NASA Astrophysics Data System (ADS)
Sharkey, Keeper L.; Bubin, Sergiy; Adamowicz, Ludwik
2014-11-01
Accurate variational nonrelativistic quantum-mechanical calculations are performed for the five lowest 1D and four lowest 3D states of the 9Be isotope of the beryllium atom. All-electron explicitly correlated Gaussian (ECG) functions are used in the calculations and their nonlinear parameters are optimized with the aid of the analytical energy gradient determined with respect to these parameters. The effect of the finite nuclear mass is directly included in the Hamiltonian used in the calculations. The singlet-triplet energy gaps between the corresponding 1D and 3D states, are reported.
Potential energy curves of Li+2 from all-electron EA-EOM-CCSD calculations
NASA Astrophysics Data System (ADS)
Musiał, Monika; Medrek, Magdalena; Kucharski, Stanisław A.
2015-10-01
The electron attachment (EA) equation-of-motion coupled-cluster theory provides description of the states obtained by the attachment of an electron to the reference system. If the reference is assumed to be a doubly ionised cation, then the EA results relate to the singly ionised ion. In the current work, the above scheme is applied to the calculations of the potential energy curves (PECs) of the Li+2 cation adopting the doubly ionised Li2 +2 structure as the reference system. The advantage of such computational strategy relies on the fact that the closed-shell Li2 +2 reference dissociates into closed-shell fragments (Li2 +2 ⇒ Li+ + Li+), hence the RHF (restricted Hartree-Fock) function can be used as the reference in the whole range of interatomic distances. This scheme offers the first principle method without any model or effective potential parameters for the description of the bond-breaking processes. In this study, the PECs and selected spectroscopic constants for 18 electronic states of the Li+2 ion were computed and compared with experimental and other theoretical results. †In honour of Professor Sourav Pal on the occasion of an anniversary in his private and scientific life.
NASA Astrophysics Data System (ADS)
Knuth, Franz; Carbogno, Christian; Atalla, Viktor; Blum, Volker; Scheffler, Matthias
2015-05-01
We derive and implement the strain derivatives of the total energy of solids, i.e., the analytic stress tensor components, in an all-electron, numeric atom-centered orbital based density-functional formalism. We account for contributions that arise in the semi-local approximation (LDA/GGA) as well as in the generalized Kohn-Sham case, in which a fraction of exact exchange (hybrid functionals) is included. In this work, we discuss the details of the implementation including the numerical corrections for sparse integrations grids which allow to produce accurate results. We validate the implementation for a variety of test cases by comparing to strain derivatives performed via finite differences. Additionally, we include the detailed definition of the overlapping atom-centered integration formalism used in this work to obtain total energies and their derivatives.
Losilla, S A; Sundholm, D
2012-06-01
A computational scheme to perform accurate numerical calculations of electrostatic potentials and interaction energies for molecular systems has been developed and implemented. Molecular electron and energy densities are divided into overlapping atom-centered atomic contributions and a three-dimensional molecular remainder. The steep nuclear cusps are included in the atom-centered functions making the three-dimensional remainder smooth enough to be accurately represented with a tractable amount of grid points. The one-dimensional radial functions of the atom-centered contributions as well as the three-dimensional remainder are expanded using finite element functions. The electrostatic potential is calculated by integrating the Coulomb potential for each separate density contribution, using our tensorial finite element method for the three-dimensional remainder. We also provide algorithms to compute accurate electron-electron and electron-nuclear interactions numerically using the proposed partitioning. The methods have been tested on all-electron densities of 18 reasonable large molecules containing elements up to Zn. The accuracy of the calculated Coulomb interaction energies is in the range of 10(-3) to 10(-6) E(h) when using an equidistant grid with a step length of 0.05 a(0).
NASA Astrophysics Data System (ADS)
Blum, Volker
This talk describes recent advances of a general, efficient, accurate all-electron electronic theory approach based on numeric atom-centered orbitals; emphasis is placed on developments related to materials for energy conversion and their discovery. For total energies and electron band structures, we show that the overall accuracy is on par with the best benchmark quality codes for materials, but scalable to large system sizes (1,000s of atoms) and amenable to both periodic and non-periodic simulations. A recent localized resolution-of-identity approach for the Coulomb operator enables O (N) hybrid functional based descriptions of the electronic structure of non-periodic and periodic systems, shown for supercell sizes up to 1,000 atoms; the same approach yields accurate results for many-body perturbation theory as well. For molecular systems, we also show how many-body perturbation theory for charged and neutral quasiparticle excitation energies can be efficiently yet accurately applied using basis sets of computationally manageable size. Finally, the talk highlights applications to the electronic structure of hybrid organic-inorganic perovskite materials, as well as to graphene-based substrates for possible future transition metal compound based electrocatalyst materials. All methods described here are part of the FHI-aims code. VB gratefully acknowledges contributions by numerous collaborators at Duke University, Fritz Haber Institute Berlin, TU Munich, USTC Hefei, Aalto University, and many others around the globe.
NASA Astrophysics Data System (ADS)
Amador, Davi H. T.; de Oliveira, Heibbe C. B.; Sambrano, Julio R.; Gargano, Ricardo; de Macedo, Luiz Guilherme M.
2016-10-01
A prolapse-free basis set for Eka-Actinium (E121, Z = 121), numerical atomic calculations on E121, spectroscopic constants and accurate analytical form for the potential energy curve of diatomic E121F obtained at 4-component all-electron CCSD(T) level including Gaunt interaction are presented. The results show a strong and polarized bond (≈181 kcal/mol in strength) between E121 and F, the outermost frontier molecular orbitals from E121F should be fairly similar to the ones from AcF and there is no evidence of break of periodic trends. Moreover, the Gaunt interaction, although small, is expected to influence considerably the overall rovibrational spectra.
NASA Astrophysics Data System (ADS)
Nabok, Dmitrii; Gulans, Andris; Draxl, Claudia
2016-07-01
The G W approach of many-body perturbation theory has become a common tool for calculating the electronic structure of materials. However, with increasing number of published results, discrepancies between the values obtained by different methods and codes become more and more apparent. For a test set of small- and wide-gap semiconductors, we demonstrate how to reach the numerically best electronic structure within the framework of the full-potential linearized augmented plane-wave (FLAPW) method. We first evaluate the impact of local orbitals in the Kohn-Sham eigenvalue spectrum of the underlying starting point. The role of the basis-set quality is then further analyzed when calculating the G0W0 quasiparticle energies. Our results, computed with the exciting code, are compared to those obtained using the projector-augmented plane-wave formalism, finding overall good agreement between both methods. We also provide data produced with a typical FLAPW basis set as a benchmark for other G0W0 implementations.
Sharkey, Keeper L.; Adamowicz, Ludwik
2014-05-07
An algorithm for quantum-mechanical nonrelativistic variational calculations of L = 0 and M = 0 states of atoms with an arbitrary number of s electrons and with three p electrons have been implemented and tested in the calculations of the ground {sup 4}S state of the nitrogen atom. The spatial part of the wave function is expanded in terms of all-electrons explicitly correlated Gaussian functions with the appropriate pre-exponential Cartesian angular factors for states with the L = 0 and M = 0 symmetry. The algorithm includes formulas for calculating the Hamiltonian and overlap matrix elements, as well as formulas for calculating the analytic energy gradient determined with respect to the Gaussian exponential parameters. The gradient is used in the variational optimization of these parameters. The Hamiltonian used in the approach is obtained by rigorously separating the center-of-mass motion from the laboratory-frame all-particle Hamiltonian, and thus it explicitly depends on the finite mass of the nucleus. With that, the mass effect on the total ground-state energy is determined.
NASA Astrophysics Data System (ADS)
Noguchi, Yoshifumi; Ohno, Kaoru; Solovyev, Igor; Sasaki, Taizo
2010-04-01
The double ionization energy (DIE) spectra are calculated for the spin-polarized aluminum and sodium clusters by means of the all-electron spin-polarized GW+T -matrix method based on the many-body perturbation theory. Our method using the one- and two-particle Green’s functions enables us to determine the whole spectra at once in a single calculation. The smaller is the size of the cluster, the larger the difference between the minimal double ionization energy and the twice of the ionization potential. This is because the strong Coulomb repulsion between two holes becomes dominant in small confined geometry. Due to Pauli’s exclusion principle, the parallel spin DIE is close to or smaller than the antiparallel spin DIE except for Na4 that has well-separated highest and second highest occupied molecular-orbital levels calculated by the spin-dependent GW calculation. In this paper, we compare the results calculated for aluminum and sodium clusters and discuss the spin-polarized effect and the cluster size dependence of the resulting spectra in detail.
Electron correlation energies in atoms
NASA Astrophysics Data System (ADS)
McCarthy, Shane Patrick
This dissertation is a study of electron correlation energies Ec in atoms. (1) Accurate values of E c are computed for isoelectronic sequences of "Coulomb-Hooke" atoms with varying mixtures of Coulombic and Hooke character. (2) Coupled-cluster calculations in carefully designed basis sets are combined with fully converged second-order Moller-Plesset perturbation theory (MP2) computations to obtain fairly accurate, non-relativistic Ec values for the 12 closed-shell atoms from Ar to Rn. The complete basis-set (CBS) limits of MP2 energies are obtained for open-shell atoms by computations in very large basis sets combined with a knowledge of the MP2/CBS limit for the next larger closed-shell atom with the same valence shell structure. Then higher-order correlation corrections are found by coupled-cluster calculations using basis sets that are not quite as large. The method is validated for the open-shell atoms from Al to Cl and then applied to get E c values, probably accurate to 3%, for the 4th-period open-shell atoms: K, Sc-Cu, and Ga-Br. (3) The results show that, contrary to quantum chemical folklore, MP2 overestimates |Ec| for atoms beyond Fe. Spin-component scaling arguments are used to provide a simple explanation for this overestimation. (4) Eleven non-relativistic density functionals, including some of the most widely-used ones, are tested on their ability to predict non-relativistic, electron correlation energies for atoms and their cations. They all lead to relatively poor predictions for the heavier atoms. Several novel, few-parameter, density functionals for the correlation energy are developed heuristically. Four new functionals lead to improved predictions for the 4th-period atoms without unreasonably compromising accuracy for the lighter atoms. (5) Simple models describing the variation of E c with atomic number are developed.
An empirical estimate of the correlation energy
NASA Astrophysics Data System (ADS)
Spackman, M. A.; Maslen, E. N.
1986-04-01
The difference between experimental and accurate Hartree-Fock binding energies is strongly correlated with the classical electrostatic interaction between spherical atoms for a large number of diatomic and polyatomic molecules. The results lead to a useful estimate of the molecular extra correlation energy and indicate that one quarter of the electrostatic energy is an approximate lower bound to the molecular extra correlation energy.
Energy Correlation of Prompt Fission Neutrons
NASA Astrophysics Data System (ADS)
Elter, Zs.; Pázsit, I.
2016-03-01
In all cases where neutron fluctuations in a branching process (such as in multiplicity measurements) are treated in an energy dependent description, the energy correlations of the branching itself (energy correlations of the fission neutrons) need to be known. To date, these are not known from experiments. Such correlations can be theoretically and numerically derived by modelling the details of the fission process. It was suggested earlier that the fact that the prompt neutrons are emitted from the moving fission targets, will influence their energy and angular distributions in the lab system, which possibly induces correlations. In this paper the influence of the neutron emission process from the moving targets on the energy correlations is investigated analytically and via numerical simulations. It is shown that the correlations are generated by the random energy and direction distributions of the fission fragments. Analytical formulas are derived for the two-point energy distributions, and quantitative results are obtained by Monte-Carlo simulations. The results lend insight into the character of the two-point distributions, and give quantitative estimates of the energy correlations, which are generally small.
Angular correlations and high energy evolution
Kovner, Alex; Lublinsky, Michael
2011-11-01
We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N{sub c} approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.
Angular correlations near the Fermi energy
Fox, D.; Cebra, D.A.; Karn, J.; Parks, C.; Pradhan, A.; Vander Molen, A.; van der Plicht, J.; Westfall, G.D.; Wilson, W.K.; Tickle, R.S.; and others
1988-07-01
Angular correlations between light particles have been studied to probe the extent to which a thermally equilibrated system is formed in heavy ion collisions near the Fermi energy. Single-light-particle inclusive energy spectra and two-particle large-angle correlations were measured for 40 and 50 MeV/nucleon C+C, Ag, and Au. The single-particle inclusive energy spectra are well fit by a three moving source parametrization. Two-particle large-angle correlations are shown to be consistent with emission from a thermally equilibrated source when the effects of momentum conservation are considered. Single-particle inclusive spectra and light-particle correlations at small relative momentum were measured for 35 MeV/nucleon N+Ag. Source radii were extracted from the two-particle correlation functions and were found to be consistent with previous measurements using two-particle correlations and the coalescence model. The temperature of the emitting source was extracted from the relative populations of states using the quantum statistical model and was found to be 4.8/sub -2.4//sup +2.8/ MeV, compared to the 14 MeV temperature extracted from the slopes of the kinetic energy spectra.
Long-range correlation energy calculated from coupled atomic response functions
Ambrosetti, Alberto; Reilly, Anthony M.; Tkatchenko, Alexandre; DiStasio, Robert A.
2014-05-14
An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.
Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations
Webster, R. Harrison, N. M.; Bernasconi, L.
2015-06-07
We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.
Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations
NASA Astrophysics Data System (ADS)
Webster, R.; Bernasconi, L.; Harrison, N. M.
2015-06-01
We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green's function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional cHF and show that there exists one value of cHF (˜0.32) that reproduces at least semi-quantitatively the optical gap of this material.
Electronic correlation contributions to structural energies
NASA Astrophysics Data System (ADS)
Haydock, Roger
2015-03-01
The recursion method is used to calculate electronic excitation spectra including electron-electron interactions within the Hubbard model. The effects of correlation on structural energies are then obtained from these spectra and applied to stacking faults. http://arxiv.org/abs/1405.2288 Supported by the Richmond F. Snyder Fund and Gifts.
ERP Energy and Cognitive Activity Correlates
NASA Astrophysics Data System (ADS)
Schillaci, Michael Jay; Vendemia, Jennifer M. C.
2014-03-01
We propose a novel analysis approach for high-density event related scalp potential (ERP) data where the integrated channel-power is used to attain an energy density functional state for channel-clusters of neurophysiological significance. The method is applied to data recorded during a two-stimulus, directed lie paradigm and shows that deceptive responses emit between 8% and 10% less power. A time course analysis of these cognitive activity measures over posterior and anterior regions of the cortex suggests that neocortical interactions, reflecting the differing workload demands during executive and semantic processes, take about 50% longer for the case of deception. These results suggest that the proposed method may provide a useful tool for the analysis of ERP correlates of high-order cognitive functioning. We also report on a possible equivalence between the energy functional distribution and near-infrared signatures that have been measured with other modalities.
Rapid Bacterial Detection via an All-Electronic CMOS Biosensor
Nikkhoo, Nasim; Cumby, Nichole; Gulak, P. Glenn; Maxwell, Karen L.
2016-01-01
The timely and accurate diagnosis of infectious diseases is one of the greatest challenges currently facing modern medicine. The development of innovative techniques for the rapid and accurate identification of bacterial pathogens in point-of-care facilities using low-cost, portable instruments is essential. We have developed a novel all-electronic biosensor that is able to identify bacteria in less than ten minutes. This technology exploits bacteriocins, protein toxins naturally produced by bacteria, as the selective biological detection element. The bacteriocins are integrated with an array of potassium-selective sensors in Complementary Metal Oxide Semiconductor technology to provide an inexpensive bacterial biosensor. An electronic platform connects the CMOS sensor to a computer for processing and real-time visualization. We have used this technology to successfully identify both Gram-positive and Gram-negative bacteria commonly found in human infections. PMID:27618185
Broadband all-electronically tunable MEMS terahertz quantum cascade lasers.
Han, Ningren; de Geofroy, Alexander; Burghoff, David P; Chan, Chun Wang I; Lee, Alan Wei Min; Reno, John L; Hu, Qing
2014-06-15
In this work, we demonstrate all-electronically tunable terahertz quantum cascade lasers (THz QCLs) with MEMS tuner structures. A two-stage MEMS tuner device is fabricated by a commercial open-foundry process performed by the company MEMSCAP. This provides an inexpensive, rapid, and reliable approach for MEMS tuner fabrication for THz QCLs with a high-precision alignment scheme. In order to electronically actuate the MEMS tuner device, an open-loop cryogenic piezo nanopositioning stage is integrated with the device chip. Our experimental result shows that at least 240 GHz of single-mode continuous electronic tuning can be achieved in cryogenic environments (∼4 K) without mode hopping. This provides an important step toward realizing turn-key bench-top tunable THz coherent sources for spectroscopic and coherent tomography applications.
Rapid Bacterial Detection via an All-Electronic CMOS Biosensor.
Nikkhoo, Nasim; Cumby, Nichole; Gulak, P Glenn; Maxwell, Karen L
2016-01-01
The timely and accurate diagnosis of infectious diseases is one of the greatest challenges currently facing modern medicine. The development of innovative techniques for the rapid and accurate identification of bacterial pathogens in point-of-care facilities using low-cost, portable instruments is essential. We have developed a novel all-electronic biosensor that is able to identify bacteria in less than ten minutes. This technology exploits bacteriocins, protein toxins naturally produced by bacteria, as the selective biological detection element. The bacteriocins are integrated with an array of potassium-selective sensors in Complementary Metal Oxide Semiconductor technology to provide an inexpensive bacterial biosensor. An electronic platform connects the CMOS sensor to a computer for processing and real-time visualization. We have used this technology to successfully identify both Gram-positive and Gram-negative bacteria commonly found in human infections. PMID:27618185
Fundamental High-Pressure Calibration from All-Electron Quantum Monte Carlo Calculations
Esler, K. P.; Cohen, R. E.; Militzer, B.; Kim, Jeongnim; Needs, R. J.; Towler, M. D.
2010-05-07
We develop an all-electron quantum Monte Carlo (QMC) method for solids that does not rely on pseudopotentials, and use it to construct a primary ultra-high-pressure calibration based on the equation of state of cubic boron nitride. We compute the static contribution to the free energy with the QMC method and obtain the phonon contribution from density functional theory, yielding a high-accuracy calibration up to 900 GPa usable directly in experiment. We compute the anharmonic Raman frequency shift with QMC simulations as a function of pressure and temperature, allowing optical pressure calibration. In contrast to present experimental approaches, small systematic errors in the theoretical EOS do not increase with pressure, and no extrapolation is needed. This all-electron method is applicable to first-row solids, providing a new reference for ab initio calculations of solids and benchmarks for pseudopotential accuracy.
Computing molecular correlation energies with guaranteed precision
NASA Astrophysics Data System (ADS)
Bischoff, Florian A.; Valeev, Edward F.
2013-09-01
We present an approach to compute accurate correlation energies for atoms and molecules in the framework of multiresolution analysis (MRA), using an adaptive discontinuous multiresolution spectral-element representation for the six-dimensional (two-electron) pair function. The key features of our approach that make it feasible, namely (1) low-rank tensor approximations of functions and operators and (2) analytic elimination of operator singularities via explicit correlation, were retained from the previous work [F. A. Bischoff, R. J. Harrison, and E. F. Valeev, J. Chem. Phys. 137, 104103 (2012)]. Here we generalized the working equations to handle general (non-symmetric) many-electron systems at the MP2 level. The numerical performance is shown for the beryllium atom and the water molecule where literature data for the basis set limits could be reproduced to a few tens of μEh. The key advantages of molecular MRA-MP2 are the absence of bias and arbitrariness in the choice of the basis set, high accuracy, and low scaling with respect to the system size.
Label-free all-electronic biosensing in microfluidic systems
NASA Astrophysics Data System (ADS)
Stanton, Michael A.
Label-free, all-electronic detection techniques offer great promise for advancements in medical and biological analysis. Electrical sensing can be used to measure both interfacial and bulk impedance changes in conducting solutions. Electronic sensors produced using standard microfabrication processes are easily integrated into microfluidic systems. Combined with the sensitivity of radiofrequency electrical measurements, this approach offers significant advantages over competing biological sensing methods. Scalable fabrication methods also provide a means of bypassing the prohibitive costs and infrastructure associated with current technologies. We describe the design, development and use of a radiofrequency reflectometer integrated into a microfluidic system towards the specific detection of biologically relevant materials. We developed a detection protocol based on impedimetric changes caused by the binding of antibody/antigen pairs to the sensing region. Here we report the surface chemistry that forms the necessary capture mechanism. Gold-thiol binding was utilized to create an ordered alkane monolayer on the sensor surface. Exposed functional groups target the N-terminus, affixing a protein to the monolayer. The general applicability of this method lends itself to a wide variety of proteins. To demonstrate specificity, commercially available mouse anti- Streptococcus Pneumoniae monoclonal antibody was used to target the full-length recombinant pneumococcal surface protein A, type 2 strain D39 expressed by Streptococcus Pneumoniae. We demonstrate the RF response of the sensor to both the presence of the surface decoration and bound SPn cells in a 1x phosphate buffered saline solution. The combined microfluidic sensor represents a powerful platform for the analysis and detection of cells and biomolecules.
NASA Astrophysics Data System (ADS)
McDonagh, James L.; Vincent, Mark A.; Popelier, Paul L. A.
2016-10-01
Here MP2, MP3 and MP4(SDQ) are energy-partitioned for the first time within the Interacting Quantum Atoms (IQA) context, as proof-of-concept for H2, He2 and HF. Energies are decomposed into four primary energy contributions: (i) atomic self-energies, and atomic interaction energies comprising of (ii) Coulomb, (iii) exchange and (iv) dynamic election correlation terms. We generate and partition one- and two-particle density-matrices to obtain all atomic energy components. This work suggests that, in terms of Van der Waals dispersion, the correlation energies represent an atomic stabilisation, by proximity to other atoms, as opposed to direct interactions with other nearby atoms.
Tung, Wei-Cheng; Adamowicz, Ludwik
2014-03-28
Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH{sup +} ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.
Isoscaling: Geometry, correlations and symmetry energy
Dorso, C.O.
2006-03-15
This work uses a simple model to understand the properties of isoscaling. Using a generalized percolation model, it is first shown that isoscaling is a general property of fragmenting systems. In particular, it is found that the usual isoscaling property can be seen as a limit case of bond percolation in lattices in D dimensions, with N colors, with independent probabilities for each color, and for any regular topology. The effect of introducing correlations is also studied.
NASA Technical Reports Server (NTRS)
Deng, Yue
2014-01-01
Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.
Correlation among low-energy four-nucleon observables
NASA Astrophysics Data System (ADS)
Adhikari, Sadhan K.
1981-07-01
We study the correlation among s-wave low-energy four-nucleon observables by using a simplified dispersion theoretic (ND) approach. We find that the triton binding energy, its asymptotic normalization parameter, the deuteron exchange left-hand cut, and the nucleon-trinucleon (N-t) scattering length control the low-energy N-t system. The isospin one channel is insensitive to the asymptotic normalization parameter of the triton. The effective range function k δ for the isospin zero spin singlet N-t system has a pole whose position and residue are strongly correlated with the N-t scattering length. In this case the four-nucleon system (in our model) has an excited state whose binding energy and asymptotic normalization parameter are also correlated with the N-t scattering length. [NUCLEAR REACTIONS s-wave nucleon-trinucleon systems, spin-isospin channels, ND approach, low-energy correlations.
NASA Astrophysics Data System (ADS)
Peterson, Kirk A.; Figgen, Detlev; Dolg, Michael; Stoll, Hermann
2007-03-01
Scalar-relativistic pseudopotentials and corresponding spin-orbit potentials of the energy-consistent variety have been adjusted for the simulation of the [Ar]3d10 cores of the 4d transition metal elements Y-Pd. These potentials have been determined in a one-step procedure using numerical two-component calculations so as to reproduce atomic valence spectra from four-component all-electron calculations. The latter have been performed at the multi-configuration Dirac-Hartree-Fock level, using the Dirac-Coulomb Hamiltonian and perturbatively including the Breit interaction. The derived pseudopotentials reproduce the all-electron reference data with an average accuracy of 0.03eV for configurational averages over nonrelativistic orbital configurations and 0.1eV for individual relativistic states. Basis sets following a correlation consistent prescription have also been developed to accompany the new pseudopotentials. These range in size from cc-pVDZ-PP to cc-pV5Z-PP and also include sets for 4s4p correlation (cc-pwCVDZ-PP through cc-pwCV5Z-PP), as well as those with extra diffuse functions (aug-cc-pVDZ-PP, etc.). In order to accurately assess the impact of the pseudopotential approximation, all-electron basis sets of triple-zeta quality have also been developed using the Douglas-Kroll-Hess Hamiltonian (cc-pVTZ-DK, cc-pwCVTZ-DK, and aug-cc-pVTZ-DK). Benchmark calculations of atomic ionization potentials and 4dm -25s2→4dm -15s1 electronic excitation energies are reported at the coupled cluster level of theory with extrapolations to the complete basis set limit.
Peterson, Kirk A; Figgen, Detlev; Dolg, Michael; Stoll, Hermann
2007-03-28
Scalar-relativistic pseudopotentials and corresponding spin-orbit potentials of the energy-consistent variety have been adjusted for the simulation of the [Ar]3d(10) cores of the 4d transition metal elements Y-Pd. These potentials have been determined in a one-step procedure using numerical two-component calculations so as to reproduce atomic valence spectra from four-component all-electron calculations. The latter have been performed at the multi-configuration Dirac-Hartree-Fock level, using the Dirac-Coulomb Hamiltonian and perturbatively including the Breit interaction. The derived pseudopotentials reproduce the all-electron reference data with an average accuracy of 0.03 eV for configurational averages over nonrelativistic orbital configurations and 0.1 eV for individual relativistic states. Basis sets following a correlation consistent prescription have also been developed to accompany the new pseudopotentials. These range in size from cc-pVDZ-PP to cc-pV5Z-PP and also include sets for 4s4p correlation (cc-pwCVDZ-PP through cc-pwCV5Z-PP), as well as those with extra diffuse functions (aug-cc-pVDZ-PP, etc.). In order to accurately assess the impact of the pseudopotential approximation, all-electron basis sets of triple-zeta quality have also been developed using the Douglas-Kroll-Hess Hamiltonian (cc-pVTZ-DK, cc-pwCVTZ-DK, and aug-cc-pVTZ-DK). Benchmark calculations of atomic ionization potentials and 4d(m-2)5s(2)-->4d(m-1)5s(1) electronic excitation energies are reported at the coupled cluster level of theory with extrapolations to the complete basis set limit. PMID:17411102
NASA Astrophysics Data System (ADS)
Suzuki, Shugo; Ohta, Hidehisa; Komatsu, Takumi; Yasuda, Sho
2011-08-01
We study the dependence of the structural properties of uranium monochalcogenides, UX where X = S, Se, and Te, as well as their electronic ones on the exchange--correlation energy functionals within the spin density functional theory, carrying out all electron calculations by the fully relativistic full-potential linear-combination-of-atomic-orbitals method. We employ two functionals of the local spin density approximation (LSDA) and two functionals of the generalized gradient approximations (GGA); the former two are the Perdew--Zunger and Perdew--Wang functionals and the latter two are the Perdew--Burke--Ernzerhof (PBE) and PBEsol functionals. We also examine the effects of the relativistic correction to the LSDA exchange part of each functional. We find that, for lattice constants, bulk moduli, and cohesive energies, the results of the calculations using the PBE functional are in the best agreement with the experimental results. On the contrary, we find that calculated total magnetic moments and one-electron energies are almost the same for all the LSDA and GGA functionals employed in this work, failing to improve the agreement between the calculated and experimental results even if the gradient and relativistic corrections are included. We also find that the relativistic correction plays minor roles in both the structural and electronic properties.
Scaling in the correlation energies of atomic ions
NASA Astrophysics Data System (ADS)
Odriazola, A.; González, A.; Räsänen, E.
2014-11-01
We show through numerical investigations that the ground-state correlation energies of atomic ions follow an unexpectedly simple scaling relation, Ec≈Z4 /3fc(Z /N ) , where N is the number of electrons, Z is the atomic number, and fc is a universal function, for which an analytic expression with a one-parameter fit can be provided. The relation agrees well with several sets of correlation energies obtained from different methods for atomic ions with N =2 ,...,18 and Z =2 ,...,28 . Moreover, our relation gives a good agreement with neutral atoms up to N ≈90 . Our main result is readily applicable to estimating correlation energies of heavy elements, for which there are no available data in the literature. The simplicity of the relation may also have implications in the development of correlation functionals within density-functional theory.
Effect of critical dimension variation on SAW correlator energy.
Skinner, Jack L.
2005-04-01
The effect of critical dimension (CD) variation and metallization ratio on the efficiency of energy conversion of a surface acoustic wave (SAW) correlator is examined. We find that a 10% variation in the width of finger electrodes predicts only a 1% decrease in the efficiency of energy conversion. Furthermore, our model predicts that a metallization ratio of 0.74 represents an optimum value for energy extraction from the SAW by the interdigitated transducer (IDT).
Correlated energy transfer between two ultracold atomic species
NASA Astrophysics Data System (ADS)
Krönke, Sven; Knörzer, Johannes; Schmelcher, Peter
2015-05-01
We study a single atom as an open quantum system, which is initially prepared in a coherent state of low energy and oscillates in a one-dimensional harmonic trap through an interacting ensemble of NA bosons, held in a displaced trap [arXiv:1410.8676]. The non-equilibrium quantum dynamics of the total system is simulated by means of an ab-initio method, giving us access to all properties of the open system and its finite environment. In this talk, we focus on unraveling the interplay of energy exchange and correlations between the subsystems, which are coupled in such a spatio-temporally localized manner. We show that an inter-species interaction-induced level splitting accelerates the energy transfer between the atomic species for larger NA, which becomes less complete at the same time. System-environment correlations prove to be significant except for times when the excess energy distribution among the subsystems is highly imbalanced. These correlations result in incoherent energy transfer processes, which accelerate the early energy donation of the single atom. By analyzing correlations between intra-subsystem excitations, certain energy transfer channels are shown to be (dis-)favored depending on the instantaneous direction of transfer.
Impact of correlated noise in an energy depot model
Zeng, Chunhua; Zeng, Jiakui; Liu, Feng; Wang, Hua
2016-01-01
Based on the depot model of the motion of active Brownian particles (ABPs), the impact of cross-correlated multiplicative and additive noises has been investigated. Using a nonlinear Langevin approach, we discuss a new mechanism for the transport of ABPs in which the energy originates from correlated noise. It is shown that the correlation between two types of noise breaks the symmetry of the potential to generate motion of the ABPs with a net velocity. The absolute maximum value of the mean velocity depends on correlated noise or multiplicative noise, whereas a monotonic decrease in the mean velocity occurs with additive noise. In the case of no correlation, the ABPs undergo pure diffusion with zero mean velocity, whereas in the case of perfect correlation, the ABPs undergo pure drift with zero diffusion. This shows that the energy stemming from correlated noise is primarily converted to kinetic energy of the intrawell motion and is eventually dissipated in drift motion. A physical explanation of the mechanisms for noise-driven transport of ABPs is derived from the effective potential of the Fokker-Planck equation. PMID:26786478
Angular correlations in gluon production at high energy
Kovner, Alex; Lublinsky, Michael
2011-02-01
We present a general, model independent argument demonstrating that gluons produced in high energy hadronic collision are necessarily correlated in rapidity and also in the emission angle. The strength of the correlation depends on the process and on the structure/model of the colliding particles. In particular we argue that it is strongly affected (and underestimated) by factorized approximations frequently used to quantify the effect.
Norm-conserving pseudopotentials with chemical accuracy compared to all-electron calculations
NASA Astrophysics Data System (ADS)
Willand, Alex; Kvashnin, Yaroslav O.; Genovese, Luigi; Vázquez-Mayagoitia, Álvaro; Deb, Arpan Krishna; Sadeghi, Ali; Deutsch, Thierry; Goedecker, Stefan
2013-03-01
By adding a nonlinear core correction to the well established dual space Gaussian type pseudopotentials for the chemical elements up to the third period, we construct improved pseudopotentials for the Perdew-Burke-Ernzerhof [J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), 10.1103/PhysRevLett.77.3865] functional and demonstrate that they exhibit excellent accuracy. Our benchmarks for the G2-1 test set show average atomization energy errors of only half a kcal/mol. The pseudopotentials also remain highly reliable for high pressure phases of crystalline solids. When supplemented by empirical dispersion corrections [S. Grimme, J. Comput. Chem. 27, 1787 (2006), 10.1002/jcc.20495; S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010), 10.1063/1.3382344] the average error in the interaction energy between molecules is also about half a kcal/mol. The accuracy that can be obtained by these pseudopotentials in combination with a systematic basis set is well superior to the accuracy that can be obtained by commonly used medium size Gaussian basis sets in all-electron calculations.
Electronic correlation in magnetic contributions to structural energies
NASA Astrophysics Data System (ADS)
Haydock, Roger
For interacting electrons the density of transitions [see http://arxiv.org/abs/1405.2288] replaces the density of states in calculations of structural energies. Extending previous work on paramagnetic metals, this approach is applied to correlation effects on the structural stability of magnetic transition metals. Supported by the H. V. Snyder Gift to the University of Oregon.
NASA Astrophysics Data System (ADS)
Jorge, F. E.; Martins, L. S. C.; Franco, M. L.
2016-01-01
Segmented all-electron basis sets of valence double zeta quality plus polarization functions (DZP) for the elements from Ce to Lu are generated to be used with the non-relativistic and Douglas-Kroll-Hess (DKH) Hamiltonians. At the B3LYP level, the DZP-DKH atomic ionization energies and equilibrium bond lengths and atomization energies of the lanthanide trifluorides are evaluated and compared with benchmark theoretical and experimental data reported in the literature. In general, this compact size set shows to have a regular, efficient, and reliable performance. It can be particularly useful in molecular property calculations that require explicit treatment of the core electrons.
Nucleon-energy correlations in. nu. d. --> nu. np
Singh, S.K.; Khan, S.A.
1982-01-01
The nucleon-energy correlation sigma (K/sub 1/,K/sub 2/), where K/sub 1/ and K/sub 2/ are the kinetic energies of the outgoing nucleons, is studied in the weak neutral disintegration of the deuteron, ..nu..+d..--> nu..+n+p. The studies are made in all five (S, P, T, A, and V) variants of the neutral-current weak-interaction Lagrangian. The study in the region of low kinetic energies of the nucleons provides means to distinguish between the axial-vector and tensor couplings.
Effect of correlations between minima on a complex energy landscape
NASA Astrophysics Data System (ADS)
Pusuluri, Sai Teja; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.
We recently modeled cellular interconvertion dynamics by using an epigenetic landscape model inspired by neural network models. Given an arbitrary set of patterns, the model can be used to construct an energy landscape in which those patterns are the global minima. We study the possible stable states and metastable states of the landscapes thus constructed. We consider three different cases: i) choosing the patterns to be random and independently distributed ii) choosing a set of patterns directly derived from the experimental cellular transcription factor expression data for a representative set of cell types in an organism and iii) choosing randomly generated trees of hierarchically correlated patterns, inspired by biology. For each of the three cases, we study the energy landscapes. In particular we study the basins of attraction of both the stable states and the metastable states, we compute the configurational entropy as a function of energy, and we demonstrate how those results depend on the correlations between the patterns.
Local Density Approximation Exchange-correlation Free-energy Functional
NASA Astrophysics Data System (ADS)
Karasiev, Valentin; Sjostrom, Travis; Dufty, James; Trickey, S. B.
2014-03-01
Restricted path integral Monte-Carlo (RPIMC) simulation data for the homogeneous electron gas at finite temperatures are used to fit the exchange-correlation free energy as a function of the density and temperature. Together with a new finite- T spin-polarization interpolation, this provides the local spin density approximation (LSDA) for the exchange-correlation free-energy functional required by finite- T density functional theory. We discuss and compare different methods of fitting to the RPIMC data. The new function reproduces the RPIMC data in the fitting range of Wigner-Seitz radius and temperature, satisfies correct high-density, low- and high- T asymptotic limits and is applicable beyond the range of fitting data. Work supported by U.S. Dept. of Energy, grant DE-SC0002139 and by the DOE Office of Fusion Sciences (FES).
Bubin, Sergiy; Adamowicz, Ludwik
2014-01-14
Benchmark variational calculations are performed for the seven lowest 1s{sup 2}2s np ({sup 1}P), n = 2…8, states of the beryllium atom. The calculations explicitly include the effect of finite mass of {sup 9}Be nucleus and account perturbatively for the mass-velocity, Darwin, and spin-spin relativistic corrections. The wave functions of the states are expanded in terms of all-electron explicitly correlated Gaussian functions. Basis sets of up to 12 500 optimized Gaussians are used. The maximum discrepancy between the calculated nonrelativistic and experimental energies of 1s{sup 2}2s np ({sup 1}P) →1s{sup 2}2s{sup 2} ({sup 1}S) transition is about 12 cm{sup −1}. The inclusion of the relativistic corrections reduces the discrepancy to bellow 0.8 cm{sup −1}.
GRB physics and cosmology with peak energy-intensity correlations
NASA Astrophysics Data System (ADS)
Sawant, Disha; Amati, Lorenzo
2015-12-01
Gamma Ray Bursts (GRBs) are immensely energetic explosions radiating up to 1054 erg of energy isotropically (Eiso) and they are observed within a wide range of redshift (from ˜ 0.01 up to ˜ 9). Such enormous power and high redshift point at these phenomena being highly favorable to investigate the history and evolution of our universe. The major obstacle in their application as cosmological study-tools is to find a way to standardize the GRBs, for instance similar to SNe Ia. With respect to this goal, the correlation between spectral peak energy (Ep,i) and the "intensity" is a positively useful and investigated criterion. Moreover, it has been demonstrated that, through the Ep,i - Eiso correlation, the current data set of GRBs can already contribute to the independent evidence of the matter density ΩM being ˜ 0.3 for a flat universe scenario. We try to inspect and compare the correlations of Ep,i with different intensity indicators (e.g., radiated energy, average and peak luminosity, bolometric vs. monochromatic quantities, etc.) both in terms of intrinsic dispersion and precise estimation of ΩM. The outcome of such studies are further analyzed in verifying the reliability of the correlations for both GRB physics and their standardization for cosmology.
GRB physics and cosmology with peak energy-intensity correlations
Sawant, Disha; Amati, Lorenzo
2015-12-17
Gamma Ray Bursts (GRBs) are immensely energetic explosions radiating up to 10{sup 54} erg of energy isotropically (E{sub iso}) and they are observed within a wide range of redshift (from ∼ 0.01 up to ∼ 9). Such enormous power and high redshift point at these phenomena being highly favorable to investigate the history and evolution of our universe. The major obstacle in their application as cosmological study-tools is to find a way to standardize the GRBs, for instance similar to SNe Ia. With respect to this goal, the correlation between spectral peak energy (E{sub p,i}) and the “intensity” is a positively useful and investigated criterion. Moreover, it has been demonstrated that, through the E{sub p,i} – E{sub iso} correlation, the current data set of GRBs can already contribute to the independent evidence of the matter density Ω{sub M} being ∼ 0.3 for a flat universe scenario. We try to inspect and compare the correlations of E{sub p,i} with different intensity indicators (e.g., radiated energy, average and peak luminosity, bolometric vs. monochromatic quantities, etc.) both in terms of intrinsic dispersion and precise estimation of Ω{sub M}. The outcome of such studies are further analyzed in verifying the reliability of the correlations for both GRB physics and their standardization for cosmology.
Correlated energy landscape model for finite, random heteropolymers
NASA Astrophysics Data System (ADS)
Plotkin, Steven S.; Wang, Jin; Wolynes, Peter G.
1996-06-01
In this paper, we study the role of correlations in the energy landscape of a finite random heteropolymer by developing the mapping onto the generalized random energy model (GREM) proposed by Derrida and Gardner [J. Phys. C 19, 2253 (1986)] in the context of spin glasses. After obtaining the joint distribution for energies of pairs of configurations, and by calculating the entropy of the polymer subject to weak and strong topological constraints, the model yields thermodynamic quantities such as ground-state energy, entropy per thermodynamic basin, and glass transition temperature as functions of the polymer length and packing density. These are found to be very close to the uncorrelated landscape or random energy model (REM) estimates. A tricritical point is obtained where behavior of the order parameter q changes from first order with a discrete jump at the transition, to second-order continuous. While the thermodynamic quantities obtained from the free energy are close to the REM values, the Levinthal entropy describing the number of basins which must be searched at the glass transition is significantly modified by correlations.
Gamma Ray Bursts Spectral-Energy correlations: recent results
NASA Astrophysics Data System (ADS)
Ghirlanda, Giancarlo
2011-02-01
The correlations between the rest frame peak of the νFν spectrum of GRBs (Epeak) and their isotropic energy (Eiso) or luminosity (Liso) could have several implications for the understanding of the GRB prompt emission. These correlations are presently founded on the time-averaged spectral properties of a sample of 95 bursts, with measured redshifts, collected by different instruments in the last 13 years (pre-Fermi). One still open issue is wether these correlations have a physical origin or are due to instrumental selection effects. By studying 10 long and 14 short GRBs detected by Fermi we find that a strong time-resolved correlation between Epeak and the luminosity Liso is present within individual GRBs and that it is consistent with the time-integrated correlation. This result is a direct proof of the existence in both short and long GRBs of a similar physical link between the hardness and the luminosity which is not due to instrumental selection effects. The origin of the Epeak - Liso correlation should be searched in the radiation mechanism of the prompt emission.
Average local ionization energy generalized to correlated wavefunctions
Ryabinkin, Ilya G.; Staroverov, Viktor N.
2014-08-28
The average local ionization energy function introduced by Politzer and co-workers [Can. J. Chem. 68, 1440 (1990)] as a descriptor of chemical reactivity has a limited utility because it is defined only for one-determinantal self-consistent-field methods such as the Hartree–Fock theory and the Kohn–Sham density-functional scheme. We reinterpret the negative of the average local ionization energy as the average total energy of an electron at a given point and, by rewriting this quantity in terms of reduced density matrices, arrive at its natural generalization to correlated wavefunctions. The generalized average local electron energy turns out to be the diagonal part of the coordinate representation of the generalized Fock operator divided by the electron density; it reduces to the original definition in terms of canonical orbitals and their eigenvalues for one-determinantal wavefunctions. The discussion is illustrated with calculations on selected atoms and molecules at various levels of theory.
NASA Technical Reports Server (NTRS)
Grumet, A.
1981-01-01
An automatic correlation plane processor that can rapidly acquire, identify, and locate the autocorrelation outputs of a bank of multiple optical matched filters is described. The read-only memory (ROM) stored digital silhouette of each image associated with each matched filter allows TV video to be used to collect image energy to provide accurate normalization of autocorrelations. The resulting normalized autocorrelations are independent of the illumination of the matched input. Deviation from unity of a normalized correlation can be used as a confidence measure of correct image identification. Analog preprocessing circuits permit digital conversion and random access memory (RAM) storage of those video signals with the correct amplitude, pulse width, rising slope, and falling slope. TV synchronized addressing of 3 RAMs permits on-line storage of: (1) the maximum unnormalized amplitude, (2) the image x location, and (3) the image y location of the output of each of up to 99 matched filters. A fourth RAM stores all normalized correlations. A normalization approach, normalization for cross correlations, a system's description with block diagrams, and system's applications are discussed.
Correlation between diffusion barriers and alloying energy in binary alloys.
Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan E L; Schiøtz, Jakob
2016-01-28
In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells. Using density functional theory calculations, we show that there is a correlation between the alloying energy of an alloy, and the diffusion barriers of the minority component. Alloys with a negative alloying energy may show improved long term stability, despite the fact that there is typically a greater thermodynamic driving force towards dissolution of the solute metal over alloying. In addition to Pt, we find that this trend also appears to hold for alloys based on Al and Pd. PMID:26750475
Energy-momentum correlations for Abelian Higgs cosmic strings
NASA Astrophysics Data System (ADS)
Daverio, David; Hindmarsh, Mark; Kunz, Martin; Lizarraga, Joanes; Urrestilla, Jon
2016-04-01
We report on the energy-momentum correlators obtained with recent numerical simulations of the Abelian Higgs model, essential for the computation of cosmic microwave background and matter perturbations of cosmic strings. Due to significant improvements both in raw computing power and in our parallel simulation framework, the dynamical range of the simulations has increased fourfold both in space and time, and for the first time we are able to simulate strings with a constant physical width in both the radiation and matter eras. The new simulations improve the accuracy of the measurements of the correlation functions at the horizon scale and confirm the shape around the peak. The normalization is slightly higher in the high wave-number tails, due to a small increase in the string density. We study, for the first time, the behavior of the correlators across cosmological transitions and discover that the correlation functions evolve adiabatically; i.e., the network adapts quickly to changes in the expansion rate. We propose a new method for constructing source functions for Einstein-Boltzmann integrators, comparing it with two other methods previously used. The new method is more consistent, easier to implement, and significantly more accurate.
Correlation between biogas yield and chemical composition of energy crops.
Dandikas, V; Heuwinkel, H; Lichti, F; Drewes, J E; Koch, K
2014-12-01
The scope of this study was to investigate the influence of the chemical composition of energy crops on biogas and methane yield. In total, 41 different plants were analyzed in batch test and their chemical composition was determined. For acid detergent lignin (ADL) content below 10% of total solids, a significant negative correlation for biogas and methane yields (r≈-0.90) was observed. Based on a simple regression analysis, more than 80% of the sample variation can be explained through ADL. Based on a principal component analysis and multiple regression analysis, ADL and hemicellulose are suggested as suitable model variables for biogas yield potential predictions across plant species. PMID:25443623
Kuwahara, Riichi; Tadokoro, Yoichi; Ohno, Kaoru
2014-08-28
In this paper, we calculate kinetic and potential energy contributions to the electronic ground-state total energy of several isolated atoms (He, Be, Ne, Mg, Ar, and Ca) by using the local density approximation (LDA) in density functional theory, the Hartree-Fock approximation (HFA), and the self-consistent GW approximation (GWA). To this end, we have implemented self-consistent HFA and GWA routines in our all-electron mixed basis code, TOMBO. We confirm that virial theorem is fairly well satisfied in all of these approximations, although the resulting eigenvalue of the highest occupied molecular orbital level, i.e., the negative of the ionization potential, is in excellent agreement only in the case of the GWA. We find that the wave function of the lowest unoccupied molecular orbital level of noble gas atoms is a resonating virtual bound state, and that of the GWA spreads wider than that of the LDA and thinner than that of the HFA.
Kuwahara, Riichi; Tadokoro, Yoichi; Ohno, Kaoru
2014-08-28
In this paper, we calculate kinetic and potential energy contributions to the electronic ground-state total energy of several isolated atoms (He, Be, Ne, Mg, Ar, and Ca) by using the local density approximation (LDA) in density functional theory, the Hartree–Fock approximation (HFA), and the self-consistent GW approximation (GWA). To this end, we have implemented self-consistent HFA and GWA routines in our all-electron mixed basis code, TOMBO. We confirm that virial theorem is fairly well satisfied in all of these approximations, although the resulting eigenvalue of the highest occupied molecular orbital level, i.e., the negative of the ionization potential, is in excellent agreement only in the case of the GWA. We find that the wave function of the lowest unoccupied molecular orbital level of noble gas atoms is a resonating virtual bound state, and that of the GWA spreads wider than that of the LDA and thinner than that of the HFA.
Probing high energy QCD via 2-particle correlations
NASA Astrophysics Data System (ADS)
Jalilian-Marian, Jamal
2013-05-01
Recent measurements of the forward rapidity di-hadron azimuthal angular correlations in proton (deuteron)-nucleus (pA) collisions at RHIC [E. Braidot [STAR Collaboration], Nucl. Phys. A854, 168-174 (2011); A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 107, 172301 (2011).] and the saturation-based fits to the data [C. Marquet, Nucl. Phys. A 796, 41 (2007).; K. Tuchin, Nucl. Phys. A 846, 83 (2010); J. L. Albacete and C. Marquet, Phys. Rev. Lett. 105, 162301 (2010); D. Kharzeev, E. Levin and L. McLerran, Nucl. Phys. A 748, 627 (2005); A. Kovner, M. Lublinsky, Phys. Rev. D83, 034017 (2011); Phys. Rev. D 84, 094011 (2011); A. Stasto, B.-W. Xiao, F. Yuan, Phys. Lett. B 716, 430 (2012).] have generated much work on understanding the properties of multi-gluon correlators in the high energy limit. Whereas forward rapidity single inclusive particle production in pA collisions probes dipoles (two-point function of Wilson lines, path ordered exponentials of gluon fields, which satisfies the BK-JIMWLK equations), di-hadron production probes quadrupoles, four-point functions of Wilson lines, which are not well-understood. We show that the evolution equation for the quadrupole derived in the Color Glass Condensate (CGC) formalism reduces, in the dilute regime, to the previously known BJKP equation for the energy dependence of four Reggeized gluons. We outline how one may establish a direct connection between the CGC formalism and Reggeized-gluon exchange to high energy processes.
