trypsin/CMTI-1 squash inhibitor (PDB ID: 1PPE) and RNase SA/barstar (PDB ID: 1AY7), for which both complex and monomer structures were determined experimentally. For each system, we calculated the energies for the crystal complex structure and twelve generated model structures including the model most similar to the crystal structure and very different from it. In both systems, the sum of the conformational and solvation free energies tended to be lower for the structure similar to the crystal. We concluded that our energy calculation method is useful for selecting low energy complex models similar to the crystal structure from among a set of generated models.

  3. Effect of water on structure and dynamics of [BMIM][PF6] ionic liquid: An all-atom molecular dynamics simulation investigation.

    PubMed

    Sharma, Anirban; Ghorai, Pradip Kr

    2016-03-21

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure IL but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.

  4. Effect of water on structure and dynamics of [BMIM][PF6] ionic liquid: An all-atom molecular dynamics simulation investigation

    NASA Astrophysics Data System (ADS)

    Sharma, Anirban; Ghorai, Pradip Kr.

    2016-03-01

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure IL but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.

  5. Spontaneous conformational changes in the E. coli GroEL subunit from all-atom molecular dynamics simulations.

    PubMed

    Sliozberg, Yelena; Abrams, Cameron F

    2007-09-15

    The Escherichia coli chaperonin GroEL is a complex of identical subunit proteins (57 kDa each) arranged in a back-to-back stacking of two heptameric rings. Its hallmarks include nested positive intra-ring and negative inter-ring cooperativity in adenosine trisphosphate (ATP) binding and the ability to mediate the folding of newly transcribed and/or denatured substrate proteins. We performed unbiased molecular dynamics simulations of the GroEL subunit protein in explicit water both with and without the nucleotide KMgATP to understand better the details of the structural transitions that enable these behaviors. Placing KMgATP in the equatorial domain binding pocket of a t state subunit, which corresponds to a low ATP-affinity state, produced a short-lived (6 ns) state that spontaneously transitioned to the high ATP-affinity r state. The important feature of this transition is a large-scale rotation of the intermediate domain's helix M to close the ATP binding pocket. Pivoting of helix M is accompanied by counterclockwise rotation and slight deformation of the apical domain, important for lowering the affinity for substrate protein. Aligning simulation conformations into model heptamer rings demonstrates that the t-->r transition in one subunit is not sterically hindered by t state neighbors, but requires breakage of Arg(197)-Glu(386) intersubunit salt bridges, which are important for inter-ring positive cooperativity. Lowest-frequency quasi-harmonic modes of vibration computed pre- and post-transition clearly show that natural vibrations facilitate the transition. Finally, we propose a novel mechanism for inter-ring cooperativity in ATP binding inspired by the observation of spontaneous insertion of the side chain of Ala(480) into the empty nucleotide pocket. PMID:17513353

  6. COFFDROP: A Coarse-Grained Nonbonded Force Field for Proteins Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of Amino Acids

    PubMed Central

    2015-01-01

    We describe the derivation of a set of bonded and nonbonded coarse-grained (CG) potential functions for use in implicit-solvent Brownian dynamics (BD) simulations of proteins derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acids. Bonded potential functions were derived from 1 μs MD simulations of each of the 20 canonical amino acids, with histidine modeled in both its protonated and neutral forms; nonbonded potential functions were derived from 1 μs MD simulations of every possible pairing of the amino acids (231 different systems). The angle and dihedral probability distributions and radial distribution functions sampled during MD were used to optimize a set of CG potential functions through use of the iterative Boltzmann inversion (IBI) method. The optimized set of potential functions—which we term COFFDROP (COarse-grained Force Field for Dynamic Representation Of Proteins)—quantitatively reproduced all of the “target” MD distributions. In a first test of the force field, it was used to predict the clustering behavior of concentrated amino acid solutions; the predictions were directly compared with the results of corresponding all-atom explicit-solvent MD simulations and found to be in excellent agreement. In a second test, BD simulations of the small protein villin headpiece were carried out at concentrations that have recently been studied in all-atom explicit-solvent MD simulations by Petrov and Zagrovic (PLoS Comput. Biol.2014, 5, e1003638). The anomalously strong intermolecular interactions seen in the MD study were reproduced in the COFFDROP simulations; a simple scaling of COFFDROP’s nonbonded parameters, however, produced results in better accordance with experiment. Overall, our results suggest that potential functions derived from simulations of pairwise amino acid interactions might be of quite broad applicability, with COFFDROP likely to be especially useful for modeling unfolded or intrinsically

  7. Insight into the Properties of Cardiolipin Containing Bilayers from Molecular Dynamics Simulations, Using a Hybrid All-Atom/United-Atom Force Field.

    PubMed

    Aguayo, Daniel; González-Nilo, Fernando D; Chipot, Christophe

    2012-05-01

    Simulation of three models of cardiolipin (CL) containing membranes using a new set of parameters for tetramyristoyl and tetraoleoyl CLs has been developed in the framework of the united-atom CHARMM27-UA and the all-atom CHARMM36 force fields with the aim of performing molecular dynamics (MD) simulations of cardiolipin-containing mixed-lipid membranes. The new parameters use a hybrid representation of all-atom head groups in conjunction with implicit-hydrogen united-atom (UA) to describe the oleoyl and myristoyl chains of the CLs, in lieu of the fully atomistic description, thereby allowing longer simulations to be undertaken. The physicochemical properties of the bilayers were determined and compared with previously reported data. Furthermore, using tetramyristoyl CL mixed with POPG and POPE lipids, a mitochondrial membrane was simulated. The results presented here show the different behavior of the bilayers as a result of the lipid composition, where the length of the acyl chain and the conformation of the headgroup can be associated with the mitochondrial membrane properties. The new hybrid CL parameters prove to be well suited for the simulation of the molecular structure of CL-containing bilayers and can be extended to other lipid bilayers composed of CLs with different acyl chains or alternate head groups.

  8. Insight into the Properties of Cardiolipin Containing Bilayers from Molecular Dynamics Simulations, Using a Hybrid All-Atom/United-Atom Force Field.

    PubMed

    Aguayo, Daniel; González-Nilo, Fernando D; Chipot, Christophe

    2012-05-01

    Simulation of three models of cardiolipin (CL) containing membranes using a new set of parameters for tetramyristoyl and tetraoleoyl CLs has been developed in the framework of the united-atom CHARMM27-UA and the all-atom CHARMM36 force fields with the aim of performing molecular dynamics (MD) simulations of cardiolipin-containing mixed-lipid membranes. The new parameters use a hybrid representation of all-atom head groups in conjunction with implicit-hydrogen united-atom (UA) to describe the oleoyl and myristoyl chains of the CLs, in lieu of the fully atomistic description, thereby allowing longer simulations to be undertaken. The physicochemical properties of the bilayers were determined and compared with previously reported data. Furthermore, using tetramyristoyl CL mixed with POPG and POPE lipids, a mitochondrial membrane was simulated. The results presented here show the different behavior of the bilayers as a result of the lipid composition, where the length of the acyl chain and the conformation of the headgroup can be associated with the mitochondrial membrane properties. The new hybrid CL parameters prove to be well suited for the simulation of the molecular structure of CL-containing bilayers and can be extended to other lipid bilayers composed of CLs with different acyl chains or alternate head groups. PMID:26593668

  9. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): time-resolved fluorescence measurements and all-atom molecular dynamics simulations.

    PubMed

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  10. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-01

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ˜120-145 K above the measured glass transition temperatures (˜207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (˜70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  11. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations

    SciTech Connect

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH{sub 3}CONH{sub 2}) and urea (NH{sub 2}CONH{sub 2}) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH{sub 3}CONH{sub 2} + (1 − f)NH{sub 2}CONH{sub 2}] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α{sub 2}) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  12. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): time-resolved fluorescence measurements and all-atom molecular dynamics simulations.

    PubMed

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems. PMID:25612718

  13. All-atom molecular dynamics simulations of actin-myosin interactions: a comparative study of cardiac α myosin, β myosin, and fast skeletal muscle myosin.

    PubMed

    Li, Minghui; Zheng, Wenjun

    2013-11-26

    Myosins are a superfamily of actin-binding motor proteins with significant variations in kinetic properties (such as actin binding affinity) between different isoforms. It remains unknown how such kinetic variations arise from the structural and dynamic tuning of the actin-myosin interface at the amino acid residue level. To address this key issue, we have employed molecular modeling and simulations to investigate, with atomistic details, the isoform dependence of actin-myosin interactions in the rigor state. By combining electron microscopy-based docking with homology modeling, we have constructed three all-atom models for human cardiac α and β and rabbit fast skeletal muscle myosin in complex with three actin subunits in the rigor state. Starting from these models, we have performed extensive all-atom molecular dynamics (MD) simulations (total of 100 ns per system) and then used the MD trajectories to calculate actin-myosin binding free energies with contributions from both electrostatic and nonpolar forces. Our binding calculations are in good agreement with the experimental finding of isoform-dependent differences in actin binding affinity between these myosin isoforms. Such differences are traced to changes in actin-myosin electrostatic interactions (i.e., hydrogen bonds and salt bridges) that are highly dynamic and involve several flexible actin-binding loops. By partitioning the actin-myosin binding free energy to individual myosin residues, we have also identified key myosin residues involved in the actin-myosin interactions, some of which were previously validated experimentally or implicated in cardiomyopathy mutations, and the rest make promising targets for future mutational experiments. PMID:24224850

  14. Ionic velocities in an ionic liquid under high electric fields using all-atom and coarse-grained force field molecular dynamics

    NASA Astrophysics Data System (ADS)

    Daily, John W.; Micci, Michael M.

    2009-09-01

    Molecular dynamics has been used to estimate ionic velocities and electrical conductivity in the ionic liquid 1-ethyl-3-methylimidazolium/tetraflouroborate (EMIM-BF4). Both an all-atom and coarse grained force fields were explored. The simulations were carried out at high electric fields where one might expect the Wien effect to become important in conventional electrolytes and that effect is observed. While the original Wilson theory used to explain the Wien effect in conventional electrolytes does not work well for ionic liquids, a minor modification of the theory allowed it to be used to qualitatively describe the data. The two coarse-graining methods were noisier as expected, but result in a significant savings in computational cost.

  15. Putative membrane lytic sites of P-type and S-type cardiotoxins from snake venoms as probed by all-atom molecular dynamics simulations.

    PubMed

    Gorai, Biswajit; Karthikeyan, Muthusamy; Sivaraman, Thirunavukkarasu

    2016-10-01

    Cardiotoxins (CTXs) belonging to the three-finger toxin superfamily of snake venoms are one of principal toxic components and the protein toxins exhibit membrane lytic activities when the venoms are injected into victims. In the present study, complex formations between CTX VI (a P-type CTX from Naja atra) and CTX1 (an S-type CTX from Naja naja) on zwitterionic POPC bilayers (a major lipid component of cell membranes) have been studied in near physiological conditions for a total dynamic time scale of 1.35 μs using all-atom molecular dynamics (MD) simulations. Comprehensive analyses of the MD data revealed that residues such as Leu1, Lys2, Tyr11, Lys31, Asp57 and Arg58 of CTX VI, and Ala16, Lys30 and Arg58 of CTX1 were crucial for establishing interactions with the POPC bilayer. Moreover, loop I, along with globular head and loop II of CTX VI, and loop II of CTX1 were found to be the structural regions chiefly governing complex formation of the respective proteins with POPC. Rationalizations for the differential binding modes of CTXs and implications of the findings for designing small molecular inhibitors to the toxins are also discussed. Graphical Abstract Binding modes of a P-type CTX and an S-type CTX towards the POPC bilayer. PMID:27628673

  16. Energetics of nonpolar and polar compounds in cationic, anionic, and nonionic micelles studied by all-atom molecular dynamics simulation combined with a theory of solutions.

    PubMed

    Date, Atsushi; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2016-05-21

    Energetic analysis was conducted for nonpolar and polar solutes bound in a cationic micelle of dodecyl trimethyl ammonium bromide (DTAB), an anionic micelle of sodium dodecyl sulfate (SDS), and a nonionic micelle of tetraethylene glycol monododecyl ether (Brij30). All-atom molecular dynamics simulation was performed, and the free energies of binding the solutes in the hydrophobic-core and headgroup regions of the micelles were computed using the energy-representation method. It was found in all the micelles examined that aromatic naphthalene is preferably located more outward than aliphatic propane and that the polar solutes are localized at the interface of the hydrophobic and hydrophilic regions. The roles of the surfactant and water were then elucidated by decomposing the free energy into the contributions from the respective species. Water was observed to play a decisive role in determining the binding location of the solute, while the surfactant was found to be more important for the overall stabilization of the solute within the micelle. The effects of attractive and repulsive interactions of the solute with the surfactant and water were further examined, and their competition was analyzed in connection with the preferable location of the solute in the micellar system.

  17. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all-atom molecular dynamics simulations.

    PubMed

    Ou, Shu-Ching; Cui, Di; Wezowicz, Matthew; Taufer, Michela; Patel, Sandeep

    2015-06-15

    In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and

  18. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all-atom molecular dynamics simulations.

    PubMed

    Ou, Shu-Ching; Cui, Di; Wezowicz, Matthew; Taufer, Michela; Patel, Sandeep

    2015-06-15

    In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and

  19. Free Energetics of Carbon Nanotube Association in Aqueous Inorganic NaI Salt Solutions: Temperature Effects using All-Atom Molecular Dynamics Simulations

    PubMed Central

    Ou, Shu-Ching; Cui, Di; Wezowicz, Matthew; Taufer, Michela; Patel, Sandeep

    2015-01-01

    In this study we examine the temperature dependence of free energetics of nanotube association by using GPU-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intra-tube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation also shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and interpretations of

  20. All-atom simulations of crowding effects on ubiquitin dynamics

    NASA Astrophysics Data System (ADS)

    Abriata, Luciano A.; Spiga, Enrico; Dal Peraro, Matteo

    2013-08-01

    It is well-known that crowded environments affect the stability of proteins, with strong biological and biotechnological implications; however, beyond this, crowding is also expected to affect the dynamic properties of proteins, an idea that is hard to probe experimentally. Here we report on a simulation study aimed at evaluating the effects of crowding on internal protein dynamics, based on fully all-atom descriptions of the protein, the solvent and the crowder. Our model system consists of ubiquitin, a protein whose dynamic features are closely related to its ability to bind to multiple partners, in a 325 g L-1 solution of glucose in water, a condition widely employed in in vitro studies of crowding effects. We observe a slight reduction in loop flexibility accompanied by a dramatic restriction of the conformational space explored in the timescale of the simulations (˜0.5 µs), indicating that crowding slows down collective motions and the rate of exploration of the conformational space. This effect is attributed to the extensive and long-lasting interactions observed between protein residues and glucose molecules throughout the entire protein surface. Potential implications of the observed effects are discussed.

  1. Parameterization of backbone flexibility in a coarse-grained force field for proteins (COFFDROP) derived from all-atom explicit-solvent molecular dynamics simulations of all possible two-residue peptides

    PubMed Central

    Frembgen-Kesner, Tamara; Andrews, Casey T.; Li, Shuxiang; Ngo, Nguyet Anh; Shubert, Scott A.; Jain, Aakash; Olayiwola, Oluwatoni; Weishaar, Mitch R.; Elcock, Adrian H.

    2015-01-01

    Recently, we reported the parameterization of a set of coarse-grained (CG) nonbonded potential functions, derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acid pairs, and designed for use in (implicit-solvent) Brownian dynamics (BD) simulations of proteins; this force field was named COFFDROP (COarse-grained Force Field for Dynamic Representations Of Proteins). Here, we describe the extension of COFFDROP to include bonded backbone terms derived from fitting to results of explicit-solvent MD simulations of all possible two-residue peptides containing the 20 standard amino acids, with histidine modeled in both its protonated and neutral forms. The iterative Boltzmann inversion (IBI) method was used to optimize new CG potential functions for backbone-related terms by attempting to reproduce angle, dihedral and distance probability distributions generated by the MD simulations. In a simple test of the transferability of the extended force field, the angle, dihedral and distance probability distributions obtained from BD simulations of 56 three-residue peptides were compared to results from corresponding explicit-solvent MD simulations. In a more challenging test of the COFFDROP force field, it was used to simulate eight intrinsically disordered proteins and was shown to quite accurately reproduce the experimental hydrodynamic radii (Rhydro), provided that the favorable nonbonded interactions of the force field were uniformly scaled downwards in magnitude. Overall, the results indicate that the COFFDROP force field is likely to find use in modeling the conformational behavior of intrinsically disordered proteins and multi-domain proteins connected by flexible linkers. PMID:26574429

  2. ALMOST: an all atom molecular simulation toolkit for protein structure determination.

    PubMed

    Fu, Biao; Sahakyan, Aleksandr B; Camilloni, Carlo; Tartaglia, Gian Gaetano; Paci, Emanuele; Caflisch, Amedeo; Vendruscolo, Michele; Cavalli, Andrea

    2014-05-30

    Almost (all atom molecular simulation toolkit) is an open source computational package for structure determination and analysis of complex molecular systems including proteins, and nucleic acids. Almost has been designed with two primary goals: to provide tools for molecular structure determination using various types of experimental measurements as conformational restraints, and to provide methods for the analysis and assessment of structural and dynamical properties of complex molecular systems. The methods incorporated in Almost include the determination of structural and dynamical features of proteins using distance restraints derived from nuclear Overhauser effect measurements, orientational restraints obtained from residual dipolar couplings and the structural restraints from chemical shifts. Here, we present the first public release of Almost, highlight the key aspects of its computational design and discuss the main features currently implemented. Almost is available for the most common Unix-based operating systems, including Linux and Mac OS X. Almost is distributed free of charge under the GNU Public License, and is available both as a source code and as a binary executable from the project web site at http://www.open-almost.org. Interested users can follow and contribute to the further development of Almost on http://sourceforge.net/projects/almost.

  3. ALMOST: an all atom molecular simulation toolkit for protein structure determination.

    PubMed

    Fu, Biao; Sahakyan, Aleksandr B; Camilloni, Carlo; Tartaglia, Gian Gaetano; Paci, Emanuele; Caflisch, Amedeo; Vendruscolo, Michele; Cavalli, Andrea

    2014-05-30

    Almost (all atom molecular simulation toolkit) is an open source computational package for structure determination and analysis of complex molecular systems including proteins, and nucleic acids. Almost has been designed with two primary goals: to provide tools for molecular structure determination using various types of experimental measurements as conformational restraints, and to provide methods for the analysis and assessment of structural and dynamical properties of complex molecular systems. The methods incorporated in Almost include the determination of structural and dynamical features of proteins using distance restraints derived from nuclear Overhauser effect measurements, orientational restraints obtained from residual dipolar couplings and the structural restraints from chemical shifts. Here, we present the first public release of Almost, highlight the key aspects of its computational design and discuss the main features currently implemented. Almost is available for the most common Unix-based operating systems, including Linux and Mac OS X. Almost is distributed free of charge under the GNU Public License, and is available both as a source code and as a binary executable from the project web site at http://www.open-almost.org. Interested users can follow and contribute to the further development of Almost on http://sourceforge.net/projects/almost. PMID:24676684

  4. All-atom force field for molecular dynamics simulations on organotransition metal solids and liquids. Application to M(CO)(n) (M = Cr, Fe, Ni, Mo, Ru, or W) compounds.

    PubMed

    Bernardes, Carlos E S; Canongia Lopes, José N; Minas da Piedade, Manuel E

    2013-10-31

    A previously developed OPLS-based all-atom force field for organometallic compounds was extended to a series of first-, second-, and third-row transition metals based on the study of M(CO)(n) (M = Cr, Fe, Ni, Mo, Ru, or W) complexes. For materials that are solid at ambient temperature and pressure (M = Cr, Mo, W) the validation of the force field was based on reported structural data and on the standard molar enthalpies of sublimation at 298.15 K, experimentally determined by Calvet-drop microcalorimetry using samples corresponding to a specific and well-characterized crystalline phase: Δ(sub)H(m)° = 72.6 ± 0.3 kJ·mol(–1) for Cr(CO)(6), 73.4 ± 0.3 kJ·mol(–1) for Mo(CO)(6), and 77.8 ± 0.3 kJ·mol(–1) for W(CO)(6). For liquids, where problems of polymorphism or phase mixtures are absent, critically analyzed literature data were used. The force field was able to reproduce the volumetric properties of the test set (density and unit cell volume) with an average deviations smaller than 2% and the experimentally determined enthalpies of sublimation and vaporization with an accuracy better than 2.3 kJ·mol(–1). The Lennard-Jones (12-6) potential function parameters used to calculate the repulsive and dispersion contributions of the metals within the framework of the force field were found to be transferable between chromium, iron, and nickel (first row) and between molybdenum and ruthenium (second row). PMID:24079472

  5. Reduction of All-Atom Protein Folding Dynamics to One-Dimensional Diffusion.

    PubMed

    Zheng, Wenwei; Best, Robert B

    2015-12-10

    Theoretical models have often modeled protein folding dynamics as diffusion on a low-dimensional free energy surface, a remarkable simplification. However, the accuracy of such an approximation and the number of dimensions required were not clear. For all-atom folding simulations of ten small proteins in explicit solvent we show that the folding dynamics can indeed be accurately described as diffusion on just a single coordinate, the fraction of native contacts (Q). The diffusion models reproduce both folding rates, and finer details such as transition-path durations and diffusive propagators. The Q-averaged diffusion coefficients decrease with chain length, as anticipated from energy landscape theory. Although the Q-diffusion model does not capture transition-path durations for the protein NuG2, we show that this can be accomplished by designing an improved coordinate Qopt. Overall, one-dimensional diffusion on a suitable coordinate turns out to be a remarkably faithful model for the dynamics of the proteins considered.

  6. All-atom semiclassical dynamics study of quantum coherence in photosynthetic Fenna-Matthews-Olson complex.

    PubMed

    Kim, Hyun Woo; Kelly, Aaron; Park, Jae Woo; Rhee, Young Min

    2012-07-18

    Although photosynthetic pigment-protein complexes are in noisy environments, recent experimental and theoretical results indicate that their excitation energy transfer (EET) can exhibit coherent characteristics for over hundreds of femtoseconds. Despite the almost universal observations of the coherence to some degree, questions still remain regarding the detailed role of the protein and the extent of high-temperature coherence. Here we adopt a theoretical method that incorporates an all-atom description of the photosynthetic complex within a semiclassical framework in order to study EET in the Fenna-Matthews-Olson complex. We observe that the vibrational modes of the chromophore tend to diminish the coherence at the ensemble level, yet much longer-lived coherences may be observed at the single-complex level. We also observe that coherent oscillations in the site populations also commence within tens of femtoseconds even when the system is initially prepared in a non-oscillatory stationary state. We show that the protein acts to maintain the electronic couplings among the system of embedded chromophores. We also investigate the extent to which the protein's electrostatic modulation that disperses the chromophore electronic energies may affect the coherence lifetime. Further, we observe that even though mutation-induced disruptions in the protein structure may change the coupling pattern, a relatively strong level of coupling and associated coherence in the dynamics still remain. Finally, we demonstrate that thermal fluctuations in the chromophore couplings induce some redundancy in the coherent energy-transfer pathway. Our results indicate that a description of both chromophore coupling strengths and their fluctuations is crucial to better understand coherent EET processes in photosynthetic systems. PMID:22708971

  7. Dynamic performance of duolayers at the air/water interface. 2. Mechanistic insights from all-atom simulations.

    PubMed

    Christofferson, Andrew J; Yiapanis, George; Leung, Andy H M; Prime, Emma L; Tran, Diana N H; Qiao, Greg G; Solomon, David H; Yarovsky, Irene

    2014-09-18

    The novel duolayer system, comprising a monolayer of ethylene glycol monooctadecyl ether (C18E1) and the water-soluble polymer poly(vinylpyrrolidone) (PVP), has been shown to resist forces such as wind stress to a greater degree than the C18E1 monolayer alone. This paper reports all-atom molecular dynamics simulations comparing the monolayer (C18E1 alone) and duolayer systems under an applied force parallel to the air/water interface. The simulations show that, due to the presence of PVP at the interface, the duolayer film exhibits an increase in chain tilt, ordering, and density, as well as a lower lateral velocity compared to the monolayer. These results provide a molecular rationale for the improved performance of the duolayer system under wind conditions, as well as an atomic-level explanation for the observed efficacy of the duolayer system as an evaporation suppressant, which may serve as a useful guide for future development for thin films where resistance to external perturbation is desirable.

  8. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Wenjun; Glenn, Paul

    2015-01-01

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  9. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    SciTech Connect

    Zheng, Wenjun Glenn, Paul

    2015-01-21

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  10. Analysis of Ligand-Receptor Association and Intermediate Transfer Rates in Multienzyme Nanostructures with All-Atom Brownian Dynamics Simulations.

    PubMed

    Roberts, Christopher C; Chang, Chia-En A

    2016-08-25

    We present the second-generation GeomBD Brownian dynamics software for determining interenzyme intermediate transfer rates and substrate association rates in biomolecular complexes. Substrate and intermediate association rates for a series of enzymes or biomolecules can be compared between the freely diffusing disorganized configuration and various colocalized or complexed arrangements for kinetic investigation of enhanced intermediate transfer. In addition, enzyme engineering techniques, such as synthetic protein conjugation, can be computationally modeled and analyzed to better understand changes in substrate association relative to native enzymes. Tools are provided to determine nonspecific ligand-receptor association residence times, and to visualize common sites of nonspecific association of substrates on receptor surfaces. To demonstrate features of the software, interenzyme intermediate substrate transfer rate constants are calculated and compared for all-atom models of DNA origami scaffold-bound bienzyme systems of glucose oxidase and horseradish peroxidase. Also, a DNA conjugated horseradish peroxidase enzyme was analyzed for its propensity to increase substrate association rates and substrate local residence times relative to the unmodified enzyme. We also demonstrate the rapid determination and visualization of common sites of nonspecific ligand-receptor association by using HIV-1 protease and an inhibitor, XK263. GeomBD2 accelerates simulations by precomputing van der Waals potential energy grids and electrostatic potential grid maps, and has a flexible and extensible support for all-atom and coarse-grained force fields. Simulation software is written in C++ and utilizes modern parallelization techniques for potential grid preparation and Brownian dynamics simulation processes. Analysis scripts, written in the Python scripting language, are provided for quantitative simulation analysis. GeomBD2 is applicable to the fields of biophysics, bioengineering

  11. Quantum Mechanics/Molecular Mechanics Method Combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations.

    PubMed

    Shen, Lin; Yang, Weitao

    2016-04-12

    We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.

  12. Molecular dynamics

    SciTech Connect

    Ladd, A.J.C.

    1988-08-01

    The basic methodology of equilibrium molecular dynamics is described. Examples from the literature are used to illustrate how molecular dynamics has been used to resolve theoretical controversies, provide data to test theories, and occasionally to discover new phenomena. The emphasis is on the application of molecular dynamics to an understanding of the microscopic physics underlying the transport properties of simple fluids. 98 refs., 4 figs.

  13. All-atom simulations and free-energy calculations of coiled-coil peptides with lipid bilayers: binding strength, structural transition, and effect on lipid dynamics

    PubMed Central

    Woo, Sun Young; Lee, Hwankyu

    2016-01-01

    Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect. PMID:26926570

  14. Open boundary molecular dynamics

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, R.; Sablić, J.; Praprotnik, M.

    2015-09-01

    This contribution analyzes several strategies and combination of methodologies to perform molecular dynamic simulations in open systems. Here, the term open indicates that the total system has boundaries where transfer of mass, momentum and energy can take place. This formalism, which we call Open Boundary Molecular Dynamics (OBMD), can act as interface of different schemes, such as Adaptive Resolution Scheme (AdResS) and Hybrid continuum-particle dynamics to link atomistic, coarse-grained (CG) and continuum (Eulerian) fluid dynamics in the general framework of fluctuating Navier-Stokes equations. The core domain of the simulation box is solved using all-atom descriptions. The CG layer introduced using AdResS is located at the outer part of the open box to make feasible the insertion of large molecules into the system. Communications between the molecular system and the outer world are carried out in the outer layers, called buffers. These coupling preserve momentum and mass conservation laws and can thus be linked with Eulerian hydro- dynamic solvers. In its simpler form, OBMD allows, however, to impose a local pressure tensor and a heat flux across the system's boundaries. For a one component molecular system, the external normal pressure and temperature determine the external chemical potential and thus the independent parameters of a grand-canonical ensemble simulation. Extended ensembles under non-equilibrium stationary states can also be simulated as well as time dependent forcings (e.g. oscillatory rheology). To illustrate the robustness of the combined OBMD-AdResS method, we present simulations of star-polymer melts at equilibrium and in sheared flow.

  15. Molecular modeling of the binding modes of the iron-sulfur protein to the Jac1 co-chaperone from Saccharomyces cerevisiae by all-atom and coarse-grained approaches.

    PubMed

    Mozolewska, Magdalena A; Krupa, Paweł; Scheraga, Harold A; Liwo, Adam

    2015-08-01

    The iron-sulfur protein 1 (Isu1) and the J-type co-chaperone Jac1 from yeast are part of a huge ATP-dependent system, and both interact with Hsp70 chaperones. Interaction of Isu1 and Jac1 is a part of the iron-sulfur cluster biogenesis system in mitochondria. In this study, the structure and dynamics of the yeast Isu1-Jac1 complex has been modeled. First, the complete structure of Isu1 was obtained by homology modeling using the I-TASSER server and YASARA software and thereafter tested for stability in the all-atom force field AMBER. Then, the known experimental structure of Jac1 was adopted to obtain initial models of the Isu1-Jac1 complex by using the ZDOCK server for global and local docking and the AutoDock software for local docking. Three most probable models were subsequently subjected to the coarse-grained molecular dynamics simulations with the UNRES force field to obtain the final structures of the complex. In the most probable model, Isu1 binds to the left face of the Γ-shaped Jac1 molecule by the β-sheet section of Isu1. Residues L105 , L109 , and Y163 of Jac1 have been assessed by mutation studies to be essential for binding (Ciesielski et al., J Mol Biol 2012; 417:1-12). These residues were also found, by UNRES/molecular dynamics simulations, to be involved in strong interactions between Isu1 and Jac1 in the complex. Moreover, N(95), T(98), P(102), H(112), V(159), L(167), and A(170) of Jac1, not yet tested experimentally, were also found to be important in binding.

  16. Molecular dynamics.

    PubMed

    Cheng, Xiaolin; Ivanov, Ivaylo

    2012-01-01

    Molecular dynamics (MD) simulation holds the promise of revealing the mechanisms of biological processes in their ultimate detail. It is carried out by computing the interaction forces acting on each atom and then propagating the velocities and positions of the atoms by numerical integration of Newton's equations of motion. In this review, we present an overview of how the MD simulation can be conducted to address computational toxicity problems. The study cases will cover a standard MD simulation performed to investigate the overall flexibility of a cytochrome P450 (CYP) enzyme and a set of more advanced MD simulations to examine the barrier to ion conduction in a human α7 nicotinic acetylcholine receptor (nAChR).

  17. Molecular modeling of the binding modes of the Iron-sulfur protein to the Jac1 co-chaperone from Saccharomyces cerevisiae by all-atom and coarse-grained approaches

    PubMed Central

    Mozolewska, Magdalena A.; Krupa, Paweł; Scheraga, Harold A.; Liwo, Adam

    2015-01-01

    The Iron sulfur protein 1 (Isu1) from yeast, and the J-type co-chaperone Jac1, are part of a huge ATP-dependent system, and both interact with Hsp70 chaperones. Interaction of Isu1 and Jac1 is a part of the iron-sulfur cluster biogenesis system in mitochondria. In this study, the structure and dynamics of the yeast Isu1-Jac1 complex has been modeled. First, the complete structure of Isu1 was obtained by homology modeling using the I-TASSER server and YASARA software and thereafter tested for stability in the all-atom force field AMBER. Then, the known experimental structure of Jac1 was adopted to obtain initial models of the Isu1-Jac1 complex by using the ZDOCK server for global and local docking and the AutoDock software for local docking. Three most probable models were subsequently subjected to the coarse-grained molecular dynamics simulations with the UNRES force field to obtain the final structures of the complex. In the most probable model, Isu1 binds to the left face of the “Γ” shaped Jac1 molecule by the β-sheet section of Isu1. Residues L105, L109, and Y163 of Jac1 have been assessed by mutation studies to be essential for binding (Ciesielski et al., J. Mol. Biol. 2012, 417, 1–12). These residues were also found, by UNRES/MD simulations, to be involved in strong interactions between Isu1 and Jac1 in the complex. Moreover, N95, T98, P102, H112, V159, L167 and A170 of Jac1, not yet tested experimentally, were also found important in binding. PMID:25973573

  18. Microtubule Elasticity: Connecting All-Atom Simulations with Continuum Mechanics

    NASA Astrophysics Data System (ADS)

    Sept, David; Mackintosh, Fred C.

    2010-01-01

    The mechanical properties of microtubules have been extensively studied using a wide range of biophysical techniques, seeking to understand the mechanics of these cylindrical polymers. Here we develop a method for connecting all-atom molecular dynamics simulations with continuum mechanics and show how this can be applied to understand microtubule mechanics. Our coarse-graining technique applied to the microscopic simulation system yields consistent predictions for the Young’s modulus and persistence length of microtubules, while clearly demonstrating how binding of the drug Taxol decreases the stiffness of microtubules. The techniques we develop should be widely applicable to other macromolecular systems.

  19. Nonequilibrium and generalized-ensemble molecular dynamics simulations for amyloid fibril

    SciTech Connect

    Okumura, Hisashi

    2015-12-31

    Amyloids are insoluble and misfolded fibrous protein aggregates and associated with more than 20 serious human diseases. We perform all-atom molecular dynamics simulations of amyloid fibril assembly and disassembly.

  20. Accelerated molecular dynamics methods

    SciTech Connect

    Perez, Danny

    2011-01-04

    The molecular dynamics method, although extremely powerful for materials simulations, is limited to times scales of roughly one microsecond or less. On longer time scales, dynamical evolution typically consists of infrequent events, which are usually activated processes. This course is focused on understanding infrequent-event dynamics, on methods for characterizing infrequent-event mechanisms and rate constants, and on methods for simulating long time scales in infrequent-event systems, emphasizing the recently developed accelerated molecular dynamics methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics). Some familiarity with basic statistical mechanics and molecular dynamics methods will be assumed.

  1. Molecular Dynamics Simulations of Alpha-synuclein

    NASA Astrophysics Data System (ADS)

    Sammalkorpi, Maria; Schreck, Carl; Nath, Abhinav; Dewitt, David; Rhoades, Elizabeth; O'Hern, Corey

    2011-03-01

    We investigate the conformational dynamics of single alpha-synuclein proteins, which have been implicated in amyloid diseases such as Parkinson's and Alzheimer's disease, in solution using unconstrained and constrained all-atom, explicit solvent molecular dynamics simulations. The constraints on inter-residue separations are obtained from our single-molecule FRET measurements of eleven FRET pairs that span the protein. By comparing the simulation data satisfying different combinations of FRET constraints, we are able to identify those constraints that are most important in determining the radius of gyration and key features of the contact map of the protein.

  2. An all-atom simulation study of the ordering of liquid squalane near a solid surface

    NASA Astrophysics Data System (ADS)

    Tsige, Mesfin; Patnaik, Soumya S.

    2008-05-01

    An all-atom molecular dynamics study using the OPLS force field has been carried out to obtain new insights in to the orientation and ordering of liquid squalane near a solid surface. As observed in previous experiments, the squalane molecules closest to a SiO 2 substrate are found to be tightly bound with their molecular axis preferentially parallel to the interface. Unlike linear alkanes, the squalane molecules are also found to lie preferentially parallel to the liquid/vapor interface. The simulation results predict that the molecular plane orientation of the squalane molecules changes from mainly parallel to perpendicular to the substrate in going further away from the substrate.

  3. Folding of proteins with an all-atom Go-model.

    PubMed

    Wu, L; Zhang, J; Qin, M; Liu, F; Wang, W

    2008-06-21

    The Go-like potential at a residual level has been successfully applied to the folding of proteins in many previous works. However, taking into consideration more detailed structural information in the atomic level, the definition of contacts used in these traditional Go-models may not be suitable for all-atom simulations. Here, in this work, we develop a rational definition of contacts considering the screening effect in the crowded intramolecular environment. In such a scheme, a large amount of screened atom pairs are excluded and the number of contacts is decreased compared to the case of the traditional definition. These contacts defined by such a new definition are compatible with the all-atom representation of protein structures. To verify the rationality of the new definition of contacts, the folding of proteins CI2 and SH3 is simulated by all-atom molecular dynamics simulations. A high folding cooperativity and good correlation of the simulated Phi-values with those obtained experimentally, especially for CI2, are found. This suggests that the all-atom Go-model is improved compared to the traditional Go-model. Based on the comparison of the Phi-values, the roles of side chains in the folding are discussed, and it is concluded that the side-chain structures are more important for local contacts in determining the transition state structures. Moreover, the relations between side chain and backbone orderings are also discussed.

  4. Ab initio molecular dynamics.

    PubMed

    Laasonen, Kari

    2013-01-01

    In this chapter, an introduction to ab initio molecular dynamics (AIMD) has been given. Many of the basic concepts, like the Hellman-Feynman forces, the difference between the Car-Parrinello molecular dynamics and AIMD, have been explained. Also a very versatile AIMD code, the CP2K, has been introduced. On the application, the emphasis was on the aqueous systems and chemical reactions. The biochemical applications have not been discussed in depth.

  5. Simulation of lipid bilayer self-assembly using all-atom lipid force fields.

    PubMed

    Skjevik, Åge A; Madej, Benjamin D; Dickson, Callum J; Lin, Charles; Teigen, Knut; Walker, Ross C; Gould, Ian R

    2016-04-21

    In this manuscript we expand significantly on our earlier communication by investigating the bilayer self-assembly of eight different types of phospholipids in unbiased molecular dynamics (MD) simulations using three widely used all-atom lipid force fields. Irrespective of the underlying force field, the lipids are shown to spontaneously form stable lamellar bilayer structures within 1 microsecond, the majority of which display properties in satisfactory agreement with the experimental data. The lipids self-assemble via the same general mechanism, though at formation rates that differ both between lipid types, force fields and even repeats on the same lipid/force field combination. In addition to zwitterionic phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipids, anionic phosphatidylserine (PS) and phosphatidylglycerol (PG) lipids are represented. To our knowledge this is the first time bilayer self-assembly of phospholipids with negatively charged head groups is demonstrated in all-atom MD simulations.

  6. Substructured multibody molecular dynamics.

    SciTech Connect

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  7. Molecular dynamics simulations.

    PubMed

    Lindahl, Erik

    2015-01-01

    Molecular dynamics has evolved from a niche method mainly applicable to model systems into a cornerstone in molecular biology. It provides us with a powerful toolbox that enables us to follow and understand structure and dynamics with extreme detail-literally on scales where individual atoms can be tracked. However, with great power comes great responsibility: Simulations will not magically provide valid results, but it requires a skilled researcher. This chapter introduces you to this, and makes you aware of some potential pitfalls. We focus on the two basic and most used methods; optimizing a structure with energy minimization and simulating motion with molecular dynamics. The statistical mechanics theory is covered briefly as well as limitations, for instance the lack of quantum effects and short timescales. As a practical example, we show each step of a simulation of a small protein, including examples of hardware and software, how to obtain a starting structure, immersing it in water, and choosing good simulation parameters. You will learn how to analyze simulations in terms of structure, fluctuations, geometrical features, and how to create ray-traced movies for presentations. With modern GPU acceleration, a desktop can perform μs-scale simulations of small proteins in a day-only 15 years ago this took months on the largest supercomputer in the world. As a final exercise, we show you how to set up, perform, and interpret such a folding simulation.

  8. Molecular dynamics simulations.

    PubMed

    Lindahl, Erik R

    2008-01-01

    Molecular simulation is a very powerful toolbox in modern molecular modeling, and enables us to follow and understand structure and dynamics with extreme detail--literally on scales where motion of individual atoms can be tracked. This chapter focuses on the two most commonly used methods, namely, energy minimization and molecular dynamics, that, respectively, optimize structure and simulate the natural motion of biological macromolecules. The common theoretical framework based on statistical mechanics is covered briefly as well as limitations of the computational approach, for instance, the lack of quantum effects and limited timescales accessible. As a practical example, a full simulation of the protein lysozyme in water is described step by step, including examples of necessary hardware and software, how to obtain suitable starting molecular structures, immersing it in a solvent, choosing good simulation parameters, and energy minimization. The chapter also describes how to analyze the simulation in terms of potential energies, structural fluctuations, coordinate stability, geometrical features, and, finally, how to create beautiful ray-traced movies that can be used in presentations.

  9. Multiscale reactive molecular dynamics

    PubMed Central

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-01-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system. PMID:23249062

  10. Interactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Schroeder, Daniel V.

    2015-03-01

    Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.

  11. Introduction to Accelerated Molecular Dynamics

    SciTech Connect

    Perez, Danny

    2012-07-10

    Molecular Dynamics is the numerical solution of the equations of motion of a set of atoms, given an interatomic potential V and some boundary and initial conditions. Molecular Dynamics is the largest scale model that gives unbiased dynamics [x(t),p(t)] in full atomistic detail. Molecular Dynamics: is simple; is 'exact' for classical dynamics (with respect to a given V); can be used to compute any (atomistic) thermodynamical or dynamical properties; naturally handles complexity -- the system does the right thing at the right time. The physics derives only from the interatomic potential.

  12. A coarse-grained protein-protein potential derived from an all-atom force field.

    PubMed

    Basdevant, Nathalie; Borgis, Daniel; Ha-Duong, Tap

    2007-08-01

    In order to study protein-protein nonbonded interactions, we present the development of a new reduced protein model that represents each amino acid residue with one to three coarse grains, whose physical properties are derived in a consistent bottom-up procedure from the higher-resolution all-atom AMBER force field. The resulting potential energy function is pairwise additive and includes distinct van-der-Waals and Coulombic terms. The van-der-Waals effective interactions are deduced from preliminary molecular dynamics simulations of all possible amino acid homodimers. They are best represented by a soft 1/r6 repulsion and a Gaussian attraction, with parameters obeying Lorentz-Berthelot mixing rules. For the Coulombic interaction, coarse grain charges are optimized for each separate protein in order to best represent the all-atom electrostatic potential outside the protein core. This approach leaves the possibility of using any implicit solvent model to describe solvation effects and electrostatic screening. The coarse-grained force field is tested carefully for a small homodimeric complex, the magainin. It is shown to reproduce satisfactorily the specificity of the all-atom underlying potential, in particular within a PB/SA solvation model. The coarse-grained potential is applied to the redocking prediction of three different protein-protein complexes: the magainin dimer, the barnase-barstar, and the trypsin-BPTI complexes. It is shown to provide per se an efficient and discriminating scoring energy function for the protein-protein docking problem that remains pertinent at both the global and refinement stage. PMID:17616119

  13. A coarse-grained protein-protein potential derived from an all-atom force field.

    PubMed

    Basdevant, Nathalie; Borgis, Daniel; Ha-Duong, Tap

    2007-08-01

    In order to study protein-protein nonbonded interactions, we present the development of a new reduced protein model that represents each amino acid residue with one to three coarse grains, whose physical properties are derived in a consistent bottom-up procedure from the higher-resolution all-atom AMBER force field. The resulting potential energy function is pairwise additive and includes distinct van-der-Waals and Coulombic terms. The van-der-Waals effective interactions are deduced from preliminary molecular dynamics simulations of all possible amino acid homodimers. They are best represented by a soft 1/r6 repulsion and a Gaussian attraction, with parameters obeying Lorentz-Berthelot mixing rules. For the Coulombic interaction, coarse grain charges are optimized for each separate protein in order to best represent the all-atom electrostatic potential outside the protein core. This approach leaves the possibility of using any implicit solvent model to describe solvation effects and electrostatic screening. The coarse-grained force field is tested carefully for a small homodimeric complex, the magainin. It is shown to reproduce satisfactorily the specificity of the all-atom underlying potential, in particular within a PB/SA solvation model. The coarse-grained potential is applied to the redocking prediction of three different protein-protein complexes: the magainin dimer, the barnase-barstar, and the trypsin-BPTI complexes. It is shown to provide per se an efficient and discriminating scoring energy function for the protein-protein docking problem that remains pertinent at both the global and refinement stage.

  14. All-atom Simulation of Amyloid Aggregates

    NASA Astrophysics Data System (ADS)

    Berhanu, Workalemahu M.; Alred, Erik J.; Bernhardt, Nathan A.; Hansmann, Ulrich H. E.

    Molecular simulations are now commonly used to complement experiments in the investigation of amyloid formation and their role in human diseases. While various simulations based on enhanced sampling techniques are used in amyloid formation simulations, this article will focus on those using standard atomistic simulations to evaluate the stability of fibril models. Such studies explore the limitations that arise from the choice of force field or polymorphism; and explore the stability of in vivo and in vitro forms of Aβ fibril aggregates, and the role of heterologous seeding as a link between different amyloid diseases.

  15. Molecular Dynamics Trajectory Compression with a Coarse-Grained Model

    PubMed Central

    Cheng, Yi-Ming; Gopal, Srinivasa Murthy; Law, Sean M.; Feig, Michael

    2012-01-01

    Molecular dynamics trajectories are very data-intensive thereby limiting sharing and archival of such data. One possible solution is compression of trajectory data. Here, trajectory compression based on conversion to the coarse-grained model PRIMO is proposed. The compressed data is about one third of the original data and fast decompression is possible with an analytical reconstruction procedure from PRIMO to all-atom representations. This protocol largely preserves structural features and to a more limited extent also energetic features of the original trajectory. PMID:22025759

  16. Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene glycol)-based hydrogel.

    PubMed

    Li, Xianfeng; Murthy, N Sanjeeva; Becker, Matthew L; Latour, Robert A

    2016-06-24

    A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications.

  17. Folding of Small Proteins Using Constrained Molecular Dynamics

    PubMed Central

    Balaraman, Gouthaman S.; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2011-01-01

    The focus of this paper is to examine whether conformational search using constrained molecular dynamics (MD) method is more enhanced and enriched towards “native-like” structures compared to all-atom MD for the protein folding as a model problem. Constrained MD methods provide an alternate MD tool for protein structure prediction and structure refinement. It is computationally expensive to perform all-atom simulations of protein folding because the processes occur on a timescale of microseconds. Compared to the all-atom MD simulation, constrained MD methods have the advantage that stable dynamics can be achieved for larger time steps and the number of degrees of freedom is an order of magnitude smaller, leading to a decrease in computational cost. We have developed a generalized constrained MD method that allows the user to “freeze and thaw” torsional degrees of freedom as fit for the problem studied. We have used this method to perform all-torsion constrained MD in implicit solvent coupled with the replica exchange method to study folding of small proteins with various secondary structural motifs such as, α-helix (polyalanine, WALP16), β-turn (1E0Q), and a mixed motif protein (Trp-cage). We demonstrate that constrained MD replica exchange method exhibits a wider conformational search than all-atom MD with increased enrichment of near native structures. “Hierarchical” constrained MD simulations, where the partially formed helical regions in the initial stretch of the all-torsion folding simulation trajectory of Trp-cage were frozen, showed a better sampling of near native structures than all-torsion constrained MD simulations. This is in agreement with the zipping-and-assembly folding model put forth by Dill and coworkers for folding proteins. The use of hierarchical “freeze and thaw” clustering schemes in constrained MD simulation can be used to sample conformations that contribute significantly to folding of proteins. PMID:21591767

  18. Nanoscale deicing by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Xiao, Senbo; He, Jianying; Zhang, Zhiliang

    2016-07-01

    Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion.Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice

  19. Molecular photoionization dynamics

    SciTech Connect

    Dehmer, Joseph L.

    1982-05-01

    This program seeks to develop both physical insight and quantitative characterization of molecular photoionization processes. Progress is briefly described, and some publications resulting from the research are listed. (WHK)

  20. Nanoscale deicing by molecular dynamics simulation.

    PubMed

    Xiao, Senbo; He, Jianying; Zhang, Zhiliang

    2016-08-14

    Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion. PMID:27431975

  1. Molecular dynamics studies of interfacial water at the alumina surface.

    SciTech Connect

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.

  2. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations

    PubMed Central

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-01-01

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects. PMID:24277840

  3. State-dependent molecular dynamics.

    PubMed

    Yang, Ciann-Dong; Weng, Hung-Jen

    2014-01-01

    This paper proposes a new mixed quantum mechanics (QM)-molecular mechanics (MM) approach, where MM is replaced by quantum Hamilton mechanics (QHM), which inherits the modeling capability of MM, while preserving the state-dependent nature of QM. QHM, a single mechanics playing the roles of QM and MM simultaneously, will be employed here to derive the three-dimensional quantum dynamics of diatomic molecules. The resulting state-dependent molecular dynamics including vibration, rotation and spin are shown to completely agree with the QM description and well match the experimental vibration-rotation spectrum. QHM can be incorporated into the framework of a mixed quantum-classical Bohmian method to enable a trajectory interpretation of orbital-spin interaction and spin entanglement in molecular dynamics.

  4. Linear-scaling first-principles molecular dynamics of complex biological systems with the Conquest code

    NASA Astrophysics Data System (ADS)

    Otsuka, Takao; Taiji, Makoto; Bowler, David R.; Miyazaki, Tsuyoshi

    2016-11-01

    The recent progress of linear-scaling or O(N) methods in density functional theory (DFT) is remarkable. In this paper, we show that all-atom molecular dynamics simulations of complex biological systems based on DFT are now possible using our linear-scaling DFT code Conquest. We first overview the calculation methods used in Conquest and explain the method introduced recently to realise efficient and robust first-principles molecular dynamics (FPMD) with O(N) DFT. Then, we show that we can perform reliable all-atom FPMD simulations of a hydrated DNA model containing about 3400 atoms. We also report that the velocity scaling method is both reliable and useful for controlling the temperature of the FPMD simulation of this system. From these results, we conclude that reliable FPMD simulations of complex biological systems are now possible with Conquest.

  5. A sampling of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sindhikara, Daniel Jon

    The sheer vastness of the number of computations required to simulate a biological molecule puts incredible pressure on algorithms to be efficient while maintaining sufficient accuracy. This dissertation summarizes various projects whose purposes address the large span of types of problems in molecular dynamics simulations of biological systems including: increasing efficiency, measuring convergence, avoiding pitfalls, and an application and analysis of a biological system. Chapters 3 and 4 deal with an enhanced sampling algorithm called "replica exchange molecular dynamics" which is designed to speed-up molecular dynamics simulations. The optimization of a key parameter of these simulations is analyzed. In these successive projects, it was found conclusively that maximizing "exchange attempt frequency" is the most efficient way to run a replica exchange molecular dynamics simulation. Chapter 5 describes an enhanced metric for convergence in parallel simulations called the normalized ergodic measure. The metric is applied to several properties for several replica exchange simulations. Advantages of this metric over other methods are described. Chapter 6 describes the implementation and optimization of an enhanced sampling algorithm similar to replica exchange molecular dynamics called multicanonical algorithm replica exchange molecular dynamics. The algorithm was implemented into a biomolecular simulation suite called AMBER. Additionally several parameters were analyzed and optimized. In Chapter 7, a pitfall in molecular dynamics is observed in biological systems that is caused by negligent use of a simulation's "thermostat". It was found that if the same pseudorandom number seed were used for multiple systems, they eventually synchronize. In this project, synchronization was observed in biological molecules. Various negative effects including corruption of data are pointed out. Chapter 8 describes molecular dynamics simulation of NikR, a homotetrameric nickel

  6. Ab initio based force field and molecular dynamics simulations of crystalline TATB.

    PubMed

    Gee, Richard H; Roszak, Szczepan; Balasubramanian, Krishnan; Fried, Laurence E

    2004-04-15

    An all-atom force field for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is presented. The classical intermolecular interaction potential for TATB is based on single-point energies determined from high-level ab initio calculations of TATB dimers. The newly developed potential function is used to examine bulk crystalline TATB via molecular dynamics simulations. The isobaric thermal expansion and isothermal compression under hydrostatic pressures obtained from the molecular dynamics simulations are in good agreement with experiment. The calculated volume-temperature expansion is almost one dimensional along the c crystallographic axis, whereas under compression, all three unit cell axes participate, albeit unequally. PMID:15267608

  7. Investigating a link between all-atom model simulation and the Ising-based theory on the helix-coil transition. II. Nonstationary properties

    NASA Astrophysics Data System (ADS)

    Takano, Mitsunori; Nakamura, Hironori K.; Nagayama, Kuniaki; Suyama, Akira

    2003-06-01

    The all-atom and the Ising-based models have both played their own roles to help our understanding of helix-coil transition. In this study, we address to what degree these two theoretical models can be consistent with each other in the nonstationary regime, complementing the preceding equilibrium study. We conducted molecular dynamics simulations of an all-atom model polyalanine chain and Monte Carlo simulations of a corresponding kinetic Ising chain. Nonstationary properties of each model were characterized through power spectrum, Allan variance, and autocorrelation analyses regarding the time course of a system order parameter. A clear difference was indicated between the two models: the Ising-based model showed a Lorentzian spectrum in the frequency domain and a single exponential form in the time domain, whereas the all-atom model showed a 1/f spectrum and a stretched exponential form. The observed stretched exponential form is in agreement with a very recent T-jump experiment. The effect of viscous damping on helix-coil dynamics was also studied. A possible source of the observed difference between the two models is discussed by considering the potential energy landscape, and the idea of dynamical disorder was introduced into the original Glauber model in the hope of bridging the gap between the two models. Other possible sources, e.g., the limitations of the Ising framework and the validity of the Markovian dynamics assumption, are also discussed.

  8. Dynamic fracture toughness determined using molecular dynamics

    SciTech Connect

    Swadener, J. G.; Baskes, M. I.; Nastasi, Michael Anthony,

    2004-01-01

    Molecular dynamics (MD) simulations of fracture in crystalline silicon are conducted in order to determine the dynamic fracture toughness. The MD simulations show how the potential energy released during fracture is partitioned into surface energy, energy stored in defects and kinetic energy. First, the MD fracture simulations are shown to produce brittle fracture and be in reasonable agreement with experimental results. Then dynamic hcture toughness is calculated as the sum of the surface energy and the energy stored as defects directly from the MD models. Models oriented to produce fracture on either (111) or (101) planes are used. For the (101) fracture orientation, equilibrium crack speeds of greater than 80% of the Rayleigh wave speed are obtained. Crack speeds initially show a steep increase with increasing energy release rate followed by a much more gradual increase. No plateau in crack speed is observed for static energy release rates up to 20 J/m{sup 2}. At the point where the change in crack speed behavior occur, the dynamic fracture toughness (J{sub d}) is still within 10% of two times the surface energy (2{gamma}{sub 0}) and changing very slowly. From these MD simulations, it appears that the change in crack speed behavior is due to a change in the kinetic energy generation during dynamic fracture. In addition, MD simulations of facture in silicon with defects were conducted. The addition of defects increases the inelastic dissipation and the energy stored in defects.

  9. Thomas-Fermi molecular dynamics

    SciTech Connect

    Clerouin, J.; Pollock, E.L. ); Zerah, G. )

    1992-10-15

    A three-dimensional density-functional molecular-dynamics code is developed for the Thomas-Fermi density functional as a prototype for density functionals using only the density. Following Car and Parrinello (Phys. Rev. Lett. 55, 2471 (1985)), the electronic density is treated as a dynamical variable. The electronic densities are verified against a multi-ion Thomas-Fermi algorithm due to Parker (Phys. Rev. A 38, 2205 (1988)). As an initial application, the effect of electronic polarization in enhancing ionic diffusion in strongly coupled plasmas is demonstrated.

  10. Available Instruments for Analyzing Molecular Dynamics Trajectories.

    PubMed

    Likhachev, I V; Balabaev, N K; Galzitskaya, O V

    2016-01-01

    Molecular dynamics trajectories are the result of molecular dynamics simulations. Trajectories are sequential snapshots of simulated molecular system which represents atomic coordinates at specific time periods. Based on the definition, in a text format trajectory files are characterized by their simplicity and uselessness. To obtain information from such files, special programs and information processing techniques are applied: from molecular dynamics animation to finding characteristics along the trajectory (versus time). In this review, we describe different programs for processing molecular dynamics trajectories. The performance of these programs, usefulness for analyses of molecular dynamics trajectories, strong and weak aspects are discussed. PMID:27053964

  11. Available Instruments for Analyzing Molecular Dynamics Trajectories

    PubMed Central

    Likhachev, I. V.; Balabaev, N. K.; Galzitskaya, O. V.

    2016-01-01

    Molecular dynamics trajectories are the result of molecular dynamics simulations. Trajectories are sequential snapshots of simulated molecular system which represents atomic coordinates at specific time periods. Based on the definition, in a text format trajectory files are characterized by their simplicity and uselessness. To obtain information from such files, special programs and information processing techniques are applied: from molecular dynamics animation to finding characteristics along the trajectory (versus time). In this review, we describe different programs for processing molecular dynamics trajectories. The performance of these programs, usefulness for analyses of molecular dynamics trajectories, strong and weak aspects are discussed. PMID:27053964

  12. From molecular dynamics to Brownian dynamics

    PubMed Central

    Erban, Radek

    2014-01-01

    Three coarse-grained molecular dynamics (MD) models are investigated with the aim of developing and analysing multi-scale methods which use MD simulations in parts of the computational domain and (less detailed) Brownian dynamics (BD) simulations in the remainder of the domain. The first MD model is formulated in one spatial dimension. It is based on elastic collisions of heavy molecules (e.g. proteins) with light point particles (e.g. water molecules). Two three-dimensional MD models are then investigated. The obtained results are applied to a simplified model of protein binding to receptors on the cellular membrane. It is shown that modern BD simulators of intracellular processes can be used in the bulk and accurately coupled with a (more detailed) MD model of protein binding which is used close to the membrane. PMID:25002825

  13. Molecular Dynamics and Energy Minimization Based on Embedded Atom Method

    1995-03-01

    This program performs atomic scale computer simulations of the structure and dynamics of metallic system using energetices based on the Embedded Atom Method. The program performs two types of calculations. First, it performs local energy minimization of all atomic positions to determine ground state and saddle point energies and structures. Second, it performs molecular dynamics simulations to determine thermodynamics or miscroscopic dynamics of the system. In both cases, various constraints can be applied to themore » system. The volume of the system can be varied automatically to achieve any desired external pressure. The temperature in molecular dynamics simulations can be controlled by a variety of methods. Further, the temperature control can be applied either to the entire system or just a subset of the atoms that would act as a thermal source/sink. The motion of one or more of the atoms can be constrained to either simulate the effects of bulk boundary conditions or to facilitate the determination of saddle point configurations. The simulations are performed with periodic boundary conditions.« less

  14. NMR investigations of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  15. The equilibrium properties and folding kinetics of an all-atom Go model of the Trp-cage.

    PubMed

    Linhananta, Apichart; Boer, Jesse; MacKay, Ian

    2005-03-15

    The ultrafast-folding 20-residue Trp-cage protein is quickly becoming a new benchmark for molecular dynamics studies. Already several all-atom simulations have probed its equilibrium and kinetic properties. In this work an all-atom Go model is used to accurately represent the side-chain packing and native atomic contacts of the Trp-cage. The model reproduces the hallmark thermodynamics cooperativity of small proteins. Folding simulations observe that in the fast-folding dominant pathway, partial alpha-helical structure forms before hydrophobic core collapse. In the slow-folding secondary pathway, partial core collapse occurs before helical structure. The slow-folding rate of the secondary pathway is attributed to the loss of side-chain rotational freedom, due to the early core collapse, which impedes the helix formation. A major finding is the observation of a low-temperature kinetic intermediate stabilized by a salt bridge between residues Asp-9 and Arg-16. Similar observations [R. Zhou, Proc. Natl. Acad. Sci. U.S.A. 100, 13280 (2003)] were reported in a recent study using an all-atom model of the Trp-cage in explicit water, in which the salt-bridge stabilized intermediate was hypothesized to be the origin of the ultrafast-folding mechanism. A theoretical mutation that eliminates the Asp-9-Arg-16 salt bridge, but leaves the residues intact, is performed. Folding simulations of the mutant Trp-cage observe a two-state free-energy landscape with no kinetic intermediate and a significant decrease in the folding rate, in support of the hypothesis.

  16. Scalable Molecular Dynamics with NAMD

    PubMed Central

    Phillips, James C.; Braun, Rosemary; Wang, Wei; Gumbart, James; Tajkhorshid, Emad; Villa, Elizabeth; Chipot, Christophe; Skeel, Robert D.; Kalé, Laxmikant; Schulten, Klaus

    2008-01-01

    NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This paper, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Next, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, e.g., the Tcl scripting language. Finally, the paper provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu. PMID:16222654

  17. Recovering position-dependent diffusion from biased molecular dynamics simulations

    SciTech Connect

    Ljubetič, Ajasja; Urbančič, Iztok; Štrancar, Janez

    2014-02-28

    All atom molecular dynamics (MD) models provide valuable insight into the dynamics of biophysical systems, but are limited in size or length by the high computational demands. The latter can be reduced by simulating long term diffusive dynamics (also known as Langevin dynamics or Brownian motion) of the most interesting and important user-defined parts of the studied system, termed collective variables (colvars). A few hundred nanosecond-long biased MD trajectory can therefore be extended to millisecond lengths in the colvars subspace at a very small additional computational cost. In this work, we develop a method for determining multidimensional anisotropic position- and timescale-dependent diffusion coefficients (D) by analysing the changes of colvars in an existing MD trajectory. As a test case, we obtained D for dihedral angles of the alanine dipeptide. An open source Mathematica{sup ®} package, capable of determining and visualizing D in one or two dimensions, is available at https://github.com/lbf-ijs/DiffusiveDynamics . Given known free energy and D, the package can also generate diffusive trajectories.

  18. Better, Cheaper, Faster Molecular Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Recent, revolutionary progress in genomics and structural, molecular and cellular biology has created new opportunities for molecular-level computer simulations of biological systems by providing vast amounts of data that require interpretation. These opportunities are further enhanced by the increasing availability of massively parallel computers. For many problems, the method of choice is classical molecular dynamics (iterative solving of Newton's equations of motion). It focuses on two main objectives. One is to calculate the relative stability of different states of the system. A typical problem that has' such an objective is computer-aided drug design. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), "native" state. Perhaps the best example of such a problem is protein folding. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to "quasi non-ergodicity", whereby a part of phase space is inaccessible on time scales of the simulation. To overcome this difficulty and to extend molecular dynamics to "biological" time scales (millisecond or longer) new physical formulations and new algorithmic developments are required. To be efficient they should account for natural limitations of multi-processor computer architecture. I will present work along these lines done in my group. In particular, I will focus on a new approach to calculating the free energies (stability) of different states and to overcoming "the curse of rare events". I will also discuss algorithmic improvements to multiple time step methods and to the treatment of slowly decaying, log-ranged, electrostatic effects.

  19. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers.

    PubMed

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2014-10-16

    Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of

  20. Molecular dynamics of polymer growth

    NASA Astrophysics Data System (ADS)

    Akkermans, Reinier L. C.; Toxvaerd, Søren; Briels, W. J.

    1998-08-01

    The irreversible polymerization of a monomer liquid has been studied by molecular-dynamics simulation in two and three dimensions. The growth process is studied under good solvent conditions in the dilute regime and up to semidilute and concentrated regimes. In the dilute regime we observe a reaction limitation due to trapping of the growing centers, which is more pronounced in the lower dimension. At higher concentrations the presence of other chains decreases the monomer mobility and reaction rate. Conformational properties are studied by scaling analysis of end-to-end and gyration radii. A crossover from swollen conformations towards screened conformations is observed as growth proceeds.

  1. Dielectric relaxation of ethylene carbonate and propylene carbonate from molecular dynamics simulations

    DOE PAGES

    Chaudhari, Mangesh I.; You, Xinli; Pratt, Lawrence R.; Rempe, Susan B.

    2015-11-24

    Ethylene carbonate (EC) and propylene carbonate (PC) are widely used solvents in lithium (Li)-ion batteries and supercapacitors. Ion dissolution and diffusion in those media are correlated with solvent dielectric responses. Here, we use all-atom molecular dynamics simulations of the pure solvents to calculate dielectric constants and relaxation times, and molecular mobilities. The computed results are compared with limited available experiments to assist more exhaustive studies of these important characteristics. As a result, the observed agreement is encouraging and provides guidance for further validation of force-field simulation models for EC and PC solvents.

  2. Radiation in molecular dynamic simulations

    SciTech Connect

    Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M

    2008-10-13

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The new technique passes a key test: it relaxes to a blackbody spectrum for a plasma in local thermodynamic equilibrium. This new tool also provides a method for assessing the accuracy of energy and momentum exchange models in hot dense plasmas. As an example, we simulate the evolution of non-equilibrium electron, ion, and radiation temperatures for a hydrogen plasma using the new molecular dynamics simulation capability.

  3. Molecular dynamics of interface rupture

    NASA Technical Reports Server (NTRS)

    Koplik, Joel; Banavar, Jayanth R.

    1993-01-01

    Several situations have been studied in which a fluid-vapor or fluid-fluid interface ruptures, using molecular dynamics simulations of 3000 to 20,000 Lennard-Jones molecules in three dimensions. The cases studied are the Rayleigh instability of a liquid thread, the burst of a liquid drop immersed in a second liquid undergoing shear, and the rupture of a liquid sheet in an extensional flow. The late stages of the rupture process involve the gradual withdrawal of molecules from a thinning neck, or the appearance and growth of holes in a sheet. In all cases, it is found that despite the small size of the systems studied, tens of angstroms, the dynamics is in at least qualitative accord with the behavior expected from continuum calculations, and in some cases the agreement is to within tens of percent. Remarkably, this agreement occurs even though the Eulerian velocity and stress fields are essentially unmeasurable - dominated by thermal noise. The limitations and prospects for such molecular simulation techniques are assessed.

  4. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-01

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential

  5. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations.

    PubMed

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-28

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential

  6. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations.

    PubMed

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-28

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential

  7. A concurrent multiscale micromorphic molecular dynamics

    SciTech Connect

    Li, Shaofan Tong, Qi

    2015-04-21

    In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from first principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation.

  8. Resolution-Adapted All-Atomic and Coarse-Grained Model for Biomolecular Simulations.

    PubMed

    Shen, Lin; Hu, Hao

    2014-06-10

    We develop here an adaptive multiresolution method for the simulation of complex heterogeneous systems such as the protein molecules. The target molecular system is described with the atomistic structure while maintaining concurrently a mapping to the coarse-grained models. The theoretical model, or force field, used to describe the interactions between two sites is automatically adjusted in the simulation processes according to the interaction distance/strength. Therefore, all-atomic, coarse-grained, or mixed all-atomic and coarse-grained models would be used together to describe the interactions between a group of atoms and its surroundings. Because the choice of theory is made on the force field level while the sampling is always carried out in the atomic space, the new adaptive method preserves naturally the atomic structure and thermodynamic properties of the entire system throughout the simulation processes. The new method will be very useful in many biomolecular simulations where atomistic details are critically needed.

  9. Rigid-body molecular dynamics of DNA inside a nucleosome.

    PubMed

    Fathizadeh, Arman; Berdy Besya, Azim; Reza Ejtehadi, Mohammad; Schiessel, Helmut

    2013-03-01

    The majority of eukaryotic DNA, about three quarter, is wrapped around histone proteins forming so-called nucleosomes. To study nucleosomal DNA we introduce a coarse-grained molecular dynamics model based on sequence-dependent harmonic rigid base pair step parameters of DNA and nucleosomal binding sites. Mixed parametrization based on all-atom molecular dynamics and crystallographic data of protein-DNA structures is used for the base pair step parameters. The binding site parameters are adjusted by experimental B-factor values of the nucleosome crystal structure. The model is then used to determine the energy cost for placing a twist defect into the nucleosomal DNA which allows us to use Kramers theory to calculate nucleosome sliding caused by such defects. It is shown that the twist defect scenario together with the sequence-dependent elasticity of DNA can explain the slow time scales observed for nucleosome mobility along DNA. With this method we also show how the twist defect mechanism leads to a higher mobility of DNA in the presence of sin mutations near the dyad axis. Finally, by performing simulations on 5s rDNA, 601, and telomeric base pair sequences, it is demonstrated that the current model is a powerful tool to predict nucleosome positioning. PMID:23475204

  10. Molecular energetics in the capsomere of virus-like particle revealed by molecular dynamics simulations.

    PubMed

    Zhang, Lin; Tang, Ronghong; Bai, Shu; Connors, Natalie K; Lua, Linda H L; Chuan, Yap P; Middelberg, Anton P J; Sun, Yan

    2013-05-01

    Virus-like particles (VLPs) are highly organized nanoparticles that have great potential in vaccinology, gene therapy, drug delivery, and materials science. However, the application of VLPs is hindered by obstacles in their design and production due to low efficiency of self-assembly. In the present study, all-atom (AA) molecular dynamics (MD) simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method are utilized to examine the molecular interactions in the capsomere of a murine polyomavirus (MPV) VLP. It is found that both low ionic strength and the intracapsomere disulfide bonds are favorable for maintaining a stable capsomere. Simulation results examining the effects of solution conditions on the stabilization of a capsomere were verified by calorimetry experiments. Simulation results of free energy decomposition indicate that hydrophobic interaction is favorable for the formation of a capsomere, whereas electrostatic interaction is unfavorable. With increasing ionic strength, the dominant interaction for the stabilization of a capsomere changes from hydrophobic to electrostatic. By comprehensive analyses, the key amino acid residues (hot spots) in VP1 protein aiding formation of a capsomere in different solution conditions have been identified. These results provide molecular insights into the stabilization of building blocks for VLP and are expected to have implications in their partitioning between the correct and off-pathway reactions in VLP assembly. PMID:23586433

  11. Shear flow by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Heyes, D. M.

    1985-08-01

    A detailed comparison is made between a number of methods for generating shear flow in Molecular Dynamics computer simulation. Algorithms which closely mimic most experimental methods for producing shear flow are those by Trozzi and Ciccotti, and Ashurst and Hoover. They employ hard wall boundaries and fluid walls respectively (with sheared cell periodicity being only in two dimensions). The sheared fluid properties are therefore inextricably linked with interfacial effects. These problems are largely eliminated by the Lees and Edwards scheme which creates a pseudo-infinite sheared material. There are a number of derivatives of this model including one favoured by the author for investigating non-linear viscoelastic phenomena. A number of results from this scheme pertaining to the Lennard-Jones liquid are presented.

  12. Buckybomb: Reactive Molecular Dynamics Simulation.

    PubMed

    Chaban, Vitaly V; Fileti, Eudes Eterno; Prezhdo, Oleg V

    2015-03-01

    Energetic materials, such as explosives, propellants, and pyrotechnics, are widely used in civilian and military applications. Nanoscale explosives represent a special group because of the high density of energetic covalent bonds. The reactive molecular dynamics (ReaxFF) study of nitrofullerene decomposition reported here provides a detailed chemical mechanism of explosion of a nanoscale carbon material. Upon initial heating, C60(NO2)12 disintegrates, increasing temperature and pressure by thousands of Kelvins and bars within tens of picoseconds. The explosion starts with NO2 group isomerization into C-O-N-O, followed by emission of NO molecules and formation of CO groups on the buckyball surface. NO oxidizes into NO2, and C60 falls apart, liberating CO2. At the highest temperatures, CO2 gives rise to diatomic carbon. The study shows that the initiation temperature and released energy depend strongly on the chemical composition and density of the material. PMID:26262672

  13. Emergent Phenomena via Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Rapaport, D. C.

    Emergent phenomena are unusual because they are not obvious consequences of the design of the systems in which they appear, a feature no less relevant when they are being simulated. Several systems that exhibit surprisingly rich emergent behavior, each studied by molecular dynamics (MD) simulation, are described: (i) Modeling self-assembly processes associated with virus growth reveals the ability to achieve error-free assembly, where paradoxically, near-maximum yields are due to reversible bond formation. (ii) In fluids studied at the atomistic level, complex hydrodynamic phenomena in rotating and convecting fluids - the Taylor- Couette and Rayleigh-Bénard instabilities - can be reproduced, despite the limited length and time scales accessible by MD. (iii) Segregation studies of granular mixtures in a rotating drum reproduce the expected, but counterintuitive, axial and radial segregation, while for the case of a vertically vibrated layer a novel form of horizontal segregation is revealed.

  14. Buckybomb: Reactive Molecular Dynamics Simulation.

    PubMed

    Chaban, Vitaly V; Fileti, Eudes Eterno; Prezhdo, Oleg V

    2015-03-01

    Energetic materials, such as explosives, propellants, and pyrotechnics, are widely used in civilian and military applications. Nanoscale explosives represent a special group because of the high density of energetic covalent bonds. The reactive molecular dynamics (ReaxFF) study of nitrofullerene decomposition reported here provides a detailed chemical mechanism of explosion of a nanoscale carbon material. Upon initial heating, C60(NO2)12 disintegrates, increasing temperature and pressure by thousands of Kelvins and bars within tens of picoseconds. The explosion starts with NO2 group isomerization into C-O-N-O, followed by emission of NO molecules and formation of CO groups on the buckyball surface. NO oxidizes into NO2, and C60 falls apart, liberating CO2. At the highest temperatures, CO2 gives rise to diatomic carbon. The study shows that the initiation temperature and released energy depend strongly on the chemical composition and density of the material.

  15. Molecular dynamics simulations data of the twenty encoded amino acids in different force fields.

    PubMed

    Vitalini, F; Noé, F; Keller, B G

    2016-06-01

    We present extensive all-atom Molecular Dynamics (MD) simulation data of the twenty encoded amino acids in explicit water, simulated with different force fields. The termini of the amino acids have been capped to ensure that the dynamics of the Φ and ψ torsion angles are analogues to the dynamics within a peptide chain. We use representatives of each of the four major force field families: AMBER ff-99SBILDN [1], AMBER ff-03 [2], OPLS-AA/L [3], CHARMM27 [4] and GROMOS43a1 [5], [6]. Our data represents a library and test bed for method development for MD simulations and for force fields development. Part of the data set has been previously used for comparison of the dynamic properties of force fields (Vitalini et al., 2015) [7] and for the construction of peptide basis functions for the variational approach to molecular kinetics [8].

  16. Molecular dynamics simulations data of the twenty encoded amino acids in different force fields.

    PubMed

    Vitalini, F; Noé, F; Keller, B G

    2016-06-01

    We present extensive all-atom Molecular Dynamics (MD) simulation data of the twenty encoded amino acids in explicit water, simulated with different force fields. The termini of the amino acids have been capped to ensure that the dynamics of the Φ and ψ torsion angles are analogues to the dynamics within a peptide chain. We use representatives of each of the four major force field families: AMBER ff-99SBILDN [1], AMBER ff-03 [2], OPLS-AA/L [3], CHARMM27 [4] and GROMOS43a1 [5], [6]. Our data represents a library and test bed for method development for MD simulations and for force fields development. Part of the data set has been previously used for comparison of the dynamic properties of force fields (Vitalini et al., 2015) [7] and for the construction of peptide basis functions for the variational approach to molecular kinetics [8]. PMID:27054161

  17. Molecular dynamics simulations data of the twenty encoded amino acids in different force fields

    PubMed Central

    Vitalini, F.; Noé, F.; Keller, B.G.

    2016-01-01

    We present extensive all-atom Molecular Dynamics (MD) simulation data of the twenty encoded amino acids in explicit water, simulated with different force fields. The termini of the amino acids have been capped to ensure that the dynamics of the Φ and ψ torsion angles are analogues to the dynamics within a peptide chain. We use representatives of each of the four major force field families: AMBER ff-99SBILDN [1], AMBER ff-03 [2], OPLS-AA/L [3], CHARMM27 [4] and GROMOS43a1 [5], [6]. Our data represents a library and test bed for method development for MD simulations and for force fields development. Part of the data set has been previously used for comparison of the dynamic properties of force fields (Vitalini et al., 2015) [7] and for the construction of peptide basis functions for the variational approach to molecular kinetics [8]. PMID:27054161

  18. A hierarchical coarse-grained (all-atom to all residue) approach to peptides (P1, P2) binding with a graphene sheet

    NASA Astrophysics Data System (ADS)

    Pandey, Ras; Kuang, Zhifeng; Farmer, Barry; Kim, Sang; Naik, Rajesh

    2012-02-01

    Recently, Kim et al. [1] have found that peptides P1: HSSYWYAFNNKT and P2: EPLQLKM bind selectively to graphene surfaces and edges respectively which are critical in modulating both the mechanical as well as electronic transport properties of graphene. Such distinctions in binding sites (edge versus surface) observed in electron micrographs were verified by computer simulation by an all-atomic model that captures the pi-pi bonding. We propose a hierarchical approach that involves input from the all-atom Molecular Dynamics (MD) study (with atomistic detail) into a coarse-grained Monte Carlo simulation to extend this study further to a larger scale. The binding energy of a free amino acid with the graphene sheet from all-atom simulation is used in the interaction parameter for the coarse-grained approach. Peptide chain executes its stochastic motion with the Metropolis algorithm. We investigate a number of local and global physical quantities and find that peptide P1 is likely to bind more strongly to graphene sheet than P2 and that it is anchored by three residues ^4Y^5W^6Y. [1] S.N. Kim et al J. Am. Chem. Soc. 133, 14480 (2011).

  19. Molecular dynamics of membrane proteins.

    SciTech Connect

    Woolf, Thomas B.; Crozier, Paul Stewart; Stevens, Mark Jackson

    2004-10-01

    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  20. Effect of calcium and magnesium on phosphatidylserine membranes: experiments and all-atomic simulations.

    PubMed

    Martín-Molina, Alberto; Rodríguez-Beas, César; Faraudo, Jordi

    2012-05-01

    It is known that phosphatidylserine (PS(-)) lipids have a very similar affinity for Ca(2+) and Mg(2+) cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca(2+) or Mg(2+) induces very different aggregation behavior for PS(-) liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca(2+) or Mg(2+) cations. These puzzling results suggest that although these two cations have a similar affinity for PS(-) lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS(-) membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca(2+) and Mg(2+) cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca(2+) cations present a peak at a distance ~2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg(2+) cations has two different peaks, located a few angstroms before and after the Ca(2+) peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca(2+) and Mg(2

  1. Effect of calcium and magnesium on phosphatidylserine membranes: experiments and all-atomic simulations.

    PubMed

    Martín-Molina, Alberto; Rodríguez-Beas, César; Faraudo, Jordi

    2012-05-01

    It is known that phosphatidylserine (PS(-)) lipids have a very similar affinity for Ca(2+) and Mg(2+) cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca(2+) or Mg(2+) induces very different aggregation behavior for PS(-) liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca(2+) or Mg(2+) cations. These puzzling results suggest that although these two cations have a similar affinity for PS(-) lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS(-) membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca(2+) and Mg(2+) cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca(2+) cations present a peak at a distance ~2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg(2+) cations has two different peaks, located a few angstroms before and after the Ca(2+) peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca(2+) and Mg(2

  2. Effect of Calcium and Magnesium on Phosphatidylserine Membranes: Experiments and All-Atomic Simulations

    PubMed Central

    Martín-Molina, Alberto; Rodríguez-Beas, César; Faraudo, Jordi

    2012-01-01

    It is known that phosphatidylserine (PS−) lipids have a very similar affinity for Ca2+ and Mg2+ cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca2+ or Mg2+ induces very different aggregation behavior for PS− liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca2+ or Mg2+ cations. These puzzling results suggest that although these two cations have a similar affinity for PS− lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS− membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca2+ and Mg2+ cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca2+ cations present a peak at a distance ∼2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg2+ cations has two different peaks, located a few angstroms before and after the Ca2+ peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca2+ and Mg2+, respectively. PMID:22824273

  3. GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting.

    PubMed

    Stone, John E; McGreevy, Ryan; Isralewitz, Barry; Schulten, Klaus

    2014-01-01

    Hybrid structure fitting methods combine data from cryo-electron microscopy and X-ray crystallography with molecular dynamics simulations for the determination of all-atom structures of large biomolecular complexes. Evaluating the quality-of-fit obtained from hybrid fitting is computationally demanding, particularly in the context of a multiplicity of structural conformations that must be evaluated. Existing tools for quality-of-fit analysis and visualization have previously targeted small structures and are too slow to be used interactively for large biomolecular complexes of particular interest today such as viruses or for long molecular dynamics trajectories as they arise in protein folding. We present new data-parallel and GPU-accelerated algorithms for rapid interactive computation of quality-of-fit metrics linking all-atom structures and molecular dynamics trajectories to experimentally-determined density maps obtained from cryo-electron microscopy or X-ray crystallography. We evaluate the performance and accuracy of the new quality-of-fit analysis algorithms vis-à-vis existing tools, examine algorithm performance on GPU-accelerated desktop workstations and supercomputers, and describe new visualization techniques for results of hybrid structure fitting methods. PMID:25340325

  4. GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting.

    PubMed

    Stone, John E; McGreevy, Ryan; Isralewitz, Barry; Schulten, Klaus

    2014-01-01

    Hybrid structure fitting methods combine data from cryo-electron microscopy and X-ray crystallography with molecular dynamics simulations for the determination of all-atom structures of large biomolecular complexes. Evaluating the quality-of-fit obtained from hybrid fitting is computationally demanding, particularly in the context of a multiplicity of structural conformations that must be evaluated. Existing tools for quality-of-fit analysis and visualization have previously targeted small structures and are too slow to be used interactively for large biomolecular complexes of particular interest today such as viruses or for long molecular dynamics trajectories as they arise in protein folding. We present new data-parallel and GPU-accelerated algorithms for rapid interactive computation of quality-of-fit metrics linking all-atom structures and molecular dynamics trajectories to experimentally-determined density maps obtained from cryo-electron microscopy or X-ray crystallography. We evaluate the performance and accuracy of the new quality-of-fit analysis algorithms vis-à-vis existing tools, examine algorithm performance on GPU-accelerated desktop workstations and supercomputers, and describe new visualization techniques for results of hybrid structure fitting methods.

  5. An effective all-atom potential for proteins

    PubMed Central

    Irbäck, Anders; Mitternacht, Simon; Mohanty, Sandipan

    2009-01-01

    We describe and test an implicit solvent all-atom potential for simulations of protein folding and aggregation. The potential is developed through studies of structural and thermodynamic properties of 17 peptides with diverse secondary structure. Results obtained using the final form of the potential are presented for all these peptides. The same model, with unchanged parameters, is furthermore applied to a heterodimeric coiled-coil system, a mixed α/β protein and a three-helix-bundle protein, with very good results. The computational efficiency of the potential makes it possible to investigate the free-energy landscape of these 49–67-residue systems with high statistical accuracy, using only modest computational resources by today's standards. PACS Codes: 87.14.E-, 87.15.A-, 87.15.Cc PMID:19356242

  6. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect

    Pan, Jianjun; Cheng, Xiaolin; Monticelli, Luca; Heberle, Frederick A; Kucerka, Norbert; Tieleman, D. Peter; Katsaras, John

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.

  7. Dynamical Localization in Molecular Systems.

    NASA Astrophysics Data System (ADS)

    Wang, Xidi

    In the first four chapters of this thesis we concentrate on the Davydov model which describes the vibrational energy quanta of Amide I bonds (C=O bonds on the alpha -helix) coupled to the acoustic phonon modes of the alpha-helix backbone in the form of a Frohlich Hamiltonian. Following a brief introduction in chapter one, in chapter two we formulate the dynamics of vibrational quanta at finite temperature by using coherent state products. The fluctuation-dissipation relation is derived. At zero temperature, in the continuum limit, we recover the original results of Davydov. We also achieve good agreement with numerical simulations. In chapter three, the net contraction of the lattice is calculated exactly at any temperature, and its relation to the so -call "topological stability" of the Davydov soliton is discussed. In the second section of the chapter three we calculate the overtone spectra of crystalline acetanilide (according to some opinions ACN provides experimental evidence for the existence of Davydov solitons). Good agreement with experimental data has been obtained. In chapter four we study the self-trapped vibrational excitations by the Quantum Monte Carlo technique. For a single excitation, the temperature dependence of different physical observables is calculated. The quasi-particle which resembles the Davydov soliton has been found to be fairly narrow using the most commonly used data for the alpha -helix; at temperatures above a few Kelvin, the quasi-particle reaches its smallest limit (extends over three sites), which implies diffusive motion of the small polaron-like quasi-particle at high temperatures. For the multi-excitation case, bound pairs and clusters of excitations are found at low temperatures; they gradually dissociate when the temperature of the system is increased as calculated from the density-density correlation function. In the last chapter of this thesis, we study a more general model of dynamical local modes in molecular systems

  8. Molecular dynamics on APE100

    NASA Astrophysics Data System (ADS)

    Barone, Luciano Maria; Simonazzi, Riccardo; Tenenbaum, Alexander

    1995-09-01

    We have studied portability, efficiency and accuracy of a standard Molecular Dynamics simulation on the SIMD parallel computer APE100. Computing speed performance and physical system size range have been analyzed and compared with those of a conventional computer. Short range and long range potentials have been considered, and the comparative advantage of different simulation approaches has been assessed. For long range potentials, APE turns out to be faster than a conventional computer; large systems can be conveniently simulated using either the cloning approach (up to ˜ 10 5 particles) or a domain decomposition with the systolic method. In the case of short range potentials and systems with diffusion (like a liquid), APE is convenient only when using a large number of processors. In a special case (a crystal without diffusion), a specific domain decomposition technique with frames makes APE advantageous for intermediate and large systems. Using the latter technique we have studied in detail the effect of different numerical error sources, and compared the accuracy of APE with that of a conventional computer.

  9. Small molecule interactions with lipid bilayers: a molecular dynamics study of chlorhexidine

    NASA Astrophysics Data System (ADS)

    van Oosten, Brad; Marquardt, Drew; Sternin, Edward; Harroun, Thad

    2013-03-01

    Chlorhexidine presents an interesting modelling challenge with a hydrophobic hexane connecting two biguanides (arginine analogues) and two aromatic rings. We conducted molecular dynamic simulations using the GROMACS simulation software to reproduce the experimental environment of chlorhexidine in a 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC) bilayer to produce atomic-level information. We constructed an all-atom force field of chlorhexidine from the CHARMM36 force field using well established parameters of certain amino acids. Partial charges were treated differently, which were calculated using GAUSSIAN software. We will compare and contrast the results of our model to that of our neutron scattering experiments previously done in our lab.

  10. Mechanism resulting in chemical imbalance due to cellular damage associated with mechanoporation: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sliozberg, Yelena R.; Chantawansri, Tanya L.

    2016-05-01

    To elucidate the mechanism of ion transport through a transmembrane pore, all-atom molecular dynamics simulations were employed. A model membrane where a pore connects the intra- and extra-cellular compartment was considered. Pores with radii of 1.5 nm or less exhibited resealing over the course of 135 ns simulations, and ionic disturbance is minimal. Ion transport through a larger pore (2 nm radius) leads to a substantial change in the intra- and extra-cellular ionic concentrations. The influx of Na+ and Cl- ions down their concentration gradients is greater than the efflux of K+ leading to an osmotic influx of water.

  11. Atomistic Molecular Dynamics Simulations of the Electrical Double

    NASA Astrophysics Data System (ADS)

    Li, Zifeng; Milner, Scott; Fichthorn, Kristen

    2015-03-01

    The electrical double layer (EDL) near the polymer/water interface plays a key role in the colloidal stability of latex paint. To elucidate the structure of the EDL at the molecular level, we conducted an all-atom molecular dynamics simulations. We studied two representative surface charge groups in latex, the ionic surfactant sodium dodecyl sulfate (SDS) and the grafted short polyelectrolyte charged by dissociated methyl methacrylic acid (MAA) monomers. Our results confirm that the Poisson-Boltzmann theory works well outside the Stern layer. Our calculated electrostatic potential at the Outer Helmholtz Plane (OHP) is close to the zeta potential measured experimentally, which suggests that the potential at the OHP is a good estimate of the zeta potential. We found that the position of the OHP for the MAA polyelectrolyte system extends much further into the aqueous phase than that in the SDS system, resulting in a Stern layer that is twice as thick. This model will allow for future investigations of the interactions of the surface with different surfactants and rheology modifiers, which may serve as a guide to tune the rheology of latex formulations. We thank Dow Chemical Company for financial support.

  12. All-atom crystal simulations of DNA and RNA duplexes

    PubMed Central

    Liu, Chunmei; Janowski, Pawel A.; Case, David A.

    2014-01-01

    Background Molecular dynamics simulations can complement experimental measures of structure and dynamics of biomolecules. The quality of such simulations can be tested by comparisons to models refined against experimental crystallographic data. Methods We report simulations of a DNA and RNA duplex in their crystalline environment. The calculations mimic the conditions for PDB entries 1D23 [d(CGATCGATCG)2] and 1RNA [(UUAUAUAUAUAUAA)2], and contain 8 unit cells, each with 4 copies of the Watson-Crick duplex; this yields in aggregate 64 µs of duplex sampling for DNA and 16 µs for RNA. Results The duplex structures conform much more closely to the average structure seen in the crystal than do structures extracted from a solution simulation with the same force field. Sequence-dependent variations in helical parameters, and in groove widths, are largely maintained in the crystal structure, but are smoothed out in solution. However, the integrity of the crystal lattice is slowly degraded in both simulations, with the result that the interfaces between chains become heterogeneous. This problem is more severe for the DNA crystal, which has fewer inter-chain hydrogen bond contacts than does the RNA crystal. Conclusions Crystal simulations using current force fields reproduce many features of observed crystal structures, but suffer from a gradual degradation of the integrity of the crystal lattice. General significance The results offer insights into force-field simulations that tests their ability to preserve weak interactions between chains, which will be of importance also in non-crystalline applications that involve binding and recognition. PMID:25255706

  13. An all-atom force field developed for Zn₄O(RCO₂)₆ metal organic frameworks.

    PubMed

    Sun, Yingxin; Sun, Huai

    2014-03-01

    An all-atom force field is developed for metal organic frameworks Zn₄O(RCO₂)₆ by fitting to quantum mechanics data. Molecular simulations are conducted to validate the force field by calculating thermal expansion coefficients, crystal bulk and Young's moduli, power spectra, self-diffusion coefficients, and activation energies of self-diffusions for benzene and n-hexane. The calculated results are in good agreement with available experimental data. The proposed force field is suitable for simulations of adsorption or diffusion of organic molecules with flexible frameworks. PMID:24562858

  14. Beyond Modeling: All-Atom Olfactory Receptor Model Simulations

    PubMed Central

    Lai, Peter C.; Crasto, Chiquito J.

    2012-01-01

    Olfactory receptors (ORs) are a type of GTP-binding protein-coupled receptor (GPCR). These receptors are responsible for mediating the sense of smell through their interaction with odor ligands. OR-odorant interactions marks the first step in the process that leads to olfaction. Computational studies on model OR structures can generate focused and novel hypotheses for further bench investigation by providing a view of these interactions at the molecular level beyond inferences that are drawn merely from static docking. Here we have shown the specific advantages of simulating the dynamic environment associated with OR-odorant interactions. We present a rigorous protocol which ranges from the creation of a computationally derived model of an olfactory receptor to simulating the interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will serve as a model for the computational structural biology of all GPCRs. PMID:22563330

  15. Benchmarking all-atom simulations using hydrogen exchange

    PubMed Central

    Skinner, John J.; Yu, Wookyung; Gichana, Elizabeth K.; Baxa, Michael C.; Hinshaw, James R.; Freed, Karl F.; Sosnick, Tobin R.

    2014-01-01

    Long-time molecular dynamics (MD) simulations are now able to fold small proteins reversibly to their native structures [Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) Science 334(6055):517–520]. These results indicate that modern force fields can reproduce the energy surface near the native structure. To test how well the force fields recapitulate the other regions of the energy surface, MD trajectories for a variant of protein G are compared with data from site-resolved hydrogen exchange (HX) and other biophysical measurements. Because HX monitors the breaking of individual H-bonds, this experimental technique identifies the stability and H-bond content of excited states, thus enabling quantitative comparison with the simulations. Contrary to experimental findings of a cooperative, all-or-none unfolding process, the simulated denatured state ensemble, on average, is highly collapsed with some transient or persistent native 2° structure. The MD trajectories of this protein G variant and other small proteins exhibit excessive intramolecular H-bonding even for the most expanded conformations, suggesting that the force fields require improvements in describing H-bonding and backbone hydration. Moreover, these comparisons provide a general protocol for validating the ability of simulations to accurately capture rare structural fluctuations. PMID:25349413

  16. Communication: Relation of centroid molecular dynamics and ring-polymer molecular dynamics to exact quantum dynamics.

    PubMed

    Hele, Timothy J H; Willatt, Michael J; Muolo, Andrea; Althorpe, Stuart C

    2015-05-21

    We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single change to the derivation of the "Classical Wigner" approximation. Here, we show that the further approximation of this "Matsubara dynamics" gives rise to two popular heuristic methods for treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the frequencies of these fluctuations. These findings are consistent with previous numerical results and give explicit formulae for the terms that CMD and RPMD leave out.

  17. Dynamics of Lipids, Cholesterol, and Transmembrane α-Helices from Microsecond Molecular Dynamics Simulations

    PubMed Central

    2015-01-01

    Extensive all-atom molecular dynamics (∼24 μs total) allowed exploration of configurational space and calculation of lateral diffusion coefficients of the components of a protein-embedded, cholesterol-containing model bilayer. The three model membranes are composed of an ∼50/50 (by mole) dipalmitoylphosphatidylcholine (DPPC)/cholesterol bilayer and contained an α-helical transmembrane protein (HIV-1 gp41 TM). Despite the high concentration of cholesterol, normal Brownian motion was observed and the calculated diffusion coefficients (on the order of 10–9 cm2/s) are consistent with experiments. Diffusion is sensitive to a variety of parameters, and a temperature difference of ∼4 K from thermostat artifacts resulted in 2–10-fold differences in diffusion coefficients and significant differences in lipid order, membrane thickness, and unit cell area. Also, the specific peptide sequence likely underlies the consistently observed faster diffusion in one leaflet. Although the simulations here present molecular dynamics (MD) an order of magnitude longer than those from previous studies, the three systems did not approach ergodicity. The distributions of cholesterol and DPPC around the peptides changed on the microsecond time scale, but not significantly enough to thoroughly explore configurational space. These simulations support conclusions of other recent microsecond MD in that even longer time scales are needed for equilibration of model membranes and simulations of more realistic cellular or viral bilayers. PMID:25380392

  18. Time-Dependent Molecular Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Öhrn, Yngve

    2007-11-01

    This paper is a brief review of a time-dependent, direct, nonadiabatic theory of molecular processes called Electron Nuclear Dynamics (END). This approach to the study of molecular reaction dynamics is a hierarchical theory that can be applied at various levels of approximation. The simplest level of END uses classical nuclei and represents all electrons by a single, complex, determinantal wave function. The wave function parameters such as average nuclear positions and momenta, and molecular orbital coefcients carry the time dependence and serve as dynamical variables. Examples of application are given of the simplest level of END to ion-atom and ion-molecule reactions.

  19. Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments

    PubMed Central

    Shen, Rong; Han, Wei; Fiorin, Giacomo; Islam, Shahidul M.; Schulten, Klaus; Roux, Benoît

    2015-01-01

    The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with

  20. Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments.

    PubMed

    Shen, Rong; Han, Wei; Fiorin, Giacomo; Islam, Shahidul M; Schulten, Klaus; Roux, Benoît

    2015-10-01

    The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with

  1. Characterizing molecular motion in H2O and H3O+ with dynamical instability statistics

    NASA Astrophysics Data System (ADS)

    Green, Jason R.; Hofer, Thomas S.; Berry, R. Stephen; Wales, David J.

    2011-11-01

    Sets of finite-time Lyapunov exponents characterize the stability and instability of classically chaotic dynamical trajectories. Here we show that their sample distributions can contain subpopulations identifying different types of dynamics. In small isolated molecules these dynamics correspond to distinct elementary motions, such as isomerizations. Exponents are calculated from constant total energy molecular dynamics simulations of H2O and H3O+, modelled with a classical, reactive, all-atom potential. Over a range of total energy, exponent distributions for these systems reveal that phase space exploration is more chaotic near saddles corresponding to isomerization and less chaotic near potential energy minima. This finding contrasts with previous results for Lennard-Jones clusters, and is explained in terms of the potential energy landscape.

  2. Communication: Relation of centroid molecular dynamics and ring-polymer molecular dynamics to exact quantum dynamics

    SciTech Connect

    Hele, Timothy J. H.; Willatt, Michael J.; Muolo, Andrea; Althorpe, Stuart C.

    2015-05-21

    We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single change to the derivation of the “Classical Wigner” approximation. Here, we show that the further approximation of this “Matsubara dynamics” gives rise to two popular heuristic methods for treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the frequencies of these fluctuations. These findings are consistent with previous numerical results and give explicit formulae for the terms that CMD and RPMD leave out.

  3. Systematic Coarse-graining of Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Voth, Gregory

    2015-03-01

    Coarse-grained (CG) models can provide a computationally efficient means to study biomolecular and other soft matter processes involving large numbers of atoms that are correlated over distance scales of many covalent bond lengths and at long time scales. Systematic variational coarse-graining methods based on information from molecular dynamics simulations of finer-grained (e.g., all-atom) models provide attractive tools for the systematic development of CG models. Examples include the multiscale coarse-graining (MS-CG) and relative entropy minimization methods, and results from the former theory will be presented in this talk. In addition, a new approach will be presented that is appropriate for the ``ultra coarse-grained'' (UCG) regime, e.g., at a coarse-grained resolution that is much coarser than one amino acid residue per CG particle in a protein. At this level of coarse-graining, one is faced with the possible existence of multiple metastable states ``within'' the CG sites for a given UCG model configuration. I will therefore describe newer systematic variational UCG methods specifically designed to CG entire protein domains and subdomains into single effective CG particles. This is accomplished by augmenting existing effective particle CG schemes to allow for discrete state transitions and configuration-dependent resolution. Additionally, certain aspects of this work connect back to single-state force matching and open up new avenues for method development. This general body of theory and algorithm provides a formal statistical mechanical basis for the coarse-graining of fine-grained molecular dynamics simulation data at various levels of CG resolution. Representative applications will be described as time allows.

  4. Molecular ions, Rydberg spectroscopy and dynamics

    SciTech Connect

    Jungen, Ch.

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  5. Modeling the Hydrogen Bond within Molecular Dynamics

    ERIC Educational Resources Information Center

    Lykos, Peter

    2004-01-01

    The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.

  6. Protein dynamics: Moore's law in molecular biology.

    PubMed

    Vendruscolo, Michele; Dobson, Christopher M

    2011-01-25

    The millisecond barrier has been broken in molecular dynamics simulations of proteins. Such simulations are increasingly revealing the inner workings of biological systems by generating atomic-level descriptions of their behaviour that make testable predictions about key molecular processes.

  7. Molecular Dynamics Simulations of Simple Liquids

    ERIC Educational Resources Information Center

    Speer, Owner F.; Wengerter, Brian C.; Taylor, Ramona S.

    2004-01-01

    An experiment, in which students were given the opportunity to perform molecular dynamics simulations on a series of molecular liquids using the Amber suite of programs, is presented. They were introduced to both physical theories underlying classical mechanics simulations and to the atom-atom pair distribution function.

  8. Molecular dynamics simulations of membrane proteins under asymmetric ionic concentrations

    PubMed Central

    Khalili-Araghi, Fatemeh; Ziervogel, Brigitte; Gumbart, James C.

    2013-01-01

    A computational method is developed to allow molecular dynamics simulations of biomembrane systems under realistic ionic gradients and asymmetric salt concentrations while maintaining the conventional periodic boundary conditions required to minimize finite-size effects in an all-atom explicit solvent representation. The method, which consists of introducing a nonperiodic energy step acting on the ionic species at the edge of the simulation cell, is first tested with illustrative applications to a simple membrane slab model and a phospholipid membrane bilayer. The nonperiodic energy-step method is then used to calculate the reversal potential of the bacterial porin OmpF, a large cation-specific β-barrel channel, by simulating the I-V curve under an asymmetric 10:1 KCl concentration gradient. The calculated reversal potential of 28.6 mV is found to be in excellent agreement with the values of 26–27 mV measured from lipid bilayer experiments, thereby demonstrating that the method allows realistic simulations of nonequilibrium membrane transport with quantitative accuracy. As a final example, the pore domain of Kv1.2, a highly selective voltage-activated K+ channel, is simulated in a lipid bilayer under conditions that recreate, for the first time, the physiological K+ and Na+ concentration gradients and the electrostatic potential difference of living cells. PMID:24081985

  9. Parallel Molecular Dynamics Program for Molecules

    SciTech Connect

    Plimpton, Steve

    1995-03-07

    ParBond is a parallel classical molecular dynamics code that models bonded molecular systems, typically of an organic nature. It uses classical force fields for both non-bonded Coulombic and Van der Waals interactions and for 2-, 3-, and 4-body bonded (bond, angle, dihedral, and improper) interactions. It integrates Newton''s equation of motion for the molecular system and evaluates various thermodynamical properties of the system as it progresses.

  10. Folding peptides and proteins with all-atom physics: methods and applications

    NASA Astrophysics Data System (ADS)

    Shell, M. Scott

    2008-03-01

    Computational methods offer powerful tools for investigating proteins and peptides at the molecular-level; however, it has proven challenging to reproduce the long time scale folding processes of these molecules at a level that is both faithful to the atomic driving forces and attainable with modern commodity cluster computing. Alternatively, the past decade has seen significant progress in using bioinformatics-based approaches to infer the three dimensional native structures of proteins, drawing upon extensive knowledge databases of known protein structures [1]. These methods work remarkably well when a homologous protein can be found to provide a structural template for a candidate sequence. However, in cases where homology to database proteins is low, where the folding pathway is of interest, or where conformational flexibility is substantial---as in many emerging protein and peptide technologies---bioinformatics methods perform poorly. There is therefore great interest in seeing purely physics-based approaches succeed. We discuss a purely physics-based, database-free folding method, relying on proper thermal sampling (replica exchange molecular dynamics) and molecular potential energy functions. In order to surmount the tremendous computational demands of all-atom folding simulations, our approach implements a conformational search strategy based on a putative protein folding mechanism called zipping and assembly [2-4]. That is, we explicitly seek out potential folding pathways inferred from short simulations, and iteratively pursue all such routes by coaxing a polypeptide chain along them. The method is called the Zipping and Assembly Method (ZAM) and it works in two parts: (1) the full polypeptide chain is broken into small fragments that are first simulated independently and then successively re-assembled into larger segments with further sampling, and (2) consistently stable structure in fragments is detected and locked into place, in order to avoid re

  11. Dynamic molecular crystals with switchable physical properties.

    PubMed

    Sato, Osamu

    2016-06-21

    The development of molecular materials whose physical properties can be controlled by external stimuli - such as light, electric field, temperature, and pressure - has recently attracted much attention owing to their potential applications in molecular devices. There are a number of ways to alter the physical properties of crystalline materials. These include the modulation of the spin and redox states of the crystal's components, or the incorporation within the crystalline lattice of tunable molecules that exhibit stimuli-induced changes in their molecular structure. A switching behaviour can also be induced by changing the molecular orientation of the crystal's components, even in cases where the overall molecular structure is not affected. Controlling intermolecular interactions within a molecular material is also an effective tool to modulate its physical properties. This Review discusses recent advances in the development of such stimuli-responsive, switchable crystalline compounds - referred to here as dynamic molecular crystals - and suggests how different approaches can serve to prepare functional materials. PMID:27325090

  12. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed. PMID:26604800

  13. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed.

  14. Molecular dynamics simulations of large macromolecular complexes

    PubMed Central

    Perilla, Juan R.; Goh, Boon Chong; Cassidy, C. Keith; Liu, Bo; Bernardi, Rafael C.; Rudack, Till; Yu, Hang; Wu, Zhe; Schulten, Klaus

    2015-01-01

    Connecting dynamics to structural data from diverse experimental sources, molecular dynamics simulations permit the exploration of biological phenomena in unparalleled detail. Advances in simulations are moving the atomic resolution descriptions of biological systems into the million-to-billion atom regime, in which numerous cell functions reside. In this opinion, we review the progress, driven by large-scale molecular dynamics simulations, in the study of viruses, ribosomes, bioenergetic systems, and other diverse applications. These examples highlight the utility of molecular dynamics simulations in the critical task of relating atomic detail to the function of supramolecular complexes, a task that cannot be achieved by smaller-scale simulations or existing experimental approaches alone. PMID:25845770

  15. A combined coarse-grained and all-atom simulation of TRPV1 channel gating and heat activation

    PubMed Central

    Qin, Feng

    2015-01-01

    The transient receptor potential (TRP) channels act as key sensors of various chemical and physical stimuli in eukaryotic cells. Despite years of study, the molecular mechanisms of TRP channel activation remain unclear. To elucidate the structural, dynamic, and energetic basis of gating in TRPV1 (a founding member of the TRPV subfamily), we performed coarse-grained modeling and all-atom molecular dynamics (MD) simulation based on the recently solved high resolution structures of the open and closed form of TRPV1. Our coarse-grained normal mode analysis captures two key modes of collective motions involved in the TRPV1 gating transition, featuring a quaternary twist motion of the transmembrane domains (TMDs) relative to the intracellular domains (ICDs). Our transition pathway modeling predicts a sequence of structural movements that propagate from the ICDs to the TMDs via key interface domains (including the membrane proximal domain and the C-terminal domain), leading to sequential opening of the selectivity filter followed by the lower gate in the channel pore (confirmed by modeling conformational changes induced by the activation of ICDs). The above findings of coarse-grained modeling are robust to perturbation by lipids. Finally, our MD simulation of the ICD identifies key residues that contribute differently to the nonpolar energy of the open and closed state, and these residues are predicted to control the temperature sensitivity of TRPV1 gating. These computational predictions offer new insights to the mechanism for heat activation of TRPV1 gating, and will guide our future electrophysiology and mutagenesis studies. PMID:25918362

  16. The equilibrium properties and folding kinetics of an all-atom Go xAF model of the Trp-cage

    NASA Astrophysics Data System (ADS)

    Linhananta, Apichart; Boer, Jesse; MacKay, Ian

    2005-03-01

    The ultrafast-folding 20-residue Trp-cage protein is quickly becoming a new benchmark for molecular dynamics studies. Already several all-atom simulations have probed its equilibrium and kinetic properties. In this work an all-atom Go ¯ model is used to accurately represent the side-chain packing and native atomic contacts of the Trp-cage. The model reproduces the hallmark thermodynamics cooperativity of small proteins. Folding simulations observe that in the fast-folding dominant pathway, partial α-helical structure forms before hydrophobic core collapse. In the slow-folding secondary pathway, partial core collapse occurs before helical structure. The slow-folding rate of the secondary pathway is attributed to the loss of side-chain rotational freedom, due to the early core collapse, which impedes the helix formation. A major finding is the observation of a low-temperature kinetic intermediate stabilized by a salt bridge between residues Asp-9 and Arg-16. Similar observations [R. Zhou, Proc. Natl. Acad. Sci. U.S.A. 100, 13280 (2003)] were reported in a recent study using an all-atom model of the Trp-cage in explicit water, in which the salt-bridge stabilized intermediate was hypothesized to be the origin of the ultrafast-folding mechanism. A theoretical mutation that eliminates the Asp-9-Arg-16 salt bridge, but leaves the residues intact, is performed. Folding simulations of the mutant Trp-cage observe a two-state free-energy landscape with no kinetic intermediate and a significant decrease in the folding rate, in support of the hypothesis.