A density functional for core-valence correlation energy.
Ranasinghe, Duminda S; Frisch, Michael J; Petersson, George A
2015-12-01
A density functional, εCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of εLY P (corr)(ρc), εV WN5 (corr)(ρc, ρv), εPBE (corr)(ρc, ρv), εSlater (ex)(ρc, ρv), εHCTH (ex)(ρc, ρv), εHF (ex)(ρc, ρv), and FCV-DFTNi,Zi, a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from εCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the εCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory. PMID:26646873
A density functional for core-valence correlation energy
NASA Astrophysics Data System (ADS)
Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A.
2015-12-01
A density functional, ɛCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of ɛLY Pcorr(ρc), ɛV WN5corr(ρc, ρv), ɛPBEcorr(ρc, ρv), ɛSlaterex(ρc, ρv), ɛHCTHex(ρc, ρv), ɛHFex(ρc, ρv), and F CV -DFT (" separators=" N i , Z i ) , a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from ɛCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the ɛCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory.
Gradient corrections to the exchange-correlation free energy
Sjostrom, Travis; Daligault, Jerome
2014-10-07
We develop the first-order gradient correction to the exchange-correlation free energy of the homogeneous electron gas for use in finite-temperature density functional calculations. Based on this, we propose and implement a simple temperature-dependent extension for functionals beyond the local density approximation. These finite-temperature functionals show improvement over zero-temperature functionals, as compared to path-integral Monte Carlo calculations for deuterium equations of state, and perform without computational cost increase compared to zero-temperature functionals and so should be used for finite-temperature calculations. Furthermore, while the present functionals are valid at all temperatures including zero, non-negligible difference with zero-temperature functionals begins at temperatures abovemore » 10 000 K.« less
Gradient corrections to the exchange-correlation free energy
Sjostrom, Travis; Daligault, Jerome
2014-10-07
We develop the first-order gradient correction to the exchange-correlation free energy of the homogeneous electron gas for use in finite-temperature density functional calculations. Based on this, we propose and implement a simple temperature-dependent extension for functionals beyond the local density approximation. These finite-temperature functionals show improvement over zero-temperature functionals, as compared to path-integral Monte Carlo calculations for deuterium equations of state, and perform without computational cost increase compared to zero-temperature functionals and so should be used for finite-temperature calculations. Furthermore, while the present functionals are valid at all temperatures including zero, non-negligible difference with zero-temperature functionals begins at temperatures above 10 000 K.
Bytautas, Laimutis; Ruedenberg, Klaus
2008-06-01
A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion.
"Hammer" events, neutrino energies, and nucleon-nucleon correlations
NASA Astrophysics Data System (ADS)
Weinstein, L. B.; Hen, O.; Piasetzky, Eli
2016-10-01
Background: Accelerator-based neutrino oscillation measurements depend on observing a difference between the expected and measured rate of neutrino-nucleus interactions at different neutrino energies or different distances from the neutrino source. Neutrino-nucleus scattering cross sections are complicated and depend on the neutrino beam energy, the neutrino-nucleus interaction, and the structure of the nucleus. Knowledge of the incident neutrino energy spectrum and neutrino-detector interactions are crucial for analyzing neutrino oscillation experiments. The ArgoNeut liquid argon time projection chamber (lArTPC) observed charged-current neutrino-argon scattering events with two protons back-to-back in the final state ("hammer" events) which they associated with short-range correlated (SRC) nucleon-nucleon pairs. The large volume MicroBooNE lArTPC will measure far more of these unique events. Purpose: Determine what we can learn about the incident neutrino energy spectrum and/or the structure of SRC from hammer events that will be measured in MicroBooNE. Methods: We simulate hammer events using two models and the well-known electron-nucleon scattering cross section. In the first model the neutrino (or electron) scatters from a moving proton, ejecting a π+, and the π+ is then absorbed on a moving deuteron-like n p pair. In the second model the neutrino (or electron) scatters from a moving nucleon, exciting it to a Δ or N*, which then de-excites by interacting with a second nucleon: Δ N →p p . Results: The pion production and reabsorption process results in two back-to-back protons each with momentum of about 500 MeV/c , very similar to that of the observed ArgoNeut events. These distributions are insensitive to either the relative or center-of-mass momentum of the n p pair that absorbed the π . In this model, the incident neutrino energy can be reconstructed relatively accurately using the outgoing lepton. The Δ p →p p process results in two protons that
NASA Astrophysics Data System (ADS)
Martins, L. S. C.; Jorge, F. E.; Machado, S. F.
2015-11-01
All-electron contracted Gaussian basis set of triple zeta valence quality plus polarisation functions (TZP) for the elements Cs, Ba, La, and from Hf to Rn is presented. Douglas-Kroll-Hess (DKH) basis set for fifth-row elements is also reported. We have recontracted the original TZP basis set, i.e., the values of the contraction coefficients are re-optimised using the second-order DKH Hamiltonian. By addition of diffuse functions (s, p, d, f, and g symmetries), which are optimised for the anion ground states, an augmented TZP basis set is constructed. Using the B3LYP hybrid functional, the performance of the TZP-DKH basis set is assessed for predicting atomic ionisation energy as well as spectroscopy constants of some compounds. Despite its compact size, this set demonstrates consistent, efficient, and reliable performance and will be especially useful in calculations of molecular properties that require explicit treatment of the core electrons.
The Correlation Analysis of Fire Energy Release and Weather Conditions
NASA Astrophysics Data System (ADS)
Shvetsov, E.
2012-04-01
Active fire remote sensing conducted using spaceborne systems, such as MODIS radiometer aboard the EOS Terra and Aqua satellites, allows estimation of wildfire thermal energy release. Such measures of fire radiative power (FRP) can provide information on fireline heat release intensity and on the amount and rate of biomass combustion in the large scale. Biomass combustion rate is strongly related to fuel moisture and therefore to weather conditions. The correlation analysis of fire radiative power and weather fire danger was performed for the territory of Siberia. The measurements of FRP were performed using MODIS instrument and weather fire danger indices were calculated using weather stations data. The analysis was performed for several Siberian regions mostly liable to fires. Weather fire danger was characterized by Russian PV-1 and PV-2 fire danger indices and using Canadian Forest Fire Weather Index System. Only large fires having the final size of more than 500 ha were focused in this study. In general it was rather good relationship between the fire danger indices and the measured fire radiative power for the most of the fires. For the weather stations considered the following weather indices had the highest correlation coefficients with measured FRP values: Russian PV-1 index and Canadian DMC, DC and BUI indices. Finally the ability of weather fire danger indices to predict the changes in fire radiative power was tested. A regression model was formulated to characterize the relationship between wildfire radiative power and fire danger indices. It was shown that the relationships have regional specificity and none of these indices can be considered as universal.
Nonvanishing high energy correlation corrections to the photoionization cross section
NASA Astrophysics Data System (ADS)
Amusia, Miron Ya
2000-06-01
Recently a prominent discrepancy was observed (see D. L. Hansen et al., Phys.. Rev.A, 60, R2641-44, 1999) between the experimental data and the results of RPAE calculations for Ar 3s-electron photoionization cross section at relatively high frequencies, from 500 eV up to 1KeV. This finding confirms the prediction (M.Ya. Amusia, in: Adv. At. Mol. Opt. Phys., ed. Bates, Academic Press, 17, 1-54, 1981), that it exists a correlation correction, whose relative role does not decrease with the photon energy growth. It appears due to strong mixing of pure "one-vacancy" and "two vacancy-one excited electron" states. Because of this correction the observed cross section differs from obtained in HF or RPAE approximations by a factor, which is photon frequency independent . This factor can be accurately enough calculated in the second order of the Many Body Perturbation Theory, giving the result of 0.75 for 3s-electrons. Similar factor for 3p-electrons is close to 1. These results are in reasonable agreement with the measured data.
NASA Astrophysics Data System (ADS)
Shapoval, V. M.; Sinyukov, Yu. M.; Naboka, V. Yu.
2015-10-01
The theoretical analysis of the p ¯-Λ ⊕p -Λ ¯ correlation function in 10% most central Au+Au collisions at Relativistic Heavy Ion Collider (RHIC) energy √{sNN}=200 GeV shows that the contribution of residual correlations is a necessary factor for obtaining a satisfactory description of the experimental data. Neglecting the residual correlation effect leads to an unrealistically low source radius, about 2 times smaller than the corresponding value for p -Λ ⊕p ¯-Λ ¯ case, when one fits the experimental correlation function within Lednický-Lyuboshitz analytical model. Recently an approach that accounts effectively for residual correlations for the baryon-antibaryon correlation function was proposed, and a good RHIC data description was reached with the source radius extracted from the hydrokinetic model (HKM). The p ¯-Λ scattering length, as well as the parameters characterizing the residual correlation effect—annihilation dip amplitude and its inverse width—were extracted from the corresponding fit. In this paper we use these extracted values and simulated in HKM source functions for Pb+Pb collisions at the LHC energy √{sNN}=2.76 TeV to predict the corresponding p Λ and p Λ ¯ correlation functions.
The role of correlation in the ground state energy of confined helium atom
Aquino, N.
2014-01-14
We analyze the ground state energy of helium atom confined by spherical impenetrable walls, and the role of the correlation energy in the total energy. The confinement of an atom in a cavity is one way in which we can model the effect of the external pressure on an atom. The calculations of energy of the system are carried out by the variational method. We find that the correlation energy remains almost constant for a range values of size of the boxes analyzed.
Calculation of all-electron wavefunction of hemoprotein cytochrome c by density functional theory
NASA Astrophysics Data System (ADS)
Sato, Fumitoshi; Yoshihiro, Tamotsu; Era, Makoto; Kashiwagi, Hiroshi
2001-06-01
An all-electron wavefunction of horse heart d 6-low-spin ferrocytochrome c (ferrocyt. c) was calculated by our Gaussian-based density functional theory (DFT) molecular orbital (MO) program, ProteinDF with a workstation cluster. It may be the first full-scale DFT calculation of a metalloprotein, and the numbers of orbitals and auxiliary functions are 9600 and 17 578, respectively. We show that the highest occupied MO (HOMO) derives from 3d orbitals of heme Fe and is unexpectedly delocalized while preserving the essential atomic character, which will give room for consideration of the electron transfer processes between proteins. The potential of MO calculations on larger proteins is also discussed with the computational data of cytochrome c (cyt. c).
Kuwahara, Riichi; Tadokoro, Yoichi; Ohno, Kaoru
2014-08-28
In this paper, we calculate kinetic and potential energy contributions to the electronic ground-state total energy of several isolated atoms (He, Be, Ne, Mg, Ar, and Ca) by using the local density approximation (LDA) in density functional theory, the Hartree-Fock approximation (HFA), and the self-consistent GW approximation (GWA). To this end, we have implemented self-consistent HFA and GWA routines in our all-electron mixed basis code, TOMBO. We confirm that virial theorem is fairly well satisfied in all of these approximations, although the resulting eigenvalue of the highest occupied molecular orbital level, i.e., the negative of the ionization potential, is in excellent agreement only in the case of the GWA. We find that the wave function of the lowest unoccupied molecular orbital level of noble gas atoms is a resonating virtual bound state, and that of the GWA spreads wider than that of the LDA and thinner than that of the HFA. PMID:25173006
Lacey, R.A.; Elmaani, A.; Lauret, J.; Li, T.; Bauer, W.; Craig, D.; Cronqvist, M.; Gualtieri, E.; Hannuschke, S.; Reposeur, T.; Vander Molen, A.; Westfall, G.D.; Wilson, W.K.; Winfield, J.S.; Yee, J.; Yennello, S.; Nadasen, A.; Tickle, R.S.; Norbeck, E. National Superconducting Cyclotron Laboratory Department of Physics, Michigan State University, East Lansing, Michigan 48824-1321 Department of Physics, University of Michigan at Dearborn, Dearborn, Michigan 48128 Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120 Department of Physics, University of Iowa, Iowa City, Iowa 52242 )
1993-03-01
Multifragment azimuthal correlation functions have been measured as a function of beam energy and impact parameter for the Ar+Sc system ([ital E]/[ital A]=35 to 115 MeV). The observed azimuthal correlation functions---which do not require corrections for dispersion of the reaction plane---exhibit strong asymmetries which are dependent on impact parameter and beam energy. Rotational collective motion and flow seem to dominate the correlation functions at low beam energies. It is proposed that multifragment azimuthal correlation functions can provide a useful probe for intermediate energy heavy ion reaction dynamics.
Correlations between D and Dbar mesons in high energy photoproduction
Erik E Gottschalk
2002-11-13
Over 7000 events containing a fully reconstructed D{bar D} pair have been extracted from data recorded by the FOCUS photoproduction experiment at Fermilab. Preliminary results from a study of correlations between D and {bar D} mesons are presented. Correlations are used to study perturbative QCD predictions and investigate non-perturbative effects. We also present a preliminary result on the production of {psi}(3770).
Large-scale All-electron Density Functional Theory Calculations using Enriched Finite Element Method
NASA Astrophysics Data System (ADS)
Kanungo, Bikash; Gavini, Vikram
We present a computationally efficient method to perform large-scale all-electron density functional theory calculations by enriching the Lagrange polynomial basis in classical finite element (FE) discretization with atom-centered numerical basis functions, which are obtained from the solutions of the Kohn-Sham (KS) problem for single atoms. We term these atom-centered numerical basis functions as enrichment functions. The integrals involved in the construction of the discrete KS Hamiltonian and overlap matrix are computed using an adaptive quadrature grid based on gradients in the enrichment functions. Further, we propose an efficient scheme to invert the overlap matrix by exploiting its LDL factorization and employing spectral finite elements along with Gauss-Lobatto quadrature rules. Finally, we use a Chebyshev polynomial based acceleration technique to compute the occupied eigenspace in each self-consistent iteration. We demonstrate the accuracy, efficiency and scalability of the proposed method on various metallic and insulating benchmark systems, with systems ranging in the order of 10,000 electrons. We observe a 50-100 fold reduction in the overall computational time when compared to classical FE calculations while being commensurate with the desired chemical accuracy. We acknowledge the support of NSF (Grant No. 1053145) and ARO (Grant No. W911NF-15-1-0158) in conducting this work.
Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set.
Paschoal, D; Guerra, C Fonseca; de Oliveira, M A L; Ramalho, T C; Dos Santos, H F
2016-10-01
Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc. PMID:27510431
Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set.
Paschoal, D; Guerra, C Fonseca; de Oliveira, M A L; Ramalho, T C; Dos Santos, H F
2016-10-01
Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc.
All-electron Kohn–Sham density functional theory on hierarchic finite element spaces
Schauer, Volker; Linder, Christian
2013-10-01
In this work, a real space formulation of the Kohn–Sham equations is developed, making use of the hierarchy of finite element spaces from different polynomial order. The focus is laid on all-electron calculations, having the highest requirement onto the basis set, which must be able to represent the orthogonal eigenfunctions as well as the electrostatic potential. A careful numerical analysis is performed, which points out the numerical intricacies originating from the singularity of the nuclei and the necessity for approximations in the numerical setting, with the ambition to enable solutions within a predefined accuracy. In this context the influence of counter-charges in the Poisson equation, the requirement of a finite domain size, numerical quadratures and the mesh refinement are examined as well as the representation of the electrostatic potential in a high order finite element space. The performance and accuracy of the method is demonstrated in computations on noble gases. In addition the finite element basis proves its flexibility in the calculation of the bond-length as well as the dipole moment of the carbon monoxide molecule.
NASA Astrophysics Data System (ADS)
Ono, Tomoya; Heide, Marcus; Atodiresei, Nicolae; Baumeister, Paul; Tsukamoto, Shigeru; Blügel, Stefan
2010-11-01
We have developed an efficient computational scheme utilizing the real-space finite-difference formalism and the projector augmented-wave (PAW) method to perform precise first-principles electronic-structure simulations based on the density-functional theory for systems containing transition metals with a modest computational effort. By combining the advantages of the time-saving double-grid technique and the Fourier-filtering procedure for the projectors of pseudopotentials, we can overcome the egg box effect in the computations even for first-row elements and transition metals, which is a problem of the real-space finite-difference formalism. In order to demonstrate the potential power in terms of precision and applicability of the present scheme, we have carried out simulations to examine several bulk properties and structural energy differences between different bulk phases of transition metals and have obtained excellent agreement with the results of other precise first-principles methods such as a plane-wave-based PAW method and an all-electron full-potential linearized augmented plane-wave (FLAPW) method.
Gong, Jian; Kim, Chang-Jin C J
2008-06-01
Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabrication and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1 : x (x < 1) mixing, in comparison to the previously considered n : m mixing (i.e., n and m unit droplets).
Gong, Jian; Kim, Chang-Jin “CJ”
2009-01-01
Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabricaion and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1:x (x < 1) mixing, in comparison to the previously considered n:m mixing (i.e., n and m unit droplets). PMID:18497909
Future directions for probing two and three nucleon short-range correlations at high energies
Frankfurt, Leonid; Sargsian, Misak; Strikman, Mark
2008-10-13
We summarize recent progress in the studies of the short-rang correlations (SRC) in nuclei in high energy electron and hadron nucleus scattering and suggest directions for the future high energy studies aimed at establishing detailed structure of two-nucleon SRCs, revealing structure of three nucleon SRC correlations and discovering non-nucleonic degrees of freedom in nuclei.
Informatics-Based Energy Fitting Scheme for Correlation Energy at Complete Basis Set Limit.
Seino, Junji; Nakai, Hiromi
2016-09-30
Energy fitting schemes based on informatics techniques using hierarchical basis sets with small cardinal numbers were numerically investigated to estimate correlation energies at the complete basis set limits. Numerical validations confirmed that the conventional two-point extrapolation models can be unified into a simple formula with optimal parameters obtained by the same test sets. The extrapolation model was extended to two-point fitting models by a relaxation of the relationship between the extrapolation coefficients or a change of the fitting formula. Furthermore, n-scheme fitting models were developed by the combinations of results calculated at several theory levels and basis sets to compensate for the deficiencies in the fitting model at one level of theory. Systematic assessments on the Gaussian-3X and Gaussian-2 sets revealed that the fitting models drastically reduced errors with equal or smaller computational effort. © 2016 Wiley Periodicals, Inc. PMID:27454327
All-electronic biosensing in microfluidics: bulk and surface impedance sensing
NASA Astrophysics Data System (ADS)
Fraikin, Jean-Luc
All-electronic, impedance-based sensing techniques offer promising new routes for probing nanoscale biological processes. The ease with which electrical probes can be fabricated at the nanoscale and integrated into microfluidic systems, combined with the large bandwidth afforded by radiofrequency electrical measurement, gives electrical detection significant advantages over other sensing approaches. We have developed two microfluidic devices for impedance-based biosensing. The first is a novel radiofrequency (rf) field-effect transistor which uses the electrolytic Debye layer as its active element. We demonstrate control of the nm-thick Debye layer using an external gate voltage, with gate modulation at frequencies as high 5 MHz. We use this sensor to make quantitative measurements of the electric double-layer capacitance, including determining and controlling the potential of zero charge of the electrodes, a quantity of importance for electrochemistry and impedance-based biosensing. The second device is a microfluidic analyzer for high-throughput, label-free measurement of nanoparticles suspended in a fluid. We demonstrate detection and volumetric analysis of individual synthetic nanoparticles (<100 nm dia.) with sufficient throughput to analyze >500,000 particles/second, and are able to distinguish subcomponents of a polydisperse particle mixture with diameters larger than about 30-40 nm. We also demonstrate the rapid (seconds) size and titer analysis of unlabeled bacteriophage T7 (55-65 nm dia.) in both salt solution and mouse blood plasma, using ˜ 1 muL of analyte. Surprisingly, we find that the background of naturally-occurring nanoparticles in plasma have a power-law size distribution. The scalable fabrication of these instruments, and the simple electronics required for readout make them well-suited for practical applications.
Zou, Yunlong; Holmes, Russell J
2015-08-26
In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.
NASA Astrophysics Data System (ADS)
Gulans, Andris; Kontur, Stefan; Meisenbichler, Christian; Nabok, Dmitrii; Pavone, Pasquale; Rigamonti, Santiago; Sagmeister, Stephan; Werner, Ute; Draxl, Claudia
2014-09-01
Linearized augmented planewave methods are known as the most precise numerical schemes for solving the Kohn-Sham equations of density-functional theory (DFT). In this review, we describe how this method is realized in the all-electron full-potential computer package, exciting. We emphasize the variety of different related basis sets, subsumed as (linearized) augmented planewave plus local orbital methods, discussing their pros and cons and we show that extremely high accuracy (microhartrees) can be achieved if the basis is chosen carefully. As the name of the code suggests, exciting is not restricted to ground-state calculations, but has a major focus on excited-state properties. It includes time-dependent DFT in the linear-response regime with various static and dynamical exchange-correlation kernels. These are preferably used to compute optical and electron-loss spectra for metals, molecules and semiconductors with weak electron-hole interactions. exciting makes use of many-body perturbation theory for charged and neutral excitations. To obtain the quasi-particle band structure, the GW approach is implemented in the single-shot approximation, known as G0W0. Optical absorption spectra for valence and core excitations are handled by the solution of the Bethe-Salpeter equation, which allows for the description of strongly bound excitons. Besides these aspects concerning methodology, we demonstrate the broad range of possible applications by prototypical examples, comprising elastic properties, phonons, thermal-expansion coefficients, dielectric tensors and loss functions, magneto-optical Kerr effect, core-level spectra and more.
Gulans, Andris; Kontur, Stefan; Meisenbichler, Christian; Nabok, Dmitrii; Pavone, Pasquale; Rigamonti, Santiago; Sagmeister, Stephan; Werner, Ute; Draxl, Claudia
2014-09-10
Linearized augmented planewave methods are known as the most precise numerical schemes for solving the Kohn-Sham equations of density-functional theory (DFT). In this review, we describe how this method is realized in the all-electron full-potential computer package, exciting. We emphasize the variety of different related basis sets, subsumed as (linearized) augmented planewave plus local orbital methods, discussing their pros and cons and we show that extremely high accuracy (microhartrees) can be achieved if the basis is chosen carefully. As the name of the code suggests, exciting is not restricted to ground-state calculations, but has a major focus on excited-state properties. It includes time-dependent DFT in the linear-response regime with various static and dynamical exchange-correlation kernels. These are preferably used to compute optical and electron-loss spectra for metals, molecules and semiconductors with weak electron-hole interactions. exciting makes use of many-body perturbation theory for charged and neutral excitations. To obtain the quasi-particle band structure, the GW approach is implemented in the single-shot approximation, known as G(0)W(0). Optical absorption spectra for valence and core excitations are handled by the solution of the Bethe-Salpeter equation, which allows for the description of strongly bound excitons. Besides these aspects concerning methodology, we demonstrate the broad range of possible applications by prototypical examples, comprising elastic properties, phonons, thermal-expansion coefficients, dielectric tensors and loss functions, magneto-optical Kerr effect, core-level spectra and more. PMID:25135665
NASA Astrophysics Data System (ADS)
Chachiyo, Teepanis
2016-07-01
A simple correlation energy functional for the uniform electron gas is derived based on the second-order Moller-Plesset perturbation theory. It can reproduce the known correlation functional in the high-density limit, while in the mid-density range maintaining a good agreement with the near-exact correlation energy of the uniform electron gas to within 2 × 10-3 hartree. The correlation energy is a function of a density parameter rs and is of the form a * ln ( 1 + /b r s + /b rs 2 ) . The constants "a" and "b" are derived from the known correlation functional in the high-density limit. Comparisons to the Ceperley-Alder's near-exact Quantum Monte Carlo results and the Vosko-Wilk-Nusair correlation functional are also reported.
NASA Astrophysics Data System (ADS)
Krieger, J. B.; Chen, Jiqiang; Iafrate, G. J.; Savin, A.
1998-03-01
We have obtained an analytic approximation to E_c(r_g, ζ,G) where G is an energy gap separating the occupied and unoccupied states of a homogeneous electron gas for ζ=3D0 and ξ=3D1. When G=3D0, E_c(r_g, ζ) reduces to the usual LSD result. This functional is employed in calculating correlation energies for unpolarized atoms and ions for Z <= 18 by taking G[n]=3D1/8|nabla ln n|^2, which reduces to the ionization energy in the large r limit in an exact Kohn-Sham (KS) theory. The resulting functional is self-interaction-corrected employing a method which is invariant under a unitary transformation. We find that the application of this approach to the calculation of the Ec functional reduces the error in the LSD result by more than 95%. When the value of G is approximately corrected to include the effect of higher lying unoccupied localized states, the resulting values of Ec are within a few percent of the exact results.
Optimal filters - A unified approach for SNR and PCE. [Peak-To-Correlation-Energy
NASA Technical Reports Server (NTRS)
Juday, Richard D.
1993-01-01
A unified approach for a general metric that encompasses both the signal-to-noise ratio (SNR) and the peak-to-correlation (PCE) ratio in optical correlators is described. In this approach, the connection between optimizing SNR and optimizing PCE is achieved by considering a metric in which the central correlation irradiance is divided by the total energy of the correlation plane. The peak-to-total energy (PTE) is shown to be optimized similarly to SNR and PCE. Since PTE is a function of the search values G and beta, the optimal filter is determined with only a two-dimensional search.
Ishida, Toyokazu
2008-09-17
To further understand the catalytic role of the protein environment in the enzymatic process, the author has analyzed the reaction mechanism of the Claisen rearrangement of Bacillus subtilis chorismate mutase (BsCM). By introducing a new computational strategy that combines all-electron QM calculations with ab initio QM/MM modelings, it was possible to simulate the molecular interactions between the substrate and the protein environment. The electrostatic nature of the transition state stabilization was characterized by performing all-electron QM calculations based on the fragment molecular orbital technique for the entire enzyme.
Energy and angular correlations in heavy-ion deep inelastic collisions
NASA Astrophysics Data System (ADS)
Strutinsky, V. M.
1994-05-01
Brink-Dietrich theory of energy-angular-momentum correlations is formulated from the viewpoint of the statistical model of macroscopic rotation. Comparison with the available experimental data is given.
Effects of disorder on the correlation energy of rings of hydrogen atoms
NASA Astrophysics Data System (ADS)
Liegener, C.-M.; Ladik, J.
1985-01-01
The correlation energy of disordered systems has been calculated by means of second-order Rayleigh-Schrödinger perturbation theory in the M∅ller-Plesset partitioning. Rings of hydrogen atoms have been chosen as model systems and the degree of disorder has been varied from complete delocalization to complete localization of the one-particle states. The correlation energy was found to have an extremum at an intermediate degree of disorder, corresponding to incomplete localization.
Measuring Hanbury Brown-Twiss correlations of pions in high-energy nucleus-nucleus collisions
NASA Astrophysics Data System (ADS)
Popp, James Lewis, Jr.
1997-12-01
This dissertation examines how particle detectors extract information about correlations due to the Hanbury Brow- Twiss (HBT) effect for identical pions from the collision debris of a high-energy collision between two heavy nuclei. The basic ingredients of HBT correlations are: the exchange symmetry (antisymmetry) of the wave function for identical bosons (fermions) at the detectors, single- particle state noise, and wave coherence. We analyze how the wave packet nature of pions created in a high-energy collision affects the form of HBT correlations of like- pions, how gaseous ionization chambers used in high- energy physics to measure pion momenta detect the momentum correlations, and we determine the effect the length and time scales involved in detecting HBT have on measurements of the correlations. We also investigate the effect of pion emission delay times and the effect of an extended distribution of elementary pion radiators on HBT correlation measurements. The results of our investigation show that pairs of pion wave packets must arrive at each detector together, within a time window determined by the atomic ionization time, in order for the momentum correlations of like-pion pairs to be observed. We find that measurements of the HBT correlation for pions are not appreciably affected either by the time scales important for detecting pion correlations or delays in pion emission times much shorter than the ionization time scale of tracking detectors. Using a simple model of pion production, we show that the effective relative momentum scale of the pair correlation function depends on both the overall source size and lifetime and those of the elementary pion radiators. Finally, we have developed a simple framework (by way of examining the HBT effect for pions as detected by wire chamber detectors) from elementary quantum mechanics for computing measurements of correlations among particles produced in high-energy physics experiments.
Circumpulsar Asteroids: Inferences from Nulling Statistics and High Energy Correlations
NASA Astrophysics Data System (ADS)
Shannon, Ryan; Cordes, J. M.
2006-12-01
We have proposed that some classes of radio pulsar variability are associated with the entry of neutral asteroidal material into the pulsar magnetosphere. The region surrounding neutron stars is polluted with supernova fall-back material, which collapses and condenses into an asteroid-bearing disk that is stable for millions of years. Over time, collisional and radiative processes cause the asteroids to migrate inward until they are heated to the point of ionization. For older and cooler pulsars, asteroids ionize within the large magnetospheres and inject a sufficient amount of charged particles to alter the electrodynamics of the gap regions and modulate emission processes. This extrinsic model unifies many observed phenomena of variability that occur on time scales that are disparate with the much shorter time scales associated with pulsars and their magnetospheres. One such type of variability is nulling, in which certain pulsars exhibit episodes of quiescence that for some objects may be as short as a few pulse periods, but, for others, is longer than days. Here, in the context of this model, we examine the nulling phenomenon. We analyze the relationship between in-falling material and the statistics of nulling. In addition, as motivation for further high energy observations, we consider the relationship between the nulling and other magnetospheric processes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Does the Bureau of the Public Debt accept all electronically signed transaction requests? 370.35 Section 370.35 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF...
Energy-angle correlation of electrons accelerated by laser beam in vacuum
Chen, Z.; Ho, Y.K.; Xie, Y.J.; Zhang, S.Y.; Yan, Z.; Xu, J.J.; Lin, Y.Z.; Hua, J.F.
2004-09-27
The correlation between the outgoing energy and the scattering angle of electrons accelerated by a laser beam in vacuum has been investigated. Essentially, the single-valued function of the correlation, derived from classical electrodynamics Compton scattering for a plane wave, is broadened to a band. It means electrons with the same outgoing energy will have an angular spread. An equation to describe this correlation has been derived. Dependence of the spread width of scattering angle on laser beam parameters is examined, and physical explanations of these features are given. The results are found to be consistent with the simulation results for a proposed vacuum laser acceleration scheme: the capture and acceleration scenario.
Renormalization group evolution of multi-gluon correlators in high energy QCD
NASA Astrophysics Data System (ADS)
Dumitru, A.; Jalilian-Marian, J.; Lappi, T.; Schenke, B.; Venugopalan, R.
2011-12-01
Many-body QCD in leading high energy Regge asymptotics is described by the Balitsky-JIMWLK hierarchy of renormalization group equations for the x evolution of multi-point Wilson line correlators. These correlators are universal and ubiquitous in final states in deeply inelastic scattering and hadronic collisions. For instance, recently measured di-hadron correlations at forward rapidity in deuteron-gold collisions at the Relativistic Heavy Ion Collider (RHIC) are sensitive to four and six point correlators of Wilson lines in the small x color fields of the dense nuclear target. We evaluate these correlators numerically by solving the functional Langevin equation that describes the Balitsky-JIMWLK hierarchy. We compare the results to mean-field Gaussian and large Nc approximations used in previous phenomenological studies. We comment on the implications of our results for quantitative studies of multi-gluon final states in high energy QCD.
Incident Energy Dependence of p_{t} Correlations at RHIC
Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Badyal, S. K.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellwied, R.; Berger, J.; Bezverkhny, B. I; Bharadwaj, S.; Bhasin, A.; Bhati, A. K.; Bhatia, V. S.; Bichsel, H.; Billmeier, A.; Bland, L. C.; Blyth, C. O.; Bonner, B. E.; Botje, M.; Boucham, A.; Brandin, A. V.; Bravar, A.; Bystersky, M.; Cadman, R. V.; Cai, X. Z.; Caines, H.; Castillo, J.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; de Moura, M. M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Dogra, S. M.; Dong, W. J.; Dong, X.; Draper, J. E.; Du, F.; Dubey, A. K.; Dunin, V. B.; Dunlop, J. C.; Dutta Mazumdar, M. R.; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fomenko, K.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Gans, J.; Ganti, M. S.; Gaudichet, L.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J. E.; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Guo, Y.; Gupta, A.; Gutierrez, T. D.; Hallman, T. J.; Hamed, A.; Hardtke, D.; Harris, J. W.; Heinz, M.; Henry, T. W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Huang, H. Z.; Huang, S. L.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W. W.; Janik, M.; Jiang, H.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, V. Yu; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klay, J.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kutuev, R. Kh
2005-10-01
We present results for two-particle transverse momentum correlations, Δp_{t,i}Δ_{t,j}, as a function of event centrality for Au+Au collisions at √(^{s}NN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, jet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.
All-electron G W +Bethe-Salpeter calculations on small molecules
NASA Astrophysics Data System (ADS)
Hirose, Daichi; Noguchi, Yoshifumi; Sugino, Osamu
2015-05-01
Accuracy of the first-principles G W +Bethe-Salpeter equation (BSE) method is examined for low-energy excited states of small molecules. The standard formalism, which is based on the one-shot G W approximation and the Tamm-Dancoff approximation (TDA), is found to underestimate the optical gap of N2, CO, H2O ,C2H4 , and CH2O by about 1 eV. Possible origins are investigated separately for the effect of TDA and for the approximate schemes of the self-energy operator, which are known to cause overbinding of the electron-hole pair and overscreening of the interaction. By applying the known correction formula, we find the amount of the correction is too small to overcome the underestimated excitation energy. This result indicates a need for fundamental revision of the G W +BSE method rather than adjustment of the standard one. We expect that this study makes the problems in the current G W +BSE formalism clearer and provides useful information for further intrinsic development beyond the current framework.
Mussard, Bastien; Rocca, Dario; Jansen, Georg; Ángyán, János G
2016-05-10
Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results. PMID:26986444
Correlated electron pseudopotentials for 3d-transition metals
Trail, J. R. Needs, R. J.
2015-02-14
A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc − Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.
A serach for moderate- and high-energy neturino emission correlated with gamma-ray bursts
NASA Technical Reports Server (NTRS)
Becker-Szendy, R.; Bratton, C. B.; Breault, J.; Casper, D.; Dye, S. T.; Gajewski, W.; Goldhaber, M.; Haines, T. J.; Halverson, P. G.; Kielczewska, D.
1995-01-01
A temporal correlation analysis between moderate- (60 Mev less than or equal to E(sub nu)greater than or equal to 2500 MeV) and high-energy (E(sub nu) greater than or equal to 2000 MeV) neutrino interactions consist of two types: the moderate-energy interactions that are contained within the volume of IMB-3 and the upward-going muons produced by high-energy nu(sub mu) interactions in the rock around the detector. No evidence is found for moderate- or high-energy neutrino emission from GRBs nor for any neutrino/neutrino correlation. The nonobservation of nu/GRB correlations allows upper limits to be placed on the neutrino flux associated with GRBs.
An optimal energy estimator to reduce correlated noise for the EXO-200 light readout
NASA Astrophysics Data System (ADS)
Davis, C. G.; Hall, C.; Albert, J. B.; Barbeau, P. S.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Cen, W. R.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; DeVoe, R.; Didberidze, T.; Dilling, J.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; Fairbank, W., Jr.; Farine, J.; Feldmeier, W.; Feyzbakhsh, S.; Fierlinger, P.; Fudenberg, D.; Gornea, R.; Graham, K.; Gratta, G.; Hughes, M.; Jewell, M. J.; Johnson, A.; Johnson, T. N.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Killick, R.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Leonard, D. S.; Licciardi, C.; Lin, Y. H.; Ling, J.; MacLellan, R.; Marino, M. G.; Mong, B.; Moore, D.; Njoya, O.; Nelson, R.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Retière, F.; Rowson, P. C.; Russell, J. J.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tsang, R.; Twelker, K.; Vuilleumier, J.-L.; Waite, A.; Walton, J.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Wood, J.; Yang, L.; Yen, Y.-R.; Zeldovich, O. Ya.
2016-07-01
The energy resolution of the EXO-200 detector is limited by electronics noise in the measurement of the scintillation response. Here we present a new technique to extract optimal scintillation energy measurements for signals split across multiple channels in the presence of correlated noise. The implementation of these techniques improves the energy resolution of the detector at the neutrinoless double beta decay Q-value from [1.9641 ± 0.0039]% to [1.5820 ± 0.0044]%.
Bubin, Sergiy; Sharkey, Keeper L.; Adamowicz, Ludwik
2013-04-28
Very accurate variational nonrelativistic finite-nuclear-mass calculations employing all-electron explicitly correlated Gaussian basis functions are carried out for six Rydberg {sup 2}D states (1s{sup 2}nd, n= 6, Horizontal-Ellipsis , 11) of the {sup 7}Li and {sup 6}Li isotopes. The exponential parameters of the Gaussian functions are optimized using the variational method with the aid of the analytical energy gradient determined with respect to these parameters. The experimental results for the lower states (n= 3, Horizontal-Ellipsis , 6) and the calculated results for the higher states (n= 7, Horizontal-Ellipsis , 11) fitted with quantum-defect-like formulas are used to predict the energies of {sup 2}D 1s{sup 2}nd states for {sup 7}Li and {sup 6}Li with n up to 30.
All-electron GW quasiparticle band structures of group 14 nitride compounds
Chu, Iek-Heng; Cheng, Hai-Ping; Kozhevnikov, Anton; Schulthess, Thomas C.
2014-07-28
We have investigated the group 14 nitrides (M{sub 3}N{sub 4}) in the spinel phase (γ-M{sub 3}N{sub 4} with M = C, Si, Ge, and Sn) and β phase (β-M{sub 3}N{sub 4} with M = Si, Ge, and Sn) using density functional theory with the local density approximation and the GW approximation. The Kohn-Sham energies of these systems have been first calculated within the framework of full-potential linearized augmented plane waves (LAPW) and then corrected using single-shot G{sub 0}W{sub 0} calculations, which we have implemented in the modified version of the Elk full-potential LAPW code. Direct band gaps at the Γ point have been found for spinel-type nitrides γ-M{sub 3}N{sub 4} with M = Si, Ge, and Sn. The corresponding GW-corrected band gaps agree with experiment. We have also found that the GW calculations with and without the plasmon-pole approximation give very similar results, even when the system contains semi-core d electrons. These spinel-type nitrides are novel materials for potential optoelectronic applications because of their direct and tunable band gaps.
All-electron GW quasiparticle band structures of group 14 nitride compounds
NASA Astrophysics Data System (ADS)
Chu, Iek-Heng; Kozhevnikov, Anton; Schulthess, Thomas C.; Cheng, Hai-Ping
2014-07-01
We have investigated the group 14 nitrides (M3N4) in the spinel phase (γ-M3N4 with M = C, Si, Ge, and Sn) and β phase (β-M3N4 with M = Si, Ge, and Sn) using density functional theory with the local density approximation and the GW approximation. The Kohn-Sham energies of these systems have been first calculated within the framework of full-potential linearized augmented plane waves (LAPW) and then corrected using single-shot G0W0 calculations, which we have implemented in the modified version of the Elk full-potential LAPW code. Direct band gaps at the Γ point have been found for spinel-type nitrides γ-M3N4 with M = Si, Ge, and Sn. The corresponding GW-corrected band gaps agree with experiment. We have also found that the GW calculations with and without the plasmon-pole approximation give very similar results, even when the system contains semi-core d electrons. These spinel-type nitrides are novel materials for potential optoelectronic applications because of their direct and tunable band gaps.
Density-Functional Theory Studies of Correlation Energy Effects at Metallic Surfaces.
NASA Astrophysics Data System (ADS)
Mohammed, Abdel-Raouf Eid
In this thesis we study the effects of correlation in the inhomogeneous electron gas at metallic surfaces. These studies are performed within the context of density-functional theory (DFT). Using accurate representations of the electronic density profile, we have estimated variationally the surface correlation energy of jellium metal. The accuracy of these estimates is founded in the assumption that the exchange -correlation energy functional of the density is approximated accurately by the wave-vector analysis method, and by the fact that the non-local exchange energy contributions are treated exactly. In contrast to the previously accepted conclusion that for surfaces correlation effects are as significant as exchange, our results indicate the ratio of these energies to lie between 34% - 97% over the metallic density range, the smaller ratios corresponding to the higher density metals. In this work we have also examined the local density (LDA) and gradient expansion approximations (GEA) (to O((DEL)('2))) for the correlation energy. We have demonstrated for realistic metal surface densities the cancellation of the errors in the LDA for exchange and correlation, and shown that the density profiles at surfaces would have to be unphysically slowly varying for the correlation energy GEA to converge. We have also studied the effects of correlation at surfaces by screening the exchange, and observe that the surface exchange energy for screened-Coulomb interaction decreases as the screening length is reduced. Thus, the more short-ranged the interaction, the easier it is to split the crystal in two. In addition we have derived the DFT first gradient correction coefficient in the GEA for the screened-Coulomb exchange energy, and shown it to be the same as that obtained within Hartree -Fock theory (HFT) for finite screening. This coefficient reduces to the DFT bare-Coulomb interaction value in the limit of no screening in which limit the HFT coefficient is singular. The GEA
NASA Astrophysics Data System (ADS)
Elantkowska, Magdalena; Ruczkowski, Jarosław; Dembczyński, Jerzy
2016-02-01
The continuation of the previous series of papers related to the construction of the energy matrix for complex atoms is presented. The contributions from the second-order perturbation theory concerning electrostatically correlated spin-orbit interactions (CSO), as well as electrostatically correlated hyperfine interactions (CHFS) to the atomic structure of nlN, nlNn1l1^{N_1} and nlNn1l1^{N_1}n2l2^{N_2} configurations, are considered. This theory assumes that the electron excitation n0l0→ nl affects spin-orbit splitting and magnetic dipole and electric quadrupole hyperfine structure in the same way which will be discussed below. Part I of the series presented, in general terms, a method allowing the analysis of complex electronic systems. Parts II, III and IV provided a description of an electrostatic interaction up to second-order perturbation theory; they constitute the basis for the design of an efficient computer program package for large-scale calculations of accurate wave functions. Analyses presented in the entire series of our papers clearly demonstrate that obtaining the precise wave functions is impossible without considering the contribution from the second-order effects into fine and hyperfine atomic structure.
Searching for squeezed particle-antiparticle correlations in high-energy heavy-ion collisions
Padula, Sandra S.; Socolowski, O. Jr.
2010-09-15
Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated {phi}{phi} pairs at the Relativistic Heavy Ion Collider (RHIC) energies.
Information Content of the Low-Energy Electric Dipole Strength: Correlation Analysis
Reinhard, P.-G.; Nazarewicz, Witold
2013-01-01
Background: Recent experiments on the electric dipole (E1) polarizability in heavy nuclei have stimulated theoretical interest in the low-energy electric dipole strength, both isovector and isoscalar. Purpose: We study the information content carried by the electric dipole strength with respect to isovector and isoscalar indicators characterizing bulk nuclear matter and finite nuclei. To separate isoscalar and isovector modes, and low-energy strength and giant resonances, we analyze the E1 strength as a function of the excitation energy E and momentum transfer q. Methods: We use the self-consistent nuclear density functional theory with Skyrme energy density functionals, augmented by the random phase approximation, to compute the E1 strength and covariance analysis to assess correlations between observables. Calculations are performed for the spherical, doubly magic nuclei 208Pb and 132Sn. Results: We demonstrate that E1 transition densities in the low-energy region below the giant dipole resonance exhibit appreciable state dependence and multinodal structures, which are fingerprints of weak collectivity. The correlation between the accumulated low-energy strength and the symmetry energy is weak, and dramatically depends on the energy cutoff assumed. On the other hand, a strong correlation is predicted between isovector indicators and the accumulated isovector strength at E around 20 MeV and momentum transfer q 0.65 fm 1. Conclusions: Momentum- and coordinate-space patterns of the low-energy dipole modes indicate a strong fragmentation into individual particle-hole excitations. The global measure of low-energy dipole strength correlates poorly with the nuclear symmetry energy and other isovector characteristics. Consequently, our results do not support the suggestion that there exists a collective pygmy dipole resonance, which is a strong indicator of nuclear isovector properties. By considering nonzero values of momentum transfer, one can isolate individual
Impact of nonlocal correlations over different energy scales: A dynamical vertex approximation study
NASA Astrophysics Data System (ADS)
Rohringer, G.; Toschi, A.
2016-09-01
In this paper, we investigate how nonlocal correlations affect, selectively, the physics of correlated electrons over different energy scales, from the Fermi level to the band edges. This goal is achieved by applying a diagrammatic extension of dynamical mean field theory (DMFT), the dynamical vertex approximation (D Γ A ), to study several spectral and thermodynamic properties of the unfrustrated Hubbard model in two and three dimensions. Specifically, we focus first on the low-energy regime by computing the electronic scattering rate and the quasiparticle mass renormalization for decreasing temperatures at a fixed interaction strength. This way, we obtain a precise characterization of the several steps through which the Fermi-liquid physics is progressively destroyed by nonlocal correlations. Our study is then extended to a broader energy range, by analyzing the temperature behavior of the kinetic and potential energy, as well as of the corresponding energy distribution functions. Our findings allow us to identify a smooth but definite evolution of the nature of nonlocal correlations by increasing interaction: They either increase or decrease the kinetic energy w.r.t. DMFT depending on the interaction strength being weak or strong, respectively. This reflects the corresponding evolution of the ground state from a nesting-driven (Slater) to a superexchange-driven (Heisenberg) antiferromagnet (AF), whose fingerprints are, thus, recognizable in the spatial correlations of the paramagnetic phase. Finally, a critical analysis of our numerical results of the potential energy at the largest interaction allows us to identify possible procedures to improve the ladder-based algorithms adopted in the dynamical vertex approximation.
Berger, Lisa K.; Fendrich, Michael; Chen, Han-Yang; Arria, Amelia M.; Cisler, Ron A.
2010-01-01
Objective We examined the sociodemographic correlates of energy drink use and the differences between those who use them with and without alcohol in a representative community sample. Methods A random-digit-dial landline telephone survey of adults in the Milwaukee, Wisconsin area responded to questions about energy drink and alcohol plus energy drink use. Results Almost one-third of respondents consumed at least one energy drink in their lifetime, while slightly over 25% used energy drinks in the past year and 6% were past-year alcohol plus energy drink users. There were important racial/ethnic differences in consumption patterns. Compared to non-users, past-year energy drink users were more likely to be non-Black minorities; and past-year alcohol plus energy drink users when compared to energy drink users only were more likely to be White and younger. Alcohol plus energy drink users also were more likely to be hazardous drinkers. Conclusions Our results which are among the first from a community sample suggest a bifurcated pattern of energy drink use highlighting important population consumption differences between users of energy drinks only and those who use alcohol and energy drinks together. PMID:21276661
Moharana, Reetanjali; Razzaque, Soebur E-mail: srazzaque@uj.ac.za
2015-08-01
Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy 0∼> 3 TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at 0>6 EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with 0≥ 10 EeV UHECR arrival directions at confidence level ≈ 90%. The strength of the correlation decreases with decreasing UHECR energy and no correlation exists at energy 0∼ 6 EeV . A search in astrophysical databases within 3{sup o} of the arrival directions of UHECRs with energy 0≥ 10 EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the Swift-BAT X-ray catalog with redshift z≤ 0.06. We also found 3 objects in the Kühr catalog of radio sources using the same criteria. The sources are dominantly Seyfert galaxies with Cygnus A being the most prominent member. We calculate the required neutrino and UHECR fluxes to produce the observed correlated events, and estimate the corresponding neutrino luminosity (25 TeV–2.2 PeV) and cosmic-ray luminosity (500 TeV–180 EeV), assuming the sources are the ones we found in the Swift-BAT and Kühr catalogs. We compare these luminosities with the X-ray luminosity of the corresponding sources and discuss possibilities of accelerating protons to 0∼> 10 EeV and produce neutrinos in these sources.
Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François
2015-01-01
Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior. PMID:26380689
Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei
Collaboration, The Pierre auger
2007-12-01
Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [1]. The correlation has maximum significance for cosmic rays with energy greater than {approx} 6 x 10{sup 19} eV and AGN at a distance less than {approx} 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuzmin effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory.