  17. Molecular scale dynamics of large ring polymers.

    PubMed

    Gooßen, S; Brás, A R; Krutyeva, M; Sharp, M; Falus, P; Feoktystov, A; Gasser, U; Pyckhout-Hintzen, W; Wischnewski, A; Richter, D

    2014-10-17

    We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture. PMID:25361284

  18. Dynamic signature of molecular association in methanol.

    PubMed

    Bertrand, C E; Self, J L; Copley, J R D; Faraone, A

    2016-07-01

    Quasielastic neutron scattering measurements and molecular dynamics simulations were combined to investigate the collective dynamics of deuterated methanol, CD3OD. In the experimentally determined dynamic structure factor, a slow, non-Fickian mode was observed in addition to the standard density-fluctuation heat mode. The simulation results indicate that the slow dynamical process originates from the hydrogen bonding of methanol molecules. The qualitative behavior of this mode is similar to the previously observed α-relaxation in supercooled water [M. C. Bellissent-Funel et al., Phys. Rev. Lett. 85, 3644 (2000)] which also originates from the formation and dissolution of hydrogen-bonded associates (supramolecular clusters). In methanol, however, this mode is distinguishable well above the freezing transition. This finding indicates that an emergent slow mode is not unique to supercooled water, but may instead be a general feature of hydrogen-bonding liquids and associating molecular liquids. PMID:27394112

  19. Molecular scale dynamics of large ring polymers.

    PubMed

    Gooßen, S; Brás, A R; Krutyeva, M; Sharp, M; Falus, P; Feoktystov, A; Gasser, U; Pyckhout-Hintzen, W; Wischnewski, A; Richter, D

    2014-10-17

    We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture.

  20. Dynamic signature of molecular association in methanol

    NASA Astrophysics Data System (ADS)

    Bertrand, C. E.; Self, J. L.; Copley, J. R. D.; Faraone, A.

    2016-07-01

    Quasielastic neutron scattering measurements and molecular dynamics simulations were combined to investigate the collective dynamics of deuterated methanol, CD3OD. In the experimentally determined dynamic structure factor, a slow, non-Fickian mode was observed in addition to the standard density-fluctuation heat mode. The simulation results indicate that the slow dynamical process originates from the hydrogen bonding of methanol molecules. The qualitative behavior of this mode is similar to the previously observed α-relaxation in supercooled water [M. C. Bellissent-Funel et al., Phys. Rev. Lett. 85, 3644 (2000)] which also originates from the formation and dissolution of hydrogen-bonded associates (supramolecular clusters). In methanol, however, this mode is distinguishable well above the freezing transition. This finding indicates that an emergent slow mode is not unique to supercooled water, but may instead be a general feature of hydrogen-bonding liquids and associating molecular liquids.

  1. Numerical methods for molecular dynamics

    SciTech Connect

    Skeel, R.D.

    1991-01-01

    This report summarizes our research progress to date on the use of multigrid methods for three-dimensional elliptic partial differential equations, with particular emphasis on application to the Poisson-Boltzmann equation of molecular biophysics. This research is motivated by the need for fast and accurate numerical solution techniques for three-dimensional problems arising in physics and engineering. In many applications these problems must be solved repeatedly, and the extremely large number of discrete unknowns required to accurately approximate solutions to partial differential equations in three-dimensional regions necessitates the use of efficient solution methods. This situation makes clear the importance of developing methods which are of optimal order (or nearly so), meaning that the number of operations required to solve the discrete problem is on the order of the number of discrete unknowns. Multigrid methods are generally regarded as being in this class of methods, and are in fact provably optimal order for an increasingly large class of problems. The fundamental goal of this research is to develop a fast and accurate numerical technique, based on multi-level principles, for the solutions of the Poisson-Boltzmann equation of molecular biophysics and similar equations occurring in other applications. An outline of the report is as follows. We first present some background material, followed by a survey of the literature on the use of multigrid methods for solving problems similar to the Poisson-Boltzmann equation. A short description of the software we have developed so far is then given, and numerical results are discussed. Finally, our research plans for the coming year are presented.

  2. Bridging between NMA and Elastic Network Models: Preserving All-Atom Accuracy in Coarse-Grained Models

    PubMed Central

    Na, Hyuntae; Jernigan, Robert L.; Song, Guang

    2015-01-01

    Dynamics can provide deep insights into the functional mechanisms of proteins and protein complexes. For large protein complexes such as GroEL/GroES with more than 8,000 residues, obtaining a fine-grained all-atom description of its normal mode motions can be computationally prohibitive and is often unnecessary. For this reason, coarse-grained models have been used successfully. However, most existing coarse-grained models use extremely simple potentials to represent the interactions within the coarse-grained structures and as a result, the dynamics obtained for the coarse-grained structures may not always be fully realistic. There is a gap between the quality of the dynamics of the coarse-grained structures given by all-atom models and that by coarse-grained models. In this work, we resolve an important question in protein dynamics computations—how can we efficiently construct coarse-grained models whose description of the dynamics of the coarse-grained structures remains as accurate as that given by all-atom models? Our method takes advantage of the sparseness of the Hessian matrix and achieves a high efficiency with a novel iterative matrix projection approach. The result is highly significant since it can provide descriptions of normal mode motions at an all-atom level of accuracy even for the largest biomolecular complexes. The application of our method to GroEL/GroES offers new insights into the mechanism of this biologically important chaperonin, such as that the conformational transitions of this protein complex in its functional cycle are even more strongly connected to the first few lowest frequency modes than with other coarse-grained models. PMID:26473491

  3. Bridging between NMA and Elastic Network Models: Preserving All-Atom Accuracy in Coarse-Grained Models.

    PubMed

    Na, Hyuntae; Jernigan, Robert L; Song, Guang

    2015-10-01

    Dynamics can provide deep insights into the functional mechanisms of proteins and protein complexes. For large protein complexes such as GroEL/GroES with more than 8,000 residues, obtaining a fine-grained all-atom description of its normal mode motions can be computationally prohibitive and is often unnecessary. For this reason, coarse-grained models have been used successfully. However, most existing coarse-grained models use extremely simple potentials to represent the interactions within the coarse-grained structures and as a result, the dynamics obtained for the coarse-grained structures may not always be fully realistic. There is a gap between the quality of the dynamics of the coarse-grained structures given by all-atom models and that by coarse-grained models. In this work, we resolve an important question in protein dynamics computations--how can we efficiently construct coarse-grained models whose description of the dynamics of the coarse-grained structures remains as accurate as that given by all-atom models? Our method takes advantage of the sparseness of the Hessian matrix and achieves a high efficiency with a novel iterative matrix projection approach. The result is highly significant since it can provide descriptions of normal mode motions at an all-atom level of accuracy even for the largest biomolecular complexes. The application of our method to GroEL/GroES offers new insights into the mechanism of this biologically important chaperonin, such as that the conformational transitions of this protein complex in its functional cycle are even more strongly connected to the first few lowest frequency modes than with other coarse-grained models.

  4. Semiclassical guided optimal control of molecular dynamics

    SciTech Connect

    Kondorskiy, A.; Mil'nikov, G.; Nakamura, H.

    2005-10-15

    An efficient semiclassical optimal control theory applicable to multidimensional systems is formulated for controlling wave packet dynamics on a single adiabatic potential energy surface. The approach combines advantages of different formulations of optimal control theory: quantum and classical on one hand and global and local on the other. Numerical applications to the control of HCN-CNH isomerization demonstrate that this theory can provide an efficient tool to manipulate molecular dynamics of many degrees of freedom by laser pulses.

  5. Membrane Sculpting by F-BAR Domains Studied by Molecular Dynamics Simulations

    PubMed Central

    Yu, Hang; Schulten, Klaus

    2013-01-01

    Interplay between cellular membranes and their peripheral proteins drives many processes in eukaryotic cells. Proteins of the Bin/Amphiphysin/Rvs (BAR) domain family, in particular, play a role in cellular morphogenesis, for example curving planar membranes into tubular membranes. However, it is still unclear how F-BAR domain proteins act on membranes. Electron microscopy revealed that, in vitro, F-BAR proteins form regular lattices on cylindrically deformed membrane surfaces. Using all-atom and coarse-grained (CG) molecular dynamics simulations, we show that such lattices, indeed, induce tubes of observed radii. A 250 ns all-atom simulation reveals that F-BAR domain curves membranes via the so-called scaffolding mechanism. Plasticity of the F-BAR domain permits conformational change in response to membrane interaction, via partial unwinding of the domains 3-helix bundle structure. A CG simulation covering more than 350 µs provides a dynamic picture of membrane tubulation by lattices of F-BAR domains. A series of CG simulations identified the optimal lattice type for membrane sculpting, which matches closely the lattices seen through cryo-electron microscopy. PMID:23382665

  6. Molecular Dynamics Simulations of Liquid-Crystalline Dendritic Architectures

    NASA Astrophysics Data System (ADS)

    Bourgogne, C.; Bury, I.; Gehringer, L.; Zelcer, A.; Cukiernik, F.; Terazzi, E.; Donnio, B.; Guillon, D.

    We report here a few examples of the self-organization behaviour of some novel materials based on liquid-crystalline dendritic architectures. The original design of the molecules imposes the use of all-atomic methods to model correctly every intra- and intermolecular effects. The selected materials are octopus dendrimers with block anisotropic side-arms, segmented amphiphilic block codendrimers, multicore and star-shaped oligomers, and multi-functionalized manganese clusters. The molecular organization in lamellar or columnar phases occurs due to soft/rigid parts self-recognition, hydrogen-bonding networks or from the molecular shape intrinsically.

  7. Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations.

    PubMed Central

    Shen, L; Bassolino, D; Stouch, T

    1997-01-01

    To probe the fundamentals of membrane/protein interactions, all-atom multi-nanosecond molecular dynamics simulations were conducted on a single transmembrane poly(32)alanine helix in a fully solvated dimyristoyphosphatidylcholine (DMPC) bilayer. The central 12 residues, which interact only with the lipid hydrocarbon chains, maintained a very stable helical structure. Helical regions extended beyond these central 12 residues, but interactions with the lipid fatty-acyl ester linkages, the lipid headgroups, and water molecules made the helix less stable in this region. The C and N termini, exposed largely to water, existed as random coils. As a whole, the helix tilted substantially, from perpendicular to the bilayer plane (0 degree) to a 30 degrees tilt. The helix experienced a bend at its middle, and the two halves of the helix at times assumed substantially different tilts. Frequent hydrogen bonding, of up to 0.7 ns in duration, occurred between peptide and lipid molecules. This resulted in correlated translational diffusion between the helix and a few lipid molecules. Because of the large variation in lipid conformation, the lipid environment of the peptide was not well defined in terms of "annular" lipids and on average consisted of 18 lipid molecules. When compared with a "neat" bilayer without peptide, no significant difference was seen in the bilayer thickness, lipid conformations or diffusion, or headgroup orientation. However, the lipid hydrocarbon chain order parameters showed a significant decrease in order, especially in those methylene groups closest to the headgroup. Images FIGURE 1 FIGURE 14 PMID:9199766

  8. Water network dynamics at the critical moment of a peptide's β-turn formation: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Karvounis, George; Nerukh, Dmitry; Glen, Robert C.

    2004-09-01

    All-atom molecular dynamics simulations for a single molecule of Leu-Enkephalin in aqueous solution have been used to study the role of the water network during the formation of β-turns. We give a detailed account of the intramolecular hydrogen bonding, the water-peptide hydrogen bonding, and the orientation and residence times of water molecules focusing on the short critical periods of transition to the stable β-turns. These studies suggest that, when intramolecular hydrogen bonding between the first and fourth residue of the β-turn is not present, the disruption of the water network and the establishment of water bridges constitute decisive factors in the formation and stability of the β-turn. Finally, we provide possible explanations and mechanisms for the formations of different kinds of β-turns.

  9. Molecular Exchange Dynamics in Block Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Bates, Frank; Lu, Jie; Choi, Soohyung; Lodge, Timothy

    2012-02-01

    Poly(styrene-b-ethylene propylene) (PS-PEP) diblock copolymers were mixed with squalane (C30H62) at 1% by weight resulting in the formation of spherical micelles. The structure and dynamics of molecular exchange were characterized by synchrotron small-angle x-ray scattering (SAXS) and time resolved small-angle neutron scattering (TR-SANS), respectively, between 100 C and 160 C. TR-SANS measurements were performed with solutions initially containing deuterium labeled micelle cores and normal cores dispersed in a contrast matched squalane. Monitoring the reduction in scattering intensity as a function of time at various temperatures revealed molecular exchange dynamics highly sensitive to the core molecular weight and molecular weight distribution. Time-temperature superposition of data acquired at different temperatures produced a single master curve for all the mixtures. Experiments conducted with isotopically labeled micelle cores, each formed from two different but relatively mondisperse PS blocks, confirmed a simple dynamical model based on first order kinetics and core Rouse single chain relaxation. These findings demonstrate a dramatic transition to nonergodicity with increasing micelle core molecular weight and confirm the origins of the logarithmic exchange kinetics in such systems.

  10. Reaction dynamics in polyatomic molecular systems

    SciTech Connect

    Miller, W.H.

    1993-12-01

    The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.

  11. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms.

    PubMed

    Mori, Takaharu; Miyashita, Naoyuki; Im, Wonpil; Feig, Michael; Sugita, Yuji

    2016-07-01

    This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.

  12. Multiscale coupling of molecular dynamics and peridynamics

    NASA Astrophysics Data System (ADS)

    Tong, Qi; Li, Shaofan

    2016-10-01

    We propose a multiscale computational model to couple molecular dynamics and peridynamics. The multiscale coupling model is based on a previously developed multiscale micromorphic molecular dynamics (MMMD) theory, which has three dynamics equations at three different scales, namely, microscale, mesoscale, and macroscale. In the proposed multiscale coupling approach, we divide the simulation domain into atomistic region and macroscale region. Molecular dynamics is used to simulate atom motions in atomistic region, and peridynamics is used to simulate macroscale material point motions in macroscale region, and both methods are nonlocal particle methods. A transition zone is introduced as a messenger to pass the information between the two regions or scales. We employ the "supercell" developed in the MMMD theory as the transition element, which is named as the adaptive multiscale element due to its ability of passing information from different scales, because the adaptive multiscale element can realize both top-down and bottom-up communications. We introduce the Cauchy-Born rule based stress evaluation into state-based peridynamics formulation to formulate atomistic-enriched constitutive relations. To mitigate the issue of wave reflection on the interface, a filter is constructed by switching on and off the MMMD dynamic equations at different scales. Benchmark tests of one-dimensional (1-D) and two-dimensional (2-D) wave propagations from atomistic region to macro region are presented. The mechanical wave can transit through the interface smoothly without spurious wave deflections, and the filtering process is proven to be efficient.

  13. MDMovie: a molecular dynamics viewing tool.

    PubMed

    Greenberg, J P

    1996-10-01

    The graphics program MDMovie (Molecular Dynamics Movie), written in C using IRIS GL graphics library calls, is designed to facilitate the visualization and interpretation of empirical force field data. MDMovie was created and initially adapted in accord with the needs of physical chemists and thereafter became an expandable analysis tool. Capabilities include the display of chemical structure, animation of molecular dynamics and Monte Carlo trajectories, and the visual representation of various vector and scalar dynamical properties. In addition to being a research tool, MDMovie has features for creating presentation videos and hardcopy output. A library is also available for linking to Fortran simulation codes running on a remote machine and connecting to MDMovie via a socket connection. MDMovie continues to be an ongoing research project and new features are actively being added in collaboration with various research groups. Future plans include porting to OpenGL and the design of an XII-based user interface.

  14. Probing the Huntingtin 1-17 Membrane Anchor on a Phospholipid Bilayer by Using All-Atom Simulations

    PubMed Central

    Côté, Sébastien; Binette, Vincent; Salnikov, Evgeniy S.; Bechinger, Burkhard; Mousseau, Normand

    2015-01-01

    Mislocalization and aggregation of the huntingtin protein are related to Huntington’s disease. Its first exon—more specifically the first 17 amino acids (Htt17)—is crucial for the physiological and pathological functions of huntingtin. It regulates huntingtin’s activity through posttranslational modifications and serves as an anchor to membrane-containing organelles of the cell. Recently, structure and orientation of the Htt17 membrane anchor were determined using a combined solution and solid-state NMR approach. This prompted us to refine this model by investigating the dynamics and thermodynamics of this membrane anchor on a POPC bilayer using all-atom, explicit solvent molecular dynamics and Hamiltonian replica exchange. Our simulations are combined with various experimental measurements to generate a high-resolution atomistic model for the huntingtin Htt17 membrane anchor on a POPC bilayer. More precisely, we observe that the single α-helix structure is more stable in the phospholipid membrane than the NMR model obtained in the presence of dodecylphosphocholine detergent micelles. The resulting Htt17 monomer has its hydrophobic plane oriented parallel to the bilayer surface. Our results further unveil the key residues interacting with the membrane in terms of hydrogen bonds, salt-bridges, and nonpolar contributions. We also observe that Htt17 equilibrates at a well-defined insertion depth and that it perturbs the physical properties—order parameter, thickness, and area per lipid—of the bilayer in a manner that could favor its dimerization. Overall, our observations reinforce and refine the NMR measurements on the Htt17 membrane anchor segment of huntingtin that is of fundamental importance to its biological functions. PMID:25762330

  15. Polar solvation dynamics of lysozyme from molecular dynamics studies

    NASA Astrophysics Data System (ADS)

    Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy

    2012-05-01

    The solvation dynamics of a protein are believed to be sensitive to its secondary structures. We have explored such sensitivity in this article by performing room temperature molecular dynamics simulation of an aqueous solution of lysozyme. Nonuniform long-time relaxation patterns of the solvation time correlation function for different segments of the protein have been observed. It is found that relatively slower long-time solvation components of the α-helices and β-sheets of the protein are correlated with lower exposure of their polar probe residues to bulk solvent and hence stronger interactions with the dynamically restricted surface water molecules. These findings can be verified by appropriate experimental studies.

  16. Dynamic strength of molecular adhesion bonds.

    PubMed Central

    Evans, E; Ritchie, K

    1997-01-01

    In biology, molecular linkages at, within, and beneath cell interfaces arise mainly from weak noncovalent interactions. These bonds will fail under any level of pulling force if held for sufficient time. Thus, when tested with ultrasensitive force probes, we expect cohesive material strength and strength of adhesion at interfaces to be time- and loading rate-dependent properties. To examine what can be learned from measurements of bond strength, we have extended Kramers' theory for reaction kinetics in liquids to bond dissociation under force and tested the predictions by smart Monte Carlo (Brownian dynamics) simulations of bond rupture. By definition, bond strength is the force that produces the most frequent failure in repeated tests of breakage, i.e., the peak in the distribution of rupture forces. As verified by the simulations, theory shows that bond strength progresses through three dynamic regimes of loading rate. First, bond strength emerges at a critical rate of loading (> or = 0) at which spontaneous dissociation is just frequent enough to keep the distribution peak at zero force. In the slow-loading regime immediately above the critical rate, strength grows as a weak power of loading rate and reflects initial coupling of force to the bonding potential. At higher rates, there is crossover to a fast regime in which strength continues to increase as the logarithm of the loading rate over many decades independent of the type of attraction. Finally, at ultrafast loading rates approaching the domain of molecular dynamics simulations, the bonding potential is quickly overwhelmed by the rapidly increasing force, so that only naked frictional drag on the structure remains to retard separation. Hence, to expose the energy landscape that governs bond strength, molecular adhesion forces must be examined over an enormous span of time scales. However, a significant gap exists between the time domain of force measurements in the laboratory and the extremely fast scale

  17. Dynamical quenching of tunneling in molecular magnets

    NASA Astrophysics Data System (ADS)

    José Santander, María; Nunez, Alvaro S.; Roldán-Molina, A.; Troncoso, Roberto E.

    2015-12-01

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation.

  18. Exciton dynamics in perturbed vibronic molecular aggregates

    PubMed Central

    Brüning, C.; Wehner, J.; Hausner, J.; Wenzel, M.; Engel, V.

    2015-01-01

    A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840

  19. An Evolutionary Strategy for All-Atom Folding of the 60-Amino-Acid Bacterial Ribosomal Protein L20

    PubMed Central

    Schug, A.; Wenzel, W.

    2006-01-01

    We have investigated an evolutionary algorithm for de novo all-atom folding of the bacterial ribosomal protein L20. We report results of two simulations that converge to near-native conformations of this 60-amino-acid, four-helix protein. We observe a steady increase of “native content” in both simulated ensembles and a large number of near-native conformations in their final populations. We argue that these structures represent a significant fraction of the low-energy metastable conformations, which characterize the folding funnel of this protein. These data validate our all-atom free-energy force field PFF01 for tertiary structure prediction of a previously inaccessible structural family of proteins. We also compare folding simulations of the evolutionary algorithm with the basin-hopping technique for the Trp-cage protein. We find that the evolutionary algorithm generates a dynamic memory in the simulated population, which leads to faster overall convergence. PMID:16565067

  20. Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water.

    PubMed

    Reinhardt, Aleks; Doye, Jonathan P K; Noya, Eva G; Vega, Carlos

    2012-11-21

    We present a local order parameter based on the standard Steinhardt-Ten Wolde approach that is capable both of tracking and of driving homogeneous ice nucleation in simulations of all-atom models of water. We demonstrate that it is capable of forcing the growth of ice nuclei in supercooled liquid water simulated using the TIP4P/2005 model using over-biassed umbrella sampling Monte Carlo simulations. However, even with such an order parameter, the dynamics of ice growth in deeply supercooled liquid water in all-atom models of water are shown to be very slow, and so the computation of free energy landscapes and nucleation rates remains extremely challenging.

  1. Molecular dynamic simulation methods for anisotropic liquids.

    PubMed

    Aoki, Keiko M; Yoneya, Makoto; Yokoyama, Hiroshi

    2004-03-22

    Methods of molecular dynamics simulations for anisotropic molecules are presented. The new methods, with an anisotropic factor in the cell dynamics, dramatically reduce the artifacts related to cell shapes and overcome the difficulties of simulating anisotropic molecules under constant hydrostatic pressure or constant volume. The methods are especially effective for anisotropic liquids, such as smectic liquid crystals and membranes, of which the stacks of layers are compressible (elastic in direction perpendicular to the layers) while the layer itself is liquid and only elastic under uniform compressive force. The methods can also be used for crystals and isotropic liquids as well.

  2. Molecular dynamics at constant Cauchy stress

    NASA Astrophysics Data System (ADS)

    Miller, Ronald E.; Tadmor, Ellad B.; Gibson, Joshua S.; Bernstein, Noam; Pavia, Fabio

    2016-05-01

    The Parrinello-Rahman algorithm for imposing a general state of stress in periodic molecular dynamics simulations is widely used in the literature and has been implemented in many readily available molecular dynamics codes. However, what is often overlooked is that this algorithm controls the second Piola-Kirchhoff stress as opposed to the true (Cauchy) stress. This can lead to misinterpretation of simulation results because (1) the true stress that is imposed during the simulation depends on the deformation of the periodic cell, (2) the true stress is potentially very different from the imposed second Piola-Kirchhoff stress, and (3) the true stress can vary significantly during the simulation even if the imposed second Piola-Kirchhoff is constant. We propose a simple modification to the algorithm that allows the true Cauchy stress to be controlled directly. We then demonstrate the efficacy of the new algorithm with the example of martensitic phase transformations under applied stress.

  3. New faster CHARMM molecular dynamics engine

    PubMed Central

    Hynninen, Antti-Pekka; Crowley, Michael F

    2014-01-01

    We introduce a new faster molecular dynamics (MD) engine into the CHARMM software package. The new MD engine is faster both in serial (i.e., single CPU core) and parallel execution. Serial performance is approximately two times higher than in the previous version of CHARMM. The newly programmed parallelization method allows the MD engine to parallelize up to hundreds of CPU cores. PMID:24302199

  4. Nanoindentation of Zr by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Lu (芦子哲), Zizhe; Chernatynskiy, Aleksandr; Noordhoek, Mark J.; Sinnott, Susan B.; Phillpot, Simon R.

    2015-12-01

    Molecular dynamics simulations of nanoindentation are used to study the deformation behaviors of single crystal Zr for four different surface orientations. The comparison of results for two different potentials, an embedded atom method potential and a charged optimized many body potential, reveals the influence of stable and unstable stacking fault energy on dislocation behaviors under nanoindentation. The load-displacement curve, hardness and deformation behaviors of the various surface orientations Zr are compared and the elastic and plastic deformation behaviors are analyzed.

  5. Molecular dynamics modelling of solidification in metals

    SciTech Connect

    Boercker, D.B.; Belak, J.; Glosli, J.

    1997-12-31

    Molecular dynamics modeling is used to study the solidification of metals at high pressure and temperature. Constant pressure MD is applied to a simulation cell initially filled with both solid and molten metal. The solid/liquid interface is tracked as a function of time, and the data are used to estimate growth rates of crystallites at high pressure and temperature in Ta and Mg.

  6. Structure and dynamics of complex liquid water: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    S, Indrajith V.; Natesan, Baskaran

    2015-06-01

    We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.

  7. Molecular crowding and protein enzymatic dynamics.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2012-05-21

    The effects of molecular crowding on the enzymatic conformational dynamics and transport properties of adenylate kinase are investigated. This tridomain protein undergoes large scale hinge motions in the course of its enzymatic cycle and serves as prototype for the study of crowding effects on the cyclic conformational dynamics of proteins. The study is carried out at a mesoscopic level where both the protein and the solvent in which it is dissolved are treated in a coarse grained fashion. The amino acid residues in the protein are represented by a network of beads and the solvent dynamics is described by multiparticle collision dynamics that includes effects due to hydrodynamic interactions. The system is crowded by a stationary random array of hard spherical objects. Protein enzymatic dynamics is investigated as a function of the obstacle volume fraction and size. In addition, for comparison, results are presented for a modification of the dynamics that suppresses hydrodynamic interactions. Consistent with expectations, simulations of the dynamics show that the protein prefers a closed conformation for high volume fractions. This effect becomes more pronounced as the obstacle radius decreases for a given volume fraction since the average void size in the obstacle array is smaller for smaller radii. At high volume fractions for small obstacle radii, the average enzymatic cycle time and characteristic times of internal conformational motions of the protein deviate substantially from their values in solution or in systems with small density of obstacles. The transport properties of the protein are strongly affected by molecular crowding. Diffusive motion adopts a subdiffusive character and the effective diffusion coefficients can change by more than an order of magnitude. The orientational relaxation time of the protein is also significantly altered by crowding. PMID:22476233

  8. Control-volume representation of molecular dynamics.

    PubMed

    Smith, E R; Heyes, D M; Dini, D; Zaki, T A

    2012-05-01

    A molecular dynamics (MD) parallel to the control volume (CV) formulation of fluid mechanics is developed by integrating the formulas of Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)] over a finite cubic volume of molecular dimensions. The Lagrangian molecular system is expressed in terms of an Eulerian CV, which yields an equivalent to Reynolds' transport theorem for the discrete system. This approach casts the dynamics of the molecular system into a form that can be readily compared to the continuum equations. The MD equations of motion are reinterpreted in terms of a Lagrangian-to-control-volume (LCV) conversion function ϑ(i) for each molecule i. The LCV function and its spatial derivatives are used to express fluxes and relevant forces across the control surfaces. The relationship between the local pressures computed using the volume average [Lutsko, J. Appl. Phys. 64, 1152 (1988)] techniques and the method of planes [Todd et al., Phys. Rev. E 52, 1627 (1995)] emerges naturally from the treatment. Numerical experiments using the MD CV method are reported for equilibrium and nonequilibrium (start-up Couette flow) model liquids, which demonstrate the advantages of the formulation. The CV formulation of the MD is shown to be exactly conservative and is, therefore, ideally suited to obtain macroscopic properties from a discrete system.

  9. Control-volume representation of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Smith, E. R.; Heyes, D. M.; Dini, D.; Zaki, T. A.

    2012-05-01

    A molecular dynamics (MD) parallel to the control volume (CV) formulation of fluid mechanics is developed by integrating the formulas of Irving and Kirkwood [J. Chem. Phys.JCPSA60021-960610.1063/1.1747782 18, 817 (1950)] over a finite cubic volume of molecular dimensions. The Lagrangian molecular system is expressed in terms of an Eulerian CV, which yields an equivalent to Reynolds’ transport theorem for the discrete system. This approach casts the dynamics of the molecular system into a form that can be readily compared to the continuum equations. The MD equations of motion are reinterpreted in terms of a Lagrangian-to-control-volume (LCV) conversion function ϑi for each molecule i. The LCV function and its spatial derivatives are used to express fluxes and relevant forces across the control surfaces. The relationship between the local pressures computed using the volume average [Lutsko, J. Appl. Phys.JAPIAU0021-897910.1063/1.341877 64, 1152 (1988)] techniques and the method of planes [Todd , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.52.1627 52, 1627 (1995)] emerges naturally from the treatment. Numerical experiments using the MD CV method are reported for equilibrium and nonequilibrium (start-up Couette flow) model liquids, which demonstrate the advantages of the formulation. The CV formulation of the MD is shown to be exactly conservative and is, therefore, ideally suited to obtain macroscopic properties from a discrete system.

  10. Molecular Dynamics of Ionic Transport and Electrokinetic Effects in Realistic Silica Channels

    SciTech Connect

    Christian D. Lorenz; Paul S. Crozier; Joshua A. Anderson; Alex Travesset

    2008-04-28

    Silica is one of the most widely used inorganic materials in experiments and applications involving aqueous solutions of biomolecules, nanoparticles, etc. In this paper, we construct a detailed atomistic model of a silica interface that captures the essential experimentally known properties of a silica interface. We then perform all-atom molecular dynamics simulations of a silica nanochannel subjected to either an external pressure or an electric field and provide an atomistic description of ionic transport and both electro-osmotic flow and streaming currents for a solution of monovalent (0.4 M NaCl) as well as divalent (0.2 and 1.0 M CaCl{sub 2}) salts. Our results allow a detailed investigation of {zeta}-potentials, Stern layer conductance, charge inversion, ionic mobilities, as well as continuum theories and Onsager relations. We conclude with a discussion on the implications of our results for silica nanopore experiments and micro- and nanofluidic devices.

  11. Coarse Grained Molecular Dynamics Simulations of Transmembrane Protein-Lipid Systems

    PubMed Central

    Spijker, Peter; van Hoof, Bram; Debertrand, Michel; Markvoort, Albert J.; Vaidehi, Nagarajan; Hilbers, Peter A.J.

    2010-01-01

    Many biological cellular processes occur at the micro- or millisecond time scale. With traditional all-atom molecular modeling techniques it is difficult to investigate the dynamics of long time scales or large systems, such as protein aggregation or activation. Coarse graining (CG) can be used to reduce the number of degrees of freedom in such a system, and reduce the computational complexity. In this paper the first version of a coarse grained model for transmembrane proteins is presented. This model differs from other coarse grained protein models due to the introduction of a novel angle potential as well as a hydrogen bonding potential. These new potentials are used to stabilize the backbone. The model has been validated by investigating the adaptation of the hydrophobic mismatch induced by the insertion of WALP-peptides into a lipid membrane, showing that the first step in the adaptation is an increase in the membrane thickness, followed by a tilting of the peptide. PMID:20640160

  12. Insights into activation and RNA binding of trp RNA-binding attenuation protein (TRAP) through all-atom simulations.

    PubMed

    Murtola, Teemu; Vattulainen, Ilpo; Falck, Emma

    2008-06-01

    Tryptophan biosynthesis in Bacillus stearothermophilus is regulated by a trp RNA binding attenuation protein (TRAP). It is a ring-shaped 11-mer of identical 74 residue subunits. Tryptophan binding pockets are located between adjacent subunits, and tryptophan binding activates TRAP to bind RNA. Here, we report results from all-atom molecular dynamics simulations of the system, complementing existing extensive experimental studies. We focus on two questions. First, we look at the activation mechanism, of which relatively little is known experimentally. We find that the absence of tryptophan allows larger motions close to the tryptophan binding site, and we see indication of a conformational change in the BC loop. However, complete deactivation seems to occur on much longer time scales than the 40 ns studied here. Second, we study the TRAP-RNA interactions. We look at the relative flexibilities of the different bases in the complex and analyze the hydrogen bonds between the protein and RNA. We also study the role of Lys37, Lys56, and Arg58, which have been experimentally identified as essential for RNA binding. Hydrophobic stacking of Lys37 with the nearby RNA base is confirmed, but we do not see direct hydrogen bonding between RNA and the other two residues, in contrast to the crystal structure. Rather, these residues seem to stabilize the RNA-binding surface, and their positive charge may also play a role in RNA binding. Simulations also indicate that TRAP is able to attract RNA nonspecifically, and the interactions are quantified in more detail using binding energy calculations. The formation of the final binding complex is a very slow process: within the simulation time scale of 40 ns, only two guanine bases become bound (and no others), indicating that the binding initiates at these positions. In general, our results are in good agreement with experimental studies, and provide atomic-scale insights into the processes. PMID:18186477

  13. Molecular dynamics simulation study of methanesulfonic acid.

    PubMed

    Canales, Manel; Alemán, Carlos

    2014-03-27

    A molecular dynamics simulation study of methanesulfonic acid has been carried out using a reliable force field in a large range of temperatures. Several thermodynamic, structural, and dynamical properties have been calculated and compared with the available experimental data. The density, the shear viscosity, the heat of vaporization, and the melting temperature results, calculated from this force field, are in a good agreement with the experimental data. Analysis of the influence of the hydrogen bonds in structural and dynamical properties has also been performed. The continuous and interrupted methodologies to compute hydrogen bonding lifetimes have been applied. The interrupted hydrogen bond lifetimes values are consistent with the diffusion and viscosity coefficients. The activation energies of the self-diffusion, the reorientational motions, and the hydrogen bonding lifetimes are coincident.

  14. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

    SciTech Connect

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-09-01

    A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  15. Polymer Fluid Dynamics: Continuum and Molecular Approaches.

    PubMed

    Bird, R B; Giacomin, A J

    2016-06-01

    To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems. PMID:27276553

  16. Application of optimal prediction to molecular dynamics

    SciTech Connect

    Barber, IV, John Letherman

    2004-12-01

    Optimal prediction is a general system reduction technique for large sets of differential equations. In this method, which was devised by Chorin, Hald, Kast, Kupferman, and Levy, a projection operator formalism is used to construct a smaller system of equations governing the dynamics of a subset of the original degrees of freedom. This reduced system consists of an effective Hamiltonian dynamics, augmented by an integral memory term and a random noise term. Molecular dynamics is a method for simulating large systems of interacting fluid particles. In this thesis, I construct a formalism for applying optimal prediction to molecular dynamics, producing reduced systems from which the properties of the original system can be recovered. These reduced systems require significantly less computational time than the original system. I initially consider first-order optimal prediction, in which the memory and noise terms are neglected. I construct a pair approximation to the renormalized potential, and ignore three-particle and higher interactions. This produces a reduced system that correctly reproduces static properties of the original system, such as energy and pressure, at low-to-moderate densities. However, it fails to capture dynamical quantities, such as autocorrelation functions. I next derive a short-memory approximation, in which the memory term is represented as a linear frictional force with configuration-dependent coefficients. This allows the use of a Fokker-Planck equation to show that, in this regime, the noise is δ-correlated in time. This linear friction model reproduces not only the static properties of the original system, but also the autocorrelation functions of dynamical variables.

  17. Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase

    DOE PAGES

    Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; Xu, Jian-He

    2015-02-25

    A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Moreover, our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of themore » substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, furthermore, we predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Finally, our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase r

  18. Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase

    SciTech Connect

    Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; Xu, Jian-He

    2015-02-25

    A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Moreover, our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of the substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, furthermore, we predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Finally, our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase r

  19. A real-time all-atom structural search engine for proteins.

    PubMed

    Gonzalez, Gabriel; Hannigan, Brett; DeGrado, William F

    2014-07-01

    Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new "designability"-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license).

  20. Molecular Dynamics Simulation of Dynamic Response of Beryllium

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan P.; Lane, J. Matthew D.; Baskes, Michael I.; Desjarlais, Michael P.

    2009-06-01

    The response of beryllium to dynamic loading has been extensively studied, both experimentally and theoretically, due to its importance in several technological areas. Compared to other metals, it is quite challenging to accurately represent the various anomalous behaviors of beryllium using classical interatomic potentials. The spherically-symmetric EAM potential can not reproduce the observed c/a ratio for α-Be under ambient conditions, which is significantly smaller than the ideal HCP value. The directional-dependence of the MEAM potential overcomes this problem, but introduces additional complexity. We will compare predictions of these classical potentials to experimental measurements of beryllium at ambient conditions, and also to theoretical calculations at high temperatures and pressures. Finally, we will present initial results from non-equilibrium molecular dynamics simulations of beryllium under dynamic loading. This work is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories.

  1. Local Refinements in Classical Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Fackeldey, Konstantin; Weber, Marcus

    2014-03-01

    Quantum mechanics provide a detailed description of the physical and chemical behavior of molecules. However, with increasing size of the system the complexity rises exponentially, which is prohibitive for efficient dynamical simulation. In contrast, classical molecular dynamics procure a coarser description by using less degrees of freedom. Thus, it seems natural to seek for an adequate trade-off between accurateness and computational feasibility in the simulation of molecules. Here, we propose a novel method, which combines classical molecular simulations with quantum mechanics for molecular systems. For this we decompose the state space of the respective molecule into subsets, by employing a meshfree partition of unity. We show, that this partition allows us to localize an empirical force field and to run locally constrained classical trajectories. Within each subset, we compute the energy on the quantum level for a fixed number of spatial states (ab initio points). With these energy values from the ab initio points we have a local scattered data problem, which can be solved by the moving least squares method.

  2. Stochastic Event-Driven Molecular Dynamics

    SciTech Connect

    Donev, Aleksandar Garcia, Alejandro L.; Alder, Berni J.

    2008-02-01

    A novel Stochastic Event-Driven Molecular Dynamics (SEDMD) algorithm is developed for the simulation of polymer chains suspended in a solvent. SEDMD combines event-driven molecular dynamics (EDMD) with the Direct Simulation Monte Carlo (DSMC) method. The polymers are represented as chains of hard-spheres tethered by square wells and interact with the solvent particles with hard-core potentials. The algorithm uses EDMD for the simulation of the polymer chain and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent particles themselves are not treated deterministically as in EDMD, rather, the momentum and energy exchange in the solvent is determined stochastically using DSMC. The coupling between the solvent and the solute is consistently represented at the particle level retaining hydrodynamic interactions and thermodynamic fluctuations. However, unlike full MD simulations of both the solvent and the solute, in SEDMD the spatial structure of the solvent is ignored. The SEDMD algorithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard-wall subjected to uniform shear. SEDMD closely reproduces results obtained using traditional EDMD simulations with two orders of magnitude greater efficiency. Results question the existence of periodic (cycling) motion of the polymer chain.

  3. Structural, dynamic, and electrostatic properties of fully hydrated DMPC bilayers from molecular dynamics simulations accelerated with graphical processing units (GPUs).

    PubMed

    Ganesan, Narayan; Bauer, Brad A; Lucas, Timothy R; Patel, Sandeep; Taufer, Michela

    2011-11-15

    We present results of molecular dynamics simulations of fully hydrated DMPC bilayers performed on graphics processing units (GPUs) using current state-of-the-art non-polarizable force fields and a local GPU-enabled molecular dynamics code named FEN ZI. We treat the conditionally convergent electrostatic interaction energy exactly using the particle mesh Ewald method (PME) for solution of Poisson's Equation for the electrostatic potential under periodic boundary conditions. We discuss elements of our implementation of the PME algorithm on GPUs as well as pertinent performance issues. We proceed to show results of simulations of extended lipid bilayer systems using our program, FEN ZI. We performed simulations of DMPC bilayer systems consisting of 17,004, 68,484, and 273,936 atoms in explicit solvent. We present bilayer structural properties (atomic number densities, electron density profiles), deuterium order parameters (S(CD)), electrostatic properties (dipole potential, water dipole moments), and orientational properties of water. Predicted properties demonstrate excellent agreement with experiment and previous all-atom molecular dynamics simulations. We observe no statistically significant differences in calculated structural or electrostatic properties for different system sizes, suggesting the small bilayer simulations (less than 100 lipid molecules) provide equivalent representation of structural and electrostatic properties associated with significantly larger systems (over 1000 lipid molecules). We stress that the three system size representations will have differences in other properties such as surface capillary wave dynamics or surface tension related effects that are not probed in the current study. The latter properties are inherently dependent on system size. This contribution suggests the suitability of applying emerging GPU technologies to studies of an important class of biological environments, that of lipid bilayers and their associated integral

  4. Theoretical studies of lipid bilayer electroporation using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Levine, Zachary Alan

    Computer simulations of physical, chemical, and biological systems have improved tremendously over the past five decades. From simple studies of liquid argon in the 1960s to fully atomistic simulations of entire viruses in the past few years, recent advances in high-performance computing have continuously enabled simulations to bridge the gap between scientific theory and experiment. Molecular dynamics simulations in particular have allowed for the direct observation of spatial and temporal events which are at present inaccessible to experiments. For this dissertation I employ all-atom molecular dynamics simulations to study the transient, electric field-induced poration (or electroporation) of phospholipid bilayers at MV/m electric fields. Phospholipid bilayers are the dominant constituents of cell membranes and act as both a barrier and gatekeeper to the cell interior. This makes their structural integrity and susceptibility to external perturbations an important topic for study, especially as the density of electromagnetic radiation in our environment is increasing steadily. The primary goal of this dissertation is to understand the specific physical and biological mechanisms which facilitate electroporation, and to connect our simulated observations to experiments with live cells and to continuum models which seek to describe the underlying biological processes of electroporation. In Chapter 1 I begin with a brief introduction to phospholipids and phospholipid bilayers, followed by an extensive overview of electroporation and atomistic molecular dynamics simulations. The following chapters will then focus on peer-reviewed and published work we performed, or on existing projects which are currently being prepared for submission. Chapter 2 looks at how external electric fields affect both oxidized and unoxidized lipid bilayers as a function of oxidation concentration and oxidized lipid type. Oxidative damage to cell membranes represents a physiologically relevant

  5. Interactions between Ether Phospholipids and Cholesterol as Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect

    Pan, Jianjun; Cheng, Xiaolin; Heberle, Frederick A; Mostofian, Barmak; Kucerka, Norbert; Drazba, Paul; Katsaras, John

    2012-01-01

    Cholesterol and ether lipids are ubiquitous in mammalian cell membranes, and their interactions are crucial in ether lipid mediated cholesterol trafficking. We report on cholesterol s molecular interactions with ether lipids as determined using a combination of small-angle neutron and Xray scattering, and all-atom molecular dynamics (MD) simulations. A scattering density profile model for an ether lipid bilayer was developed using MD simulations, which was then used to simultaneously fit the different experimental scattering data. From analysis of the data the various bilayer structural parameters were obtained. Surface area constrained MD simulations were also performed to reproduce the experimental data. This iterative analysis approach resulted in good agreement between the experimental and simulated form factors. The molecular interactions taking place between cholesterol and ether lipids were then determined from the validated MD simulations. We found that in ether membranes cholesterol primarily hydrogen bonds with the lipid headgroup phosphate oxygen, while in their ester membrane counterparts cholesterol hydrogen bonds with the backbone ester carbonyls. This different mode of interaction between ether lipids and cholesterol induces cholesterol to reside closer to the bilayer surface, dehydrating the headgroup s phosphate moiety. Moreover, the three-dimensional lipid chain spatial density distribution around cholesterol indicates anisotropic chain packing, causing cholesterol to tilt. These insights lend a better understanding of ether lipid-mediated cholesterol trafficking and the roles that the different lipid species have in determining the structural and dynamical properties of membrane associated biomolecules.

  6. Molecular dynamics in high electric fields

    NASA Astrophysics Data System (ADS)

    Apostol, M.; Cune, L. C.

    2016-06-01

    Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called "dipolons"); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  7. Molecular Dynamics: New Frontier in Personalized Medicine.

    PubMed

    Sneha, P; Doss, C George Priya

    2016-01-01

    The field of drug discovery has witnessed infinite development over the last decade with the demand for discovery of novel efficient lead compounds. Although the development of novel compounds in this field has seen large failure, a breakthrough in this area might be the establishment of personalized medicine. The trend of personalized medicine has shown stupendous growth being a hot topic after the successful completion of Human Genome Project and 1000 genomes pilot project. Genomic variant such as SNPs play a vital role with respect to inter individual's disease susceptibility and drug response. Hence, identification of such genetic variants has to be performed before administration of a drug. This process requires high-end techniques to understand the complexity of the molecules which might bring an insight to understand the compounds at their molecular level. To sustenance this, field of bioinformatics plays a crucial role in revealing the molecular mechanism of the mutation and thereby designing a drug for an individual in fast and affordable manner. High-end computational methods, such as molecular dynamics (MD) simulation has proved to be a constitutive approach to detecting the minor changes associated with an SNP for better understanding of the structural and functional relationship. The parameters used in molecular dynamic simulation elucidate different properties of a macromolecule, such as protein stability and flexibility. MD along with docking analysis can reveal the synergetic effect of an SNP in protein-ligand interaction and provides a foundation for designing a particular drug molecule for an individual. This compelling application of computational power and the advent of other technologies have paved a promising way toward personalized medicine. In this in-depth review, we tried to highlight the different wings of MD toward personalized medicine. PMID:26827606

  8. Molecular Dynamics: New Frontier in Personalized Medicine.

    PubMed

    Sneha, P; Doss, C George Priya

    2016-01-01

    The field of drug discovery has witnessed infinite development over the last decade with the demand for discovery of novel efficient lead compounds. Although the development of novel compounds in this field has seen large failure, a breakthrough in this area might be the establishment of personalized medicine. The trend of personalized medicine has shown stupendous growth being a hot topic after the successful completion of Human Genome Project and 1000 genomes pilot project. Genomic variant such as SNPs play a vital role with respect to inter individual's disease susceptibility and drug response. Hence, identification of such genetic variants has to be performed before administration of a drug. This process requires high-end techniques to understand the complexity of the molecules which might bring an insight to understand the compounds at their molecular level. To sustenance this, field of bioinformatics plays a crucial role in revealing the molecular mechanism of the mutation and thereby designing a drug for an individual in fast and affordable manner. High-end computational methods, such as molecular dynamics (MD) simulation has proved to be a constitutive approach to detecting the minor changes associated with an SNP for better understanding of the structural and functional relationship. The parameters used in molecular dynamic simulation elucidate different properties of a macromolecule, such as protein stability and flexibility. MD along with docking analysis can reveal the synergetic effect of an SNP in protein-ligand interaction and provides a foundation for designing a particular drug molecule for an individual. This compelling application of computational power and the advent of other technologies have paved a promising way toward personalized medicine. In this in-depth review, we tried to highlight the different wings of MD toward personalized medicine.

  9. The stability of cylindrin β-barrel amyloid oligomer models-a molecular dynamics study.

    PubMed

    Berhanu, Workalemahu M; Hansmann, Ulrich H E

    2013-09-01

    Small-soluble amyloid oligomers are believed to play a significant role in the pathology of amyloid diseases. Recently, the atomic structure of a toxic oligomer formed by an 11 residue and its tandem repeat was found to have an out-off register antiparallel β-strands in the shape of a β-barrel. In the present article we investigate the effect of mutations in the hydrophobic cores on the structure and dynamic of the β-barrels using all atom multiple molecular dynamics simulations with an explicit solvent. Extending previous experiments with molecular dynamics simulations we systematically test how stability and formation of cylindrin depends on the interplay between hydrophobicity and steric effects of the core residues. We find that strong hydrophobic interactions between geometrically fitting residues keep the strands (both in register and out-off-register interface) in close proximity, which in turn stabilizes the side-chain and main-chain hydrogen bonds, and the salt bridges on the outer surface along the weak out-of-register interface. Our simulations also indicate presence of water molecules in the hydrophobic interior of the cylindrin β-barrel.Proteins 2013.

  10. Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events

    SciTech Connect

    Voter, A.F.

    1997-05-01

    I derive a general method for accelerating the molecular-dynamics (MD) simulation of infrequent events in solids. A bias potential ({Delta}V{sub b}) raises the energy in regions other than the transition states between potential basins. Transitions occur at an accelerated rate and the elapsed time becomes a statistical property of the system. {Delta}V{sub b} can be constructed without knowing the location of the transition states and implementation requires only first derivatives. I examine the diffusion mechanisms of a 10-atom Ag cluster on the Ag(111) surface using a 220 {mu}s hyper-MD simulation. {copyright} {ital 1997} {ital The American Physical Society}

  11. [Oligoglycine surface structures: molecular dynamics simulation].

    PubMed

    Gus'kova, O A; Khalatur, P G; Khokhlov, A R; Chinarev, A A; Tsygankova, S V; Bovin, N V

    2010-01-01

    The full-atomic molecular dynamics (MD) simulation of adsorption mode for diantennary oligoglycines [H-Gly4-NH(CH2)5]2 onto graphite and mica surface is described. The resulting structure of adsorption layers is analyzed. The peptide second structure motives have been studied by both STRIDE (structural identification) and DSSP (dictionary of secondary structure of proteins) methods. The obtained results confirm the possibility of polyglycine II (PGII) structure formation in diantennary oligoglycine (DAOG) monolayers deposited onto graphite surface, which was earlier estimated based on atomic-force microscopy measurements.

  12. Molecular dynamics simulation of ice XII

    NASA Astrophysics Data System (ADS)

    Borzsák, István; Cummings, Peter T.

    1999-02-01

    Molecular dynamics simulations have been performed on the newly discovered metastable ice XII. This new crystalline ice phase [C. Lobban, J.L. Finney, W.F. Kuhs, Nature (London) 391 (1998) 268] is proton-disordered. Thus 90 possible configurations of the unit cell can be constructed which differ only in the orientations of the water molecules. The simulation used the TIP4P potential model for water at constant temperature and density. About one-quarter of the initial configurations did not melt in the course of the simulation. This result is supportive of the experimental structure and also demonstrates the ability of this water model to study ice phases.

  13. Crystallization of nickel nanoclusters by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Chamati, H.; Gaminchev, K.

    2012-12-01

    We investigated the melting properties of bulk nickel and the crystallization of nickel nanocrystals via molecular dynamics using a potential in the framework of the second moment approximation of tight-binding theory. The melting behavior was simulated with the hysteresis approach by subsequently heating and cooling gradually the system over a wide range of temperatures. The crystallization of nickel nanoclusters consisting of 55, 147 and 309 atoms was achieved after repeatedly annealing and quenching the corresponding quasicrystals several times to avoid being trapped in a local energy minimum. The time over which the global minimum was reached was found to increase with the cluster size.

  14. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Liu, Zhen; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2012-04-01

    Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ17-42 protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ17-42 protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ17-42 are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ17-42 protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.

  15. MuSTAR MD: multi-scale sampling using temperature accelerated and replica exchange molecular dynamics.

    PubMed

    Yamamori, Yu; Kitao, Akio

    2013-10-14

    A new and efficient conformational sampling method, MuSTAR MD (Multi-scale Sampling using Temperature Accelerated and Replica exchange Molecular Dynamics), is proposed to calculate the free energy landscape on a space spanned by a set of collective variables. This method is an extension of temperature accelerated molecular dynamics and can also be considered as a variation of replica-exchange umbrella sampling. In the MuSTAR MD, each replica contains an all-atom fine-grained model, at least one coarse-grained model, and a model defined by the collective variables that interacts with the other models in the same replica through coupling energy terms. The coarse-grained model is introduced to drive efficient sampling of large conformational space and the fine-grained model can serve to conduct more accurate conformational sampling. The collective variable model serves not only to mediate the coarse- and fine-grained models, but also to enhance sampling efficiency by temperature acceleration. We have applied this method to Ala-dipeptide and examined the sampling efficiency of MuSTAR MD in the free energy landscape calculation compared to that for replica exchange molecular dynamics, replica exchange umbrella sampling, temperature accelerated molecular dynamics, and conventional MD. The results clearly indicate the advantage of sampling a relatively high energy conformational space, which is not sufficiently sampled with other methods. This feature is important in the investigation of transition pathways that go across energy barriers. MuSTAR MD was also applied to Met-enkephalin as a test case in which two Gō-like models were employed as the coarse-grained model.

  16. Exact dynamic properties of molecular motors

    NASA Astrophysics Data System (ADS)

    Boon, N. J.; Hoyle, R. B.

    2012-08-01

    Molecular motors play important roles within a biological cell, performing functions such as intracellular transport and gene transcription. Recent experimental work suggests that there are many plausible biochemical mechanisms that molecules such as myosin-V could use to achieve motion. To account for the abundance of possible discrete-stochastic frameworks that can arise when modeling molecular motor walks, a generalized and straightforward graphical method for calculating their dynamic properties is presented. It allows the calculation of the velocity, dispersion, and randomness ratio for any proposed system through analysis of its structure. This article extends work of King and Altman ["A schematic method of deriving the rate laws of enzyme-catalyzed reactions," J. Phys. Chem. 60, 1375-1378 (1956)], 10.1021/j150544a010 on networks of enzymatic reactions by calculating additional dynamic properties for spatially hopping systems. Results for n-state systems are presented: single chain, parallel pathway, divided pathway, and divided pathway with a chain. A novel technique for combining multiple system architectures coupled at a reference state is also demonstrated. Four-state examples illustrate the effectiveness and simplicity of these methods.

  17. MDLab: a molecular dynamics simulation prototyping environment.

    PubMed

    Cickovski, Trevor; Chatterjee, Santanu; Wenger, Jacob; Sweet, Christopher R; Izaguirre, Jesús A

    2010-05-01

    Molecular dynamics (MD) simulation involves solving Newton's equations of motion for a system of atoms, by calculating forces and updating atomic positions and velocities over a timestep Deltat. Despite the large amount of computing power currently available, the timescale of MD simulations is limited by both the small timestep required for propagation, and the expensive algorithm for computing pairwise forces. These issues are currently addressed through the development of efficient simulation methods, some of which make acceptable approximations and as a result can afford larger timesteps. We present MDLab, a development environment for MD simulations built with Python which facilitates prototyping, testing, and debugging of these methods. MDLab provides constructs which allow the development of propagators, force calculators, and high level sampling protocols that run several instances of molecular dynamics. For computationally demanding sampling protocols which require testing on large biomolecules, MDL includes an interface to the OpenMM libraries of Friedrichs et al. which execute on graphical processing units (GPUs) and achieve considerable speedup over execution on the CPU. As an example of an interesting high level method developed in MDLab, we present a parallel implementation of the On-The-Fly string method of Maragliano and Vanden-Eijnden. MDLab is available at http://mdlab.sourceforge.net.

  18. Molecular dynamics of the excitatory synapse.

    PubMed

    Okabe, Shigeo

    2012-01-01

    Molecular dynamics of synapses are one of the most important factors that control the remodeling of synaptic connection and efficacy of transmission. This chapter focuses on the dynamics of postsynaptic molecular machinery and describes the imaging technologies important for quantitative analyses of synapses, their application to the postsynaptic molecules, and the insights obtained from these analyses. New visualization techniques, such as super-resolution microscopy, will become an indispensable approach to reveal submicron changes of synaptic molecules. New methods of monitoring protein interactions will also be integrated with experimental paradigms of synaptic plasticity. Cell biological analyses, together with cutting-edge imaging technologies, have been applied to the studies of nascent synapse formation, synapse maintenance, and activity-dependent synapse remodeling. From these studies, a variety of new concepts emerged, such as local assembly of postsynaptic scaffolds, presence of "transport packets" of postsynaptic receptors, heterogeneity of actin movement within spines, and activity-free fluctuation of PSD/spine sizes. These new concepts are useful in understanding specific properties of postsynaptic functions and should be integrated in future to build a realistic model of the postsynaptic organization that can explain its remarkable stability and tunability. PMID:22351054

  19. Structure and Dynamics of Cellulose Molecular Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Howard; Zhang, Xin; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert

    Molecular dissolution of microcrystalline cellulose has been achieved through mixing with ionic liquid 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and organic solvent dimethylformamide (DMF). The mechanism of cellulose dissolution in tertiary mixtures has been investigated by combining quasielastic and small angle neutron scattering (QENS and SANS). As SANS data show that cellulose chains take Gaussian-like conformations in homogenous solutions, which exhibit characteristics of having an upper critical solution temperature, the dynamic signals predominantly from EMIMAc molecules indicate strong association with cellulose in the dissolution state. The mean square displacement quantities support the observation of the stoichiometric 3:1 EMIMAc to cellulose unit molar ratio, which is a necessary criterion for the molecular dissolution of cellulose. Analyses of dynamics structure factors reveal the temperature dependence of a slow and a fast process for EMIMAc's bound to cellulose and in DMF, respectively, as well as a very fast process due possibly to the rotational motion of methyl groups, which persisted to near the absolute zero.

  20. Dynamic transitions in molecular dynamics simulations of supercooled silicon

    NASA Astrophysics Data System (ADS)

    Mei, Xiaojun; Eapen, Jacob

    2013-04-01

    Two dynamic transitions or crossovers, one at a low temperature (T* ≈ 1006 K) and the other at a high temperature (T0 ≈ 1384 K), are shown to emerge in supercooled liquid silicon using molecular dynamics simulations. The high-temperature transition (T0) marks the decoupling of stress, density, and energy relaxation mechanisms. At the low-temperature transition (T*), depending on the cooling rate, supercooled silicon can either undergo a high-density-liquid to low-density-liquid (HDL-LDL) phase transition or experience an HDL-HDL crossover. Dynamically heterogeneous domains that emerge with supercooling become prominent across the HDL-HDL transition at 1006 K, with well-separated mobile and immobile regions. Interestingly, across the HDL-LDL transition, the most mobile atoms form large prominent aggregates while the least mobile atoms get spatially dispersed akin to that in a crystalline state. The attendant partial return to spatial uniformity with the HDL-LDL phase transition indicates a dynamic mechanism for relieving the frustration in supercooled states.

  1. The 2011 Dynamics of Molecular Collisions Conference

    SciTech Connect

    Nesbitt, David J.

    2011-07-11

    The Dynamics of Molecular Collisions Conference focuses on all aspects of molecular collisions--experimental & theoretical studies of elastic, inelastic, & reactive encounters involving atoms, molecules, ions, clusters, & surfaces--as well as half collisions--photodissociation, photo-induced reaction, & photodesorption. The scientific program for the meeting in 2011 included exciting advances in both the core & multidisciplinary forefronts of the study of molecular collision processes. Following the format of the 2009 meeting, we also invited sessions in special topics that involve interfacial dynamics, novel emerging spectroscopies, chemical dynamics in atmospheric, combustion & interstellar environments, as well as a session devoted to theoretical & experimental advances in ultracold molecular samples. Researchers working inside & outside the traditional core topics of the meeting are encouraged to join the conference. We invite contributions of work that seeks understanding of how inter & intra-molecular forces determine the dynamics of the phenomena under study. In addition to invited oral sessions & contributed poster sessions, the scientific program included a formal session consisting of five contributed talks selected from the submitted poster abstracts. The DMC has distinguished itself by having the Herschbach Medal Symposium as part of the meeting format. This tradition of the Herschbach Medal was first started in the 2007 meeting chaired by David Chandler, based on a generous donation of funds & artwork design by Professor Dudley Herschbach himself. There are two such awards made, one for experimental & one for theoretical contributions to the field of Molecular Collision Dynamics, broadly defined. The symposium is always held on the last night of the meeting & has the awardees are asked to deliver an invited lecture on their work. The 2011 Herschbach Medal was dedicated to the contributions of two long standing leaders in Chemical Physics, Professor

  2. Molecular dynamics simulations of wear processes

    NASA Astrophysics Data System (ADS)

    Yu, Hualiang

    Wear has been recognized as a vital problem in many industries. It results in a loss of durability, reliability, and efficiency and costs tens of billions of dollars annually. Significant effort has been devoted in both experimental and theoretical studies. However, the mechanisms of wear are still poorly understood and therefore wear control is far behind its demand. One way to study wear process is via computer simulation, which has become more powerful with the rapid development in computer facilities and efficient algorithms. It allows observation of atomic scale deformation and therefore it is a very good tool to study wear mechanisms at the nano-scale. This study presents a series of molecular dynamic simulation of some nano-scale wear processes, such as indentation and plowing, with the goal of exploring the factors that affect wear and predicting wear for different conditions. Molecular Dynamics simulations were carried out on a system that includes an aluminum substrate and a hard tip. Embedded atom method (EAM) and Lennard-Jones potentials were used to describe interactions between atoms. For nano-indentation simulations, both constant indent force and constant loading speed were applied to study the wear mechanisms as well as material properties. Some phenomenon, such as jump-to-contact, local melting, and dislocation nucleation were observed. More importantly, the effects of system temperature, indent force, substrate orientation, tip-substrate bond, indenter shape, boundary condition, and defect concentrations of the substrate were systematically investigated during indentation. The results are in qualitative agreement with limited experimental data. Similar simulations were carried out for plowing. The effects of plowing force, substrate orientation, the tip-substrate bond, and alloy elements are discussed based on the simulation results. In addition, a simple analytic model of plowing behavior is provided. The model reveals two parameters, static

  3. Detecting Allosteric Networks Using Molecular Dynamics Simulation.

    PubMed

    Bowerman, S; Wereszczynski, J

    2016-01-01

    Allosteric networks allow enzymes to transmit information and regulate their catalytic activities over vast distances. In principle, molecular dynamics (MD) simulations can be used to reveal the mechanisms that underlie this phenomenon; in practice, it can be difficult to discern allosteric signals from MD trajectories. Here, we describe how MD simulations can be analyzed to reveal correlated motions and allosteric networks, and provide an example of their use on the coagulation enzyme thrombin. Methods are discussed for calculating residue-pair correlations from atomic fluctuations and mutual information, which can be combined with contact information to identify allosteric networks and to dynamically cluster a system into highly correlated communities. In the case of thrombin, these methods show that binding of the antagonist hirugen significantly alters the enzyme's correlation landscape through a series of pathways between Exosite I and the catalytic core. Results suggest that hirugen binding curtails dynamic diversity and enforces stricter venues of influence, thus reducing the accessibility of thrombin to other molecules. PMID:27497176

  4. Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models

    NASA Astrophysics Data System (ADS)

    Kouza, Maksim; Co, Nguyen Truong; Nguyen, Phuong H.; Kolinski, Andrzej; Li, Mai Suan

    2015-04-01

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in

  5. Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models

    SciTech Connect

    Kouza, Maksim Kolinski, Andrzej; Co, Nguyen Truong; Nguyen, Phuong H.; Li, Mai Suan

    2015-04-14

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in

  6. MolProbity: all-atom structure validation for macromolecular crystallography

    SciTech Connect

    Chen, Vincent B.; Arendall, W. Bryan III; Headd, Jeffrey J.; Keedy, Daniel A.; Immormino, Robert M.; Kapral, Gary J.; Murray, Laura W.; Richardson, Jane S.; Richardson, David C.

    2010-01-01

    MolProbity structure validation will diagnose most local errors in macromolecular crystal structures and help to guide their correction. MolProbity is a structure-validation web service that provides broad-spectrum solidly based evaluation of model quality at both the global and local levels for both proteins and nucleic acids. It relies heavily on the power and sensitivity provided by optimized hydrogen placement and all-atom contact analysis, complemented by updated versions of covalent-geometry and torsion-angle criteria. Some of the local corrections can be performed automatically in MolProbity and all of the diagnostics are presented in chart and graphical forms that help guide manual rebuilding. X-ray crystallography provides a wealth of biologically important molecular data in the form of atomic three-dimensional structures of proteins, nucleic acids and increasingly large complexes in multiple forms and states. Advances in automation, in everything from crystallization to data collection to phasing to model building to refinement, have made solving a structure using crystallography easier than ever. However, despite these improvements, local errors that can affect biological interpretation are widespread at low resolution and even high-resolution structures nearly all contain at least a few local errors such as Ramachandran outliers, flipped branched protein side chains and incorrect sugar puckers. It is critical both for the crystallographer and for the end user that there are easy and reliable methods to diagnose and correct these sorts of errors in structures. MolProbity is the authors’ contribution to helping solve this problem and this article reviews its general capabilities, reports on recent enhancements and usage, and presents evidence that the resulting improvements are now beneficially affecting the global database.

  7. Molecular Dynamics Simulation Study of a Pulmonary Surfactant Film Interacting with a Carbonaceous Nanoparticle

    PubMed Central

    Choe, Seungho; Chang, Rakwoo; Jeon, Jonggu; Violi, Angela

    2008-01-01

    This article reports an all-atom molecular dynamics simulation to study a model pulmonary surfactant film interacting with a carbonaceous nanoparticle. The pulmonary surfactant is modeled as a dipalmitoylphosphatidylcholine monolayer with a peptide consisting of the first 25 residues from surfactant protein B. The nanoparticle model with a chemical formula C188H53 was generated using a computational code for combustion conditions. The nanoparticle has a carbon cage structure reminiscent of the buckyballs with open ends. A series of molecular-scale structural and dynamical properties of the surfactant film in the absence and presence of nanoparticle are analyzed, including radial distribution functions, mean-square displacements of lipids and nanoparticle, chain tilt angle, and the surfactant protein B peptide helix tilt angle. The results show that the nanoparticle affects the structure and packing of the lipids and peptide in the film, and it appears that the nanoparticle and peptide repel each other. The ability of the nanoparticle to translocate the surfactant film is one of the most important predictions of this study. The potential of mean force for dragging the particle through the film provides such information. The reported potential of mean force suggests that the nanoparticle can easily penetrate the monolayer but further translocation to the water phase is energetically prohibitive. The implication is that nanoparticles can interact with the lung surfactant, as supported by recent experimental data by Bakshi et al. PMID:18923102

  8. Hybrid Atomistic and Coarse-Grained Molecular Dynamics Simulations of Polyethylene Glycol (PEG) in Explicit Water.

    PubMed

    Stanzione, Francesca; Jayaraman, Arthi

    2016-05-01

    In-silico design of polymeric biomaterials requires molecular dynamics (MD) simulations that retain essential atomistic/molecular details (e.g., explicit water around the biofunctional macromolecule) while simultaneously achieving large length and time scales pertinent to macroscale function. Such large-scale atomistically detailed macromolecular MD simulations with explicit solvent representation are computationally expensive. One way to overcome this limitation is to use an adaptive resolution scheme (AdResS) in which the explicit solvent molecules dynamically adopt either atomistic or coarse-grained resolution depending on their location (e.g., near or far from the macromolecule) in the system. In this study we present the feasibility and the limitations of AdResS methodology for studying polyethylene glycol (PEG) in adaptive resolution water, for varying PEG length and architecture. We first validate the AdResS methodology for such systems, by comparing PEG and solvent structure with that from all-atom simulations. We elucidate the role of the atomistic zone size and the need for calculating thermodynamic force correction within this AdResS approach to correctly reproduce the structure of PEG and water. Lastly, by varying the PEG length and architecture, we study the hydration of PEG, and the effect of PEG architectures on the structural properties of water. Changing the architecture of PEG from linear to multiarm star, we observe reduction in the solvent accessible surface area of the PEG, and an increase in the order of water molecules in the hydration shells. PMID:27108869

  9. Osmosis : a molecular dynamics computer simulation study

    NASA Astrophysics Data System (ADS)

    Lion, Thomas

    Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..

  10. Molecular dynamics simulations and morphology analysis of TEM imaged PVDF nanofibers

    NASA Astrophysics Data System (ADS)

    Miao, Jiayuan; Reneker, Darrell; Tsige, Mesfin; Taylor, Philip

    With the goal of elucidating the structure of polyvinylidene fluoride (PVDF) nanofibers, all-atom molecular dynamics simulations were performed, and the results compared with structures observed in high resolution transmission electron microscopy (TEM) at the molecular level. Simulation shows that the stability of the β-phase component in a PVDF nanofiber is influenced by its thickness and processing history. When exposed to irradiation, as in a TEM observation, the structure is then further modified by the effects of chain scission. The transformation from the β phase into a paraelectric phase can explain the spindle formation and serpentine motion of molecular segments observed by Zhong et al. (Polymer, 54, 2013, 3745-3756) in irradiated PVDF nanofibers. From a comparison between simulated and experimental TEM images it was possible to identify numerous features that are useful in unveiling the inherent structure of PVDF nanofibers. The experimental TEM images appear to match well with those predicted by a model based on α-phase PVDF, while also being consistent with an alternative model (Nanoscale 2015, DOI: 10.1039/c5nr01619c). Work supported by the Petroleum Research Fund of the ACS.

  11. Fiber lubrication: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Liu, Hongyi

    Molecular and mesoscopic level description of friction and lubrication remains a challenge because of difficulties in the phenomenological understanding of to the behaviors of solid-liquid interfaces during sliding. Fortunately, there is the computational simulation approach opens an opportunity to predict and analyze interfacial phenomena, which were studied with molecular dynamics (MD) and mesoscopic dynamics (MesoDyn) simulations. Polypropylene (PP) and cellulose are two of most common polymers in textile fibers. Confined amorphous surface layers of PP and cellulose were built successfully with xenon crystals which were used to compact the polymers. The physical and surface properties of the PP and cellulose surface layers were investigated by MD simulations, including the density, cohesive energy, volumetric thermal expansion, and contact angle with water. The topology method was employed to predict the properties of poly(alkylene glycol) (PAG) diblock copolymers and Pluronic triblock copolymers used as lubricants on surfaces. Density, zero shear viscosity, shear module, cohesive energy and solubility parameter were predicted with each block copolymer. Molecular dynamics simulations were used to study the interaction energy per unit contact area of block copolymer melts with PP and cellulose surfaces. The interaction energy is defined as the ratio of interfacial interaction energy to the contact area. Both poly(proplene oxide) (PPO) and poly(ethylene oxide) (PEO) segments provided a lipophilic character to both PP and cellulose surfaces. The PPO/PEO ratio and the molecular weight were found to impact the interaction energy on both PP and cellulose surfaces. In aqueous solutions, the interaction energy is complicated due to the presence of water and the cross interactions between the multiple molecular components. The polymer-water-surface (PWS) calculation method was proposed to calculate such complex systems. In a contrast with a vacuum condition, the presence

  12. Development of semiclassical molecular dynamics simulation method.

    PubMed

    Nakamura, Hiroki; Nanbu, Shinkoh; Teranishi, Yoshiaki; Ohta, Ayumi

    2016-04-28

    Various quantum mechanical effects such as nonadiabatic transitions, quantum mechanical tunneling and coherence play crucial roles in a variety of chemical and biological systems. In this paper, we propose a method to incorporate tunneling effects into the molecular dynamics (MD) method, which is purely based on classical mechanics. Caustics, which define the boundary between classically allowed and forbidden regions, are detected along classical trajectories and the optimal tunneling path with minimum action is determined by starting from each appropriate caustic. The real phase associated with tunneling can also be estimated. Numerical demonstration with use of a simple collinear chemical reaction O + HCl → OH + Cl is presented in order to help the reader to well comprehend the method proposed here. Generalization to the on-the-fly ab initio version is rather straightforward. By treating the nonadiabatic transitions at conical intersections by the Zhu-Nakamura theory, new semiclassical MD methods can be developed. PMID:27067383

  13. Nonequilibrium molecular dynamics: The first 25 years

    SciTech Connect

    Hoover, W.G. |

    1992-08-01

    Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments.

  14. Classical Molecular Dynamics Simulation of Nuclear Fuel

    SciTech Connect

    Devanathan, Ram; Krack, Matthias; Bertolus, Marjorie

    2015-10-10

    Molecular dynamics simulation is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermo-mechanical properties. In these simulations, the forces on the ions are dictated by interaction potentials generated by fitting properties of interest to experimental data. The results obtained from the present generation of potentials are qualitatively similar, but quantitatively different. There is a need to refine existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, and to develop models that are equipped to handle deviations from stoichiometry. In addition to providing insights into fundamental mechanisms governing the behaviour of nuclear fuel, MD simulations can also provide parameters that can be used as inputs for mesoscale models.

  15. Molecular Dynamics Studies of Gold Surfaces

    NASA Astrophysics Data System (ADS)

    Ercolessi, F.; Bartolini, A.; Garofalo, M.; Parrinello, M.; Tosatti, E.

    1987-01-01

    In the glue model the total cohesion of a metal is determined by a pairwise atom-atom effective interaction plus a many-body force (the "glue") which is introduced to ensure optimal coordination. Using parameters optimized for gold, we have studied the structural behaviour of the low index surfaces Au(100), Au(110) and Au(111). We have used a simulated annealing strategy based on molecular dynamics to search the lowest surface energy configuration. In all cases the optimal structures are found to be reconstructed, and remarkably similar to some experimentally suggested reconstruction models. The main driving mechanism is the formation of close-packed triangular surface layers favoured by the glue term.

  16. Extended Lagrangian free energy molecular dynamics.

    PubMed

    Niklasson, Anders M N; Steneteg, Peter; Bock, Nicolas

    2011-10-28

    Extended free energy Lagrangians are proposed for first principles molecular dynamics simulations at finite electronic temperatures for plane-wave pseudopotential and local orbital density matrix-based calculations. Thanks to the extended Lagrangian description, the electronic degrees of freedom can be integrated by stable geometric schemes that conserve the free energy. For the local orbital representations both the nuclear and electronic forces have simple and numerically efficient expressions that are well suited for reduced complexity calculations. A rapidly converging recursive Fermi operator expansion method that does not require the calculation of eigenvalues and eigenfunctions for the construction of the fractionally occupied density matrix is discussed. An efficient expression for the Pulay force that is valid also for density matrices with fractional occupation occurring at finite electronic temperatures is also demonstrated.

  17. Development of semiclassical molecular dynamics simulation method.

    PubMed

    Nakamura, Hiroki; Nanbu, Shinkoh; Teranishi, Yoshiaki; Ohta, Ayumi

    2016-04-28

    Various quantum mechanical effects such as nonadiabatic transitions, quantum mechanical tunneling and coherence play crucial roles in a variety of chemical and biological systems. In this paper, we propose a method to incorporate tunneling effects into the molecular dynamics (MD) method, which is purely based on classical mechanics. Caustics, which define the boundary between classically allowed and forbidden regions, are detected along classical trajectories and the optimal tunneling path with minimum action is determined by starting from each appropriate caustic. The real phase associated with tunneling can also be estimated. Numerical demonstration with use of a simple collinear chemical reaction O + HCl → OH + Cl is presented in order to help the reader to well comprehend the method proposed here. Generalization to the on-the-fly ab initio version is rather straightforward. By treating the nonadiabatic transitions at conical intersections by the Zhu-Nakamura theory, new semiclassical MD methods can be developed.

  18. Nonequilibrium molecular dynamics of liquid crystals

    NASA Astrophysics Data System (ADS)

    Sarman, S. S.; Cummings, P. T.; Evans, D. J.

    1994-11-01

    During the last 15 years, noneyuilibrium molecular dynamics (NEMD) has been successfully applied to study transport phenomena in fluids that are isotropic at equilibrium. A natural extension is therefore to study liquid crystals, which are anisotropic al equilibrium. The lower symmetry of these systems means that the linear transport coefficients are considerably more complicated than in an isotropic system. Part of the reason for this is that there are crosscouplings between tensors of different rank and parity. Such couplings arc symmetry-forbidden in isotropic phases. In this paper. we review some of fundamental theoretical results we have derived concerning the rheology of liquid crystals. report NEMD simulations of thermal conductivity and shear viscosity of liquid crystals, and present NEMD simulations of shear cessation phenomena. All of the NEMD results are presented for a model liquid crystal fluid which is a modification of the Gay-Borne fluid. The results obtained are in qualitative agreement with experimental measurements on liquid crystal systems.

  19. Assessing Molecular Dynamics Simulations with Solvatochromism Modeling.

    PubMed

    Schwabe, Tobias

    2015-08-20

    For the modeling of solvatochromism with an explicit representation of the solvent molecules, the quality of preceding molecular dynamics simulations is crucial. Therefore, the possibility to apply force fields which are derived with as little empiricism as possible seems desirable. Such an approach is tested here by exploiting the sensitive solvatochromism of p-nitroaniline, and the use of reliable excitation energies based on approximate second-order coupled cluster results within a polarizable embedding scheme. The quality of the various MD settings for four different solvents, water, methanol, ethanol, and dichloromethane, is assessed. In general, good agreement with the experiment is observed when polarizable force fields and special treatment of hydrogen bonding are applied. PMID:26220273

  20. Molecular dynamics simulations and docking enable to explore the biophysical factors controlling the yields of engineered nanobodies

    NASA Astrophysics Data System (ADS)

    Soler, Miguel A.; De Marco, Ario; Fortuna, Sara

    2016-10-01

    Nanobodies (VHHs) have proved to be valuable substitutes of conventional antibodies for molecular recognition. Their small size represents a precious advantage for rational mutagenesis based on modelling. Here we address the problem of predicting how Camelidae nanobody sequences can tolerate mutations by developing a simulation protocol based on all-atom molecular dynamics and whole-molecule docking. The method was tested on two sets of nanobodies characterized experimentally for their biophysical features. One set contained point mutations introduced to humanize a wild type sequence, in the second the CDRs were swapped between single-domain frameworks with Camelidae and human hallmarks. The method resulted in accurate scoring approaches to predict experimental yields and enabled to identify the structural modifications induced by mutations. This work is a promising tool for the in silico development of single-domain antibodies and opens the opportunity to customize single functional domains of larger macromolecules.

  1. Molecular dynamics simulations and docking enable to explore the biophysical factors controlling the yields of engineered nanobodies

    PubMed Central

    Soler, Miguel A.; de Marco, Ario; Fortuna, Sara

    2016-01-01

    Nanobodies (VHHs) have proved to be valuable substitutes of conventional antibodies for molecular recognition. Their small size represents a precious advantage for rational mutagenesis based on modelling. Here we address the problem of predicting how Camelidae nanobody sequences can tolerate mutations by developing a simulation protocol based on all-atom molecular dynamics and whole-molecule docking. The method was tested on two sets of nanobodies characterized experimentally for their biophysical features. One set contained point mutations introduced to humanize a wild type sequence, in the second the CDRs were swapped between single-domain frameworks with Camelidae and human hallmarks. The method resulted in accurate scoring approaches to predict experimental yields and enabled to identify the structural modifications induced by mutations. This work is a promising tool for the in silico development of single-domain antibodies and opens the opportunity to customize single functional domains of larger macromolecules. PMID:27721441

  2. Molecular dynamics studies of metallic glasses

    NASA Astrophysics Data System (ADS)

    Lee, Hyon-Jee

    The thermodynamic, structural, and mechanical properties of metallic glasses are studied using molecular dynamics simulations. Molecular dynamics provides a computational framework to simulate the movement of interacting atoms in response to external perturbations, such as changes in temperature or pressure. In this thesis, a Sutton-Chen potential was chosen to describe the many-body interactions in metals and alloys. Our first application for this approach is to develop a simple model to derive the thermodynamic properties of metallic alloys (Chapter 2). Based on this model, we demonstrate that the glass transition is thermodynamically sensitive to differences between atomic radii and that there is an optimal difference for glass formation. Next, we extend these simulations to elucidate the details of structural organization in the glass (Chapter 3). We find that the liquid phase is characterized by a local five-fold symmetry, which becomes more prominent as the glass phase forms. This five-fold symmetry is related to the formation of icosahedral structures. The mechanical properties of glasses are also investigated and it is found that shear localization, which accompanies a sharp drop in the stress-strain curve, occurs at 45 degree with respect to the loading axis (Chapter 4). The generation of free volume is found to be the dominant mechanism that leads to shear localization, rather than adiabatic heating. Finally, generic first principle potentials are constructed to guide the experimental development of AlTiNi based metallic glasses (Chapter 5). Together, the results from these simulations improve our understanding of the thermodynamic, structural, and mechanical properties of metallic glasses and will aid computer-driven materials design.

  3. All-atom normal-mode analysis reveals an RNA-induced allostery in a bacteriophage coat protein

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric C.; Twarock, Reidun

    2010-03-01

    Assembly of the T=3 bacteriophage MS2 is initiated by the binding of a 19 nucleotide RNA stem loop from within the phage genome to a symmetric coat protein dimer. This binding event effects a folding of the FG loop in one of the protein subunits of the dimer and results in the formation of an asymmetric dimer. Since both the symmetric and asymmetric forms of the dimer are needed for the assembly of the protein container, this allosteric switch plays an important role in the life cycle of the phage. We provide here details of an all-atom normal-mode analysis of this allosteric effect. The results suggest that asymmetric contacts between the A -duplex RNA phosphodiester backbone of the stem loop with the EF loop in one coat protein subunit results in an increased dynamic behavior of its FG loop. The four lowest-frequency modes, which encompass motions predominantly on the FG loops, account for over 90% of the increased dynamic behavior due to a localization of the vibrational pattern on a single FG loop. Finally, we show that an analysis of the allosteric effect using an elastic network model fails to predict this localization effect, highlighting the importance of using an all-atom full force field method for this problem.

  4. Molecular dynamics simulations of microscale fluid transport

    SciTech Connect

    Wong, C.C.; Lopez, A.R.; Stevens, M.J.; Plimpton, S.J.

    1998-02-01

    Recent advances in micro-science and technology, like Micro-Electro-Mechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a Micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these non-equilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and addresses both scaling and modeling issues. For Poiseuille flow, the numerical predictions are compared with existing data to investigate the variation of the friction factor with channel width. For Couette flow, the numerical predictions are used to determine the degree of slip at the liquid/solid boundary. Finally, the results also indicate that shear direction with respect to the wall lattice orientation can be very important. Simulation results of microscale Couette flow and microscale Poiseuille flow for two different surface structures and two different shear directions will be presented.

  5. Molecular dynamics simulations of supramolecular polymer rheology

    NASA Astrophysics Data System (ADS)

    Li, Zhenlong; Djohari, Hadrian; Dormidontova, Elena E.

    2010-11-01

    Using equilibrium and nonequilibrium molecular dynamics simulations, we studied the equilibrium and rheological properties of dilute and semidilute solutions of head-to-tail associating polymers. In our simulation model, a spontaneous complementary reversible association between the donor and the acceptor groups at the ends of oligomers was achieved by introducing a combination of truncated pseudo-Coulombic attractive potential and Lennard Jones repulsive potential between donor, acceptor, and neighboring groups. We have calculated the equilibrium properties of supramolecular polymers, such as the ring/chain equilibrium, average molecular weight, and molecular weight distribution of self-assembled chains and rings, which all agree well with previous analytical and computer modeling results. We have investigated shear thinning of solutions of 8- and 20-bead associating oligomers with different association energies at different temperatures and oligomer volume fractions. All reduced viscosity data for a given oligomer length can be collapsed into one master curve, exhibiting two power-law regions of shear-thinning behavior with an exponent of -0.55 at intermediate ranges of the reduced shear rate β and -0.8 (or -0.9) at larger shear rates. The equilibrium viscosity of supramolecular solutions with different oligomer lengths and associating energies is found to obey a power-law scaling dependence on oligomer volume fraction with an exponent of 1.5, in agreement with the experimental observations for several dilute or semidilute solutions of supramolecular polymers. This implies that dilute and semidilute supramolecular polymer solutions exhibit high polydispersity but may not be sufficiently entangled to follow the reptation mechanism of relaxation.

  6. Deriving Coarse-Grained Charges from All-Atom Systems: An Analytic Solution.

    PubMed

    McCullagh, Peter; Lake, Peter T; McCullagh, Martin

    2016-09-13

    An analytic method to assign optimal coarse-grained charges based on electrostatic potential matching is presented. This solution is the infinite size and density limit of grid-integration charge-fitting and is computationally more efficient by several orders of magnitude. The solution is also minimized with respect to coarse-grained positions which proves to be an extremely important step in reproducing the all-atom electrostatic potential. The joint optimal-charge optimal-position coarse-graining procedure is applied to a number of aggregating proteins using single-site per amino acid resolution. These models provide a good estimate of both the vacuum and Debye-Hückel screened all-atom electrostatic potentials in the vicinity and in the far-field of the protein. Additionally, these coarse-grained models are shown to approximate the all-atom dimerization electrostatic potential energy of 10 aggregating proteins with good accuracy.

  7. Mosaic of Water Orientation Structures at a Neutral Zwitterionic Lipid/Water Interface Revealed by Molecular Dynamics Simulations.

    PubMed

    Re, Suyong; Nishima, Wataru; Tahara, Tahei; Sugita, Yuji

    2014-12-18

    Ordering of water structures near the surface of biological membranes has been recently extensively studied using interface-selective techniques like vibrational sum frequency generation (VSFG) spectroscopy. The detailed structures of interface water have emerged for charged lipids, but those for neutral zwitterionic lipids remain obscure. We analyze an all-atom molecular dynamics (MD) trajectory of a hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer to characterize the orientation of interface waters in different chemical environments. The structure and dynamics of interfacial waters strongly depend on both their vertical position along the bilayer normal as well as vicinal lipid charged groups. Water orientation in the vicinity of phosphate groups is opposite to that around choline groups. The results are consistent with observed VSFG spectra and demonstrate that a mosaic of water orientation structures exists on the surface of a neutral zwitterionic phospholipid bilayer, reflecting rapid water exchange and the influence of local chemical environments. PMID:26273985

  8. Molecular beam studies of reaction dynamics

    SciTech Connect

    Lee, Y.T.

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  9. Molecular-dynamic study of liquid ethylenediamine

    NASA Astrophysics Data System (ADS)

    Balabaev, N. K.; Kraevskii, S. V.; Rodnikova, M. N.; Solonina, I. A.

    2016-10-01

    Models of liquid ethylenediamine (ED) are built using the molecular dynamics approach at temperatures of 293-363 K and a size of 1000 molecules in a basic cell as a cuboid. The structural and dynamic characteristics of liquid ED versus temperature are derived. The gauche conformation of the ED molecule that is characteristic of the gas phase is shown to transition easily into the trans conformation of the molecules in the liquid. NH···N hydrogen bonds are analyzed in liquid ED. The number of H-bonds per ED molecule is found to vary from 5.02 at 293 K to 3.86 at 363 K. The lifetimes in the range of the temperatures and dissociation activation energy for several H-bonds in liquid ED are found to range from 0.574 to 4.524 ps at 293 K; the activation energies are 8.8 kJ/mol for 50% of the H-bonds and 16.3 kJ/mol for 6.25% of them. A weaker and more mobile spatial grid of H-bonds in liquid ED is observed, compared to data calculated earlier for monoethanolamine.

  10. Interfacial water on crystalline silica: A comparative molecular dynamics simulation study

    SciTech Connect

    Ho, Tuan A.; Argyris, D.; Cole, David; Striolo, Alberto

    2011-01-01

    All-atom molecular dynamics simulations were conducted to study the dynamics of aqueous electrolyte solutions confined in slit-shaped silica nanopores of various degrees of protonation. Five degrees of protonation were prepared by randomly removing surface hydrogen atoms from fully protonated crystalline silica surfaces. Aqueous electrolyte solutions containing NaCl or CsCl salt were simulated at ambient conditions. In all cases, the ionic concentration was 1 M. The results were quantified in terms of atomic density distributions within the pores, and the self-diffusion coefficient along the direction parallel to the pore surface. We found evidence for ion-specific properties that depend on ion surface, water ion, and only in some cases ion ion correlations. The degree of protonation strongly affects the structure, distribution, and the dynamic behavior of confined water and electrolytes. Cl ions adsorb on the surface at large degrees of protonation, and their behavior does not depend significantly on the cation type (either Na+ or Cs+ ions are present in the systems considered). The cations show significant ion-specific behavior. Na+ ions occupy different positions within the pore as the degree of protonation changes, while Cs+ ions mainly remain near the pore center at all conditions considered. For a given degree of protonation, the planar self-diffusion coefficient of Cs+ is always greater than that of Na+ ions. The results are useful for better understanding transport under confinement, including brine behavior in the subsurface, with important applications such as environmental remediation.

  11. Molecular dynamics studies on nanoscale gas transport

    NASA Astrophysics Data System (ADS)

    Barisik, Murat

    Three-dimensional molecular dynamics (MD) simulations of nanoscale gas flows are studied to reveal surface effects. A smart wall model that drastically reduces the memory requirements of MD simulations for gas flows is introduced. The smart wall molecular dynamics (SWMD) represents three-dimensional FCC walls using only 74 wall Molecules. This structure is kept in the memory and utilized for each gas molecule surface collision. Using SWMD, fluid behavior within nano-scale confinements is studied for argon in dilute gas, dense gas, and liquid states. Equilibrium MD method is employed to resolve the density and stress variations within the static fluid. Normal stress calculations are based on the Irving-Kirkwood method, which divides the stress tensor into its kinetic and virial parts. The kinetic component recovers pressure based on the ideal gas law. The particle-particle virial increases with increased density, while the surface-particle virial develops due to the surface force field effects. Normal stresses within nano-scale confinements show anisotropy induced primarily by the surface force-field and local variations in the fluid density near the surfaces. For dilute and dense gas cases, surface-force field that extends typically 1nm from each wall induces anisotropic normal stress. For liquid case, this effect is further amplified by the density fluctuations that extend beyond the three field penetration region. Outside the wall force-field penetration and density fluctuation regions the normal stress becomes isotropic and recovers the thermodynamic pressure, provided that sufficiently large force cut-off distances are utilized in the computations. Next, non-equilibrium SWMD is utilized to investigate the surface-gas interaction effects on nanoscale shear-driven gas flows in the transition and free molecular flow regimes. For the specified surface properties and gas-surface pair interactions, density and stress profiles exhibit a universal behavior inside the

  12. Molecular Dynamics Simulations of Tri-n-butyl-phosphate/n-Dodecane Mixture: Thermophysical Properties and Molecular Structure

    SciTech Connect

    de Almeida, Valmor F; Cui, Shengting; Khomami, Bamin

    2014-01-01

    Molecular dynamics simulations of tri-n-butyl-phosphate (TBP)/n-dodecane mixture in the liquid phase have been carried out using two recently developed TBP force field models (J. Phys. Chem. B 2012, 116, 305) in combination with the all-atom optimized potentials for liquid simulations (OPLS-AA) force field model for n-dodecane. Specifically, the electric dipole moment of TBP, mass density of the mixture, and the excess volume of mixing were computed with TBP mole fraction ranging from 0 to 1. It is found that the aforementioned force field models accurately predict the mass density of the mixture in the entire mole fraction range. Commensurate with experimental measurements, the electric dipole moment of the TBP was found to slightly increase with the mole fraction of TBP in the mixture. Also, in accord with experimental data, the excess volume of mixing is positive in the entire mole fraction range, peaking at TBP mole fraction range 0.3 0.5. Finally, a close examination of the spatial pair correlation functions between TBP molecules, and between TBP and n-dodecane molecules, revealed formation of TBP dimers through self-association at close distance, a phenomenon with ample experimental evidence.

  13. Internal Coordinate Molecular Dynamics: A Foundation for Multiscale Dynamics

    PubMed Central

    2015-01-01

    Internal coordinates such as bond lengths, bond angles, and torsion angles (BAT) are natural coordinates for describing a bonded molecular system. However, the molecular dynamics (MD) simulation methods that are widely used for proteins, DNA, and polymers are based on Cartesian coordinates owing to the mathematical simplicity of the equations of motion. However, constraints are often needed with Cartesian MD simulations to enhance the conformational sampling. This makes the equations of motion in the Cartesian coordinates differential-algebraic, which adversely impacts the complexity and the robustness of the simulations. On the other hand, constraints can be easily placed in BAT coordinates by removing the degrees of freedom that need to be constrained. Thus, the internal coordinate MD (ICMD) offers an attractive alternative to Cartesian coordinate MD for developing multiscale MD method. The torsional MD method is a special adaptation of the ICMD method, where all the bond lengths and bond angles are kept rigid. The advantages of ICMD simulation methods are the longer time step size afforded by freezing high frequency degrees of freedom and performing a conformational search in the more important low frequency torsional degrees of freedom. However, the advancements in the ICMD simulations have been slow and stifled by long-standing mathematical bottlenecks. In this review, we summarize the recent mathematical advancements we have made based on spatial operator algebra, in developing a robust long time scale ICMD simulation toolkit useful for various applications. We also present the applications of ICMD simulations to study conformational changes in proteins and protein structure refinement. We review the advantages of the ICMD simulations over the Cartesian simulations when used with enhanced sampling methods and project the future use of ICMD simulations in protein dynamics. PMID:25517406

  14. Low-mass molecular dynamics simulation: A simple and generic technique to enhance configurational sampling

    SciTech Connect

    Pang, Yuan-Ping

    2014-09-26

    Highlights: • Reducing atomic masses by 10-fold vastly improves sampling in MD simulations. • CLN025 folded in 4 of 10 × 0.5-μs MD simulations when masses were reduced by 10-fold. • CLN025 folded as early as 96.2 ns in 1 of the 4 simulations that captured folding. • CLN025 did not fold in 10 × 0.5-μs MD simulations when standard masses were used. • Low-mass MD simulation is a simple and generic sampling enhancement technique. - Abstract: CLN025 is one of the smallest fast-folding proteins. Until now it has not been reported that CLN025 can autonomously fold to its native conformation in a classical, all-atom, and isothermal–isobaric molecular dynamics (MD) simulation. This article reports the autonomous and repeated folding of CLN025 from a fully extended backbone conformation to its native conformation in explicit solvent in multiple 500-ns MD simulations at 277 K and 1 atm with the first folding event occurring as early as 66.1 ns. These simulations were accomplished by using AMBER forcefield derivatives with atomic masses reduced by 10-fold on Apple Mac Pros. By contrast, no folding event was observed when the simulations were repeated using the original AMBER forcefields of FF12SB and FF14SB. The results demonstrate that low-mass MD simulation is a simple and generic technique to enhance configurational sampling. This technique may propel autonomous folding of a wide range of miniature proteins in classical, all-atom, and isothermal–isobaric MD simulations performed on commodity computers—an important step forward in quantitative biology.

  15. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    SciTech Connect

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D. Kühn, Oliver

    2015-06-28

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.

  16. Modeling and Bio molecular Self-assembly via Molecular Dynamics and Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Rakesh, L.

    2009-09-01

    Surfactants like materials can be used to increase the solubility of poorly soluble drugs in water and to increase drug bioavailability. A typical case study will be demonstrated using DPD simulation to model the distribution of anti-inflammatory drug molecules. Computer simulation is a convenient approach to understand drug distribution and solubility concepts without much wastage and costly experiments in the laboratory. Often in molecular dynamics (MD) the atoms are represented explicitly and the equation of motion as described by Newtonian dynamics is integrated explicitly. MD has been used to study spontaneous formation of micelles by hydrophobic molecules with amphiphilic head groups in bulk water, as well as stability of pre-configured micelles and membranes. DPD is a state-of the- art mesoscale simulation, it is a more recent molecular dynamics technique, originally developed for simulating complex fluids but lately also applied to membrane dynamics, hemodynamic in biomedical applications. Such fluids pervade industrial research from paints to pharmaceuticals and from cosmetics to the controlled release of drugs. Dissipative particle dynamics (DPD) can provide structural and dynamic properties of fluids in equilibrium, under shear or confined to narrow cavities, at length- and time-scales beyond the scope of traditional atomistic molecular dynamics simulation methods. Mesoscopic particles are used to represent clusters of molecules. The interaction conserves mass and momentum and as a consequence the dynamics is consistent with Navier-Stokes equations. In addition to the conservative forces, stochastic drive and dissipation is introduced to represent internal degrees of freedom in the mesoscopic particles. In this research, an initial study is being conducted using the aqueous solubilization of the nonsteroidal, anti-inflammatory drug is studied theoretically in micellar solution of nonionic (dodecyl hexa(ethylene oxide), C12E6) surfactants possessing the

  17. Thermal transpiration: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    T, Joe Francis; Sathian, Sarith P.

    2014-12-01

    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  18. Thermal transpiration: A molecular dynamics study

    SciTech Connect

    T, Joe Francis; Sathian, Sarith P.

    2014-12-09

    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  19. How Dynamic Visualization Technology Can Support Molecular Reasoning

    ERIC Educational Resources Information Center

    Levy, Dalit

    2013-01-01

    This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and…

  20. Rempi Studies of Molecular Reaction Dynamics.

    NASA Astrophysics Data System (ADS)

    Black, John Forbes

    Available from UMI in association with The British Library. Requires signed TDF. Resonance-Enhanced Multi-Photon Ionisation (REMPI qv.) is used to prepare and probe systems undergoing unimolecular decomposition. It is shown that the highly efficient state selective nature of the REMPI process is well suited to both highly dynamical situations such as the "A-Band" dissociation of MeI at around 280nm and to the slower "Quasi-statistical" dissociations of the mainifold of states of the MeI(+) cation. In the study of the neutral dissociation we attempt to extract the population distributions of the quantum states "by implication" as has been done previously. We demonstrate the failings of the time-of-flight technique in being unable to do this effectively. A comparison with previous studies is made. We report the first rotationally resolved spectrum of a polyatomic (N atoms > 2) photofragment (Me from the "A-Band" photodissociation of MeI) and propose a mechanism to account for the observed differences of the rotational populations in the different dissociation channels. Two-photon linestrength theory incorporating alignment effects is extended to symmetric tops to analyse the data. The pre-dissociation dynamics of a high lying Rydberg state of the methyl radical have been extracted as part of a spectroscopic study performed on CH _3 and CD_3. The dynamics are compared to existing studies on the near-neighbours NH_3 and ND_3 with some apparent correlation. In the dissociations of the A and B states of the MeI(+) cation we are able to provide some more evidence for existing ideas that the A state dissociates by rapid inter-conversion to highly excited levels of the ground state whereas the B state dissociates in a more direct manner. We identify two existing features in the REMPI spectrum of MeI in the "A-Band" region as molecular Rydberg resonances and show that an interesting competition exists between the direct photodissociation and the "virtual" state involved in

  1. Molecular dynamics simulations of unsaturated lipid bilayers

    NASA Astrophysics Data System (ADS)

    Rabinovich, Alexander L.; Balabaev, Nikolay K.

    2001-02-01

    Molecular dynamics simulations were carried out for bilayers of lipid molecules having stearic acid (C18:0) chain in position '3-D' (using the nomenclature of M. Sundaralingam, 1972) and fatty acid chain C18:0, C18:1(omega 9), C18:2(omega 6), C18:3(omega 3), C20:4(omega 6) or C22:6(omega 3) in position '2-D'. To investigate the properties of the bilayers two models were considered. In the first model, the simulation cells of the bilayers consisted of 96 phosphatidylcholine (PC) molecules and 2304 water molecules: 48 lipid molecules per layer and 24 H2O molecules per lipid. The water was modeled by explicit TIP3P water molecules. In the second model, the head group of the lipid molecules was treated as an effective sphere -- diacylglycerolipids (DGs) were considered, the interface of each monolayer was modeled by a flat surface; no water molecules were present explicitly. The bilayers consisted of 48 X 2 equals 96 glycerolipids arranged in a rectangular simulation cell. Various properties of the bilayers -- the C-H bond order parameter -SCH profiles of the hydrocarbon tails, the root-mean-square values of the positional fluctuations of the lipid chain carbons, mass density distributions of lipid molecules and water along the normals were investigated.

  2. Molecular dynamics simulations of unsaturated lipid bilayers

    NASA Astrophysics Data System (ADS)

    Rabinovich, Alexander L.; Balabaev, Nikolay K.

    2000-02-01

    Molecular dynamics simulations were carried out for bilayers of lipid molecules having stearic acid (C18:0) chain in position '3-D' (using the nomenclature of M. Sundaralingam, 1972) and fatty acid chain C18:0, C18:1(omega 9), C18:2(omega 6), C18:3(omega 3), C20:4(omega 6) or C22:6(omega 3) in position '2-D'. To investigate the properties of the bilayers two models were considered. In the first model, the simulation cells of the bilayers consisted of 96 phosphatidylcholine (PC) molecules and 2304 water molecules: 48 lipid molecules per layer and 24 H2O molecules per lipid. The water was modeled by explicit TIP3P water molecules. In the second model, the head group of the lipid molecules was treated as an effective sphere -- diacylglycerolipids (DGs) were considered, the interface of each monolayer was modeled by a flat surface; no water molecules were present explicitly. The bilayers consisted of 48 X 2 equals 96 glycerolipids arranged in a rectangular simulation cell. Various properties of the bilayers -- the C-H bond order parameter -SCH profiles of the hydrocarbon tails, the root-mean-square values of the positional fluctuations of the lipid chain carbons, mass density distributions of lipid molecules and water along the normals were investigated.

  3. Molecular chaperone-mediated nuclear protein dynamics.

    PubMed

    Echtenkamp, Frank J; Freeman, Brian C

    2014-05-01

    Homeostasis requires effective action of numerous biological pathways including those working along a genome. The variety of processes functioning in the nucleus is considerable, yet the number of employed factors eclipses this total. Ideally, individual components assemble into distinct complexes and serially operate along a pathway to perform work. Adding to the complexity is a multitude of fluctuating internal and external signals that must be monitored to initiate, continue or halt individual activities. While cooperative interactions between proteins of the same process provide a mechanism for rapid and precise assembly, the inherent stability of such organized structures interferes with the proper timing of biological events. Further prolonging the longevity of biological complexes are crowding effects resulting from the high concentration of intracellular macromolecules. Hence, accessory proteins are required to destabilize the various assemblies to efficiently transition between structures, avoid off-pathway competitive interactions, and to terminate pathway activity. We suggest that molecular chaperones have evolved, in part, to manage these challenges by fostering a general and continuous dynamic protein environment within the nucleus. PMID:24694369

  4. Molecular chaperone-mediated nuclear protein dynamics.

    PubMed

    Echtenkamp, Frank J; Freeman, Brian C

    2014-05-01

    Homeostasis requires effective action of numerous biological pathways including those working along a genome. The variety of processes functioning in the nucleus is considerable, yet the number of employed factors eclipses this total. Ideally, individual components assemble into distinct complexes and serially operate along a pathway to perform work. Adding to the complexity is a multitude of fluctuating internal and external signals that must be monitored to initiate, continue or halt individual activities. While cooperative interactions between proteins of the same process provide a mechanism for rapid and precise assembly, the inherent stability of such organized structures interferes with the proper timing of biological events. Further prolonging the longevity of biological complexes are crowding effects resulting from the high concentration of intracellular macromolecules. Hence, accessory proteins are required to destabilize the various assemblies to efficiently transition between structures, avoid off-pathway competitive interactions, and to terminate pathway activity. We suggest that molecular chaperones have evolved, in part, to manage these challenges by fostering a general and continuous dynamic protein environment within the nucleus.

  5. Integrating influenza antigenic dynamics with molecular evolution

    PubMed Central

    Bedford, Trevor; Suchard, Marc A; Lemey, Philippe; Dudas, Gytis; Gregory, Victoria; Hay, Alan J; McCauley, John W; Russell, Colin A; Smith, Derek J; Rambaut, Andrew

    2014-01-01

    Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001 PMID:24497547

  6. Molecular Dynamics Simulations of Coulomb Explosion

    SciTech Connect

    Bringa, E M

    2002-05-17

    A swift ion creates a track of electronic excitations in the target material. A net repulsion inside the track can cause a ''Coulomb Explosion'', which can lead to damage and sputtering of the material. Here we report results from molecular-dynamics (MD) simulations of Coulomb explosion for a cylindrical track as a function of charge density and neutralization/quenching time, {tau}. Screening by the free electrons is accounted for using a screened Coulomb potential for the interaction among charges. The yield exhibits a prompt component from the track core and a component, which dominates at higher excitation density, from the heated region produced. For the cases studied, the number of atoms ejected per incident ion, i.e. the sputtering yield Y, is quadratic with charge density along the track as suggested by simple models. Y({tau} = 0.2 Debye periods) is nearly 20% of the yield when there is no neutralization ({tau} {yields} {infinity}). The connections between ''Coulomb explosions'', thermal spikes and measurements of electronic sputtering are discussed.

  7. Fracture simulations via massively parallel molecular dynamics

    SciTech Connect

    Holian, B.L.; Abraham, F.F.; Ravelo, R.

    1993-09-01

    Fracture simulations at the atomistic level have heretofore been carried out for relatively small systems of particles, typically 10,000 or less. In order to study anything approaching a macroscopic system, massively parallel molecular dynamics (MD) must be employed. In two spatial dimensions (2D), it is feasible to simulate a sample that is 0.1 {mu}m on a side. We report on recent MD simulations of mode I crack extension under tensile loading at high strain rates. The method of uniaxial, homogeneously expanding periodic boundary conditions was employed to represent tensile stress conditions near the crack tip. The effects of strain rate, temperature, material properties (equation of state and defect energies), and system size were examined. We found that, in order to mimic a bulk sample, several tricks (in addition to expansion boundary conditions) need to be employed: (1) the sample must be pre-strained to nearly the condition at which the crack will spontaneously open; (2) to relieve the stresses at free surfaces, such as the initial notch, annealing by kinetic-energy quenching must be carried out to prevent unwanted rarefactions; (3) sound waves emitted as the crack tip opens and dislocations emitted from the crack tip during blunting must be absorbed by special reservoir regions. The tricks described briefly in this paper will be especially important to carrying out feasible massively parallel 3D simulations via MD.

  8. Molecular dynamics simulations of gold nanomaterials

    NASA Astrophysics Data System (ADS)

    Wang, Yanting

    We have carried out Molecular Dynamics simulations to study the thermal stability and melting behavior of gold nanoclusters and gold nanorods. The surface is found to play a very important role in both gold nanomaterials. Upon cooling from the liquid, we find that gold nanoclusters with 600-3000 atoms crystallize into a Mackay icosahedron. Upon heating, the {111} facets on the surface of the Mackay icosahedral gold nanoclusters soften but do not premelt below the bulk melting temperature. We attribute this surface softening to the increasing mobility of vertex and edge atoms with temperature, which leads to inter-layer and intra-layer diffusion, and a shrinkage of the average facet size. Upon heating, our simulated gold nanorods undergo a shape transformation preceding the melting transition. The shape transformation is induced by a minimization of the surface free energy, and is accompanied by a complete reconstruction of the internal structure driven by the surface change. During the transformation, the atoms on the end caps of the rod move to the sides of the rods, leading the rods to be shorter and wider. After the transformation, the surface of the stable intermediate state rod is mostly covered by the more stable {111} facets, other than the less stable {110} and {100} facets covering the sides of the initial constructed rod.

  9. Molecular dynamics studies of lanthanum chloride solutions

    SciTech Connect

    Meier, W.; Bopp, Ph. ); Probst, M.M. ); Spohr, E. ); Lin, J.L. )

    1990-05-31

    Molecular dynamics studies are reported for LaCl{sub 3} solutions at two different concentrations and temperatures, and for isolated aqueous La{sup 3+} ions. Ion-water clusters La(H{sub 2}O){sub n}{sup 3+} with n = 61 and n = 100 and systems consisting of one ion and 100 or 200 water molecules in the usual periodic box, as well as solutions of 7 (4) cations and 21 (12) anions in 190 (200) water molecules, corresponding to 2 and 1.1 m solutions, respectively, were investigated. The 2 m solution was investigated at two different temperatures. The results for the static structure, with special emphasis on the hydration structure of the La{sup 3+} ion, are discussed in terms of radial distribution functions and resulting hydration numbers, and various other correlations. These results are compared with X-ray data and discussed in light of the hydration numbers observed for aqueous ions in general.