Suppression of back-to-back particle-antiparticle correlations in high-energy nuclear collisions
Knoll, Joern
2011-04-15
Analytical formulas are presented which provide quantitative estimates for the suppression of the anticipated back-to-back particle-antiparticle correlations in high-energy nuclear collisions, due to both the finite duration of the transition dynamics and the continuous freeze-out. They show that the effect is unlikely to be observed.
van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H2, and eliminates delocalization errors in H2(+) and other single-bond systems. It gives surprisingly good non-bonded interaction energies--competitive with the ph-RPA--with the correct R(-6) asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.
Correlation between the latent heats and cohesive energies of metal clusters
NASA Astrophysics Data System (ADS)
Starace, Anne K.; Neal, Colleen M.; Cao, Baopeng; Jarrold, Martin F.; Aguado, Andrés; López, José M.
2008-10-01
Dissociation energies have been determined for Aln+ clusters (n=25-83) using a new experimental approach that takes into account the latent heat of melting. According to the arguments presented here, the cohesive energies of the solidlike clusters are made up of contributions from the dissociation energies of the liquidlike clusters and the latent heats for melting. The size-dependent variations in the measured dissociation energies of the liquidlike clusters are small and the variations in the cohesive energies of solidlike clusters result almost entirely from variations in the latent heats for melting. To compare with the measured cohesive energies, density-functional theory has been used to search for the global minimum energy structures. Four groups of low energy structures were found: Distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and "disordered." For most cluster sizes, the measured and calculated cohesive energies are strongly correlated. The calculations show that the variations in the cohesive energies (and the latent heats) result from a combination of geometric and electronic shell effects. For some clusters an electronic shell closing is responsible for the enhanced cohesive energy and latent heat (e.g., n =37), while for others (e.g., n =44) a structural shell closing is the cause.
Recent improvements in size effects correlations for DBTT and upper shelf energy of ferritic steels
Kumar, A.S.; Louden, B.S. ); Garner, F.A.; Hamilton, M.L. )
1992-01-01
Currently available correlations for the effects of specimen size on the USE were developed for relatively ductile steels and will not serve as well when the steels become embrittled. Size effects correlations were developed recently for the impact properties of less ductile HT9 to be applied to other initially more ductile steels as they lose their ductility during irradiation. These new correlations successfully predict the ductile brittle transition temperature (DBTT) and the upper shelf energy (USE) of full size Charpy specimens based on subsize specimen data. The new DBTT and the USE correlations were tested against published experimental data on other ferritic steels and shown to perform successfully at lower USE particularly when both precracked and notched only specimens were employed.
NASA Astrophysics Data System (ADS)
Seino, Junji; Tarumi, Moto; Nakai, Hiromi
2014-01-01
This Letter proposes an accurate scheme using frozen core orbitals, called the frozen core potential (FCP) method, to theoretically connect model potential calculations to all-electron (AE) ones. The present scheme is based on the Huzinaga-Cantu equation combined with spin-free relativistic Douglas-Kroll-Hess Hamiltonians. The local unitary transformation scheme for efficiently constructing the Hamiltonian produces a seamless extension to the FCP method in a relativistic framework. Numerical applications to coinage diatomic molecules illustrate the high accuracy of this FCP method, as compared to AE calculations. Furthermore, the efficiency of the FCP method is also confirmed by these calculations.
Dong Jianmin; Zuo Wei; Scheid, Werner
2011-07-01
A formula for the relationship between the {alpha}-decay energies (Q values) of superheavy nuclei (SHN) is presented, which is composed of the effects of Coulomb energy and symmetry energy. It can be employed not only to validate the experimental observations and measurements to a large extent, but also to predict the Q values of heaviest SHN with a high accuracy generally which will be very useful for future experiments. Furthermore, the shell closures in superheavy region and the effect of the symmetry energy on the stability of SHN against {alpha} decay are discussed with the help of this formula.
Correlation between α-decay energies of superheavy nuclei involving the effects of symmetry energy.
Dong, Jianmin; Zuo, Wei; Scheid, Werner
2011-07-01
A formula for the relationship between the α-decay energies (Q values) of superheavy nuclei (SHN) is presented, which is composed of the effects of Coulomb energy and symmetry energy. It can be employed not only to validate the experimental observations and measurements to a large extent, but also to predict the Q values of heaviest SHN with a high accuracy generally which will be very useful for future experiments. Furthermore, the shell closures in superheavy region and the effect of the symmetry energy on the stability of SHN against α decay are discussed with the help of this formula.
On universality of stress-energy tensor correlation functions in supergravity [rapid communication
NASA Astrophysics Data System (ADS)
Buchel, Alex
2005-03-01
Using the Minkowski space AdS/CFT prescription we explicitly compute in the low-energy limit the two-point correlation function of the boundary stress-energy tensor in a large class of type IIB supergravity backgrounds with a regular translationally invariant horizon. The relevant set of supergravity backgrounds includes all geometries which can be interpreted via gauge theory/string theory correspondence as being holographically dual to finite temperature gauge theories in Minkowski space-times. The fluctuation-dissipation theorem relates this correlation function computation to the previously established universality of the shear viscosity from supergravity duals, and to the universality of the low energy absorption cross section for minimally coupled massless scalars into a general spherically symmetric black hole. It further generalizes the latter results for the supergravity black brane geometries with non-spherical horizons.
Statistical mechanics of a correlated energy landscape model for protein folding funnels
NASA Astrophysics Data System (ADS)
Plotkin, Steven S.; Wang, Jin; Wolynes, Peter G.
1997-02-01
In heteropolymers, energetic correlations exist due to polymeric constraints and the locality of interactions. Pair correlations in conjunction with the a priori specification of the existence of a particularly low energy state provide a method of introducing the aspect of minimal frustration to the energy landscapes of random heteropolymers. The resulting funneled landscape exhibits both a phase transition from a molten globule to a folded state, and the heteropolymeric glass transition in the globular state. We model the folding transition in the self-averaging regime, which together with a simple theory of collapse allows us to depict folding as a double-well free energy surface in terms of suitable reaction coordinates. Observed trends in barrier positions and heights with protein sequence length and thermodynamic conditions are discussed within the context of the model. We also discuss the new physics which arises from the introduction of explicitly cooperative many-body interactions, as might arise from sidechain packing and nonadditive hydrophobic forces.
Correlation consistent basis sets for the atoms In–Xe
Mahler, Andrew; Wilson, Angela K.
2015-02-28
In this work, the correlation consistent family of Gaussian basis sets has been expanded to include all-electron basis sets for In–Xe. The methodology for developing these basis sets is described, and several examples of the performance and utility of the new sets have been provided. Dissociation energies and bond lengths for both homonuclear and heteronuclear diatomics demonstrate the systematic convergence behavior with respect to increasing basis set quality expected by the family of correlation consistent basis sets in describing molecular properties. Comparison with recently developed correlation consistent sets designed for use with the Douglas-Kroll Hamiltonian is provided.
NASA Astrophysics Data System (ADS)
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.
2015-05-01
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.
Elliott, Kyle H; Welcker, Jorg; Gaston, Anthony J; Hatch, Scott A; Palace, Vince; Hare, James F; Speakman, John R; Anderson, W Gary
2013-06-15
Thyroid hormones affect in vitro metabolic intensity, increase basal metabolic rate (BMR) in the lab, and are sometimes correlated with basal and/or resting metabolic rate (RMR) in a field environment. Given the difficulty of measuring metabolic rate in the field-and the likelihood that capture and long-term restraint necessary to measure metabolic rate in the field jeopardizes other measurements-we examined the possibility that circulating thyroid hormone levels were correlated with RMR in two free-ranging bird species with high levels of energy expenditure (the black-legged kittiwake, Rissa tridactyla, and thick-billed murre, Uria lomvia). Because BMR and daily energy expenditure (DEE) are purported to be linked, we also tested for a correlation between thyroid hormones and DEE. We examined the relationships between free and bound levels of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) with DEE and with 4-hour long measurements of post-absorptive and thermoneutral resting metabolism (resting metabolic rate; RMR). RMR but not DEE increased with T3 in both species; both metabolic rates were independent of T4. T3 and T4 were not correlated with one another. DEE correlated with body mass in kittiwakes but not in murres, presumably owing to the larger coefficient of variation in body mass during chick rearing for the more sexually dimorphic kittiwakes. We suggest T3 provides a good proxy for resting metabolism but not DEE in these seabird species.
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less
Elliott, Kyle H.; Welcker, Jorg; Gaston, Anthony J.; Hatch, Scott A.; Palace, Vince; Hare, James F.; Speakman, John R.; Anderson, W. Gary
2013-01-01
Summary Thyroid hormones affect in vitro metabolic intensity, increase basal metabolic rate (BMR) in the lab, and are sometimes correlated with basal and/or resting metabolic rate (RMR) in a field environment. Given the difficulty of measuring metabolic rate in the field—and the likelihood that capture and long-term restraint necessary to measure metabolic rate in the field jeopardizes other measurements—we examined the possibility that circulating thyroid hormone levels were correlated with RMR in two free-ranging bird species with high levels of energy expenditure (the black-legged kittiwake, Rissa tridactyla, and thick-billed murre, Uria lomvia). Because BMR and daily energy expenditure (DEE) are purported to be linked, we also tested for a correlation between thyroid hormones and DEE. We examined the relationships between free and bound levels of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) with DEE and with 4-hour long measurements of post-absorptive and thermoneutral resting metabolism (resting metabolic rate; RMR). RMR but not DEE increased with T3 in both species; both metabolic rates were independent of T4. T3 and T4 were not correlated with one another. DEE correlated with body mass in kittiwakes but not in murres, presumably owing to the larger coefficient of variation in body mass during chick rearing for the more sexually dimorphic kittiwakes. We suggest T3 provides a good proxy for resting metabolism but not DEE in these seabird species. PMID:23789108
Dong, Hui; Lewis, Nicholas H C; Oliver, Thomas A A; Fleming, Graham R
2015-05-01
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.
Connelly, J.M.; Vijaya Kumar, B.V.K. ); Molley, P.A.; Stalker, K.T.; Kast, B.A. )
1991-01-01
Two-dimensional Acousto-optic (AO) correlators differ from the frequency plane correlators in that multiplying, shifting, and adding, rather than Fourier transforming are used to obtain the correlations. Thus, many of the available composite filter design techniques are not aimed at designing filters for use in AO correlators since they yield frequency-domain functions. In this paper, a method is introduced for designing filter impulse responses of arbitrary extents for implementation on AO correlators. These filters are designed to yield sharp correlation peaks. Simulation results are included to illustrate the viability of the proposed approach. Also included are some initial results from the first successful use of grey-level composite filters on an AO correlator. 12 refs,. 14 figs., 3 tabs.
Deliens, Tom; Clarys, Peter; De Bourdeaudhuij, Ilse; Deforche, Benedicte
2015-08-01
This study assessed personal and environmental correlates of Belgian university students' soft and energy drink consumption and investigated whether these associations were moderated by gender or residency. Four hundred twenty-five university students completed a self-reported on-line questionnaire assessing socio-demographics, health status, soft and energy drink consumption, as well as personal and environmental factors related to soft and energy drink consumption. Multiple linear regression analyses were conducted. Students believing soft drink intake should be minimized (individual subjective norm), finding it less difficult to avoid soft drinks (perceived behavioral control), being convinced they could avoid soft drinks in different situations (self-efficacy), having family and friends who rarely consume soft drinks (modelling), and having stricter family rules about soft drink intake were less likely to consume soft drinks. Students showing stronger behavioral control, having stricter family rules about energy drink intake, and reporting lower energy drink availability were less likely to consume energy drinks. Gender and residency moderated several associations between psychosocial constructs and consumption. Future research should investigate whether interventions focusing on the above personal and environmental correlates can indeed improve university students' beverage choices. PMID:26258790
Deliens, Tom; Clarys, Peter; De Bourdeaudhuij, Ilse; Deforche, Benedicte
2015-01-01
This study assessed personal and environmental correlates of Belgian university students’ soft and energy drink consumption and investigated whether these associations were moderated by gender or residency. Four hundred twenty-five university students completed a self-reported on-line questionnaire assessing socio-demographics, health status, soft and energy drink consumption, as well as personal and environmental factors related to soft and energy drink consumption. Multiple linear regression analyses were conducted. Students believing soft drink intake should be minimized (individual subjective norm), finding it less difficult to avoid soft drinks (perceived behavioral control), being convinced they could avoid soft drinks in different situations (self-efficacy), having family and friends who rarely consume soft drinks (modelling), and having stricter family rules about soft drink intake were less likely to consume soft drinks. Students showing stronger behavioral control, having stricter family rules about energy drink intake, and reporting lower energy drink availability were less likely to consume energy drinks. Gender and residency moderated several associations between psychosocial constructs and consumption. Future research should investigate whether interventions focusing on the above personal and environmental correlates can indeed improve university students’ beverage choices. PMID:26258790
Discovery of an Io-correlated energy source for Io's hot plasma torus
NASA Technical Reports Server (NTRS)
Sandel, B. R.; Broadfoot, A. L.
1982-01-01
Energy flowing into Io's hot plasma torus from a local-time correlated source and from an Io-related source are discussed, and a correlation of the brightness of the ansae of the torus with the apparent orbital phase of Io is reported. It is shown that the energy flows cause an azimuthal modulation of the brightness of the torus that is correlated with the position of Io, and the plasma downstream from Io is shown to be brighter in S III 685-A emission, which indicates a higher electron temperature. Differences in electron temperature inferred from spectral analyses account for all observed differences in brightness, implying that no change in the composition or density of the hot plasma occurs. The mechanism regulating the Io-related source is clearly distinct from the mechanism driving the local time source, although both draw on the same pool of energy, and the combination of the two sources is easily capable of supplying all the energy radiated by the torus.
Discovery of an Io-correlated energy source for Io's hot plasma torus
NASA Astrophysics Data System (ADS)
Sandel, B. R.; Broadfoot, A. L.
1982-04-01
Energy flowing into Io's hot plasma torus from a local-time correlated source and from an Io-related source are discussed, and a correlation of the brightness of the ansae of the torus with the apparent orbital phase of Io is reported. It is shown that the energy flows cause an azimuthal modulation of the brightness of the torus that is correlated with the position of Io, and the plasma downstream from Io is shown to be brighter in S III 685-A emission, which indicates a higher electron temperature. Differences in electron temperature inferred from spectral analyses account for all observed differences in brightness, implying that no change in the composition or density of the hot plasma occurs. The mechanism regulating the Io-related source is clearly distinct from the mechanism driving the local time source, although both draw on the same pool of energy, and the combination of the two sources is easily capable of supplying all the energy radiated by the torus.
Energy and daylighting: A correlation between quality of light and energy consciousness
Krug, N.
1997-12-31
Energy and Daylighting, an advanced topics graduate/professional elective has been established to help the student develop a deeper understanding of Architectural Daylighting, Energy Conserving Design, and Material/Construction/Methods through direct application. After a brief survey of the principles and applications of current and developing attitudes and techniques in energy conservation and natural lighting strategies is conducted (in order to build upon previous courses), an extensive exercise follows which allows the student the opportunity for direct applications. Both computer modeling/analysis and physical modeling (light box simulation with photographic documentation) are employed to focus attention on the interrelationships between natural lighting and passive energy conserving design--all within the context of establishing environmental (interior) quality and (exterior) design direction. As a result, students broaden their understanding of natural light and energy conservation as design tools; the importance of environmental responsibility, both built and natural environments; and using computer analysis as a design tool. This presentation centers around the activities and results obtained from explorations into Energy and Daylighting. Discussion will highlight the course objectives, the methodology involved in the studies, specific requirements and means of evaluation, a slide show of befores and afters (results), and a retrospective look at the course`s value, as well as future directions and implications.
Wave energy level and geographic setting correlate with Florida beach water quality.
Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A
2016-03-15
Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment.
Wave energy level and geographic setting correlate with Florida beach water quality.
Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A
2016-03-15
Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment. PMID:26892203
Grueter, Cyril C; Deschner, Tobias; Behringer, Verena; Fawcett, Katie; Robbins, Martha M
2014-03-29
Maintaining a balanced energy budget is important for survival and reproduction, but measuring energy balance in wild animals has been fraught with difficulties. Female mountain gorillas are interesting subjects to examine environmental correlates of energy balance because their diet is primarily herbaceous vegetation, their food supply shows little seasonal variation and is abundant, yet they live in cooler, high-altitude habitats that may bring about energetic challenges. Social and reproductive parameters may also influence energy balance. Urinary C-peptide (UCP) has emerged as a valuable non-invasive biomarker of energy balance in primates. Here we use this method to investigate factors influencing energy balance in mountain gorillas of the Virunga Volcanoes, Rwanda. We examined a range of socioecological variables on energy balance in adult females in three groups monitored by the Karisoke Research Center over nine months. Three variables had significant effects on UCP levels: habitat (highest levels in the bamboo zone), season (highest levels in November during peak of the bamboo shoot availability) and day time (gradually increasing from early morning to early afternoon). There was no significant effect of reproductive state and dominance rank. Our study indicates that even in species that inhabit an area with a seemingly steady food supply, ecological variability can have pronounced effects on female energy balance.
Grueter, Cyril C; Deschner, Tobias; Behringer, Verena; Fawcett, Katie; Robbins, Martha M
2014-03-29
Maintaining a balanced energy budget is important for survival and reproduction, but measuring energy balance in wild animals has been fraught with difficulties. Female mountain gorillas are interesting subjects to examine environmental correlates of energy balance because their diet is primarily herbaceous vegetation, their food supply shows little seasonal variation and is abundant, yet they live in cooler, high-altitude habitats that may bring about energetic challenges. Social and reproductive parameters may also influence energy balance. Urinary C-peptide (UCP) has emerged as a valuable non-invasive biomarker of energy balance in primates. Here we use this method to investigate factors influencing energy balance in mountain gorillas of the Virunga Volcanoes, Rwanda. We examined a range of socioecological variables on energy balance in adult females in three groups monitored by the Karisoke Research Center over nine months. Three variables had significant effects on UCP levels: habitat (highest levels in the bamboo zone), season (highest levels in November during peak of the bamboo shoot availability) and day time (gradually increasing from early morning to early afternoon). There was no significant effect of reproductive state and dominance rank. Our study indicates that even in species that inhabit an area with a seemingly steady food supply, ecological variability can have pronounced effects on female energy balance. PMID:24472322
On The Origin Of High Energy Correlations in Gamma-ray Bursts
Kocevski, Daniel
2012-04-03
I investigate the origin of the observed correlation between a gamma-ray burst's {nu}F{sub {nu}} spectral peak E{sub pk} and its isotropic equivalent energy E{sub iso} through the use of a population synthesis code to model the prompt gamma-ray emission from GRBs. By using prescriptions for the distribution of prompt spectral parameters as well as the population's luminosity function and co-moving rate density, I generate a simulated population of GRBs and examine how bursts of varying spectral properties and redshift would appear to a gamma-ray detector here on Earth. I find that a strong observed correlation can be produced between the source frame Epk and Eiso for the detected population despite the existence of only a weak and broad correlation in the original simulated population. The energy dependance of a gamma-ray detector's flux-limited detection threshold acts to produce a correlation between the source frame E{sub pk} and E{sub iso} for low luminosity GRBs, producing the left boundary of the observed correlation. Conversely, very luminous GRBs are found at higher redshifts than their low luminosity counterparts due to the standard Malquest bias, causing bursts in the low E{sub pk}, high E{sub iso} regime to go undetected because their E{sub pk} values would be redshifted to energies at which most gamma-ray detectors become less sensitive. I argue that it is this previously unexamined effect which produces the right boundary of the observed correlation. Therefore, the origin of the observed correlation is a complex combination of the instrument's detection threshold, the intrinsic cutoff in the GRB luminosity function, and the broad range of redshifts over which GRBs are detected. Although the GRB model presented here is a very simplified representation of the complex nature of GRBs, these simulations serve to demonstrate how selection effects caused by a combination of instrumental sensitivity and the cosmological nature of an astrophysical population
Correlation of the highest energy cosmic rays with nearby extragalactic objects
Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez, C.; Alvarez-Muniz, J.; Ambrosio, M.; /Balseiro Inst., San Carlos de Bariloche /Buenos Aires, CONICET /CNEA, Buenos Aires /Pierre Auger Observ. /La Plata U. /Natl. Tech. U., San Rafael /Adelaide U. /Catholic U. of Bolivia, La Paz /Bolivia U. /Rio de Janeiro, CBPF /Sao Paulo U.
2007-11-01
Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrate that there is a correlation between the arrival directions of cosmic rays with energy above {approx} 6 x 10{sup 19} eV and the positions of active galactic nuclei (AGN) lying within {approx} 75 Mpc. We reject the hypothesis of an isotropic distribution of these cosmic rays at over 99% confidence level from a prescribed a priori test. The correlation we observe is compatible with the hypothesis that the highest energy particles originate from nearby extragalactic sources whose flux has not been significantly reduced by interaction with the cosmic background radiation. AGN or objects having a similar spatial distribution are possible sources.
Correlation of the highest-energy cosmic rays with nearby extragalactic objects.
Abraham, J; Abreu, P; Aglietta, M; Aguirre, C; Allard, D; Allekotte, I; Allen, J; Allison, P; Alvarez, C; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Argirò, S; Arisaka, K; Armengaud, E; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Atulugama, B S; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Barbosa, A F; Barnhill, D; Barroso, S L C; Bauleo, P; Beatty, J; Beau, T; Becker, B R; Becker, K H; Bellido, J A; Benzvi, S; Berat, C; Bergmann, T; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Blasi, P; Bleve, C; Blümer, H; Bohácová, M; Bonifazi, C; Bonino, R; Boratav, M; Brack, J; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Busca, N G; Caballero-Mora, K S; Cai, B; Camin, D V; Caruso, R; Carvalho, W; Castellina, A; Catalano, O; Cataldi, G; Cazón-Boado, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chye, J; Clark, P D J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Cronin, J; Dagoret-Campagne, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Donato, C; de Jong, S J; De La Vega, G; de Mello Junior, W J M; de Mello Neto, J R T; De Mitri, I; de Souza, V; Del Peral, L; Deligny, O; Selva, A Della; Fratte, C Delle; Dembinski, H; Di Giulio, C; Diaz, J C; Dobrigkeit, C; D'Olivo, J C; Dornic, D; Dorofeev, A; Dos Anjos, J C; Dova, M T; D'Urso, D; Duvernois, M A; Engel, R; Epele, L; Erdmann, M; Escobar, C O; Etchegoyen, A; Facal San Luis, P; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Fernández, A; Ferrer, F; Ferry, S; Fick, B; Filevich, A; Filipcic, A; Fleck, I; Fonte, R; Fracchiolla, C E; Fulgione, W; García, B; García Gámez, D; Garcia-Pinto, D; Garrido, X; Geenen, H; Gelmini, G; Gemmeke, H; Ghia, P L; Giller, M; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Herrero, R Gómez; Gonçalves, P; Gonçalves do Amaral, M; Gonzalez, D; Gonzalez, J G; González, M; Góra, D; Gorgi, A; Gouffon, P; Grassi, V; Grillo, A; Grunfeld, C; Guardincerri, Y; Guarino, F; Guedes, G P; Gutiérrez, J; Hague, J D; Hamilton, J C; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Hauschildt, T; Healy, M D; Hebbeker, T; Heck, D; Hojvat, C; Holmes, V C; Homola, P; Hörandel, J; Horneffer, A; Horvat, M; Hrabovsky, M; Huege, T; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Kaducak, M; Kampert, K H; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D-H; Kopmann, A; Krieger, A; Krömer, O; Kümpel, D; Kunka, N; Kusenko, A; La Rosa, G; Lachaud, C; Lago, B L; Lebrun, D; Lebrun, P; Lee, J; Leigui de Oliveira, M A; Letessier-Selvon, A; Leuthold, M; Lhenry-Yvon, I; López, R; Lopez Agüera, A; Lozano Bahilo, J; Maccarone, M C; Macolino, C; Maldera, S; Malek, M; Mancarella, G; Manceñido, M E; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Martello, D; Martínez, J; Martínez Bravo, O; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McCauley, T; McEwen, M; McNeil, R R; Medina, M C; Medina-Tanco, G; Meli, A; Melo, D; Menichetti, E; Menschikov, A; Meurer, Chr; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Mollerach, S; Monasor, M; Monnier Ragaigne, D; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Morris, C; Mostafá, M; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Nellen, L; Newman-Holmes, C; Newton, D; Thi, T Nguyen; Nierstenhöfer, N; Nitz, D; Nosek, D; Nozka, L; Oehlschläger, J; Ohnuki, T; Olinto, A; Olmos-Gilbaja, V M; Ortiz, M; Ostapchenko, S; Otero, L; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pekala, J; Pelayo, R; Pepe, I M; Perrone, L; Petrera, S; Petrinca, P; Petrov, Y; Ngoc, Dieppham; Ngoc, Dongpham; Pham Thi, T N; Pichel, A; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Porter, T A; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Reucroft, S; Revenu, B; Rezende, F A S; Rídky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Roberts, M; Robledo, C; Rodriguez, G; Rodríguez Frías, D; Rodriguez Martino, J; Rodriguez Rojo, J; Rodriguez-Cabo, I; Ros, G; Rosado, J; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scherini, V; Schieler, H; Schmidt, F; Schmidt, T; Scholten, O; Schovánek, P; Schüssler, F; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Sigl, G; De Grande, N Smetniansky; Smialkowski, A; Smída, R; Smith, A G K; Smith, B E; Snow, G R; Sokolsky, P; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Takahashi, J; Tamashiro, A; Tamburro, A; Tascau, O; Tcaciuc, R; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Todero Peixoto, C J; Tomé, B; Tonachini, A; Torresi, D; Travnicek, P; Tripathi, A; Tristram, G; Tscherniakhovski, D; Tueros, M; Tunnicliffe, V; Ulrich, R; Unger, M; Urban, M; Valdés Galicia, J F; Valiño, I; Valore, L; van den Berg, A M; van Elewyck, V; Vázquez, R A; Veberic, D; Veiga, A; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wainberg, O; Waldenmaier, T; Walker, P; Warner, D; Watson, A A; Westerhoff, S; Wieczorek, G; Wiencke, L; Wilczynska, B; Wilczynski, H; Wileman, C; Winnick, M G; Wu, H; Wundheiler, B; Xu, J; Yamamoto, T; Younk, P; Zas, E; Zavrtanik, D; Zavrtanik, M; Zech, A; Zepeda, A; Ziolkowski, M; Kégl, B
2007-11-01
Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above 6 x 10(19) electron volts and the positions of active galactic nuclei (AGN) lying within approximately 75 megaparsecs. We rejected the hypothesis of an isotropic distribution of these cosmic rays with at least a 99% confidence level from a prescribed a priori test. The correlation we observed is compatible with the hypothesis that the highest-energy particles originate from nearby extragalactic sources whose flux has not been substantially reduced by interaction with the cosmic background radiation. AGN or objects having a similar spatial distribution are possible sources.
Energy deposition of heavy ions in the regime of strong beam-plasma correlations.
Gericke, D O; Schlanges, M
2003-03-01
The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.
High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V
Werner, S.A.; Fawcett, E.; Elmiger, M.W.; Shirane, G.
1992-11-01
Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.
High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V
Werner, S.A. . Dept. of Physics); Fawcett, E. . Dept. of Physics); Elmiger, M.W.; Shirane, G. )
1992-01-01
Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.
Energy deposition of heavy ions in the regime of strong beam-plasma correlations.
Gericke, D O; Schlanges, M
2003-03-01
The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly. PMID:12689203
NASA Astrophysics Data System (ADS)
Fantz, U.; Friedl, R.; Briefi, S.
2015-05-01
The visual properties of a large plasmoid rising from a water container into the air for up to 450 ms are brought into correlation with the total energy dissipated into the system, and, in particular, with the energy used for plasma generation. The latter parameters are deduced from the time-resolved discharge current and voltage of the capacitor bank which is used as energy supply. By varying the experimental parameters, the energy dissipated to the system varies between 5 kJ and 30 kJ from which 10% to 30% is transferred to the plasma. Clear correlations are obtained for the size of the plasmoid changing from 15 cm to 35 cm in width, the ascent velocity ranging from 1 m/s to 2 m/s, and the rising height for which up to 85 cm is measured. For the relation of the autonomous phase with the energy transferred to the plasma, two trends are observed: 450 ms duration is achieved in maximum with the present setup being almost independent on the electrode gap, the voltage-on time, the water conductivity, or the type of salt dissolved in the water. On the other hand, an almost linear dependence is obtained by changing the capacitance.
Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo
2012-11-13
The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed. PMID:26605574
Correlation between surface free energy and anchoring energy of 6CHBT on polyimide surface
NASA Astrophysics Data System (ADS)
Borycki, Jerzy; Okulska-Bozek, Malgorzata; Kedzierski, Jerzy; Kojdecki, Marek A.
2002-06-01
Polyimides were prepared in the classical two-step method via poly(amic acids). Poly(amic acids) were obtained from 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 4,4'- (hexafluoroisopropylidene)diphthalic anhydride (6FDA), pyromellitic dianhydride (PMDA), 3,3',4,4'- diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4'- oxydiphthalic anhydride (ODPA) and amines 4,4'-oxydianiline (ODA), 1,3-phenylenediamine (MPD), 1,4-phenylenediamine (PPD), 4,4'-diaminodiphenylmethane (MDA), 4,4'- ethylenedianiline (DAB), 2,4,6-trimethyl-1,3- phenylenediamine (TMPD), 4-methyl-1,3-phenylenediamine (MMPD) and 2,3,5,6-tetramethyl-1,4-phenylenediamine (DAD) in dimethylformamide. The indium tin oxide (ITO)-glass plates were spin-coated with the poly(amic acids) solutions and dried. A thermal imidization process was then carried out at 250 degree(s)C for 4 h. In this study the anchoring energies of 6CHBT molecules were evaluated on rubbing aligning layers of PI films. The polar anchoring energy coefficient was determined by wedge cell method. The surface free energy and its components of polyimide layers were determined by measuring the contact angles of water, ethylene glycol, formamide and diiodomethane drops on the rubbing polymer surfaces. The Lifshitz-van der Waals and acidic-basic components of surface free energies were found from van Oss equation.
High-spin properties from energy-energy correlation studies using the spin spectrometer
Lee, I.Y.
1982-01-01
The continuum ..gamma.. rays from /sup 130/Ce were studied using the spin spectrometer. One-dimensional and two-dimensional spectra were analyzed as a function of angle, spin and entry energy. Spin and temperature dependence of nuclear properties were observed.
Karsch, F.; Kojo, T.; Mukherjee, S.; Stephanov, M.; Xu, N.
2011-10-27
Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that at zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical
Noguchi, Yoshifumi; Ohno, Kaoru
2010-04-15
The optical absorption spectra of sodium clusters (Na{sub 2n}, n{<=} 4) are calculated by using an all-electron first-principles GW+Bethe-Salpeter method with the mixed-basis approach within the Tamm-Dancoff approximation. In these small systems, the excitonic effect strongly affects the optical properties due to the confinement of exciton in the small system size. The present state-of-the-art method treats the electron-hole two-particle Green's function by incorporating the ladder diagrams up to the infinite order and therefore takes into account the excitonic effect in a good approximation. We check the accuracy of the present method by comparing the resulting spectra with experiments. In addition, the effect of delocalization in particular in the lowest unoccupied molecular orbital in the GW quasiparticle wave function is also discussed by rediagonalizing the Dyson equation.
NASA Astrophysics Data System (ADS)
Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.
2015-12-01
In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.
ON THE CORRELATION OF LOW-ENERGY SPECTRAL INDICES AND REDSHIFTS OF GAMMA-RAY BURSTS
Geng, J. J.; Huang, Y. F.
2013-02-10
It was found by Amati et al. in 2002 that for a small sample of nine gamma-ray bursts (GRBs), more distant events appear to be systematically harder in the soft gamma-ray band. Here, we have collected a larger sample of 65 GRBs, whose time-integrated spectra are well established and can be well fitted with the so-called Band function. It is confirmed that a correlation between the redshifts (z) and the low-energy indices ({alpha}) of the Band function does exist, though it is a bit more scattered than the result of Amati et al. This correlation cannot be simply attributed to the effect of photon reddening. Furthermore, correlations between {alpha} and E {sub peak} (the peak energy in the {nu}F {sub {nu}} spectrum in the rest frame), {alpha} and E {sub iso} (the isotropic energy release), and {alpha} and L {sub iso} (the isotropic luminosity) are also found, which indicate that these parameters are somehow connected. The results may provide useful constraints on the physics of GRBs.
Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au +Au Collisions at RHIC
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, H.; Xu, Z.; Xu, J.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, Z.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2016-03-01
We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au +Au collisions for energies ranging from √{sN N }=7.7 to 200 GeV. The third harmonic v32{2 }=⟨cos 3 (ϕ1-ϕ2)⟩ , where ϕ1-ϕ2 is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δ η =η1-η2 . Nonzero v32{2 } is directly related to the previously observed large-Δ η narrow-Δ ϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v32{2 } persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v32{2 } is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v32{2 } for central collisions shows a minimum near √{sN N }=20 GeV .
NASA Astrophysics Data System (ADS)
Zeen Devi, H.
2014-07-01
Leptogenesis is the most favorable mechanism for generating the observed baryon asymmetry of the universe (BAU) which implies CP violation in the high energy scale. The low energy leptonic CP violation is expected to be observed in the neutrino oscillations and 0ν2β decay experiments. Generally, it is not possible to connect both the CP violations. Here we revisit the issue of connecting the two in flavored leptogenesis scenario within the Type I seesaw in the light of recent neutrino oscillation and Planck data. With the recent precise measurements of θ13 and BAU, we are able to find new correlations between the low and high energy CP violating phases when leptogenesis occurs at temperature between 109 to 1012 GeV and there is no contribution to CP violation from the heavy neutrino sector.
The scaling limit of the energy correlations in non-integrable Ising models
NASA Astrophysics Data System (ADS)
Giuliani, Alessandro; Greenblatt, Rafael L.; Mastropietro, Vieri
2012-09-01
We obtain an explicit expression for the multipoint energy correlations of a non-solvable two-dimensional Ising models with nearest neighbor ferromagnetic interactions plus a weak finite range interaction of strength λ, in a scaling limit in which we send the lattice spacing to zero and the temperature to the critical one. Our analysis is based on an exact mapping of the model into an interacting lattice fermionic theory, which generalizes the one originally used by Schultz, Mattis, and Lieb for the nearest neighbor Ising model. The interacting model is then analyzed by a multiscale method first proposed by Pinson and Spencer. If the lattice spacing is finite, then the correlations cannot be computed in closed form: rather, they are expressed in terms of infinite, convergent, power series in λ. In the scaling limit, these infinite expansions radically simplify and reduce to the limiting energy correlations of the integrable Ising model, up to a finite renormalization of the parameters. Explicit bounds on the speed of convergence to the scaling limit are derived.
LORENTZ-FACTOR-ISOTROPIC-LUMINOSITY/ENERGY CORRELATIONS OF GAMMA-RAY BURSTS AND THEIR INTERPRETATION
Lue Jing; Zou Yuanchuan; Lei Weihua; Wu Qingwen; Wang Dingxiong; Zhang Bing; Lue Houjun; Liang Enwei E-mail: leiwh@hust.edu.cn
2012-05-20
The bulk Lorentz factor of the gamma-ray burst (GRB) ejecta ({Gamma}{sub 0}) is a key parameter to understanding GRB physics. Liang et al. have discovered a correlation between {Gamma}{sub 0} and isotropic {gamma}-ray energy: {Gamma}{sub 0}{proportional_to}E{sup 0.25}{sub {gamma},iso,52}. By including more GRBs with updated data and more methods to derive {Gamma}{sub 0}, we confirm this correlation and obtain {Gamma}{sub 0} {approx_equal} 91E{sup 0.29}{sub {gamma},iso,52}. Evaluating the mean isotropic {gamma}-ray luminosities L{sub {gamma},iso} of the GRBs in the same sample, we discover an even tighter correlation {Gamma}{sub 0} {approx_equal} 249L{sup 0.30}{sub {gamma},iso,52}. We propose an interpretation to this later correlation. Invoking a neutrino-cooled hyperaccretion disk around a stellar mass black hole as the central engine of GRBs, we derive jet luminosity powered by neutrino annihilation and baryon loading from a neutrino-driven wind. Applying beaming correction, we finally derive {Gamma}{sub 0}{proportional_to}L{sup 0.22}{sub {gamma},iso}, which is consistent with the data. This suggests that the central engine of long GRBs is likely a stellar mass black hole surrounded by a hyper-accreting disk.
Gauthier, Charles; Campbell, Peter G C; Couture, Patrice
2011-09-01
Enzymes representing a variety of metabolic pathways were examined in yellow perch (Perca flavescens) collected from a metal-contaminated region (Rouyn-Noranda, Québec, Canada) to determine which were most closely related to fish condition factor, pyloric caeca weight, and visceral lipid accumulation, as well to seek a better understanding of the influence of metal contamination on the physiology and biometrics of perch. Compared to laboratory fish, wild perch were under important energy restrictions. The condition factor of wild fish was correlated with indicators of aerobic metabolism (citrate synthase, cytochrome C oxidase), protein anabolism (nucleoside diphosphokinase), and indicators of lipid accumulation (glucose-6-phosphate dehydrogenase, visceral lipid index). Pyloric caeca weights were well correlated with indicators of protein anabolism, but only when both seasons were examined together, possibly indicating a lag in the response of enzymes to changes in diet. The addition of contaminant stress to existing energy restrictions led to changes in the relationships between enzymes and biometrics, reducing the predictive power of the models for perch in contaminated lakes. The present study broadens our knowledge of the impact of metal contamination on energy accumulation and tissue metabolic capacities in wild perch.
New approach to energy transfer and quantum correlations in a molecular dimer
NASA Astrophysics Data System (ADS)
Saberi, M.; Bagheri Harouni, M.; Roknizadeh, R.; Latifi, H.
2016-09-01
The dynamics of single-excitation energy transfer in a molecular dimer interacting with a phonon bath is studied. Although there are exact numerical solutions for this system, we propose an approach that provides exact analytical results with few electronic degrees of freedom. This approach is based on considering the phonon subsystem in the coherent state representation. Applying this approach, the long-lived coherence time is evaluated in the weak and strong coupling regimes. Moreover, by calculating the quantum entanglement and global quantum discord, the time evolution of quantum correlations is examined. The effects of two parameters, electronic coupling strength and bath temperature, on the energy transfer and quantum correlations are studied. It is shown, in agreement with previous results, that the long-lived coherence time in the weak coupling regime is longer than in the strong coupling regime. Also, the increasing bath temperature gives rise to faster delocalization of energy transfer. Furthermore, it is illustrated that the bath temperature has a significant effect on the quantum entanglement with respect to the global quantum discord.
NASA Astrophysics Data System (ADS)
Liu, Kexi; Lei, Yinkai; Wang, Guofeng
2013-11-01
Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d_{z^2 }, d_{xy}, d_{xz}, and dyz) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.
Correlation between wind and solar energy availability and demand for electricity in Montana
Gerez, V.; Kellogg, W.; Nehrir, M.H.; Venkataramanan, G.; Ike, L.
1996-10-01
This paper reports on the correlation between wind and solar energy availability and the demand for electricity in Montana. Following the suggestions of utility technical personnel the analysis focuses on using renewable resources for distributed generation in two types of applications: renewable generation connected to substations where the load is of the order of MW, or to individual loads in the kW range. For distributed generation in the MW range four sites were selected, based on their different patterns of seasonal renewable resource availability and electric demand. To study individual loads in the kW range, a ranching operation was selected as representative of potential application of renewables at the end of rural feeders. Because in many Montana locations wind power density peaks during winter complementing solar power density peaking in summer the potential benefits of one type of renewable generation, wind or solar, was compared with a combination of wind and solar generation. In all cases renewable generation will decrease the peak loading on the electric feeders connecting either the substations or the individual load to the network. A combination of wind and solar generation will decrease the peak further than one type of renewable generation alone, thereby increasing the load factor on the feeders. It is also shown that distributed combined wind and solar generation provides energy to the grid when the demand on the network is the highest; therefore giving electric energy from renewables energy an additional energy deferral value.
Liu, Kexi; Lei, Yinkai; Wang, Guofeng
2013-11-28
Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O{sub 2} adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N{sub 4} chelation, as well as the molecular and electronic structures for the O{sub 2} adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O{sub 2} on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d{sub z{sup 2}}, d{sub xy}, d{sub xz}, and d{sub yz}) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O{sub 2} adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.
Storchi, Loriano; Rampino, Sergio; Belpassi, Leonardo; Tarantelli, Francesco; Quiney, Harry M
2013-12-10
We propose a new complete memory-distributed algorithm, which significantly improves the parallel implementation of the all-electron four-component Dirac-Kohn-Sham (DKS) module of BERTHA (J. Chem. Theory Comput. 2010, 6, 384). We devised an original procedure for mapping the DKS matrix between an efficient integral-driven distribution, guided by the structure of specific G-spinor basis sets and by density fitting algorithms, and the two-dimensional block-cyclic distribution scheme required by the ScaLAPACK library employed for the linear algebra operations. This implementation, because of the efficiency in the memory distribution, represents a leap forward in the applicability of the DKS procedure to arbitrarily large molecular systems and its porting on last-generation massively parallel systems. The performance of the code is illustrated by some test calculations on several gold clusters of increasing size. The DKS self-consistent procedure has been explicitly converged for two representative clusters, namely Au20 and Au34, for which the density of electronic states is reported and discussed. The largest gold cluster uses more than 39k basis functions and DKS matrices of the order of 23 GB. PMID:26592273
Takahashi, Y.
2003-06-08
This report describes the research work performed under the support of the DOE research grant E-FG02-97ER4108. The work is composed of three parts: (1) Visual analysis and quality control of the Micro Vertex Detector (MVD) of the PHENIX experiments carried out of Brookhaven National Laboratory. (2) Continuation of the data analysis of the EMU05/09/16 experiments for the study of the inclusive particle production spectra and multi-particle correlation. (3) Exploration of a new statistical means to study very high-multiplicity of nuclear-particle ensembles and its perspectives to apply to the higher energy experiments.
Gangopadhyay, A K; Bendert, J C; Mauro, N A; Kelton, K F
2012-09-19
The volume expansion coefficients (α) of twenty-five glass-forming transition metal alloy liquids, measured using the electrostatic levitation technique, are reported. An inverse correlation between α and the cohesive energy is found. The predicted values of α from this relationship agree reasonably well with the published data for thirty other transition metal and alloy liquids; some disagreement was found for a few alloys containing significant amounts of group III and IV elements. A theoretical argument for this empirical relationship is presented. PMID:22842287
Calculation of quasiparticle energy spectrum of silicon using the correlated Hartree-Fock method
NASA Astrophysics Data System (ADS)
Ishihara, Takamitsu; Yamagami, Hiroshi; Matsuzawa, Kazuya; Yasuhara, Hiroshi
1999-06-01
We present quasiparticle energy spectrum calculations of silicon using the correlated Hartree-Fock method proposed by Yasuhara and Takada [Phys. Rev. B 43, 7200 (1991)], in which the information on the effective mass of an electron liquid is included in the form of a nonlocal spin-parallel potential in addition to a local potential. The calculated band gaps of silicon are much improved, compared with the local density approximation values. The minimum indirect band gap is evaluated to be 1.37 eV.
Damage correlations in semiconductor devices exposed to gamma and high energy swift heavy ions
NASA Astrophysics Data System (ADS)
Pushpa, N.; Prakash, A. P. Gnana
2015-05-01
NPN rf power transistors and N-channel depletion MOSFETs are irradiated by different high energy swift heavy ions and 60Co gamma radiation in the dose range of 100 krad to 100 Mrad. The damage created by different heavy ions and 60Co gamma radiation in NPN rf power transistors and N-channel depletion MOSFETs have been correlated and studied in the same dose range. The recoveries in the electrical characteristics of different swift heavy ions and 60Co gamma irradiated devices have been studied after annihilation.
Damage correlations in semiconductor devices exposed to gamma and high energy swift heavy ions
Pushpa, N.; Prakash, A. P. Gnana
2015-05-15
NPN rf power transistors and N-channel depletion MOSFETs are irradiated by different high energy swift heavy ions and {sup 60}Co gamma radiation in the dose range of 100 krad to 100 Mrad. The damage created by different heavy ions and {sup 60}Co gamma radiation in NPN rf power transistors and N-channel depletion MOSFETs have been correlated and studied in the same dose range. The recoveries in the electrical characteristics of different swift heavy ions and {sup 60}Co gamma irradiated devices have been studied after annihilation.
NASA Astrophysics Data System (ADS)
Huo, Pengfei; Coker, David F.
2012-03-01
Two-dimensional photon-echo experiments indicate that excitation energy transfer between chromophores near the reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides occurs coherently with decoherence times of hundreds of femtoseconds, comparable to the energy transfer time scale in these systems. The original explanation of this observation suggested that correlated fluctuations in chromophore excitation energies, driven by large scale protein motions could result in long lived coherent energy transfer dynamics. However, no significant site energy correlation has been found in recent molecular dynamics simulations of several model light harvesting systems. Instead, there is evidence of correlated fluctuations in site energy-electronic coupling and electronic coupling-electronic coupling. The roles of these different types of correlations in excitation energy transfer dynamics are not yet thoroughly understood, though the effects of site energy correlations have been well studied. In this paper, we introduce several general models that can realistically describe the effects of various types of correlated fluctuations in chromophore properties and systematically study the behavior of these models using general methods for treating dissipative quantum dynamics in complex multi-chromophore systems. The effects of correlation between site energy and inter-site electronic couplings are explored in a two state model of excitation energy transfer between the accessory bacteriochlorophyll and bacteriopheophytin in a reaction center system and we find that these types of correlated fluctuations can enhance or suppress coherence and transfer rate simultaneously. In contrast, models for correlated fluctuations in chromophore excitation energies show enhanced coherent dynamics but necessarily show decrease in excitation energy transfer rate accompanying such coherence enhancement. Finally, for a three state model of the Fenna-Matthews-Olsen light
NASA Astrophysics Data System (ADS)
Hill, J. Grant; Platts, James A.
2008-10-01
The results of density fitting and local approximations applied to the calculation of transition metal-ligand binding energies using second order Møller-Plesset perturbation theory are reported. This procedure accurately reproduces counterpoise corrected binding energies from the canonical method for a range of test complexes. While counterpoise corrections for basis set superposition error are generally small, this procedure can be time consuming, and in some cases gives rise to unphysical dissociation of complexes. In circumventing this correction, a local treatment of electron correlation offers major efficiency savings with little loss of accuracy. The use of density fitting for the underlying Hartree-Fock calculations is also tested for sample Ru complexes, leading to further efficiency gains but essentially no loss in accuracy.
NASA Astrophysics Data System (ADS)
Kaoui, Fawzi; Rocca, Dario
2016-01-01
A new approach was recently presented to compute correlation energies within the random phase approximation using Lanczos chains and an optimal basis set (Rocca 2014 J. Chem. Phys. 140 18A501). This novel method avoids the explicit calculation of conduction states and represents linear response functions on a compact auxiliary basis set obtained from the diagonalization of an approximate dielectric matrix that contains only the kinetic energy contribution. Here, we extend this formalism, originally implemented for molecular systems, to treat periodic solids. In particular, the approximate dielectric matrix used to build the auxiliary basis set is generalized to avoid unphysical negative gaps, that make the model inefficient. The numerical convergence of the method is discussed and the accuracy is demonstrated considering a set including three covalently bonded (C, Si, and SiC) and three weakly bonded (Ne, Ar, and Kr) solids.
NASA Astrophysics Data System (ADS)
Park, Hyowon; Millis, Andrew; Marianetti, Chris
2013-03-01
We use density functional theory (DFT) plus dynamical mean field theory (DMFT) method, along with DFT+U and Hartree-Fock methods to compute the electronic energy as a function of crystal structure for rare earth nickelates. We show that full charge self-consistency can be essential for obtaining qualitative agreement with experiment and that the choice of double counting correction has an important effect on the energy. Furthermore, the precise definition (projector vs Wannier) of the correlated d-orbitals has a minimal effect. We show that charge self-consistent DFT+DMFT, as opposed to DFT+U, is critical to describing the magnetic-insulator to paramagnetic-metal phase boundary in the rare earth nickelate phase diagram. The authors acknowledge funding from the U. S. Army Research Office via grant No. W911NF0910345 56032PH.
Willow, Soohaeng Yoo; Zhang, Jinmei; Valeev, Edward F.; Hirata, So
2014-01-21
A stochastic algorithm is proposed that can compute the basis-set-incompleteness correction to the second-order many-body perturbation (MP2) energy of a polyatomic molecule. It evaluates the sum of two-, three-, and four-electron integrals over an explicit function of electron-electron distances by a Monte Carlo (MC) integration at an operation cost per MC step increasing only quadratically with size. The method can reproduce the corrections to the MP2/cc-pVTZ energies of H{sub 2}O, CH{sub 4}, and C{sub 6}H{sub 6} within a few mE{sub h} after several million MC steps. It circumvents the resolution-of-the-identity approximation to the nonfactorable three-electron integrals usually necessary in the conventional explicitly correlated (R12 or F12) methods.
Highly correlated systems. Excitation energies of first row transition metals Sc-Cu
NASA Astrophysics Data System (ADS)
Raghavachari, Krishnan; Trucks, Gary W.
1989-07-01
The low-lying dns2→dn+1s1 excitation energies of the first row transition metal atoms Sc-Cu are calculated using fourth-order M≂ller-Plesset perturbation theory (MP4) as well as quadratic configuration interaction (QCI) techniques with large spd and spdf basis sets. The MP4 method performs well for Sc-Mn but fails dramatically for Fe-Cu. In contrast, the QCI technique performs uniformly for all excitation energies with a mean deviation from experiment of only 0.14 eV after including relativistic corrections. f functions contribute 0.1-0.4 eV to the excitation energies for these systems. The highly correlated d10 state of the Ni atom is also considered in detail. The QCI technique obtains the d9s1→d10 splitting of the Ni atom with an error of only 0.13 eV. The results show that single-configuration Hartree-Fock based methods can be successful in calculating excitation energies of transition metal atoms.
Bharadwaj, Atul S; Singh, Swarn L; Singh, Yashwant
2013-08-01
A free-energy functional for a crystal that contains both the symmetry-conserved and symmetry-broken parts of the direct pair-correlation function has been used to investigate the crystallization of fluids in three dimensions. The symmetry-broken part of the direct pair-correlation function has been calculated using a series in ascending powers of the order parameters and which contains three- and higher-body direct correlation functions of the isotropic phase. It is shown that a very accurate description of freezing transitions for a wide class of potentials is found by considering the first two terms of this series. The results found for freezing parameters including the structure of the frozen phase for fluids interacting via the inverse power potential u(r)=ε(σ/r)(n) for n ranging from 4 to ∞ are in very good agreement with simulation results. It is found that for n>6.5 the fluid freezes into a face-centered cubic (fcc) structure while for n≤6 the body-centered cubic (bcc) structure is preferred. The fluid-bcc-fcc triple point is found to be at 1/n=0.158, which is in good agreement with simulation result. PMID:24032780
Squeezed K+K- correlations in high energy heavy ion collisions
NASA Astrophysics Data System (ADS)
Dudek, Danuce M.; Padula, Sandra S.
2010-09-01
The hot and dense medium formed in high energy heavy ion collisions may modify some hadronic properties. In particular, if hadron masses are shifted in-medium, it was demonstrated that this could lead to back-to-back squeezed correlations (BBC) of particle-antiparticle pairs. Although well-established theoretically, the squeezed correlations have not yet been discovered experimentally. A method has been suggested for the empirical search of this effect, which was previously illustrated for ϕϕ pairs. We apply here the formalism and the suggested method to the case of K+K- pairs, since they may be easier to identify experimentally. The time distribution of the emission process plays a crucial role in the survival of the BBC’s. We analyze the cases where the emission is supposed to occur suddenly or via a Lorentzian distribution, and compare with the case of a Lévy distribution in time. Effects of squeezing on the correlation function of identical particles are also analyzed.
Squeezed K{sup +}K{sup -} correlations in high energy heavy ion collisions
Dudek, Danuce M.; Padula, Sandra S.
2010-09-15
The hot and dense medium formed in high energy heavy ion collisions may modify some hadronic properties. In particular, if hadron masses are shifted in-medium, it was demonstrated that this could lead to back-to-back squeezed correlations (BBC) of particle-antiparticle pairs. Although well-established theoretically, the squeezed correlations have not yet been discovered experimentally. A method has been suggested for the empirical search of this effect, which was previously illustrated for {phi}{phi} pairs. We apply here the formalism and the suggested method to the case of K{sup +}K{sup -} pairs, since they may be easier to identify experimentally. The time distribution of the emission process plays a crucial role in the survival of the BBC's. We analyze the cases where the emission is supposed to occur suddenly or via a Lorentzian distribution, and compare with the case of a Levy distribution in time. Effects of squeezing on the correlation function of identical particles are also analyzed.
Correlation of Thermally Induced Pores with Microstructural Features Using High Energy X-rays
NASA Astrophysics Data System (ADS)
Menasche, David B.; Shade, Paul A.; Lind, Jonathan; Li, Shiu Fai; Bernier, Joel V.; Kenesei, Peter; Schuren, Jay C.; Suter, Robert M.
2016-11-01
Combined application of a near-field High Energy Diffraction Microscopy measurement of crystal lattice orientation fields and a tomographic measurement of pore distributions in a sintered nickel-based superalloy sample allows pore locations to be correlated with microstructural features. Measurements were carried out at the Advanced Photon Source beamline 1-ID using an X-ray energy of 65 keV for each of the measurement modes. The nickel superalloy sample was prepared in such a way as to generate significant thermally induced porosity. A three-dimensionally resolved orientation map is directly overlaid with the tomographically determined pore map through a careful registration procedure. The data are shown to reliably reproduce the expected correlations between specific microstructural features (triple lines and quadruple nodes) and pore positions. With the statistics afforded by the 3D data set, we conclude that within statistical limits, pore formation does not depend on the relative orientations of the grains. The experimental procedures and analysis tools illustrated are being applied to a variety of materials problems in which local heterogeneities can affect materials properties.
GW correlation effects on plutonium quasiparticle energies: changes in crystal-field splitting
Albers, Robert C; Chantis, Athanasios N; Svane, Axel; Christensen, Niels E
2009-01-01
We present results for the electronic structure of plutonium by using a recently developed quasiparticle self-consistent GW method (QSGW). We consider a paramagnetic solution without spin-orbit interaction as a function of volume for the face-centered cubic (fcc) unit cell. We span unit-cell volumes ranging from 10% greater than the equilibrium volume of the 8 phase to 90 % of the equivalent for the a phase of Pu. The self-consistent GW quasiparticle energies are compared to those obtained within the Local Density Approximation (LDA). The goal of the calculations is to understand systematic trends in the effects of electronic correlations on the quasiparticle energy bands of Pu as a function of the localization of the J orbitals. We show that correlation effects narrow the f bands in two significantly different ways. Besides the expected narrowing of individual f bands (flatter dispersion), we find that an even more significant effect on the f bands is a decrease in the crystal-field splitting of the different bands
Explicit correlation treatment of the potential energy surface of CO{sub 2} dimer
Kalugina, Yulia N.; Buryak, Ilya A.; Ajili, Yosra; Vigasin, Andrei A.; Jaidane, Nejm Eddine; Hochlaf, Majdi
2014-06-21
We present an extensive study of the four-dimensional potential energy surface (4D-PES) of the carbon dioxide dimer, (CO{sub 2}){sub 2}. This PES is developed over the set of intermolecular coordinates. The electronic computations are carried out at the explicitly correlated coupled cluster method with single, double, and perturbative triple excitations [CCSD(T)-F12] level of theory in connection with the augmented correlation-consistent aug-cc-pVTZ basis set. An analytic representation of the 4D-PES is derived. Our extensive calculations confirm that “Slipped Parallel” is the most stable form and that the T-shaped structure corresponds to a transition state. Later on, this PES is employed for the calculations of the vibrational energy levels of the dimer. Moreover, the temperature dependence of the dimer second virial coefficient and of the first spectral moment of rototranslational collision-induced absorption spectrum is derived. For both quantities, a good agreement is found between our values and the experimental data for a wide range of temperatures. This attests to the high quality of our PES. Generally, our PES and results can be used for modeling CO{sub 2} supercritical fluidity and examination of its role in planetary atmospheres. It can be also incorporated into dynamical computations of CO{sub 2} capture and sequestration. This allows deep understanding, at the microscopic level, of these processes.
Lyons, G N; Halsey, L G; Pope, E C; Eddington, J D; Houghton, J D R
2013-10-01
How animals manage time and expend energy has implications for survivorship. Being able to measure key metabolic costs of animals under natural conditions is therefore an important tool in behavioral ecology. One method for estimating activity-specific metabolic rate is via derived measures of acceleration, often 'overall dynamic body acceleration' (ODBA), recorded by an instrumented acceleration logger. ODBA has been shown to correlate well with rate of oxygen consumption (V˙o2) in a range of species during activity in the laboratory. This study devised a method for attaching acceleration loggers to decapod crustaceans and then correlated ODBA against concurrent respirometry readings to assess accelerometry as a proxy for activity-specific energy expenditure in a model species, the American lobster Homarus americanus. Where the instrumented animals exhibited a sufficient range of activity levels, positive linear relationships were found between V˙o2 and ODBA over 20min periods at a range of ambient temperatures (6, 13 and 20°C). Mixed effect linear models based on these data and morphometrics provided reasonably strong predictive power for estimating activity-specific V˙o2 from ODBA. These V˙o2-ODBA calibrations demonstrate the potential of accelerometry as an effective predictor of behavior-specific metabolic rate of crustaceans in the wild during periods of activity.
Domain-averaged exchange-correlation energies as a physical underpinning for chemical graphs.
García-Revilla, M; Francisco, E; Popelier, Paul L A; Martín Pendás, Angel
2013-04-15
A novel solution to the problem of assigning a molecular graph to a collection of nuclei (i.e. how to draw a molecular structure) is presented. Molecules are universally understood as a set of nuclei linked by bonds, but establishing which nuclei are bonded and which are not is still an empirical matter. Our approach borrows techniques from quantum chemical topology, which showed for the first time the construction of chemical graphs from wave functions, shifting the focus on energetics. This new focus resolves issues surrounding previous topological analyses, in which domain-averaged exchange-correlation energies (V(xc)), quantities defined in real space between each possible atom pair, hold the key. Exponential decay of V(xc) in non-metallic systems as the intercenter distance increases guarantees a well-defined hierarchy for all possible V(xc) values in a molecule. Herein, we show that extracting the set of atom pairs that display the largest V(xc) values in the hierarchy is equivalent to retrieving the molecular graph itself. Notably, domain-averaged exchange-correlation energies are transferable, and they can be used to calculate bond strengths. Fine-grained details resulted to be related to simple stereoelectronic effects. These ideas are demonstrated in a set of simple pilot molecules.
Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar.
Ranasinghe, Duminda S; Frisch, Michael J; Petersson, George A
2015-12-01
We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mEh) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies. PMID:26646872
Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar
Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A.
2015-12-07
We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mE{sub h}) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies.
Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar
NASA Astrophysics Data System (ADS)
Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A.
2015-12-01
We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mEh) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies.
NASA Astrophysics Data System (ADS)
Lu, K. Q.; Li, Z. X.; Li, Z. P.; Yao, J. M.; Meng, J.
2015-02-01
We report the first global study of dynamic correlation energies (DCEs) associated with rotational motion and quadrupole shape vibrational motion in a covariant energy density functional (CEDF) for 575 even-even nuclei with proton numbers ranging from Z =8 to Z =108 by solving a five-dimensional collective Hamiltonian, the collective parameters of which are determined from triaxial relativistic mean field plus BCS calculation using the PC-PK1 force. After taking into account these beyond mean-field DCEs, the root-mean-square (rms) deviation with respect to nuclear masses is reduced significantly down to 1.14 MeV, which is smaller than those of other successful CEDFs: NL3* (2.96 MeV), DD-ME2 (2.39 MeV), DD -ME δ (2.29 MeV), and DD-PC1 (2.01 MeV). Moreover, the rms deviation for two-nucleon separation energies is reduced by ˜34 % in comparison with the cranking prescription.
Inelastic cross sections for low-energy electrons in liquid water: exchange and correlation effects.
Emfietzoglou, Dimitris; Kyriakou, Ioanna; Garcia-Molina, Rafael; Abril, Isabel; Nikjoo, Hooshang
2013-11-01
Low-energy electrons play a prominent role in radiation therapy and biology as they are the largest contributor to the absorbed dose. However, no tractable theory exists to describe the interaction of low-energy electrons with condensed media. This article presents a new approach to include exchange and correlation (XC) effects in inelastic electron scattering at low energies (below ∼10 keV) in the context of the dielectric theory. Specifically, an optical-data model of the dielectric response function of liquid water is developed that goes beyond the random phase approximation (RPA) by accounting for XC effects using the concept of the many-body local-field correction (LFC). It is shown that the experimental energy-loss-function of liquid water can be reproduced by including into the RPA dispersion relations XC effects (up to second order) calculated in the time-dependent local-density approximation with the addition of phonon-induced broadening in N. D. Mermin's relaxation-time approximation. Additional XC effects related to the incident and/or struck electrons are included by means of the vertex correction calculated by a modified Hubbard formula for the exchange-only LFC. Within the first Born approximation, the present XC corrections cause a significantly larger reduction (∼10-50%) to the inelastic cross section compared to the commonly used Mott and Ochkur approximations, while also yielding much better agreement with the recent experimental data for amorphous ice. The current work offers a manageable, yet rigorous, approach for including non-Born effects in the calculation of inelastic cross sections for low-energy electrons in liquid water, which due to its generality, can be easily extended to other condensed media.
Perichart-Perera, Otilia; Balas-Nakash, Margie; Rodríguez-Cano, Ameyalli; Muñoz-Manrique, Cinthya; Monge-Urrea, Adriana; Vadillo-Ortega, Felipe
2010-02-01
Dietary and lifestyle changes in Mexico have been linked to an increase in chronic diseases such as obesity and cardiovascular disease. Important dietary changes such as an increase in the consumption of energy-dense foods (high in oils, animal or processed fats, and sugars) have been recently reported. The objective of this study was to identify how key dietary energy sources correlated with other indexes of cardiovascular disease in a Mexican school-age population. From 2004 to 2006, a convenience sample (n=228) of 9- to 13-year-olds, 48.2% girls and 51.8% boys, from three public urban schools were included. Anthropometric, blood pressure, and dietary assessment (two multiple pass 24-hour recalls) were done. More than half of children did not meet the fruit and vegetable recommended intake. High-fat dairy foods (14% of total energy intake), refined carbohydrates (13.5%), red/processed meat (8.5%), added sugars/desserts (7%), corn tortilla (6.5%), and soft drinks/sweetened beverages (5%) were the highest dietary energy sources consumed. In a subgroup of children (n=185), a fasting blood sample was collected for biochemical analysis. A positive association was observed between glucose and diastolic blood pressure with the intake of soft drinks/sweetened beverages, insulin concentrations and the intake of white bread, and triglyceride concentrations with the intake of added fats. Unhealthful dietary energy sources are frequently consumed by these children. Culturally competent nutrition counseling should be offered to Mexican-American children and their families with a significant risk of cardiovascular disease. Efforts should be made to design and implement nutrition education and health promotion strategies in schools. PMID:20102853
Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas.
Malone, Fionn D; Blunt, N S; Brown, Ethan W; Lee, D K K; Spencer, J S; Foulkes, W M C; Shepherd, James J
2016-09-01
The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N-body density matrices for uniform electron gas systems of up to 10^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k-space configuration path-integral formalism disagree by up to ∼10% at certain reduced temperatures T/T_{F}≤0.5 and densities r_{s}≤1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T/T_{F}≥1 and r_{s}≤2.
Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas
NASA Astrophysics Data System (ADS)
Malone, Fionn D.; Blunt, N. S.; Brown, Ethan W.; Lee, D. K. K.; Spencer, J. S.; Foulkes, W. M. C.; Shepherd, James J.
2016-09-01
The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N -body density matrices for uniform electron gas systems of up to 10124 matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k -space configuration path-integral formalism disagree by up to ˜10 % at certain reduced temperatures T /TF≤0.5 and densities rs≤1 . Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T /TF≥1 and rs≤2 .
Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas.
Malone, Fionn D; Blunt, N S; Brown, Ethan W; Lee, D K K; Spencer, J S; Foulkes, W M C; Shepherd, James J
2016-09-01
The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N-body density matrices for uniform electron gas systems of up to 10^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k-space configuration path-integral formalism disagree by up to ∼10% at certain reduced temperatures T/T_{F}≤0.5 and densities r_{s}≤1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T/T_{F}≥1 and r_{s}≤2. PMID:27661699
Correlation measurements in nuclear {beta}-decay using traps and polarized low energy beams
Naviliat-Cuncic, Oscar
2013-05-06
Precision measurements in nuclear {beta}-decay provide sensitive means to test discrete symmetries in the weak interaction and to determine some of the fundamental constants in semi-leptonic decays, like the coupling of the lightest quarks to charged weak bosons. The main motivation of such measurements is to find deviations from Standard Model predictions as possible indications of new physics. In this contribution I will focus on two topics related to precision measurements in nuclear {beta}-decay: i) the determination of the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix from nuclear mirror transitions and ii) the search for exotic scalar or tensor contributions from {beta}{nu} angular correlations. The purpose is to underline the role being played by experimental techniques based on the confinement of radioactive species with atom and ion traps as well as the plans to use low energy polarized beams.
Ebbert, V; Demmig-Adams, B; Adams, W W; Mueh, K E; Staehelin, L A
2001-01-01
High light stress induced not only a sustained form of xanthophyll cycle-dependent energy dissipation but also sustained thylakoid protein phosphorylation. The effect of protein phosphatase inhibitors (fluoride and molybdate ions) on recovery from a 1-h exposure to a high PFD was examined in leaf discs of Parthenocissus quinquefolia (Virginia creeper). Inhibition of protein dephosphorylation induced zeaxanthin retention and sustained energy dissipation (NPQ) upon return to low PFD for recovery, but had no significant effects on pigment and Chl fluorescence characteristics under high light exposure. In addition, whole plants of Monstera deliciosa and spinach grown at low to moderate PFDs were transferred to high PFDs, and thylakoid protein phosphorylation pattern (assessed with anti-phosphothreonine antibody) as well as pigment and Chl fluorescence characteristics were examined over several days. A correlation was obtained between dark-sustained D1/D2 phosphorylation and dark-sustained zeaxanthin retention and maintenance of PS II in a state primed for energy dissipation in both species. The degree of these dark-sustained phenomena was more pronounced in M. deliciosa compared with spinach. Moreover, M. deliciosa but not spinach plants showed unusual phosphorylation patterns of Lhcb proteins with pronounced dark-sustained Lhcb phosphorylation even under low PFD growth conditions. Subsequent to the transfer to a high PFD, dark-sustained Lhcb protein phosphorylation was further enhanced. Thus, phosphorylation patterns of D1/D2 and Lhcb proteins differed from each other as well as among plant species. The results presented here suggest an association between dark-sustained D1/D2 phosphorylation and sustained retention of zeaxanthin and energy dissipation (NPQ) in light-stressed, and particularly 'photoinhibited', leaves. Functional implications of these observations are discussed.
Abrecht, David G.; Schwantes, Jon M.
2015-03-03
This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes, et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the source of the radionuclides to be from active reactors rather than the spent fuel pool. Linear correlations of the form ln χ = -α (ΔG_{rxn}°(T_{C}))/(RT_{C})+β were obtained between the deposited concentration and the reduction potential of the fission product oxide species using multiple reduction schemes to calculate ΔG°_{rxn}(T_{C}). These models allowed an estimate of the upper bound for the reactor temperatures of T_{C} between 2130 K and 2220 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products ^{90}Sr, ^{121m}Sn, ^{147}Pm, ^{144}Ce, ^{152}Eu, ^{154}Eu, ^{155}Eu, ^{151}Sm through atmospheric venting and releases during the first month following the accident were performed, and indicate large quantities of ^{90}Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.
Abrecht, David G; Schwantes, Jon M
2015-03-01
This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.
Test of the peak energy- luminosity correlations of GRBs for their application in cosmology
NASA Astrophysics Data System (ADS)
Sawant, Disha
In a few dozen seconds gamma ray bursts (GRBs) emit upto 10 (54) ergs in terms of an equivalent isotropical radiated energy "E _{iso}", so they can be observed with redshifts almost upto 10. Thus, these phenomena appear to be very promising tools to shed light on the expansion rate and the history of the universe. Here we review the use of the E _{p,i} - E _{iso} correlation of GRBs to measure the cosmological density parameter Omega _{M}. We show that the present data set of gamma ray bursts, coupled with the assumption that we live in a flat universe, can provide independent evidence, from other probes, that Omega _{M} ˜ 0.3. As the first step, we consider verifying the correltion depending on several considerable criteria (e.g. E _{p,i} - E _{iso}, E _{p,i} - L _{iso}, E _{p,i} - L _{peak}, etc.). The results of the comparisons will lead us to verify the reliability of the correlations for cosmographical purpose. This will eventually be utilized to constrain GRBs as standard candles for studying cosmology.
Abrecht, David G; Schwantes, Jon M
2015-03-01
This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores. PMID:25675358
Soliman, A T; ElZalabany, M M; Salama, M; Ansari, B M
2000-07-01
Circulating leptin, insulin, insulin-like growth factor-I (IGF-I), cortisol, and albumin concentrations and the growth hormone (GH) response to provocation were measured in 30 children with severe protein-energy malnutrition (PEM), 20 with marasmus and 10 with kwashiorkor, as well as 10 age-matched normal children (body mass index [BMI] >50th and <90th percentile for age and sex) and 10 prepubertal obese children (BMI >95th percentile for age and sex). Patients with PEM had a significantly lower BMI, midarm circumference (MAC), and skinfold thickness (SFT) compared with the age-matched control group. Basal cortisol and GH concentrations were significantly higher in the malnourished groups versus controls. Leptin and IGF-I were significantly lower in the marasmic and kwashiorkor groups versus normal children. Fasting insulin levels were significantly decreased in the kwashiorkor group compared with marasmic and normal children. The BMI correlated significantly with leptin (r = .77, P < .001), basal insulin (r = .61, P < .001), and IGF-I (r = .77, P < .001) and negatively with basal GH (r = -.52, P < .001). These findings suggest that during prolonged nutritional deprivation, the decreased energy intake, diminished subcutaneous fat mass, and declining insulin (and possibly IGF-I) concentration suppress leptin production. In support of this view, serum leptin levels were positively correlated with triceps, scapular, and abdominal SFT (r = .763, .75, and .744, respectively, P < .0001) in all of the children. Moreover, basal insulin and circulating IGF-I were correlated significantly with leptin concentrations (r = .47 and .62, respectively, P < .001). Basal levels of cortisol and GH were significantly elevated in the 2 groups with severe PEM. It is suggested that low leptin levels can stimulate the hypothalamic-pituitary-adrenal (HPA) axis and possibly the hypothalamic-pituitary-GH axis to maintain the high cortisol and GH levels necessary for effective lipolysis to
NASA Astrophysics Data System (ADS)
He, Ronghua; Qian, Jing; Huo, Lei
2016-04-01
We consider that most of the long-range forward-backward multiplicity (FB) correlations in high energy A -A collisions are caused by the centrality fluctuation, and this phenomenon interferes with the measurement of the dynamical correlations greatly. We investigate the relationship between FB correlation strength and centrality by a Monte Carlo simulation and a derivation which are tested by A MultiPhases Transport (AMPT) model in Au+Au collisions at √{sNN}=200 GeV. We compare the FB correlation strengths of AMPT model with the results of the derivation at √{sNN} = 7.7 to 200 GeV. A comparison between the default AMPT model and string melting AMPT model with different partonic scattering sections is made. As a result, we consider that the FB correlation strengths may be dominated by the mixing of different centrality events, and the short-range correlation may be overwhelmed for the most central collisions.
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Abreu, P.; Aglietta, M.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; /Wisconsin U., Milwaukee /Lisbon, IST
2010-06-01
Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuzmin energy threshold, 6 x 10{sup 19} eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1{sup o} from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38{sub -6}{sup +7})%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69{sub -13}{sup +11})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.
Climatic correlates of tree mortality in water- and energy-limited forests
Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.
2013-01-01
Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.
Climatic Correlates of Tree Mortality in Water- and Energy-Limited Forests
Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.
2013-01-01
Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes. PMID:23936118
Climatic correlates of tree mortality in water- and energy-limited forests.
Das, Adrian J; Stephenson, Nathan L; Flint, Alan; Das, Tapash; van Mantgem, Phillip J
2013-01-01
Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California's Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes. PMID:23936118
NASA Astrophysics Data System (ADS)
Jammazi, Rania; Aloui, Chaker
2015-10-01
This paper analyzes the interactive linkages between carbon dioxide (CO2) emissions, energy consumption (EC) and economic growth (EG) using a novel approach namely wavelet windowed cross correlation (WWCC) for six oil-exporting countries from the GCC (Gulf Cooperation Council) region over the period 1980-2012. Our empirical results show that there exists a bidirectional causal relationship between EC and EG. However, the results support the occurrence of unidirectional causality from EC to CO2 emissions without any feedback effects, and there exists a bidirectional causal relationship between EG and CO2 emissions for the region as a whole. The study suggests that environmental and energy policies should recognize the differences in the nexus between EC and EG in order to maintain sustainable EG in the GCC region. Our findings will be useful for GCC countries to better evaluate its situation in the future climate negotiations. The overall findings will help GCC countries assess its position better in future climate change negotiations.
Climatic correlates of tree mortality in water- and energy-limited forests.
Das, Adrian J; Stephenson, Nathan L; Flint, Alan; Das, Tapash; van Mantgem, Phillip J
2013-01-01
Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California's Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.
NASA Astrophysics Data System (ADS)
Ren, Xinguo; Rinke, Patrick; Scuseria, Gustavo E.; Scheffler, Matthias
2013-07-01
We present a renormalized second-order perturbation theory (rPT2), based on a Kohn-Sham (KS) reference state, for the electron correlation energy that includes the random-phase approximation (RPA), second-order screened exchange (SOSEX), and renormalized single excitations (rSE). These three terms all involve a summation of certain types of diagrams to infinite order, and can be viewed as ``renormalization'' of the second-order direct, exchange, and single-excitation (SE) terms of Rayleigh-Schrödinger perturbation theory based on a KS reference. In this work, we establish the concept of rPT2 and present the numerical details of our SOSEX and rSE implementations. A preliminary version of rPT2, in which the renormalized SE (rSE) contribution was treated approximately, has already been benchmarked for molecular atomization energies and chemical reaction barrier heights and shows a well-balanced performance [J. Paier , New J. Phys.1367-263010.1088/1367-2630/14/4/043002 14, 043002 (2012)]. In this work, we present a refined version of rPT2, in which we evaluate the rSE series of diagrams rigorously. We then extend the benchmark studies to noncovalent interactions, including the rare-gas dimers, and the S22 and S66 test sets, as well as the cohesive energy of small copper clusters, and the equilibrium geometry of 10 diatomic molecules. Despite some remaining shortcomings, we conclude that rPT2 gives an overall satisfactory performance across different electronic situations, and is a promising step towards a generally applicable electronic-structure approach.
Measurement of energy-energy correlations in e/sup +/e/sup -/. -->. hadrons at. sqrt. s = 29 GeV
Fernandez, E.; Ford, W.T.; Qi, N.; Read A.L. Jr.; Smith, J.G.; Camporesi, T.; De Sangro, R.; Marini, A.; Peruzzi, I.; Piccolo, M.; Ronga, F.; Blume, H.T.; Hurst, R.B.; Sleeman, J.C.; Venuti, J.P.; Wald, H.B.; Weinstein, R.; Band, H.R.; Gettner, M.W.; Goderre, G.P.; Meyer, O.A.; Moromisato, J.H.; Shambroom, W.D.; von Goeler, E.; Ash, W.W.; Chadwick, G.B.; Clearwater, S.H.; Coombes, R.W.; Kaye, H.S.; Lau, K.H.; Leedy, R.E.; Lynch, H.L.; Messner, R.L.; Moss, L.J.; Muller, F.; Nelson, H.N.; Ritson, D.M.; Rosenberg, L.J.; Wiser, D.E.; Zdarko, R.W.; Groom, D.E.; Lee, H.; Delfino, M.C.; Heltsley, B.K.; Johnson, J.R.; Lavine, T.L.; Maruyama, T.; Prepost, R.
1985-06-01
The energy-energy correlation cross section for hadrons produced in electron-positron annihilation at a center-of-mass energy of 29 GeV has been measured with the MAC detector at SLAC. The result is corrected for the effects of detector resolution, acceptance, and initial-state radiation. The correlation is measured in two independent ways on the same data sample: the energy weights and angles are obtained either from the energy flow in the finely segmented total absorption calorimeters or from the momenta of charged tracks in the central drift chamber. This procedure helps reduce systematic errors by cross-checking the effects of the detector on the measurement, particularly important because the corrections depend on complex Monte Carlo simulations. The results are compared with the predictions of Monte Carlo models of complete second-order perturbative quantum chromodynamics and fragmentation, with the following conclusions: (1) fitting the asymmetry for large correlation angles gives values for ..cap alpha../sub S/ of 0.120 +- 0.006 in perturbation theory, 0.185 +- 0.013 in the Lund string model, and values which vary from 0.105 to 0.140 ( +- 0.01) in the incoherent jet models, depending on the gluon fragmentation scheme and the algorithm used for momentum conservation; and (2) the string fragmentation model provides a satisfactory description of the measured energy-energy correlation cross section, whereas incoherent jet formation does not.
Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts
NASA Astrophysics Data System (ADS)
Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.
2016-05-01
Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,i of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,i-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,i-α anti-correlation can hardly be reconciled with the predicted Ep,i ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,i are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,i. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc
Stannard, D.I.; Rosenberry, D.O.
1991-01-01
Concurrent short-term measurements of evaporation from a shallow lake, using eddy correlation and energy budget methods, indicate that sensible and latent heat flux between lake and atmosphere, and energy storage in the lake, may vary considerably across the lake. Measuring net radiation with a net radiometer on the lake appeared to be more accurate than measuring incoming radiation nearby and modeling outgoing radiation. Short-term agreement between the two evaporation measurements was obtained by using an energy storage term that was weighted to account for the area-of-influence of the eddy correlation sensors. Relatively short bursts of evaporation were indicated by the eddy correlation sensors shortly after midnight on two of three occasions. ?? 1991.
Ion Beam Analysis Of Silicon-Based Surfaces And Correlation With Surface Energy Measurements
NASA Astrophysics Data System (ADS)
Xing, Qian; Herbots, N.; Hart, M.; Bradley, J. D.; Wilkens, B. J.; Sell, D. A.; Sell, Clive H.; Kwong, Henry Mark; Culbertson, R. J.; Whaley, S. D.
2011-06-01
The water affinity of Si-based surfaces is quantified by contact angle measurement and surface free energy to explain hydrophobic or hydrophilic behavior of silicone, silicates, and silicon surfaces. Surface defects such as dangling bonds, surface free energy including Lewis acid-base and Lifshitz-van der Waals components are discussed. Water nucleation and condensation is further explained by surface topography. Tapping mode atomic force microscopy (TMAFM) provides statistical analysis of the topography of these Si-based surfaces. The correlation of the above two characteristics describes the behavior of water condensation at Si-based surfaces. Surface root mean square roughness increasing from several Å to several nm is found to provide nucleation sites that expedite water condensation visibly for silica and silicone. Hydrophilic surfaces have a condensation pattern that forms puddles of water while hydrophobic surfaces form water beads. Polymer adsorption on these surfaces alters the water affinity as well as the surface topography, and therefore controls condensation on Si-based surfaces including silicone intraocular lens (IOL). The polymer film is characterized by Rutherford backscattering spectrometry (RBS) in conjunction with 4.265 MeV 12C(α, α)12C, 3.045 MeV 16O(α,α)16O nuclear resonance scattering (NRS), and 2.8 MeV elastic recoil detection (ERD) of hydrogen for high resolution composition and areal density measurements. The areal density of hydroxypropyl methylcellulose (HPMC) film ranges from 1018 atom/cm2 to 1019 atom/cm2 gives the silica or silicone surface a roughness of several Å and a wavelength of 0.16±0.02 μm, and prevents fogging by forming a complete wetting layer during water condensation.
Ion Beam Analysis Of Silicon-Based Surfaces And Correlation With Surface Energy Measurements
Xing Qian; Herbots, N.; Hart, M.; Bradley, J. D.; Wilkens, B. J.; Sell, D. A.; Culbertson, R. J.; Whaley, S. D.; Sell, Clive H.; Kwong, Henry Mark Jr.
2011-06-01
The water affinity of Si-based surfaces is quantified by contact angle measurement and surface free energy to explain hydrophobic or hydrophilic behavior of silicone, silicates, and silicon surfaces. Surface defects such as dangling bonds, surface free energy including Lewis acid-base and Lifshitz-van der Waals components are discussed. Water nucleation and condensation is further explained by surface topography. Tapping mode atomic force microscopy (TMAFM) provides statistical analysis of the topography of these Si-based surfaces. The correlation of the above two characteristics describes the behavior of water condensation at Si-based surfaces. Surface root mean square roughness increasing from several A ring to several nm is found to provide nucleation sites that expedite water condensation visibly for silica and silicone. Hydrophilic surfaces have a condensation pattern that forms puddles of water while hydrophobic surfaces form water beads. Polymer adsorption on these surfaces alters the water affinity as well as the surface topography, and therefore controls condensation on Si-based surfaces including silicone intraocular lens (IOL). The polymer film is characterized by Rutherford backscattering spectrometry (RBS) in conjunction with 4.265 MeV {sup 12}C({alpha}, {alpha}){sup 12}C, 3.045 MeV {sup 16}O({alpha},{alpha}){sup 16}O nuclear resonance scattering (NRS), and 2.8 MeV elastic recoil detection (ERD) of hydrogen for high resolution composition and areal density measurements. The areal density of hydroxypropyl methylcellulose (HPMC) film ranges from 10{sup 18} atom/cm{sup 2} to 10{sup 19} atom/cm{sup 2} gives the silica or silicone surface a roughness of several A ring and a wavelength of 0.16{+-}0.02 {mu}m, and prevents fogging by forming a complete wetting layer during water condensation.
Krause, Katharina; Klopper, Wim
2013-11-21
Within the framework of density-functional theory, the correlation energy is computed in the random-phase approximation (RPA) using spinors obtained from a two-component relativistic Kohn–Sham calculation accounting for spin–orbit interactions. Ring-coupled-cluster equations are solved to obtain the two-component RPA correlation energy. Results are presented for the hydrides of the halogens Br, I, and At as well as of the coinage metals Cu, Ag, and Au, based on two-component relativistic exact-decoupling Kohn–Sham calculations.
NASA Astrophysics Data System (ADS)
Lindblad, Th.; Hildingsson, L.; Jerrestam, D.; Källberg, A.; Johnson, A.; Herrlander, C. J.; Klamra, W.; Kerek, A.; Lindén, C. G.; Kownacki, J.; kowski, J. Bial; Vertse, T.
1982-04-01
The γ-rays following reactions induced by bombarding targets of 114, 116, 118, 120, 122Sn with 118 MeV 12C ions were investigated using six NaI(Tl) detectors in a two-dimensional coincidence arrangement. Experimental energy-correlation spectra were extracted from the original coincidence matrices. The energy-correlation spectra exhibit the features expected for rotational nuclei and were used to deduce information on the moment of inertia I(2) = ΔI/Δω . The gross properties of the behaviour of I(2) in the Ba-Xe region are discussed together with their interpretation within the cranked shell model (CSM).
NASA Astrophysics Data System (ADS)
Krause, Katharina; Klopper, Wim
2013-11-01
Within the framework of density-functional theory, the correlation energy is computed in the random-phase approximation (RPA) using spinors obtained from a two-component relativistic Kohn-Sham calculation accounting for spin-orbit interactions. Ring-coupled-cluster equations are solved to obtain the two-component RPA correlation energy. Results are presented for the hydrides of the halogens Br, I, and At as well as of the coinage metals Cu, Ag, and Au, based on two-component relativistic exact-decoupling Kohn-Sham calculations.
Krause, Katharina; Klopper, Wim
2013-11-21
Within the framework of density-functional theory, the correlation energy is computed in the random-phase approximation (RPA) using spinors obtained from a two-component relativistic Kohn-Sham calculation accounting for spin-orbit interactions. Ring-coupled-cluster equations are solved to obtain the two-component RPA correlation energy. Results are presented for the hydrides of the halogens Br, I, and At as well as of the coinage metals Cu, Ag, and Au, based on two-component relativistic exact-decoupling Kohn-Sham calculations. PMID:24320308
NASA Astrophysics Data System (ADS)
Ho, Yew Kam; Lin, Yen-Chang
2016-05-01
Correlation energy of a quantum system is defined as the difference between its exact energy Eex, and its Hartree-Fock energy EHF. In a recent related development, entanglement measures can be quantified with von Neumann entropy SvN(ρ) = - Tr(ρlog2 ρ) or linear entropy SL(ρ) = 1 - Tr(ρ2) , where ρ is the one-particle reduced density matrix, and Tr(ρ2) is defined as the purity of state. In the present work we calculate SL and SvN for the ground 1s21 S states in helium-like ions for Z = 2 to 15, using configuration interaction (CI) with B-Spline basis up to about 6000 terms to construct the wave functions, and with which density matrix, linear and von Neumann entropies are calculated. We have found close relationship between the reduced correlation energy, defined as Ecorr = (ECI- EHF) /ECI (with ECI being our calculated energy), and SL or SvN. Our results support Collins conjecture that there is a linear relationship between correlation energy and entanglement entropy, i.e., Ecorr = CS, where C is called Collins constant. Using the calculated ground state energies for Z = 2 to Z = 15, and the entanglement measured with linear entropy SL for such states, C is determined as 0.90716. At the meeting, we will present result for Collins constant determined from von Neumann entropy, and details of our calculations. This work was supported by the MOST in Taiwan.
NASA Astrophysics Data System (ADS)
Rinke, Patrick; Ren, Xinguo; Scheffler, Matthias; Scuseria, Gustavo
2012-02-01
We present a renormalized second-oder perturbation theory (R2PT) for the electron correlation energy that combines the random-phase approximation (RPA), second-order screened exchange (SOSEX) [1], and renormalized single excitations (rSE) [2]. These three terms all involve a summation of certain types of diagrams to infinite order, and can be viewed as a ``renormalization" of the direct, the exchange and the single excitation (SE) term of 2nd-order Rayleigh-Schr"ordinger perturbation theory based on an (approximate) Kohn-Sham reference state. A preliminary version of R2PT has been benchmarked for covalently-bonded molecular systems and chemical reaction barrier heights [3] and shows an overall well balanced performance. We have extended this, by including ``off-diagonal'' diagrams into the rSE term and expect this refined version of R2PT to be more generally applicable to electronic systems of different bonding characteristics. Extended benchmarks of van-der-Waals-bonded molecules and crystalline solids will be presented. [1] A. Gr"uneis et al., J. Chem. Phys. 131, 154115 (2009). [2] X. Ren et al., Phys. Rev. Lett. 106, 153003 (2011). [3] J. Paier et al., arXiv:cond-mat/1111.0173.
Kaweeteerawat, Chitrada; Ivask, Angela; Liu, Rong; Zhang, Haiyuan; Chang, Chong Hyun; Low-Kam, Cecile; Fischer, Heidi; Ji, Zhaoxia; Pokhrel, Suman; Cohen, Yoram; Telesca, Donatello; Zink, Jeffrey; Mädler, Lutz; Holden, Patricia A; Nel, Andre; Godwin, Hilary
2015-01-20
Metal oxide nanoparticles (MOx NPs) are used for a host of applications, such as electronics, cosmetics, construction, and medicine, and as a result, the safety of these materials to humans and the environment is of considerable interest. A prior study of 24 MOx NPs in mammalian cells revealed that some of these materials show hazard potential. Here, we report the growth inhibitory effects of the same series of MOx NPs in the bacterium Escherichia coli and show that toxicity trends observed in E. coli parallel those seen previously in mammalian cells. Of the 24 materials studied, only ZnO, CuO, CoO, Mn2O3, Co3O4, Ni2O3, and Cr2O3 were found to exert significant growth inhibitory effects; these effects were found to relate to membrane damage and oxidative stress responses in minimal trophic media. A correlation of the toxicological data with physicochemical parameters of MOx NPs revealed that the probability of a MOx NP being toxic increases as the hydration enthalpy becomes less negative and as the conduction band energy approaches those of biological molecules. These observations are consistent with prior results observed in mammalian cells, revealing that mechanisms of toxicity of MOx NPs are consistent across two very different taxa. These results suggest that studying nanotoxicity in E. coli may help to predict toxicity patterns in higher organisms. PMID:25563693
Mori, Toshifumi; Nakano, Katsuhiro; Kato, Shigeki
2010-08-14
The minimum energy conical intersection (MECI) optimization method with taking account of the dynamic electron correlation effect [T. Mori and S. Kato, Chem. Phys. Lett. 476, 97 (2009)] is extended to locate the MECI of nonequilibrium free energy surfaces in solution. A multistate electronic perturbation theory is introduced into the nonequilibrium free energy formula, which is defined as a function of solute and solvation coordinates. The analytical free energy gradient and interstate coupling vectors are derived, and are applied to locate MECIs in solution. The present method is applied to study the cis-trans photoisomerization reaction of a protonated Schiff base molecule (PSB3) in methanol (MeOH) solution. It is found that the effect of dynamic electron correlation largely lowers the energy of S{sub 1} state. We also show that the solvation effect strongly stabilizes the MECI obtained by twisting the terminal C=N bond to become accessible in MeOH solution, whereas the conical intersection is found to be unstable in gas phase. The present study indicates that both electron correlation and solvation effects are important in the photoisomerization reaction of PSB3. The effect of counterion is also examined, and seems to be rather small in solution. The structures of free energy surfaces around MECIs are also discussed.
NASA Astrophysics Data System (ADS)
Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin
2010-05-01
This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and
NASA Astrophysics Data System (ADS)
Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin
2010-05-01
This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and
All-electron first principles calculations of the ground and some low-lying excited states of BaI.
Miliordos, Evangelos; Papakondylis, Aristotle; Tsekouras, Athanasios A; Mavridis, Aristides
2007-10-01
The electronic structure of the heavy diatomic molecule BaI has been examined for the first time by ab initio multiconfigurational configuration interaction (MRCI) and coupled cluster (RCCSD(T)) methods. The effects of special relativity have been taken into account through the second-order Douglas-Kroll-Hess approximation. The construction of Omega(omega,omega) potential energy curves allows for the estimation of "experimental" dissociation energies (De) of the first few excited states by exploiting the accurately known De experimental value of the X2Sigma+ ground state. All states examined are of ionic character with a Mulliken charge transfer of 0.5 e- from Ba to I, and this is reflected to large dipole moments ranging from 6 to 11 D. Despite the inherent difficulties of a heavy system like BaI, our results are encouraging. With the exception of bond distances that on the average are calculated 0.05 A longer than the experimental ones, common spectroscopic parameters are in fair agreement with experiment, whereas De values are on the average 10 kcal/mol smaller. PMID:17850123
Jung, Yousung; Lochan, Rohini C; Dutoi, Anthony D; Head-Gordon, Martin
2004-11-22
A simplified approach to treating the electron correlation energy is suggested in which only the alpha-beta component of the second order Møller-Plesset energy is evaluated, and then scaled by an empirical factor which is suggested to be 1.3. This scaled opposite-spin second order energy (SOS-MP2), where MP2 is Møller-Plesset theory, yields results for relative energies and derivative properties that are statistically improved over the conventional MP2 method. Furthermore, the SOS-MP2 energy can be evaluated without the fifth order computational steps associated with MP2 theory, even without exploiting any spatial locality. A fourth order algorithm is given for evaluating the opposite spin MP2 energy using auxiliary basis expansions, and a Laplace approach, and timing comparisons are given.
Yu, Haoyu; Truhlar, Donald G
2014-06-10
In order to understand what governs the accuracy of approximate exchange-correlation functionals for intrinsically multiconfigurational systems containing metal atoms, the properties of the ground electronic state of CaO have been studied in detail. We first applied the T1, TAE(T), B1, and M diagnostics to CaO and confirmed that CaO is an intrinsically multiconfigurational system. Then, we compared the bond dissociation energies (BDEs) of CaO as calculated by 49 exchange-correlation functionals, three exchange-only functionals, and the HF method. To analyze the error in the BDEs for the various functionals, we decomposed each calculated BDE into four components, in particular the ionization potential, the electron affinity, the atomic excitation energy of the metal cation to prepare the valence state, and the interaction energy between prepared states. We found that the dominant error occurs in the calculated atomic excitation energy of the cation. Third, we compared dipole moments of CaO as calculated by the 53 methods, and we analyzed the dipole moments in terms of partial atomic charges to understand the contribution of ionic bonding and how it is affected by errors in the calculated ionization potential of the metal atom. We then analyzed the dipole moment in terms of the charge distribution among orbitals, and we found that the orbital charge distribution does not correlate well with the difference between the calculated ionization potential and electron affinity. Fourth, we examined the potential curves and internuclear distance dependence of the orbital energies of the lowest-energy CaO singlet and triplet states to analyze the near-degeneracy aspect of the correlation energy. The most important conclusion is that the error tends to be dominated by the error in the relative energies of s and d orbitals in Ca(+), and the most popular density functionals predict this excitation energy poorly. Thus, even if they were to predict the BDE reasonably well, it would
Damasceno, M V; Pasqua, L A; Lima-Silva, A E; Bertuzzi, R
2015-11-01
This study aimed to verify the association between the contribution of energy systems during an incremental exercise test (IET), pacing, and performance during a 10-km running time trial. Thirteen male recreational runners completed an incremental exercise test on a treadmill to determine the respiratory compensation point (RCP), maximal oxygen uptake (V˙O2max), peak treadmill speed (PTS), and energy systems contribution; and a 10-km running time trial (T10-km) to determine endurance performance. The fractions of the aerobic (WAER) and glycolytic (WGLYCOL) contributions were calculated for each stage based on the oxygen uptake and the oxygen energy equivalents derived by blood lactate accumulation, respectively. Total metabolic demand (WTOTAL) was the sum of these two energy systems. Endurance performance during the T10-km was moderately correlated with RCP, V˙O2max and PTS (P<@0.05), and moderate-to-highly correlated with WAER, WGLYCOL, and WTOTAL (P<0.05). In addition, WAER, WGLYCOL, and WTOTAL were also significantly correlated with running speed in the middle (P<0.01) and final (P<0.01) sections of the T10-km. These findings suggest that the assessment of energy contribution during IET is potentially useful as an alternative variable in the evaluation of endurance runners, especially because of its relationship with specific parts of a long-distance race.
The Effect of Core Correlation on the MP2 Hydration Free Energies of Li(+), Na(+), and K(.).
Li, Jicun; Wang, Feng
2016-09-01
Simple nonpolarizable molecular mechanics potentials were developed for Li(+), Na(+), and K(+) with the adaptive force matching (AFM) method using the second order Møller-Plesset perturbation theory (MP2) with the frozen core approximation as reference. The effects of different choices of core orbitals and basis sets in the MP2 calculations were investigated for Na(+) and Li(+). For Na(+), correlating the 2s2p electrons in MP2 changes its hydration free energy by 18 kJ/mol, which is surprisingly large, constituting to about 5% of the intrinsic hydration free energy of the ion. Whereas correlating the 2s2p electrons with the aug-cc-pCVTZ basis set leads to the best agreement with experiments, with the aug-cc-pVTZ basis set, a better hydration free energy will be obtained if the 2s2p are kept as frozen core orbitals. Even with nonpolarizable energy expressions, the AFM derived ion potentials predict the experimental hydration free energies of the various salts within 2% of experimental values, suggesting the robustness of the fitting procedure. However, the 2% agreement can only be achieved if the core correlation is modeled appropriately in the MP2 reference calculations. PMID:27464064
Stoyanova, Alexandrina; Teale, Andrew M; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel
2013-10-01
The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress. PMID:24116558
Borgoo, Alex; Teale, Andrew M; Tozer, David J
2012-01-21
Correlated electron densities, experimental ionisation potentials, and experimental electron affinities are used to investigate the homogeneity of the exchange-correlation and non-interacting kinetic energy functionals of Kohn-Sham density functional theory under density scaling. Results are presented for atoms and small molecules, paying attention to the influence of the integer discontinuity and the choice of the electron affinity. For the exchange-correlation functional, effective homogeneities are highly system-dependent on either side of the integer discontinuity. By contrast, the average homogeneity-associated with the potential that averages over the discontinuity-is generally close to 4/3 when the discontinuity is computed using positive affinities for systems that do bind an excess electron and negative affinities for those that do not. The proximity to 4/3 becomes increasingly pronounced with increasing atomic number. Evaluating the discontinuity using a zero affinity in systems that do not bind an excess electron instead leads to effective homogeneities on the electron abundant side that are close to 4/3. For the non-interacting kinetic energy functional, the effective homogeneities are less system-dependent and the effect of the integer discontinuity is less pronounced. Average values are uniformly below 5/3. The study provides information that may aid the development of improved exchange-correlation and non-interacting kinetic energy functionals.