  10. Efficient compression of molecular dynamics trajectory files.

    PubMed

    Marais, Patrick; Kenwood, Julian; Smith, Keegan Carruthers; Kuttel, Michelle M; Gain, James

    2012-10-15

    We investigate whether specific properties of molecular dynamics trajectory files can be exploited to achieve effective file compression. We explore two classes of lossy, quantized compression scheme: "interframe" predictors, which exploit temporal coherence between successive frames in a simulation, and more complex "intraframe" schemes, which compress each frame independently. Our interframe predictors are fast, memory-efficient and well suited to on-the-fly compression of massive simulation data sets, and significantly outperform the benchmark BZip2 application. Our schemes are configurable: atomic positional accuracy can be sacrificed to achieve greater compression. For high fidelity compression, our linear interframe predictor gives the best results at very little computational cost: at moderate levels of approximation (12-bit quantization, maximum error ≈ 10(-2) Å), we can compress a 1-2 fs trajectory file to 5-8% of its original size. For 200 fs time steps-typically used in fine grained water diffusion experiments-we can compress files to ~25% of their input size, still substantially better than BZip2. While compression performance degrades with high levels of quantization, the simulation error is typically much greater than the associated approximation error in such cases.

  11. Quantum molecular dynamics simulations of dense matter

    SciTech Connect

    Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I.

    1997-12-31

    The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.

  12. Paramaterization of a coarse-grained model for linear alkylbenzene sulfonate surfactants and molecular dynamics studies of their self-assembly in aqueous solution

    NASA Astrophysics Data System (ADS)

    He, Xibing; Shinoda, Wataru; DeVane, Russell; Anderson, Kelly L.; Klein, Michael L.

    2010-02-01

    A coarse-grained (CG) forcefield for linear alkylbenzene sulfonates (LAS) was systematically parameterized. Thermodynamic data from experiments and structural data obtained from all-atom molecular dynamics were used as targets to parameterize CG potentials for the bonded and non-bonded interactions. The added computational efficiency permits one to employ computer simulation to probe the self-assembly of LAS aqueous solutions into different morphologies starting from a random configuration. The present CG model is shown to accurately reproduce the phase behavior of solutions of pure isomers of sodium dodecylbenzene sulfonate, despite the fact that phase behavior was not directly taken into account in the forcefield parameterization.

  13. Comparative study of local structure of two cyanobiphenyl liquid crystals by molecular dynamics method

    SciTech Connect

    Gerts, Egor D. Komolkin, Andrei V.; Burmistrov, Vladimir A.; Alexandriysky, Victor V.; Dvinskikh, Sergey V.

    2014-08-21

    Fully-atomistic molecular dynamics simulations were carried out on two similar cyanobiphenyl nematogens, HO-6OCB and 7OCB, in order to study effects of hydrogen bonds on local structure of liquid crystals. Comparable length of these two molecules provides more evident results on the effects of hydrogen bonding. The analysis of radial and cylindrical distribution functions clearly shows the differences in local structure of two mesogens. The simulations showed that anti-parallel alignment is preferable for the HO-6OCB. Hydrogen bonds between OH-groups are observed for 51% of HO-6OCB molecules, while hydrogen bonding between CN- and OH-groups occurs only for 16% of molecules. The lifetimes of H-bonds differ due to different mobility of molecular fragments (50 ps for N⋅⋅⋅H–O and 41 ps for O⋅⋅⋅H–O). Although the standard Optimized Potentials for Liquid Simulations - All-Atom force field cannot reproduce some experimental parameters quantitatively (order parameters are overestimated, diffusion coefficients are not reproduced well), the comparison of relative simulated results for the pair of mesogens is nevertheless consistent with the same relative experimental parameters. Thus, the comparative study of simulated and experimental results for the pair of similar liquid crystals still can be assumed plausible.

  14. Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer

    SciTech Connect

    Schulz, Roland; Lindner, Benjamin; Petridis, Loukas; Smith, Jeremy C

    2009-01-01

    A strategy is described for a fast all-atom molecular dynamics simulation of multimillion-atom biological systems on massively parallel supercomputers. The strategy is developed using benchmark systems of particular interest to bioenergy research, comprising models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves using the reaction field (RF) method for the computation of long-range electrostatic interactions, which permits efficient scaling on many thousands of cores. Although the range of applicability of the RF method for biomolecular systems remains to be demonstrated, for the benchmark systems the use of the RF produces molecular dipole moments, Kirkwood G factors, other structural properties, and mean-square fluctuations in excellent agreement with those obtained with the commonly used Particle Mesh Ewald method. With RF, three million- and five million atom biological systems scale well up to 30k cores, producing 30 ns/day. Atomistic simulations of very large systems for time scales approaching the microsecond would, therefore, appear now to be within reach.

  15. Molecular Dynamics Simulation Study of the Selectivity of a Silica Polymer for Ibuprofen

    PubMed Central

    Concu, Riccardo; Cordeiro, M. Natalia D. S.

    2016-01-01

    In the past few years, the sol-gel polycondensation technique has been increasingly employed with great success as an alternative approach to the preparation of molecularly imprinted materials (MIMs). The main aim of this study was to study, through a series of molecular dynamics (MD) simulations, the selectivity of an imprinted silica xerogel towards a new template—the (±)-2-(P-Isobutylphenyl) propionic acid (Ibuprofen, IBU). We have previously demonstrated the affinity of this silica xerogel toward a similar molecule. In the present study, we simulated the imprinting process occurring in a sol-gel mixture using the Optimized Potentials for Liquid Simulations-All Atom (OPLS-AA) force field, in order to evaluate the selectivity of this xerogel for a template molecule. In addition, for the first time, we have developed and verified a new parameterisation for the Ibuprofen® based on the OPLS-AA framework. To evaluate the selectivity of the polymer, we have employed both the radial distribution functions, interaction energies and cluster analyses. PMID:27399685

  16. Impact of 2'-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM all-atom additive force field for RNA.

    PubMed

    Denning, Elizabeth J; Priyakumar, U Deva; Nilsson, Lennart; Mackerell, Alexander D

    2011-07-15

    Here, we present an update of the CHARMM27 all-atom additive force field for nucleic acids that improves the treatment of RNA molecules. The original CHARMM27 force field parameters exhibit enhanced Watson-Crick base pair opening which is not consistent with experiment, whereas analysis of molecular dynamics (MD) simulations show the 2'-hydroxyl moiety to almost exclusively sample the O3' orientation. Quantum mechanical (QM) studies of RNA related model compounds indicate the energy minimum associated with the O3' orientation to be too favorable, consistent with the MD results. Optimization of the dihedral parameters dictating the energy of the 2'-hydroxyl proton targeting the QM data yielded several parameter sets, which sample both the base and O3' orientations of the 2'-hydroxyl to varying degrees. Selection of the final dihedral parameters was based on reproduction of hydration behavior as related to a survey of crystallographic data and better agreement with experimental NMR J-coupling values. Application of the model, designated CHARMM36, to a collection of canonical and noncanonical RNA molecules reveals overall improved agreement with a range of experimental observables as compared to CHARMM27. The results also indicate the sensitivity of the conformational heterogeneity of RNA to the orientation of the 2'-hydroxyl moiety and support a model whereby the 2'-hydroxyl can enhance the probability of conformational transitions in RNA.

  17. Combined Molecular Dynamics Simulations and Experimental Studies of the Structure and Dynamics of Poly-Amido-Saccharides.

    PubMed

    Chin, Stacy L; Lu, Qing; Dane, Eric L; Dominguez, Laura; McKnight, Christopher J; Straub, John E; Grinstaff, Mark W

    2016-05-25

    Poly-amido-saccharides (PAS) are carbohydrate-based, enantiopure synthetic polymers in which sugar repeat units are joined by amide linkages. This unique and relatively rigid pyranose backbone contributes to their defined helical secondary structure and remarkable chemical properties. Glucose- (glc-) and galactose- (gal-) PAS 10-mer structures are synthesized and investigated with molecular dynamics (MD) simulations and experimental measurements. Quantum mechanical DFT energy minimization calculations, as well as experimental observables including circular dichroism, (1)H,(13)C-HSQC, and (1)H,(1)H-NOESY 2D-NMR studies, validated the all-atom simulation models produced using a modified CHARMM force field. Water radial distribution functions show distinct differences in the glc- and gal-PAS systems that correlate well with observed differences in solubility between gal-PASs and glc-PASs. The computational analysis and MD simulations are in good agreement with experimental results, validating the proposed models as reliable representations of novel glc- and gal-PASs.

  18. All-Atom Internal Coordinate Mechanics (ICM) Force Field for Hexopyranoses and Glycoproteins

    PubMed Central

    2016-01-01

    We present an extension of the all-atom internal-coordinate force field, ICMFF, that allows for simulation of heterogeneous systems including hexopyranose saccharides and glycan chains in addition to proteins. A library of standard glycan geometries containing α- and β-anomers of the most common hexapyranoses, i.e., d-galactose, d-glucose, d-mannose, d-xylose, l-fucose, N-acetylglucosamine, N-acetylgalactosamine, sialic, and glucuronic acids, is created based on the analysis of the saccharide structures reported in the Cambridge Structural Database. The new force field parameters include molecular electrostatic potential-derived partial atomic charges and the torsional parameters derived from quantum mechanical data for a collection of minimal molecular fragments and related molecules. The ϕ/ψ torsional parameters for different types of glycosidic linkages are developed using model compounds containing the key atoms in the full carbohydrates, i.e., glycosidic-linked tetrahydropyran–cyclohexane dimers. Target data for parameter optimization include two-dimensional energy surfaces corresponding to the ϕ/ψ glycosidic dihedral angles in the disaccharide analogues, as determined by quantum mechanical MP2/6-31G** single-point energies on HF/6-31G** optimized structures. To achieve better agreement with the observed geometries of glycosidic linkages, the bond angles at the O-linkage atoms are added to the internal variable set and the corresponding bond bending energy term is parametrized using quantum mechanical data. The resulting force field is validated on glycan chains of 1–12 residues from a set of high-resolution X-ray glycoprotein structures based on heavy atom root-mean-square deviations of the lowest-energy glycan conformations generated by the biased probability Monte Carlo (BPMC) molecular mechanics simulations from the native structures. The appropriate BPMC distributions for monosaccharide–monosaccharide and protein–glycan linkages are derived

  19. Molecular dynamics in cytochrome c oxidase Moessbauer spectra deconvolution

    SciTech Connect

    Bossis, Fabrizio; Palese, Luigi L.

    2011-01-07

    Research highlights: {yields} Cytochrome c oxidase molecular dynamics serve to predict Moessbauer lineshape widths. {yields} Half height widths are used in modeling of Lorentzian doublets. {yields} Such spectral deconvolutions are useful in detecting the enzyme intermediates. -- Abstract: In this work low temperature molecular dynamics simulations of cytochrome c oxidase are used to predict an experimentally observable, namely Moessbauer spectra width. Predicted lineshapes are used to model Lorentzian doublets, with which published cytochrome c oxidase Moessbauer spectra were simulated. Molecular dynamics imposed constraints to spectral lineshapes permit to obtain useful information, like the presence of multiple chemical species in the binuclear center of cytochrome c oxidase. Moreover, a benchmark of quality for molecular dynamic simulations can be obtained. Despite the overwhelming importance of dynamics in electron-proton transfer systems, limited work has been devoted to unravel how much realistic are molecular dynamics simulations results. In this work, molecular dynamics based predictions are found to be in good agreement with published experimental spectra, showing that we can confidently rely on actual simulations. Molecular dynamics based deconvolution of Moessbauer spectra will lead to a renewed interest for application of this approach in bioenergetics.

  20. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born.

    PubMed

    Götz, Andreas W; Williamson, Mark J; Xu, Dong; Poole, Duncan; Le Grand, Scott; Walker, Ross C

    2012-05-01

    We present an implementation of generalized Born implicit solvent all-atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA enabled NVIDIA graphics processing units (GPUs). We discuss the algorithms that are used to exploit the processing power of the GPUs and show the performance that can be achieved in comparison to simulations on conventional CPU clusters. The implementation supports three different precision models in which the contributions to the forces are calculated in single precision floating point arithmetic but accumulated in double precision (SPDP), or everything is computed in single precision (SPSP) or double precision (DPDP). In addition to performance, we have focused on understanding the implications of the different precision models on the outcome of implicit solvent MD simulations. We show results for a range of tests including the accuracy of single point force evaluations and energy conservation as well as structural properties pertainining to protein dynamics. The numerical noise due to rounding errors within the SPSP precision model is sufficiently large to lead to an accumulation of errors which can result in unphysical trajectories for long time scale simulations. We recommend the use of the mixed-precision SPDP model since the numerical results obtained are comparable with those of the full double precision DPDP model and the reference double precision CPU implementation but at significantly reduced computational cost. Our implementation provides performance for GB simulations on a single desktop that is on par with, and in some cases exceeds, that of traditional supercomputers. PMID:22582031

  1. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born

    PubMed Central

    2012-01-01

    We present an implementation of generalized Born implicit solvent all-atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA enabled NVIDIA graphics processing units (GPUs). We discuss the algorithms that are used to exploit the processing power of the GPUs and show the performance that can be achieved in comparison to simulations on conventional CPU clusters. The implementation supports three different precision models in which the contributions to the forces are calculated in single precision floating point arithmetic but accumulated in double precision (SPDP), or everything is computed in single precision (SPSP) or double precision (DPDP). In addition to performance, we have focused on understanding the implications of the different precision models on the outcome of implicit solvent MD simulations. We show results for a range of tests including the accuracy of single point force evaluations and energy conservation as well as structural properties pertainining to protein dynamics. The numerical noise due to rounding errors within the SPSP precision model is sufficiently large to lead to an accumulation of errors which can result in unphysical trajectories for long time scale simulations. We recommend the use of the mixed-precision SPDP model since the numerical results obtained are comparable with those of the full double precision DPDP model and the reference double precision CPU implementation but at significantly reduced computational cost. Our implementation provides performance for GB simulations on a single desktop that is on par with, and in some cases exceeds, that of traditional supercomputers. PMID:22582031

  2. Force Field Development and Molecular Dynamics of [NiFe] Hydrogenase

    SciTech Connect

    Smith, Dayle MA; Xiong, Yijia; Straatsma, TP; Rosso, Kevin M.; Squier, Thomas C.

    2012-05-09

    Classical molecular force-field parameters describing the structure and motion of metal clusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model clusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexible in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of C{alpha} and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H{sub 2}-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.

  3. Molecular dynamics simulations reveal proton transfer pathways in cytochrome C-dependent nitric oxide reductase.

    PubMed

    Pisliakov, Andrei V; Hino, Tomoya; Shiro, Yoshitsugu; Sugita, Yuji

    2012-01-01

    Nitric oxide reductases (NORs) are membrane proteins that catalyze the reduction of nitric oxide (NO) to nitrous oxide (N(2)O), which is a critical step of the nitrate respiration process in denitrifying bacteria. Using the recently determined first crystal structure of the cytochrome c-dependent NOR (cNOR) [Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, et al. (2010) Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 330: 1666-70.], we performed extensive all-atom molecular dynamics (MD) simulations of cNOR within an explicit membrane/solvent environment to fully characterize water distribution and dynamics as well as hydrogen-bonded networks inside the protein, yielding the atomic details of functionally important proton channels. Simulations reveal two possible proton transfer pathways leading from the periplasm to the active site, while no pathways from the cytoplasmic side were found, consistently with the experimental observations that cNOR is not a proton pump. One of the pathways, which was newly identified in the MD simulation, is blocked in the crystal structure and requires small structural rearrangements to allow for water channel formation. That pathway is equivalent to the functional periplasmic cavity postulated in cbb(3) oxidase, which illustrates that the two enzymes share some elements of the proton transfer mechanisms and confirms a close evolutionary relation between NORs and C-type oxidases. Several mechanisms of the critical proton transfer steps near the catalytic center are proposed. PMID:22956904

  4. Combined molecular dynamics-spin dynamics simulations of bcc iron

    SciTech Connect

    Perera, Meewanage Dilina N; Yin, Junqi; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Brown, Greg

    2014-01-01

    Using a classical model that treats translational and spin degrees of freedom on an equal footing, we study phonon-magnon interactions in BCC iron with combined molecular and spin dynamics methods. The atomic interactions are modeled via an empirical many-body potential while spin dependent interactions are established through a Hamiltonian of the Heisenberg form with a distance dependent magnetic exchange interaction obtained from first principles electronic structure calculations. The temporal evolution of translational and spin degrees of freedom was determined by numerically solving the coupled equations of motion, using an algorithm based on the second order Suzuki-Trotter decomposition of the exponential operators. By calculating Fourier transforms of space- and time-displaced correlation functions, we demonstrate that the the presence of lattice vibrations leads to noticeable softening and damping of spin wave modes. As a result of the interplay between lattice and spin subsystems, we also observe additional longitudinal spin wave excitations, with frequencies which coincide with that of the longitudinal lattice vibrations.

  5. Accelerated Molecular Dynamics Simulation of Alkane Desorption

    NASA Astrophysics Data System (ADS)

    McLaughlin, Kelly; Fichthorn, Kristen

    2006-03-01

    Thermal desorption has been the focus of much surface science research. Studies of alkanes on graphite^1 and gold^2 have shown prefactors that are constant with alkane chain length but vary by over six orders of magnitude. Other studies on magnesium oxide^3 and gold^4 show a prefactor that increases with increasing chain length. We have developed an all-atom model to study alkane desorption from graphite. Transition state theory is used to obtain rate constants from the simulation. Accelerated MD is used to extend the desorption simulation to experimentally relevant temperatures. Our results show a prefactor that increases with increasing chain length. We predict that it will become constant as internal conformational changes occur significantly. We examine the effect of desorption environment through varying the alkane surface coverage. 1. K.R. Paserba and A.J. Gellman, J. Chem. Phys. 115, 6737 (2001). 2. S.M. Wetterer et al., J. Phys. Chem. 102, 9266 (1998). 3. S.L. Tait et al., J. Chem. Phys. 122, 164707 (2005). 4. K.A. Fichthorn and R.A. Miron, Phys. Rev. Lett. 89, 196103 (2002).

  6. An improved version of the Green's function molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Kong, Ling Ti; Denniston, Colin; Müser, Martin H.

    2011-02-01

    ://www.mcs.anl.gov/research/projects/mpi/), FFT ( http://www.fftw.org/) Catalogue identifier of previous version: AECW_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 1004 Does the new version supersede the previous version?: Yes Nature of problem: Green's function molecular dynamics (GFMD) is a coarse-graining method that enables one to investigate the full elastic response of an interface between a semi-infinite solid and a contact while taking only the surface atoms in the solid into consideration. The effect of long-range elastic deformations on the surface atoms from the semi-infinite solid is replaced by effective elastic interactions, thus reducing the problem from three dimensions to two dimensions without compromising the physical essence of the problem. Solution method: See "Nature of problem". Reasons for new version: The basic theory underlying the new version is essentially the same as the previous one, while the special treatment to reduce the finite size effect on effective elastic coefficients at the Γ-point is now realized in a physically meaningful manner. Finite size effects are an important issue in molecular dynamics simulations, particularly for GFMD, they result in a violation of the acoustic sum rule (ASR) for the effective elastic coefficients measured at the Γ-point ( Φ). In the previous implementation, the effective elastic coefficients measured at the Γ-point were altered by setting their eigenvalues corresponding to the acoustic modes to zero. This scheme was found to work well for simple Bravais lattices as long as only atoms within the last layer were treated as Green's function atoms. However, it failed to function as expected in all other cases. We therefore adopt a new algorithm to enforce the ASR for Φ (Kong, 2010 [3]) which is implemented in this revision. Summary of revisions: Assuming the lattice under study consists of surface unit cells with n basis atoms labeled by k=1,2,…,n. When all atoms in the lattice are moved by the same amount, i

  7. Molecular dynamics simulations and neutron reflectivity as an effective approach to characterize biological membranes and related macromolecular assemblies.

    PubMed

    Darré, L; Iglesias-Fernandez, J; Kohlmeyer, A; Wacklin, H; Domene, C

    2015-10-13

    In combination with other spectroscopy, microscopy, and scattering techniques, neutron reflectivity is a powerful tool to characterize biological systems. Specular reflection of neutrons provides structural information at the nanometer and subnanometer length scales, probing the composition and organization of layered materials. Currently, analysis of neutron reflectivity data involves several simplifying assumptions about the structure of the sample under study, affecting the extraction and interpretation of information from the experimental data. Computer simulations can be used as a source of structural and dynamic data with atomic resolution. We present a novel tool to compare the structural properties determined by neutron reflectivity experiments with those obtained from molecular simulations. This tool allows benchmarking the ability of molecular dynamics simulations to reproduce experimental data, but it also promotes unbiased interpretation of experimentally determined quantities. Two application examples are presented to illustrate the capabilities of the new tool. The first example is the generation of reflectivity profiles for a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer from molecular dynamics simulations using data from both atomistic and coarse-grained models, and comparison with experimentally measured data. The second example is the calculation of lipid volume changes with temperature and composition from all atoms simulations of single and mixed 1,2-di-palmitoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. PMID:26574275

  8. Molecular dynamics of biaxial nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1996-01-01

    We devise a constraint algorithm that makes the angular velocity of the director of a liquid crystal a constant of motion. When the angular velocity is set equal to zero, a director based coordinate system becomes an inertial frame. This is a great advantage because most thermodynamic properties and time correlation functions of a liquid crystal are best expressed relative to a director based coordinate system. One also prevents the director reorientation from interfering with the tails of the time correlation functions. When the angular velocity is forced to be zero the constraints do not do any work on the system. This makes it possible to prove that ensemble averages of phase functions and time correlation functions are unaffected by the director constraint torques. The constraint algorithm also facilitates generalization of nonequilibrium molecular dynamics algorithms to liquid crystal phases. In order to test the algorithm numerically we have simulated a biaxial nematic phase of a variant of the Gay-Berne fluid [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)]. The director constraint algorithm works very well. We have calculated the velocity autocorrelation functions and the self diffusion coefficients. In a biaxial nematic liquid crystal there are three independent components of the self-diffusion tensor. They have been found to be finite and different thus proving that we really simulate a liquid rather than a solid and that the symmetry is biaxial. Simulation of biaxial liquid crystals requires fairly large systems. We have therefore developed an algorithm that we run on a parallel computer instead of an ordinary work station.

  9. Las Palmeras Molecular Dynamics: A flexible and modular molecular dynamics code

    NASA Astrophysics Data System (ADS)

    Davis, Sergio; Loyola, Claudia; González, Felipe; Peralta, Joaquín

    2010-12-01

    Las Palmeras Molecular Dynamics (LPMD) is a highly modular and extensible molecular dynamics (MD) code using interatomic potential functions. LPMD is able to perform equilibrium MD simulations of bulk crystalline solids, amorphous solids and liquids, as well as non-equilibrium MD (NEMD) simulations such as shock wave propagation, projectile impacts, cluster collisions, shearing, deformation under load, heat conduction, heterogeneous melting, among others, which involve unusual MD features like non-moving atoms and walls, unstoppable atoms with constant-velocity, and external forces like electric fields. LPMD is written in C++ as a compromise between efficiency and clarity of design, and its architecture is based on separate components or plug-ins, implemented as modules which are loaded on demand at runtime. The advantage of this architecture is the ability to completely link together the desired components involved in the simulation in different ways at runtime, using a user-friendly control file language which describes the simulation work-flow. As an added bonus, the plug-in API (Application Programming Interface) makes it possible to use the LPMD components to analyze data coming from other simulation packages, convert between input file formats, apply different transformations to saved MD atomic trajectories, and visualize dynamical processes either in real-time or as a post-processing step. Individual components, such as a new potential function, a new integrator, a new file format, new properties to calculate, new real-time visualizers, and even a new algorithm for handling neighbor lists can be easily coded, compiled and tested within LPMD by virtue of its object-oriented API, without the need to modify the rest of the code. LPMD includes already several pair potential functions such as Lennard-Jones, Morse, Buckingham, MCY and the harmonic potential, as well as embedded-atom model (EAM) functions such as the Sutton-Chen and Gupta potentials. Integrators to

  10. Frontiers in molecular dynamics simulations of DNA.

    PubMed

    Pérez, Alberto; Luque, F Javier; Orozco, Modesto

    2012-02-21

    It has been known for decades that DNA is extremely flexible and polymorphic, but our knowledge of its accessible conformational space remains limited. Structural data, primarily from X-ray diffraction studies, is sparse in comparison to the manifold configurations possible, and direct experimental examinations of DNA's flexibility still suffer from many limitations. In the face of these shortcomings, molecular dynamics (MD) is now an essential tool in the study of DNA. It affords detailed structural and dynamical insights, which explains its recent transition from a small number of highly specialized laboratories to a large variety of groups dealing with challenging biological problems. MD is now making an irreversible journey to the mainstream of research in biology, with the attendant opportunities and challenges. But given the speed with which MD studies of DNA have spread, the roots remain somewhat shallow: in many cases, there is a lack of deep knowledge about the foundations, strengths, and limits of the technique. In this Account, we discuss how MD has become the most important source of structural and flexibility data on DNA, focusing on advances since 2007 of atomistic MD in the description of DNA under near-physiological conditions and highlighting the possibilities and shortcomings of the technique. The evolution in the field over the past four years is a prelude to the ongoing revolution. The technique has gained in robustness and predictive power, which when coupled with the spectacular improvements in software and hardware has enabled the tackling of systems of increasing complexity. Simulation times of microseconds have now been achieved, with even longer times when specialized hardware is used. As a result, we have seen the first real-time simulation of large conformational transitions, including folding and unfolding of short DNA duplexes. Noteworthy advances have also been made in the study of DNA-ligand interactions, and we predict that a global

  11. CHARACTERIZING COUPLED CHARGE TRANSPORT WITH MULTISCALE MOLECULAR DYNAMICS

    SciTech Connect

    Swanson, Jessica

    2011-08-31

    This is the final progress report for Award DE-SC0004920, entitled 'Characterizing coupled charge transport with multi scale molecular dynamics'. The technical abstract will be provided in the uploaded report.

  12. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors

    PubMed Central

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane–solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane–solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor. PMID

  13. Masses, luminosities and dynamics of galactic molecular clouds

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; Rivolo, A. R.; Mooney, T. J.; Barrett, J. W.; Sage, L. J.

    1987-01-01

    Star formation in galaxies takes place in molecular clouds and the Milky Way is the only galaxy in which it is possible to resolve and study the physical properties and star formation activity of individual clouds. The masses, luminosities, dynamics, and distribution of molecular clouds, primarily giant molecular clouds in the Milky Way are described and analyzed. The observational data sets are the Massachusetts-Stony Brook CO Galactic Plane Survey and the IRAS far IR images. The molecular mass and infrared luminosities of glactic clouds are then compared with the molecular mass and infrared luminosities of external galaxies.

  14. Dynamical analysis of highly excited molecular spectra

    SciTech Connect

    Kellman, M.E.

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  15. HTMD: High-Throughput Molecular Dynamics for Molecular Discovery.

    PubMed

    Doerr, S; Harvey, M J; Noé, Frank; De Fabritiis, G

    2016-04-12

    Recent advances in molecular simulations have allowed scientists to investigate slower biological processes than ever before. Together with these advances came an explosion of data that has transformed a traditionally computing-bound into a data-bound problem. Here, we present HTMD, a programmable, extensible platform written in Python that aims to solve the data generation and analysis problem as well as increase reproducibility by providing a complete workspace for simulation-based discovery. So far, HTMD includes system building for CHARMM and AMBER force fields, projection methods, clustering, molecular simulation production, adaptive sampling, an Amazon cloud interface, Markov state models, and visualization. As a result, a single, short HTMD script can lead from a PDB structure to useful quantities such as relaxation time scales, equilibrium populations, metastable conformations, and kinetic rates. In this paper, we focus on the adaptive sampling and Markov state modeling features. PMID:26949976

  16. Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening.

    PubMed

    Takemoto, Mizuki; Kato, Hideaki E; Koyama, Michio; Ito, Jumpei; Kamiya, Motoshi; Hayashi, Shigehiko; Maturana, Andrés D; Deisseroth, Karl; Ishitani, Ryuichiro; Nureki, Osamu

    2015-01-01

    Channelrhodopsin (ChR) is a light-gated cation channel that responds to blue light. Since ChR can be readily expressed in specific neurons to precisely control their activities by light, it has become a powerful tool in neuroscience. Although the recently solved crystal structure of a chimeric ChR, C1C2, provided the structural basis for ChR, our understanding of the molecular mechanism of ChR still remains limited. Here we performed electrophysiological analyses and all-atom molecular dynamics (MD) simulations, to investigate the importance of the intracellular and central constrictions of the ion conducting pore observed in the crystal structure of C1C2. Our electrophysiological analysis revealed that two glutamate residues, Glu122 and Glu129, in the intracellular and central constrictions, respectively, should be deprotonated in the photocycle. The simulation results suggested that the deprotonation of Glu129 in the central constriction leads to ion leakage in the ground state, and implied that the protonation of Glu129 is important for preventing ion leakage in the ground state. Moreover, we modeled the 13-cis retinal bound; i.e., activated C1C2, and performed MD simulations to investigate the conformational changes in the early stage of the photocycle. Our simulations suggested that retinal photoisomerization induces the conformational change toward channel opening, including the movements of TM6, TM7 and TM2. These insights into the dynamics of the ground states and the early photocycle stages enhance our understanding of the channel function of ChR.

  17. Coarse-graining to the meso and continuum scales with molecular-dynamics-like models

    NASA Astrophysics Data System (ADS)

    Plimpton, Steve

    Many engineering-scale problems that industry or the national labs try to address with particle-based simulations occur at length and time scales well beyond the most optimistic hopes of traditional coarse-graining methods for molecular dynamics (MD), which typically start at the atomic scale and build upward. However classical MD can be viewed as an engine for simulating particles at literally any length or time scale, depending on the models used for individual particles and their interactions. To illustrate I'll highlight several coarse-grained (CG) materials models, some of which are likely familiar to molecular-scale modelers, but others probably not. These include models for water droplet freezing on surfaces, dissipative particle dynamics (DPD) models of explosives where particles have internal state, CG models of nano or colloidal particles in solution, models for aspherical particles, Peridynamics models for fracture, and models of granular materials at the scale of industrial processing. All of these can be implemented as MD-style models for either soft or hard materials; in fact they are all part of our LAMMPS MD package, added either by our group or contributed by collaborators. Unlike most all-atom MD simulations, CG simulations at these scales often involve highly non-uniform particle densities. So I'll also discuss a load-balancing method we've implemented for these kinds of models, which can improve parallel efficiencies. From the physics point-of-view, these models may be viewed as non-traditional or ad hoc. But because they are MD-style simulations, there's an opportunity for physicists to add statistical mechanics rigor to individual models. Or, in keeping with a theme of this session, to devise methods that more accurately bridge models from one scale to the next.

  18. Elucidation of molecular dynamics of invasive species of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated rice fields are aggressively invaded by weedy rice in the U.S. and worldwide. Weedy rice results in loss of yield and seed contamination. The molecular dynamics of the evolutionary adaptive traits of weedy rice are not fully understood. To understand the molecular basis and identify the i...

  19. Attosecond molecular dynamics: fact or fiction?

    NASA Astrophysics Data System (ADS)

    Lépine, Franck; Ivanov, Misha Y.; Vrakking, Marc J. J.

    2014-03-01

    The emerging application of attosecond techniques to molecular systems allows the role of electronic coherence in the control of chemical reactions to be investigated. Prompt ionization of molecules by an attosecond pulse may induce charge migration across a molecular structure on attosecond to few-femtosecond timescales, thereby possibly determining the subsequent relaxation pathways that a molecule may take. We discuss how proposals for this 'charge-directed reactivity' fit within the current understanding of quantum control and review the current state of the art of attosecond molecular science. Specifically, we review the role of electronic coherence and coupling of the electronic and nuclear degrees of freedom in high-harmonic spectroscopy and in the first attosecond pump-probe experiments on molecular systems.

  20. Molecular dynamics simulation of interfacial adhesion

    SciTech Connect

    Yarovsky, I.; Chaffee, A.L.

    1996-12-31

    Chromium salts are often used in the pretreatment stages of steel painting processes in order to improve adhesion at the metal oxide/primer interface. Although well established empirically, the chemical basis for the improved adhesion conferred by chromia is not well understood. A molecular level understanding of this behaviour should provide a foundation for the design of materials offering improved adhesion control. Molecular modelling of adhesion involves simulation and analysis of molecular behaviour at the interface between two interacting phases. The present study concerns behaviour at the boundary between the metal coated steel surface (with or without chromium pretreatment) and an organic primer based on a solid epoxide resin produced from bisphenol A and epichlorohydrin. An epoxy resin oligomer of molecular weight 3750 was used as the model for the primer.

  1. Molecular dynamics generation of nonarbitrary membrane models reveals lipid orientational correlations.

    PubMed Central

    Takaoka, Y; Pasenkiewicz-Gierula, M; Miyagawa, H; Kitamura, K; Tamura, Y; Kusumi, A

    2000-01-01

    This report addresses the following problems associated with the generation of computer models of phospholipid bilayer membranes using molecular dynamics simulations: arbitrary initial structures and short equilibration periods, an Ewald-induced strong coupling of phospholipids, uncertainty regarding which value should be used for surface tension to alleviate the problem of the small size of the membrane, and simultaneous realization of both order parameters and the surface area. We generated a computer model of the liquid-crystalline L-alpha-dimyristoylphosphatidylcholine (DMPC) bilayer, starting from a configuration based on a crystal structure (rather than from an arbitrary structure). To break the crystalline structure, a 20-ps high-temperature pulse of 510 K (but not 450 or 480 K) was effective. The system finally obtained is an all-atom model, with Ewald summation to evaluate Coulombic interactions and a constant surface tension of 35 dynes/cm/water-membrane interface, equilibrated for 12 ns (over 50 ns total calculation time), which reproduces all of the experimentally observed parameters examined in this work. Furthermore, this model shows the presence of significant orientational correlations between neighboring alkyl chains and between shoulder vectors (which show the orientations of the lipids about their long axes) of neighboring DMPCs. PMID:11106617

  2. Electrostatic Unfolding and Interactions of Albumin Driven by pH Changes: A Molecular Dynamics Study

    PubMed Central

    2015-01-01

    A better understanding of protein aggregation is bound to translate into critical advances in several areas, including the treatment of misfolded protein disorders and the development of self-assembling biomaterials for novel commercial applications. Because of its ubiquity and clinical potential, albumin is one of the best-characterized models in protein aggregation research; but its properties in different conditions are not completely understood. Here, we carried out all-atom molecular dynamics simulations of albumin to understand how electrostatics can affect the conformation of a single albumin molecule just prior to self-assembly. We then analyzed the tertiary structure and solvent accessible surface area of albumin after electrostatically triggered partial denaturation. The data obtained from these single protein simulations allowed us to investigate the effect of electrostatic interactions between two proteins. The results of these simulations suggested that hydrophobic attractions and counterion binding may be strong enough to effectively overcome the electrostatic repulsions between the highly charged monomers. This work contributes to our general understanding of protein aggregation mechanisms, the importance of explicit consideration of free ions in protein solutions, provides critical new insights about the equilibrium conformation of albumin in its partially denatured state at low pH, and may spur significant progress in our efforts to develop biocompatible protein hydrogels driven by electrostatic partial denaturation. PMID:24393011

  3. On dioxygen permeation through a dehydrogenase-pyrroloquinoline quinone complex. A molecular-dynamics investigation.

    PubMed

    Pietra, Francesco

    2014-02-01

    In this work, an all atom model of the quinoprotein dehydrogenase PqqC in complex with the PQQ (=4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylic acid) cofactor and dioxygen (O2 ), solvated with TIP3 water in periodic boxes, was subjected to random-acceleration molecular dynamics (RAMD). It was found that O2 leaves the active binding pocket, in front of PQQ, to get to the solvent, as easily as with a variety of other O2 -activating enzymes, O2 carriers, and gas-sensing proteins. The shortest pathway, orthogonal to the center of the mean plane of PQQ, was largely preferred by O2 over pathways slightly deviating from this line. These observations challenge the interpretation of an impermeable active binding pocket of PqqC-PQQ, as drawn from both X-ray diffraction data of the crystal at low temperature and physiological experimentation.

  4. Estimation of ligand efficacies of metabotropic glutamate receptors from conformational forces obtained from molecular dynamics simulations.

    PubMed

    Lakkaraju, Sirish Kaushik; Xue, Fengtian; Faden, Alan I; MacKerell, Alexander D

    2013-06-24

    Group 1 metabotropic glutamate receptors (mGluR) are G-protein coupled receptors with a large bilobate extracellular ligand binding region (LBR) that resembles a Venus fly trap. Closing of this LBR in the presence of a ligand is associated with the activation of the receptor. From conformational sampling of the LBR-ligand complexes using all-atom molecular dynamics (MD) simulations, we characterized the conformational minima related to the hinge like motion associated with the LBR closing/opening in the presence of known agonists and antagonists. By applying a harmonic restraint on the LBR, we also determined the conformational forces generated by the different ligands. The change in the location of the minima and the conformational forces were used to quantify the efficacies of the ligands. This analysis shows that efficacies can be estimated from the forces of a single conformation of the receptor, indicating the potential of MD simulations as an efficient and useful technique to quantify efficacies, thereby facilitating the rational design of mGluR agonists and antagonists.

  5. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald.

    PubMed

    Salomon-Ferrer, Romelia; Götz, Andreas W; Poole, Duncan; Le Grand, Scott; Walker, Ross C

    2013-09-10

    We present an implementation of explicit solvent all atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA-enabled GPUs. First released publicly in April 2010 as part of version 11 of the AMBER MD package and further improved and optimized over the last two years, this implementation supports the three most widely used statistical mechanical ensembles (NVE, NVT, and NPT), uses particle mesh Ewald (PME) for the long-range electrostatics, and runs entirely on CUDA-enabled NVIDIA graphics processing units (GPUs), providing results that are statistically indistinguishable from the traditional CPU version of the software and with performance that exceeds that achievable by the CPU version of AMBER software running on all conventional CPU-based clusters and supercomputers. We briefly discuss three different precision models developed specifically for this work (SPDP, SPFP, and DPDP) and highlight the technical details of the approach as it extends beyond previously reported work [Götz et al., J. Chem. Theory Comput. 2012, DOI: 10.1021/ct200909j; Le Grand et al., Comp. Phys. Comm. 2013, DOI: 10.1016/j.cpc.2012.09.022].We highlight the substantial improvements in performance that are seen over traditional CPU-only machines and provide validation of our implementation and precision models. We also provide evidence supporting our decision to deprecate the previously described fully single precision (SPSP) model from the latest release of the AMBER software package. PMID:26592383

  6. Electrostatic unfolding and interactions of albumin driven by pH changes: a molecular dynamics study.

    PubMed

    Baler, K; Martin, O A; Carignano, M A; Ameer, G A; Vila, J A; Szleifer, I

    2014-01-30

    A better understanding of protein aggregation is bound to translate into critical advances in several areas, including the treatment of misfolded protein disorders and the development of self-assembling biomaterials for novel commercial applications. Because of its ubiquity and clinical potential, albumin is one of the best-characterized models in protein aggregation research; but its properties in different conditions are not completely understood. Here, we carried out all-atom molecular dynamics simulations of albumin to understand how electrostatics can affect the conformation of a single albumin molecule just prior to self-assembly. We then analyzed the tertiary structure and solvent accessible surface area of albumin after electrostatically triggered partial denaturation. The data obtained from these single protein simulations allowed us to investigate the effect of electrostatic interactions between two proteins. The results of these simulations suggested that hydrophobic attractions and counterion binding may be strong enough to effectively overcome the electrostatic repulsions between the highly charged monomers. This work contributes to our general understanding of protein aggregation mechanisms, the importance of explicit consideration of free ions in protein solutions, provides critical new insights about the equilibrium conformation of albumin in its partially denatured state at low pH, and may spur significant progress in our efforts to develop biocompatible protein hydrogels driven by electrostatic partial denaturation. PMID:24393011

  7. Molecular dynamics of paclitaxel encapsulated by salicylic acid-grafted chitosan oligosaccharide aggregates.

    PubMed

    Wang, Xiao-Ying; Zhang, Ling; Wei, Xiao-Hong; Wang, Qi

    2013-02-01

    Chitosan oligosaccharide (COS) derivatives have attracted significant interest in drug delivery systems because of their well-known low toxicity, excellent biocompatibility, and biodegradability. Paclitaxel-loaded nanoparticles based on salicylic acid-grafted chitosan oligosaccharide (COS/SA) were synthesized and characterized. Then, in order to understand the mechanism of the actions of the paclitaxel (PTX) encapsulated by COS/SA, all-atom molecular dynamics simulations were performed to analyze the aggregation of COS/SA molecules. The van der Waals and hydrophobic interactions are the major driving forces for the drug encapsulation process. Electrostatic and hydrogen-bonding interactions also play helpful roles in the COS/SA aggregation. Analyses of the radial distribution function and solvent accessible surface area indicate that the COS/SA nanoparticles are highly hydrosoluble and that the nanoparticles can significantly enhance the aqueous solubility of a hydrophobic drug. Different drug loading systems are also investigated in this work, and the best theoretical drug loading is found to be 10% (w/w). The present work provides insights into the mechanism of the atomic structures of drug-loaded polymeric nanoparticles and presents new perspective for the design of drug delivery systems with desirable properties.

  8. Molecular dynamics simulations of shock waves in hydroxyl-terminated polybutadiene melts: mechanical and structural responses.

    PubMed

    Fröhlich, Markus G; Sewell, Thomas D; Thompson, Donald L

    2014-01-14

    The mechanical and structural responses of hydroxyl-terminated cis-1,4-polybutadiene melts to shock waves were investigated by means of all-atom non-reactive molecular dynamics simulations. The simulations were performed using the OPLS-AA force field but with the standard 12-6 Lennard-Jones potential replaced by the Buckingham exponential-6 potential to better represent the interactions at high compression. Monodisperse systems containing 64, 128, and 256 backbone carbon atoms were studied. Supported shock waves were generated by impacting the samples onto stationary pistons at impact velocities of 1.0, 1.5, 2.0, and 2.5 km s(-1), yielding shock pressures between approximately 2.8 GPa and 12.5 GPa. Single-molecule structural properties (squared radii of gyration, asphericity parameters, and orientational order parameters) and mechanical properties (density, shock pressure, shock temperature, and shear stress) were analyzed using a geometric binning scheme to obtain spatio-temporal resolution in the reference frame centered on the shock front. Our results indicate that while shear stress behind the shock front is relieved on a ∼0.5 ps time scale, a shock-induced transition to a glass-like state occurs with a concomitant increase of structural relaxation times by several orders of magnitude. PMID:24437906

  9. Molecular dynamics study of the shock response in hydroxyl-terminated polybutadiene melts

    NASA Astrophysics Data System (ADS)

    Froehlich, Markus G.; Sewell, Thomas D.; Thompson, Donald L.

    2013-03-01

    All-atom molecular dynamics (MD) simulations using the non-reactive OPLS-AA force field were performed to study the detailed structural, mechanical, and spectroscopic response of hydroxyl-terminated polybutadiene (HTPB) melts subjected to supported shock waves. A combination of Monte Carlo and MD techniques was used to generate thoroughly equilibrated initial configurations, for monodisperse systems with chain lengths ranging from 64 to 256 backbone carbons per chain. Properties characterizing the size, shape and orientation of single chains, as well as the vibrational density of states, were evaluated prior to and following shock passage for four impact velocities between 1.0 and 2.5 km/s. The structural properties and global scaling behaviors of the unshocked systems are in excellent agreement with literature data. Results for the shocked systems, obtained using a geometric binning approach that provides spatio-temporal resolution in the reference frame centered on the shock front, indicate a transition to a glass-like state with a concomitant increase by several orders of magnitude of structural relaxation times in the shocked material. Supported by the Defense Threat Reduction Agency, grant number HDTRA1-10-1-0078.

  10. Molecular dynamics simulations of shock waves in hydroxyl-terminated polybutadiene melts: Mechanical and structural responses

    NASA Astrophysics Data System (ADS)

    Fröhlich, Markus G.; Sewell, Thomas D.; Thompson, Donald L.

    2014-01-01

    The mechanical and structural responses of hydroxyl-terminated cis-1,4-polybutadiene melts to shock waves were investigated by means of all-atom non-reactive molecular dynamics simulations. The simulations were performed using the OPLS-AA force field but with the standard 12-6 Lennard-Jones potential replaced by the Buckingham exponential-6 potential to better represent the interactions at high compression. Monodisperse systems containing 64, 128, and 256 backbone carbon atoms were studied. Supported shock waves were generated by impacting the samples onto stationary pistons at impact velocities of 1.0, 1.5, 2.0, and 2.5 km s-1, yielding shock pressures between approximately 2.8 GPa and 12.5 GPa. Single-molecule structural properties (squared radii of gyration, asphericity parameters, and orientational order parameters) and mechanical properties (density, shock pressure, shock temperature, and shear stress) were analyzed using a geometric binning scheme to obtain spatio-temporal resolution in the reference frame centered on the shock front. Our results indicate that while shear stress behind the shock front is relieved on a ˜0.5 ps time scale, a shock-induced transition to a glass-like state occurs with a concomitant increase of structural relaxation times by several orders of magnitude.

  11. Molecular dynamics simulations of shock waves in hydroxyl-terminated polybutadiene melts: Mechanical and structural responses

    SciTech Connect

    Fröhlich, Markus G. E-mail: ThompsonDon@missouri.edu; Sewell, Thomas D. Thompson, Donald L. E-mail: ThompsonDon@missouri.edu

    2014-01-14

    The mechanical and structural responses of hydroxyl-terminated cis-1,4-polybutadiene melts to shock waves were investigated by means of all-atom non-reactive molecular dynamics simulations. The simulations were performed using the OPLS-AA force field but with the standard 12-6 Lennard-Jones potential replaced by the Buckingham exponential-6 potential to better represent the interactions at high compression. Monodisperse systems containing 64, 128, and 256 backbone carbon atoms were studied. Supported shock waves were generated by impacting the samples onto stationary pistons at impact velocities of 1.0, 1.5, 2.0, and 2.5 km s{sup −1}, yielding shock pressures between approximately 2.8 GPa and 12.5 GPa. Single-molecule structural properties (squared radii of gyration, asphericity parameters, and orientational order parameters) and mechanical properties (density, shock pressure, shock temperature, and shear stress) were analyzed using a geometric binning scheme to obtain spatio-temporal resolution in the reference frame centered on the shock front. Our results indicate that while shear stress behind the shock front is relieved on a ∼0.5 ps time scale, a shock-induced transition to a glass-like state occurs with a concomitant increase of structural relaxation times by several orders of magnitude.

  12. Molecular dynamics simulation of self-assembly of n-decyltrimethylammonium bromide micelles.

    PubMed

    Jorge, Miguel

    2008-06-01

    In this paper, a molecular dynamics simulation of surfactant self-assembly using realistic atomistic models is presented. The simulations are long enough to enable the observation of several processes leading to equilibrium, such as monomer addition and detachment, micelle dissolution, and micelle fusion. The self-assembly of DeTAB surfactants takes place in three stages: fast aggregation of monomers to form small disordered oligomers; ripening process by which larger aggregates grow at the expense of smaller ones; slower stage involving collisions between large micelles. The first two stages were described well by a simple kinetic model with a size-independent rate constant estimated from the self-diffusion coefficient and collision radius of an isolated monomer. The average cluster size, area per headgroup, degree of counterion dissociation, and critical micelle concentration estimated from the simulation are in reasonable agreement with experimental values. An all-atom and united-atom surfactant model were compared, and the results were seen to be almost independent of the choice of model. DeTAB micelles are spheroidal, with a hydrophobic core composed of tail atoms surrounded by a hydrophilic corona of head atoms. A Stern layer composed of bromide counterions was also identified. Water molecules solvate the counterions and the head atoms, penetrating into the micelle up to the location of the atom connecting the head to the aliphatic tail, in agreement with recent experimental observations.

  13. The role of phosphorylation in dentin phosphoprotein peptide absorption to hydroxyapatite surfaces: a molecular dynamics study

    PubMed Central

    Villarreal-Ramirez, Eduardo; Garduño-Juarez, Ramon; Gericke, Arne; Boskey, Adele

    2015-01-01

    Dentin phosphoprotein (DPP) is a protein expressed mainly in dentin and to a lesser extent in bone. DPP has a disordered structure, rich in glutamic acid, aspartic acid and phosphorylated serine/threonine residues. It has a high capacity for binding to calcium ions and to hydroxyapatite (HA) crystal surfaces. We used molecular dynamics (MD) simulations as a method for virtually screening interactions between DPP motifs and HA. The goal was to determine which motifs are absorbed to HA surfaces. For these simulations, we considered five peptides from the human DPP sequence. All-atom MD simulations were performed using GROMACS, the peptides were oriented parallel to the {100} HA crystal surface, the distance between the HA and the peptide was 3 nm. The system was simulated for 20 ns. Preliminary results show that for the unphosphorylated peptides, the acidic amino acids present an electrostatic attraction where their side chains are oriented towards HA. This attraction, however, is slow to facilitate bulk transport to the crystal surface. On the other hand, the phosphorylated (PP) peptides are rapidly absorbed on the surface of the HA with their centers of mass closer to the HA surface. More importantly, the root mean square fluctuation (RMSF) indicates that the average structures of the phosphorylated peptides are very inflexible and elongate, while that of the unphosphorylated peptides are flexible. Radius of gyration (Rg) analysis showed the compactness of un-phosphorylated peptides is lower than phosphorylated peptides. Phosphorylation of the DPP peptides is necessary for binding to HA surfaces. PMID:25158198

  14. Microsecond molecular dynamics simulation of guanidinium chloride induced unfolding of ubiquitin.

    PubMed

    Mandal, Manoj; Mukhopadhyay, Chaitali

    2014-10-21

    An all atom molecular dynamics simulation was used to explore the atomic detail mechanism of guanidinium induced unfolding of the protein ubiquitin. Ubiquitin unfolds through pre-unfolded (intermediate) states, i.e. guanidinium induced unfolding of ubiquitin appears to be a multi-step process, and loss of hydrophobic contacts of C-terminal residues is crucial for ubiquitin unfolding. Free-energy landscapes show that barrier separation between folded and unfolded basins is ∼5.0 kcal mol(-1), and both the basins are of comparable energy. It was observed that guanidinium ions interact directly with ubiquitin. Favorable electrostatic interaction is the main driving force for such accumulation of guanidinium ions near protein, but van der Waals energy also contributes. RDF plots show that accumulation of guanidinium ions near specific residues is the main cause for destabilization of intra-residue interactions crucial to maintain the three-dimensional fold of the protein. One salt-bridge interaction between Lys11 and Glu34 appears to be important to maintain the crystal structure of ubiquitin and this salt-bridge can map the unfolding process of ubiquitin. PMID:25197836

  15. A Generic Force Field for Protein Coarse-Grained Molecular Dynamics Simulation

    PubMed Central

    Gu, Junfeng; Bai, Fang; Li, Honglin; Wang, Xicheng

    2012-01-01

    Coarse-grained (CG) force fields have become promising tools for studies of protein behavior, but the balance of speed and accuracy is still a challenge in the research of protein coarse graining methodology. In this work, 20 CG beads have been designed based on the structures of amino acid residues, with which an amino acid can be represented by one or two beads, and a CG solvent model with five water molecules was adopted to ensure the consistence with the protein CG beads. The internal interactions in protein were classified according to the types of the interacting CG beads, and adequate potential functions were chosen and systematically parameterized to fit the energy distributions. The proposed CG force field has been tested on eight proteins, and each protein was simulated for 1000 ns. Even without any extra structure knowledge of the simulated proteins, the Cα root mean square deviations (RMSDs) with respect to their experimental structures are close to those of relatively short time all atom molecular dynamics simulations. However, our coarse grained force field will require further refinement to improve agreement with and persistence of native-like structures. In addition, the root mean square fluctuations (RMSFs) relative to the average structures derived from the simulations show that the conformational fluctuations of the proteins can be sampled. PMID:23203075

  16. Molecular dynamics simulation on adsorption of pyrene-polyethylene onto ultrathin single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Cai, Lu; Lv, Wenzhen; Zhu, Hong; Xu, Qun

    2016-07-01

    The mechanism of the adsorption of pyrene-polyethylene (Py-PE) onto ultrathin single-walled carbon nanotube (SWNT) was studied by using all-atom molecular dynamics (MD) simulations. We found that solvent polarity and pyrene group are two critical factors in the Py-PE decoration on ultrathin SWNT. Combined MD simulations with free energy calculations, our results indicate that larger solvent polarity can decrease the contribution of conformation entropy, but contributes little to the interaction energy, moreover, larger SWNT diameter can decrease the contribution of conformation entropy but lead to the increasing of the interaction energy. In polar organic solvent (N, N-Dimethylacetamide), the pyrene group plays a key role in the adsorption of Py-PE onto ultrathin SWNT, not only facilitates the spontaneous adsorption of Py-PE onto ultrathin SWNT, but also helps to form compact structure between themselves in the final adsorption states. While in aqueous solution, pyrene group no longer works as an anchor, but still affects a lot to the final adsorption conformation. Our present work provides detailed theoretical clue to understand the noncovalent interaction between aromatic segment appended polymer and ultrathin SWNT, and helps to explore the potential application of ultrathin SWNT in the fields of hybrid material, biomedical and electronic materials.

  17. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald.