NASA Astrophysics Data System (ADS)
Eshuis, Henk; Yarkony, Julian; Furche, Filipp
2010-06-01
The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N4 log N) operations and O(N3) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield μH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.
180/sup 0/-correlated equal-energy photons from 5. 9-MeV/nucleon U + Th collisions
Danzmann, K.; Meyerhof, W.E.; Montenegro, E.C.; Xu, X.; Dillard, E.; Huelskotter, H.P.; Stephens, F.S.; Diamond, R.M.; Deleplanque, M.A.; Macchiavelli, A.O.
1987-10-26
We have found a narrow line (intrinsic width less than or equal to2.5 keV) at 1062 +- 1 keV in the summed-energy 180/sup 0/-c.m.-correlated two-photon spectrum from 5.95-MeV/nucleon U+Th collisions. Including possible systematic uncertainties, the production cross section is found to be 50 +- 25 ..mu..b, averaged over the 1-mg/cm/sup 2/ Th target thickness. This line may belong to the decay of a neutral system which also produces correlated electron-positron pairs found by others in the same reaction.
Moritz, B.; Schmitt, F.; Meevasana, W.; Johnston, S.; Motoyama, E.M.; Greven, M.; Lu, D.H.; Kim, C.; Scalettar, R.T.; Shen, Z.-X.; Devereaux, T.P.; /SLAC, SIMES
2010-02-15
Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the byproduct of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.
Sheng, Wenchao; Zhuang, Zhongbin; Gao, Minrui; Zheng, Jie; Chen, Jingguang G; Yan, Yushan
2015-01-08
The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearly increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum.
Sheng, WC; Zhuang, ZB; Gao, MR; Zheng, J; Chen, JGG; Yan, YS
2015-01-08
The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearly increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum.
Sheng, Wenchao; Zhuang, Zhongbin; Gao, Minrui; Zheng, Jie; Chen, Jingguang G; Yan, Yushan
2015-01-01
The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearly increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum. PMID:25569511
Picosecond Bunch length and Energy-z correlation measurements at SLAC's A-Line and End Station A
Molloy, Stephen; Emma, P.; Frisch, J.C.; Iverson, R.H.; Ross, M.; McCormick, D.J.; Ross, Marc C.; Walston, S.; Blackmore, V.; /Oxford U.
2007-06-27
We report on measurements of picosecond bunch lengths and the energy-z correlation of the bunch with a high energy electron test beam to the A-line and End Station A (ESA) facilities at SLAC. The bunch length and the energy-z correlation of the bunch are measured at the end of the linac using a synchrotron light monitor diagnostic at a high dispersion point in the A-line and a transverse RF deflecting cavity at the end of the linac. Measurements of the bunch length in ESA were made using high frequency diodes (up to 100 GHz) and pyroelectric detectors at a ceramic gap in the beamline. Modeling of the beam's longitudinal phase space through the linac and A-line to ESA is done using the 2-dimensional tracking program LiTrack, and LiTrack simulation results are compared with data. High frequency diode and pyroelectric detectors are planned to be used as part of a bunch length feedback system for the LCLS FEL at SLAC. The LCLS also plans precise bunch length and energy-z correlation measurements using transverse RF deflecting cavities.
Quest for band renormalization and self-energy in correlated f-electron systems
Durakiewicx, Tomasz
2009-01-01
Coexisting energy scales are observed in f-electron materials. Information about some of the low-energy scales is imprinted in the electron self-energy which can be measured by angle-resolved photoemission (ARPES). Such measurements in d-electron materials over the last decade were based on high energy- and momentum-resolution ARPES techniques used to extract the self-energy information from measured spectra. Simultaneously, many-body theoretical approaches have been developed to find a link between self-energy and many-body interactions. Here we show the transcription of such methods from d-electrons to f-electrons by presenting the first example of low energy scales in f-electron material USb{sub 2}, measured with synchrotron-based ARPES. Proposed approach will help in answering the fundamental questions about the complex nature of the heavy fermion state.
Liu, Guo-Chin; Ng, Kin-Wang; Pen, Ue-Li
2011-03-15
Integrated Sachs-Wolfe (ISW) effect can be estimated by cross-correlating the cosmic microwave background (CMB) sky with tracers of the local matter distribution. At late cosmic time, the dark energy-induced decay of gravitation potential generates a cross correlation signal on large angular scales. The dominant noise is the intrinsic CMB anisotropies from the inflationary epoch. In this paper we use CMB polarization to reduce this intrinsic noise. We cross-correlate the microwave sky observed by Wilkinson Microwave Anisotropy Probe (WMAP) with the radio source catalog compiled by NRAO VLA Sky Survey (NVSS) to study the efficiency of the noise suppression. We find that the error bars are reduced by about 4 to 14% and the statistical power in the signal is improved.
Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C.; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele
2016-01-01
Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs. PMID:27032688
Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele
2016-01-01
Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs. PMID:27032688
NASA Astrophysics Data System (ADS)
Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C.; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele
2016-04-01
Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.
Levesque, Emily M.; Kewley, Lisa J.; Soderberg, Alicia M.; Berger, Edo E-mail: kewley@ifa.hawaii.ed E-mail: eberger@cfa.harvard.ed
2010-12-10
We compare the redshifts, host galaxy metallicities, and isotropic (E{sub {gamma}},iso) and beaming-corrected (E{sub {gamma}}) gamma-ray energy release of 16 long-duration gamma-ray bursts (LGRBs) at z < 1. From this comparison, we find no statistically significant correlation between host metallicity and redshift, E{sub {gamma}},iso, or E{sub {gamma}}. These results are at odds with previous theoretical and observational predictions of an inverse correlation between gamma-ray energy release and host metallicity, as well as the standard predictions of metallicity-driven wind effects in stellar evolutionary models. We consider the implications that these results have for LGRB progenitor scenarios, and discuss our current understanding of the role that metallicity plays in the production of LGRBs.
NASA Astrophysics Data System (ADS)
Ray, R. L.; Bhattarai, P.
2016-06-01
The error propagation and statistical-noise reduction method of Reid and Trainor for two-point correlation applications in high-energy collisions is extended to include particle-pair references constructed by mixing two particles from all event-pair combinations within event subsets of arbitrary size. The Reid-Trainor method is also applied to other particle-pair mixing algorithms commonly used in correlation analysis of particle production from high-energy nuclear collisions. The statistical-noise reduction, inherent in the Reid-Trainor event-mixing procedure, is shown to occur for these other event-mixing algorithms as well. Monte Carlo simulation results are presented which verify the predicted degree of noise reduction. In each case the final errors are determined by the bin-wise particle-pair number, rather than by the bin-wise single-particle count.
Zuo, Chun S.; Lin, Pan; Vitaliano, Gordana; Wang, Kristina; Villafuerte, Rosemond; Lukas, Scott E.
2015-01-01
Impaired brain energy metabolism is among the leading hypotheses in the pathogenesis of affective disorders and linking energy phosphates with states of tissue-function activity is a novel and non-invasive approach to differentiate healthy from unhealthy states. Resting state functional MRI (fMRI) has been established as an important tool for mapping cerebral regional activity and phosphorous chemical shift imaging (31P CSI) has been applied to measure levels of energy phosphates and phospholipids non-invasively in order to gain insight into the possible etiology of affective disorders. This is an initial attempt to identify the existence of a correlation between regional energy phosphates and connectivity at nodes of the posterior default mode network (DMN). Resting state fMRI in conjunction with 31P 2D CSI was applied to 11 healthy controls and 11 depressed patients at 3 T. We found that differences between the two groups exist in correlation of lateral posterior parietal cortex functional connectivity and regional Pi/PCr. Results of this study indicate that resting-state-fMRI-guided 31P CSI can provide new insight into depression via regional energy phosphates and functional connectivity. PMID:26594618
NASA Astrophysics Data System (ADS)
Cho, H. T.; Hu, B. L.
2012-09-01
We calculate the expectation values of the stress-energy bitensor defined at two different spacetime points x, x‧ of a massless, minimally coupled scalar field with respect to a quantum state at finite temperature T in a flat N-dimensional spacetime by means of the generalized zeta-function method. These correlators, also known as the noise kernels, give the fluctuations of energy and momentum density of a quantum field which are essential for the investigation of the physical effects of negative energy density in certain spacetimes or quantum states. They also act as the sources of the Einstein-Langevin equations in stochastic gravity which one can solve for the dynamics of metric fluctuations as in spacetime foams. In terms of constitutions these correlators are one rung above (in the sense of the correlation—BBGKY or Schwinger-Dyson—hierarchies) the mean (vacuum and thermal expectation) values of the stress-energy tensor which drive the semiclassical Einstein equation in semiclassical gravity. The low- and the high-temperature expansions of these correlators are also given here: at low temperatures, the leading order temperature dependence goes like TN while at high temperatures they have a T2 dependence with the subleading terms exponentially suppressed by e-T. We also discuss the singular behavior of the correlators in the x‧ → x coincident limit as was done before for massless conformal quantum fields. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.
NASA Astrophysics Data System (ADS)
Koehn, Christoph; Ebert, Ute
2015-04-01
Thunderstorms can emit high-energy particles, photons with energies of up to at least 40 MeV, leptons (electrons, positrons) and hadrons (neutrons and protons) with energies of tens of MeV. Some of these events have been correlated with negative lightning leaders propagating upwards in the cloud. For particular lightning events we show that photons, leptons and hadrons can reach ground altitude as well as satellite altitude, and we present the number as well as the spatial and energy distribution of photons, leptons and hadrons. We have reviewed the latest literature on cross sections for collisions of photons, leptons and hadrons with air molecules and have implemented them in our Monte Carlo code. We initialize a photon beam with the characteristic energy distribution of a TGF at thunderstorm altitude and we use the Monte Carlo model to trace these photons; we include the production of secondary electrons through photoionization, Compton scattering and pair production, the production of positrons through pair production as well as the production of neutrons and protons through photonuclear processes. Subsequently we calculate the motion and energy dissipation of these leptons and hadrons with the feedback of electrons and positrons producing new photons through Bremsstrahlung and through positron annihilation at shell electrons. Additionally we provide analytic estimates for the energy losses of photons, leptons and hadrons in the energy range between 0.03 eV and 100 MeV based on the relevant cross sections. We provide the spectral analysis of how many photons, leptons and hadrons will reach ground or satellite altitude and what their energies are, depending on the initial photon energy. This is of particular interest because of campaigns measuring fluxes of all these species at 0 and 500 km altitude without knowing the actual energies of initial electrons converting into photons within a thundercloud.
NASA Astrophysics Data System (ADS)
Sun, Jianwei; Perdew, John; Seidl, Michael
2008-03-01
We present an analytic model for the correlation energy per electron ec(rs,ζ) in the three-dimensional (3D) uniform electron gas, covering the full range 0<=rs<∞ and 0<=ζ<=1 of the density parameter rs and the relative spin polarization ζ. An interpolation is made between the exactly known high-density (rs->0) and low-density (rs->∞) limits, using a formula which (unlike previous ones) has the right analytic structures in both limits. We find that there is almost enough information available from these limits to determine the correlation energy over the full range. By minimal fitting to numerical quantum Monte Carlo data, we predict the value of b1(ζ) at ζ=0 close to the theoretical value [1], where b1(ζ) is the coefficient of the rsterm in the high-density expansion. The model finds correlation energies for the unpolarized (ζ=0) and fully polarized (ζ=1) cases in excellent agreement with Monte Carlo data. [1] T. Endo, M. Horiuchi, Y. Takada and H. Yasuhara, Phys. Rev. B 59, 7367 (1999)
Martinez-Casado, Ruth; Mallia, Giuseppe; Harrison, Nicholas M
2011-04-21
A practical and efficient method for exploiting second order Rayleigh-Schrödinger perturbation theory to approximate the correlation energy contribution to the London dispersion interaction is presented. The correlation energy is estimated as the Møller-Plesset contribution computed using single particle orbitals from hybrid exchange density functional theory as the reference state.
NASA Astrophysics Data System (ADS)
Rangel, T.; Caliste, D.; Genovese, L.; Torrent, M.
2016-11-01
We present a Projector Augmented-Wave (PAW) method based on a wavelet basis set. We implemented our wavelet-PAW method as a PAW library in the ABINIT package [http://www.abinit.org] and into BigDFT [http://www.bigdft.org]. We test our implementation in prototypical systems to illustrate the potential usage of our code. By using the wavelet-PAW method, we can simulate charged and special boundary condition systems with frozen-core all-electron precision. Furthermore, our work paves the way to large-scale and potentially order- N simulations within a PAW method.
Burger, Kyle S; Stice, Eric
2013-01-01
Background: Obese compared with lean individuals show greater attention-, gustatory-, and reward-region responsivity to food cues but reduced reward-region responsivity during food intake. However, to our knowledge, research has not tested whether an objectively measured caloric intake is positively associated with neural responsivity independent of excess adipose tissue. Objective: We tested the hypothesis that objectively measured energy intake, which accounts for basal needs and the percentage of body fat, correlates positively with the neural response to anticipated palatable food intake but negatively with a response to food intake in healthy-weight adolescents. Design: Participants (n = 155; mean ± SD age: 15.9 ± 1.1 y) completed functional magnetic resonance imaging scans while anticipating and receiving palatable food compared with a tasteless solution, a doubly labeled water assessment of energy intake, and assessments of resting metabolic rate and body composition. Results: Energy intake correlated positively with activation in the lateral visual and anterior cingulate cortices (visual processing and attention), frontal operculum (primary gustatory cortex) when anticipating palatable food, and greater striatal activation when anticipating palatable food in a more-sensitive region of interest analysis. Energy intake was not significantly related to neural responsivity during palatable food intake. Conclusions: Results indicate that objectively measured energy intake that accounts for basal needs and adipose tissue correlates positively with activity in attentional, gustatory, and reward regions when anticipating palatable food. Although hyperresponsivity of these regions may increase risk of overeating, it is unclear whether this is an initial vulnerability factor or a result of previous overeating. This trial was registered at clinicaltrials.gov as NCT01807572. PMID:23595877
NASA Astrophysics Data System (ADS)
Mukherjee, Arnab; Bagchi, Biman
2003-03-01
We explore the correlation between the energy landscape and topology in the folding of a model protein (chicken villin headpiece HP-36) by using a force-field which incorporates the effects of water through a hydropathy scale and the role of helical propensity of amino acids through a nonlocal harmonic potential. Each amino acid is represented by one side chain atom which is attached to the backbone Cα atom. Sizes and interactions of all the side chain residues are different and depend on the hydrophobicity of a particular amino acid, whereas helical propensities are incorporated in the interaction of Cα atoms. Simulations have been carried out by quenching from a fixed high temperature to two different low temperatures for many initial random configurations. The simulated structures resemble the real native state rather closely, with the root mean square deviation of the best structure being 4.5 Å. Moreover, the structure shows both the helices and bends at the appropriate positions of the model protein. The simplified model allows the study of energy landscape and also of the correlation between energy landscape with the dynamics of folding and topology. The initial part of folding is very fast, followed by two distinct slow stages, with the last stage being certainly the rate determining of the folding process. The initial fast dynamics is primarily due to hydrophobic collapse. The very slow last stage of folding is accompanied by a significant and sharp increase in the relative contact order parameter but relatively small decrease in energy. Analysis of the time dependence of the formation of the individual contact pairs show rich and complicated dynamics, where some contacts wait for a long time to form. This seems to suggest that the slow late stage folding is due to long range contact formation and also that the free energy barrier is entropic in origin. Results have been correlated with the theories of protein folding.
Correlates of Concurrent Energy Drink and Alcohol Use among Socially Active Adults
Wells, Brooke E.; Kelly, Brian C.; Pawson, Mark; LeClair, Amy; Parsons, Jeffrey T.; Golub, Sarit A.
2013-01-01
Background Research indicates that energy drink consumption and the combined use of energy drinks and alcohol are popular among young adults, although this research has typically focused on college students. Because of the potential for harms associated with this combination, it is critical to understand use among adults in nightlife scenes who may be most at risk for harms associated with combined energy drink and alcohol consumption. Objectives By focusing our sample on individuals in a range of nightlife scenes, we aim to gain a deeper understanding of the demographic factors associated with energy drink use and combined energy drink and alcohol consumption to benefit the targeting of intervention and prevention efforts beyond college campuses. Methods Using a field-based survey in New York City to survey adults active in various nightlife scenes, this study reports on the survey results of 1476 venue patrons at venues in five nightlife scenes in addition to college bar scenes Results Men, younger individuals, Latinos, and sexual minority individuals reported higher prevalence of recent energy drink consumption. Younger individuals, men, and those recruited in gay venues reported higher prevalence of combining alcohol and energy drinks. Conclusion These findings provide information useful to target education and prevention efforts. They also suggest the need for additional research to understand differences in motivations for use and in the behavioral and alcohol-related outcomes associated with consuming energy drinks and combining them with alcohol. PMID:23030475
NASA Astrophysics Data System (ADS)
Lu-Lu, Zhang; Yu-Zhi, Song; Shou-Bao, Gao; Yuan, Zhang; Qing-Tian, Meng
2016-05-01
A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol-1. The topographical features of the HS2(A2A‧) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A‧) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).
Tsai, Ming-Hui; Huang, Yueh-Min
2014-01-01
Wireless sensor networks (WSNs) have emerged as a promising solution for various applications due to their low cost and easy deployment. Typically, their limited power capability, i.e., battery powered, make WSNs encounter the challenge of extension of network lifetime. Many hierarchical protocols show better ability of energy efficiency in the literature. Besides, data reduction based on the correlation of sensed readings can efficiently reduce the amount of required transmissions. Therefore, we use a sub-clustering procedure based on spatial data correlation to further separate the hierarchical (clustered) architecture of a WSN. The proposed algorithm (2TC-cor) is composed of two procedures: the prediction model construction procedure and the sub-clustering procedure. The energy conservation benefits by the reduced transmissions, which are dependent on the prediction model. Also, the energy can be further conserved because of the representative mechanism of sub-clustering. As presented by simulation results, it shows that 2TC-cor can effectively conserve energy and monitor accurately the environment within an acceptable level. PMID:25412220
Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC.
Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Aparin, A; Arkhipkin, D; Aschenauer, E C; Attri, A; Averichev, G S; Bai, X; Bairathi, V; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandenburg, J D; Brandin, A V; Bunzarov, I; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Chakaberia, I; Chaloupka, P; Chang, Z; Chatterjee, A; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A I; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Horvat, S; Huang, T; Huang, X; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jentsch, A; Jia, J; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kumar, L; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, C; Li, X; Li, Y; Li, W; Lin, T; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, R; Ma, G L; Ma, Y G; Ma, L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Matis, H S; McDonald, D; McKinzie, S; Meehan, K; Mei, J C; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Niida, T; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V A; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Pile, P; Pluta, J; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, S; Raniwala, R; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, A; Sharma, B; Sharma, M K; Shen, W Q; Shi, Z; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, N; Smirnov, D; Solyst, W; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, D N; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A; Thäder, J; Thomas, J H; Timmins, A R; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Vokal, S; Voloshin, S A; Vossen, A; Wang, F; Wang, G; Wang, J S; Wang, H; Wang, Y; Wang, Y; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xiao, Z G; Xie, W; Xie, G; Xin, K; Xu, Y F; Xu, Q H; Xu, N; Xu, H; Xu, Z; Xu, J; Yang, S; Yang, Y; Yang, Y; Yang, C; Yang, Y; Yang, Q; Ye, Z; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, Y; Zhang, J; Zhang, J; Zhang, S; Zhang, S; Zhang, Z; Zhang, J B; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M
2016-03-18
We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from sqrt[s_{NN}]=7.7 to 200 GeV. The third harmonic v_{3}^{2}{2}=⟨cos3(ϕ_{1}-ϕ_{2})⟩, where ϕ_{1}-ϕ_{2} is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δη=η_{1}-η_{2}. Nonzero v_{3}^{2}{2} is directly related to the previously observed large-Δη narrow-Δϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v_{3}^{2}{2} persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v_{3}^{2}{2} is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v_{3}^{2}{2} for central collisions shows a minimum near sqrt[s_{NN}]=20 GeV. PMID:27035295
Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC.
Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Aparin, A; Arkhipkin, D; Aschenauer, E C; Attri, A; Averichev, G S; Bai, X; Bairathi, V; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandenburg, J D; Brandin, A V; Bunzarov, I; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Chakaberia, I; Chaloupka, P; Chang, Z; Chatterjee, A; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A I; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Horvat, S; Huang, T; Huang, X; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jentsch, A; Jia, J; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kumar, L; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, C; Li, X; Li, Y; Li, W; Lin, T; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, R; Ma, G L; Ma, Y G; Ma, L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Matis, H S; McDonald, D; McKinzie, S; Meehan, K; Mei, J C; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Niida, T; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V A; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Pile, P; Pluta, J; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, S; Raniwala, R; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, A; Sharma, B; Sharma, M K; Shen, W Q; Shi, Z; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, N; Smirnov, D; Solyst, W; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, D N; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A; Thäder, J; Thomas, J H; Timmins, A R; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Vokal, S; Voloshin, S A; Vossen, A; Wang, F; Wang, G; Wang, J S; Wang, H; Wang, Y; Wang, Y; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xiao, Z G; Xie, W; Xie, G; Xin, K; Xu, Y F; Xu, Q H; Xu, N; Xu, H; Xu, Z; Xu, J; Yang, S; Yang, Y; Yang, Y; Yang, C; Yang, Y; Yang, Q; Ye, Z; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, Y; Zhang, J; Zhang, J; Zhang, S; Zhang, S; Zhang, Z; Zhang, J B; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M
2016-03-18
We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from sqrt[s_{NN}]=7.7 to 200 GeV. The third harmonic v_{3}^{2}{2}=⟨cos3(ϕ_{1}-ϕ_{2})⟩, where ϕ_{1}-ϕ_{2} is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δη=η_{1}-η_{2}. Nonzero v_{3}^{2}{2} is directly related to the previously observed large-Δη narrow-Δϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v_{3}^{2}{2} persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v_{3}^{2}{2} is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v_{3}^{2}{2} for central collisions shows a minimum near sqrt[s_{NN}]=20 GeV.
Wood, D.R.
1987-10-01
We have studied the energy-energy correlation in e/sup +/e/sup -/ annihilation into hadrons at ..sqrt..s = 29 GeV using the Mark II detector at PEP. We find to O(..cap alpha../sub s//sup 2/) that ..cap alpha../sub s/ = 0.158 +- .003 +- .008 if hadronization is described by string fragmentation. Independent fragmentation schemes give ..cap alpha../sub s/ = .10 - .14, and give poor agreement with the data. A leading-log shower fragmentation model is found to describe the data well.
Hikosaka, Y.; Soejima, K.; Lablanquie, P.; Penent, F.; Palaudoux, J.; Andric, L.; Shigemasa, E.; Suzuki, I. H.; Nakano, M.; Ito, K.
2011-09-09
The direct observation of triple photoionization involving one inner shell and two valence electrons is reported. The energy distribution of the three photoelectrons emitted from Ne is obtained using a very efficient multielectron coincidence method using the magnetic bottle electron spectroscopic technique. A predominance of the direct path to triple photoionization for the formation of Ne{sup 3+} in the 1s2s{sup 2}2p{sup 4} configuration is observed. It is demonstrated that the energy distribution evolves with photon energy and indicates a significant difference with triple photoionization involving only valence electrons.
CAP,JEROME S.; TRACEY,BRIAN
1999-11-15
Aerospace payloads, such as satellites, are subjected to vibroacoustic excitation during launch. Sandia's MTI satellite has recently been certified to this environment using a combination of base input random vibration and reverberant acoustic noise. The initial choices for the acoustic and random vibration test specifications were obtained from the launch vehicle Interface Control Document (ICD). In order to tailor the random vibration levels for the laboratory certification testing, it was necessary to determine whether vibration energy was flowing across the launch vehicle interface from the satellite to the launch vehicle or the other direction. For frequencies below 120 Hz this issue was addressed using response limiting techniques based on results from the Coupled Loads Analysis (CLA). However, since the CLA Finite Element Analysis FEA model was only correlated for frequencies below 120 Hz, Statistical Energy Analysis (SEA) was considered to be a better choice for predicting the direction of the energy flow for frequencies above 120 Hz. The existing SEA model of the launch vehicle had been developed using the VibroAcoustic Payload Environment Prediction System (VAPEPS) computer code [1]. Therefore, the satellite would have to be modeled using VAPEPS as well. As is the case for any computational model, the confidence in its predictive capability increases if one can correlate a sample prediction against experimental data. Fortunately, Sandia had the ideal data set for correlating an SEA model of the MTI satellite--the measured response of a realistic assembly to a reverberant acoustic test that was performed during MTI's qualification test series. The first part of this paper will briefly describe the VAPEPS modeling effort and present the results of the correlation study for the VAPEPS model. The second part of this paper will present the results from a study that used a commercial SEA software package [2] to study the effects of in-plane modes and to
NASA Astrophysics Data System (ADS)
Havu, Vile; Blum, Volker; Scheffler, Matthias
2007-03-01
Numeric atom-centered local orbitals (NAO) are efficient basis sets for all-electron electronic structure theory. The locality of NAO's can be exploited to render (in principle) all operations of the self-consistency cycle O(N). This is straightforward for 3D integrals using domain decomposition into spatially close subsets of integration points, enabling critical computational savings that are effective from ˜tens of atoms (no significant overhead for smaller systems) and make large systems (100s of atoms) computationally feasible. Using a new all-electron NAO-based code,^1 we investigate the quantitative impact of exploiting this locality on two distinct classes of systems: Large light-element molecules [Alanine-based polypeptide chains (Ala)n], and compact transition metal clusters. Strict NAO locality is achieved by imposing a cutoff potential with an onset radius rc, and exploited by appropriately shaped integration domains (subsets of integration points). Conventional tight rc<= 3å have no measurable accuracy impact in (Ala)n, but introduce inaccuracies of 20-30 meV/atom in Cun. The domain shape impacts the computational effort by only 10-20 % for reasonable rc. ^1 V. Blum, R. Gehrke, P. Havu, V. Havu, M. Scheffler, The FHI Ab Initio Molecular Simulations (aims) Project, Fritz-Haber-Institut, Berlin (2006).
Betbeder-Matibet, O.; Combescot, M.
1996-10-01
We calculate the {ital T}=0 total Coulomb energy of a quasi-two-dimensional electron-hole plasma in a quantum well, taking into account the finite width of the well. We consider 2D plasma densities low enough to have electrons and holes in their lowest subband only, but large enough to ensure the validity of the usual perturbative expansion in Coulomb interaction. We derive explicit expressions of the Hartree, exchange, and correlation energies in terms of the {ital exact} free-electron and hole wave functions in the well, in order to allow calculations of these energies for finite barrier heights. In a last part, we recover the intuitive Schr{umlt o}dinger equation for excitons in a quantum well, using the ladder diagram approach. {copyright} {ital 1996 The American Physical Society.}
Correlation of high energy muons with primary composition in extensive air shower
NASA Technical Reports Server (NTRS)
Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.
1985-01-01
An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.
Novel correlation of Schottky constants with lattice energies for II-VI and I-VII compounds
Wiedemeier, Heribert
2010-10-15
Correlations of computed Schottky constants (K{sub S}=[V''{sub Zn}][V{sub S}{sup ..}]) with structural and thermodynamic properties showed linear dependences of log K{sub S} on the lattice energies for the Zn-, Cd-, Hg-, Mg-, and Sr-chalcogenides and for the Na- and K-halides. These findings suggest a basic relation between the Schottky constants and the lattice energies for these families of compounds from different parts of the Periodic Table, namely, {Delta}H{sub T,L}{sup o}=-(2.303nRT log K{sub S})+2.303nRm{sub b}+2.303nRTi{sub b}. {Delta}H{sub T,L}{sup o} is the experimental (Born-Haber) lattice energy (enthalpy), n is a constant approximately equal to the formal valence (charge) of the material, m{sub b} and i{sub b} are the slope and intercept, respectively, of the intercept b (of the log K{sub S} versus {Delta}H{sub L}{sup o} linear relation) versus the reciprocal temperature. The results of this work also provide an empirical correlation between the Gibbs free energy of vacancy formation and the lattice energy. - Graphical abstract: For the Zn-chalcogenides, the quantities n and I{sub e} are 2.007 and 650.3 kcal (2722 kJ), respectively. For the other groups of compounds, they are approximately equal to the formal valences and ionization energies of the metals: Log K{sub S{approx}}-(2.303nRT){sup -1} (0.99{Delta}H{sup o}{sub T,L}-I{sub e}).
Dentin ablation by Ho: YAG laser: correlation of energy versus volume using stereophotogrammetry.
Stevens, B H; Trowbridge, H O; Harrison, G; Silverton, S F
1994-05-01
The future use of lasers in endodontics is dependent upon predictable and consistent ablation of dentin. In this pilot study we used an Ho:YAG laser fiberoptic delivery system to apply laser energy to prepared tooth sections in vitro. Longitudinally sectioned single-rooted human teeth were subjected to single-energy pulses varying from 25 to 1750 mJ at a focal length of 1 mm. At different energy levels we observed changes in the dentin surface ranging from minute surface pitting to the formation of large craters. Scanning electron microscopy and stereophotogrammetry were used to determine the relationship between the amount of energy applied to dentin and the extent of dentin ablation. Dentin crater formation was quantified by determining surface area, depth, and volume of craters produced. Increases in laser energy were compared with increases in surface area, depth, and volume of craters produced within the range of 150 to 1200 mJ. The Ho:YAG laser fiberoptic delivery system used in this study provides an effective means of ablating dentin. Three-dimensional stereophotogrammetry may prove to be a useful method for further studies on the effects of laser energy on mineralized tissues.
Population growth rate and energy consumption correlations: Implications for the future
Sheffield, J.
1998-01-01
The fertility rate for women and the related population growth rate, for numerous developing (transitional) countries, show a downward trend with increasing annual per capita energy use. On the assumption that such historic trends will continue, estimates are made for some simple cases of the energy demands required to stabilize the world`s population in the period 2,100 to 2,150. An assessment is then made of how these energy demands might be met, capitalizing as much as possible on the indigenous energy resources for each of the ten major regions of the world: North America, Latin America, Europe OECD, Former Soviet Union and Central and Eastern Europe, China, Pacific OECD, East Asia, South Asia, Africa, and the Middle East. Consideration is also given to the potential need to limit carbon emissions because of global warming concerns. The study highlights the crucial nature of energy efficiency improvements and the need to utilize all energy sources, if the world is to find a sustainable future with an improved standard of living for the developing world.
NASA Astrophysics Data System (ADS)
Mrozik, Michael K.; Pitzer, Russell M.; Bursten, Bruce E.
2010-06-01
Since the identification of f-orbital contribution to the bonding in PaO+, investigations into Pa cations have hoped to characterize as many of the electronic states possible.1 Electronic states of the Pan+ (n=0-4) ions have been investigated using multi-reference spin-orbit configuration interaction (MR-SOCI). Initial investigations using Dunning style correlation consistent double-{ζ} basis sets are re-examined with a larger triple-{ζ} basis, with the hope of supporting the order of electronic states. Calculations using Hartree-Fock and CI calculations on the neutral atom did not produce the known order of states. A case study was deemed necessary on similar electron configurations present in the low energy states of Pa2+ more specifically those generated from the 5f26d1 and 5f16d2 configurations. Comparison in the Pa2+ ion is complicated by the lack of experimental results, but the states are presumed to be similar sequence as those in the neutral atom, with the addition of two electrons in the 7s shell. In evaluating the impact of inclusion of the outer core, calculations including valence-outer core correlation were completed for the 5d, 6s, and 6p shells of the Pa2+ ion. The magnitude of these individual shell correlation calculations will allow for identification of the energy level shifts associated with even and odd configurations, better describing the energy order in both the Pa2+ ion case study and for the neutral Pa atom. Upon completion of this aspect of the Pa neutral atom study, the knowledge of the energy levels in the Pan+ (n=0-4) family of ions will be greatly expanded, and may yield a model for future studies of atomic actinide systems. Gibson {et al.} Organometallics 2007, 26, 3947-3956.
Long range rapidity correlations and jet production in high energy nuclear collisions
STAR Collaboration; Abelev, Betty
2010-07-05
The STAR Collaboration at RHIC presents a systematic study of high transverse momentum charged di-hadron correlations at small azimuthal pair separation {Delta}{phi}, in d+Au and central Au+Au collisions at {radical}s{sub NN} = 200 GeV. Significant correlated yield for pairs with large longitudinal separation {Delta}{eta} is observed in central Au+Au, in contrast to d+Au collisions. The associated yield distribution in {Delta}{eta} x {delta}{phi} can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component which is narrow in {Delta}{phi} and depends only weakly on {Delta}{eta}, the 'ridge'. Using two systematically independent analyses, finite ridge yield is found to persist for trigger p{sub t} > 6 GeV/c, indicating that it is correlated with jet production. The transverse momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range (2 < p{sub t} < 4 GeV/c).
Correlation of γ-ray and high-energy cosmic ray fluxes from the giant lobes of Centaurus A
Fraija, N.
2014-03-01
The spectral energy distribution of giant lobes shows one main peak detected by the Wilkinson Microwave Anisotropy Probe at the low energy of 10{sup –5} eV and a faint γ-ray flux imaged by the Fermi Large Area Telescope at an energy of ≥100 MeV. On the other hand, the Pierre Auger Observatory associated some ultra-high-energy cosmic rays with the direction of Centaurus A and IceCube reported 28 neutrino-induced events in a TeV-PeV energy range, although none of them related with this direction. In this work, we describe the spectra for each of the lobes, the main peak with synchrotron radiation, and the high-energy emission with p-p interactions. After obtaining a good description of the main peak, we deduce the magnetic fields, electron densities, and the age of the lobes. Successfully describing the γ-ray emission by p-p interactions and considering thermal particles in the lobes with density in the range 10{sup –10}-10{sup –4} cm{sup –3} as targets, we calculate the number of ultra-high-energy cosmic rays. Although the γ-spectrum is well described with any density in the range, only when 10{sup –4} cm{sup –3} is considered are the expected number of events very similar to that observed by the Pierre Auger Observatory, otherwise we obtain an excessive luminosity. In addition, correlating the γ-ray and neutrino fluxes through p-p interactions, we calculate the number of high-energy neutrinos expected in IceCube. Our analysis indicates that neutrinos above 1 TeV cannot be produced in the lobes of Centaurus A, which is consistent with the results recently published by the IceCube Collaboration.
Correlation between crystallite size-optical gap energy and precursor molarities of ZnO thin films
NASA Astrophysics Data System (ADS)
Benramache, S.; Belahssen, O.; Guettaf, A.; Arif, A.
2014-04-01
We investigated the structural and optical properties of ZnO thin films as an n-type semiconductor. The films were deposited at different precursor molarities using an ultrasonic spray method. In this paper we focused our attention on a new approach describing a correlation between the crystallite size and optical gap energy with the precursor molarity of ZnO thin films. The results show that the X-ray diffraction (XRD) spectra revealed a preferred orientation of the crystallites along the c-axis. The maximum value of the crystallite size of the films is 63.99 nm obtained at 0.1 M. The films deposited with 0.1 M show lower absorption within the visible wavelength region. The optical gap energy increased from 3.08 to 3.37 eV with increasing precursor molarity of 0.05 to 0.1 M. The correlation between the structural and optical properties with the precursor molarity suggests that the crystallite size of the films is predominantly influenced by the band gap energy and the precursor molarity. The measurement of the crystallite size by the model proposed is equal to the experimental data. The minimum error value was estimated by Eq. (4) in the higher crystallinity.
NASA Astrophysics Data System (ADS)
Shiau, Shiue-Yuan; Combescot, Monique; Chang, Yia-Chung
2016-09-01
We use Richardson-Gaudin exact equations to derive the ground-state energy of N composite bosons (cobosons) interacting via a potential which acts between fermion pairs having zero center-of-mass momentum, that is, a potential similar to the reduced BCS potential used in conventional superconductivity. Through a density expansion, we show that while for two-dimensional (2D) systems, the N -coboson correlation energy undergoes a surprising cancellation which leaves the interaction part with an N (N -1 ) dependence only, such a cancellation does not exist in 1D, 3D, or 4D systems (which correspond to 2D parabolic traps) nor when the cobosons interact via a similar short-range potential but between pairs having an arbitrary center-of-mass momentum. This shows that the previously found cancellation which exists for the Cooper-pair correlation energy results not only from the very peculiar form of the reduced BCS potential, but also from a quite mysterious dimensionality effect, the density of states for Cooper pairs feeling the BCS potential being essentially constant, as for 2D systems.
Corradi, Lorenzo
2015-10-15
Excitation functions of one- and two-neutron transfer channels have been measured for the {sup 96}Zr+{sup 40}Ca and {sup 116}Sn+{sup 60}Ni systems at bombarding energies ranging from the Coulomb barrier to ∼25% below. Target-like recoils have been identified in A, Z and velocity with the large solid angle magnetic spectrometer PRISMA. The experimental transfer probabilities have been compared, in absolute values and in slope, with semiclassical microscopic calculations which incorporate nucleon-nucleon pairing correlations. For the first time in a heavy ion collision, one was able to provide a consistent description of one and two neutron transfer reactions by incorporating, in the reaction mechanism, all known structure information of entrance and exit channels nuclei. In particular, there is no need to introduce any enhancement factor for the description of two neutron transfer, of course very important are the correlations induced by the pairing interaction.
Kovalenko, V. N.
2013-10-15
The soft part of proton-proton interaction is considered within a phenomenological model that involves the formation of color strings. Under the assumption that an elementary collision is associated with the interaction of two color dipoles, the total inelastic cross section and the multiplicity of charged particles are estimated in order to fix model parameters. Particular attention is given to modeling of exclusive parton distributions with allowance for the energy-conservation law and for fixing the center of mass, which are necessary for describing correlations. An algorithm that describes the fusion of strings in the transverse plane and which takes into account their finite rapidity width is developed. The influence of string-fusion effects on long-range correlations is found within this mechanism.
The multiplicity and the spectra of secondaries correlated with the leading particle energy
NASA Technical Reports Server (NTRS)
Kruglov, N. A.; Proskuryakov, A. S.; Sarycheva, L. I.; Smirnova, L. N.
1985-01-01
The spectra of leading particles of different nature in pp-collisions at E sub 0 = 33 GeV are obtained. The multiplicities and the spectra of secondaries, mesons, gamma-quanta, lambda and lambda-hyperons and protons for different leading particle energy ranges are determined.
Park, Hoyong; Choe, Wonho; You, S. J.
2010-10-15
The relationship between the electron excitation temperature (T{sub exc}) determined by optical emission spectroscopy and the electron temperature (T{sub e}) using a rf-compensated Langmuir probe was investigated in argon capacitively coupled plasmas. In the experiment performed at the gas pressure range of 30 mTorr to 1 Torr and the rf power range of 5-37 W, the electron energy probability function (EEPF) obtained from the probe current versus voltage characteristic curve showed two energy groups of electrons. The measured EEPF demonstrated that the electron energy distribution changed from Druyvesteyn to single Maxwellian as the discharge current was increased and from bi-Maxwellian to Druyvesteyn as the pressure was increased. As a result, T{sub exc} showed a tendency identical to that of T{sub e} of the high energy part of electrons as pressure and rf power were varied. This suggests that electron temperature can be determined from the measured T{sub exc} through a calibration experiment by which the ratio between electron and excitation temperatures is measured.
Heltsley, B.K.
1984-07-01
Direct photon production in hadronic events from e/sup +/e/sup -/ ..-->.. hadrons has been studied at ..sqrt..s=29 GeV using the MAC detector at PEP. Both the charge asymmetry in the final state jets and total yield have been used to determine values of quark charges, which are in good agreement with the predictions of the fractionally charged quark-parton model. Limits have been established for anomalous sources of direct photons. Measurements of the total cross section and energy-energy correlations for e/sup +/e/sup -/ ..-->.. hadrons at ..sqrt..s=29 GeV with the MAC detector are presented. Two complementary event selections for the precision R measurement are described, one accepting events over nearly the entire 4..pi.. solid angle (minimizing extrapolation to unseen phase space), and the other restricted to wide angles (reducing two-photon backgrounds). The two methods agree, yield R = 3.93 +- 0.10 (which includes the effects of higher order radiative corrections), and given ..cap alpha../sub s/ = 0.19 +- 0.07, independent of fragmentation. The asymmetry in the energy-energy correlation cross section yields different results for ..cap alpha../sub s/ in different models, 0.185 in the string model and from 0.105 to 0.140 for incoherent jet formation, depending on the gluon fragmentation and momentum conservation algorithms. The string fragmentation model provides a satisfactory description of the measured correlation cross section, whereas incoherent jet fragmentation does not. 35 references.
NASA Astrophysics Data System (ADS)
MacLaren, J. M.; Clougherty, D. P.; McHenry, M. E.; Donovan, M. M.
1991-09-01
Commonly used approximate forms for the exchange-correlation energy and potential within the local density approximation are summarised, and FORTRAN code is included for the evaluation of these various forms. Included are the following: Xα, Kohn-Sham-Gaspàr, Hedin-Lundqvist-Wilkins, Janak-Moruzzi-Williams, Von Barth-Hedin, Ceperley-Alder (Perdew-Zunger), and Ceperley-Alder (Vosko-Wilk-Nusair). Both the Vosko-Wilk-Nusair and the Von Barth-Hedin expressions for spin interpolation between paramagnetic and ferromagnetic limits are also provided.
Grimme, Stefan
2010-10-15
The isodesmic reaction energies of n-alkanes to ethane, which have so far been known to give systematic errors in standard DFT calculations, are successfully reproduced by SCS-MP2 and dispersion-corrected double-hybrid functionals. The failure of conventional DFT is not due to the lack of long-range exchange interactions but results from an inaccurate account of medium-range electron correlation that is attractive for 1,3-interactions (proto-branching). Highly accurate CCSD(T)/CBS data are provided that are recommended in thermochemical benchmarks.
NASA Astrophysics Data System (ADS)
Ishihara, Takamitsu; Yamagami, Hiroshi; Yasuhara, Hiroshi
2001-12-01
Self-consistent band calculation of sodium is performed in the correlated Hartree Fock scheme proposed by Yasuhara and Takada [Phys. Rev. B 43 (1991) 7200], which contains information on the effective mass of the electron liquid in the form of a nonlocal spin-parallel potential, and the remaining information of the self-energy operator in the form of a local potential. The bandwidth of occupied states is somewhat increased under the influence of the non-local spin-parallel potential, compared with the free electron value. No significant difference can be found in the distortion of the Fermi surface between the present theory and the LDA.
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.
1991-01-01
Dirac-Hartree-Fock calculations have been carried out on the ground states of the group IV monoxides GeO, SnO and PbO. Geometries, dipole moments and infrared data are presented. For comparison, nonrelativistic, first-order perturbation and relativistic effective core potential calculations have also been carried out. Where appropriate the results are compared with the experimental data and previous calculations. Spin-orbit effects are of great importance for PbO, where first-order perturbation theory including only the mass-velocity and Darwin terms is inadequate to predict the relativistic corrections to the properties. The relativistic effective core potential results show a larger deviation from the all-electron values than for the hydrides, and confirm the conclusions drawn on the basis of the hydride calculations.
Berube, P.-M.; Poirier, J.-S.; Margot, J.; Stafford, L.; Ndione, P. F.; Chaker, M.; Morandotti, R.
2009-09-15
The influence of surface chemistry in plasma etching of multicomponent oxides was investigated through measurements of the ion energy dependence of the etch yield. Using pulsed-laser-deposited Ca{sub x}Ba{sub (1-x)}Nb{sub 2}O{sub 6} (CBN) and SrTiO{sub 3} thin films as examples, it was found that the etching energy threshold shifts toward values larger or smaller than the sputtering threshold depending on whether or not ion-assisted chemical etching is the dominant etching pathway and whether surface chemistry is enhancing or inhibiting desorption of the film atoms. In the case of CBN films etched in an inductively coupled Cl{sub 2} plasma, it is found that the chlorine uptake is inhibiting the etching reaction, with the desorption of nonvolatile NbCl{sub 2} and BaCl{sub 2} compounds being the rate-limiting step.
Squeezed correlations of ϕ meson pairs for hydrodynamic sources in high-energy heavy-ion collisions
NASA Astrophysics Data System (ADS)
Zhang, Yong; Yang, Jing; Zhang, Wei-Ning
2015-08-01
In the hot and dense hadronic sources formed in high-energy heavy-ion collisions, the particle interactions in medium might lead to a squeezed back-to-back correlation (BBC) of boson-antiboson pairs. We calculate the BBC functions of ϕ ϕ for sources evolving hydrodynamically in (2 +1 ) dimensions and with longitudinal boost invariance. The BBC functions for hydrodynamic sources exhibit oscillations as a function of the particle momentum because the temporal distributions of hydrodynamic sources have sharp falls to 0 at large evolving times. The dependences of the BBC functions on the directions of the particle momentum are investigated. For transverse anisotropic sources, the BBC functions are minimum when the azimuthal angles of the particles reach 0. The BBC functions increase with decreasing absolute value of the particle pseudorapidity. The oscillations and the dependences on the particle azimuthal angle and pseudorapidity are the significant signatures for detecting the BBC in high-energy heavy-ion collisions.
Bordovsky, G. A.; Nemov, S. A.; Marchenko, A. V.; Seregin, P. P.
2012-01-15
The results of the study of donor U{sup -}-centers of tin and germanium in lead chalcogenides by Moessbauer emission spectroscopy are discussed. The published data regarding the identification of amphoteric U{sup -}-centers of tin in glassy binary arsenic and germanium chalcogenides using Moessbauer emission spectroscopy, and in multicomponent chalcogenide glasses using Moessbauer absorption spectroscopy are considered. Published data concerning the identification of two-atom U{sup -}-centers of copper in lattices of semimetal copper oxides by Moessbauer emission spectroscopy are analyzed. The published data on the detection of spatial inhomogeneity of the Bose-Einstein condensate in superconducting semiconductors and semimetal compounds, and on the existence of the correlation between the electron density in lattice sites and the superconducting transition temperature are presented. The principal possibility of using Moessbauer U{sup -}-centers as a tool for studying the Bose-Einstein condensation of electron pairs during the superconducting phase transition in semiconductors and semimetals is considered.
Lutz, Oliver M D; Rode, Bernd M; Bonn, Günther K; Huck, Christian W
2014-10-15
This paper discusses the quality and feasibility of highly correlated ab initio techniques in a vibrational self-consistent field (VSCF) approach using acetonitrile as a model system. The topical renormalized coupled-cluster technique exploiting the similarity-transformed Hamiltonian's left eigenstates (i.e. CR-CC(2,3)) is investigated alongside the well-known Hartree-Fock (HF), Møller-Plesset second-order perturbation theory (MP2) and coupled cluster (CCSD(T)) methods. The inclusion of mode triple interactions is discussed and it is found that the use of an effective core potential (ECP) serves as a viable compromise during the highly demanding task of computing such contributions, thus enabling a grid-based evaluation of three mode interaction terms with coupled cluster techniques also for larger molecules. In this context, a previously proposed reduced coupling scheme [1] is investigated, confirming the applicability of this technique to a system exhibiting a rather complex electronic structure. A combination of Ahlrichs' triple-ζ valence polarized (TZVP) basis set with Dunning's set of core-valence correlation functions is found to deliver results in good agreement with experiment while being computationally very feasible. Since CH3CN exhibits four degenerate vibrational degrees of freedom, it serves as an ideal model system for critically assessing the qualities of the degenerate second-order perturbation theory corrected (DPT2) VSCF technique. Besides fundamental vibrations, a thorough investigation of overtone transitions and combination bands is conducted by means of comparing the results to both available and newly recorded experimental data.
NASA Astrophysics Data System (ADS)
Lutz, Oliver M. D.; Rode, Bernd M.; Bonn, Günther K.; Huck, Christian W.
2014-10-01
This paper discusses the quality and feasibility of highly correlated ab initio techniques in a vibrational self-consistent field (VSCF) approach using acetonitrile as a model system. The topical renormalized coupled-cluster technique exploiting the similarity-transformed Hamiltonian's left eigenstates (i.e. CR-CC(2,3)) is investigated alongside the well-known Hartree-Fock (HF), Møller-Plesset second-order perturbation theory (MP2) and coupled cluster (CCSD(T)) methods. The inclusion of mode triple interactions is discussed and it is found that the use of an effective core potential (ECP) serves as a viable compromise during the highly demanding task of computing such contributions, thus enabling a grid-based evaluation of three mode interaction terms with coupled cluster techniques also for larger molecules. In this context, a previously proposed reduced coupling scheme [1] is investigated, confirming the applicability of this technique to a system exhibiting a rather complex electronic structure. A combination of Ahlrichs' triple-ζ valence polarized (TZVP) basis set with Dunning's set of core-valence correlation functions is found to deliver results in good agreement with experiment while being computationally very feasible. Since CH3CN exhibits four degenerate vibrational degrees of freedom, it serves as an ideal model system for critically assessing the qualities of the degenerate second-order perturbation theory corrected (DPT2) VSCF technique. Besides fundamental vibrations, a thorough investigation of overtone transitions and combination bands is conducted by means of comparing the results to both available and newly recorded experimental data.
Doi, Takahiro; Fujita, Ichiro
2014-01-01
Three-dimensional visual perception requires correct matching of images projected to the left and right eyes. The matching process is faced with an ambiguity: part of one eye's image can be matched to multiple parts of the other eye's image. This stereo correspondence problem is complicated for random-dot stereograms (RDSs), because dots with an identical appearance produce numerous potential matches. Despite such complexity, human subjects can perceive a coherent depth structure. A coherent solution to the correspondence problem does not exist for anticorrelated RDSs (aRDSs), in which luminance contrast is reversed in one eye. Neurons in the visual cortex reduce disparity selectivity for aRDSs progressively along the visual processing hierarchy. A disparity-energy model followed by threshold nonlinearity (threshold energy model) can account for this reduction, providing a possible mechanism for the neural matching process. However, the essential computation underlying the threshold energy model is not clear. Here, we propose that a nonlinear modification of cross-correlation, which we term “cross-matching,” represents the essence of the threshold energy model. We placed half-wave rectification within the cross-correlation of the left-eye and right-eye images. The disparity tuning derived from cross-matching was attenuated for aRDSs. We simulated a psychometric curve as a function of graded anticorrelation (graded mixture of aRDS and normal RDS); this simulated curve reproduced the match-based psychometric function observed in human near/far discrimination. The dot density was 25% for both simulation and observation. We predicted that as the dot density increased, the performance for aRDSs should decrease below chance (i.e., reversed depth), and the level of anticorrelation that nullifies depth perception should also decrease. We suggest that cross-matching serves as a simple computation underlying the match-based disparity signals in stereoscopic depth
Doi, Takahiro; Fujita, Ichiro
2014-01-01
Three-dimensional visual perception requires correct matching of images projected to the left and right eyes. The matching process is faced with an ambiguity: part of one eye's image can be matched to multiple parts of the other eye's image. This stereo correspondence problem is complicated for random-dot stereograms (RDSs), because dots with an identical appearance produce numerous potential matches. Despite such complexity, human subjects can perceive a coherent depth structure. A coherent solution to the correspondence problem does not exist for anticorrelated RDSs (aRDSs), in which luminance contrast is reversed in one eye. Neurons in the visual cortex reduce disparity selectivity for aRDSs progressively along the visual processing hierarchy. A disparity-energy model followed by threshold nonlinearity (threshold energy model) can account for this reduction, providing a possible mechanism for the neural matching process. However, the essential computation underlying the threshold energy model is not clear. Here, we propose that a nonlinear modification of cross-correlation, which we term "cross-matching," represents the essence of the threshold energy model. We placed half-wave rectification within the cross-correlation of the left-eye and right-eye images. The disparity tuning derived from cross-matching was attenuated for aRDSs. We simulated a psychometric curve as a function of graded anticorrelation (graded mixture of aRDS and normal RDS); this simulated curve reproduced the match-based psychometric function observed in human near/far discrimination. The dot density was 25% for both simulation and observation. We predicted that as the dot density increased, the performance for aRDSs should decrease below chance (i.e., reversed depth), and the level of anticorrelation that nullifies depth perception should also decrease. We suggest that cross-matching serves as a simple computation underlying the match-based disparity signals in stereoscopic depth perception.
Birkfellner, Wolfgang; Stock, Markus; Figl, Michael; Gendrin, Christelle; Hummel, Johann; Dong, Shuo; Kettenbach, Joachim; Georg, Dietmar; Bergmann, Helmar
2010-01-01
In this article, the authors evaluate a merit function for 2D/3D registration called stochastic rank correlation (SRC). SRC is characterized by the fact that differences in image intensity do not influence the registration result; it therefore combines the numerical advantages of cross correlation (CC)-type merit functions with the flexibility of mutual-information-type merit functions. The basic idea is that registration is achieved on a random subset of the image, which allows for an efficient computation of Spearman’s rank correlation coefficient. This measure is, by nature, invariant to monotonic intensity transforms in the images under comparison, which renders it an ideal solution for intramodal images acquired at different energy levels as encountered in intrafractional kV imaging in image-guided radiotherapy. Initial evaluation was undertaken using a 2D/3D registration reference image dataset of a cadaver spine. Even with no radiometric calibration, SRC shows a significant improvement in robustness and stability compared to CC. Pattern intensity, another merit function that was evaluated for comparison, gave rather poor results due to its limited convergence range. The time required for SRC with 5% image content compares well to the other merit functions; increasing the image content does not significantly influence the algorithm accuracy. The authors conclude that SRC is a promising measure for 2D/3D registration in IGRT and image-guided therapy in general. PMID:19746775
Cashaback, Joshua G A; Cluff, Tyler
2015-02-26
Empirical evidence suggests that our nervous system considers many objectives when performing various tasks. With the progression of fatigue, researchers have noted increase in both joint moment variability and muscular cocontraction during isometric force production tasks. Muscular cocontraction increases joint stability, but is metabolically costly. Thus, our nervous system must select a compromise between joint stability and energy efficiency. Interestingly, the continuous increase in cocontraction with fatigue suggests there may be a shift in the relative weighting of these objectives. Here we test the notion of dynamic objective weightings. Using multi-objective optimization, we found a shift in objective weighting that favoured joint stability at the expense of energy efficiency during fatigue. This shift was highly correlated with muscular cocontraction (R(2)=0.78, p<0.001) and elbow moment variability in the time (R(2)=0.56, p<0.01) and frequency (R(2)=0.57, p<0.01) domains. By considering a dynamic objective weighting we obtained strong correlations with predicted and collected muscle activity (R(2)=0.94, p<0.001).
Pion correlations and calorimeter design for high energy heavy ion collisions. Progress report
Wolf, K.L.
1997-04-01
Data analysis is in progress for recent experiments performed by the NA44 collaboration with the first running of 160 A GeV {sup 208}Pb-induced reactions at the CERN SPS. Identified singles spectra were taken for pions, kaons, protons, deuterons, antiprotons and antideuterons. Two-pion interferometry measurements were made for semi-central-triggered {sup 208}Pb + Pb collisions. An updated multi-particle spectrometer allows high statistics data sets of identified particles to be collected near mid-rapidity. A second series of experiments will be performed in the fall of 1995 with more emphasis on identical kaon interferometry and on the measurement of rare particle spectra and correlations. Modest instrumentation upgrades by TAMU are designed to increase the trigger function for better impact parameter selection and improved collection efficiency of valid events. An effort to achieve the highest degree of projectile-target stopping is outlined and it is argued that an excitation function on the SPS is needed to better understand reaction mechanisms. Analysis of experimental results is in the final stages at LBL in the EOS collaboration for two-pion interferometry in the 1.2 A GeV Au + Au reaction, taken with full event characterization.
Pion and kaon correlations in high energy heavy-ion collisions
Wolf, K.L.; Wolf, K.L.
1996-12-31
Data analysis is in progress for recent experiments performed by the NA44 collaboration with the first running of 160 A GeV {sup 208}Pb-induced reactions at the CERN SPS. Identified singles spectra were taken for pions, kaons, protons, deuterons, antiprotons and antideuterons. Two-pion interferometry measurements were made for semi-central-triggered {sup 208}Pb + Pb collisions. An upgraded multi-particle spectrometer allows high statistics data sets of identified particles to be collected near mid-rapidity. A second series of experiments will be performed in the fall of 1995 with more emphasis on identical kaon interferometry and on the measurement of rare particle spectra and correlations. Modest instrumentation upgrades by TAMU are designed to increase the trigger function for better impact parameter selection and improved collection efficiency of valid events. An effort to achieve the highest degree of projectile-target stopping is outlined and it is argued that an excitation function on the SPS is needed to better understand reaction mechanisms. Analysis of experimental results is in the final stages at LBL in the EOS collaboration for two-pion interferometry in the 1.2 A GeV Au+Au reaction, taken with full event characterization. 35 refs., 15 figs., 5 tabs.
NASA Astrophysics Data System (ADS)
Khosravi, Shahram; Mollazadeh, Amir; Baghram, Shant
2016-09-01
Cross correlation of the Integrated Sachs-Wolfe signal (ISW) with the galaxy distribution in late time is a promising tool for constraining the dark energy properties. Here, we study the effect of dark energy clustering on the ISW-galaxy cross correlation and demonstrate the fact that the bias parameter between the distribution of the galaxies and the underlying dark matter introduces a degeneracy and complications. We argue that as the galaxy's host halo formation time is different from the observation time, we have to consider the evolution of the halo bias parameter. It will be shown that any deviation from ΛCDM model will change the evolution of the bias as well. Therefore, it is deduced that the halo bias depends strongly on the sub-sample of galaxies which is chosen for cross correlation and that the joint kernel of ISW effect and the galaxy distribution has a dominant effect on the observed signal. In this work, comparison is made specifically between the clustered dark energy models using two samples of galaxies. The first one is a sub-sample of galaxies from Sloan Digital Sky Survey, chosen with the r-band magnitude 18 < r < 21 and the dark matter halo host of mass M ~1012Msolar and formation redshift of zf~ 2.5. The second one is the sub-sample of Luminous Red galaxies with the dark matter halo hosts of mass M ~ 1013Msolar and formation redshift of 0zf~ 2.. Using the evolved bias we improve the χ2 for the ΛCDM which reconciles the ~1σ-2σ tension of the ISW-galaxy signal with ΛCDM prediction. Finally, we study the parameter estimation of a dark energy model with free parameters w0 and wa in the equation of state wde = w0 +waz/(1+z) with the constant bias parameter and also with an evolved bias model with free parameters of galaxy's host halo mass and the halo formation redshift.
Eggeling, Christian; Kask, Peet; Winkler, Dirk; Jäger, Stefan
2005-07-01
In this study we introduce the combination of two-color global fluorescence correlation spectroscopy (2CG-FCS) and Förster resonance energy transfer (FRET) as a very powerful combination for monitoring biochemical reactions on the basis of single molecule events. 2CG-FCS, which is a new variation emerging from the family of fluorescence correlation spectroscopy, globally analyzes the simultaneously recorded auto- and cross-correlation data from two photon detectors monitoring the fluorescence emission of different colors. Overcoming the limitations inherent in mere auto- and cross-correlation analysis, 2CG-FCS is sensitive in resolving and quantifying fluorescent species that differ in their diffusion characteristics and/or their molecular brightness either in one or both detection channels. It is able to account for effects that have often been considered as sources of severe artifacts in two-color and FRET measurements, the most prominent artifacts comprising photobleaching, cross talk, or concentration variations in sample preparation. Because of its very high statistical accuracy, the combination of FRET and 2CG-FCS is suited for high-throughput applications such as drug screening. Employing beam scanning during data acquisition even further enhances this capability and allows measurement times of <2 s. The improved performance in monitoring a FRET sample was verified by following the protease cleavage reaction of a FRET-active peptide. The FRET-inactive subpopulation of uncleaved substrate could be correctly assigned, revealing a substantial portion of inactive or missing acceptor label. The results were compared to those obtained by two-dimensional fluorescence intensity distribution analysis.
Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U
2013-09-13
Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.
Time correlations between low and high energy gamma rays from discrete sources
NASA Technical Reports Server (NTRS)
Ellsworth, R. W.
1995-01-01
Activities covered the following areas: (1) continuing analysis of the Cygnus Experiment data on the shadowing of cosmic rays by the moon and sun, which led to a direct confirmation of the angular resolution of the CYGNUS EAS array; and (2) development of analysis methods for the daily search overlapping with EGRET targets. To date, no steady emission of ultrahigh energy (UHE) gamma rays from any source has been detected by the Cygnus Experiment, but some evidence for sporadic emission had been found. Upper limits on steady fluxes from 49 sources in the northern hemisphere have been published. In addition, a daily search of 51 possible sources over the interval April 1986 to June 1992 found no evidence for emission. From these source lists, four candidates were selected for comparison with EGRET data.
NASA Astrophysics Data System (ADS)
Kelly, Kathleen M.
Several factors are critical in determining if a wind farm has a high probability of success. These factors include wind energy potential or wind class, sales price, cost of the wind energy generated, market for selling the wind, capacity factor or efficiency of the turbines, capital investment cost, debt and financing, and governmental factors such as taxes and incentives. This research studied the critical factors of thirty-three land based wind farms in the United States with over 20 mega-watts (MW) of capacity that have become operational since 1999. The goal was to develop a simple yet effective decision model using the critical factors to predict an internal rate of return (IRR) and the impact of having a tax credit to supplement the revenue stream. The study found that there are five critical factors that are significantly correlated with the internal rate of return (IRR) of a wind farm project. The critical factors are wind potential or wind class, cost of the wind energy generated, capacity factor or efficiency of the wind turbines, cost of capital investment, and the existence of a federal production tax credit (PTC). The decision model was built using actual wind farm data and industry standards whereby a score from zero to one hundred was coded for each of values except for the production tax credit. Since all the projects qualified for the production tax credit prior to their start up, it was no longer a variable. However, without the presence of this tax credit, the data imply that the projects would not be profitable within the first ten to fifteen years of operation. The scores for each of the categories were totaled and regressed against a calculated internal rate of return. There was ninety-seven percent correlation which was supported by simulation analysis. While this model is not intended to supplant rigorous accounting and financial study, it will help quickly determine if a site has potential and save many hours of analytical work.
Konduri, Suchitra; Mukherjee, Sanjoy; Nair, Sankar
2007-12-01
Control over the diameter of nanotubes is of significance in manipulating their properties, which depend on their dimensions in addition to their structure and composition. This aspect has remained a challenge in both carbon and inorganic nanotubes, since there is no obvious aspect of the formation mechanism that allows facile control over nanotube curvature. Here we develop and analyze a quantitative correlation between the composition, diameter, and internal energy of a class of single-walled mixed oxide aluminosilicogermanate (AlSiGeOH) nanotubes. A series of synthetic AlSiGeOH nanotubes with varying Si/Ge ratio are characterized by X-ray photoelectron spectroscopy, vibrational spectroscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction to relate their compositions and diameters. We then study these nanotubes computationally by first parametrizing and validating a suitable interatomic potential model, and then using this potential model to investigate the internal energy of the nanotube as a function of diameter and composition via molecular dynamics simulations. There are minima in the internal energy as a function of diameter which progressively shift to larger nanotube diameters with increasing Ge content. An approximate analytical theory of nanotube diameter control, which contains a small number of physically significant fitted parameters, well describes the computational data by relating the composition and geometry to the strain energy of bending into a nanotube. The predicted composition-dependent shift in the energetically favored diameter follows the experimental trends. We suggest related methods of controlling nanotube energetics and their role in engineering nanotubes of controlled dimensions by liquid-phase chemistry.
Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells
NASA Astrophysics Data System (ADS)
Shao, Yuchuan; Yuan, Yongbo; Huang, Jinsong
2016-01-01
Organometal trihalide perovskites have been demonstrated as excellent light absorbers for high-efficiency photovoltaic applications. Previous approaches to increasing the solar cell efficiency have focused on optimization of the grain morphology of perovskite thin films. Here, we show that the structural order of the electron transport layers also has a significant impact on solar cell performance. We demonstrate that the power conversion efficiency of CH3NH3PbI3 planar heterojunction photovoltaic cells increases from 17.1 to 19.4% when the energy disorder in the fullerene electron transport layer is reduced by a simple solvent annealing process. The increase in efficiency is the result of the enhancement in open-circuit voltage from 1.04 to 1.13 V without sacrificing the short-circuit current and fill factor. These results shed light on the origin of open-circuit voltage in perovskite solar cells, and provide a path to further increase their efficiency.
Voskoboinikov, Roman E; Osetskiy, Yury N; Bacon, David J
2005-01-01
Atomistic modeling was conducted for an investigation of primary damage creation, self-interstitial and vacancy clusters formation, and their stability in high energy displacement cascades in copper. The simulations were carried out for a wide range of temperatures (100 K {le} T {le} 900 K) and primary knock-on atom (PKA) energies 5 keV {le} Epka {le} 25 keV. This study of over 400 cascades is the largest yet reported for this metal. At least 20 cascades for each (Epka, T) pair were simulated in order to ensure statistical reliability of the results. The number of surviving point defects for each cascade and the mean value for cascades at the same temperature and PKA energy were found. The corresponding fraction of self-interstitial atoms (SIA) in dislocation loops and vacancies in stacking fault tetrahedron (SFT)-like clusters was calculated. Strong spatial and size correlation of SFTs and SIA clusters at low temperatures were established. In the context of high dose irradiation and the spatial overlap of displacement cascades, the stability of SFTs and dislocation loops inside an overlapping cascade region was investigated. It was observed that an SFT destroyed in the collision phase by a cascade is always recreated. On being completely enveloped by the region of displaced atoms, both SFT and SIA dislocation loops are destroyed with corresponding decrease of the number of residual point defects, whereas partial overlapping leads to increase in size of both types of cluster.
NASA Technical Reports Server (NTRS)
Klochkov, D.; Doroshenko, V.; Santangelo, A.; Staubert, R.; Ferrigno, C.; Kretschmar, P.; Caballero, I.; Wilms, J.; Kreykenbohm, I.; Pottschmidt, I.; Rothschild, R. E.; Pilhlhofer, G.
2012-01-01
Context. X-ray spectra of many accreting pulsars exhibit significant variations as a function of flux and thus of mass accretion rate. In some of these pulsars, the centroid energy of the cyclotron line(s), which characterizes the magnetic field strength at the site of the X-ray emission, has been found to vary systematically with flux. Aims. GX304-1 is a recently established cyclotron line source with a line energy around 50 keV. Since 2009, the pulsar shows regular outbursts with the peak flux exceeding one Crab. We analyze the INTEGRAL observations of the source during its outburst in January-February 2012. Methods. The observations covered almost the entire outburst, allowing us to measure the source's broad-band X-my spectrum at different flux levels. We report on the variations in the spectral parameters with luminosity and focus on the variations in the cyclotron line. Results. The centroid energy of the line is found to be positively correlated with the luminosity. We interpret this result as a manifestation of the local sub-Eddington (sub-critical) accretion regime operating in the source.
Dual-energy micro-CT imaging of pulmonary airway obstruction: correlation with micro-SPECT
NASA Astrophysics Data System (ADS)
Badea, C. T.; Befera, N.; Clark, D.; Qi, Y.; Johnson, G. A.
2014-03-01
To match recent clinical dual energy (DE) CT studies focusing on the lung, similar developments for DE micro-CT of the rodent lung are required. Our group has been actively engaged in designing pulmonary gating techniques for micro- CT, and has also introduced the first DE micro-CT imaging method of the rodent lung. The aim of this study was to assess the feasibility of DE micro-CT imaging for the evaluation of airway obstruction in mice, and to compare the method with micro single photon emission computed tomography (micro-SPECT) using technetium-99m labeled macroaggregated albumin (99mTc-MAA). The results suggest that the induced pulmonary airway obstruction causes either atelectasis, or air-trapping similar to asthma or chronic bronchitis. Atelectasis could only be detected at early time points in DE micro-CT images, and is associated with a large increase in blood fraction and decrease in air fraction. Air trapping had an opposite effect with larger air fraction and decreased blood fraction shown by DE micro-CT. The decrease in perfusion to the hypoventilated lung (hypoxic vasoconstriction) is also seen in micro-SPECT. The proposed DE micro-CT technique for imaging localized airway obstruction performed well in our evaluation, and provides a higher resolution compared to micro-SPECT. Both DE micro-CT and micro-SPECT provide critical, quantitative lung biomarkers for image-based anatomical and functional information in the small animal. The methods are readily linked to clinical methods allowing direct comparison of preclinical and clinical results.
Rezaee, Mohammad Hunting, Darel J.; Sanche, Léon
2014-07-15
Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should
NASA Astrophysics Data System (ADS)
Chu, Iek-Heng; Trinastic, Jonathan P.; Wang, Yun-Peng; Eguiluz, Adolfo G.; Kozhevnikov, Anton; Schulthess, Thomas C.; Cheng, Hai-Ping
2016-03-01
The G W approximation is a well-known method to improve electronic structure predictions calculated within density functional theory. In this work, we have implemented a computationally efficient G W approach that calculates central properties within the Matsubara-time domain using the modified version of elk, the full-potential linearized augmented plane wave (FP-LAPW) package. Continuous-pole expansion (CPE), a recently proposed analytic continuation method, has been incorporated and compared to the widely used Padé approximation. Full crystal symmetry has been employed for computational speedup. We have applied our approach to 18 well-studied semiconductors/insulators that cover a wide range of band gaps computed at the levels of single-shot G0W0 , partially self-consistent G W0 , and fully self-consistent G W (full-G W ), in conjunction with the diagonal approximation. Our calculations show that G0W0 leads to band gaps that agree well with experiment for the case of simple s -p electron systems, whereas full-G W is required for improving the band gaps in 3 d electron systems. In addition, G W0 almost always predicts larger band gap values compared to full-G W , likely due to the substantial underestimation of screening effects as well as the diagonal approximation. Both the CPE method and Padé approximation lead to similar band gaps for most systems except strontium titantate, suggesting that further investigation into the latter approximation is necessary for strongly correlated systems. Moreover, the calculated cation d band energies suggest that both full-G W and G W0 lead to results in good agreement with experiment. Our computed band gaps serve as important benchmarks for the accuracy of the Matsubara-time G W approach.
Chilingarian, A.; Daryan, A.; Arakelyan, K.; Hovhannisyan, A.; Mailyan, B.; Melkumyan, L.; Hovsepyan, G.; Chilingaryan, S.; Reymers, A.; Vanyan, L.
2010-08-15
The Aragats Space Environmental Center facilities continuously measure fluxes of neutral and charged secondary cosmic ray incidents on the Earth's surface. Since 2003 in the 1-minute time series we have detected more than 100 enhancements in the electron, gamma ray, and neutron fluxes correlated with thunderstorm activities. During the periods of the count rate enhancements, lasting tens of minutes, millions of additional particles were detected. Based on the largest particle event of September 19, 2009, we show that our measurements support the existence of long-lasting particle multiplication and acceleration mechanisms in the thunderstorm atmosphere. For the first time we present the energy spectra of electrons and gamma rays from the particle avalanches produced in the thunderstorm atmosphere, reaching the Earth's surface.
Correlated blinking via time dependent energy transfer in single CdSe quantum dot-dye nanoassemblies
NASA Astrophysics Data System (ADS)
Gerlach, Frank; Täuber, Daniela; von Borczyskowski, Christian
2013-05-01
Optical confocal spectroscopy on self-assembled single nanoassemblies from CdSe/ZnS quantum dots (QD) and perylene diimide dye molecules demonstrates efficient Förster resonance energy transfer (FRET). Intramolecular dynamics of the flexible dye molecule change the FRET efficiency in course of the detection period of several minutes. This can be followed by correlated observations of luminescence intensities and related spectral shifts of both constituents. Contrary to several experiments on similar assemblies, the FRET efficiencies are by almost one order of magnitude larger in the non-polar liquid solvent TEHOS as compared e.g. to toluene. Experimental and theoretically expected efficiencies are in close agreement with each other.
NASA Astrophysics Data System (ADS)
Liu, Fan; Zhang, Ying; Zhang, Ling; Geng, Li; Wang, Yin; Ni, Na; Zhou, Jinxiong
2016-04-01
Releasing a bimaterial system, which consists of a pre-stretched dielectric elastomer membrane attached on a flexible frame, transforms a planar structure into a 3D structure through buckling. The buckled structure can deform further upon applying of a voltage, giving rise to the so-called dielectric elastomer minimum-energy structures (DEMES). Simple and easy-to-use theory and model would simplify the tedious trial-and-error designing process. We describe an extended model accounting for nonlinear rubber elasticity, pre-stretch, and the concentrated transverse load of a bending beam DEMES actuator. We design and fabricate a petal-shaped actuator with three petals. Elevation of a 1-g mass upward 7 mm is demonstrated upon application of 7000 V. Good correlation is achieved between model prediction and experimental measurement.
Dumitru, A.; Molnar, E.; Nara, Y.
2007-08-15
We study entropy production in the early stage of high-energy heavy-ion collisions due to shear viscosity. We employ the second-order theory of Israel-Stewart with two different stress relaxation times, as appropriate for strong coupling or for a Boltzmann gas, respectively, and compare the hydrodynamic evolution. Based on the present knowledge of initial particle production, we argue that entropy production is tightly constrained. We derive new limits on the shear viscosity to entropy density ratio {eta}/s, independent from elliptic flow effects, and determine the corresponding Reynolds number. Furthermore, we show that for a given entropy production bound, the initial time {tau}{sub 0} for hydrodynamics is correlated to the viscosity. The conjectured lower bound for {eta}/s provides a lower limit for {tau}{sub 0}.
The GaOH-HGaO potential energy hypersurface and the necessity of correlating the 3d electrons
NASA Astrophysics Data System (ADS)
Richards, Claude A., Jr.; Yamaguchi, Yukio; Kim, Seung-Joon; Schaefer, Henry F., III
1996-06-01
The ground state potential energy hypersurface of the GaOH-HGaO system has been investigated using high level ab initio molecular electronic structure theory. The geometries and physical properties of two equilibrium structures, one isomerization transition state and one inversion transition state were determined at the self-consistent field (SCF), configuration interaction with single and double excitations (CISD), coupled cluster with single and double excitations (CCSD), and CCSD with perturbative triple excitations [CCSD(T)] levels of theory with four sets of basis functions. It has been found that freezing the 3d electrons of the Ga atom in the correlation procedures is not appropriate for this system. For the energy difference ΔE (GaOH-HGaO) the freezing of the 3d electrons results in an error of 25 kcal/mol! The dipole moments, harmonic vibrational frequencies, and infrared (IR) intensities are predicted for the four stationary points. At the highest level of theory employed in this study, CCSD(T) using triple zeta plus double polarization with higher angular momentum and diffuse functions [TZ2P(f,d)+diff] basis set, the bent GaOH was found to be 41.9 kcal/mol more stable than the linear HGaO species; with the zero-point vibrational energy (ZPVE) correction, the energy separation becomes 40.4 kcal/mol. The classical barrier height for the exothermic isomerization (1,2 hydrogen shift) reaction HGaO→GaOH is determined to be 44.5 kcal/mol and the barrier height with the ZPVE correction 42.3 kcal/mol. The classical barrier to linearity for the bent GaOH molecule is determined to be 1.7 kcal/mol and the barrier height with the ZPVE correction to be 1.2 kcal/mol. The predicted dipole moments of GaOH and HGaO are 1.41 and 4.45 Debye, respectively. The effects of electron correlation reduce the dipole moment of HGaO by the sizable amount of 1.2 Debye. The two equilibrium species may be suitable for microwave spectroscopic investigation. Furthermore, they may also
NASA Astrophysics Data System (ADS)
Hargreaves, L. R.; Campbell, C.; Khakoo, M. A.; McConkey, J. W.; Zatsarinny, O.; Bartschat, K.; Stauffer, A. D.; McEachran, R. P.
2013-02-01
The electron-polarized-photon coincidence method is used to determine linear and circular polarization correlations in vacuum ultraviolet (VUV) for the differential electron-impact excitation of neon and argon resonance transitions at impact energies of 25 and 30 eV at small scattering angles up to 40°. The circular polarization correlation is found to be positive in the case of Ne at 25 eV and supports the prediction of the present B-spline R-matrix theory concerning the violation of a long-established propensity rule regarding angular momentum transfer in electron-impact excitation of S→P transitions. Comparisons with the results from the present relativistic distorted-wave approximation and an earlier semirelativistic distorted-wave Born model are also made. For the case of Ar, at 25 and 30 eV, the circular polarization measurements remain in agreement with theory, but provide limited evidence as to whether or not the circular polarization at small scattering angles is also positive. For the linear polarizations, much better agreement with theory is obtained than in earlier measurements carried out by S. H. Zheng and K. Becker [Z. Phys. DZDACE20178-768310.1007/BF01436735 23, 137 (1992); J. Phys. BJPAMA40022-370010.1088/0953-4075/26/3/022 26, 517 (1993)].
Sheng, WC; Myint, M; Chen, JGG; Yan, YS
2013-05-01
The slow reaction kinetics of the hydrogen evolution and oxidation reactions (HER/HOR) on platinum in alkaline electrolytes hinders the development of alkaline electrolysers, solar hydrogen cells and alkaline fuel cells. A fundamental understanding of the exchange current density of the HER/HOR in alkaline media is critical for the search and design of highly active electrocatalysts. By studying the HER on a series of monometallic surfaces, we demonstrate that the HER exchange current density in alkaline solutions can be correlated with the calculated hydrogen binding energy (HBE) on the metal surfaces via a volcano type of relationship. The HER activity varies by several orders of magnitude from Pt at the peak of the plot to W and Au located on the bottom of each side of the plot, similar to the observation in acids. Such a correlation suggests that the HBE can be used as a descriptor for identifying electrocatalysts for HER/HOR in alkaline media, and that the HER exchange current density can be tuned by modifying the surface chemical properties.
NASA Astrophysics Data System (ADS)
Wang, Jeen-Hwa
2013-12-01
The correlation of the scaled energy, ê = E s/ M 0, versus earthquake magnitude, M s, is studied based on two models: (1) Model 1 based on the use of the time function of the average displacements, with a ω -2 source spectrum, across a fault plane; and (2) Model 2 based on the use of the time function of the average displacements, with a ω -3 source spectrum, across a fault plane. For the second model, there are two cases: (a) As τ ≒ T, where τ is the rise time and T the rupture time, lg( ê) ~ - M s; and (b) As τ ≪ T, lg( ê) ~ -(1/2) M s. The second model leads to a negative value of ê. This means that Model 2 cannot work for studying the present problem. The results obtained from Model 1 suggest that the source model is a factor, yet not a unique one, in controlling the correlation of ê versus M s.
NASA Astrophysics Data System (ADS)
Wang, J. S.; Wang, F. Y.; Cheng, K. S.; Dai, Z. G.
2016-01-01
We use two model-independent methods to standardize long gamma-ray bursts (GRBs) using the Eiso - Ep correlation (log Eiso = a + blog Ep), where Eiso is the isotropic-equivalent gamma-ray energy and Ep is the spectral peak energy. We update 42 long GRBs and attempt to constrain the cosmological parameters. The full sample contains 151 long GRBs with redshifts from 0.0331 to 8.2. The first method is the simultaneous fitting method. We take the extrinsic scatter σext into account and assign it to the parameter Eiso. The best-fitting values are a = 49.15 ± 0.26, b = 1.42 ± 0.11, σext = 0.34 ± 0.03 and Ωm = 0.79 in the flat ΛCDM model. The constraint on Ωm is 0.55 < Ωm< 1 at the 1σ confidence level. If reduced χ2 method is used, the best-fit results are a = 48.96 ± 0.18, b = 1.52 ± 0.08, and Ωm = 0.50 ± 0.12. The second method uses type Ia supernovae (SNe Ia) to calibrate the Eiso - Ep correlation. We calibrate 90 high-redshift GRBs in the redshift range from 1.44 to 8.1. The cosmological constraints from these 90 GRBs are Ωm = 0.23+0.06-0.04 for flat ΛCDM and Ωm = 0.18 ± 0.11 and ΩΛ = 0.46 ± 0.51 for non-flat ΛCDM. For the combination of GRB and SNe Ia sample, we obtain Ωm = 0.271 ± 0.019 and h = 0.701 ± 0.002 for the flat ΛCDM and the non-flat ΛCDM, and the results are Ωm = 0.225 ± 0.044, ΩΛ = 0.640 ± 0.082, and h = 0.698 ± 0.004. These results from calibrated GRBs are consistent with that of SNe Ia. Meanwhile, the combined data can improve cosmological constraints significantly, compared to SNe Ia alone. Our results show that the Eiso - Ep correlation is promising to probe the high-redshift Universe.
Shoji, Akiko; Elliott, Kyle H.; O’Reilly, Kathleen M.; Gaston, Anthony J.
2013-01-01
Theory and observations suggest that offspring abandonment in animals may occur when the costs to future reproductive output of current reproductive effort outweigh the fitness benefits of rearing the current brood. While hormonal cues (i.e. corticosterone) or energy reserves are believed to be involved, few studies have directly focused on the proximate cues influencing behaviours directly related to reproductive success. To address this information gap, we determined the incubation metabolic rates and corticosterone (CORT) levels of naturally fasting and freely incubating ancient murrelets (Synthliboramphus antiquus). Respiratory quotient (RQ) increased with date, suggesting that incubating ancient murrelets shifted from strictly lipid-based metabolism towards more protein-based metabolism as incubation progressed. Birds that hatched only one nestling had higher levels of circulating CORT than those which hatched two, suggesting that birds which laid only a single egg found incubation more stressful than those which laid two. However, CORT levels and incubation shift lengths were not correlated, suggesting that birds that undertook prolonged incubation shifts did so only when their energy stores were not jeopardized. PMID:24391929
NASA Astrophysics Data System (ADS)
Kovalenko, V. N.; Vechernin, V. V.
2016-01-01
The ultrarelativistic collisions of heavy and light ions in the center-of-mass energy range from a few up to a hundred GeV per nucleon have been considered in string fusion approach. A Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions has been developed, which takes into account both the string fusion and the finite rapidity length of strings, implementing the hadronic scattering through the interaction of color dipoles. It well describes the proton-nucleus and nucleus-nucleus collisions at the partonic level without using Glauber model of nuclear collisions. All parameters are fixed using experimental data on inelastic cross section and multiplicity. In the framework of the model, we performed a beam energy and system size scan and studied the behaviour of n-n, pt-n and pt-pt long-range correlation coefficients. The detailed modeling of the event by event charged particles production allowed to provide predictions in the conditions close to the experimental ones allowing a direct comparison to the data.
NASA Astrophysics Data System (ADS)
Kato, Tsuyoshi; Kono, Hirohiko
2009-12-01
We propose a new definition of molecular orbital energy in order to investigate the energetics of constituent molecular orbitals in the many-electron wave function calculated based on time-dependent multiconfiguration theory. It is shown that when energies are assigned to natural orbitals by a similar manner to that used in the Hartree-Fock theory, we can quantify a correction energy to the total electronic energy that represents electron correlation, and thus we can evaluate the time-dependence of the correlation energy. Our attempt is illustrated by numerical results on the time-dependence of the spatial density of the correlation energy and the orbital energies for a H 2 molecule interacting with an intense, near-infrared laser field. We compared the energy ζj( t) supplied by the applied field with the net energy gain Δɛ(t) for respective natural orbitals ϕj( t). ϕj and found that the natural orbitals with Δɛ(t)>ζj(t) play a key role in the ionization process.
NASA Astrophysics Data System (ADS)
Werth, S. P.; Frasier, S. J.
2015-12-01
Wind energy is one of the fastest-growing segments of the world energy market, offering a clean and abundant source of electricity. However, wind energy facilities can have detrimental effects on wildlife, especially birds and bats. Monitoring systems based on marine navigation radar are often used to quantify migration near potential wind sites, but the ability to reliably distinguish between bats and different varieties of birds has not been practically achieved. This classification capability would enable wind site selection that protects more vulnerable species, such as bats and raptors. Flight behavior, such as wing beat frequency, changes in speed, or changes in orientation, are known to vary by species [1]. The ability to extract these properties from radar data could ultimately enable a species based classification scheme. In this work, we analyze the relationship between radar measurements and bird flight behavior in echoes from avifauna. During the 2014 fall migration season, the UMass dual polarized weather radar was used to collect low elevation observations of migrating birds as they traversed through a fixed antenna beam. The radar was run during the night time, in clear-air conditions. Data was coherently integrated, and detections of biological targets exceeding an SNR threshold were extracted. Detections without some dominant frequency content (i.e. clear periodicity, potentially the wing beat frequency) were removed from the sample in order to isolate observations suspected to contain a single species or bird. For the remaining detections, measurements including the polarimetric products and the Doppler spectrum were extracted at each time step over the duration of the observation. The periodic and time changing nature of some of these different measurements was found to have a strong correlation with flight behavior (i.e. flapping vs. gliding behavior). Assumptions about flight behavior and orientation were corroborated through scattering
Correlating low-energy electron microscopy and micro-Raman imaging of epitaxial graphene on SiC
NASA Astrophysics Data System (ADS)
Cheng, Guangjun; Calizo, Irene; Meade, Patrick; He, Guowei; Real, M. A.; Elmquist, R. E.; Feenstra, R. M.; Hight Walker, A. R.
2013-03-01
Several techniques exist for determining the number of graphene layers grown on SiC such as low-energy electron microscopy (LEEM) and Raman spectroscopy. The method which is arguably the most definitive for SiC-grown graphene isLEEM. Low-energy (0 - 10 eV) electrons interfere with the graphene layers, yielding minima in the electron reflectivity vs. energy curve that can be used to determine the layer number.1 LEEM also provides the means of collecting selected-area diffraction on ?m-size surface regions (micro-LEED), giving access to further useful structural information. While Raman spectroscopy is also commonly used to determine graphene layer number on SiC substrates; such measurements have no definitive calibration for large-area graphene on SiC, unlike the case of exfoliated graphene on SiO2. In this talk, results of correlated LEEM/micro-Raman imaging of large-area, mono and multilayer graphene samples are presented. These initial findings show that LEEM can show the contrast between terrace regions and step edges at particular areas of monolayer-graphene surfaces. Micro-Raman imaging of these same locations show Raman shifts in the G' (2D) band. The influence of heterogeneities on electrical behavior of graphene will be discussed. Comparative studies of multilayer graphene are in progress, and will also be reported. 1. H. Hibino, et al., Phys. Rev. B 77, 075413 (2008). 2. L. I. Johansson, et al., Phys. Rev. B 84, 125405 (2011).
NASA Astrophysics Data System (ADS)
Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cesarini, A.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Dickherber, R.; Duke, C.; Dumm, J.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gillanders, G. H.; Godambe, S.; Griffin, S.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Huan, H.; Hughes, G.; Humensky, T. B.; Kaaret, P.; Karlsson, N.; Khassen, Y.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Lee, K.; Lyutikov, M.; Madhavan, A. S.; Maier, G.; Majumdar, P.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nelson, T.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Orr, M.; Otte, A. N.; Park, N.; Perkins, J. S.; Pohl, M.; Prokoph, H.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Saxon, D. B.; Schroedter, M.; Sembroski, G. H.; Şentürk, G. D.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Tešić, G.; Theiling, M.; Thibadeau, S.; Tsurusaki, K.; Varlotta, A.; Vincent, S.; Vivier, M.; Wagner, R. G.; Wakely, S. P.; Weekes, T. C.; Weinstein, A.; Welsing, R.; Williams, D. A.; Zitzer, B.; Kondratiev, V.
2012-12-01
We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays (E γ > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On ~8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.
CORRELATED X-RAY AND VERY HIGH ENERGY EMISSION IN THE GAMMA-RAY BINARY LS I +61 303
Anderhub, H.; Biland, A.; Antonelli, L. A.; Antoranz, P.; Balestra, S.; Barrio, J. A.; Backes, M.; Becker, J. K.; Baixeras, C.; Bastieri, D.; Bock, R. K.; Gonzalez, J. Becerra; Bednarek, W.; Berger, K.; Bernardini, E.; Bigas, O. Blanch; Bonnoli, G.; Bordas, P.; Bosch-Ramon, V.; Tridon, D. Borla E-mail: jogler@mppmu.mpg.d
2009-11-20
The discovery of very high energy (VHE) gamma-ray emitting X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems, which provide variable conditions along eccentric orbits. Despite this, the nature of some of these systems, and of the accelerated particles producing the VHE emission, is unclear. To answer some of these open questions, we conducted a multiwavelength campaign of the VHE gamma-ray emitting X-ray binary LS I +61 303 including the MAGIC telescope, XMM-Newton, and Swift during 60% of an orbit in 2007 September. We detect a simultaneous outburst at X-ray and VHE bands, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the simultaneous X-ray/VHE pairs obtained during the outburst yields a correlation coefficient of r = 0.97, while a linear fit to all simultaneous pairs provides r = 0.81. Since a variable absorption of the VHE emission towards the observer is not expected for the data reported here, the correlation found indicates a simultaneity in the emission processes. Assuming that they are dominated by a single particle population, either hadronic or leptonic, the X-ray/VHE flux ratio favors leptonic models. This fact, together with the detected photon indices, suggests that in LS I +61 303 the X-rays are the result of synchrotron radiation of the same electrons that produce VHE emission as a result of inverse Compton scattering of stellar photons.
NASA Technical Reports Server (NTRS)
Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cesarini, A.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Dickherber, R.; Duke, C.; Dumm, J.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Finnegan, G.; Fortson, L.; Perkins, J. S.
2012-01-01
We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays ( E(sub Gamma) > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On approx. 8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.
Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Bouvier, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Benbow, W.; Byrum, K.; Cesarini, A.; Connolly, M. P.; Ciupik, L.; Collins-Hughes, E.; Cui, W.; Duke, C.; Dumm, J.; Falcone, A.; Federici, S. E-mail: mccann@kicp.uchicago.edu; and others
2012-12-01
We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays (E {sub {gamma}} > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On {approx}8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.
NASA Astrophysics Data System (ADS)
Sandratskii, L. M.
2015-10-01
We report the first-principles study of the correlated behavior of the magnetic anisotropy energy (MAE) and orbital moment anisotropy (OMA) as the functions of the thickness N of the Fe film. The work is motivated by recent experimental studies combining photoemission, x-ray magnetic circular dichroism, and magnetic anisotropy measurements. In agreement with experiment, the correlated oscillations of MAE (N ) and OMA (N ) are obtained that have their origin in the formation of the 3d quantum well states (QWS) confined in the films. The main contribution to the oscillation amplitude comes from the surface layer. This is an interesting feature of the phenomenon consisting in the peculiar dependence of the physical quantities on the thickness of the film. We demonstrate that the band structure of the bulk Fe does not reflect adequately the properties of the 3d QWS in thin films and, therefore, does not provide the basis for understanding the oscillations of MAE (N ) and OMA (N ) . A detailed point-by-point analysis in the two-dimensional (2D) Brillouin zone (BZ) of the film shows that the contribution of the Γ point, contrary to a rather common expectation, does not play an important role in the formation of the oscillations. Instead, the most important contributions come from a broad region of the 2D BZ distant from the center of the BZ. Combining symmetry arguments and direct calculations we show that orbital moments of the electronic states possess nonzero transverse components orthogonal to the direction of the spin magnetization. The account for this feature is crucial in the point-by-point analysis of the OMA. On the basis of the calculations for noncollinear spin configurations we suggest interpretations of two interesting experimental findings: fast temperature decay of the oscillation amplitude in MAE (N ) and unexpectedly strong spin mixing of the initial states of the photoemission process.
Correlated X-Ray and Very High Energy Emission in the Gamma-Ray Binary LS I +61 303
NASA Astrophysics Data System (ADS)
Anderhub, H.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Baixeras, C.; Balestra, S.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Becker, J. K.; Bednarek, W.; Berger, K.; Bernardini, E.; Biland, A.; Blanch Bigas, O.; Bock, R. K.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Britzger, D.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Commichau, S.; Contreras, J. L.; Cortina, J.; Costado, M. T.; Covino, S.; Dazzi, F.; De Angelis, A.; de Cea del Pozo, E.; De los Reyes, R.; De Lotto, B.; De Maria, M.; De Sabata, F.; Delgado Mendez, C.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Errando, M.; Ferenc, D.; Fernández, E.; Firpo, R.; Fonseca, M. V.; Font, L.; Galante, N.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Godinovic, N.; Goebel, F.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Hsu, C. C.; Jogler, T.; Klepser, S.; Kranich, D.; La Barbera, A.; Laille, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Lorenz, E.; Majumdar, P.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moles, M.; Moralejo, A.; Nieto, D.; Nilsson, K.; Ninkovic, J.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Pasanen, M.; Pascoli, D.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Prada, F.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Robert, A.; Rügamer, S.; Saggion, A.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sidro, N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Stark, L. S.; Suric, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Tescaro, D.; Teshima, M.; Torres, D. F.; Turini, N.; Vankov, H.; Wagner, R. M.; Zabalza, V.; Zandanel, F.; Zanin, R.; Zapatero, J.; MAGIC Collaboration; Falcone, A.; Vetere, L.; Gehrels, N.; Trushkin, S.; Dhawan, V.; Reig, P.
2009-11-01
The discovery of very high energy (VHE) gamma-ray emitting X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems, which provide variable conditions along eccentric orbits. Despite this, the nature of some of these systems, and of the accelerated particles producing the VHE emission, is unclear. To answer some of these open questions, we conducted a multiwavelength campaign of the VHE gamma-ray emitting X-ray binary LS I +61 303 including the MAGIC telescope, XMM-Newton, and Swift during 60% of an orbit in 2007 September. We detect a simultaneous outburst at X-ray and VHE bands, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the simultaneous X-ray/VHE pairs obtained during the outburst yields a correlation coefficient of r = 0.97, while a linear fit to all simultaneous pairs provides r = 0.81. Since a variable absorption of the VHE emission towards the observer is not expected for the data reported here, the correlation found indicates a simultaneity in the emission processes. Assuming that they are dominated by a single particle population, either hadronic or leptonic, the X-ray/VHE flux ratio favors leptonic models. This fact, together with the detected photon indices, suggests that in LS I +61 303 the X-rays are the result of synchrotron radiation of the same electrons that produce VHE emission as a result of inverse Compton scattering of stellar photons.
NASA Astrophysics Data System (ADS)
Duguet, T.; Bender, M.; Ebran, J.-P.; Lesinski, T.; Somà, V.
2015-12-01
This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the off-diagonal energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking and restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come.
Newcomer, P.P.; Venturini, E.L.; Doyle, B.L.; Brice, D.K.; Schoene, H.
1998-09-01
Lattice defects are introduced into the structure to suppress the motion of magnetic vortices and enhance the critical current density in high temperature superconductors. Point defects are not very effective pinning sites for the cuprate superconductors; however, extended defects, such as linear tracks, have been shown to be strong pinning sites. The authors study the superconducting cuprate Tl-2212 (the numbers designate Ti-Ba-Ca-Cu stoichiometry). Large enhancements of vortex pinning potential were observed in Tl-2212 after high-intermediate energy heavy-ion irradiations where non-continuous extended defects were induced at dE/dx of 9 to 15.2 keV/nm (60 MeV Au, 60 MeV Cu, and 30 MeV Au) and continuous linear defects were induced at 19.5keV/nm (88 MeV Au). Their research addresses the question of pinning in highly anisotropic materials like Tl-2212 where the vortices are pancakes rather than rods and suitable defect structures may be discontinuous extended damage domains. The defect microstructure and the effectiveness of the pinning potential in Tl-2212 after irradiation by intermediate energy Au at lower dE/dx of 5--15 keV/nm, where recoils are more significant, is studied using high resolution transmission electron microscopy digital imaging and a SQUID magnetometer. The nature of the ion irradiation damage at these intermediate dE/dx will be correlated to the average vortex pinning potential and the TRIMRC calculations for recoils.
Ogawa, H.; Ishii, K.; Shimada, A.; Kiuchi, M.; Hagihara, M.; Inoue, Y.; Kaneko, T.