    PubMed

    Salomon-Ferrer, Romelia; Götz, Andreas W; Poole, Duncan; Le Grand, Scott; Walker, Ross C

    2013-09-10

    We present an implementation of explicit solvent all atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA-enabled GPUs. First released publicly in April 2010 as part of version 11 of the AMBER MD package and further improved and optimized over the last two years, this implementation supports the three most widely used statistical mechanical ensembles (NVE, NVT, and NPT), uses particle mesh Ewald (PME) for the long-range electrostatics, and runs entirely on CUDA-enabled NVIDIA graphics processing units (GPUs), providing results that are statistically indistinguishable from the traditional CPU version of the software and with performance that exceeds that achievable by the CPU version of AMBER software running on all conventional CPU-based clusters and supercomputers. We briefly discuss three different precision models developed specifically for this work (SPDP, SPFP, and DPDP) and highlight the technical details of the approach as it extends beyond previously reported work [Götz et al., J. Chem. Theory Comput. 2012, DOI: 10.1021/ct200909j; Le Grand et al., Comp. Phys. Comm. 2013, DOI: 10.1016/j.cpc.2012.09.022].We highlight the substantial improvements in performance that are seen over traditional CPU-only machines and provide validation of our implementation and precision models. We also provide evidence supporting our decision to deprecate the previously described fully single precision (SPSP) model from the latest release of the AMBER software package.

  18. Solvation of transmembrane proteins by isotropic membrane mimetics: a molecular dynamics study.

    PubMed

    Mottamal, Madhusoodanan; Shen, Sui; Guembe, Cristina; Krilov, Goran

    2007-09-27

    Mixtures of organic solvents are often used as membrane mimetics in structure determination of transmembrane proteins by solution NMR; however, the mechanism through which these isotropic solvents mimic the anisotropic environment of cell membranes is not known. Here, we use molecular dynamics simulations to study the solvation thermodynamics of the c-subunit of Escherichia coli F1F0 ATP synthase in membrane mimetic mixtures of methanol, chloroform, and water with varying fractions of components as well as in lipid bilayers. We show that the protein induces a local phase separation of the solvent components into hydrophobic and hydrophilic layers, which provides the anisotropic solvation environment to stabilize the amphiphilic peptide. The extent of this effect varies with solvent composition and is most pronounced in the ternary methanol-chloroform-water mixtures. Analysis of the solvent structure, including the local mole fraction, density profiles, and pair distribution functions, reveals considerable variation among solvent mixtures in the solvation environment surrounding the hydrophobic transmembrane region of the protein. Hydrogen bond analysis indicates that this is primarily driven by the hydrogen-bonding propensity of the essential Asp(61) residue. The impact of the latter on the conformational stability of the solvated protein is discussed. Comparison with the simulations in explicit all-atom models of lipid bilayer indicates a higher flexibility and reduced structural integrity of the membrane mimetic solvated c-subunit. This was particularly true for the deprotonated form of the protein and found to be linked to solvent stabilization of the charged Asp(61).

  19. Visualizing Functional Motions of Membrane Transporters with Molecular Dynamics Simulations

    PubMed Central

    2013-01-01

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins. PMID:23298176

  20. Tunable Interfacial Thermal Conductance by Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Meng

    We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1

  1. Tunable Interfacial Thermal Conductance by Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Meng

    We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1

  2. The Computer Simulation of Liquids by Molecular Dynamics.

    ERIC Educational Resources Information Center

    Smith, W.

    1987-01-01

    Proposes a mathematical computer model for the behavior of liquids using the classical dynamic principles of Sir Isaac Newton and the molecular dynamics method invented by other scientists. Concludes that other applications will be successful using supercomputers to go beyond simple Newtonian physics. (CW)

  3. Temperature dependence of protein hydration hydrodynamics by molecular dynamics simulations.

    SciTech Connect

    Lau, E Y; Krishnan, V V

    2007-07-18

    The dynamics of water molecules near the protein surface are different from those of bulk water and influence the structure and dynamics of the protein itself. To elucidate the temperature dependence hydration dynamics of water molecules, we present results from the molecular dynamic simulation of the water molecules surrounding two proteins (Carboxypeptidase inhibitor and Ovomucoid) at seven different temperatures (T=273 to 303 K, in increments of 5 K). Translational diffusion coefficients of the surface water and bulk water molecules were estimated from 2 ns molecular dynamics simulation trajectories. Temperature dependence of the estimated bulk water diffusion closely reflects the experimental values, while hydration water diffusion is retarded significantly due to the protein. Protein surface induced scaling of translational dynamics of the hydration waters is uniform over the temperature range studied, suggesting the importance protein-water interactions.

  4. Ab initio centroid molecular dynamics: a fully quantum method for condensed-phase dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pavese, Marc; Berard, Daniel R.; Voth, Gregory A.

    1999-01-01

    A fully quantum molecular dynamics method is presented which combines ab initio Car-Parrinello molecular dynamics with centroid molecular dynamics. The first technique allows the forces on the atoms to be obtained from ab initio electronic structure. The second technique, given the forces on the atoms, allows one to calculate an approximate quantum time evolution for the nuclei. The combination of the two, therefore, represents the first feasible approach to simulating the fully quantum dynamics of a many-body system. An application to excess proton translocation along a model water wire will be presented.

  5. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.

    PubMed

    Chamachi, Neharika G; Chakrabarty, Suman

    2016-08-01

    The pathological forms of prions are known to be a result of misfolding, oligomerization, and aggregation of the cellular prion. While the mechanism of misfolding and aggregation in prions has been widely studied using both experimental and computational tools, the structural and energetic characterization of the dimer form have not garnered as much attention. On one hand dimerization can be the first step toward a nucleation-like pathway to aggregation, whereas on the other hand it may also increase the conformational stability preventing self-aggregation. In this work, we have used extensive all-atom replica exchange molecular dynamics simulations of both monomer and dimer forms of a mouse prion protein to understand the structural, dynamic, and thermodynamic stability of dimeric prion as compared to the monomeric form. We show that prion proteins can dimerize spontaneously being stabilized by hydrophobic interactions as well as intermolecular hydrogen bonding and salt bridge formation. We have computed the conformational free energy landscapes for both monomer and dimer forms to compare the thermodynamic stability and misfolding pathways. We observe large conformational heterogeneity among the various modes of interactions between the monomers and the strong intermolecular interactions may lead to as high as 20% β-content. The hydrophobic regions in helix-2, surrounding coil regions, terminal regions along with the natively present β-sheet region appear to actively participate in prion-prion intermolecular interactions. Dimerization seems to considerably suppress the inherent dynamic instability observed in monomeric prions, particularly because the regions of structural frustration constitute the dimer interface. Further, we demonstrate an interesting reversible coupling between the Q160-G131 interaction (which leads to inhibition of β-sheet extension) and the G131-V161 H-bond formation. PMID:27390876

  6. Molecular Dynamics in Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Bochinski, Jason; Stevens, Derrick; Scott, Mary; Guy, Laura; Dedeugd, Casey; Clarke, Laura

    2007-03-01

    Silane self-assembled monolayers (SAMs) are an important tool for both scientific research and technological applications. Despite their widespread use, few experimental investigations have addressed molecular motion within these films, which offer a unique and useful physical system for fundamental scientific studies, such as observing dipolar and other glass transitions in two-dimensions. In addition, relaxations such as ``rotator'' phases where molecular groups rotate in a plane parallel to the surface have been correlated with film conductivity, adhesive, and wetting properties. We utilize surface-sensitive, dielectric relaxation spectroscopy to probe molecular motion as a function of temperature within silane chemistry-based monolayers formed upon interdigitated electrodes. Our latest results exploring a previously published motion as well as comparisons to linear polymer films will be discussed.

  7. On electronic representations in molecular reaction dynamics

    NASA Astrophysics Data System (ADS)

    Killian, Benjamin J.

    For many decades, the field of chemical reaction dynamics has utilized computational methods that rely on potential energy surfaces that are constructed using stationary-state calculations. These methods are typically devoid of dynamical couplings between the electronic and nuclear degrees of freedom, a fact that can result in incorrect descriptions of dynamical processes. Often, non-adiabatic coupling expressions are included in these methodologies. The Electron-Nuclear Dynamics (END) formalism, in contrast, circumvents these deficiencies by calculating all intermolecular forces directly at each time step in the dynamics and by explicitly maintaining all electronic-nuclear couplings. The purpose of this work is to offer two new frameworks for implementing electronic representations in dynamical calculations. Firstly, a new schema is proposed for developing atomic basis sets that are consistent with dynamical calculations. Traditionally, basis sets have been designed for use in stationary-state calculations of the structures and properties of molecules in their ground states. As a consequence of common construction techniques that utilize energy optimization methods, the unoccupied orbitals bear little resemblance to physical virtual atomic orbitals. We develop and implement a method for basis set construction that relies upon physical properties of atomic orbitals and that results in meaningful virtual orbitals. These basis sets are shown to provide a significant improvement in the accuracy of calculated dynamical properties such as charge transfer probabilities. Secondly, the theoretical framework of END is expanded to incorporate a multi-configurational representation for electrons. This formalism, named Vector Hartree-Fock, is based in the theory of vector coherent states and utilizes a complete active space electronic representation. The Vector Hartree-Fock method is fully disclosed, with derivation of the equations of motion. The expressions for the equation

  8. Optimal control of molecular motion expressed through quantum fluid dynamics

    NASA Astrophysics Data System (ADS)

    Dey, Bijoy K.; Rabitz, Herschel; Askar, Attila

    2000-04-01

    A quantum fluid-dynamic (QFD) control formulation is presented for optimally manipulating atomic and molecular systems. In QFD the control quantum system is expressed in terms of the probability density ρ and the quantum current j. This choice of variables is motivated by the generally expected slowly varying spatial-temporal dependence of the fluid-dynamical variables. The QFD approach is illustrated for manipulation of the ground electronic state dynamics of HCl induced by an external electric field.

  9. Single Molecule Spectroscopy Illuminating the Molecular Dynamics of Life

    NASA Astrophysics Data System (ADS)

    Webb, Watt W.

    This chapter summarizes a series of new single-molecule spectroscopy investigations in the life sciences at Cornell University that began with our invention of Fluorescence Correlation Spectroscopy (FCS) about 1970. Our invention of FCS became my first focus on the "Molecular Dynamics of Life." It motivated my transition from research on quantum fluctuations and transport in condensed matter physics including superconductivity and in the molecular dynamics of coherent fluctuations and nano-transport in inanimate physical and chemical systems subject to the nonlinear dynamics of continuous phase transitions. These interdisciplinary transitions exemplify the productivity of such interdisciplinary interactions in science.

  10. Interfacial Molecular Searching Using Forager Dynamics

    NASA Astrophysics Data System (ADS)

    Monserud, Jon H.; Schwartz, Daniel K.

    2016-03-01

    Many biological and technological systems employ efficient non-Brownian intermittent search strategies where localized searches alternate with long flights. Coincidentally, molecular species exhibit intermittent behavior at the solid-liquid interface, where periods of slow motion are punctuated by fast flights through the liquid phase. Single-molecule tracking was used here to observe the interfacial search process of DNA for complementary DNA. Measured search times were qualitatively consistent with an intermittent-flight model, and ˜10 times faster than equivalent Brownian searches, suggesting that molecular searches for reactive sites benefit from similar efficiencies as biological organisms.

  11. Dynamics of molecular superrotors in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Korobenko, Aleksey; Milner, Valery

    2015-08-01

    We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin-rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation.

  12. Studies of structural, dynamical, and interfacial properties of 1-alkyl-3-methylimidazolium iodide ionic liquids by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Ghatee, Mohammad Hadi; Zolghadr, Amin Reza; Moosavi, Fatemeh; Ansari, Younes

    2012-03-01

    Bulk and surface properties of the ionic liquids 1-alkyl-3-methyl-imidazolium iodides ([Cnmim]I) were simulated by classical molecular dynamics using all atom non-polarizable force field (n = 4, butyl; 6, hexyl; 8, octyl). The structure of ionic liquids were initially optimized by density functional theory and atomic charges obtained by CHELPG method. Reduction of partial atomic charges (by 20% for simulation of density and surface tension, and by 10% for viscosity) found to improve the accuracy, while a non-polarizable force field was applied. Additionally, the simulation ensembles approach the equilibrium faster when the charge reduction is applied. By these refined force field parameters, simulated surface tensions in the range of 323-393 k are quite in agreement with the experiments. Simulation of temperature dependent surface tension of [C4mim]I well beyond room temperature (up to 700 K) permits prediction of the critical temperature in agreement with that predicted from experimental surface tension data. Simulated densities in the range of 298-450 K for the three ionic liquids are within 0.8% of the experimental data. Structural properties for [C4mim]I were found to be in agreement with the results of Car-Parrinello molecular dynamics simulation we performed, which indicates a rather well-structured cation-anion interaction and occurs essentially through the imidazolium ring cation. Diffusion coefficient changes with alkyl chain length in the order of [C8mim]I > [C6mim]I > [C4mim]I for the cation and the anion. Formation of a dense domain in subsurface region is quite evident, and progressively becomes denser as the alkyl chain length increases. Bivariate orientational analysis was used to determine the average orientation of molecule in ionic liquids surface, subsurface, and bulk regions. Dynamic bisector-wise and side-wise movement of the imodazolium ring cation in the surface region can be deduced from the bivariate maps. Atom-atom density profile and

  13. A simple and transferable all-atom/coarse-grained hybrid model to study membrane processes.

    PubMed

    Genheden, Samuel; Essex, Jonathan W

    2015-10-13

    We present an efficient all-atom/coarse-grained hybrid model and apply it to membrane processes. This model is an extension of the all-atom/ELBA model applied previously to processes in water. Here, we improve the efficiency of the model by implementing a multiple-time step integrator that allows the atoms and the coarse-grained beads to be propagated at different timesteps. Furthermore, we fine-tune the interaction between the atoms and the coarse-grained beads by computing the potential of mean force of amino acid side chain analogs along the membrane normal and comparing to atomistic simulations. The model was independently validated on the calculation of small-molecule partition coefficients. Finally, we apply the model to membrane peptides. We studied the tilt angle of the Walp23 and Kalp23 helices in two different model membranes and the stability of the glycophorin A dimer. The model is efficient, accurate, and straightforward to use, as it does not require any extra interaction particles, layers of atomistic solvent molecules or tabulated potentials, thus offering a novel, simple approach to study membrane processes. PMID:26574264

  14. An All-Atom Model of the Structure of Human Copper Transporter 1

    PubMed Central

    Sharikov, Yuriy; Greenberg, Jerry P.; Miller, Mark A.; Kouznetsova, Valentina L.; Larson, Christopher A.; Howell, Stephen B.

    2013-01-01

    Human copper transporter 1 (hCTR1) is the major high affinity copper influx transporter in mammalian cells that also mediates uptake of the cancer chemotherapeutic agent cisplatin. A low resolution structure of hCTR1 determined by cryoelectron microscopy was recently published. Several protein structure simulation techniques were used to create an all-atom model of this important transporter using the low resolution structure as a starting point. The all-atom model provides new insights into the roles of specific residues of the N-terminal extracellular domain, the intracellular loop, and C-terminal region in metal ion transport. In particular, the model demonstrates that the central region of the pore contains four sets of methionine triads in the intramembranous region. The structure confirms that two triads of methionine residues delineate the intramembranous region of the transporter, and further identifies two additional methionine triads that are located in the extracellular N-terminal part of the transporter. Together, the four triads create a structure that promotes stepwise transport of metal ions into and then through the intramembranous channel of the transporter via transient thioether bonds to methionine residues. Putative copper-binding sites in the hCTR1 trimer were identified by a program developed by us for prediction of metal-binding sites. These sites correspond well with the known effects of mutations on the ability of the protein to transport copper and cisplatin. PMID:22569840

  15. First principles molecular dynamics without self-consistent field optimization

    SciTech Connect

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-28

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.

  16. VUV studies of molecular photofragmentation dynamics

    SciTech Connect

    White, M.G.

    1993-12-01

    State-resolved, photoion and photoelectron methods are used to study the neutral fragmentation and ionization dynamics of small molecules relevant to atmospheric and combustion chemistry. Photodissociation and ionization are initiated by coherent VUV radiation and the fragmentation dynamics are extracted from measurements of product rovibronic state distributions, kinetic energies and angular distributions. The general aim of these studies is to investigate the multichannel interactions between the electronic and nuclear motions which determine the evolution of the photoexcited {open_quotes}complex{close_quotes} into the observed asymptotic channels.

  17. Three-Dimensional Molecular Theory of Solvation Coupled with Molecular Dynamics in Amber

    SciTech Connect

    Luchko, T.; Simmerling, C.; Gusarov, S.; Roe, D.R., Case, D.A.; Tuszynski, J.; Kovalenko, A.

    2010-02-01

    We present the three-dimensional molecular theory of solvation (also known as 3D-RISM) coupled with molecular dynamics (MD) simulation by contracting solvent degrees of freedom, accelerated by extrapolating solvent-induced forces and applying them in large multiple time steps (up to 20 fs) to enable simulation of large biomolecules. The method has been implemented in the Amber molecular modeling package and is illustrated here on alanine-dipeptide and protein-G.

  18. Three-dimensional molecular theory of solvation coupled with molecular dynamics in Amber

    PubMed Central

    Luchko, Tyler; Gusarov, Sergey; Roe, Daniel R.; Simmerling, Carlos; Case, David A.; Tuszynski, Jack; Kovalenko, Andriy

    2010-01-01

    We present the three-dimensional molecular theory of solvation (also known as 3D-RISM) coupled with molecular dynamics (MD) simulation by contracting solvent degrees of freedom, accelerated by extrapolating solvent-induced forces and applying them in large multi-time steps (up to 20 fs) to enable simulation of large biomolecules. The method has been implemented in the Amber molecular modeling package, and is illustrated here on alanine dipeptide and protein G. PMID:20440377

  19. Analysis of the heterogeneous dynamics of imidazolium-based [Tf2N-] ionic liquids using molecular simulation

    NASA Astrophysics Data System (ADS)

    Androulaki, Eleni; Vergadou, Niki; Economou, Ioannis G.

    2014-10-01

    The complex dynamic behaviour of the imidazolium-based ionic liquids [Cnmim+][Tf2N-], n = 4, 8, 12 is examined at various temperatures and at atmospheric pressure using molecular dynamics simulation. An existing all-atom force field is further optimised in order to attain reasonable agreement with experimental data for transport properties, such as self-diffusivities and viscosities. Dynamical heterogeneity phenomena are quantified through the calculation of the non-Gaussian parameter and the deviation of the self-part of the van Hove correlation function from the expected normal distribution. From this analysis, ions that move faster or slower than expected are detected in the system. These subsets of 'fast' and 'slow' ions form individual clusters consisting of either mobile or immobile ions. Detailed analysis of the ions' diffusion reveals preferential motion along the direction of the alkyl tail for the cation and along the vector that connects the two sulphur atoms for the anion. For the longest alkyl tails, the heterogeneity in the dynamics becomes more pronounced and is preserved for several nanoseconds, especially at low temperatures.

  20. Trapping dynamics of diindenoperylene (DIP) in self-assembled monolayers using molecular simulation

    NASA Astrophysics Data System (ADS)

    Kaushik, Ananth P.; Clancy, Paulette

    2011-07-01

    All-atom Molecular Dynamics simulation methods employing a well-tested intermolecular potential model, MM3 (Molecular Mechanics 3), demonstrate the propensity for diindenoperylene (DIP) molecules to insert between molecules of a self-assembled monolayer (SAM) during a deposition process intended to grow a thin film of this organic semiconductor molecule onto the surface of self-assembled monolayers. The tendency to insert between SAM molecules is fairly prevalent at normal growth temperatures and conditions, but is most strongly dependent on the density and the nature of the SAM. We posit the existence of an optimal density to favor surface adsorption over insertion for this system. DIP is less likely to insert in fluorinated SAMs, like FOTS (fluorooctatrichlorosilane), than its unfluorinated analog, OTS (octatrichlorosilane). It is also less likely to insert between shorter SAMs (e.g., less insertion in OTS than ODTS (octadecyltrichlorosilane)). Very short length, surface-coating molecules, like HDMS (hexamethyldisilazane), are more likely to scatter energetic incoming DIP molecules with little insertion on first impact (depending on the incident energy of the DIP molecule). Grazing angles of incidence of the depositing molecules generally favor surface adsorption, at least in the limit of low coverage, but are shown to be dependent on the nature of the SAM. The validity of these predictions is confirmed by comparison of the predicted sticking coefficients of DIP at a variety of incident energies on OTS, ODTS, and FOTS SAMs with results obtained experimentally by Desai et al. (2010) [23]. The simulation predictions of the tendency of DIP to insert can be explained, in large part, in terms of binding energies between SAM and DIP molecules. However, we note that entropic and stochastic events play a role in the deposition outcomes. Preliminary studies of multiple deposition events, emulating growth, show an unexpected diffusion of DIP molecules inserted within the

  1. Molecular structure of poly(methyl methacrylate) surface: Combination of interface-sensitive infrared-visible sum frequency generation, molecular dynamics simulations, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Zhu, He; Jha, Kshitij C.; Bhatta, Ram S.; Tsige, Mesfin; Dhinojwala, Ali

    2015-03-01

    The chemical composition and molecular structure of polymeric surfaces are important in understanding wetting, adhesion, and friction. Here, we combine interface-sensitive sum frequency generation spectroscopy (SFG), all-atom molecular dynamics (MD) simulations, and ab initio calculations to understand the composition and the orientation of chemical groups on poly(methyl methacrylate) (PMMA) surface as a function of tacticity and temperature. The SFG spectral features for isotactic and syndiotactic PMMA surfaces are similar and the dominant peak in the spectra corresponds to the ester-methyl groups. The SFG spectra for solid and melt states are very similar for both syndiotactic and isotactic PMMA. In comparison, the MD simulation results show that both the ester-methyl and the α-methyl groups of syndiotactic-PMMA are ordered and tilted towards the surface normal. For the isotactic-PMMA, the α-methyl groups are less ordered compared to their ester-methyl groups. The backbone methylene groups have a broad angular distribution and on average tilt along the surface plane, independent of tacticity and temperature. We have compared the SFG results with theoretical spectra calculated using MD simulations and ab initio calculations. National Science Foundation.

  2. Molecular Mechanotransduction: how forces trigger cytoskeletal dynamics

    NASA Astrophysics Data System (ADS)

    Ehrlicher, Allen

    2012-02-01

    Mechanical stresses elicit cellular reactions mediated by chemical signals. Defective responses to forces underlie human medical disorders, such as cardiac failure and pulmonary injury. Despite detailed knowledge of the cytoskeleton's structure, the specific molecular switches that convert mechanical stimuli into chemical signals have remained elusive. Here we identify the actin-binding protein, filamin A (FLNa) as a central mechanotransduction element of the cytoskeleton by using Fluorescence Loss After photoConversion (FLAC), a novel high-speed alternative to FRAP. We reconstituted a minimal system consisting of actin filaments, FLNa and two FLNa-binding partners: the cytoplasmic tail of ß-integrin, and FilGAP. Integrins form an essential mechanical linkage between extracellular and intracellular environments, with ß integrin tails connecting to the actin cytoskeleton by binding directly to filamin. FilGAP is a FLNa-binding GTPase-activating protein specific for Rac, which in vivo regulates cell spreading and bleb formation. We demonstrate that both externally-imposed bulk shear and myosin II driven forces differentially regulate the binding of integrin and FilGAP to FLNa. Consistent with structural predictions, strain increases ß-integrin binding to FLNa, whereas it causes FilGAP to dissociate from FLNa, providing a direct and specific molecular basis for cellular mechanotransduction. These results identify the first molecular mechanotransduction element within the actin cytoskeleton, revealing that mechanical strain of key proteins regulates the binding of signaling molecules. Moreover, GAP activity has been shown to switch cell movement from mesenchymal to amoeboid motility, suggesting that mechanical forces directly impact the invasiveness of cancer.

  3. Combining Molecular Dynamics and Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Kaxiras, Efthimios

    2015-03-01

    The time evolution of a system consisting of electrons and ions is often treated in the Born-Oppenheimer approximation, with electrons in their instantaneous ground state. This approach cannot capture many interesting processes that involved excitation of electrons and its effects on the coupled electron-ion dynamics. The time scale needed to accurately resolve the evolution of electron dynamics is atto-seconds. This poses a challenge to the simulation of important chemical processes that typically take place on time scales of pico-seconds and beyond, such as reactions at surfaces and charge transport in macromolecules. We will present a methodology based on time-dependent density functional theory for electrons, and classical (Ehrenfest) dynamics for the ions, that successfully captures such processes. We will give a review of key features of the method and several applications. These illustrate how the atomic and electronic structure evolution unravels the elementary steps that constitute a chemical reaction. In collaboration with: G. Kolesov, D. Vinichenko, G. Tritsaris, C.M. Friend, Departments of Physics and of Chemistry and Chemical Biology.

  4. Pseudorotational Dynamics of Small Molecular Systems

    NASA Astrophysics Data System (ADS)

    Hagelberg, Frank

    2001-03-01

    A variety of dynamic effects related to the pseudorotation of triatomic singly charged species is explored using the Electron Nuclear Dynamics(END)Theory. The concepts relevant to the motion studied are developed through the analysis of the simplest polyatomic molecule, namely H3+. It is shown that the limiting situation of circular pseudorotation is unattainable for this case. This observation is explained by the anisotropy of the ground state potential energy surface caused by the interaction between the D3h ground state of the molecule and its twofold degenerate first excited state. Further, pseudorotational motion is demonstrated to induce a rotational mode which in turn couples the two shape oscillation modes by action of the Coriolis force. Analogous phenomena are found for Li3+. The Jahn-Teller system C3+ exhibits a range of new motional effects. Particularly, a characteristic frequency shift between the two shape oscillation modes is obtained, resulting from the anisotropy in the curvature of the C2v minimum of C3+. The Jahn-Teller parameters of the system are determined from Electron Nuclear Dynamics simulations.

  5. Brownian dynamics simulations of ions channels: A general treatment of electrostatic reaction fields for molecular pores of arbitrary geometry

    NASA Astrophysics Data System (ADS)

    Im, Wonpil; Roux, Benoît

    2001-09-01

    A general method has been developed to include the electrostatic reaction field in Brownian dynamics (BD) simulations of ions diffusing through complex molecular channels of arbitrary geometry. Assuming that the solvent is represented as a featureless continuum dielectric medium, a multipolar basis-set expansion is developed to express the reaction field Green's function. A reaction field matrix, which provides the coupling between generalized multipoles, is calculated only once and stored before the BD simulations. The electrostatic energy and forces are calculated at each time step by updating the generalized multipole moments. The method is closely related to the generalized solvent boundary potential [Im et al., J. Chem. Phys. 114, 2924 (2001)] which was recently developed to include the influence of distant atoms on a small region part of a large macromolecular system in molecular dynamics simulations. It is shown that the basis-set expansion is accurate and computationally inexpensive for three simple models such as a spherical ionic system, an impermeable membrane system, and a cylindrical pore system as well as a realistic system such as OmpF porin with all atomic details. The influence of the static field and the reaction field on the ion distribution and conductance in the OmpF channel is studied and discussed.

  6. Shaping the water crevice to accommodate the voltage sensor in a down conformation: a molecular dynamics simulation study.

    PubMed

    Kitjaruwankul, Sunan; Boonamnaj, Panisak; Fuklang, Sunit; Supunyabut, Chirayut; Sompornpisut, Pornthep

    2015-06-01

    Voltage sensor domains (VSD) of voltage-dependent ion channels share a basic molecular structure with a voltage-sensing phosphatase and a voltage-gated proton channel. The VSD senses and responds to changes in the membrane potential by undergoing conformational changes associated with the movement of the charged arginines located on the S4 segment. Although several functional and structural studies have provided useful information about the conformational changes in many ion channels, a detailed and unambiguous explanation has not been published. Therefore, understanding the principle of voltage-dependent gating at an atomic level is required. In this study, we took advantage of the available spin labeling electron paramagnetic resonance spectrometry data and computational methods to investigate the structure and dynamic properties of the Up-state (activated) and Down-state (resting) conformations of the VSD by means of all-atom molecular dynamics (MD) simulations. The MD results of the Down conformation determined in bilayers with and without lipid phosphates both revealed a different shape of the aqueous crevice, in which more water molecules surround and fill the intracellular crevice in its Down state than in its Up state. The solvent accessible surface within the crevice has a complementary shape that can account for water-mediated interactions between the voltage sensor and the lipid bilayer. The results support the previously reported experimental data.

  7. Detachment of semiflexible polymer chains from a substrate: A molecular dynamics investigation

    SciTech Connect

    Paturej, J.; Erbas, A.; Milchev, A.; Rostiashvili, V. G.

    2014-12-07

    Using Molecular Dynamics simulations, we study the force-induced detachment of a coarse-grained model polymer chain from an adhesive substrate. One of the chain ends is thereby pulled at constant speed off the attractive substrate and the resulting saw-tooth profile of the measured mean force 〈f〉 vs height D of the end-segment over the plane is analyzed for a broad variety of parameters. It is shown that the observed characteristic oscillations in the 〈f〉-D profile depend on the bending and not on the torsional stiffness of the detached chains. Allowing for the presence of hydrodynamic interactions (HI) in a setup with explicit solvent and dissipative particle dynamics-thermostat, rather than the case of Langevin thermostat, one finds that HI have little effect on the 〈f〉-D profile. Also the change of substrate affinity with respect to the solvent from solvophilic to solvophobic is found to play negligible role in the desorption process. In contrast, a changing ratio ε{sub s}{sup B}/ε{sub s}{sup A} of the binding energies of A- and B-segments in the detachment of an AB-copolymer from adhesive surface strongly changes the 〈f〉-D profile whereby the B-spikes vanish when ε{sub s}{sup B}/ε{sub s}{sup A}<0.15. Eventually, performing an atomistic simulation of (bio)-polymers, we demonstrate that the simulation results, derived from our coarse-grained model, comply favorably with those from the all-atom simulation.

  8. Molecular dynamics study-based mechanism of nefiracetam-induced NMDA receptor potentiation.

    PubMed

    Omotuyi, Olaposi I; Ueda, Hiroshi

    2015-04-01

    Plastic changes in the brain required for memory formation and long-term learning are dependent on N-methyl-d-aspartic acid (NMDA) receptor signaling. Nefiracetam reportedly boosts NMDA receptor functions as a basis for its nootropic properties. Previous studies suggest that nefiracetam potentiates the NMDA receptor activation, as a more potent co-agonist for glycine binding site than glycine, though the underlying mechanisms remain elusive. Here, using BSP-SLIM method, a novel binding site within the core of spiral β-strands-1-5 of LBD-GLUN1 has been predicted in glycine-bound GLUN1 conformation in addition to the glycine pocket in Apo-GLUN1. Within the core of spiral β-strands-1-5 of LBD-GLUN1 pocket, all-atom molecular dynamics simulation revealed that nefiracetam disrupts Arg523-glycine-Asp732 interaction resulting in open GLUN1 conformation and ultimate diffusion of glycine out of the clamshell cleft. Open GLUN1 conformation coerces other intra-chain domains and proximal inter-chain domains to sample inactivate conformations resulting in closure of the transmembrane gate via a novel gauche trap on threonine 647 (chi-1 dihedral (χ1)=-45° instead of +45°). Docking of nefiracetam into the glycine pocket reversed the gauche trap and meditates partial opening of the TMD gate within a time-scale of 100ns as observed in glycine-only state. All these results suggest that nefiracetam can favorably complete with glycine for GLUN1-LBD in a two-step process, first by binding to a novel site of GLUN1-LBD-NMDA receptor followed by disruption of glycine-binding dynamics then replacing glycine in the GLUN1-LBD cleft. PMID:25659913

  9. Detachment of semiflexible polymer chains from a substrate: A molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Paturej, J.; Erbas, A.; Milchev, A.; Rostiashvili, V. G.

    2014-12-01

    Using Molecular Dynamics simulations, we study the force-induced detachment of a coarse-grained model polymer chain from an adhesive substrate. One of the chain ends is thereby pulled at constant speed off the attractive substrate and the resulting saw-tooth profile of the measured mean force ⟨f⟩ vs height D of the end-segment over the plane is analyzed for a broad variety of parameters. It is shown that the observed characteristic oscillations in the ⟨f⟩-D profile depend on the bending and not on the torsional stiffness of the detached chains. Allowing for the presence of hydrodynamic interactions (HI) in a setup with explicit solvent and dissipative particle dynamics-thermostat, rather than the case of Langevin thermostat, one finds that HI have little effect on the ⟨f⟩-D profile. Also the change of substrate affinity with respect to the solvent from solvophilic to solvophobic is found to play negligible role in the desorption process. In contrast, a changing ratio ɛ _s^B / ɛ _s^A of the binding energies of A- and B-segments in the detachment of an AB-copolymer from adhesive surface strongly changes the ⟨f⟩-D profile whereby the B-spikes vanish when ɛ _s^B / ɛ _s^A < 0.15. Eventually, performing an atomistic simulation of (bio)-polymers, we demonstrate that the simulation results, derived from our coarse-grained model, comply favorably with those from the all-atom simulation.

  10. Mapping the conformational transition in Src activation by cumulating the information from multiple molecular dynamics trajectories

    PubMed Central

    Yang, Sichun; Banavali, Nilesh K.; Roux, Benoît

    2009-01-01

    The Src-family kinases are allosteric enzymes that play a key role in the regulation of cell growth and proliferation. In response to cellular signals, they undergo large conformational changes to switch between distinct inactive and active states. A computational strategy for characterizing the conformational transition pathway is presented to bridge the inactive and active states of the catalytic domain of Hck. The information from a large number (78) of independent all-atom molecular dynamics trajectories with explicit solvent is combined together to assemble a connectivity map of the conformational transition. Two intermediate states along the activation pathways are identified, and their structural features are characterized. A coarse free-energy landscape is built in terms of the collective motions corresponding to the opening of the activation loop (A-loop) and the rotation of the αC helix. This landscape shows that the protein can adopt a multitude of conformations in which the A-loop is partially open, while the αC helix remains in the orientation characteristic of the inactive conformation. The complete transition leading to the active conformation requires a concerted movement involving further opening of the A-loop, the relative alignment of N-lobe and C-lobe, and the rotation of the αC helix needed to recruit the residues necessary for catalysis in the active site. The analysis leads to a dynamic view of the full-length kinase activation, whereby transitions of the catalytic domain to intermediate configurations with a partially open A-loop are permitted, even while the SH2-SH3 clamp remains fully engaged. These transitions would render Y416 available for the transphosphorylation event that ultimately locks down the active state. The results provide a broad framework for picturing the conformational transitions leading to kinase activation. PMID:19225111

  11. Hydrolysis of Al3+ from constrained molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ikeda, Takashi; Hirata, Masaru; Kimura, Takaumi

    2006-02-01

    We investigated the hydrolysis reactions of Al3+ in AlCl3 aqueous solution using the constrained molecular dynamics based on the Car-Parrinello molecular-dynamics method. By employing the proton-aluminum coordination number as a reaction coordinate in the constrained molecular dynamics the deprotonation as well as dehydration processes are successfully realized. From our free-energy difference of ΔG0≃8.0kcalmol-1 the hydrolysis constant pKa1 is roughly estimated as 5.8, comparable to the literature value of 5.07. We show that the free-energy difference for the hydrolysis of Al3+ in acidic conditions is at least 4kcalmol-1 higher than that in neutral condition, indicating that the hydrolysis reaction is inhibited by the presence of excess protons located around the hydrated ion, in agreement with the change of the predominant species by pH.

  12. Molecular dynamics insights into human aquaporin 2 water channel.

    PubMed

    Binesh, A R; Kamali, R

    2015-12-01

    In this study, the first molecular dynamics simulation of the human aquaporin 2 is performed and for a better understanding of the aquaporin 2 permeability performance, the characteristics of water transport in this protein channel and key biophysical parameters of AQP2 tetramer including osmotic and diffusive permeability constants and the pore radius are investigated. For this purpose, recently recovered high resolution X-ray crystal structure of` the human aquaporin 2 is used to perform twenty nanosecond molecular dynamics simulation of fully hydrated tetramer of this protein embedded in a lipid bilayer. The resulting water permeability characteristics of this protein channel showed that the water permeability of the human AQP2 is in a mean range in comparison with other human aquaporins family. Finally, the results reported in this research demonstrate that molecular dynamics simulation of human AQP2 provided useful insights into the mechanisms of water permeation and urine concentration in the human kidney. PMID:26489820

  13. Theoretical Analysis of Dynamic Processes for Interacting Molecular Motors

    PubMed Central

    Teimouri, Hamid; Kolomeisky, Anatoly B.; Mehrabiani, Kareem

    2015-01-01

    Biological transport is supported by collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by analyzing a new class of totally asymmetric exclusion processes where interactions are accounted for in a thermodynamically consistent fashion. It allows us to connect explicitly microscopic features of motor proteins with their collective dynamic properties. Theoretical analysis that combines various mean-field calculations and computer simulations suggests that dynamic properties of molecular motors strongly depend on interactions, and correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motors transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed. PMID:25688287

  14. Molecular dynamics insights into human aquaporin 2 water channel.

    PubMed

    Binesh, A R; Kamali, R

    2015-12-01

    In this study, the first molecular dynamics simulation of the human aquaporin 2 is performed and for a better understanding of the aquaporin 2 permeability performance, the characteristics of water transport in this protein channel and key biophysical parameters of AQP2 tetramer including osmotic and diffusive permeability constants and the pore radius are investigated. For this purpose, recently recovered high resolution X-ray crystal structure of` the human aquaporin 2 is used to perform twenty nanosecond molecular dynamics simulation of fully hydrated tetramer of this protein embedded in a lipid bilayer. The resulting water permeability characteristics of this protein channel showed that the water permeability of the human AQP2 is in a mean range in comparison with other human aquaporins family. Finally, the results reported in this research demonstrate that molecular dynamics simulation of human AQP2 provided useful insights into the mechanisms of water permeation and urine concentration in the human kidney.

  15. Thermal Conductivity of Natural Rubber Using Molecular Dynamics Simulation.

    PubMed

    He, Yan; Ma, Lian-Xiang; Tang, Yuan-Zheng; Wang, Ze-Peng; Li, Wei; Kukulka, David

    2015-04-01

    Thermal conductivity of natural rubber has been studied by classic molecular dynamics simulations. These simulations are performed on natural rubber models using the adaptive intermolecular reactive empirical bond order (AIREBO) and the Green-Kubo molecular dynamics (MD) simulations. Thermal conductivity results are found to be very sensitive to the time step used in the simulations. For a time step of 0.1 fs, the converged thermal conductivity is 0.35 W/mK. Additionally the anisotropic thermal conductivity of a specially-modeled natural rubber model with straight molecular chains was studied and values of thermal conductivity parallel to the molecular chains was found to be 1.71 W/mK and the anisotropy, 2Kz/(Kx + Ky), was 2.67.

  16. An All-Atom Force Field for Tertiary Structure Prediction of Helical Proteins

    PubMed Central

    Herges, T.; Wenzel, W.

    2004-01-01

    We have developed an all-atom free-energy force field (PFF01) for protein tertiary structure prediction. PFF01 is based on physical interactions and was parameterized using experimental structures of a family of proteins believed to span a wide variety of possible folds. It contains empirical, although sequence-independent terms for hydrogen bonding. Its solvent-accessible surface area solvent model was first fit to transfer energies of small peptides. The parameters of the solvent model were then further optimized to stabilize the native structure of a single protein, the autonomously folding villin headpiece, against competing low-energy decoys. Here we validate the force field for five nonhomologous helical proteins with 20–60 amino acids. For each protein, decoys with 2–3 Å backbone root mean-square deviation and correct experimental Cβ–Cβ distance constraints emerge as those with the lowest energy. PMID:15507688

  17. Studying Interactions by Molecular Dynamics Simulations at High Concentration

    PubMed Central

    Fogolari, Federico; Corazza, Alessandra; Toppo, Stefano; Tosatto, Silvio C. E.; Viglino, Paolo; Ursini, Fulvio; Esposito, Gennaro

    2012-01-01

    Molecular dynamics simulations have been used to study molecular encounters and recognition. In recent works, simulations using high concentration of interacting molecules have been performed. In this paper, we consider the practical problems for setting up the simulation and to analyse the results of the simulation. The simulation of beta 2-microglobulin association and the simulation of the binding of hydrogen peroxide by glutathione peroxidase are provided as examples. PMID:22500085

  18. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling

    PubMed Central

    Guvench, Olgun; Mallajosyula, Sairam S.; Raman, E. Prabhu; Hatcher, Elizabeth; Vanommeslaeghe, Kenno; Foster, Theresa J.; Jamison, Francis W.; MacKerell, Alexander D.

    2011-01-01

    Monosaccharide derivatives such as xylose, fucose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GlaNAc), glucuronic acid, iduronic acid, and N-acetylneuraminic acid (Neu5Ac) are important components of eukaryotic glycans. The present work details development of force-field parameters for these monosaccharides and their covalent connections to proteins via O-linkages to serine or threonine sidechains and via N-linkages to asparagine sidechains. The force field development protocol was designed to explicitly yield parameters that are compatible with the existing CHARMM additive force field for proteins, nucleic acids, lipids, carbohydrates, and small molecules. Therefore, when combined with previously developed parameters for pyranose and furanose monosaccharides, for glycosidic linkages between monosaccharides, and for proteins, the present set of parameters enables the molecular simulation of a wide variety of biologically-important molecules such as complex carbohydrates and glycoproteins. Parametrization included fitting to quantum mechanical (QM) geometries and conformational energies of model compounds, as well as to QM pair interaction energies and distances of model compounds with water. Parameters were validated in the context of crystals of relevant monosaccharides, as well NMR and/or x-ray crystallographic data on larger systems including oligomeric hyaluronan, sialyl Lewis X, O- and N-linked glycopeptides, and a lectin:sucrose complex. As the validated parameters are an extension of the CHARMM all-atom additive biomolecular force field, they further broaden the types of heterogeneous systems accessible with a consistently-developed force-field model. PMID:22125473

  19. State-to-state dynamics of molecular energy transfer

    SciTech Connect

    Gentry, W.R.; Giese, C.F.

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  20. AceCloud: Molecular Dynamics Simulations in the Cloud.

    PubMed

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  1. How Dynamic Visualization Technology can Support Molecular Reasoning

    NASA Astrophysics Data System (ADS)

    Levy, Dalit

    2012-11-01

    This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and gas. They interact with the visualizations and carry out inquiry activities to make and refine connections between observable phenomena and atomic level processes related to phase change. The explanations proposed by 300 pairs of students in response to pre/post-assessment items have been analyzed using a scale for measuring the level of molecular reasoning. Results indicate that from pretest to posttest, students make progress in their level of molecular reasoning and are better able to connect intermolecular forces and phase change in their explanations. The paper presents the results through the lens of improvement patterns and the metaphor of the "ladder of molecular reasoning," and discusses how this adds to our understanding of the benefits of interacting with dynamic molecular visualizations.

  2. Multiple time step integrators in ab initio molecular dynamics

    SciTech Connect

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  3. Electron-phonon interaction within classical molecular dynamics

    DOE PAGES

    Tamm, A.; Samolyuk, G.; Correa, A. A.; Klintenberg, M.; Aabloo, A.; Caro, A.

    2016-07-14

    Here, we present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e-ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computermore » simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.« less

  4. Electron-phonon interaction within classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tamm, A.; Samolyuk, G.; Correa, A. A.; Klintenberg, M.; Aabloo, A.; Caro, A.

    2016-07-01

    We present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e -ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computer simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.

  5. Numerical methods for molecular dynamics. Progress report

    SciTech Connect

    Skeel, R.D.

    1991-12-31

    This report summarizes our research progress to date on the use of multigrid methods for three-dimensional elliptic partial differential equations, with particular emphasis on application to the Poisson-Boltzmann equation of molecular biophysics. This research is motivated by the need for fast and accurate numerical solution techniques for three-dimensional problems arising in physics and engineering. In many applications these problems must be solved repeatedly, and the extremely large number of discrete unknowns required to accurately approximate solutions to partial differential equations in three-dimensional regions necessitates the use of efficient solution methods. This situation makes clear the importance of developing methods which are of optimal order (or nearly so), meaning that the number of operations required to solve the discrete problem is on the order of the number of discrete unknowns. Multigrid methods are generally regarded as being in this class of methods, and are in fact provably optimal order for an increasingly large class of problems. The fundamental goal of this research is to develop a fast and accurate numerical technique, based on multi-level principles, for the solutions of the Poisson-Boltzmann equation of molecular biophysics and similar equations occurring in other applications. An outline of the report is as follows. We first present some background material, followed by a survey of the literature on the use of multigrid methods for solving problems similar to the Poisson-Boltzmann equation. A short description of the software we have developed so far is then given, and numerical results are discussed. Finally, our research plans for the coming year are presented.

  6. Structure and dynamics of the aliphatic cholesterol side chain in membranes as studied by (2)H NMR spectroscopy and molecular dynamics simulation.

    PubMed

    Vogel, Alexander; Scheidt, Holger A; Baek, Dong Jae; Bittman, Robert; Huster, Daniel

    2016-02-01

    Cholesterol is an evolutionarily highly optimized molecule particularly known for its ability to condense the phospholipids in cellular membranes. Until recently, the accompanying increase in the chain order of the surrounding phospholipids was attributed to the planar and rigid tetracyclic ring structure of cholesterol. However, detailed investigations of cholesterol's aliphatic side chain demonstrated that this side chain is responsible for approximately half of the condensation effect. Therefore, we investigated the structure and dynamics of the aliphatic side chain of cholesterol using (2)H solid-state nuclear magnetic resonance (NMR) spectroscopy and microsecond timescale all-atom molecular dynamics (MD) simulations in four different model membranes: POPC, DPPC, PSM, and POPC/PSM (1 : 1 mol/mol) and at three different temperatures: 5 °C, 37 °C, and 50 °C. A cholesterol variant, in which 11 hydrogens of the aliphatic side chain were exchanged for deuterium, was used and the respective (2)H NMR spectra confirmed the axially asymmetric rotational diffusion of cholesterol in DPPC and PSM. Furthermore, NMR spectra indicated that some hydrogens showed an unexpected magnetic inequivalency. This finding was confirmed by all-atom molecular dynamics simulations and detailed analysis revealed that the hydrogens of the methylene groups at C22, C23, and C24 are magnetically inequivalent. This inequivalency is caused by steric clashes of the aliphatic side chain with the ring structure of cholesterol as well as the branched C21 methyl group. These excluded volume effects result in reduced conformational flexibility of the aliphatic side chain of cholesterol and explain its high order (order parameter of 0.78 for chain motions) and large contribution to the condensation effect. Additionally, the motional pattern of the side chain becomes highly anisotropic such that it shows larger fluctuations perpendicular to the ring plane of cholesterol with a biaxiality of the

  7. Coarse-Grained Molecular Dynamics: Dissipation Due to Internal Modes

    SciTech Connect

    Rudd, R E

    2001-12-21

    We describe progress on the issue of pathological elastic wave reflection in atomistic and multiscale simulation. First we briefly review Coarse-Grained Molecular Dynamics (CGMD). Originally CGMD was formulated as a Hamiltonian system in which energy is conserved. This formulation is useful for many applications, but recently CGMD has been extended to include generalized Langevin forces. Here we describe how Langevin dynamics arise naturally in CGMD, and we examine the implication for elastic wave scattering.

  8. Plastic dislocation motion via nonequilibrium molecular and continuum dynamics

    SciTech Connect

    Hoover, W.G.; Ladd, A.J.C.; Hoover, N.E.

    1980-09-29

    The classical two-dimensional close-packed triangular lattice, with nearest-neighbor spring forces, is a convenient standard material for the investigation of dislocation motion and plastic flow. Two kinds of calculations, based on this standard material, are described here: (1) Molecular Dynamics simulations, incorporating adiabatic strains described with the help of Doll's Tensor, and (2) Continuum Dynamics simulations, incorporating periodic boundaries and dislocation interaction through stress-field superposition.

  9. Input File Creation for the Molecular Dynamics Program LAMMPS.

    2001-05-30

    The program creates an input data file for the molecular dynamics program LAMMPS. The input file created is a liquid mixture between two walls explicitly composed of particles. The liquid molecules are modeled as a bead-spring molecule. The input data file specifies the position and topology of the starting state. The data structure of input allows for dynamic bond creation (cross-linking) within the LAMMPS code.

  10. Imaging the molecular dynamics of dissociative electron attachment to water

    SciTech Connect

    Adaniya, Hidihito; Rudek, B.; Osipov, Timur; Haxton, Dan; Weber, Thorsten; Rescigno, Thomas N.; McCurdy, C.W.; Belkacem, Ali

    2009-10-19

    Momentum imaging experiments on dissociative electron attachment to the water molecule are combined with ab initio theoretical calculations of the angular dependence of the quantum mechanical amplitude for electron attachment to provide a detailed picture of the molecular dynamics of dissociation attachment via the two lowest energy Feshbach resonances. The combination of momentum imaging experiments and theory can reveal dissociation dynamics for which the axial recoil approximation breaks down and thus provides a powerful reaction microscope for DEA to polyatomics.

  11. Parallel Molecular Dynamics Stencil : a new parallel computing environment for a large-scale molecular dynamics simulation of solids

    NASA Astrophysics Data System (ADS)

    Shimizu, Futoshi; Kimizuka, Hajime; Kaburaki, Hideo

    2002-08-01

    A new parallel computing environment, called as ``Parallel Molecular Dynamics Stencil'', has been developed to carry out a large-scale short-range molecular dynamics simulation of solids. The stencil is written in C language using MPI for parallelization and designed successfully to separate and conceal parts of the programs describing cutoff schemes and parallel algorithms for data communication. This has been made possible by introducing the concept of image atoms. Therefore, only a sequential programming of the force calculation routine is required for executing the stencil in parallel environment. Typical molecular dynamics routines, such as various ensembles, time integration methods, and empirical potentials, have been implemented in the stencil. In the presentation, the performance of the stencil on parallel computers of Hitachi, IBM, SGI, and PC-cluster using the models of Lennard-Jones and the EAM type potentials for fracture problem will be reported.

  12. Molecular dynamics simulations of n-hexane at 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide interface

    SciTech Connect

    Lisal, Martin; Izak, Pavel

    2013-07-07

    Molecular dynamics simulations of n-hexane adsorbed onto the interface of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf{sub 2}N]) are performed at three n-hexane surface densities, ranged from 0.7 to 2.3 {mu}mol/m{sup 2} at 300 K. For [bmim][Tf{sub 2}N] room-temperature ionic liquid, we use a non-polarizable all-atom force field with the partial atomic charges based on ab initio calculations for the isolated ion pair. The net charges of the ions are {+-}0.89e, which mimics the anion to cation charge transfer and polarization effects. The OPLS-AA force field is employed for modeling of n-hexane. The surface tension is computed using the mechanical route and its value decreases with increase of the n-hexane surface density. The [bmim][Tf{sub 2}N]/n-hexane interface is analyzed using the intrinsic method, and the structural and dynamic properties of the interfacial, sub-interfacial, and central layers are computed. We determine the surface roughness, global and intrinsic density profiles, and orientation ordering of the molecules to describe the structure of the interface. We further compute the survival probability, normal and lateral self-diffusion coefficients, and re-orientation correlation functions to elucidate the effects of n-hexane on dynamics of the cations and anions in the layers.

  13. Thermostatted molecular dynamics: How to avoid the Toda demon hidden in Nose-Hoover dynamics

    SciTech Connect

    Holian, B.L.; Voter, A.F.; Ravelo, R.

    1995-09-01

    The Nose-Hoover thermostat, which is often used in the hope of modifying molecular dynamics trajectories in order to achieve canonical-ensemble averages, has hidden in it a Toda ``demon,`` which can give rise to unwanted, noncanonical undulations in the instantaneous kinetic temperature. We show how these long-lived oscillations arise from insufficient coupling of the thermostat to the atoms, and give straightforward, practical procedures for avoiding this weak-coupling pathology in isothermal molecular dynamics simulations.

  14. Molecular circuits for dynamic noise filtering.

    PubMed

    Zechner, Christoph; Seelig, Georg; Rullan, Marc; Khammash, Mustafa

    2016-04-26

    The invention of the Kalman filter is a crowning achievement of filtering theory-one that has revolutionized technology in countless ways. By dealing effectively with noise, the Kalman filter has enabled various applications in positioning, navigation, control, and telecommunications. In the emerging field of synthetic biology, noise and context dependency are among the key challenges facing the successful implementation of reliable, complex, and scalable synthetic circuits. Although substantial further advancement in the field may very well rely on effectively addressing these issues, a principled protocol to deal with noise-as provided by the Kalman filter-remains completely missing. Here we develop an optimal filtering theory that is suitable for noisy biochemical networks. We show how the resulting filters can be implemented at the molecular level and provide various simulations related to estimation, system identification, and noise cancellation problems. We demonstrate our approach in vitro using DNA strand displacement cascades as well as in vivo using flow cytometry measurements of a light-inducible circuit in Escherichia coli. PMID:27078094

  15. Quantum dynamics of light-driven chiral molecular motors.

    PubMed

    Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi

    2009-03-21

    The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses. PMID:19290336

  16. Simplified protein models can rival all atom simulations in predicting folding pathways and structure

    PubMed Central

    Adhikari, Aashish N.; Freed, Karl F.; Sosnick, Tobin R.

    2014-01-01

    We demonstrate the ability of simultaneously determining a protein’s folding pathway and structure using a properly formulated model without prior knowledge of the native structure. Our model employs a natural coordinate system for describing proteins and a search strategy inspired by the observation that real proteins fold in a sequential fashion by incrementally stabilizing native-like substructures or "foldons". Comparable folding pathways and structures are obtained for the twelve proteins recently studied using atomistic molecular dynamics simulations [K. Lindorff-Larsen, S. Piana, R.O. Dror, D. E. Shaw, Science 334, 517 (2011)], with our calculations running several orders of magnitude faster. We find that native-like propensities in the unfolded state do not necessarily determine the order of structure formation, a departure from a major conclusion of the MD study. Instead, our results support a more expansive view wherein intrinsic local structural propensities may be enhanced or overridden in the folding process by environmental context. The success of our search strategy validates it as an expedient mechanism for folding both in silico and in vivo. PMID:23889448

  17. Probing Molecular Dynamics by Laser-Induced Backscattering Holography.

    PubMed

    Haertelt, Marko; Bian, Xue-Bin; Spanner, Michael; Staudte, André; Corkum, Paul B

    2016-04-01

    We use differential holography to overcome the forward scattering problem in strong-field photoelectron holography. Our differential holograms of H_{2} and D_{2} molecules exhibit a fishbonelike structure, which arises from the backscattered part of the recolliding photoelectron wave packet. We demonstrate that the backscattering hologram can resolve the different nuclear dynamics between H_{2} and D_{2} with subangstrom spatial and subcycle temporal resolution. In addition, we show that attosecond electron dynamics can be resolved. These results open a new avenue for ultrafast studies of molecular dynamics in small molecules. PMID:27081975

  18. Probing Molecular Dynamics by Laser-Induced Backscattering Holography

    NASA Astrophysics Data System (ADS)

    Haertelt, Marko; Bian, Xue-Bin; Spanner, Michael; Staudte, André; Corkum, Paul B.