2010-07-15
The statistical distributions of the number of simultaneously emitted secondary electrons (SEs) from a carbon foil have been measured with proton beams of 0.5-3.5 MeV. In this experiment, the forward- and backward-emitted SEs have been measured simultaneously with foil-transmitted protons using a digitizer. As a method to examine how the forward and backward SE emissions correlate to each other, the forward (backward) SE yields {gamma}{sub F} ({gamma}{sub B}), that is, the mean number of the forward-emitted (backward-emitted) electrons per projectile, have been evaluated as a function of the number of the backward-emitted (forward-emitted) SEs, n{sub B} (n{sub F}). At higher incident energies, {gamma}{sub F} ({gamma}{sub B}) increases with increasing n{sub B} (n{sub F}). With decreasing incident energy, this so-called positive correlation becomes weaker and then changes to negative at the lowest incident energy. Although measurements using a slightly thicker foil exhibit just the same trend, the correlation changes from positive to negative at the higher incident energy. For a given foil thickness, the range of the produced binary electron and hence the incident proton energy seems to determine the sign of the correlation. A simple Monte Carlo simulation for the forward and backward SE emission in the present experimental condition can qualitatively reproduce the observed incident-energy dependence of the positive correlation but cannot reproduce the negative one observed at the lower incident energies.
Abu-Zayyad, T.; Allen, M.; Anderson, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Hanlon, W.; Aida, R.; Azuma, R.; Fukuda, T.; Cheon, B. G.; Cho, E. J.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukushima, M.; and others
2013-11-10
We search for correlations between the positions of extragalactic objects and the arrival directions of ultra-high energy cosmic rays (UHECRs) with primary energy E ≥ 40 EeV as observed by the surface detector array of the Telescope Array (TA) experiment during the first 40 months of operation. We examine several public astronomical object catalogs, including the Veron-Cetty and Veron catalog of active galactic nuclei. We count the number of TA events correlated with objects in each catalog as a function of three parameters: the maximum angular separation between a TA event and an object, the minimum energy of the events, and the maximum redshift of the objects. We determine the combination of these parameters that maximizes the correlations, and we calculate the probability of having the same levels of correlations from an isotropic distribution of UHECR arrival directions. No statistically significant correlations are found when penalties for scanning over the above parameters and for searching in several catalogs are taken into account.
NASA Astrophysics Data System (ADS)
Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, S.; Martens, K.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Miyata, K.; Murano, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Urban, F.; Vasiloff, G.; Wada, Y.; Wong, T.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhou, X.; Zollinger, R.; Zundel, Z.
2013-11-01
We search for correlations between the positions of extragalactic objects and the arrival directions of ultra-high energy cosmic rays (UHECRs) with primary energy E >= 40 EeV as observed by the surface detector array of the Telescope Array (TA) experiment during the first 40 months of operation. We examine several public astronomical object catalogs, including the Veron-Cetty and Veron catalog of active galactic nuclei. We count the number of TA events correlated with objects in each catalog as a function of three parameters: the maximum angular separation between a TA event and an object, the minimum energy of the events, and the maximum redshift of the objects. We determine the combination of these parameters that maximizes the correlations, and we calculate the probability of having the same levels of correlations from an isotropic distribution of UHECR arrival directions. No statistically significant correlations are found when penalties for scanning over the above parameters and for searching in several catalogs are taken into account.
TiCl, TiH and TiH+ Bond Energies, a Test of a Correlation Consistent Ti Basis Set
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)
1999-01-01
Correlation consistent basis sets are developed for Ti atom. The polarization functions are optimized for the average of the 3F and 5F states. One series of correlation consistent basis sets is for 3d and 4s correlation, while the second series includes 3s and 3p correlation as well as 3d and 4s correlation. These basis sets are tested using the Ti 3F-5F separation and the dissociation energies of TiCl X4Phi, TiH X4Phi, and TiH(+) X3Phi. The CCSD(T) complete basis set limit values are determined by extrapolation. The Douglas Kroll approach is used to compute the scalar relativistic effect. Spin-orbit effects are taken from experiment and/or computed at the CASSCF level. The Ti 3F-5F separation is in excellent agreement with experiment, while the TiCl, TiH, and TiH(+) bond energies are in good agreement with experiment. Extrapolation with the valence basis set is consistent with other atoms, while including 3s and 3p correlation appears to make extrapolation.
Explicitly correlated Gaussian calculations of the {sup 2}D Rydberg states of the boron atom
Sharkey, Keeper L.; Bubin, Sergiy; Adamowicz, Ludwik
2012-08-14
Accurate non-relativistic variational calculations are performed for the seven lowest members of the {sup 2}D Rydberg series (1s{sup 2}2s2p{sup 2}, and 1s{sup 2}2s{sup 2}nd, n= 3, Horizontal-Ellipsis , 8) of the boron atom. The wave functions of the states are expanded in terms of all-electron explicitly correlated Gaussian basis functions and the effect of the finite nuclear mass is directly included in the calculations allowing for determining the isotopic shifts of the energy levels. The Gaussian basis is optimized independently for each state with the aid of the analytic energy gradient with respect to the Gaussian parameters. The calculations represent the highest accuracy level currently achievable for the considered states. The computed energies are compared with the available experimental data.
Xu, K; Zhang, L J; Morelli, J; Krazinski, A W; Silverman, J R; Schoepf, U J; Lu, G M
2014-01-01
Objective: To evaluate dual-energy CT (DECT) findings of pulmonary ischaemic–reperfusion injury (PIRI) and its pathophysiological correlation in the canine model. Methods: A PIRI model was established in 11 canines, utilizing closed pectoral balloon occlusion. Two control canines were also included. For the PIRI model, the left pulmonary artery was occluded with a balloon, which was deflated and removed after 2 h. DECT was performed before, during occlusion and at 2, 3 and 4 h thereafter and was utilized to construct pulmonary perfusion maps. Immediately after the CT scan at the fourth hour post reperfusion, the canines were sacrificed, and lung specimens were harvested for pathological analysis. CT findings, pulmonary artery pressure and blood gas results were then analysed. Results: Data at every time point were available for 10 animals (experimental group, n = 8; control group, n = 2). Quantitative measurements from DECT pulmonary perfusion maps found iodine attenuation values of the left lung to be the lowest at 2 h post embolization and the highest at 1 h post reperfusion. In the contralateral lung, perfusion values also peaked at 1 h post reperfusion. Continuous hypoxia and acid–based disorders were observed during PIRI, and comprehensive analysis showed physiological changes to be worst at 3 h post reperfusion. Conclusion: DECT pulmonary perfusion mapping demonstrated pulmonary perfusion of the bilateral lungs to be the greatest at 1 h post reperfusion. These CT findings corresponded with pathophysiological changes. Advances in knowledge: DECT pulmonary perfusion mapping can be used to evaluate lung ischaemia–reperfusion injury. PMID:24611753
NASA Astrophysics Data System (ADS)
Rocca, Dario
2014-05-01
A new ab initio approach is introduced to compute the correlation energy within the adiabatic connection fluctuation dissipation theorem in the random phase approximation. First, an optimally small basis set to represent the response functions is obtained by diagonalizing an approximate dielectric matrix containing the kinetic energy contribution only. Then, the Lanczos algorithm is used to compute the full dynamical dielectric matrix and the correlation energy. The convergence issues with respect to the number of empty states or the dimension of the basis set are avoided and the dynamical effects are easily kept into account. To demonstrate the accuracy and efficiency of this approach the binding curves for three different configurations of the benzene dimer are computed: T-shaped, sandwich, and slipped parallel.
Rocca, Dario
2014-05-14
A new ab initio approach is introduced to compute the correlation energy within the adiabatic connection fluctuation dissipation theorem in the random phase approximation. First, an optimally small basis set to represent the response functions is obtained by diagonalizing an approximate dielectric matrix containing the kinetic energy contribution only. Then, the Lanczos algorithm is used to compute the full dynamical dielectric matrix and the correlation energy. The convergence issues with respect to the number of empty states or the dimension of the basis set are avoided and the dynamical effects are easily kept into account. To demonstrate the accuracy and efficiency of this approach the binding curves for three different configurations of the benzene dimer are computed: T-shaped, sandwich, and slipped parallel.
NASA Technical Reports Server (NTRS)
Akasofu, S.-I.
1979-01-01
Akasofu (1979) has reported that the interplanetary parameter epsilon correlates reasonably well with the magnetospheric substorm index AE; in the first approximation, epsilon represents the solar wind coupled to the magnetosphere. The correlation between the interplanetary parameter, the auroral electrojet index and the ring current index is examined for three magnetic storms. It is shown that when the interplanetary parameter exceeds the amount that can be dissipated by the ionosphere in terms of the Joule heat production, the excess energy is absorbed by the ring current belt, producing an abnormal growth of the ring current index.
NASA Astrophysics Data System (ADS)
Feng, Hao; Sun, Wei-Guo; Zeng, Yang-Yang
2009-11-01
This paper introduces a correlation-polarization potential with high order terms for vibrational excitation in electron-molecule scattering. The new polarization potential generalizes the two-term approximation so that it can better reflect the dependence of correlation and polarization effects on the position coordinate of the scattering electron. It applies the new potential on the vibrational excitation scattering from N2 in an energy range which includes the 2Πg shape resonance. The good agreement of theoretical resonant peaks with experiments shows that polarization potentials with high order terms are important and should be included in vibrational excitation scattering.
Isegawa, Miho; Neese, Frank; Pantazis, Dimitrios A
2016-05-10
The calculation of redox potentials involves large energetic terms arising from gas phase ionization energies, thermodynamic contributions, and solvation energies of the reduced and oxidized species. In this work we study the performance of a wide range of wave function and density functional theory methods for the prediction of ionization energies and aqueous one-electron oxidation potentials of a set of 19 organic molecules. Emphasis is placed on evaluating methods that employ the computationally efficient local pair natural orbital (LPNO) approach, as well as several implementations of coupled cluster theory and explicitly correlated F12 methods. The electronic energies are combined with implicit solvation models for the solvation energies. With the exception of MP2 and its variants, which suffer from enormous errors arising at least partially from the poor Hartree-Fock reference, ionization energies can be systematically predicted with average errors below 0.1 eV for most of the correlated wave function based methods studies here, provided basis set extrapolation is performed. LPNO methods are the most efficient way to achieve this type of accuracy. DFT methods show in general larger errors and suffer from inconsistent behavior. The only exception is the M06-2X functional which is found to be competitive with the best LPNO-based approaches for ionization energies. Importantly, the limiting factor for the calculation of accurate redox potentials is the solvation energy. The errors in the predicted solvation energies by all continuum solvation models tested in this work dominate the final computed reduction potential, resulting in average errors typically in excess of 0.3 V and hence obscuring the gains that arise from choosing a more accurate electronic structure method.
NASA Technical Reports Server (NTRS)
Den Hartog, G.; Neumann, H. H.; King, K. M.; Chipanshi, A. C.
1994-01-01
Fluxes of heat and water vapor were measured on a 20-m tower at Kinosheo Lake in the Hudson Bay lowlands using eddy correlation and Bowen ratio energy balance techniques. The study period was June 25 to July 28, 1990. Measurements were made over a peat bog consisting of a mixture of sphagnum moss and lichen hummocks and black pools. About 200 m west of the tower were several shallow ponds. The hummocks had a dry, insulating surface and were underlain by an ice layer near 50 cm depth until mid-July. At the beginning of the period the black pools were covered with water, and although the free water gradually disappeared over the study period, they remained saturated to the end of July. The depth of peat near the tower was about 3 m. Despite the ice layer under the hummocks, their daytime surface temperatures were high, near 35 C, and after the middle of July, above 40 C. Inspection of temperature, precipitation, and radiation data showed that the midsummer period of 1990 was warmer, drier, and sunnier than usual at Moosonee and so by influence at Lake Kinosheo. When all the data were combined to yield average diurnal energy balance components, the eddy correlation fluxes accounted for 90% of the available energy. Latent heat flux averaged 46% of the total available energy and the sensible heat flux averaged 34%. Daytime Bowen ratios were near 1 for the experimental period, suggesting that the bog behaved more like a dryland than a wetland. Eddy correlation measurements of sensible heat and latent heat flux were less than those measured using the Bowen ratio energy balance technique, the average ratios being 0.81 and 0.86 respectively. These differences were possibly due to the difficulty in measuring energy balance components of net radiation and ground heat flux over the mosaic surface.
NASA Astrophysics Data System (ADS)
Pais, H.; Sulaksono, A.; Agrawal, B. K.; Providência, C.
2016-04-01
The correlations of the crust-core transition density and pressure in neutron stars with the slope of the symmetry energy and the neutron skin thickness are investigated, using different families of relativistic mean-field parametrizations with constant couplings and nonlinear terms mixing the σ - , ω - , and ρ -meson fields. It is shown that the modification of the density dependence of the symmetry energy, involving the σ or the ω meson, gives rise to different behaviors: the effect of the ω meson may also be reproduced within nonrelativistic phenomenological models, while the effect of the σ meson is essentially relativistic. Depending on the parametrization with σ -ρ or ω -ρ mixing terms, different values of the slope of the symmetry energy at saturation must be considered in order to obtain a neutron matter equation of state compatible with results from chiral effective field theory. This difference leads to different pressures at the crust-core transition density. A linear correlation between the transition density and the symmetry energy slope or the neutron skin thickness of the 208Pb nucleus is obtained, only when the ω meson is used to describe the density dependence of the symmetry energy. A comparison is made between the crust-core transition properties of neutron stars obtained by three different methods, the relativistic random phase approximation (RRPA), the Vlasov equation, and thermodynamical method. It is shown that the RRPA and the Vlasov methods predict similar transition densities for p n e β -equilibrium stellar matter.
UrQMD calculations of two-pion HBT correlations in p+p and Pb+Pb collisions at LHC energies
NASA Astrophysics Data System (ADS)
Li, Qingfeng; Gräf, Gunnar; Bleicher, Marcus
2013-03-01
Two-pion Hanbury-Brown-Twiss (HBT) correlations for p+p and central Pb+Pb collisions at the Large-Hadron-Collider (LHC) energies are investigated with the ultrarelativistic quantum molecular dynamics model combined with a correlation afterburner. The transverse momentum dependence of the Pratt-Bertsch HBT radii Rlong, Rout, and Rside is extracted from a three-dimensional Gaussian fit to the correlator in the longitudinal co-moving system. In the p+p case, the dependence of correlations on the charged particle multiplicity and formation time is explored and the data allows to constrain the formation time in the string fragmentation to τf <= 0.8 fm/c. In the Pb+Pb case, it is found that Rout is overpredicted by nearly 50%. The LHC results are also compared to data from the STAR experiment at RHIC. For both energies we find that the calculated Rout/Rside ratio is always larger than data, indicating that the emission in the model is less explosive than observed in the data.
Ou, Iwa; Yamada, Yoshiyuki; Yano, Takatomi; Mori, Takaaki; Kayano, Tsubasa; Sakuda, Makoto; Kimura, Atsushi; Harada, Hideo
2014-05-02
We conducted an experiment using the JPARC-ANNRI spectrometer to measure the energy, multiplicity and correlation of γ-rays from the neutron capture of natural gadolinium. We incorporated the GEANT4 Monte Carlo (MC) simulation into the detector, and compared the data with the results of the MC simulation. We report our data analysis and compare our data with those obtained by the MC simulation.
NASA Astrophysics Data System (ADS)
Benramache, Said; Belahssen, Okba; Guettaf, Abderrazak; Arif, Ali
2013-11-01
ZnO thin films were deposited using the simple, flexible and cost-effective spray ultrasonic technique at different precursor molarities values. The films were deposited on a glass substrate at 350 °C. This paper is to present a new approach to the description of correlation between electrical conductivity and optical gap energy with precursor molarity of ZnO thin films. The ZnO films exhibit higher electrical n-type semiconductors, whose band gap energy increased from 3.08 to 3.37 eV with an increasing of precursor molarity of 0.05 to 0.1 M. The maximum value of electrical conductivity of the films is 7.96 (ω·cm)-1 obtained in the ZnO thin film for precursor molarity 0.125 M. The correlation between the electrical and the optical properties with the precursor molarity suggests that the electrical conductivity of the films is predominantly influenced by the band gap energy and the precursor molarity. The measurement of the electrical conductivity of the films with correlation is equal to the experimental with the error is about 1% in the higher conductivity.
Bleiziffer, Patrick Schmidtel, Daniel; Görling, Andreas
2014-11-28
The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N{sub 2}, O{sub 2}, and the polyyne C{sub 10}H{sub 2}) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions.
Systematics of Rydberg Series of Diatomic Molecules and Correlation Diagrams
NASA Astrophysics Data System (ADS)
Lee, Chun-Woo
2015-06-01
Rydberg states are studied for H2, Li2, HeH, LiH and BeH using the multi-reference configuration interaction (MRCI) method. The systematics and regularities of the physical properties such as potential energies curves (PECs), quantum defect curves, permanent dipole moment and transition dipole moment curves of the Rydberg series are studied. They are explained using united atom perturbation theory by Bingel and Byers-Brown, Fermi model, Stark theory, and Mulliken's theory. Interesting mirror relationships of the dipole moments are observed between l-mixed Rydberg series, indicating that the members of the l-mixed Rydberg series have dipole moments with opposite directions, which are related to the reversal of the polarity of a dipole moment at the avoided crossing points. The assignment of highly excited states is difficult because of the usual absence of the knowledge on the behaviors of potential energy curves at small internuclear separation whereby the correlation between the united atom limit and separated atoms limit cannot be given. All electron MRCI calculations of PECs are performed to obtain the correlation diagrams between Rydberg orbitals at the united-atom and separated atoms limits.
Mitin, Alexander V; van Wüllen, Christoph
2006-02-14
A two-component quasirelativistic Hamiltonian based on spin-dependent effective core potentials is used to calculate ionization energies and electron affinities of the heavy halogen atom bromine through the superheavy element 117 (eka-astatine) as well as spectroscopic constants of the homonuclear dimers of these atoms. We describe a two-component Hartree-Fock and density-functional program that treats spin-orbit coupling self-consistently within the orbital optimization procedure. A comparison with results from high-order Douglas-Kroll calculations--for the superheavy systems also with zeroth-order regular approximation and four-component Dirac results--demonstrates the validity of the pseudopotential approximation. The density-functional (but not the Hartree-Fock) results show very satisfactory agreement with theoretical coupled cluster as well as experimental data where available, such that the theoretical results can serve as an estimate for the hitherto unknown properties of astatine, element 117, and their dimers. PMID:16483205
Iannuzzi, Marcella
2008-05-28
Full potential x-ray spectroscopy simulations of hexagonal ice and liquid water are performed by means of the newly implemented methodology based on the Gaussian augmented plane waves formalism. The computed spectra obtained within the supercell approach are compared to experimental data. The variations of the spectral distribution determined by the quality of the basis set, the size of the sample, and the choice of the core-hole potential are extensively discussed. The second part of this work is focused on the understanding of the connections between specific configurations of the hydrogen bond network and the corresponding contributions to the x-ray absorption spectrum in liquid water. Our results confirm that asymmetrically coordinated molecules, in particular, those donating only one or no hydrogen bond, are associated with well identified spectral signatures that differ significantly from the ice spectral profile. However, transient local structures, with half formed hydrogen bonds, may still give rise to spectra with dominant postedge contributions and relatively weaker oscillator strengths at lower energy. This explains why by averaging the spectra over all the O atoms of liquid instantaneous configurations extracted from ab initio molecular dynamics trajectories, the spectral features indicating the presence of weak or broken hydrogen bonds turn out to be attenuated and sometimes not clearly distinguishable.
Ching, W. Y.; Aryal, Sitram; Rulis, Paul; Schnick, Wolfgang
2011-04-15
Using density-functional-theory-based ab initio methods, the electronic structure and physical properties of the newly synthesized nitride BeP{sub 2}N{sub 4} with a phenakite-type structure and the predicted high-pressure spinel phase of BeP{sub 2}N{sub 4} are studied in detail. It is shown that both polymorphs are wide band-gap semiconductors with relatively small electron effective masses at the conduction-band minima. The spinel-type phase is more covalently bonded due to the increased number of P-N bonds for P at the octahedral sites. Calculations of mechanical properties indicate that the spinel-type polymorph is a promising superhard material with notably large bulk, shear, and Young's moduli. Also calculated are the Be K, P K, P L{sub 3}, and N K edges of the electron energy-loss near-edge structure for both phases. They show marked differences because of the different local environments of the atoms in the two crystalline polymorphs. These differences will be very useful for the experimental identification of the products of high-pressure syntheses targeting the predicted spinel-type phase of BeP{sub 2}N{sub 4}.
NASA Astrophysics Data System (ADS)
Iannuzzi, Marcella
2008-05-01
Full potential x-ray spectroscopy simulations of hexagonal ice and liquid water are performed by means of the newly implemented methodology based on the Gaussian augmented plane waves formalism. The computed spectra obtained within the supercell approach are compared to experimental data. The variations of the spectral distribution determined by the quality of the basis set, the size of the sample, and the choice of the core-hole potential are extensively discussed. The second part of this work is focused on the understanding of the connections between specific configurations of the hydrogen bond network and the corresponding contributions to the x-ray absorption spectrum in liquid water. Our results confirm that asymmetrically coordinated molecules, in particular, those donating only one or no hydrogen bond, are associated with well identified spectral signatures that differ significantly from the ice spectral profile. However, transient local structures, with half formed hydrogen bonds, may still give rise to spectra with dominant postedge contributions and relatively weaker oscillator strengths at lower energy. This explains why by averaging the spectra over all the O atoms of liquid instantaneous configurations extracted from ab initio molecular dynamics trajectories, the spectral features indicating the presence of weak or broken hydrogen bonds turn out to be attenuated and sometimes not clearly distinguishable.
NASA Technical Reports Server (NTRS)
Wise, P H; Serijan, K T; Goodman, I A
1951-01-01
As part of a program to study the correlation between molecular structure and physical properties of high-density hydrocarbons, the net heats of combustion, melting points, boiling points, densities, and kinematic viscosities of some hydrocarbons in the 2-n-alkylbiphenyl, 1,1-diphenylalkane, diphenylalkane, 1,1-dicyclohexylalkane, and dicyclohexylalkane series are presented.
Massman, W.J.; Fox, D.G.; Zeller, K.F.; Lukens, D.
1990-02-01
At the Central Plains Experimental Range/Long-Term Ecological Research (CPER/LTER) site at the Pawnee National Grasslands, scientists from both the Rocky Mountain Station and the Natural Resources Ecology Laboratory of Colorado State University are independently attempting to measure several major components of the surface energy balance. The report describes how well independent measurements of radiation and the transport of heat and water vapor achieve closure of the surface energy balance and, thereby, account for the gross energy available to and processed by an ecosystem. The motivation behind the study is to evaluate the eddy correlation technology which the authors have been using to measure the exchange of gaseous pollutants (NO{sub 2}, NOx, and O{sub 3}) between the atmosphere and the grassland ecosystem.
NASA Astrophysics Data System (ADS)
Xing, Jie; Li, Sheng; Zeng, Bin; Mu, Gang; Shen, Bing; Schneeloch, J.; Zhong, R. D.; Liu, T. S.; Gu, G. D.; Wen, Hai-Hu
2014-04-01
Superconducting condensation energy U0int has been determined by integrating the electronic entropy in various iron pnictide/chalcogenide superconducting systems. It is found that U0int∝Tcn with n =3-4, which is in sharp contrast to the simple BCS prediction U0BCS=1/2NFΔs2, with NF the quasiparticle density of states at the Fermi energy and Δs the superconducting gap. A similar correlation holds if we compute the condensation energy through U0cal=3γneffΔs2/4π2kB2, with γneff the effective normal state electronic specific heat coefficient. This indicates a general relationship γneff∝Tcm with m =1-2, which is not predicted by the BCS scheme. A picture based on quantum criticality is proposed to explain this phenomenon.
NASA Astrophysics Data System (ADS)
Xing, Jie; Li, Sheng; Zeng, Bin; Mu, Gang; Shen, Bing; Schneeloch, J.; Zhong, R. D.; Liu, T. S.; Gu, G. D.; Wen, Hai-Hu
2015-03-01
Superconducting condensation energy U0int has been determined by integrating the electronic entropy in various iron pnictide/chalcogenide superconducting systems. It is found that U0int ~Tcn with n = 3 to 4, which is in sharp contrast to the simple BCS prediction U0BCS = 1 / 2NFΔs2 , with NF the quasiparticle density of states at the Fermi energy and Δs the superconducting gap. A similar correlation holds if we compute the condensation energy through U0cal = 3γneff Δs2 / 4π2kB2 , with γneff the effective normal state electronic specific heat coefficient. This indicates a general relationship γneff ~Tcm with m = 1 to 2, which is not predicted by the BCS scheme. A picture based on quantum criticality is proposed to explain this phenomenon.
NASA Astrophysics Data System (ADS)
Burrows, Philip
2003-04-01
We present preliminary results of a measurement of the double-inclusive b\\overlineb quark fragmentation function in Z^0 decays using a novel kinematic B hadron energy reconstruction technique. The measurement is performed using 350,000 hadronic Z^0 events recorded in the SLD experiment at SLAC between 1996 and 1998. The small and stable SLC beam spot and the CCD-based vertex detector are used to reconstruct topological B-decay vertices with high efficiency and purity, and to provide precise measurements of the kinematic quantities used in this technique. We measure the B energy with good efficiency and resolution over the full kinematic range. We present a preliminary measurement of the angle dependent correlations between the B and barB hadron energies in Z^0 arrow b\\overlineb events, and compare with the leading order QCD predictions.
NASA Astrophysics Data System (ADS)
Song, Zhen; Liu, Xiaolang; He, Lizhu; Liu, Q. L.
2016-05-01
Luminescent spectra of cerium-doped yttrium aluminum garnet are measured at varying temperatures. It is found that the two excitation peaks demonstrate a reverse trend as the temperature rises, and the breadth of the high-energy emission peak experiences an abrupt widening. These effects could be directly linked to the energy level scheme of Ce3+ under the crystal field of local symmetry. Moreover, an alternative fitting function is provided which could effectively resolve the emission curve.
Qiu, H-J; Xu, Hai-Tao; Liu, Li; Wang, Yu
2015-01-14
Nanoporous metals produced by dealloying have shown great promise in many areas such as catalysis/electrocatalysis, energy conversion/storage, sensing/biosensing, actuation, and surface-enhanced Raman scattering. Particularly, nanoscale metal ligaments with high electronic conductivity, tunable size and rich surface chemistry make nanoporous metals very promising as catalysts/electrocatalysts for energy conversion applications such as fuel cells and also as versatile three-dimensional substrates for energy-storage in supercapacitors and lithium ion batteries. In this review, we focus on the recent developments of dealloyed nanoporous metals in both catalysis/electrocatalysis and energy storage. In particular, based on the state-of-the-art electron microscopy characterization, we explain the atomic origin of the high catalytic activity of nanoporous gold. We also highlight the recent advances in rationally designing nanoporous metal-based composites and hierarchical structures for enhanced energy storage. Finally, we conclude with some outlook and perspectives with respect to future research on dealloyed nanoporous metals in catalysis- and energy-related applications.
NASA Astrophysics Data System (ADS)
Słupski, R.; Jankowski, K.; Flores, J. R.
2016-09-01
Accurate Møller-Plesset (MP2) correlation energies calculated by means of the variational-perturbation and the finite-element methods are presented for several members of the Cu+ isoelectronic series (N = 28), which represent closed-shell systems containing for the first time the 3d10-electron configuration and, consequently, closed M-shell. Total MP2 energies as well as their inner- and inter-shell components are reported for Cu+, Zn2+, Ge4+, Kr8+, Sr10+, and Cd20+. We found that for these ions the Z-dependence of the total MP2 energies is significantly weaker than for the members of the Ar-like series. The origin of this fact is rationalized by a detailed analysis performed at the levels of the shell- and inter-shell contributions to the MP2 energies. To get, for the first time, more general information about the (N, Z) characteristics of the MP2 energies for closed-shell atomic systems, we compare the Z-dependence of the Cu+-like systems with the MP2 energies calculated for other isoelectronic series. The weak Z-dependence is found for the He-, Ne-, and Cu+-like series, which consist of atoms having perfectly closed-shell K-, KL-, and KLM-electronic structures, respectively. In turn, for the Be-, Mg-, and Ar-series, the Z-dependence is considerably stronger.
Słupski, R; Jankowski, K; Flores, J R
2016-09-14
Accurate Møller-Plesset (MP2) correlation energies calculated by means of the variational-perturbation and the finite-element methods are presented for several members of the Cu(+) isoelectronic series (N = 28), which represent closed-shell systems containing for the first time the 3d(10)-electron configuration and, consequently, closed M-shell. Total MP2 energies as well as their inner- and inter-shell components are reported for Cu(+), Zn(2+), Ge(4+), Kr(8+), Sr(10+), and Cd(20+). We found that for these ions the Z-dependence of the total MP2 energies is significantly weaker than for the members of the Ar-like series. The origin of this fact is rationalized by a detailed analysis performed at the levels of the shell- and inter-shell contributions to the MP2 energies. To get, for the first time, more general information about the (N, Z) characteristics of the MP2 energies for closed-shell atomic systems, we compare the Z-dependence of the Cu(+)-like systems with the MP2 energies calculated for other isoelectronic series. The weak Z-dependence is found for the He-, Ne-, and Cu(+)-like series, which consist of atoms having perfectly closed-shell K-, KL-, and KLM-electronic structures, respectively. In turn, for the Be-, Mg-, and Ar-series, the Z-dependence is considerably stronger. PMID:27634261
Vysotskii, V. I. Vysotskyy, M. V.
2015-02-15
A method for the formation of correlated coherent states of low-energy particles in a parabolic potential well owing to the full-scale low-frequency modulation ω(t) = ω{sub 0}sinΩt of the parameters of this well has been considered. It has been shown that such a modulation in the absence of a stochastic force acting on a particle results in the fast formation of correlated coherent states and in an increase in the correlation coefficient and transparency of the potential barrier to the limiting values vertical bar r(t) vertical bar {sub max} → 1 and D → 1. The presence of the stochastic force significantly affects the evolution of correlated coherent states, decreasing the rate of an increase in the correlation coefficient vertical bar r(t) vertical bar {sub max} (at Ω ≤ 10{sup −4}ω{sub 0}) and limiting it at the level vertical bar r(∞) vertical bar {sub max} < 1 (at Ω = (0.001–0.1)ω{sub 0}); vertical bar r(∞) vertical bar {sub max} increases with a decrease in the frequency of modulation and decreases with an increase in the intensity of the stochastic force. It has been shown that, at a realistic relation between the parameters, low-frequency modulation can ensure such vertical bar r vertical bar {sub max} value that the transparency of the potential barrier for low-energy particles increases by a factor of 10{sup 50}–10{sup 100} or larger. The mechanism of the formation of correlated coherent states for charged particles in a gas or a low-pressure plasma placed in a low-frequency magnetic field has been considered. We have determined the relation between the magnetic field strength and modulation frequency, as well as the relation between the temperature and density of the gas (plasma), at which the method under consideration can be used to optimize nuclear reactions at low energies.
Abelev, B I; Aggarwal, M M; Ahammed, Z; Alakhverdyants, A V; Anderson, B D; Arkhipkin, D; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baumgart, S; Beavis, D R; Bellwied, R; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bnzarov, I; Bonner, B E; Bouchet, J; Braidot, E; Brandin, A V; Bridgeman, A; Bruna, E; Bueltmann, S; Burton, T P; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, P; Clarke, R F; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; DePhillips, M; Derevschikov, A A; Derradi de Souza, R; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Dunlop, J C; Dutta Mazumdar, M R; Efimov, L G; Elhalhuli, E; Elnimr, M; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Fersch, R G; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gangadharan, D R; Ganti, M S; Garcia-Solis, E J; Geromitsos, A; Geurts, F; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Han, L-X; Harris, J W; Hays-Wehle, J P; Heinz, M; Heppelmann, S; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Humanic, T J; Huo, L; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jena, C; Jin, F; Jones, C L; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kauder, K; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kikola, D P; Kiryluk, J; Kisiel, A; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Konzer, J; Kopytine, M; Koralt, I; Korsch, W; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krueger, K; Krus, M; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lee, J H; Leight, W; LeVine, M J; Li, C; Li, L; Li, N; Li, W; Li, X; Li, X; Li, Y; Li, Z; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mall, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Masui, H; Matis, H S; Matulenko, Yu A; McDonald, D; McShane, T S; Meschanin, A; Milner, R; Minaev, N G; Mioduszewski, S; Mischke, A; Mitrovski, M K; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Pile, P; Planinic, M; Ploskon, M A; Pluta, J; Plyku, D; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Powell, C B; Prindle, D; Pruneau, C; Pruthi, N K; Pujahari, P R; Putschke, J; Raniwala, R; Raniwala, S; Ray, R L; Redwine, R; Reed, R; Rehberg, J M; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Sahoo, R; Sakai, S; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sangaline, E; Schambach, J; Scharenberg, R P; Schmitz, N; Schuster, T R; Seele, J; Seger, J; Selyuzhenkov, I; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, T D S; Staszak, D; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarini, L H; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Tram, V N; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; van Leeuwen, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Videbæk, F; Viyogi, Y P; Vokal, S; Wada, M; Walker, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wingfield, E; Wissink, S W; Witt, R; Wu, Y; Xie, W; Xu, N; Xu, Q H; Xu, W; Xu, Y; Xu, Z; Xue, L; Yang, Y; Yepes, P; Yip, K; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, S; Zhang, W M; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, J; Zhong, C; Zhou, J; Zhou, W; Zhu, X; Zhu, Y-H; Zoulkarneev, R; Zoulkarneeva, Y
2010-07-01
We report the first three-particle coincidence measurement in pseudorapidity (Δη) between a high transverse momentum (p⊥) trigger particle and two lower p⊥ associated particles within azimuth |Δϕ|<0.7 in square root of s(NN)=200 GeV d+Au and Au+Au collisions. Charge ordering properties are exploited to separate the jetlike component and the ridge (long range Δη correlation). The results indicate that the correlation of ridge particles are uniform not only with respect to the trigger particle but also between themselves event by event in our measured Δη. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jetlike component. PMID:20867701
Vallinotto, Alberto; Viel, Matteo; Das, Sudeep; Spergel, David N.
2009-10-01
We expect a detectable correlation between two seemingly unrelated quantities: the four point function of the cosmic microwave background (CMB) and the amplitude of flux decrements in quasar (QSO) spectra. The amplitude of CMB convergence in a given direction measures the projected surface density of matter. Measurements of QSO flux decrements trace the small-scale distribution of gas along a given line-of-sight. While the cross-correlation between these two measurements is small for a single line-of-sight, upcoming large surveys should enable its detection. This paper presents analytical estimates for the signal to noise (S/N) for measurements of the cross-correlation between the flux decrement and the convergence, {delta}F{kappa}, and for measurements of the cross-correlation between the variance in flux decrement and the convergence, <({delta}F){sup 2}{kappa}>. For the ongoing BOSS (SDSS III) and Planck surveys, we estimate an S/N of 30 and 9.6 for these two correlations. For the proposed BigBOSS and ACTPOL surveys, we estimate an S/N of 130 and 50 respectively. Since <({delta}F){sup 2}{kappa}> {proportional_to} {delta}{sub s}{sup 4}, the amplitude of these cross-correlations can potentially be used to measure the amplitude of {delta}{sub 8} at z {approx} 2 to 2.5% with BOSS and Planck and even better with future data sets. These measurements have the potential to test alternative theories for dark energy and to constrain the mass of the neutrino. The large potential signal estimated in our analytical calculations motivate tests with non-linear hydrodynamical simulations and analyses of upcoming data sets.
Chakraborty, Subrata; Vijay, Amrendra
2016-04-14
Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, which is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases. PMID:27083708
NASA Astrophysics Data System (ADS)
Liu, X. J.; Zhou, Z. F.; Yang, L. W.; Li, J. W.; Xie, G. F.; Fu, S. Y.; Sun, C. Q.
2011-04-01
As a group of wonder materials, gold and silver at the nanoscale demonstrate many intriguing properties that cannot be seen from their bulk counterparts. However, consistent insight into the mechanism behind the fascinations and their interdependence given by one integrated model is highly desirable. Based on Goldschmidt-Pauling's rule of bond contraction and its extension to the local bond energy, binding energy density, and atomic cohesive energy, we have developed such a model that is able to reconcile the observed size dependence of the lattice strain, core level shift, elastic modulus, and thermal stability of Au and Ag nanostructures from the perspective of skin-depth bond order loss. Theoretical reproduction of the measured size trends confirms that the undercoordination-induced local bond contraction, bond strength gain, and the associated binding energy density gain, the cohesive energy loss and the tunable fraction of such undercoordinated atoms dictate the observed fascinations, which should shed light on the understanding of the unusual behavior of other nanostructured materials as well.
Buchta, D; Krishnan, S R; Brauer, N B; Drabbels, M; O'Keeffe, P; Devetta, M; Di Fraia, M; Callegari, C; Richter, R; Coreno, M; Prince, K C; Stienkemeier, F; Ullrich, J; Moshammer, R; Mudrich, M
2013-08-28
The ionization dynamics of pure He nanodroplets irradiated by Extreme ultraviolet radiation is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence spectroscopy. We present photoelectron energy spectra and angular distributions measured in coincidence with the most abundant ions He(+), He2(+), and He3(+). Surprisingly, below the autoionization threshold of He droplets, we find indications for multiple excitation and subsequent ionization of the droplets by a Penning-like process. At high photon energies we observe inelastic collisions of photoelectrons with the surrounding He atoms in the droplets.
NASA Astrophysics Data System (ADS)
Redondo-Cubero, A.; Galiana, B.; Lorenz, K.; Palomares, FJ; Bahena, D.; Ballesteros, C.; Hernandez-Calderón, I.; Vázquez, L.
2016-11-01
We have produced self-organised silicide nanodot patterns by medium-energy ion beam sputtering (IBS) of silicon targets with a simultaneous and isotropic molybdenum supply. Atomic force microscopy (AFM) studies show that these patterns are qualitatively similar to those produced thus far at low ion energies. We have determined the relevance of the ion species on the pattern ordering and properties. For the higher ordered patterns produced by Xe+ ions, the pattern wavelength depends linearly on the ion energy. The dot nanostructures are silicide-rich as assessed by x-ray photoelectron spectroscopy (XPS) and emerge in height due to their lower sputtering yield, as observed by electron microscopy. Remarkably, a long wavelength corrugation is observed on the surface which is correlated with both the Mo content and the dot pattern properties. Thus, as assessed by electron microscopy, the protrusions are Mo-rich with higher and more spaced dots on their surface whereas the valleys are Mo-poor with smaller dots that are closer to each other. These findings indicate that there is a correlation between the local metal content of the surface and the nanodot pattern properties both at the nanodot and the large corrugation scales. These results contribute to advancing the understanding of this interesting nanofabrication method and aid in developing a comprehensive theory of nanodot pattern formation and evolution.
Redondo-Cubero, A; Galiana, B; Lorenz, K; Palomares, F J; Bahena, D; Ballesteros, C; Hernandez-Calderón, I; Vázquez, L
2016-11-01
We have produced self-organised silicide nanodot patterns by medium-energy ion beam sputtering (IBS) of silicon targets with a simultaneous and isotropic molybdenum supply. Atomic force microscopy (AFM) studies show that these patterns are qualitatively similar to those produced thus far at low ion energies. We have determined the relevance of the ion species on the pattern ordering and properties. For the higher ordered patterns produced by Xe(+) ions, the pattern wavelength depends linearly on the ion energy. The dot nanostructures are silicide-rich as assessed by x-ray photoelectron spectroscopy (XPS) and emerge in height due to their lower sputtering yield, as observed by electron microscopy. Remarkably, a long wavelength corrugation is observed on the surface which is correlated with both the Mo content and the dot pattern properties. Thus, as assessed by electron microscopy, the protrusions are Mo-rich with higher and more spaced dots on their surface whereas the valleys are Mo-poor with smaller dots that are closer to each other. These findings indicate that there is a correlation between the local metal content of the surface and the nanodot pattern properties both at the nanodot and the large corrugation scales. These results contribute to advancing the understanding of this interesting nanofabrication method and aid in developing a comprehensive theory of nanodot pattern formation and evolution.
Redondo-Cubero, A; Galiana, B; Lorenz, K; Palomares, F J; Bahena, D; Ballesteros, C; Hernandez-Calderón, I; Vázquez, L
2016-11-01
We have produced self-organised silicide nanodot patterns by medium-energy ion beam sputtering (IBS) of silicon targets with a simultaneous and isotropic molybdenum supply. Atomic force microscopy (AFM) studies show that these patterns are qualitatively similar to those produced thus far at low ion energies. We have determined the relevance of the ion species on the pattern ordering and properties. For the higher ordered patterns produced by Xe(+) ions, the pattern wavelength depends linearly on the ion energy. The dot nanostructures are silicide-rich as assessed by x-ray photoelectron spectroscopy (XPS) and emerge in height due to their lower sputtering yield, as observed by electron microscopy. Remarkably, a long wavelength corrugation is observed on the surface which is correlated with both the Mo content and the dot pattern properties. Thus, as assessed by electron microscopy, the protrusions are Mo-rich with higher and more spaced dots on their surface whereas the valleys are Mo-poor with smaller dots that are closer to each other. These findings indicate that there is a correlation between the local metal content of the surface and the nanodot pattern properties both at the nanodot and the large corrugation scales. These results contribute to advancing the understanding of this interesting nanofabrication method and aid in developing a comprehensive theory of nanodot pattern formation and evolution. PMID:27670245
NASA Astrophysics Data System (ADS)
Dixit, Anant; Ángyán, János G.; Rocca, Dario
2016-09-01
A new formalism was recently proposed to improve random phase approximation (RPA) correlation energies by including approximate exchange effects [B. Mussard et al., J. Chem. Theory Comput. 12, 2191 (2016)]. Within this framework, by keeping only the electron-hole contributions to the exchange kernel, two approximations can be obtained: An adiabatic connection analog of the second order screened exchange (AC-SOSEX) and an approximate electron-hole time-dependent Hartree-Fock (eh-TDHF). Here we show how this formalism is suitable for an efficient implementation within the plane-wave basis set. The response functions involved in the AC-SOSEX and eh-TDHF equations can indeed be compactly represented by an auxiliary basis set obtained from the diagonalization of an approximate dielectric matrix. Additionally, the explicit calculation of unoccupied states can be avoided by using density functional perturbation theory techniques and the matrix elements of dynamical response functions can be efficiently computed by applying the Lanczos algorithm. As shown by several applications to reaction energies and weakly bound dimers, the inclusion of the electron-hole kernel significantly improves the accuracy of ground-state correlation energies with respect to RPA and semi-local functionals.
Dixit, Anant; Ángyán, János G; Rocca, Dario
2016-09-14
A new formalism was recently proposed to improve random phase approximation (RPA) correlation energies by including approximate exchange effects [B. Mussard et al., J. Chem. Theory Comput. 12, 2191 (2016)]. Within this framework, by keeping only the electron-hole contributions to the exchange kernel, two approximations can be obtained: An adiabatic connection analog of the second order screened exchange (AC-SOSEX) and an approximate electron-hole time-dependent Hartree-Fock (eh-TDHF). Here we show how this formalism is suitable for an efficient implementation within the plane-wave basis set. The response functions involved in the AC-SOSEX and eh-TDHF equations can indeed be compactly represented by an auxiliary basis set obtained from the diagonalization of an approximate dielectric matrix. Additionally, the explicit calculation of unoccupied states can be avoided by using density functional perturbation theory techniques and the matrix elements of dynamical response functions can be efficiently computed by applying the Lanczos algorithm. As shown by several applications to reaction energies and weakly bound dimers, the inclusion of the electron-hole kernel significantly improves the accuracy of ground-state correlation energies with respect to RPA and semi-local functionals. PMID:27634249
McCarty, J.; Clark, A. J.; Copperman, J.; Guenza, M. G.
2014-05-28
Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k → 0 limit, c{sub 0}. A numerical solution to the PRISM integral equations is used to determine c{sub 0}, by adjusting the value of the effective hard sphere diameter, d{sub HS}, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.
Momeni, Mohammad R; Brown, Alex
2015-06-01
The vertical excitation energies of 17 boron-dipyrromethene (BODIPY) core structures with a variety of substituents and ring sizes are benchmarked using time-dependent density functional theory (TD-DFT) with nine different functionals combined with the cc-pVTZ basis set. When compared to experimental measurements, all functionals provide mean absolute errors (mean AEs) greater than 0.3 eV, larger than the 0.1-0.3 eV differences typically expected from TD-DFT. Due to the high linear correlation of TD-DFT results with experiment, most functionals can be used to predict excitation energies if corrected empirically. Using the CAM-B3LYP functional, 0-0 transition energies are determined, and while the absolute difference is improved (mean AE = 0.478 eV compared to 0.579 eV), the correlation diminishes substantially (R(2) = 0.961 to 0.862). Two very recently introduced charge transfer (CT) indices, q(CT) and d(CT), and electron density difference (EDD) plots demonstrate that CT does not play a significant role for most of the BODIPYs examined and, thus, cannot be the source of error in TD-DFT. To assess TD-DFT methods, vertical excitation energies are determined utilizing TD-HF, configuration interaction CIS and CIS(D), equation of motion EOM-CCSD, SAC-CI, and Laplace-transform based local coupled-cluster singles and approximate doubles LCC2* methods. Moreover, multireference CASSCF and CASPT2 vertical excitation energies were also obtained for all species (except CASPT2 was not feasible for the four largest systems). The SAC-CI/cc-pVDZ, LCC2*/cc-pVDZ, and CASPT2/cc-pVDZ approaches are shown to have the smallest mean AEs of 0.154, 0.109, and 0.100 eV, respectively; the utility of the LCC2* approach is demonstrated for eight extended BODIPYs and aza-BODIPYs. We found that the problems with TD-DFT arise from difficulties in dealing with the differential electron correlation (as assessed by comparing CCS, CC2, LR-CCSD, CCSDR(T), and CCSDR(3) vertical excitation energies for
Mukhtarov, Marat; Ivanov, Anton; Zilberter, Yuri; Bregestovski, Piotr
2011-01-01
Several energy substrates complementary to glucose, including lactate, pyruvate and β-hydroxybutyrate, serve as a fuel for neurons. It was reported recently that these substrates can substantially modulate cortical excitability in neonatal slices. However, complementary energy substrates (CES) can also induce an intracellular acidification when added exogenously. Therefore, action of CES on the neuronal properties governing excitability in neonatal brain slices may be underlain by a change in the cell energy status or by intracellular acidification, or both. Here, we attempt to elucidate these possibilities in neonatal hippocampus by recording neuronal population activity and monitoring intracellular pH. We show that a spontaneous network activity pattern, giant depolarizing potentials (GDPs), characteristic for the neonatal hippocampal slices exposed to artificial cerebrospinal fluid, is strongly inhibited by CES and this effect is unlikely to be caused by a subtle intracellular acidification induced by these compounds. Indeed, a much stronger intracellular acidification in the HCO(3) -free solution inhibited neither the GDP frequency nor the GDP amplitude. Therefore, modulation of neuronal energy homeostasis is the most likely factor underlying the effect of lactate, pyruvate and β-hydroxybutyrate on network excitability in neonatal brain slices.
NASA Astrophysics Data System (ADS)
Sharma, Kalpana; Neetu; Kumar, Vijay; Pal, Rishi; Kumar, Shyam
2015-02-01
Polymers are being widely used as versatile materials in many scientific and technological applications because of their excellent inherent characteristics along with the possibility to further improve their properties through various treatments like chemical doping, gamma irradiation, ion beam irradiation etc. There are many reports in the literature where the optical, mechanical and electrical properties of the polymers are improved after irradiation to ion beams. Such changes are as a result of the energy transferred by the incident ion leading to the structural changes in the polymers. For the quantitative data interpretation in such experiments it is highly essential to know the exact values of energy deposited by the incident ion in the polymeric material. In the present work, a new approach without any empirical parameterizations for the correct evaluation of energy transfer by the incident ion beam within the polymeric material has been developed. Finally, the observed changes in the optical and electrical properties of PET polymer, as quoted in the literature, have been tried to be explained in terms of the energy transferred by the incident ions.