    2016-04-01

    We use differential holography to overcome the forward scattering problem in strong-field photoelectron holography. Our differential holograms of H2 and D2 molecules exhibit a fishbonelike structure, which arises from the backscattered part of the recolliding photoelectron wave packet. We demonstrate that the backscattering hologram can resolve the different nuclear dynamics between H2 and D2 with subangstrom spatial and subcycle temporal resolution. In addition, we show that attosecond electron dynamics can be resolved. These results open a new avenue for ultrafast studies of molecular dynamics in small molecules.

  19. Optimizing legacy molecular dynamics software with directive-based offload

    NASA Astrophysics Data System (ADS)

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-10-01

    Directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In this paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMPS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel® Xeon Phi™ coprocessors and NVIDIA GPUs. The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS.

  20. Open boundary molecular dynamics of sheared star-polymer melts.

    PubMed

    Sablić, Jurij; Praprotnik, Matej; Delgado-Buscalioni, Rafael

    2016-02-28

    Open boundary molecular dynamics (OBMD) simulations of a sheared star polymer melt under isothermal conditions are performed to study the rheology and molecular structure of the melt under a fixed normal load. Comparison is made with the standard molecular dynamics (MD) in periodic (closed) boxes at a fixed shear rate (using the SLLOD dynamics). The OBMD system exchanges mass and momentum with adjacent reservoirs (buffers) where the external pressure tensor is imposed. Insertion of molecules in the buffers is made feasible by implementing there a low resolution model (blob-molecules with soft effective interactions) and then using the adaptive resolution scheme (AdResS) to connect with the bulk MD. Straining with increasing shear stress induces melt expansion and a significantly different redistribution of pressure compared with the closed case. In the open sample, the shear viscosity is also a bit lowered but more stable against the viscous heating. At a given Weissenberg number, molecular deformations and material properties (recoverable shear strain and normal stress ratio) are found to be similar in both setups. We also study the modelling effect of normal and tangential friction between monomers implemented in a dissipative particle dynamics (DPD) thermostat. Interestingly, the tangential friction substantially enhances the elastic response of the melt due to a reduction of the kinetic stress viscous contribution. PMID:26820315

  1. Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments

    PubMed Central

    De Paris, Renata; Quevedo, Christian V.; Ruiz, Duncan D.; Norberto de Souza, Osmar; Barros, Rodrigo C.

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944

  2. Reasoning with Atomic-Scale Molecular Dynamic Models

    ERIC Educational Resources Information Center

    Pallant, Amy; Tinker, Robert F.

    2004-01-01

    The studies reported in this paper are an initial effort to explore the applicability of computational models in introductory science learning. Two instructional interventions are described that use a molecular dynamics model embedded in a set of online learning activities with middle and high school students in 10 classrooms. The studies indicate…

  3. Molecular dynamics simulation of size segregation in three dimensions

    NASA Astrophysics Data System (ADS)

    Gallas, Jason A. C.; Herrmann, Hans J.; Pöschel, Thorsten; Sokołowski, Stefan

    1996-01-01

    We report the first three-dimensional molecular dynamics simulation of particle segregation by shaking. Two different containers are considered: one cylindrical and another with periodic boundary conditions. The dependence of the time evolution of a test particle inside the material is studied as a function of the shaking frequency and amplitude, damping coefficients, and dispersivity.

  4. Quantum Molecular Dynamics Simulations of Nanotube Tip Assisted Reactions

    NASA Technical Reports Server (NTRS)

    Menon, Madhu

    1998-01-01

    In this report we detail the development and application of an efficient quantum molecular dynamics computational algorithm and its application to the nanotube-tip assisted reactions on silicon and diamond surfaces. The calculations shed interesting insights into the microscopic picture of tip surface interactions.

  5. Clustering molecular dynamics trajectories for optimizing docking experiments.

    PubMed

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.

  6. Clustering molecular dynamics trajectories for optimizing docking experiments.

    PubMed

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944

  7. Optimizing legacy molecular dynamics software with directive-based offload

    SciTech Connect

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-05-14

    The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.

  8. Optimizing legacy molecular dynamics software with directive-based offload

    DOE PAGES

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-05-14

    The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also resultmore » in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.« less

  9. Rational Prediction with Molecular Dynamics for Hit Identification

    PubMed Central

    Nichols, Sara E; Swift, Robert V; Amaro, Rommie E

    2012-01-01

    Although the motions of proteins are fundamental for their function, for pragmatic reasons, the consideration of protein elasticity has traditionally been neglected in drug discovery and design. This review details protein motion, its relevance to biomolecular interactions and how it can be sampled using molecular dynamics simulations. Within this context, two major areas of research in structure-based prediction that can benefit from considering protein flexibility, binding site detection and molecular docking, are discussed. Basic classification metrics and statistical analysis techniques, which can facilitate performance analysis, are also reviewed. With hardware and software advances, molecular dynamics in combination with traditional structure-based prediction methods can potentially reduce the time and costs involved in the hit identification pipeline. PMID:23110535

  10. Diversity dynamics: molecular phylogenies need the fossil record.

    PubMed

    Quental, Tiago B; Marshall, Charles R

    2010-08-01

    Over the last two decades, new tools in the analysis of molecular phylogenies have enabled study of the diversification dynamics of living clades in the absence of information about extinct lineages. However, computer simulations and the fossil record show that the inability to access extinct lineages severely limits the inferences that can be drawn from molecular phylogenies. It appears that molecular phylogenies can tell us only when there have been changes in diversification rates, but are blind to the true diversity trajectories and rates of origination and extinction that have led to the species that are alive today. We need to embrace the fossil record if we want to fully understand the diversity dynamics of the living biota. PMID:20646780

  11. Collisional dynamics in a gas of molecular super-rotors.

    PubMed

    Khodorkovsky, Yuri; Steinitz, Uri; Hartmann, Jean-Michel; Averbukh, Ilya Sh

    2015-01-01

    Recently, femtosecond laser techniques have been developed that are capable of bringing gas molecules to extremely fast rotation in a very short time, while keeping their translational motion relatively slow. Here we study collisional equilibration dynamics of this new state of molecular gases. We show that the route to equilibrium starts with a metastable 'gyroscopic stage' in the course of which the molecules maintain their fast rotation and orientation of the angular momentum through many collisions. The inhibited rotational-translational relaxation is characterized by a persistent anisotropy in the molecular angular distribution, and is manifested in the optical birefringence and anisotropic diffusion in the gas. After a certain induction time, the 'gyroscopic stage' is abruptly terminated by an explosive rotational-translational energy exchange, leading the gas towards the final equilibrium. We illustrate our conclusions by direct molecular dynamics simulation of several gases of linear molecules. PMID:26160223

  12. Collisional dynamics in a gas of molecular super-rotors

    PubMed Central

    Khodorkovsky, Yuri; Steinitz, Uri; Hartmann, Jean-Michel; Averbukh, Ilya Sh.

    2015-01-01

    Recently, femtosecond laser techniques have been developed that are capable of bringing gas molecules to extremely fast rotation in a very short time, while keeping their translational motion relatively slow. Here we study collisional equilibration dynamics of this new state of molecular gases. We show that the route to equilibrium starts with a metastable ‘gyroscopic stage' in the course of which the molecules maintain their fast rotation and orientation of the angular momentum through many collisions. The inhibited rotational–translational relaxation is characterized by a persistent anisotropy in the molecular angular distribution, and is manifested in the optical birefringence and anisotropic diffusion in the gas. After a certain induction time, the ‘gyroscopic stage' is abruptly terminated by an explosive rotational–translational energy exchange, leading the gas towards the final equilibrium. We illustrate our conclusions by direct molecular dynamics simulation of several gases of linear molecules. PMID:26160223

  13. Nonadiabatic molecular dynamics simulations: synergies between theory and experiments.

    PubMed

    Tavernelli, Ivano

    2015-03-17

    Recent developments in nonadiabatic dynamics enabled ab inito simulations of complex ultrafast processes in the condensed phase. These advances have opened new avenues in the study of many photophysical and photochemical reactions triggered by the absorption of electromagnetic radiation. In particular, theoretical investigations can be combined with the most sophisticated femtosecond experimental techniques to guide the interpretation of measured time-resolved observables. At the same time, the availability of experimental data at high (spatial and time) resolution offers a unique opportunity for the benchmarking and the improvement of those theoretical models used to describe complex molecular systems in their natural environment. The established synergy between theory and experiments can produce a better understanding of new ultrafast physical and chemical processes at atomistic scale resolution. Furthermore, reliable ab inito molecular dynamics simulations can already be successfully employed as predictive tools to guide new experiments as well as the design of novel and better performing materials. In this paper, I will give a concise account on the state of the art of molecular dynamics simulations of complex molecular systems in their excited states. The principal aim of this approach is the description of a given system of interest under the most realistic ambient conditions including all environmental effects that influence experiments, for instance, the interaction with the solvent and with external time-dependent electric fields, temperature, and pressure. To this end, time-dependent density functional theory (TDDFT) is among the most efficient and accurate methods for the representation of the electronic dynamics, while trajectory surface hopping gives a valuable representation of the nuclear quantum dynamics in the excited states (including nonadiabatic effects). Concerning the environment and its effects on the dynamics, the quantum mechanics/molecular

  14. Nonadiabatic molecular dynamics simulations: synergies between theory and experiments.

    PubMed

    Tavernelli, Ivano

    2015-03-17

    Recent developments in nonadiabatic dynamics enabled ab inito simulations of complex ultrafast processes in the condensed phase. These advances have opened new avenues in the study of many photophysical and photochemical reactions triggered by the absorption of electromagnetic radiation. In particular, theoretical investigations can be combined with the most sophisticated femtosecond experimental techniques to guide the interpretation of measured time-resolved observables. At the same time, the availability of experimental data at high (spatial and time) resolution offers a unique opportunity for the benchmarking and the improvement of those theoretical models used to describe complex molecular systems in their natural environment. The established synergy between theory and experiments can produce a better understanding of new ultrafast physical and chemical processes at atomistic scale resolution. Furthermore, reliable ab inito molecular dynamics simulations can already be successfully employed as predictive tools to guide new experiments as well as the design of novel and better performing materials. In this paper, I will give a concise account on the state of the art of molecular dynamics simulations of complex molecular systems in their excited states. The principal aim of this approach is the description of a given system of interest under the most realistic ambient conditions including all environmental effects that influence experiments, for instance, the interaction with the solvent and with external time-dependent electric fields, temperature, and pressure. To this end, time-dependent density functional theory (TDDFT) is among the most efficient and accurate methods for the representation of the electronic dynamics, while trajectory surface hopping gives a valuable representation of the nuclear quantum dynamics in the excited states (including nonadiabatic effects). Concerning the environment and its effects on the dynamics, the quantum mechanics/molecular

  15. Effect of ionic aqueous environments on the structure and dynamics of the Aβ(21-30) fragment: a molecular-dynamics study.

    PubMed

    Smith, Micholas Dean; Cruz, Luis

    2013-06-01

    The amyloid β-protein (Aβ) has been implicated in the pathogenesis of Alzheimer's disease. The role of the structure and dynamics of the central Aβ21-30 decapeptide region of the full-length Aβ is considered crucial in the aggregation pathway of Aβ. Here we report results of isobaric-isothermal (NPT) all-atom explicit water molecular dynamics simulations of the monomeric form of the wild-type Aβ21-30 fragment in aqueous salt environments formed by neurobiologically important group IA (NaCl, KCl) and group IIA (CaCl2, MgCl2) salts. Our simulations reveal the existence of salt-specific changes to secondary structure propensities, lifetimes, hydrogen bonding, salt-bridge formation, and decapeptide-ion contacts of this decapeptide. These results suggest that aqueous environments with the CaCl2 salt, and to a much lesser extent the MgCl2 salt, have profound effects by increasing random coil structure propensities and lifetimes and diminishing intrapeptide hydrogen bonding. These effects are rationalized in terms of direct cation-decapeptide contacts and changes to the hydration-shell water molecules. On the other side of the spectrum, environments with the NaCl and KCl salts have little influence on the decapeptide's secondary structure despite increasing hydrogen bonding, salt-bridge formation, and lifetime of turn structures. The observed enhancement of open structures by group IIA may be of importance in the folding and aggregation pathway of the full-length Aβ.

  16. Ab initio molecular dynamics: Concepts, recent developments, and future trends

    PubMed Central

    Iftimie, Radu; Minary, Peter; Tuckerman, Mark E.

    2005-01-01

    The methodology of ab initio molecular dynamics, wherein finite-temperature dynamical trajectories are generated by using forces computed “on the fly” from electronic structure calculations, has had a profound influence in modern theoretical research. Ab initio molecular dynamics allows chemical processes in condensed phases to be studied in an accurate and unbiased manner, leading to new paradigms in the elucidation of microscopic mechanisms, rationalization of experimental data, and testable predictions of new phenomena. The purpose of this work is to give a brief introduction to the technique and to review several important recent developments in the field. Several illustrative examples showing the power of the technique have been chosen. Perspectives on future directions in the field also will be given. PMID:15870204

  17. Molecular Dynamics Simulations of Lignin Peroxidase in Solution

    PubMed Central

    Francesca Gerini, M.; Roccatano, Danilo; Baciocchi, Enrico; Nola, Alfredo Di

    2003-01-01

    The dynamical and structural properties of lignin peroxidase and its Trp171Ala mutant have been investigated in aqueous solution using molecular dynamics (MD) simulations. In both cases, the enzyme retained its overall backbone structure and all its noncovalent interactions in the course of the MD simulations. Very interestingly, the analysis of the MD trajectories showed the presence of large fluctuations in correspondence of the residues forming the heme access channel; these movements enlarge the opening and facilitate the access of substrates to the enzyme active site. Moreover, steered molecular dynamics docking simulations have shown that lignin peroxidase natural substrate (veratryl alcohol) can easily approach the heme edge through the access channel. PMID:12770894

  18. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry.

    PubMed

    Li, Jianwei; Nowak, Piotr; Otto, Sijbren

    2013-06-26

    Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines.

  19. Accelerating All-Atom MD Simulations of Lipids Using a Modified Virtual-Sites Technique.

    PubMed

    Loubet, Bastien; Kopec, Wojciech; Khandelia, Himanshu

    2014-12-01

    We present two new implementations of the virtual sites technique which completely suppresses the degrees of freedom of the hydrogen atoms in a lipid bilayer allowing for an increased time step of 5 fs in all-atom simulations of the CHARMM36 force field. One of our approaches uses the derivation of the virtual sites used in GROMACS while the other uses a new definition of the virtual sites of the CH2 groups. Our methods is tested on a DPPC (no unsaturated chain), a POPC (one unsaturated chain), and a DOPC (two unsaturated chains) lipid bilayers. We calculate various physical properties of the membrane of our simulations with and without virtual sites and explain the differences and similarity observed. The best agreements are obtained for the GROMACS original virtual sites on the DOPC bilayer where we get an area per lipid of 67.3 ± 0.3 Å(2) without virtual sites and 67.6 ± 0.3 Å(2) with virtual sites. In conclusion the virtual-sites technique on lipid membranes is a powerful simulation tool, but it should be used with care. The procedure can be applied to other force fields and lipids in a straightforward manner.

  20. Examining the origins of the hydration force between lipid bilayers using all-atom simulations.

    PubMed

    Gentilcore, Anastasia N; Michaud-Agrawal, Naveen; Crozier, Paul S; Stevens, Mark J; Woolf, Thomas B

    2010-05-01

    Using 237 all-atom double bilayer simulations, we examined the thermodynamic and structural changes that occur as a phosphatidylcholine lipid bilayer stack is dehydrated. The simulated system represents a micropatch of lipid multilayer systems that are studied experimentally using surface force apparatus, atomic force microscopy and osmotic pressure studies. In these experiments, the hydration level of the system is varied, changing the separation between the bilayers, in order to understand the forces that the bilayers feel as they are brought together. These studies have found a curious, strongly repulsive force when the bilayers are very close to each other, which has been termed the "hydration force," though the origins of this force are not clearly understood. We computationally reproduce this repulsive, relatively free energy change as bilayers come together and make qualitative conclusions as to the enthalpic and entropic origins of the free energy change. This analysis is supported by data showing structural changes in the waters, lipids and salts that have also been seen in experimental work. Increases in solvent ordering as the bilayers are dehydrated are found to be essential in causing the repulsion as the bilayers come together.

  1. Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration.

    PubMed

    Maciejewski, Arkadiusz; Pasenkiewicz-Gierula, Marta; Cramariuc, Oana; Vattulainen, Ilpo; Rog, Tomasz

    2014-05-01

    We report parametrization of dipalmitoyl-phosphatidylcholine (DPPC) in the framework of the Optimized Parameters for Liquid Simulations all-atom (OPLS-AA) force field. We chose DPPC as it is one of the most studied phospholipid species and thus has plenty of experimental data necessary for model validation, and it is also one of the highly important and abundant lipid types, e.g., in lung surfactant. Overall, PCs have not been previously parametrized in the OPLS-AA force field; thus, there is a need to derive its bonding and nonbonding parameters for both the polar and nonpolar parts of the molecule. In the present study, we determined the parameters for torsion angles in the phosphatidylcholine and glycerol moieties and in the acyl chains, as well the partial atomic charges. In these calculations, we used three methods: (1) Hartree-Fock (HF), (2) second order Møller-Plesset perturbation theory (MP2), and (3) density functional theory (DFT). We also tested the effect of the polar environment by using the polarizable continuum model (PCM), and for acyl chains the van der Waals parameters were also adjusted. In effect, six parameter sets were generated and tested on a DPPC bilayer. Out of these six sets, only one was found to be able to satisfactorily reproduce experimental data for the lipid bilayer. The successful DPPC model was obtained from MP2 calculations in an implicit polar environment (PCM). PMID:24745688

  2. Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration.

    PubMed

    Maciejewski, Arkadiusz; Pasenkiewicz-Gierula, Marta; Cramariuc, Oana; Vattulainen, Ilpo; Rog, Tomasz

    2014-05-01

    We report parametrization of dipalmitoyl-phosphatidylcholine (DPPC) in the framework of the Optimized Parameters for Liquid Simulations all-atom (OPLS-AA) force field. We chose DPPC as it is one of the most studied phospholipid species and thus has plenty of experimental data necessary for model validation, and it is also one of the highly important and abundant lipid types, e.g., in lung surfactant. Overall, PCs have not been previously parametrized in the OPLS-AA force field; thus, there is a need to derive its bonding and nonbonding parameters for both the polar and nonpolar parts of the molecule. In the present study, we determined the parameters for torsion angles in the phosphatidylcholine and glycerol moieties and in the acyl chains, as well the partial atomic charges. In these calculations, we used three methods: (1) Hartree-Fock (HF), (2) second order Møller-Plesset perturbation theory (MP2), and (3) density functional theory (DFT). We also tested the effect of the polar environment by using the polarizable continuum model (PCM), and for acyl chains the van der Waals parameters were also adjusted. In effect, six parameter sets were generated and tested on a DPPC bilayer. Out of these six sets, only one was found to be able to satisfactorily reproduce experimental data for the lipid bilayer. The successful DPPC model was obtained from MP2 calculations in an implicit polar environment (PCM).

  3. GAS PHASE MOLECULAR DYNAMICS: HIGH-RESOLUTION SPECTROSCOPIC PROBES OF CHEMICAL DYNAMICS.

    SciTech Connect

    HALL, G.E.

    2006-05-30

    This research is carried out as part of the Gas Phase Molecular Dynamics group program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopic tools are developed and applied to problems in chemical dynamics. Recent topics have included the state-resolved studies of collision-induced electronic energy transfer, dynamics of barrierless unimolecular reactions, and the kinetics and spectroscopy of transient species.

  4. A random rotor molecule: Vibrational analysis and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zhang, Rui-Qin; Shi, Xing-Qiang; Lin, Zijing; Van Hove, Michel A.

    2012-12-01

    Molecular structures that permit intramolecular rotational motion have the potential to function as molecular rotors. We have employed density functional theory and vibrational frequency analysis to study the characteristic structure and vibrational behavior of the molecule (4',4″″-(bicyclo[2,2,2]octane-1,4-diyldi-4,1-phenylene)-bis-2,2':6',2″-terpyridine. IR active vibrational modes were found that favor intramolecular rotation. To demonstrate the rotor behavior of the isolated single molecule, ab initio molecular dynamics simulations at various temperatures were carried out. This molecular rotor is expected to be thermally triggered via excitation of specific vibrational modes, which implies randomness in its direction of rotation.

  5. Laser-enhanced dynamics in molecular rate processes

    NASA Technical Reports Server (NTRS)

    George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.

    1978-01-01

    The present discussion deals with some theoretical aspects associated with the description of molecular rate processes in the presence of intense laser radiation, where the radiation actually interacts with the molecular dynamics. Whereas for weak and even moderately intense radiation, the absorption and stimulated emission of photons by a molecular system can be described by perturbative methods, for intense radiation, perturbation theory is usually not adequate. Limiting the analysis to the gas phase, an attempt is made to describe nonperturbative approaches applicable to the description of such processes (in the presence of intense laser radiation) as electronic energy transfer in molecular (in particular atom-atom) collisions; collision-induced ionization and emission; and unimolecular dissociation.

  6. Molecular dynamics computer simulation of permeation in solids

    SciTech Connect

    Pohl, P.I.; Heffelfinger, G.S.; Fisler, D.K.; Ford, D.M.

    1997-12-31

    In this work the authors simulate permeation of gases and cations in solid models using molecular mechanics and a dual control volume grand canonical molecular dynamics technique. The molecular sieving nature of microporous zeolites are discussed and compared with that for amorphous silica made by sol-gel methods. One mesoporous and one microporous membrane model are tested with Lennard-Jones gases corresponding to He, H{sub 2}, Ar and CH{sub 4}. The mesoporous membrane model clearly follows a Knudsen diffusion mechanism, while the microporous model having a hard-sphere cutoff pore diameter of {approximately}3.4 {angstrom} demonstrates molecular sieving of the methane ({sigma} = 3.8 {angstrom}) but anomalous behavior for Ar ({sigma} = 3.4 {angstrom}). Preliminary results of Ca{sup +} diffusion in calcite and He/H{sub 2} diffusion in polyisobutylene are also presented.

  7. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    SciTech Connect

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-11-14

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.

  8. Molecular dynamics methods to predict peptide locations in membranes: LAH4 as a stringent test case.

    PubMed

    Farrotti, A; Bocchinfuso, G; Palleschi, A; Rosato, N; Salnikov, E S; Voievoda, N; Bechinger, B; Stella, L

    2015-02-01

    Determining the structure of membrane-active peptides inside lipid bilayers is essential to understand their mechanism of action. Molecular dynamics simulations can easily provide atomistic details, but need experimental validation. We assessed the reliability of self-assembling (or "minimum-bias") and potential of mean force (PMF) approaches, using all-atom (AA) and coarse-grained (CG) force-fields. The LAH4 peptide was selected as a stringent test case, since it is known to attain different orientations depending on the protonation state of its four histidine residues. In all simulations the histidine side-chains inserted in the membrane when neutral, while they interacted with phospholipid headgroups in their charged state. This led to transmembrane orientations for neutral-His LAH4 in all minimum-bias AA simulations and in most CG trajectories. By contrast, the charged-His peptide stabilized membrane defects in AA simulations, whereas it was located at the membrane surface in some CG trajectories, and interacted with both lipid leaflets in others. This behavior is consistent with the higher antimicrobial activity and membrane-permeabilizing behavior of the charged-His LAH4. In addition, good agreement with solid-state NMR orientational data was observed in AA simulations. PMF calculations correctly predicted a higher membrane affinity for the neutral-His peptide. Interestingly, the structures and relative populations of PMF local free-energy minima corresponded to those determined in the less computationally demanding minimum-bias simulations. These data provide an indication about the possible membrane-perturbation mechanism of the charged-His LAH4 peptide: by interacting with lipid headgroups of both leaflets through its cationic side-chains, it could favor membrane defects and facilitate translocation across the bilayer. PMID:25445672

  9. The role of phosphorylation in dentin phosphoprotein peptide absorption to hydroxyapatite surfaces: a molecular dynamics study.

    PubMed

    Villarreal-Ramirez, Eduardo; Garduño-Juarez, Ramón; Gericke, Arne; Boskey, Adele

    2014-08-01

    Dentin phosphoprotein (DPP) is a protein expressed mainly in dentin and to a lesser extent in bone. DPP has a disordered structure, rich in glutamic acid, aspartic acid and phosphorylated serine/threonine residues. It has a high capacity for binding to calcium ions and to hydroxyapatite (HA) crystal surfaces. We used molecular dynamics (MD) simulations as a method for virtually screening interactions between DPP motifs and HA. The goal was to determine which motifs are absorbed to HA surfaces. For these simulations, we considered five peptides from the human DPP sequence. All-atom MD simulations were performed using GROMACS, the peptides were oriented parallel to the {100} HA crystal surface, the distance between the HA and the peptide was 3 nm. The system was simulated for 20 ns. Preliminary results show that for the unphosphorylated peptides, the acidic amino acids present an electrostatic attraction where their side chains are oriented towards HA. This attraction, however, is slow to facilitate bulk transport to the crystal surface. On the other hand, the phosphorylated (PP) peptides are rapidly absorbed on the surface of the HA with their centers of mass closer to the HA surface. More importantly, the root mean square fluctuation (RMSF) indicates that the average structures of the phosphorylated peptides are very inflexible and elongate, while that of the unphosphorylated peptides are flexible. Radius of gyration (Rg) analysis showed the compactness of un-phosphorylated peptides is lower than phosphorylated peptides. Phosphorylation of the DPP peptides is necessary for binding to HA surfaces.

  10. Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores

    PubMed Central

    2016-01-01

    The integration of local heat sources with solid-state nanopores offers new means for controlling the transmembrane transport of charged biomacromolecules. In the case of electrophoretic transport of DNA, recent experimental studies revealed unexpected temperature dependences of the DNA capture rate, the DNA translocation velocity, and the ionic current blockades produced by the presence of DNA in the nanopore. Here, we report the results of all-atom molecular dynamics simulations that elucidated the effect of temperature on the key microscopic processes governing electric field-driven transport of DNA through nanopores. Mimicking the experimental setup, we simulated the capture and subsequent translocation of short DNA duplexes through a locally heated nanopore at several temperatures and electrolyte conditions. The temperature dependence of ion mobility at the DNA surface was found to cause the dependence of the relative conductance blockades on temperature. To the first order, the effective force on DNA in the nanopore was found to be independent of temperature, despite a considerable reduction of solution viscosity. The temperature dependence of the solution viscosity was found to make DNA translocations faster for a uniformly heated system but not in the case of local heating that does not affect viscosity of solution surrounding the untranslocated part of the molecule. Increasing solution temperature was also found to reduce the lifetime of bonds formed between cations and DNA. Using a flow suppression algorithm, we were able to separate the effects of electro-osmotic flow and direct ion binding, finding the reduced durations of DNA–ion bonds to increase, albeit weakly, the effective force experienced by DNA in an electric field. Unexpectedly, our simulations revealed a considerable temperature dependence of solvent velocity at the DNA surface—slip velocity, an effect that can alter hydrodynamic coupling between the motion of DNA and the surrounding fluid

  11. Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores.

    PubMed

    Belkin, Maxim; Aksimentiev, Aleksei

    2016-05-25

    The integration of local heat sources with solid-state nanopores offers new means for controlling the transmembrane transport of charged biomacromolecules. In the case of electrophoretic transport of DNA, recent experimental studies revealed unexpected temperature dependences of the DNA capture rate, the DNA translocation velocity, and the ionic current blockades produced by the presence of DNA in the nanopore. Here, we report the results of all-atom molecular dynamics simulations that elucidated the effect of temperature on the key microscopic processes governing electric field-driven transport of DNA through nanopores. Mimicking the experimental setup, we simulated the capture and subsequent translocation of short DNA duplexes through a locally heated nanopore at several temperatures and electrolyte conditions. The temperature dependence of ion mobility at the DNA surface was found to cause the dependence of the relative conductance blockades on temperature. To the first order, the effective force on DNA in the nanopore was found to be independent of temperature, despite a considerable reduction of solution viscosity. The temperature dependence of the solution viscosity was found to make DNA translocations faster for a uniformly heated system but not in the case of local heating that does not affect viscosity of solution surrounding the untranslocated part of the molecule. Increasing solution temperature was also found to reduce the lifetime of bonds formed between cations and DNA. Using a flow suppression algorithm, we were able to separate the effects of electro-osmotic flow and direct ion binding, finding the reduced durations of DNA-ion bonds to increase, albeit weakly, the effective force experienced by DNA in an electric field. Unexpectedly, our simulations revealed a considerable temperature dependence of solvent velocity at the DNA surface-slip velocity, an effect that can alter hydrodynamic coupling between the motion of DNA and the surrounding fluid

  12. Molecular dynamics simulation of rotational relaxation in nitrogen: Implications for rotational collision number models

    NASA Astrophysics Data System (ADS)

    Valentini, Paolo; Zhang, Chonglin; Schwartzentruber, Thomas E.

    2012-10-01

    We study the rotational relaxation process in nitrogen using all-atom molecular dynamics (MD) simulations and direct simulation Monte Carlo (DSMC). The intermolecular model used in the MD simulations is shown to (i) reproduce very well the shear viscosity of nitrogen over a wide range of temperatures, (ii) predict the near-equilibrium rotational collision number in good agreement with published trajectory calculations done on ab initio potential energy surfaces, and (iii) produce shock wave profiles in excellent accordance with the experimental measurements. We find that the rotational relaxation process is dependent not only on the near-equilibrium temperature (i.e., when systems relax to equilibrium after a small perturbation), but more importantly on both the magnitude and direction of the initial deviation from the equilibrium state. The comparison between MD and DSMC, based on the Borgnakke-Larsen model, for shock waves (both at low and high temperatures) and one-dimensional expansions shows that a judicious choice of a constant Zrot can produce DSMC results which are in relatively good agreement with MD. However, the selection of the rotational collision number is case-specific, depending not only on the temperature range, but more importantly on the type of flow (compression or expansion), with significant limitations for more complex simulations characterized both by expansion and compression zones. Parker's model, parametrized for nitrogen, overpredicts Zrot for temperatures above about 300 K. It is also unable to describe the dependence of the relaxation process on the direction to equilibrium. Finally, we present a demonstrative cell-based formulation of a rotational relaxation model to illustrate how, by including the key physics obtained from the MD data (dependence of the relaxation process on both the rotational and the translational state of the gas), the agreement between MD and DSMC solutions is drastically improved.

  13. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions.

    PubMed

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-11-14

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved-up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages. PMID:26567653

  14. Folding simulations of gramicidin A into the beta-helix conformations: Simulated annealing molecular dynamics study.

    PubMed

    Mori, Takaharu; Okamoto, Yuko

    2009-10-28

    Gramicidin A is a linear hydrophobic 15-residue peptide which consists of alternating D- and L-amino acids and forms a unique tertiary structure, called the beta(6.3)-helix, to act as a cation-selective ion channel in the natural conditions. In order to investigate the intrinsic ability of the gramicidin A monomer to form secondary structures, we performed the folding simulation of gramicidin A using a simulated annealing molecular dynamics (MD) method in vacuum mimicking the low-dielectric, homogeneous membrane environment. The initial conformation was a fully extended one. From the 200 different MD runs, we obtained a right-handed beta(4.4)-helix as the lowest-potential-energy structure, and left-handed beta(4.4)-helix, right-handed and left-handed beta(6.3)-helix as local-minimum energy states. These results are in accord with those of the experiments of gramicidin A in homogeneous organic solvent. Our simulations showed a slight right-hand sense in the lower-energy conformations and a quite beta-sheet-forming tendency throughout almost the entire sequence. In order to examine the stability of the obtained right-handed beta(6.3)-helix and beta(4.4)-helix structures in more realistic membrane environment, we have also performed all-atom MD simulations in explicit water, ion, and lipid molecules, starting from these beta-helix structures. The results suggested that beta(6.3)-helix is more stable than beta(4.4)-helix in the inhomogeneous, explicit membrane environment, where the pore water and the hydrogen bonds between Trp side-chains and lipid-head groups have a role to further stabilize the beta(6.3)-helix conformation.

  15. Folding simulations of gramicidin A into the β-helix conformations: Simulated annealing molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Mori, Takaharu; Okamoto, Yuko

    2009-10-01

    Gramicidin A is a linear hydrophobic 15-residue peptide which consists of alternating D- and L-amino acids and forms a unique tertiary structure, called the β6.3-helix, to act as a cation-selective ion channel in the natural conditions. In order to investigate the intrinsic ability of the gramicidin A monomer to form secondary structures, we performed the folding simulation of gramicidin A using a simulated annealing molecular dynamics (MD) method in vacuum mimicking the low-dielectric, homogeneous membrane environment. The initial conformation was a fully extended one. From the 200 different MD runs, we obtained a right-handed β4.4-helix as the lowest-potential-energy structure, and left-handed β4.4-helix, right-handed and left-handed β6.3-helix as local-minimum energy states. These results are in accord with those of the experiments of gramicidin A in homogeneous organic solvent. Our simulations showed a slight right-hand sense in the lower-energy conformations and a quite β-sheet-forming tendency throughout almost the entire sequence. In order to examine the stability of the obtained right-handed β6.3-helix and β4.4-helix structures in more realistic membrane environment, we have also performed all-atom MD simulations in explicit water, ion, and lipid molecules, starting from these β-helix structures. The results suggested that β6.3-helix is more stable than β4.4-helix in the inhomogeneous, explicit membrane environment, where the pore water and the hydrogen bonds between Trp side-chains and lipid-head groups have a role to further stabilize the β6.3-helix conformation.

  16. Study on the Characteristics of Gas Molecular Mean Free Path in Nanopores by Molecular Dynamics Simulations

    PubMed Central

    Liu, Qixin; Cai, Zhiyong

    2014-01-01

    This paper presents studies on the characteristics of gas molecular mean free path in nanopores by molecular dynamics simulation. Our study results indicate that the mean free path of all molecules in nanopores depend on both the radius of the nanopore and the gas-solid interaction strength. Besides mean free path of all molecules in the nanopore, this paper highlights the gas molecular mean free path at different positions of the nanopore and the anisotropy of the gas molecular mean free path at nanopores. The molecular mean free path varies with the molecule’s distance from the center of the nanopore. The least value of the mean free path occurs at the wall surface of the nanopore. The present paper found that the gas molecular mean free path is anisotropic when gas is confined in nanopores. The radial gas molecular mean free path is much smaller than the mean free path including all molecular collisions occuring in three directions. Our study results also indicate that when gas is confined in nanopores the gas molecule number density does not affect the gas molecular mean free path in the same way as it does for the gas in unbounded space. These study results may bring new insights into understanding the gas flow’s characteristic at nanoscale. PMID:25046745

  17. Data for molecular dynamics simulations of B-type cytochrome c oxidase with the Amber force field.

    PubMed

    Yang, Longhua; Skjevik, Åge A; Han Du, Wen-Ge; Noodleman, Louis; Walker, Ross C; Götz, Andreas W

    2016-09-01

    Cytochrome c oxidase (CcO) is a vital enzyme that catalyzes the reduction of molecular oxygen to water and pumps protons across mitochondrial and bacterial membranes. This article presents parameters for the cofactors of ba3-type CcO that are compatible with the all-atom Amber ff12SB and ff14SB force fields. Specifically, parameters were developed for the CuA pair, heme b, and the dinuclear center that consists of heme a3 and CuB bridged by a hydroperoxo group. The data includes geometries in XYZ coordinate format for cluster models that were employed to compute proton transfer energies and derive bond parameters and point charges for the force field using density functional theory. Also included are the final parameter files that can be employed with the Amber leap program to generate input files for molecular dynamics simulations with the Amber software package. Based on the high resolution (1.8 Å) X-ray crystal structure of the ba3-type CcO from Thermus thermophilus (Protein Data Bank ID number PDB: 3S8F), we built a model that is embedded in a POPC lipid bilayer membrane and solvated with TIP3P water molecules and counterions. We provide PDB data files of the initial model and the equilibrated model that can be used for further studies. PMID:27547799

  18. Zwitterionic lipid assemblies: Molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field

    PubMed Central

    Shinoda, Wataru; DeVane, Russell; Klein, Michael L.

    2010-01-01

    A new coarse-grained (CG) intermolecular force field is presented for a series of zwitterionic lipids. The model is an extension of our previous work on nonionic surfactants and is designed to reproduce experimental surface/interfacial properties as well as distribution functions from all-atom molecular dynamics (MD) simulations. Using simple functional forms, the force field parameters are optimized for multiple lipid molecules, simultaneously. The resulting CG lipid bilayers have reasonable molecular areas, chain order parameters, and elastic properties. The computed surface pressure vs. area (π-A) curve for a DPPC monolayer demonstrates a significant improvement over the previous CG models. The DPPC monolayer has a longer persistence length than a PEG lipid monolayer, exhibiting a long-lived curved monolayer surface under negative tension. The bud ejected from an oversaturated DPPC monolayer has a large bicelle-like structure, which is different from the micellar bud formed from an oversaturated PEG lipid monolayer. We have successfully observed vesicle formation during CG-MD simulations, starting from an aggregate of DMPC molecules. Depending on the aggregate size, the lipid assembly spontaneously transforms into a closed vesicle or a bicelle. None of the various intermediate structures between these extremes seem to be stable. An attempt to observe fusion of two vesicles through the application of an external adhesion force was not successful. The present CG force field also supports stable multi-lamellar DMPC vesicles. PMID:20438090

  19. Molecular dynamics simulation: A tool for exploration and discovery

    NASA Astrophysics Data System (ADS)

    Rapaport, Dennis C.

    2009-03-01

    The exploratory and didactic aspects of science both benefit from the ever-growing role played by computer simulation. One particularly important simulational approach is the molecular dynamics method, used for studying the nature of matter from the molecular to much larger scales. The effectiveness of molecular dynamics can be enhanced considerably by employing visualization and interactivity during the course of the computation and afterwards, allowing the modeler not only to observe the detailed behavior of the systems simulated in different ways, but also to steer the computations in alternative directions by manipulating parameters that govern the actual behavior. This facilitates the creation of potentially rich simulational environments for examining a multitude of complex phenomena, as well as offering an opportunity for enriching the learning process. A series of relatively advanced examples involving molecular dynamics will be used to demonstrate the value of this approach, in particular, atomistic simulations of spontaneously emergent structured fluid flows (the classic Rayleigh--B'enard and Taylor--Couette problems), supramolecular self-assembly of highly symmetric shell structures (involved in the formation of viral capsids), and that most counterintuitive of phenomena, granular segregation (e.g., axial and radial separation in a rotating cylinder).

  20. Molecular mechanism of the inhibition and remodeling of human islet amyloid polypeptide (hIAPP(1-37)) oligomer by resveratrol from molecular dynamics simulation.

    PubMed

    Wang, Qianqian; Ning, Lulu; Niu, Yuzhen; Liu, Huanxiang; Yao, Xiaojun

    2015-01-01

    Natural polyphenols are one of the most actively investigated categories of amyloid inhibitors, and resveratrol has recently been reported to inhibit and remodel the human islet amyloid polypeptide (hIAPP) oligomers and fibrils. However, the exact mechanism of its action is still unknown, especially for the full-length hIAPP1-37. To this end, we performed all-atom molecular dynamics simulations for hIAPP1-37 pentamer with and without resveratrol. The obtained results show that the binding of resveratrol is able to cause remarkable conformational changes of hIAPP1-37 pentamer, in terms of secondary structures, order degree, and morphology. By clustering analysis, two possible binding sites of resveratrol on the hIAPP1-37 pentamer were found, located at the grooves of the top and bottom surfaces of β-sheet layer, respectively. After the binding free energy calculation and residue energy decomposition, it can be concluded that the bottom site is the more possible one, and that the nonpolar interactions act as the driving force for the binding of hIAPP1-37 to resveratrol. In addition, Arg11 is the most important residue for the binding of resveratrol. The full understanding of inhibitory mechanism of resveratrol on the hIAPP1-37 oligomer, and the identification of its binding sites on this protein are helpful for the future design and discovery of new amyloid inhibitors. PMID:25494644

  1. Counter-ion binding and mobility in the presence of hydrophobic polyions – combining molecular dynamics simulations and NMR

    NASA Astrophysics Data System (ADS)

    Druchok, Maksym; Malikova, Natalie; Rollet, Anne-Laure; Vlachy, Vojko

    2016-06-01

    Counter-ion binding and mobility in aqueous solutions of partially hydrophobic ionene oligoions is studied here by a combination of all-atomic molecular dynamics (MD) simulations and NMR (19F and 81Br nuclei) measurements. We present results for 12, 12-ionenes in the presence of different halide ions (F-, Cl-, Br- and I-), as well as their mixtures; the latter allowing us to probe counter-ion selectivity of these oligoions. We consolidate both structural and dynamic information, in particular simulated radial distribution functions and average residence times of counter-ions in the vicinity of ionenes and NMR data in the form of counter-ion chemical shift and self-diffusion coefficients. On one hand, previously reported enthalpy of dilution and mixing measurements show a reverse counter-ion sequence for 12, 12-ionenes with respect to their less hydrophobic 3, 3- and 6, 6- analogues. On the other hand, the current MD and NMR data, reflecting the counter-ion binding tendencies to the ionene chain, give evidence for the same ordering as that observed by MD for 3, 3-ionenes. This is not seen as a contradiction and can be rationalized on the basis of increasing chain hydrophobicity, which has different consequences for enthalpy and ion-binding. The latter is reflecting free energy changes and as such includes both enthalpic and entropic contributions.

  2. Probing the alpha-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis.

    PubMed

    Guo, Zuojun; Mohanty, Udayan; Noehre, Justin; Sawyer, Tomi K; Sherman, Woody; Krilov, Goran

    2010-04-01

    Reactivation of the p53 cell apoptosis pathway through inhibition of the p53-hDM2 interaction is a viable approach to suppress tumor growth in many human cancers and stabilization of the helical structure of synthetic p53 analogs via a hydrocarbon cross-link (staple) has been found to lead to increased potency and inhibition of protein-protein binding (J. Am. Chem. Soc. 129: 5298). However, details of the structure and dynamic stability of the stapled peptides are not well understood. Here, we use extensive all-atom molecular dynamics simulations to study a series of stapled alpha-helical peptides over a range of temperatures in solution. The peptides are found to exhibit substantial variations in predicted alpha-helical propensities that are in good agreement with the experimental observations. In addition, we find significant variation in local structural flexibility of the peptides with the position of the linker, which appears to be more closely related to the observed differences in activity than the absolute alpha-helical stability. These simulations provide new insights into the design of alpha-helical stapled peptides and the development of potent inhibitors of alpha-helical protein-protein interfaces.

  3. Effects of variation in chain length on ternary polymer electrolyte - Ionic liquid mixture - A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Raju, S. G.; Hariharan, Krishnan S.; Park, Da-Hye; Kang, HyoRang; Kolake, Subramanya Mayya

    2015-10-01

    Molecular dynamics (MD) simulations of ternary polymer electrolyte - ionic liquid mixtures are conducted using an all-atom model. N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([CnMPy][TFSI], n = 1, 3, 6, 9) and polyethylene oxide (PEO) are used. Microscopic structure, energetics and dynamics of ionic liquid (IL) in these ternary mixtures are studied. Properties of these four pure IL are also calculated and compared to that in ternary mixtures. Interaction between pyrrolidinium cation and TFSI is stronger and there is larger propensity of ion-pair formation in ternary mixtures. Unlike the case in imidazolium IL, near neighbor structural correlation between TFSI reduces with increase in chain length on cation in both pure IL and ternary mixtures. Using spatial density maps, regions where PEO and TFSI interact with pyrrolidinium cation are identified. Oxygens of PEO are above and below the pyrrolidinium ring and away from the bulky alkyl groups whereas TFSI is present close to nitrogen atom of CnMPy. In pure IL, diffusion coefficient (D) of C3MPy is larger than of TFSI but D of C9MPy and C6MPy are larger than that of TFSI. The reasons for alkyl chain dependent phenomena are explored.

  4. A molecular dynamics study of polymer/graphene interfacial systems

    SciTech Connect

    Rissanou, Anastassia N.; Harmandaris, Vagelis

    2014-05-15

    Graphene based polymer nanocomposites are hybrid materials with a very broad range of technological applications. In this work, we study three hybrid polymer/graphene interfacial systems (polystyrene/graphene, poly(methyl methacrylate)/graphene and polyethylene/graphene) through detailed atomistic molecular dynamics (MD) simulations. Density profiles, structural characteristics and mobility aspects are being examined at the molecular level for all model systems. In addition, we compare the properties of the hybrid systems to the properties of the corresponding bulk ones, as well as to theoretical predictions.

  5. Improving structure-based function prediction using molecular dynamics

    PubMed Central

    Glazer, Dariya S.; Radmer, Randall J.; Altman, Russ B.

    2009-01-01

    Summary The number of molecules with solved three-dimensional structure but unknown function is increasing rapidly. Particularly problematic are novel folds with little detectable similarity to molecules of known function. Experimental assays can determine the functions of such molecules, but are time-consuming and expensive. Computational approaches can identify potential functional sites; however, these approaches generally rely on single static structures and do not use information about dynamics. In fact, structural dynamics can enhance function prediction: we coupled molecular dynamics simulations with structure-based function prediction algorithms that identify Ca2+ binding sites. When applied to 11 challenging proteins, both methods showed substantial improvement in performance, revealing 22 more sites in one case and 12 more in the other, with a modest increase in apparent false positives. Thus, we show that treating molecules as dynamic entities improves the performance of structure-based function prediction methods. PMID:19604472

  6. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    SciTech Connect

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  7. Accelerating ring-polymer molecular dynamics with parallel-replica dynamics

    NASA Astrophysics Data System (ADS)

    Lu, Chun-Yaung; Perez, Danny; Voter, Arthur F.

    2016-06-01

    Nuclear quantum effects are important for systems containing light elements, and the effects are more prominent in the low temperature regime where the dynamics also becomes sluggish. We show that parallel replica (ParRep) dynamics, an accelerated molecular dynamics approach for infrequent-event systems, can be effectively combined with ring-polymer molecular dynamics, a semiclassical trajectory approach that gives a good approximation to zero-point and tunneling effects in activated escape processes. The resulting RP-ParRep method is a powerful tool for reaching long time scales in complex infrequent-event systems where quantum dynamics are important. Two illustrative examples, symmetric Eckart barrier crossing and interstitial helium diffusion in Fe and Fe-Cr alloy, are presented to demonstrate the accuracy and long-time scale capability of this approach.

  8. Accelerating ring-polymer molecular dynamics with parallel-replica dynamics.

    PubMed

    Lu, Chun-Yaung; Perez, Danny; Voter, Arthur F

    2016-06-28

    Nuclear quantum effects are important for systems containing light elements, and the effects are more prominent in the low temperature regime where the dynamics also becomes sluggish. We show that parallel replica (ParRep) dynamics, an accelerated molecular dynamics approach for infrequent-event systems, can be effectively combined with ring-polymer molecular dynamics, a semiclassical trajectory approach that gives a good approximation to zero-point and tunneling effects in activated escape processes. The resulting RP-ParRep method is a powerful tool for reaching long time scales in complex infrequent-event systems where quantum dynamics are important. Two illustrative examples, symmetric Eckart barrier crossing and interstitial helium diffusion in Fe and Fe-Cr alloy, are presented to demonstrate the accuracy and long-time scale capability of this approach. PMID:27369499

  9. A Series of Molecular Dynamics and Homology Modeling Computer Labs for an Undergraduate Molecular Modeling Course

    ERIC Educational Resources Information Center

    Elmore, Donald E.; Guayasamin, Ryann C.; Kieffer, Madeleine E.

    2010-01-01

    As computational modeling plays an increasingly central role in biochemical research, it is important to provide students with exposure to common modeling methods in their undergraduate curriculum. This article describes a series of computer labs designed to introduce undergraduate students to energy minimization, molecular dynamics simulations,…

  10. RNABC: forward kinematics to reduce all-atom steric clashes in RNA backbone.

    PubMed

    Wang, Xueyi; Kapral, Gary; Murray, Laura; Richardson, David; Richardson, Jane; Snoeyink, Jack

    2008-01-01

    Although accurate details in RNA structure are of great importance for understanding RNA function, the backbone conformation is difficult to determine, and most existing RNA structures show serious steric clashes (>or= 0.4 A overlap) when hydrogen atoms are taken into account. We have developed a program called RNABC (RNA Backbone Correction) that performs local perturbations to search for alternative conformations that avoid those steric clashes or other local geometry problems. Its input is an all-atom coordinate file for an RNA crystal structure (usually from the MolProbity web service), with problem areas specified. RNABC rebuilds a suite (the unit from sugar to sugar) by anchoring the phosphorus and base positions, which are clearest in crystallographic electron density, and reconstructing the other atoms using forward kinematics. Geometric parameters are constrained within user-specified tolerance of canonical or original values, and torsion angles are constrained to ranges defined through empirical database analyses. Several optimizations reduce the time required to search the many possible conformations. The output results are clustered and presented to the user, who can choose whether to accept one of the alternative conformations. Two test evaluations show the effectiveness of RNABC, first on the S-motifs from 42 RNA structures, and second on the worst problem suites (clusters of bad clashes, or serious sugar pucker outliers) in 25 unrelated RNA structures. Among the 101 S-motifs, 88 had diagnosed problems, and RNABC produced clash-free conformations with acceptable geometry for 71 of those (about 80%). For the 154 worst problem suites, RNABC proposed alternative conformations for 72. All but 8 of those were judged acceptable after examining electron density (where available) and local conformation. Thus, even for these worst cases, nearly half the time RNABC suggested corrections suitable to initiate further crystallographic refinement. The program is

  11. All-atom 3D structure prediction of transmembrane β-barrel proteins from sequences

    PubMed Central

    Hayat, Sikander; Sander, Chris; Marks, Debora S.

    2015-01-01

    Transmembrane β-barrels (TMBs) carry out major functions in substrate transport and protein biogenesis but experimental determination of their 3D structure is challenging. Encouraged by successful de novo 3D structure prediction of globular and α-helical membrane proteins from sequence alignments alone, we developed an approach to predict the 3D structure of TMBs. The approach combines the maximum-entropy evolutionary coupling method for predicting residue contacts (EVfold) with a machine-learning approach (boctopus2) for predicting β-strands in the barrel. In a blinded test for 19 TMB proteins of known structure that have a sufficient number of diverse homologous sequences available, this combined method (EVfold_bb) predicts hydrogen-bonded residue pairs between adjacent β-strands at an accuracy of ∼70%. This accuracy is sufficient for the generation of all-atom 3D models. In the transmembrane barrel region, the average 3D structure accuracy [template-modeling (TM) score] of top-ranked models is 0.54 (ranging from 0.36 to 0.85), with a higher (44%) number of residue pairs in correct strand–strand registration than in earlier methods (18%). Although the nonbarrel regions are predicted less accurately overall, the evolutionary couplings identify some highly constrained loop residues and, for FecA protein, the barrel including the structure of a plug domain can be accurately modeled (TM score = 0.68). Lower prediction accuracy tends to be associated with insufficient sequence information and we therefore expect increasing numbers of β-barrel families to become accessible to accurate 3D structure prediction as the number of available sequences increases. PMID:25858953

  12. Concise NMR approach for molecular dynamics characterizations in organic solids.

    PubMed

    Aliev, Abil E; Courtier-Murias, Denis

    2013-08-22

    Molecular dynamics characterisations in solids can be carried out selectively using dipolar-dephasing experiments. Here we show that the introduction of a sum of Lorentzian and Gaussian functions greatly improve fittings of the "intensity versus time" data for protonated carbons in dipolar-dephasing experiments. The Lorentzian term accounts for remote intra- and intermolecular (1)H-(13)C dipole-dipole interactions, which vary from one molecule to another or for different carbons within the same molecule. Thus, by separating contributions from weak remote interactions, more accurate Gaussian decay constants, T(dd), can be extracted for directly bonded (1)H-(13)C dipole-dipole interactions. Reorientations of the (1)H-(13)C bonds lead to the increase of T(dd), and by measuring dipolar-dephasing constants, insight can be gained into dynamics in solids. We have demonstrated advantages of the method using comparative dynamics studies in the α and γ polymorphs of glycine, cyclic amino acids L-proline, DL-proline and trans-4-hydroxy-L-proline, the Ala residue in different dipeptides, as well as adamantane and hexamethylenetetramine. It was possible to distinguish subtle differences in dynamics of different carbon sites within a molecule in polymorphs and in L- and DL-forms. The presence of overall molecular motions is shown to lead to particularly large differences in dipolar-dephasing experiments. The differences in dynamics can be attributed to differences in noncovalent interactions. In the case of hexamethylenetetramine, for example, the presence of C-H···N interactions leads to nearly rigid molecules. Overall, the method allows one to gain insight into the role of noncovalent interactions in solids and their influence on the molecular dynamics.

  13. Efficient Molecular Dynamics Simulations of Multiple Radical Center Systems Based on the Fragment Molecular Orbital Method

    SciTech Connect

    Nakata, Hiroya; Schmidt, Michael W; Fedorov, Dmitri G; Kitaura, Kazuo; Nakamura, Shinichiro; Gordon, Mark S

    2014-10-16

    The fully analytic energy gradient has been developed and implemented for the restricted open-shell Hartree–Fock (ROHF) method based on the fragment molecular orbital (FMO) theory for systems that have multiple open-shell molecules. The accuracy of the analytic ROHF energy gradient is compared with the corresponding numerical gradient, illustrating the accuracy of the analytic gradient. The ROHF analytic gradient is used to perform molecular dynamics simulations of an unusual open-shell system, liquid oxygen, and mixtures of oxygen and nitrogen. These molecular dynamics simulations provide some insight about how triplet oxygen molecules interact with each other. Timings reveal that the method can calculate the energy gradient for a system containing 4000 atoms in only 6 h. Therefore, it is concluded that the FMO-ROHF method will be useful for investigating systems with multiple open shells.

  14. Efficient molecular dynamics simulations of multiple radical center systems based on the fragment molecular orbital method.

    PubMed

    Nakata, Hiroya; Schmidt, Michael W; Fedorov, Dmitri G; Kitaura, Kazuo; Nakamura, Shinichiro; Gordon, Mark S

    2014-10-16

    The fully analytic energy gradient has been developed and implemented for the restricted open-shell Hartree-Fock (ROHF) method based on the fragment molecular orbital (FMO) theory for systems that have multiple open-shell molecules. The accuracy of the analytic ROHF energy gradient is compared with the corresponding numerical gradient, illustrating the accuracy of the analytic gradient. The ROHF analytic gradient is used to perform molecular dynamics simulations of an unusual open-shell system, liquid oxygen, and mixtures of oxygen and nitrogen. These molecular dynamics simulations provide some insight about how triplet oxygen molecules interact with each other. Timings reveal that the method can calculate the energy gradient for a system containing 4000 atoms in only 6 h. Therefore, it is concluded that the FMO-ROHF method will be useful for investigating systems with multiple open shells.

  15. Molecular Dynamics Simulations of Laser Powered Carbon Nanotube Gears

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Globus, Al; Han, Jie; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Dynamics of laser powered carbon nanotube gears is investigated by molecular dynamics simulations with Brenner's hydrocarbon potential. We find that when the frequency of the laser electric field is much less than the intrinsic frequency of the carbon nanotube, the tube exhibits an oscillatory pendulam behavior. However, a unidirectional rotation of the gear with oscillating frequency is observed under conditions of resonance between the laser field and intrinsic gear frequencies. The operating conditions for stable rotations of the nanotube gears, powered by laser electric fields are explored, in these simulations.

  16. Molecular dynamical simulations of melting behaviors of metal clusters

    SciTech Connect

    Hamid, Ilyar; Fang, Meng; Duan, Haiming

    2015-04-15

    The melting behaviors of metal clusters are studied in a wide range by molecular dynamics simulations. The calculated results show that there are fluctuations in the heat capacity curves of some metal clusters due to the strong structural competition; For the 13-, 55- and 147-atom clusters, variations of the melting points with atomic number are almost the same; It is found that for different metal clusters the dynamical stabilities of the octahedral structures can be inferred in general by a criterion proposed earlier by F. Baletto et al. [J. Chem. Phys. 116 3856 (2002)] for the statically stable structures.

  17. Finite Temperature Quasicontinuum: Molecular Dynamics without all the Atoms

    SciTech Connect

    Dupuy, L; Tadmor, E B; Miller, R E; Phillips, R

    2005-02-02

    Using a combination of statistical mechanics and finite-element interpolation, the authors develop a coarse-grained (CG) alternative to molecular dynamics (MD) for crystalline solids at constant temperature. The new approach is significantly more efficient than MD and generalizes earlier work on the quasi-continuum method. The method is validated by recovering equilibrium properties of single crystal Ni as a function of temperature. CG dynamical simulations of nanoindentation reveal a strong dependence on temperature of the critical stress to nucleate dislocations under the indenter.

  18. Application of two dimensional periodic molecular dynamics to interfaces.

    NASA Astrophysics Data System (ADS)

    Gay, David H.; Slater, Ben; Catlow, C. Richard A.

    1997-08-01

    We have applied two-dimensional molecular dynamics to the surface of a crystalline aspartame and the interface between the crystal face and a solvent (water). This has allowed us to look at the dynamic processes at the surface. Understanding the surface structure and properties are important to controlling the crystal morphology. The thermodynamic ensemble was constant Number, surface Area and Temperature (NAT). The calculations have been carried out using a 2D Ewald summation and 2D periodic boundary conditions for the short range potentials. The equations of motion integration has been carried out using the standard velocity Verlet algorithm.

  19. Visual verification and analysis of cluster detection for molecular dynamics.

    PubMed

    Grottel, Sebastian; Reina, Guido; Vrabec, Jadran; Ertl, Thomas

    2007-01-01

    A current research topic in molecular thermodynamics is the condensation of vapor to liquid and the investigation of this process at the molecular level. Condensation is found in many physical phenomena, e.g. the formation of atmospheric clouds or the processes inside steam turbines, where a detailed knowledge of the dynamics of condensation processes will help to optimize energy efficiency and avoid problems with droplets of macroscopic size. The key properties of these processes are the nucleation rate and the critical cluster size. For the calculation of these properties it is essential to make use of a meaningful definition of molecular clusters, which currently is a not completely resolved issue. In this paper a framework capable of interactively visualizing molecular datasets of such nucleation simulations is presented, with an emphasis on the detected molecular clusters. To check the quality of the results of the cluster detection, our framework introduces the concept of flow groups to highlight potential cluster evolution over time which is not detected by the employed algorithm. To confirm the findings of the visual analysis, we coupled the rendering view with a schematic view of the clusters' evolution. This allows to rapidly assess the quality of the molecular cluster detection algorithm and to identify locations in the simulation data in space as well as in time where the cluster detection fails. Thus, thermodynamics researchers can eliminate weaknesses in their cluster detection algorithms. Several examples for the effective and efficient usage of our tool are presented. PMID:17968118

  20. Visual verification and analysis of cluster detection for molecular dynamics.

    PubMed

    Grottel, Sebastian; Reina, Guido; Vrabec, Jadran; Ertl, Thomas

    2007-01-01

    A current research topic in molecular thermodynamics is the condensation of vapor to liquid and the investigation of this process at the molecular level. Condensation is found in many physical phenomena, e.g. the formation of atmospheric clouds or the processes inside steam turbines, where a detailed knowledge of the dynamics of condensation processes will help to optimize energy efficiency and avoid problems with droplets of macroscopic size. The key properties of these processes are the nucleation rate and the critical cluster size. For the calculation of these properties it is essential to make use of a meaningful definition of molecular clusters, which currently is a not completely resolved issue. In this paper a framework capable of interactively visualizing molecular datasets of such nucleation simulations is presented, with an emphasis on the detected molecular clusters. To check the quality of the results of the cluster detection, our framework introduces the concept of flow groups to highlight potential cluster evolution over time which is not detected by the employed algorithm. To confirm the findings of the visual analysis, we coupled the rendering view with a schematic view of the clusters' evolution. This allows to rapidly assess the quality of the molecular cluster detection algorithm and to identify locations in the simulation data in space as well as in time where the cluster detection fails. Thus, thermodynamics researchers can eliminate weaknesses in their cluster detection algorithms. Several examples for the effective and efficient usage of our tool are presented.

  1. Molecular Dynamics and Electron Density Studies of Siderophores and Peptides.

    NASA Astrophysics Data System (ADS)

    Fidelis, Krzysztof Andrzej

    1990-08-01

    The dissertation comprises three separate studies of siderophores and peptides. In the first of these studies the relative potential energies for a series of diastereomers of a siderophore neocoprogen I are evaluated with molecular mechanics force field methods. Charges on the hydroxamate moiety are determined with a synthetic model siderophore compound using valence population refinements, and alternatively, with the theoretical ab initio/ESP calculations. The single diastereomer found in the crystal structure is among four characterized by the low potential energy, while prevalence of Delta vs. Lambda configuration about the iron is found to be a property of the entire series. In the second study the crystal structure of a ferrichrome siderophore ferrirhodin is reported. The crystal structure conformation of the molecular backbone as well as the iron coordination geometry compare well with other ferrichrome structures. The differences between the acyl groups of ferrirubin and ferrirhodin are explored using the methods of molecular mechanics. The third study a 300 ps, 300 K, in vacuo molecular dynamics simulation of didemnin A and B yields distinct molecular conformers, which are different from the one found in the crystal structure or modeled in solution, using the Nuclear Overhauser Effect data. Evaluations of the relative potential energy are performed with short 10 ps simulations in solution. Didemnins are natural depsipeptides isolated from a Caribbean tunicate and characterized by particularly potent antiproliferative and immunomodulatory activity. Conformationally rigid and flexible regions of the molecule are described. A short review of the molecular mechanics methodology is given in the introduction.

  2. Extrapolated gradientlike algorithms for molecular dynamics and celestial mechanics simulations.

    PubMed

    Omelyan, I P

    2006-09-01

    A class of symplectic algorithms is introduced to integrate the equations of motion in many-body systems. The algorithms are derived on the basis of an advanced gradientlike decomposition approach. Its main advantage over the standard gradient scheme is the avoidance of time-consuming evaluations of force gradients by force extrapolation without any loss of precision. As a result, the efficiency of the integration improves significantly. The algorithms obtained are analyzed and optimized using an error-function theory. The best among them are tested in actual molecular dynamics and celestial mechanics simulations for comparison with well-known nongradient and gradient algorithms such as the Störmer-Verlet, Runge-Kutta, Cowell-Numerov, Forest-Ruth, Suzuki-Chin, and others. It is demonstrated that for moderate and high accuracy, the extrapolated algorithms should be considered as the most efficient for the integration of motion in molecular dynamics simulations. PMID:17025782

  3. Annihilation of craters: Molecular dynamic simulations on a silver surface

    SciTech Connect

    Henriksson, K. O. E.; Nordlund, K.; Keinonen, J.

    2007-12-15

    The ability of silver cluster ions containing 13 atoms to fill in a preexisting crater with a radius of about 28 A ring on a silver (001) target has been investigated using molecular dynamics simulations and the molecular-dynamics-Monte Carlo corrected effective medium potential. The largest lateral distance r between crater and ion was about three times the radius of the preexisting crater, namely, 75 A ring . The results reveal that when r<20 A ring and r>60 A ring the preexisting crater is partially filled in, and for other distances there is a net growth of the crater. The lattice damage created by the cluster ions, the total sputtering yield, the cluster sputtering yield, and simulated transmission electron microscopy images of the irradiated targets are also presented.

  4. Extrapolated gradientlike algorithms for molecular dynamics and celestial mechanics simulations.

    PubMed

    Omelyan, I P

    2006-09-01

    A class of symplectic algorithms is introduced to integrate the equations of motion in many-body systems. The algorithms are derived on the basis of an advanced gradientlike decomposition approach. Its main advantage over the standard gradient scheme is the avoidance of time-consuming evaluations of force gradients by force extrapolation without any loss of precision. As a result, the efficiency of the integration improves significantly. The algorithms obtained are analyzed and optimized using an error-function theory. The best among them are tested in actual molecular dynamics and celestial mechanics simulations for comparison with well-known nongradient and gradient algorithms such as the Störmer-Verlet, Runge-Kutta, Cowell-Numerov, Forest-Ruth, Suzuki-Chin, and others. It is demonstrated that for moderate and high accuracy, the extrapolated algorithms should be considered as the most efficient for the integration of motion in molecular dynamics simulations.

  5. Enhancing Protein Adsorption Simulations by Using Accelerated Molecular Dynamics

    PubMed Central

    Mücksch, Christian; Urbassek, Herbert M.

    2013-01-01

    The atomistic modeling of protein adsorption on surfaces is hampered by the different time scales of the simulation ( s) and experiment (up to hours), and the accordingly different ‘final’ adsorption conformations. We provide evidence that the method of accelerated molecular dynamics is an efficient tool to obtain equilibrated adsorption states. As a model system we study the adsorption of the protein BMP-2 on graphite in an explicit salt water environment. We demonstrate that due to the considerably improved sampling of conformational space, accelerated molecular dynamics allows to observe the complete unfolding and spreading of the protein on the hydrophobic graphite surface. This result is in agreement with the general finding of protein denaturation upon contact with hydrophobic surfaces. PMID:23755156

  6. Adiabatic molecular-dynamics-simulation-method studies of kinetic friction

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Sokoloff, J. B.

    2005-06-01

    An adiabatic molecular-dynamics method is developed and used to study the Muser-Robbins model for dry friction (i.e., nonzero kinetic friction in the slow sliding speed limit). In this model, dry friction between two crystalline surfaces rotated with respect to each other is due to mobile molecules (i.e., dirt particles) adsorbed at the interface. Our adiabatic method allows us to quickly locate interface potential-well minima, which become unstable during sliding of the surfaces. Since dissipation due to friction in the slow sliding speed limit results from mobile molecules dropping out of such unstable wells, our method provides a way to calculate dry friction, which agrees extremely well with results found by conventional molecular dynamics for the same system, but our method is more than a factor of 10 faster.

  7. Coherent Amplification of Ultrafast Molecular Dynamics in an Optical Oscillator.

    PubMed

    Aharonovich, Igal; Pe'er, Avi

    2016-02-19

    Optical oscillators present a powerful optimization mechanism. The inherent competition for the gain resources between possible modes of oscillation entails the prevalence of the most efficient single mode. We harness this "ultrafast" coherent feedback to optimize an optical field in time, and show that, when an optical oscillator based on a molecular gain medium is synchronously pumped by ultrashort pulses, a temporally coherent multimode field can develop that optimally dumps a general, dynamically evolving vibrational wave packet, into a single vibrational target state. Measuring the emitted field opens a new window to visualization and control of fast molecular dynamics. The realization of such a coherent oscillator with hot alkali dimers appears within experimental reach.

  8. An implicit divalent counterion force field for RNA molecular dynamics

    NASA Astrophysics Data System (ADS)

    Henke, Paul S.; Mak, Chi H.

    2016-03-01

    How to properly account for polyvalent counterions in a molecular dynamics simulation of polyelectrolytes such as nucleic acids remains an open question. Not only do counterions such as Mg2+ screen electrostatic interactions, they also produce attractive intrachain interactions that stabilize secondary and tertiary structures. Here, we show how a simple force field derived from a recently reported implicit counterion model can be integrated into a molecular dynamics simulation for RNAs to realistically reproduce key structural details of both single-stranded and base-paired RNA constructs. This divalent counterion model is computationally efficient. It works with existing atomistic force fields, or coarse-grained models may be tuned to work with it. We provide optimized parameters for a coarse-grained RNA model that takes advantage of this new counterion force field. Using the new model, we illustrate how the structural flexibility of RNA two-way junctions is modified under different salt conditions.

  9. Molecular dynamics studies of U1A-RNA complexes.

    PubMed Central

    Reyes, C M; Kollman, P A

    1999-01-01

    The U1A protein binds to a hairpin RNA and an internal-loop RNA with picomolar affinities. To probe the molecular basis of U1A binding, we performed state-of-the-art nanosecond molecular dynamics simulations on both complexes. The good agreement with experimental structures supports the protocols used in the simulations. We compare the dynamics, hydrogen-bonding occupancies, and interfacial flexibility of both complexes and also describe a rigid-body motion in the U1A-internal loop complex that is not observed in the U1A-hairpin simulation. We relate these observations to experimental mutational studies and highlight their significance in U1A binding affinity and specificity. PMID:10024175

  10. Shock induced phase transition of water: Molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Neogi, Anupam; Mitra, Nilanjan

    2016-02-01

    Molecular dynamics simulations were carried out using numerous force potentials to investigate the shock induced phenomenon of pure bulk liquid water. Partial phase transition was observed at single shock velocity of 4.0 km/s without requirement of any external nucleators. Change in thermodynamic variables along with radial distribution function plots and spectral analysis revealed for the first time in the literature, within the context of molecular dynamic simulations, the thermodynamic pathway leading to formation of ice VII from liquid water on shock loading. The study also revealed information for the first time in the literature about the statistical time-frame after passage of shock in which ice VII formation can be observed and variations in degree of crystallinity of the sample over the entire simulation time of 100 ns.

  11. Molecular dynamic simulation of non-melt laser annealing process

    NASA Astrophysics Data System (ADS)

    Liren, Yan; Dai, Li; Wei, Zhang; Zhihong, Liu; Wei, Zhou; Quan, Wang

    2016-03-01

    Molecular dynamic simulation is performed to study the process of material annealing caused by a 266 nm pulsed laser. A micro-mechanism describing behaviors of silicon and impurity atoms during the laser annealing at a non-melt regime is proposed. After ion implantation, the surface of the Si wafer is acted by a high energy laser pulse, which loosens the material and partially frees both Si and impurity atoms. While the residual laser energy is absorbed by valence electrons, these atoms are recoiled and relocated to finally form a crystal. Energy-related movement behavior is observed by using the molecular dynamic method. The non-melt laser anneal appears to be quite sensitive to the energy density of the laser, as a small excess energy may causes a significant impurity diffusion. Such a result is also supported by our laser anneal experiment.

  12. Long Timestep Molecular Dynamics on the Graphical Processing Unit

    PubMed Central

    Sweet, James C.; Nowling, Ronald J.; Cickovski, Trevor; Sweet, Christopher R.; Pande, Vijay S.; Izaguirre, Jesús A.

    2013-01-01

    Molecular dynamics (MD) simulations now play a key role in many areas of theoretical chemistry, biology, physics, and materials science. In many cases, such calculations are significantly limited by the massive amount of computer time needed to perform calculations of interest. Herein, we present Long Timestep Molecular Dynamics (LTMD), a method to significantly speed MD simulations. In particular, we discuss new methods to calculate the needed terms in LTMD as well as issues germane to a GPU implementation. The resulting code, implemented in the OpenMM MD library, can achieve a significant 6-fold speed increase, leading to MD simulations on the order of 5 μs/day using implicit solvent models. PMID:24436689

  13. Molecular dynamics analysis on impact behavior of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Seifoori, Sajjad

    2015-01-01

    Dynamic analysis of impact of a nanoparticle on carbon nanotubes is investigated based on two degree of freedom model. The accuracy and stability of the present methods are verified by molecular dynamics (MD) simulations. The effect of different types of boundary condition on the maximum dynamic deflections is studied for zigzag and armchair SWCNTs with various aspect ratios (length/diameter). Besides, the influences of velocity of impactor on the dynamic deflections are studied. It is shown that the dynamic behavior on the armchair and zigzag single-walled carbon nanotubes are almost similar. Finally, by making use of the above MD simulation and theoretical results some insight has been obtained about the dynamic characteristics of the impact problems of nanobeam structures. Nonlocal Timoshenko beam models TBT2 should be employed for an accurate prediction of the dynamic deflection rather than nonlocal Euler-Bernoulli beam models EBT2 which ignores the effects of transverse shear deformation and rotary inertia that is especially significant for short beams. The results from nonlocal EBT2 and TBT2 models demonstrated good agreement with MD simulation. The EBT2 and TBT2 models also account for the relative motion between the nanoparticle and the nanobeam that is due to local indentation as can be seen in MD simulation.

  14. Molecular dynamics modeling of a nanomaterials-water surface interaction

    NASA Astrophysics Data System (ADS)

    Nejat Pishkenari, Hossein; Keramati, Ramtin; Abdi, Ahmad; Minary-Jolandan, Majid

    2016-04-01

    In this article, we study the formation of nanomeniscus around a nanoneedle using molecular dynamics simulation approach. The results reveal three distinct phases in the time-evolution of meniscus before equilibrium according to the contact angle, meniscus height, and potential energy. In addition, we investigated the correlation between the nanoneedle diameter and nanomeniscus characteristics. The results have applications in various fields such as scanning probe microscopy and rheological measurements.

  15. Quantum tunneling splittings from path-integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mátyus, Edit; Wales, David J.; Althorpe, Stuart C.

    2016-03-01

    We illustrate how path-integral molecular dynamics can be used to calculate ground-state tunnelling splittings in molecules or clusters. The method obtains the splittings from ratios of density matrix elements between the degenerate wells connected by the tunnelling. We propose a simple thermodynamic integration scheme for evaluating these elements. Numerical tests on fully dimensional malonaldehyde yield tunnelling splittings in good overall agreement with the results of diffusion Monte Carlo calculations.

  16. Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W. G.; Hoover, C. G.

    1993-08-01

    Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics ``smoothed-particle hydrodynamics,`` in 1977. It is a likely contributor to ``hybrid`` simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.

  17. Phase transitions of methane using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    El-Sheikh, S. M.; Barakat, K.; Salem, N. M.

    2006-03-01

    Using a short ranged Lennard-Jones interaction and a long ranged electrostatic potential, CH4under high pressure was modeled. Molecular dynamics simulations on small clusters (108 and 256molecules) were used to explore the phase diagram. Regarding phase transitions at different temperatures, our numerical findings are consistent with experimental results to a great degree. In addition, the hysteresis effect is displayed in our results.

  18. Phase transitions of methane using molecular dynamics simulations.

    PubMed

    El-Sheikh, S M; Barakat, K; Salem, N M

    2006-03-28

    Using a short ranged Lennard-Jones interaction and a long ranged electrostatic potential, CH4 under high pressure was modeled. Molecular dynamics simulations on small clusters (108 and 256 molecules) were used to explore the phase diagram. Regarding phase transitions at different temperatures, our numerical findings are consistent with experimental results to a great degree. In addition, the hysteresis effect is displayed in our results.

  19. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.

    PubMed

    Rapaport, D C

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.

  20. Molecular dynamics simulations of ordering of polydimethylsiloxane under uniaxial extension

    SciTech Connect

    Lacevic, N M; Gee, R H

    2005-03-11

    Molecular dynamics simulations of a bulk melts of polydimethylsiloxane (PDMS) are utilized to study chain conformation and ordering under constant uniaxial tension. We find that large extensions induce chain ordering in the direction of applied tension. We also find that voids are created via a cavitation mechanism. This study represents a validation of the current model for PDMS and benchmark for the future study of mechanical properties of PDMS melts enriched with fillers under tension.

  1. A molecular dynamics study on sI hydrogen hydrate.

    PubMed

    Mondal, S; Ghosh, S; Chattaraj, P K

    2013-07-01

    A molecular dynamics simulation is carried out to explore the possibility of using sI clathrate hydrate as hydrogen storage material. Metastable hydrogen hydrate structures are generated using the LAMMPS software. Different binding energies and radial distribution functions provide important insights into the behavior of the various types of hydrogen and oxygen atoms present in the system. Clathrate hydrate cages become more stable in the presence of guest molecules like hydrogen.

  2. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.

    PubMed

    Rapaport, D C

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency. PMID:19518394

  3. Molecular dynamics simulation of shocks in porous TATB crystals

    SciTech Connect

    Fried, L.E.; Tarver, C.

    1995-08-01

    We report molecular dynamics results on the shock structure of 2-D crystals of triaminotrinitrobenzene (TATB). We find that the shock front broadens to approx. 30 nm in materials with a 20% random void distribution. As expected from bulk experiments, the shock velocity decreases with increasing porosity and the temperature behind the shock front increases with increasing porosity. Shock equilibration times increase from 1 ps to greater than 10 ps.

  4. Molecular Dynamics study of Pb overlayer on Cu(100)

    NASA Technical Reports Server (NTRS)

    Karimi, M.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.

    1991-01-01

    Isothermal-isobaric Molecular Dynamics (MD) simulation of a submonolayer Pb film in c(2x2) ordered structure adsorbed on a Cu(100) substrate showed retention of order to high T. The Embedded Atom Method (EAM) calculated the energy of atoms of overlayer and substrate. The time-averaged squared modulus of the two dimensional structure factor for the Pb overlayer measured the order of the overlayer. The results are for increasing T only, and require verification by simulated cooling.

  5. Shapiro like steps reveals molecular nanomagnets’ spin dynamics

    SciTech Connect

    Abdollahipour, Babak; Abouie, Jahanfar Ebrahimi, Navid

    2015-09-15

    We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet’s spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields.

  6. Molecular Dynamics Simulation of a Microvillus in a Cross Flow

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.; Liu, Y.; So, R. M. C.; Yang, J. M.

    One of the functions of microvilli in the microvessel endothelial glycocalyx is molecular filtering. The microvillus behaves as a mechanosensory system which may sense the fluid shear and drag forces. The permeability of small particles in microvessel is crucial for drug design and drug delivery. Therefore a better understanding of flow field around microvillus is important to simulate accurately the particle penetration in microvessel. Since the dimension of the microvilli is about ~10 nm, the conventional Navier-Stokes equation may not be good enough to simulate the fluid flow in such microscale and nanoscale structures. Molecular dynamics (MD) simulation is a powerful method to simulate the fluid flow at the molecular level. As a first attempt, the microvillus is reduced as a two-dimensional cylinder which is in a cross flow. The detailed drag and lift together with flow field are obtained and compared with available data.

  7. Molecular dynamics simulations of solutions at constant chemical potential

    NASA Astrophysics Data System (ADS)

    Perego, C.; Salvalaglio, M.; Parrinello, M.

    2015-04-01

    Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CμMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the CμMD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.

  8. Exploiting molecular dynamics in Nested Sampling simulations of small peptides

    NASA Astrophysics Data System (ADS)

    Burkoff, Nikolas S.; Baldock, Robert J. N.; Várnai, Csilla; Wild, David L.; Csányi, Gábor

    2016-04-01

    Nested Sampling (NS) is a parameter space sampling algorithm which can be used for sampling the equilibrium thermodynamics of atomistic systems. NS has previously been used to explore the potential energy surface of a coarse-grained protein model and has significantly outperformed parallel tempering when calculating heat capacity curves of Lennard-Jones clusters. The original NS algorithm uses Monte Carlo (MC) moves; however, a variant, Galilean NS, has recently been introduced which allows NS to be incorporated into a molecular dynamics framework, so NS can be used for systems which lack efficient prescribed MC moves. In this work we demonstrate the applicability of Galilean NS to atomistic systems. We present an implementation of Galilean NS using the Amber molecular dynamics package and demonstrate its viability by sampling alanine dipeptide, both in vacuo and implicit solvent. Unlike previous studies of this system, we present the heat capacity curves of alanine dipeptide, whose calculation provides a stringent test for sampling algorithms. We also compare our results with those calculated using replica exchange molecular dynamics (REMD) and find good agreement. We show the computational effort required for accurate heat capacity estimation for small peptides. We also calculate the alanine dipeptide Ramachandran free energy surface for a range of temperatures and use it to compare the results using the latest Amber force field with previous theoretical and experimental results.

  9. Ultrafast Molecular Dynamics probed by Vacuum Ultraviolet Pulses

    NASA Astrophysics Data System (ADS)

    Cryan, James; Champenois, Elio; Shivaram, Niranjan; Wright, Travis; Yang, Chan-Shan; Falcone, Roger; Belkacem, Ali

    2014-05-01

    We present time-resolved measurements of the relaxation dynamics in small molecular systems (CO2 and C2H4) following ultraviolet (UV) photo-excitation. We probe these excitations through photoionization and velocity map imaging (VMI) spectroscopy. Vacuum and extreme ultraviolet (VUV/XUV) pump and probe pulses are created by exploiting strong-field high harmonic generation (HHG) from our state-of-the-art 30 mJ, 1 kHz laser system. Three dimensional photoelectron and photoion momentum images recorded with our VMI spectrometer reveal non-Born Oppenheimer dynamics in the vicinity of a conical intersection, and allow us track the state of the system as a function of time. We also present initial experiments with the goal of controlling the dynamics near a conical intersection using a strong-field IR pulse. Finally, we will show progress towards measurements of time-resolved molecular frame photoelectron angular distributions (TRMFPADs) by applying our VUV/XUV pulse sequence to an aligned molecular ensemble. Supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  10. Molecular-level dynamics of refractory dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Niggemann, J.; Gerdts, G.; Dittmar, T.

    2012-04-01

    Refractory dissolved organic matter (DOM) accounts for most of the global oceanic organic carbon inventory. Processes leading to its formation and factors determining its stability are still largely unknown. We hypothesize that refractory DOM carries a universal molecular signature. Characterizing spatial and temporal variability in this universal signature is a key to understanding dynamics of refractory DOM. We present results from a long-term study of the DOM geo-metabolome in the open North Sea. Geo-metabolomics considers the entity of DOM as a population of compounds, each characterized by a specific function and reactivity in the cycling of energy and elements. Ten-thousands of molecular formulae were identified in DOM by ultrahigh resolution mass spectrometry analysis (FT-ICR-MS, Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry). The DOM pool in the North Sea was influenced by a complex interplay of processes that produced, transformed and degraded dissolved molecules. We identified a stable fraction in North Sea DOM with a molecular composition similar to deep ocean DOM. Molecular-level changes in this stable fraction provide novel information on dynamics and interactions of refractory DOM.

  11. Molecular dynamics study of the formation mechanisms of ionic SDS and nonionic C12E8 micelles and n-dodecane droplets

    NASA Astrophysics Data System (ADS)

    Kawada, Shinji; Komori, Mika; Fujimoto, Kazushi; Yoshii, Noriyuki; Okazaki, Susumu

    2016-02-01

    In order to clarify the early-stage kinetics of micelle formation in concentrated surfactant solutions, all-atom molecular dynamics (MD) calculations of the aggregation of surfactant molecules dispersed in water were performed for ionic sodium dodecyl sulfate (SDS), nonionic octaethyleneglycol monododecyl ether (C12E8), and n-dodecane. The relationship between aggregate domain length and elapsed time from the beginning of the MD calculation obeyed the well-known Lifshitz-Slyozov (LS) law for C12E8 and n-dodecane. In contrast, the aggregation rate of SDS did not obey the LS law. This difference is likely due to the differences in strength of the electrostatic interactions between the aggregates.

  12. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall, G.E.

    2011-05-31

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  13. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall G. E.; Goncharov, V.

    2012-05-29

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  14. Molecular dynamics simulations of lysozyme in water/sugar solutions

    NASA Astrophysics Data System (ADS)

    Lerbret, A.; Affouard, F.; Bordat, P.; Hédoux, A.; Guinet, Y.; Descamps, M.

    2008-04-01

    Structural and dynamical properties of the solvent at the protein/solvent interface have been investigated by molecular dynamics simulations of lysozyme in trehalose, maltose and sucrose solutions. Results are discussed in the framework of the bioprotection phenomena. The analysis of the relative concentration of water oxygen atoms around lysozyme suggests that lysozyme is preferentially hydrated. When comparing the three sugars, trehalose is seen more excluded than maltose and sucrose. The preferential exclusion of sugars from the protein surface induces some differences in the behavior of trehalose and maltose, particularly at 50 and 60 wt% concentrations, that are not observed experimentally in binary sugar/mixtures. The dynamical slowing down of the solvent is suggested to mainly arise from the homogeneity of the water/sugar matrices controlled by the percolation of the sugar hydrogen bonds networks. Furthermore, lysozyme strongly increases relaxation times of solvent molecules at the protein/solvent interface.

  15. A rotary nano ion pump: a molecular dynamics study.

    PubMed

    Lohrasebi, A; Feshanjerdi, M

    2012-09-01

    The dynamics of a rotary nano ion pump, inspired by the F (0) part of the F(0)F(1)-ATP synthase biomolecular motor, were investigated. This nanopump is composed of a rotor, which is constructed of two carbon nanotubes with benzene rings, and a stator, which is made of six graphene sheets. The molecular dynamics (MD) method was used to simulate the dynamics of the ion nanopump. When the rotor of the nanopump rotates mechanically, an ion gradient will be generated between the two sides of the nanopump. It is shown that the ion gradient generated by the nanopump is dependant on parameters such as the rotary frequency of the rotor, temperature and the amounts and locations of the positive and negative charges of the stator part of the nanopump. Also, an electrical potential difference is generated between the two sides of the pump as a result of its operation.

  16. Molecular View on Supramolecular Chain and Association Dynamics

    NASA Astrophysics Data System (ADS)

    Monkenbusch, M.; Krutyeva, M.; Pyckhout-Hintzen, W.; Antonius, W.; Hövelmann, C. H.; Allgaier, J.; Brás, A.; Farago, B.; Wischnewski, A.; Richter, D.

    2016-09-01

    The chain and association dynamics of supramolecular polymer ensembles decisively determines their properties. Using neutron spin echo (NSE) spectroscopy we present molecular insight into the space and time evolution of this dynamics. Studying a well characterized ensemble of linearly associating telechelic poly(ethylene glycol) melts carrying triple H-bonding end groups, we show that H-bond breaking significantly impacts the mode spectrum of the associates. The breaking affects the mode contributions and not the relaxation times as was assumed previously. NSE spectra directly reveal the so far intangible H-bond lifetimes in the supramolecular melt and demonstrate that for both the microscopic and the macroscopic dynamics of the supramolecular ensemble the instantaneous average of the Mw distribution governs the system response at least as long as the Rouse picture applies.

  17. The classical and quantum dynamics of molecular spins on graphene.

    PubMed

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices. PMID:26641019

  18. (Artificial intelligence and molecular dynamics simulations of polymers)

    SciTech Connect

    Noid, D.W.

    1990-08-27

    The traveler participated in planning a new methodology for performing molecular dynamics simulation of polymers. Current computer polymer dynamics programs are either capable of very general calculations and are extremely inefficient or are very efficiently written for a particular computer architecture to study a specific polymer system. Both of these approaches involve tremendous efforts in FORTRAN programming. A combined effort of computer scientists and myself hope to develop an expert system to produce efficient FORTRAN codes for any polymer and be optimized on computer architectures ranging from TRANSPUTERS to CRAY. The result of this collaboration will be an efficient way to model polymer dynamics for an arbitrary polymer structure. The subsidiary purpose was to present a seminar at the University of Newcastle and discussions with several other departments at Oxford University.

  19. Acceleration of dynamic fluorescence molecular tomography with principal component analysis

    PubMed Central

    Zhang, Guanglei; He, Wei; Pu, Huangsheng; Liu, Fei; Chen, Maomao; Bai, Jing; Luo, Jianwen

    2015-01-01

    Dynamic fluorescence molecular tomography (FMT) is an attractive imaging technique for three-dimensionally resolving the metabolic process of fluorescent biomarkers in small animal. When combined with compartmental modeling, dynamic FMT can be used to obtain parametric images which can provide quantitative pharmacokinetic information for drug development and metabolic research. However, the computational burden of dynamic FMT is extremely huge due to its large data sets arising from the long measurement process and the densely sampling device. In this work, we propose to accelerate the reconstruction process of dynamic FMT based on principal component analysis (PCA). Taking advantage of the compression property of PCA, the dimension of the sub weight matrix used for solving the inverse problem is reduced by retaining only a few principal components which can retain most of the effective information of the sub weight matrix. Therefore, the reconstruction process of dynamic FMT can be accelerated by solving the smaller scale inverse problem. Numerical simulation and mouse experiment are performed to validate the performance of the proposed method. Results show that the proposed method can greatly accelerate the reconstruction of parametric images in dynamic FMT almost without degradation in image quality. PMID:26114027

  20. Confinement of conjugated polymers into soft nanoparticles: molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Sidath; Perahia, Dvora; Grest, Gary S.

    2013-03-01

    The structure and dynamics of conjugated polymers confined into soft nanoparticles (SNPs) have been studies by molecular dynamic simulations. This new class of tunable luminescent SNPs exhibits an immense potential as bio-markers as well as targeted drug delivery agents where tethering specific groups to the surface particles offers a means to target specific applications. Of particular interest are SNPs that consist of non- crosslinked polymers, decorated with polar groups. These SNPs are potentially tunable through the dynamics of the polymer chains, whereas the polar entity serves as internal stabilizer and surface encore. Confinement of a polymer whose inherent conformation is extended impacts not only their dynamics and as a result their optical properties. Here we will present insight into the structure and dynamics of dialkyl poly para phenylene ethynylene (PPE), decorated by a carboxylate groups, confined into a soft particle. The conformation and dynamics of polymer within SNP will be discussed and compared with that of the linear chain in solution. This work in partially supported by DOE grant DE-FG02-12ER46843

  1. Molecular design of responsive fluids: molecular dynamics studies of viscoelastic surfactant solutions

    NASA Astrophysics Data System (ADS)

    Boek, E. S.; Jusufi, A.; Löwen, H.; Maitland, G. C.

    2002-10-01

    Understanding how macroscopic properties depend on intermolecular interactions for complex fluid systems is an enormous challenge in statistical mechanics. This issue is of particular importance for designing optimal industrial fluid formulations such as responsive oilfield fluids, based on viscoelastic surfactant solutions. We have carried out extensive molecular dynamics simulations, resolving the full chemical details in order to study how the structure of the lamellar phase of viscoelastic surfactant solutions depends on the head group (HG) chemistry of the surfactant. In particular, we consider anionic carboxylate and quaternary ammonium HGs with erucyl tails in aqueous solutions together with their sodium and chloride counterions at room temperature. We find a strong HG dependence of the lamellar structure as characterized by suitable pair correlation functions and density distributions. The depth of penetration of water into the bilayer membrane, the nature of counterion condensation on the HGs and even the order and correlation of the tails in the lamellae depend sensitively on the chemical details of the HG. We also determine the compressibility of the lamellar system as a first step to using atom-resolved molecular dynamics in order to link the molecular and macroscopic scales of length and time. The results give important insight into the links between molecular details and surfactant phase structure which is being exploited to develop more systematic procedures for the molecular design and formulation of industrial systems.

  2. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall,G.E.; Sears, T.J.

    2009-04-03

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopy, augmented by theoretical and computational methods, is used to investigate the structure and collision dynamics of chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry. Applications and methods development are equally important experimental components of this work.

  3. Extended Molecular Dynamics Methods for Vortex Dynamics in Nano-structured Superconductors

    NASA Astrophysics Data System (ADS)

    Kato, Masaru; Sato, Osamu

    Using improved molecular dynamics simulation method, we study vortex dynamics in nano-scaled superconductors. Heat generations during vortex motion, heat transfer in superconductors, and entropy forces to vortices are incorporated. Also quasi-particle relaxations after vortex motion, and their attractive "retarded" forces to other vortices are incorporated using the condensation-energy field. We show the time development of formation of vortex channel flow in a superconducting Corbino-disk.

  4. Self-Assembly and Dynamics of Organic 2D Molecular Sieves: Ab Initio and Molecular Dynamics Studies

    NASA Astrophysics Data System (ADS)

    St. John, Alexander; Wexler, Carlos

    2015-03-01

    Spontaneous molecular self-assembly is a promising route for bottom-up manufacturing of two-dimensional (2D) nanostructures with specific topologies on atomically flat surfaces. Of particular interest is the possibility of selective lock-and-key interaction of guest molecules inside cavities formed by complex self-assembled host structures. Our host structure is a monolayer consisting of interdigitated 1,3,5-tristyrylbenzene substituted by alkoxy peripheral chains containing n = 6, 8, 10, 12, or 14 carbon atoms (TSB3,5-C n) deposited on a highly ordered pyrolytic graphite (HOPG) surface. Using ab initio methods from quantum chemistry and molecular dynamics simulations, we construct and analyze the structure and functionality of the TSB3,5-C n monolayer as a molecular sieve. Supported by ACS-PRF 52696-ND5.

  5. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity

    PubMed Central

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations. PMID:26075210

  6. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity.

    PubMed

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  7. Molecular dynamics simulations demonstrate the regulation of DNA-DNA attraction by H4 histone tail acetylations and mutations.

    PubMed

    Korolev, Nikolay; Yu, Hang; Lyubartsev, Alexander P; Nordenskiöld, Lars

    2014-10-01

    The positively charged N-terminal histone tails play a crucial role in chromatin compaction and are important modulators of DNA transcription, recombination, and repair. The detailed mechanism of the interaction of histone tails with DNA remains elusive. To model the unspecific interaction of histone tails with DNA, all-atom molecular dynamics (MD) simulations were carried out for systems of four DNA 22-mers in the presence of 20 or 16 short fragments of the H4 histone tail (variations of the 16-23 a. a. KRHRKVLR sequence, as well as the unmodified fragment a. a.13-20, GGAKRHRK). This setup with high DNA concentration, explicit presence of DNA-DNA contacts, presence of unstructured cationic peptides (histone tails) and K(+) mimics the conditions of eukaryotic chromatin. A detailed account of the DNA interactions with the histone tail fragments, K(+) and water is presented. Furthermore, DNA structure and dynamics and its interplay with the histone tail fragments binding are analysed. The charged side chains of the lysines and arginines play major roles in the tail-mediated DNA-DNA attraction by forming bridges and by coordinating to the phosphate groups and to the electronegative sites in the minor groove. Binding of all species to DNA is dynamic. The structure of the unmodified fully-charged H4 16-23 a.a. fragment KRHRKVLR is dominated by a stretched conformation. The H4 tail a. a. fragment GGAKRHRK as well as the H4 Lys16 acetylated fragment are highly flexible. The present work allows capturing typical features of the histone tail-counterion-DNA structure, interaction and dynamics.

  8. Comparing selected morphological models of hydrated Nafion using large scale molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Knox, Craig K.

    Experimental elucidation of the nanoscale structure of hydrated Nafion, the most popular polymer electrolyte or proton exchange membrane (PEM) to date, and its influence on macroscopic proton conductance is particularly challenging. While it is generally agreed that hydrated Nafion is organized into distinct hydrophilic domains or clusters within a hydrophobic matrix, the geometry and length scale of these domains continues to be debated. For example, at least half a dozen different domain shapes, ranging from spheres to cylinders, have been proposed based on experimental SAXS and SANS studies. Since the characteristic length scale of these domains is believed to be ˜2 to 5 nm, very large molecular dynamics (MD) simulations are needed to accurately probe the structure and morphology of these domains, especially their connectivity and percolation phenomena at varying water content. Using classical, all-atom MD with explicit hydronium ions, simulations have been performed to study the first-ever hydrated Nafion systems that are large enough (~2 million atoms in a ˜30 nm cell) to directly observe several hydrophilic domains at the molecular level. These systems consisted of six of the most significant and relevant morphological models of Nafion to-date: (1) the cluster-channel model of Gierke, (2) the parallel cylinder model of Schmidt-Rohr, (3) the local-order model of Dreyfus, (4) the lamellar model of Litt, (5) the rod network model of Kreuer, and (6) a 'random' model, commonly used in previous simulations, that does not directly assume any particular geometry, distribution, or morphology. These simulations revealed fast intercluster bridge formation and network percolation in all of the models. Sulfonates were found inside these bridges and played a significant role in percolation. Sulfonates also strongly aggregated around and inside clusters. Cluster surfaces were analyzed to study the hydrophilic-hydrophobic interface. Interfacial area and cluster volume

  9. Accelerated molecular dynamics methods: introduction and recent developments

    SciTech Connect

    Uberuaga, Blas Pedro; Voter, Arthur F; Perez, Danny; Shim, Y; Amar, J G

    2009-01-01

    A long-standing limitation in the use of molecular dynamics (MD) simulation is that it can only be applied directly to processes that take place on very short timescales: nanoseconds if empirical potentials are employed, or picoseconds if we rely on electronic structure methods. Many processes of interest in chemistry, biochemistry, and materials science require study over microseconds and beyond, due either to the natural timescale for the evolution or to the duration of the experiment of interest. Ignoring the case of liquids xxx, the dynamics on these time scales is typically characterized by infrequent-event transitions, from state to state, usually involving an energy barrier. There is a long and venerable tradition in chemistry of using transition state theory (TST) [10, 19, 23] to directly compute rate constants for these kinds of activated processes. If needed dynamical corrections to the TST rate, and even quantum corrections, can be computed to achieve an accuracy suitable for the problem at hand. These rate constants then allow them to understand the system behavior on longer time scales than we can directly reach with MD. For complex systems with many reaction paths, the TST rates can be fed into a stochastic simulation procedure such as kinetic Monte Carlo xxx, and a direct simulation of the advance of the system through its possible states can be obtained in a probabilistically exact way. A problem that has become more evident in recent years, however, is that for many systems of interest there is a complexity that makes it difficult, if not impossible, to determine all the relevant reaction paths to which TST should be applied. This is a serious issue, as omitted transition pathways can have uncontrollable consequences on the simulated long-time kinetics. Over the last decade or so, we have been developing a new class of methods for treating the long-time dynamics in these complex, infrequent-event systems. Rather than trying to guess in advance what

  10. Molecular dynamics modeling and characterization of graphene/polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Rahman, Rezwanur

    The current work focuses on the characterization of graphene based nanocomposites using molecular dynamic simulation and multiscale modeling approaches. Both graphene-epoxy and graphene-cellulose nanocomposites were considered in this study. A hierarchical multiscale modeling approach has been proposed using peridynamics and molecular dynamics simulation. Firstly, the mechanical properties of crosslinked graphene/epoxy (G-Ep) nanocomposites were investigated by molecular mechanics (MM) and molecular dynamics (MD) simulations. The influence of graphene's weight concentration, aspect ratio and dispersion on stress-strain response and elastic properties were studied. The results show significant improvement in Young's modulus and shear modulus for the G-Ep system in comparison to the neat epoxy resin. It appears that the RDF, molecular energy and aspect ratios are influenced by both graphene concentrations and aspect ratios. The graphene concentrations in the range of 1-3% are seen to improve Young's modulus and shorter graphenes are observed to be more effective than larger ones. In addition, the dispersed graphene system is more promising in enhancing in-plane elastic modulus than the agglomerated graphene system. The cohesive and pullout forces versus displacements data were plotted under normal and shear modes in order to characterize interfacial properties. The cohesive force is significantly improved by attaching the graphene with a chemical bond at the graphene-epoxy interface. In the second part of the work, cellulose was considered to study the mechanical properties of graphene-cellulose bionanocomposite. Similar to graphene-epoxy systems, the effect of graphene dispersion and agglomeration were studied in the stress-strain plots of graphene-cellulose system. A pcff forcefield was used to define intermolecular and intramolecular interactions. The effect of graphene's aspect ratio and weight concentration on the structural property of each unitcell was

  11. Molecular dynamics studies of protein folding and aggregation

    NASA Astrophysics Data System (ADS)

    Ding, Feng

    This thesis applies molecular dynamics simulations and statistical mechanics to study: (i) protein folding; and (ii) protein aggregation. Most small proteins fold into their native states via a first-order-like phase transition with a major free energy barrier between the folded and unfolded states. A set of protein conformations corresponding to the free energy barrier, Delta G >> kBT, are the folding transition state ensemble (TSE). Due to their evasive nature, TSE conformations are hard to capture (probability ∝ exp(-DeltaG/k BT)) and characterize. A coarse-grained discrete molecular dynamics model with realistic steric constraints is constructed to reproduce the experimentally observed two-state folding thermodynamics. A kinetic approach is proposed to identify the folding TSE. A specific set of contacts, common to the TSE conformations, is identified as the folding nuclei which are necessary to be formed in order for the protein to fold. Interestingly, the amino acids at the site of the identified folding nuclei are highly conserved for homologous proteins sharing the same structures. Such conservation suggests that amino acids that are important for folding kinetics are under selective pressure to be preserved during the course of molecular evolution. In addition, studies of the conformations close to the transition states uncover the importance of topology in the construction of order parameter for protein folding transition. Misfolded proteins often form insoluble aggregates, amyloid fibrils, that deposit in the extracellular space and lead to a type of disease known as amyloidosis. Due to its insoluble and non-crystalline nature, the aggregation structure and, thus the aggregation mechanism, has yet to be uncovered. Discrete molecular dynamics studies reveal an aggregate structure with the same structural signatures as in experimental observations and show a nucleation aggregation scenario. The simulations also suggest a generic aggregation mechanism

  12. Computational Studies on the Anharmonic Dynamics of Molecular Clusters

    NASA Astrophysics Data System (ADS)

    Mancini, John S.

    Molecular nanoclusters present ideal systems to probe the physical forces and dynamics that drive the behavior of larger bulk systems. At the nanocluster limit the first instances of several phenomena can be observed including the breaking of hydrogen and molecular bonds. Advancements in experimental and theoretical techniques have made it possible to explore these phenomena in great detail. The most fruitful of these studies have involved the use of both experimental and theoretical techniques to leverage to strengths of the two approaches. This dissertation seeks to explore several important phenomena of molecular clusters using new and existing theoretical methodologies. Three specific systems are considered, hydrogen chloride clusters, mixed water and hydrogen chloride clusters and the first cluster where hydrogen chloride autoionization occurs. The focus of these studies remain as close as possible to experimentally observable phenomena with the intention of validating, simulating and expanding on experimental work. Specifically, the properties of interested are those related to the vibrational ground and excited state dynamics of these systems. Studies are performed using full and reduced dimensional potential energy surface alongside advanced quantum mechanical methods including diffusion Monte Carlo, vibrational configuration interaction theory and quasi-classical molecular dynamics. The insight gained from these studies are great and varied. A new on-they-fly ab initio method for studying molecular clusters is validated for (HCl)1--6. A landmark study of the dissociation energy and predissociation mechanism of (HCl)3 is reported. The ground states of mixed (HCl)n(H2O)m are found to be highly delocalized across multiple stationary point configurations. Furthermore, it is identified that the consideration of this delocalization is required in vibrational excited state calculations to achieve agreement with experimental measurements. Finally, the theoretical

  13. Study of critical dynamics in fluids via molecular dynamics in canonical ensemble.

    PubMed

    Roy, Sutapa; Das, Subir K

    2015-12-01

    With the objective of understanding the usefulness of thermostats in the study of dynamic critical phenomena in fluids, we present results for transport properties in a binary Lennard-Jones fluid that exhibits liquid-liquid phase transition. Various collective transport properties, calculated from the molecular dynamics (MD) simulations in canonical ensemble, with different thermostats, are compared with those obtained from MD simulations in microcanonical ensemble. It is observed that the Nosé-Hoover and dissipative particle dynamics thermostats are useful for the calculations of mutual diffusivity and shear viscosity. The Nosé-Hoover thermostat, however, as opposed to the latter, appears inadequate for the study of bulk viscosity. PMID:26687057

  14. Gas-Phase Molecular Dynamics: Theoretical Studies In Spectroscopy and Chemical Dynamics

    SciTech Connect

    Yu H. G.; Muckerman, J.T.

    2012-05-29

    The main goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods, and extends them to understand some important properties of materials in condensed phases and interstellar medium as well as in combustion environments.

  15. Gas-Phase Molecular Dynamics: Theoretical Studies in Spectroscopy and Chemical Dynamics

    SciTech Connect

    Yu, H.G.; Muckerman, J.T.

    2010-06-01

    The goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods.

  16. Dynamical Simulations of Molecular Clouds in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Salas, Jesus; Morris, Mark

    2016-06-01

    The formation of the central massive cluster of young stars orbiting the Galactic black hole, Sgr A*, has been modeled by several groups by invoking an almost radially infalling molecular cloud that interacts with the black hole and creates a dense, gaseous disk in which stars can then form. However, the dynamical origin of such a cloud remains an open question. We present simulations of the central 30-100 pc of the Milky Way, starting from a population of molecular clouds located in a disk with scale height of ~30 pc, using the N-body/smoothed-particle hydrodynamics code, Gadget2. We followed the dynamical evolution of clouds in a galactic potential that includes a bar to explore whether cloud collisions or a succession of cloud scatterings can remove sufficient angular momentum from a massive cloud to endow it with a predominantly radial orbit. Initial results illustrate the importance of tidal shear; while dense cloud cores remain identifiable for extended periods of time, much of the molecular mass ends up in tidal streams, so cannot be deflected onto low angular momentum orbits by their mutual interactions. At the completion of our ongoing computations, we will report on whether the cloud cores can undergo sufficient scattering to achieve low-angular-momentum orbits.

  17. Molecular Dynamics Simulation of Carbon Nanotube Based Gears

    NASA Technical Reports Server (NTRS)

    Han, Jie; Globus, Al; Jaffe, Richard; Deardorff, Glenn; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    We used molecular dynamics to investigate the properties and design space of molecular gears fashioned from carbon nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. One gear was powered by forcing the atoms near the end of the buckytube to rotate, and a second gear was allowed.to rotate by keeping the atoms near the end of its buckytube on a cylinder. The meshing aromatic gear teeth transfer angular momentum from the powered gear to the driven gear. A number of gear and gear/shaft configurations were simulated. Cases in vacuum and with an inert atmosphere were examined. In an extension to molecular dynamics technology, some simulations used a thermostat on the atmosphere while the hydrocarbon gear's temperature was allowed to fluctuate. This models cooling the gears with an atmosphere. Results suggest that these gears can operate at up to 50-100 gigahertz in a vacuum or inert atmosphere at room temperature. The failure mode involves tooth slip, not bond breaking, so failed gears can be returned to operation by lowering temperature and/or rotation rate. Videos and atomic trajectory files in xyz format are presented.

  18. Autoinhibitory mechanisms of ERG studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Salsbury, Freddie R.

    2015-01-01

    ERG, an ETS-family transcription factor, acts as a regulator of differentiation of early hematopoietic cells. It contains an autoinhibitory domain, which negatively regulates DNA-binding. The mechanism of autoinhibitory is still illusive. To understand the mechanism, we study the dynamical properties of ERG protein by molecular dynamics simulations. These simulations suggest that DNA binding autoinhibition associates with the internal dynamics of ERG. Specifically, we find that (1), The N-C terminal correlation in the inhibited ERG is larger than that in uninhibited ERG that contributes to the autoinhibition of DNA-binding. (2), DNA-binding changes the property of the N-C terminal correlation from being anti-correlated to correlated, that is, changing the relative direction of the correlated motions and (3), For the Ets-domain specifically, the inhibited and uninhibited forms exhibit essentially the same dynamics, but the binding of the DNA decreases the fluctuation of the Ets-domain. We also find from PCA analysis that the three systems, even with quite different dynamics, do have highly similar free energy surfaces, indicating that they share similar conformations.

  19. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  20. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo.

    PubMed

    White, Alexander J; Gorshkov, Vyacheslav N; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-01

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems. PMID:26156473