NASA Astrophysics Data System (ADS)
Mushtukov, Alexander A.; Tsygankov, Sergey S.; Serber, Alexander V.; Suleimanov, Valery F.; Poutanen, Juri
2015-12-01
Cyclotron resonance scattering features observed in the spectra of some X-ray pulsars show significant changes of the line centroid energy with the pulsar luminosity. Whereas for bright sources above the so-called critical luminosity, these variations are established to be connected with the appearance of the high-accretion column above the neutron star surface, at low, sub-critical luminosities the nature of the variations (but with the opposite sign) has not been discussed widely. We argue here that the cyclotron line is formed when the radiation from a hotspot propagates through the plasma falling with a mildly relativistic velocity on to the neutron star surface. The position of the cyclotron resonance is determined by the Doppler effect. The change of the cyclotron line position in the spectrum with luminosity is caused by variations of the velocity profile in the line-forming region affected by the radiation pressure force. The presented model has several characteristic features: (i) the line centroid energy is positively correlated with the luminosity; (ii) the line width is positively correlated with the luminosity as well; (iii) the position and the width of the cyclotron absorption line are variable over the pulse phase; (iv) the line has a more complicated shape than widely used Lorentzian or Gaussian profiles; (v) the phase-resolved cyclotron line centroid energy and the width are negatively and positively correlated with the pulse intensity, respectively. The predictions of the proposed theory are compared with the variations of the cyclotron line parameters in the X-ray pulsar GX 304-1 over a wide range of sub-critical luminosities as seen by the INTEGRAL observatory.
NASA Technical Reports Server (NTRS)
Christon, S. P.; Stone, E. C.
1985-01-01
Recurrent low energy (not less than 0.5 MeV) proton flux enhancements, reliable indicators of corotating plasma interaction regions in interplanetary space, have been observed on the Voyager 1 and 2 and Pioneer 11 spacecraft in the heliographic latitude range 2 deg S to 23 deg N and the heliocentric radial range 11 to 20 AU. After a period of rather high correlation between fluxes at different latitudes in early 1983, distinct differences develop. The evolution of the fluxes appears to be related to the temporal and latitudinal dynamics of solar coronal holes, suggesting that information about the latitudinal structure of solar wind stream sources propagates to these distances.
Czarnecki, John B.; Stannard, David I.
1997-01-01
Franklin Lake playa is one of the principal discharge areas of the ground-water-flow system associated with Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository. By using the energy-budget eddy-correlation technique, measurements made between June 1983 and April 1984 to estimate evapotranspiration were found to range from 0.1 centimeter per day during winter months to about 0.3 centimeter per day during summer months; the annual average was 0.16 centimeter per day. These estimates were compared with evapotranspiration estimates calculated from six other methods.
NASA Astrophysics Data System (ADS)
Hu, F.; Jiang, G.; Yang, J. M.; Wang, C. K.; Zhao, X. F.; Hao, L. H.
2011-01-01
We report on large ab initio calculation for the 4s^2- 4s4p transitions in the Zinc-like sequence, using the multi-configuration Dirac-Hartree-Fock method. Results for fine-structure energy levels, the wavelengths, transition rates and lifetimes between Z = 70 (Yb) and Z= 92 (U) are presented and compared with other theories and experiments. The calculated values including core-valence correlation are found to be similar and to compare very well with other theories and experiments values. We believe that our extensive calculated values can guide experimentalists in identifying the fine-structure levels in their future work.
NASA Astrophysics Data System (ADS)
Zhang, Yong; Yang, Jing; Zhang, Wei-Ning
2015-03-01
We calculate the back-to-back correlation (BBC) functions of relativistic boson-antiboson pairs in high energy heavy ion collisions using the Monte Carlo method. The relativistic effects on the BBC functions of φφ and K+K- pairs are investigated. The investigations indicate that the relativistic effects on the BBC functions of K+K- pairs with large momenta are significant, and the effect is sensitive to the particle freeze-out temperature. Supported by National Natural Science Foundation of China (11275037)
The S-Band 1.6 Cell RF Gun Correlated Energy Spread Dependence on pi and 0 Mode Relative Amplitude
Schmerge, J.F.; Castro, J.; Clendenin, J.E.; Dowell, D.H.; Gierman, S.M.; Loos, H.; /SLAC
2006-02-24
The {pi} mode or accelerating mode in a 1.6 cell rf gun is normally the only mode considered in rf gun simulations. However, due to the finite Q there is a small but measurable 0 mode present even at steady state. The {pi} mode by definition has a 180{sup o} phase shift between cells but this phase shift for the total field is several degrees different. This results in a correlated energy spread exiting the gun. A comparison of simulation and experiment will be shown.
Fokas, Alexander S; Cole, Daniel J; Chin, Alex W
2014-12-01
The trimeric Fenna-Mathews-Olson (FMO) complex of green sulphur bacteria is a well-studied example of a photosynthetic pigment-protein complex, in which the electronic properties of the pigments are modified by the protein environment to promote efficient excitonic energy transfer from antenna complexes to the reaction centres. By a range of simulation methods, many of the electronic properties of the FMO complex can be extracted from knowledge of the static crystal structure. However, the recent observation and analysis of long-lasting quantum dynamics in the FMO complex point to protein dynamics as a key factor in protecting and generating quantum coherence under laboratory conditions. While fast inter- and intra-molecular vibrations have been investigated extensively, the slow, conformational dynamics which effectively determine the optical inhomogeneous broadening of experimental ensembles has received less attention. The following study employs constrained geometric dynamics to study the flexibility in the protein network by efficiently generating the accessible conformational states from the published crystal structure. Statistical and principle component analyses reveal highly correlated low frequency motions between functionally relevant elements, including strong correlations between pigments that are excitonically coupled. Our analysis reveals a hierarchy of structural interactions which enforce these correlated motions, from the level of monomer-monomer interfaces right down to the α-helices, β-sheets and pigments. In addition to inducing strong spatial correlations across the conformational ensemble, we find that the overall rigidity of the FMO complex is exceptionally high. We suggest that these observations support the idea of highly correlated inhomogeneous disorder of the electronic excited states, which is further supported by the remarkably low variance (typically <5%) of the excitonic couplings of the conformational ensemble.
NASA Astrophysics Data System (ADS)
Kądzielawa, Andrzej P.; Bielas, Agata; Acquarone, Marcello; Biborski, Andrzej; Maśka, Maciej M.; Spałek, Józef
2014-12-01
The hydrogen molecules H2 and {{≤ft( {{H}2} \\right)}2} are analyzed with electronic correlations taken into account between the 1s electrons in an exact manner. The optimal single-particle Slater orbitals are evaluated in the correlated state of H2 by combining their variational determination with the diagonalization of the full Hamiltonian in the second-quantization language. All electron-ion coupling constants are determined explicitly and their relative importance is discussed. Sizable zero-point motion amplitude and the corresponding energy are then evaluated by taking into account the anharmonic contributions up to the ninth order in the relative displacement of the ions from their static equilibrium value. The applicability of the model to solid molecular hydrogen is briefly analyzed by calculating intermolecular microscopic parameters for the 2× {{H}2} rectangular configuration, as well its ground state energy.
Vondrásek, Jirí; Bendová, Lada; Klusák, Vojtech; Hobza, Pavel
2005-03-01
The formation of a hydrophobic core of globular proteins is believed to be the consequence of exterior hydrophobic forces of entropic nature. This, together with the low occurrence of hydrogen bonds in the protein core, leads to the opinion that the energy contribution of core formation to protein folding and stability is negligible. We show that stabilization inside the hydrophobic core of a small protein, rubredoxin, determined by means of high-level correlated ab initio calculations (complete basis set limit of MP2 stabilization energy + CCSD(T) correction term), amounted to approximately 50 kcal/mol. These results clearly demonstrate strong attraction inside a hydrophobic core. This finding may lead to substantial changes in the current view of protein folding. We also point out the inability of the DFT/B3LYP method to describe a strong attraction between studied amino acids.
Shimpo, Misa; Fukkoshi, Yuko; Akamatsu, Rie
2014-12-01
Self-efficacy in relation to eating behavior for weight control is commonly defined as having the confidence to control urges to overeat in high-risk situations. Prior researchers have suggested that self-efficacy plays a mediating role in eating behavior for weight loss and maintenance. The current study examined the relationship between self-efficacy in resisting certain temptations and daily dietary intake at each meal. Participants were 83 men and 122 women registered at the health management website "Asken". They administered questionnaires about self-efficacy and dietary records. As results of multiple regression analysis, self-efficacy in resisting negative emotions was negatively related to lunch energy intake in men (β=-0.308, p=0.023) and total (β=-0.302, p=0.003), breakfast (β=-0.334, p=0.004), and snacking (β=-0.232, p=0.022) energy intake in women. Also, self-efficacy in resisting rewards was negatively related to lunch energy intake in men (β=-0.218, p=0.040). In men, self-efficacy in resisting hunger was positively related to protein intake (β=0.148, p=0.021) and relaxation was negatively related to lipid intake (β=-0.211, p=0.009). Self-efficacy in resisting some temptations, especially negative emotions, and dietary intakes were negatively related. Future research is needed to confirm these results and assess the prospective effects of self-efficacy.
NASA Astrophysics Data System (ADS)
Rasmussen, Troels Hels; Wang, Yang Min; Kjærgaard, Thomas; Kristensen, Kasper
2016-05-01
We augment the recently introduced same number of optimized parameters (SNOOP) scheme [K. Kristensen et al., J. Chem. Phys. 142, 114116 (2015)] for calculating interaction energies of molecular dimers with an F12 correction and generalize the method to enable the determination of interaction energies of general molecular clusters. The SNOOP, uncorrected (UC), and counterpoise (CP) schemes with/without an F12 correction are compared for the S22 test set of Jurečka et al. [Phys. Chem. Chem. Phys. 8, 1985 (2006)]—which consists of 22 molecular dimers of biological importance—and for water and methane molecular clusters. The calculations have been performed using the Resolution of the Identity second-order Møller-Plesset perturbation theory method. We conclude from the results that the SNOOP scheme generally yields interaction energies closer to the complete basis set limit value than the UC and CP approaches, regardless of whether the F12 correction is applied or not. Specifically, using the SNOOP scheme with an F12 correction yields the computationally most efficient way of achieving accurate results at low basis set levels. These conclusions hold both for molecular dimers and more general molecular clusters.
Kraisler, Eli; Makov, Guy; Kelson, Itzhak
2010-10-15
The total energies and the spin states for atoms and their first ions with Z=1-86 are calculated within the the local spin-density approximation (LSDA) and the generalized-gradient approximation (GGA) to the exchange-correlation (xc) energy in density-functional theory. Atoms and ions for which the ground-state density is not pure-state v-representable are treated as ensemble v-representable with fractional occupations of the Kohn-Sham system. A recently developed algorithm which searches over ensemble v-representable densities [E. Kraisler et al., Phys. Rev. A 80, 032115 (2009)] is employed in calculations. It is found that for many atoms, the ionization energies obtained with the GGA are only modestly improved with respect to experimental data, as compared to the LSDA. However, even in those groups of atoms where the improvement is systematic, there remains a non-negligible difference with respect to the experiment. The ab initio electronic configuration in the Kohn-Sham reference system does not always equal the configuration obtained from the spectroscopic term within the independent-electron approximation. It was shown that use of the latter configuration can prevent the energy-minimization process from converging to the global minimum, e.g., in lanthanides. The spin values calculated ab initio fit the experiment for most atoms and are almost unaffected by the choice of the xc functional. Among the systems with incorrectly obtained spin, there exist some cases (e.g., V, Pt) for which the result is found to be stable with respect to small variations in the xc approximation. These findings suggest a necessity for a significant modification of the exchange-correlation functional, probably of a nonlocal nature, to accurately describe such systems.
Bonente, Giulia; Passarini, Francesca; Cazzaniga, Stefano; Mancone, Carmine; Buia, Maria Cristina; Tripodi, Marco; Bassi, Roberto; Caffarri, Stefano
2008-01-01
To avoid photodamage, photosynthetic organisms have developed mechanisms to evade or dissipate excess energy. Lumen overacidification caused by light-induced electron transport triggers quenching of excited chlorophylls and dissipation of excess energy into heat. In higher plants participation of the PsbS protein as the sensor of low lumenal pH was clearly demonstrated. Although light-dependent energy quenching is a property of all photosynthetic organisms, large differences in amplitude and kinetics can be observed thus raising the question whether a single common mechanism is in action. We performed a detailed study of PsbS expression/accumulation in Chlamydomonas reinhardtii and investigated its accumulation in other algae and plants. We showed that PsbS cannot be detected in Chlamydomonas under a wide range of growth conditions. Overexpression of the endogenous psbs gene showed that the corresponding protein could not be addressed to the thylakoid membranes. Survey of different unicellular green algae showed no accumulation of anti-PsbS reactive proteins differently from multicellular species. Nevertheless, some unicellular species exhibit high energy quenching activity, suggesting that a PsbS-independent mechanism is activated. By correlating growth habitat and PsbS accumulation in different species, we suggest that during the evolution the light environment has been a determinant factor for the conservation/loss of the PsbS function. PMID:19067957
Bonente, Giulia; Passarini, Francesca; Cazzaniga, Stefano; Mancone, Carmine; Buia, Maria Cristina; Tripodi, Marco; Bassi, Roberto; Caffarri, Stefano
2008-01-01
To avoid photodamage, photosynthetic organisms have developed mechanisms to evade or dissipate excess energy. Lumen overacidification caused by light-induced electron transport triggers quenching of excited chlorophylls and dissipation of excess energy into heat. In higher plants participation of the PsbS protein as the sensor of low lumenal pH was clearly demonstrated. Although light-dependent energy quenching is a property of all photosynthetic organisms, large differences in amplitude and kinetics can be observed thus raising the question whether a single common mechanism is in action. We performed a detailed study of PsbS expression/accumulation in Chlamydomonas reinhardtii and investigated its accumulation in other algae and plants. We showed that PsbS cannot be detected in Chlamydomonas under a wide range of growth conditions. Overexpression of the endogenous psbs gene showed that the corresponding protein could not be addressed to the thylakoid membranes. Survey of different unicellular green algae showed no accumulation of anti-PsbS reactive proteins differently from multicellular species. Nevertheless, some unicellular species exhibit high energy quenching activity, suggesting that a PsbS-independent mechanism is activated. By correlating growth habitat and PsbS accumulation in different species, we suggest that during the evolution the light environment has been a determinant factor for the conservation/loss of the PsbS function.
Schwemmler, W; Herrmann, M
1979-01-01
The insect group which includes cicadas harbours intracellular bacterial symbionts which are passed on from generation to generation in the form of a 'symbiont ball' inserted between the egg membrane and the rear pole of the egg cell. Bioluminiscence methods can be used to measure the oscillations in ATP, ADP and AMP levels in egg systems which have been separated into a host and a symbiont part (Euscelidius variegatus, Euscelis incisus), and which are exposed to constant light or light-dark variations under otherwise constant conditions (26 degrees C, 70% relative humidity, 7000 lux). The energy charge can be calculated from the ATP, ADP and AMP concentrations. Comparisons of such curves suggest an 'antagonistic' relationship in the energy metabolism of the host and symbiont parts of the egg. The minima of oscilaltions in the host's energy metabolism generally occur at the same time as the maxima in the endocytobionts energy metabolism. Antagonistic correlations between the nucleus/cytoplasm and mitochondria/plastids were also observed in the eucyte system. Analogies between the two systems can be explained satisfactorily by the endosymbiont theory of the origin of eucytes. It follows that insect endocytobioses can serve as an experimental model for the biochemical analysis of the eucyte system.
NASA Astrophysics Data System (ADS)
Zhao, Quantang; Cao, S. C.; Liu, M.; Sheng, X. K.; Wang, Y. R.; Zong, Y.; Zhang, X. M.; Jing, Y.; Cheng, R.; Zhao, Y. T.; Zhang, Z. M.; Du, Y. C.; Gai, W.
2016-10-01
A beam line dedicated to high-energy electron radiography experimental research with linear achromat and imaging lens systems has been designed. The field of view requirement on the target and the beam angle-position correlation correction can be achieved by fine-tuning the fields of the quadrupoles used in the achromat in combination with already existing six quadrupoles before the achromat. The radiography system is designed by fully considering the space limitation of the laboratory and the beam diagnostics devices. Two kinds of imaging lens system, a quadruplet and an octuplet system are integrated into one beam line with the same object plane and image plane but with different magnification factor. The beam angle-position correlation on the target required by the imaging lens system and the aperture effect on the images are studied with particle tracking simulation. It is shown that the aperture position is also correlated to the beam angle-position on the target. With matched beam on the target, corresponding aperture position and suitable aperture radius, clear pictures can be imaged by both lens systems. The aperture is very important for the imaging. The details of the beam optical requirements, optimized parameters and the simulation results are presented.
Wu, Y.Q; Tang, W.; Kramer, M.J.; Dennis, K.W.; Oster, N.; McCallum, R.W.; Anderson, I.E.
2009-07-24
The devitrification behavior of nanocrystalline MRE{sub 2}(Fe,Co){sub 14}B+ZrC (MRE = Nd+Y+Dy) was studied using differential scanning calorimetry (DSC), synchrotron high temperature x-ray diffraction, and analytical transmission electron microscopy (TEM) techniques. Alloy ribbons were melt spun at 25 m/s to obtain an amorphous structure. Optimum hard magnetic properties (B{sub r} = 7.2 kG, H{sub c} = 12.7 kOe and (BH){sub max} = 10.8 MG Oe) were obtained in ribbons annealed at 750 C for 15 min. A reduced annealing temperature of 638 C and holding time from 0 to 11 min were chosen based on DSC analysis. Large changes in both microstructure and hard magnetic properties were found in a narrow window of annealing time, 4.5-6 min, resulting in a dramatic increase in energy product, remanence and coercivity: 0.96 MG Oe, 5.2 kG, 2.7 kOe to 5.7 MG Oe, 7.2 kG, 8.5 kOe for (BH){sub max}, B{sub r} and H{sub c}, respectively. Energy dispersive x-ray spectroscopy and energy filtered TEM analyses indicate that Zr- and C-rich particles ({approx} 5 nm) and thin grain boundary layers (1-2 nm thick) are formed surrounding 2-14-1 hard phase grains when the annealing time is over 6 min. Further annealing resulted in a more distinct hard phase surrounded by a nonmagnetic grain boundary phase {approx} 1 nm in thickness. The thin grain boundary layer phase starts to disappear with annealing time over 11 min. The partitioning behavior of various elements at different annealing conditions appears to be associated with significant changes in magnetic properties, leading to an improved optimum microstructure.
NASA Astrophysics Data System (ADS)
Bubnov, V. P.; Kareev, I. E.; Lobanov, B. V.; Murzashev, A. I.; Nekrasov, V. M.
2016-08-01
Isomerically pure endohedral metallofullerenes Gd@C82(C2v), Ho@C82( C 2 v ), and their monoanions have been synthesized and separated. The optical absorption spectra of solutions of obtained compounds in o-dichlorobenzene have been studied. Within the Hubbard model, the energy spectrum of isomer of C 2 v symmetry (no. 9) of fullerene C82 has been calculated. Based on the obtained spectrum, optical absorption spectra of endohedral metallofullerenes Gd@C82 and Ho@C82 and their monoanions have been simulated. The calculated optical absorption spectra have been compared with experimental ones; it has been found that qualitative agreement between them is observed.
Borovkov, V I; Beregovaya, I V; Shchegoleva, L N; Potashov, P A; Bagryansky, V A; Molin, Y N
2012-09-14
Paramagnetic spin-lattice relaxation (SLR) in radical cations (RCs) of the cycloalkane series in liquid solution was studied and analyzed from the point of view of the correlation between the relaxation rate and the structure of the adiabatic potential energy surface (PES) of the RCs. SLR rates in the RCs formed in x-ray irradiated n-hexane solutions of the cycloalkanes studied were measured with the method of time-resolved magnetic field effect in the recombination fluorescence of spin-correlated radical ion pairs. Temperature and, for some cycloalkanes, magnetic field dependences of the relaxation rate were determined. It was found that the conventional Redfield theory of the paramagnetic relaxation as applied to the results on cyclohexane RC, gave a value of about 0.2 ps for the correlation time of the perturbation together with an unrealistically high value of 0.1 T in field units for the matrix element of the relaxation transition. The PES structure was obtained with the DFT quantum-chemical calculations. It was found that for all of the cycloalkanes RCs considered, including low symmetric alkyl-substituted ones, the adiabatic PESes were surfaces of pseudorotation due to avoided crossing. In the RCs studied, a correlation between the SLR rate and the calculated barrier height to the pseudorotation was revealed. For RCs with a higher relaxation rate, the apparent activation energies for the SLR were similar to the calculated heights of the barrier. To rationalize the data obtained it was assumed that the vibronic states degeneracy, which is specific for Jahn-Teller active cyclohexane RC, was approximately kept in the RCs of substituted cycloalkanes for the vibronic states with the energies above and close to the barrier height to the pseudorotation. It was proposed that the effective spin-lattice relaxation in a radical with nearly degenerate low-lying vibronic states originated from stochastic crossings of the vibronic levels that occur due to fluctuations of
NASA Astrophysics Data System (ADS)
Martinez-Casado, Ruth; Usvyat, Denis; Maschio, Lorenzo; Mallia, Giuseppe; Casassa, Silvia; Ellis, John; Schütz, Martin; Harrison, Nicholas M.
2014-05-01
In this work we employ ab initio electronic structure theory at a very high level to resolve a long standing experimental controversy; the interaction between helium and the MgO (100) surface has been studied extensively by other groups, employing diverse experimental approaches. Nevertheless, the binding energy of the lowest bound state is still unclear: the existence of a state at around -5.5 meV is well established but a state at -10 meV has also been reported. The MgO (100)-He system captures the fundamental physics involved in many adsorption problems; the weak binding is governed by long-range electronic correlation for which a fully predictive theory applicable to the solid state has been elusive. The above-mentioned experimental controversy can now be resolved on the basis of the calculations presented in this work. We performed three-dimensional vibrational dynamics calculations on a highly accurate potential-energy surface. The latter was constructed using a method which systematically approaches the exact limit in its treatment of electronic correlation. The outcome is clear: our calculations do not support the existence of a bound state around -10 meV.
NASA Technical Reports Server (NTRS)
Coyne, Lelia M.; Banin, Amos; Carle, Glenn; Orenberg, James; Scattergood, Thomas
1989-01-01
A number of questions concerning the surface mineralogy and the history of water on Mars remain unresolved using the Viking analyses and Earth-based telescopic data. Identification and quantitation of iron-bearing clays on Mars would elucidate these outstanding issues. Near infrared correlation analysis, a method typically applied to qualitative and quantitative analysis of individual constituents of multicomponent mixtures, is adapted here to selection of distinctive features of a small, highly homologous series of Fe/Ca-exchanged montmorillonites and several kalinites. Independently determined measures of surface iron, relative humidity and stored electronic energy were used as constituent data for linear regression of the constituent vs. reflectance data throughout the spectral region 0.68 to 2.5 micrometers. High correlations were found in appropriate regions for all three constituents, though that with stored energy is still considered tenuous. Quantitation was improved using 1st and 2nd derivative spectra. High resolution data over a broad spectral range would be required to quantitatively identify iron-bearing clays by remotely sensed reflectance.
NASA Technical Reports Server (NTRS)
Chiao, Raymond Y.; Kwiat, Paul G.; Steinberg, Aephraim M.
1992-01-01
The energy-time uncertainty principle is on a different footing than the momentum position uncertainty principle: in contrast to position, time is a c-number parameter, and not an operator. As Aharonov and Bohm have pointed out, this leads to different interpretations of the two uncertainty principles. In particular, one must distinguish between an inner and an outer time in the definition of the spread in time, delta t. It is the inner time which enters the energy-time uncertainty principle. We have checked this by means of a correlated two-photon light source in which the individual energies of the two photons are broad in spectra, but in which their sum is sharp. In other words, the pair of photons is in an entangled state of energy. By passing one member of the photon pair through a filter with width delta E, it is observed that the other member's wave packet collapses upon coincidence detection to a duration delta t, such that delta E(delta t) is approximately equal to planks constant/2 pi, where this duration delta t is an inner time, in the sense of Aharonov and Bohm. We have measured delta t by means of a Michelson interferometer by monitoring the visibility of the fringes seen in coincidence detection. This is a nonlocal effect, in the sense that the two photons are far away from each other when the collapse occurs. We have excluded classical-wave explanations of this effect by means of triple coincidence measurements in conjunction with a beam splitter which follows the Michelson interferometer. Since Bell's inequalities are known to be violated, we believe that it is also incorrect to interpret this experimental outcome as if energy were a local hidden variable, i.e., as if each photon, viewed as a particle, possessed some definite but unknown energy before its detection.
Fontana, Roberta; Della Torre, Sara
2016-02-01
In female mammals, mechanisms have been developed, throughout evolution, to integrate environmental, nutritional and hormonal cues in order to guarantee reproduction in favorable energetic conditions and to inhibit it in case of food scarcity. This metabolic strategy could be an advantage in nutritionally poor environments, but nowadays is affecting women's health. The unlimited availability of nutrients, in association with reduced energy expenditure, leads to alterations in many metabolic pathways and to impairments in the finely tuned inter-relation between energy metabolism and reproduction, thereby affecting female fertility. Many energetic states could influence female reproductive health being under- and over-weight, obesity and strenuous physical activity are all conditions that alter the profiles of specific hormones, such as insulin and adipokines, thus impairing women fertility. Furthermore, specific classes of nutrients might affect female fertility by acting on particular signaling pathways. Dietary fatty acids, carbohydrates, proteins and food-associated components (such as endocrine disruptors) have per se physiological activities and their unbalanced intake, both in quantitative and qualitative terms, might impair metabolic homeostasis and fertility in premenopausal women. Even though we are far from identifying a "fertility diet", lifestyle and dietary interventions might represent a promising and invaluable strategy to manage infertility in premenopausal women. PMID:26875986
Fontana, Roberta; Della Torre, Sara
2016-01-01
In female mammals, mechanisms have been developed, throughout evolution, to integrate environmental, nutritional and hormonal cues in order to guarantee reproduction in favorable energetic conditions and to inhibit it in case of food scarcity. This metabolic strategy could be an advantage in nutritionally poor environments, but nowadays is affecting women’s health. The unlimited availability of nutrients, in association with reduced energy expenditure, leads to alterations in many metabolic pathways and to impairments in the finely tuned inter-relation between energy metabolism and reproduction, thereby affecting female fertility. Many energetic states could influence female reproductive health being under- and over-weight, obesity and strenuous physical activity are all conditions that alter the profiles of specific hormones, such as insulin and adipokines, thus impairing women fertility. Furthermore, specific classes of nutrients might affect female fertility by acting on particular signaling pathways. Dietary fatty acids, carbohydrates, proteins and food-associated components (such as endocrine disruptors) have per se physiological activities and their unbalanced intake, both in quantitative and qualitative terms, might impair metabolic homeostasis and fertility in premenopausal women. Even though we are far from identifying a “fertility diet”, lifestyle and dietary interventions might represent a promising and invaluable strategy to manage infertility in premenopausal women. PMID:26875986
Fontana, Roberta; Della Torre, Sara
2016-02-11
In female mammals, mechanisms have been developed, throughout evolution, to integrate environmental, nutritional and hormonal cues in order to guarantee reproduction in favorable energetic conditions and to inhibit it in case of food scarcity. This metabolic strategy could be an advantage in nutritionally poor environments, but nowadays is affecting women's health. The unlimited availability of nutrients, in association with reduced energy expenditure, leads to alterations in many metabolic pathways and to impairments in the finely tuned inter-relation between energy metabolism and reproduction, thereby affecting female fertility. Many energetic states could influence female reproductive health being under- and over-weight, obesity and strenuous physical activity are all conditions that alter the profiles of specific hormones, such as insulin and adipokines, thus impairing women fertility. Furthermore, specific classes of nutrients might affect female fertility by acting on particular signaling pathways. Dietary fatty acids, carbohydrates, proteins and food-associated components (such as endocrine disruptors) have per se physiological activities and their unbalanced intake, both in quantitative and qualitative terms, might impair metabolic homeostasis and fertility in premenopausal women. Even though we are far from identifying a "fertility diet", lifestyle and dietary interventions might represent a promising and invaluable strategy to manage infertility in premenopausal women.
Wolf, K.L.
1996-12-31
Data analysis is in progress for recent experiments performed by the NA44 collaboration with the first running of 160 A GeV {sup 208}Pb-induced reactions at the CERN SPS. Identified singles spectra were taken for pions, kaons, protons, deuterons, antiprotons and antideuterons. Two-pion interferometry measurements were made for semi-central-triggered {sup 208}Pb + Pb collisions. An upgraded multiple-particle spectrometer allows high statistics data sets of identified particles to be collected near mid-rapidity. A second series of experiments will be performed in the fall of 1995 with more emphasis on identical kaon interferometry and on the measurement of rare particle spectra and correlations. Modest instrumentation upgrades by TAMU are designed to increase the trigger function for better impact parameter selection and improved collection efficiency of valid events. An effort to achieve the highest degree of projectile-target stopping is outlined and it is argued that an excitation function on the SPS is needed to better understand reaction mechanisms. Analysis of experimental results is in the final stages at LBL in the EOS collaboration for two-ion interferometry in the 1.2 A GeV Au+Au reaction, taken with full event characterization.
NASA Astrophysics Data System (ADS)
Shuaib, Mohd.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj Kumar; Singh, Devendra P.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Prasad, R.
2016-07-01
The excitation functions of reaction residues populated via the complete fusion and incomplete fusion process in the interaction of the 19F+159Tb system have been measured at energies ≈4 -6 MeV/nucleon, using off-line γ -ray spectroscopy. The analysis of data was done within the framework of statistical model code pace4 (a compound nucleus model). A significant fraction of incomplete fusion was observed in the production of reaction residues involving α particle(s) in the exit channels, even at energies as low as near the Coulomb barrier. The incomplete fusion strength function was deduced from the experimental excitation functions and the dependence of this strength function on various entrance channel parameters was studied. The present results show a strong dependence on the projectile α -Q value that agrees well with the existing data. To probe the dependence of incomplete fusion on entrance channel mass asymmetry, the present work was compared with the results obtained in the interaction of 12C, 16O, and 19F with nearby targets available in the literature. It was observed that the mass asymmetry linearly increases for each projectile separately and turns out to be a projectile-dependent mass-asymmetry systematics. The deduced incomplete fusion strength functions in the present work are also plotted as a function of ZPZT (Coulomb effect) and compared with the existing literature. A strong dependence of the Coulomb effect on the incomplete fusion fraction was observed. It was found that the fraction of incomplete fusion linearly increases with ZPZT and was found to be more for larger ZPZT values indicating significantly important linear systematics.
NASA Technical Reports Server (NTRS)
Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.
2013-01-01
Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.
NASA Astrophysics Data System (ADS)
Ajili, Y.; Ben Abdallah, D.; Mogren Al-Mogren, M.; Lique, F.; Francisco, J. S.; Hochlaf, M.
2016-07-01
The intermonomer three-dimensional potential-energy surface (3D PES) of the thiazyl-hydride-helium (HSN-He) weakly bound molecular system is generated using the explicitly correlated coupled-cluster method with single, double, and perturbative triple excitations. The 3D PES is mapped in Jacobi coordinates. This potential-energy surface shows a unique potential well at planar configurations. The depth of this potential is 74.4 c m-1 . This 3D PES is incorporated into a close-coupling and coupled-states quantum dynamical treatment of nuclear motions to deduce the rotational (de-)excitation of HSN by He for energies up to 1400 c m-1 . After averaging over a Maxwell-Boltzmann distribution, the collisional rate coefficients are derived for temperatures ranging from 5 to 200 K. These data are essential for the identification of HSN molecules in astrophysical media. A comparison between thionitrosyl-hydride—He and HSN-He is performed.
Ivanov, Sergei D. Grant, Ian M.; Marx, Dominik
2015-09-28
With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.
Giraud, B G; Heumann, J M; Lapedes, A S
1999-05-01
The fact that correlation does not imply causation is well known. Correlation between variables at two sites does not imply that the two sites directly interact, because, e.g., correlation between distant sites may be induced by chaining of correlation between a set of intervening, directly interacting sites. Such "noncausal correlation" is well understood in statistical physics: an example is long-range order in spin systems, where spins which have only short-range direct interactions, e.g., the Ising model, display correlation at a distance. It is less well recognized that such long-range "noncausal" correlations can in fact be stronger than the magnitude of any causal correlation induced by direct interactions. We call this phenomenon superadditive correlation (SAC). We demonstrate this counterintuitive phenomenon by explicit examples in (i) a model spin system and (ii) a model continuous variable system, where both models are such that two variables have multiple intervening pathways of indirect interaction. We apply the technique known as decimation to explain SAC as an additive, constructive interference phenomenon between the multiple pathways of indirect interaction. We also explain the effect using a definition of the collective mode describing the intervening spin variables. Finally, we show that the SAC effect is mirrored in information theory, and is true for mutual information measures in addition to correlation measures. Generic complex systems typically exhibit multiple pathways of indirect interaction, making SAC a potentially widespread phenomenon. This affects, e.g., attempts to deduce interactions by examination of correlations, as well as, e.g., hierarchical approximation methods for multivariate probability distributions, which introduce parameters based on successive orders of correlation. PMID:11969452
Wang Tao; Gu Qiusheng; Huang Jiasheng; Fang Guanwen; Fazio, G. G.; Faber, S. M.; McGrath, Elizabeth J.; Kocevski, Dale; Yan Haojing; Dekel, Avishai; Guo Yicheng; Ferguson, Henry C.; Grogin, Norman; Lotz, Jennifer M.; Lucas, Ray A.; Koekemoer, A. M.; Weiner, Benjamin; Hathi, Nimish P.; Kong Xu
2012-06-20
We present a study on spectral energy distributions, morphologies, and star formation for an IRAC-selected extremely red object sample in the GOODS Chandra Deep Field-South. This work was enabled by new HST/WFC3 near-IR imaging from the CANDELS survey as well as the deepest available X-ray data from Chandra 4 Ms observations. This sample consists of 133 objects with the 3.6 {mu}m limiting magnitude of [3.6] = 21.5 and is approximately complete for galaxies with M{sub *} > 10{sup 11} M{sub Sun} at 1.5 {<=} z {<=} 2.5. We classify this sample into two types, quiescent and star-forming galaxies (SFGs), in the observed infrared color-color ([3.6]-[24] versus K - [3.6]) diagram. The further morphological study of this sample shows a consistent result with the observed color classification. The classified quiescent galaxies are bulge dominated and SFGs in the sample have disk or irregular morphologies. Our observed infrared color classification is also consistent with the rest-frame color (U - V versus V - J) classification. We also found that quiescent and SFGs are well separated in the nonparametric morphology parameter (Gini versus M{sub 20}) diagram measuring their concentration and clumpiness: quiescent galaxies have a Gini coefficient higher than 0.58 and SFGs have a Gini coefficient lower than 0.58. We argue that the star formation quenching process must lead to or be accompanied by the increasing galaxy concentration. One prominent morphological feature of this sample is that disks are commonly seen in this massive galaxy sample at 1.5 {<=} z {<=} 2.5: 30% of quiescent galaxies and 70% of SFGs with M{sub *} > 10{sup 11} M{sub Sun} have disks in their rest-frame optical morphologies. The prevalence of these extended, relatively undisturbed disks challenges the merging scenario as the main mode of massive galaxy formation.
NASA Astrophysics Data System (ADS)
Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.
2016-03-01
Over the past few years, pair coupled cluster doubles (pCCD) has shown promise for the description of strong correlation. This promise is related to its apparent ability to match results from doubly occupied configuration interaction (DOCI), even though the latter method has exponential computational cost. Here, by modifying the full configuration interaction quantum Monte Carlo algorithm to sample only the seniority zero sector of Hilbert space, we show that the DOCI and pCCD energies are in agreement for a variety of 2D Hubbard models, including for systems well out of reach for conventional configuration interaction algorithms. Our calculations are aided by the sign problem being much reduced in the seniority zero space compared with the full space. We present evidence for this and then discuss the sign problem in terms of the wave function of the system which appears to have a simplified sign structure.
Fang, Ke; Fujii, Toshihiro; Linden, Tim; Olinto, Angela V.
2014-10-20
The Telescope Array (TA) has observed a statistically significant excess in cosmic rays with energies above 57 EeV in a region of approximately 1150 deg{sup 2} centered on coordinates R.A. = 146.7, decl. = 43.2. We note that the location of this excess correlates with 2 of the 28 extraterrestrial neutrinos recently observed by IceCube. The overlap between the two IceCube neutrinos and the TA excess is statistically significant at the 2σ level. Furthermore, the spectrum and intensity of the IceCube neutrinos is consistent with a single source which would also produce the TA excess. Finally, we discuss possible source classes with the correct characteristics to explain the cosmic-ray and neutrino fluxes with a single source.
Takahashi, Yoshiyuki
1997-12-12
This report describes the research results of the study of high energy heavy-ion interactions and multi-cluster correlations at the University of Alabama in Huntsville (UAH). This study has been performed as the CERN experiments, EMU05, EMU09 and EMU16, and a part of the RHIC PHENIX and its MVD Collaboration work. Physics objectives and methods are described in chapters 1, 2, 3 and Appendices A1 and A2. The experimental set-up, measurements, an the data analyses at UAH are described in chapters 4 through 10 and Appendices. The UAH research was a quest for high density state of nuclear matter, in terms of finding analysis methods of multi-isospin correlations. The present work emphasized a study of the fluctuation of the particle density, discriminating the isospin for exploring the Disoriented Chiral Condensate (DCC). The analysis methods developed are: (1) Chi-square density test; (2) Run-test; (3) G-test; (4) Fourier analysis; and (5) Lomb`s Periodogram. The application of these methods for central collision events in 2,000 GeV/n S + Pb and 167 GeV/n Pb + Pb produced interesting DCC correlations for a few events. However, further investigation of fluctuations with Monte Carlo method guided them to understand various hidden degree of freedoms in such analyses. The results of the analysis of the experimental data in comparison with the Monte Carlo data did not support the DCC process as compelling. The developed methods evolved for a plan to investigate the DCC in the PHENIX. The study has obtained several mathematical analysis methods from the CERN EMU05/16 experiments for a possible use in RHIC experiments.
NASA Astrophysics Data System (ADS)
Klamer, Ilana J.; Ekers, Ron D.; Bryant, Julia J.; Hunstead, Richard W.; Sadler, Elaine M.; De Breuck, Carlos
2006-09-01
This is the third in a series of papers that present observations and results for a sample of 76 ultrasteep-spectrum radio sources designed to find galaxies at high redshift. Here we present multifrequency radio observations, from the Australia Telescope Compact Array, for a subset of 37 galaxies from the sample. Matched resolution observations at 2.3, 4.8 and 6.2 GHz are presented for all galaxies, with the z < 2 galaxies additionally observed at 8.6 and 18 GHz. New angular size constraints are reported for 19 sources based on high-resolution 4.8- and 6.2-GHz observations. Functional forms for the rest-frame spectral energy distributions are derived: 89 per cent of the sample is well characterized by a single power law, whilst the remaining 11 per cent show some flattening towards higher frequencies: not one source shows any evidence for high-frequency steepening. We discuss the implications of this result in light of the empirical correlation between redshift and spectral index seen in flux-limited samples of radio galaxies. Finally, a new physical mechanism to explain the redshift - spectral index correlation is posited: extremely steep-spectrum radio galaxies in the local universe usually reside at the centres of rich galaxy clusters. We argue that if a higher fractions of radio galaxies, as a function of redshift, are located in environments with densities similar to nearby rich clusters, then this could be a natural interpretation for the correlation. We briefly outline our plans to pursue this line of investigation.
NASA Astrophysics Data System (ADS)
Vysotskii, V. I.; Vysotskyy, M. V.
2015-10-01
We consider peculiarities of the formation of a coherent correlated state (CCS) of a low-energy particle under frequency modulation of parameters of a harmonic oscillator that contains this particle by a broadband nonmonochromatic or asymmetric pulsed action. It is shown that in the case of modulation with frequency-normalized intensity, the maximum efficiency of CCS formation corresponds to a narrow-band action, while broadband modulation is optimal for the action with a constant spectral density. As in the case of monochromatic modulation, the maximum correlation coefficient, | r|max, under the nonmonochromatic action corresponds to parametric resonance at frequency Ω ≈ 2ω0. Under a pulsed action, the maximum efficiency of CCS formation and, hence, the maximum probability of the tunnel effect, correspond to pulsed modulation with a short leading edge and a long trailing edge. In particular, under the action of a pulsed magnetic field with an amplitude of 10 kOe and the leading edge duration of 2 × 10-7 s on a gas with deuterium ions, a CCS can be formed with the correlation coefficient | r|max ≈ 0.9998, for which the tunneling effect probability under the dd interaction at temperature T ≈ 300-500 K increases from D r = 0 ≈ 10-80 to {D_{|r{|_{max }} = 0.9998}} ≈ 0.1. This process can occur in a gas with particle number density n < n cr ≈ 1017 cm-3. The method of CCS formation makes it possible to explain the results of an experiment in which substantial isotope changes were detected when a pulsed electric current and magnetic-field generation occurred.
Aoki, Masahiko; Takai, Yoshihiro; Narita, Yuichiro; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Miura, Hiroyuki; Ono, Shuichi
2014-09-01
The purpose of this study was to investigate the relationship between tumor size and blood volume for patients with lung tumors, using dual-energy computed tomography (DECT) and a gemstone spectral imaging (GSI) viewer. During the period from March 2011 to March 2013, 50 patients with 57 medically inoperable lung tumors underwent DECT before stereotactic body radiotherapy (SBRT) of 50-60 Gy in 5-6 fractions. DECT was taken for pretreatment evaluation. The region-of-interest for a given spatial placement of the tumors was set, and averages for CT value, water density and iodine density were compared with tumor size. The average values for iodine density in tumors of ≤ 2 cm, 2-3 cm, and >3 cm maximum diameter were 24.7, 19.6 and 16.0 (100 µg/cm(3)), respectively. The average value of the iodine density was significantly lower in larger tumors. No significant correlation was detected between tumor size and average CT value or between tumor size and average water density. Both the average water density and the average CT value were affected by the amount of air in the tumor, but the average iodine density was not affected by air in the tumor. The average water density and the average CT value were significantly correlated, but the average iodine density and the average CT value showed no significant correlation. The blood volume of tumors can be indicated by the average iodine density more accurately than it can by the average CT value. The average iodine density as assessed by DECT might be a non-invasive and quantitative assessment of the radio-resistance ascribable to the hypoxic cell population in a tumor.
NASA Astrophysics Data System (ADS)
Bagus, Paul S.; Sousa, Carme; Illas, Francesc
2016-10-01
In this paper, we present a study of the signs and the magnitudes of the errors of theoretical binding energies, BE's, of the C(1s) and O(1s) core-levels compared to BE's measured in X-Ray photoemission, XPS, experiments. In particular, we explain the unexpected sign of the error of the Hartree-Fock C(1s) BE, which is larger than experiment, in terms of correlation effects due to the near degeneracy of the CO(1π) and CO(2π) levels and show how taking this correlation into account leads to rather accurate predicted BE's. We separate the initial state contributions of this near degeneracy, present for the ground state wavefunction, from the final state near degeneracy effects, present for the hole state wavefunctions. Thus, we are able to establish the importance for the core-level BE's of initial state charge redistribution due to the π near-degeneracy. While the results for CO are interesting in their own right, we also consider whether our conclusions for CO are relevant for the analysis of XPS spectra of a wider range of molecules.
Arora, Priya; Moudgil, R. K.; Bhukal, Nisha
2015-05-15
Static density-density correlation function has been calculated for a spin-polarized two-dimensional quantum electron fluid by including the first-order exchange and self-energy corrections to the random-phase approximation (RPA). This is achieved by determining these corrections to the RPA linear density-density response function, obtained by solving the equation of motion for the single-particle Green’s function. Resulting infinite hierarchy of equations (involving higher-order Green’s functions) is truncated by factorizing the two-particle Green’s function as a product of the single-particle Green’s function and one-particle distribution function. Numerical results of correlation function are compared directly against the quantum Monte Carlo simulation data due to Tanatar and Ceperley for different coupling parameter (r{sub s}) values. We find almost exact agreement for r{sub s}=1, with a noticeable improvement over the RPA. Its quality, however, deteriorates with increasing r{sub s}, but correction to RPA is quite significant.
Zhang, Wenjing; Truhlar, Donald G; Tang, Mingsheng
2013-09-10
One of the greatest challenges for the theoretical study of transition-metal-containing compounds is the treatment of intrinsically multiconfigurational atoms and molecules, which require a multireference (MR) treatment in wave function theory. The accuracy of density functional theory for such systems is still being explored. Here, we continue that exploration by presenting the predictions of 42 exchange-correlation (xc) functionals of 11 types [local spin density approximation (LSDA), generalized gradient approximation (GGA), nonseparable gradient approximation (NGA), global-hybrid GGA, meta-GGA, meta-NGA, global-hybrid meta-GGA, range-separated hybrid GGA, range-separated hybrid meta-GGA, range-separated hybrid meta-NGA, and DFT augmented with molecular mechanics damped dispersion (DFT-D)]. DFT-D is tested both for Grimme's DFT-D3(BJ) model with Becke-Johnson damping and for ωB97X-D, which has the empirical atom-atom dispersion parametrized by Chai and Head-Gordon. The Hartree-Fock (HF) method has also been included because it can be viewed as a functional with 100% HF exchange and no correlation. These methods are tested against a database including 70 first-transition-row (3d) transition-metal-containing molecules (19 single-reference molecules and 51 MR molecules), all of which have estimated experimental uncertainties equal to or less than 2.0 kcal/mol in the heat of formation. We analyze the accuracy in terms of the atomization energy per bond instead of the enthalpy of formation of the molecule because it allows us to test electronic energies without the possibility of cancellation of errors in electronic energies with errors in vibrational energies. All the density functional and HF wave functions have been optimized to a stable solution, in which the spatial symmetry is allowed to be broken to minimize the energy to a stable solution. We find that τ-HCTHhyb has the smallest mean unsigned error (MUE) in average bond energy, in particular 2.5 kcal
NASA Astrophysics Data System (ADS)
Witek, M.; Kang, T. S.; van der Lee, S.
2015-12-01
We have collected three-component data from 122 Korean accelerometer stations for the month of December in 2014. We apply similar techniques described by Zha et al. (2013) to retrieve accurate station orientation angles, in order to rotate the horizontal component data into the radial and transverse frame of reference, and for subsequent measurement of Love wave group velocity dispersion. We simultaneously normalize all three components of a daily noise record via the frequency-time normalization (FTN) method. Each component is divided by the average signal envelope in an effort to retain relative amplitude information between all three components. Station orientations are found by a grid search for the orientation azimuth which maximizes the coherency between the radial-vertical cross-correlation and the Hilbert transformed vertical-vertical cross-correlation. After measuring orientation angles, we cross-correlate and rotate the data. Typically, the group velocity dispersion curves are measured using the frequency time analysis technique (FTAN), effectively producing spectrograms with significant uncertainty in the time-frequency plane. The spectrogram approach retains only the amplitude information of the short-time Fourier transform (STFT). However, Kodera et al (1976) show that by taking into account the phase information, the concepts of instantaneous frequency and group-time delay can be used to compute the first moment of the signal power in the frequency and time domains. During energy reassignment, the signal power calculated using the STFT at a point (t0,f0t_0, f_0) is reassigned to the location of the first moment (t^g,f^ihat{t}_g,hat{f}_i), where t^ghat{t}_g is the group-time delay and f^ihat{f}_i is the instantaneous frequency. We apply the method of energy reassignment to produce precise Rayleigh and Love wave group velocity measurements in the frequency range 0.1 - 1.0 Hz. Tests on synthetic data show more accurate retrieval of group velocities at
NASA Technical Reports Server (NTRS)
Schlosser, H.
1981-01-01
The self consistent calculation of the electronic energy levels of noble gas pseudomolecules formed when a metal surface is bombarded by noble gas ions is discussed along with the construction of energy level correlation diagrams as a function of interatomic spacing. The self consistent field x alpha scattered wave (SCF-Xalpha-SW) method is utilized. Preliminary results on the Ne-Mg system are given. An interactive x alpha programming system, implemented on the LeRC IBM 370 computer, is described in detail. This automated system makes use of special PROCDEFS (procedure definitions) to minimize the data to be entered manually at a remote terminal. Listings of the special PROCDEFS and of typical input data are given.
Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Allen, N.J.; Ash, W.W.; Aston, D.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bienz, T.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D`Oliveira, A.; Damerell, C.J.S.; Daoudi, M.; De Sangro, R.; De Simone, P.; Dell`Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jackson, D.J.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; Russell, J.J.; Saxton, O.H.; Schalk, T.; (SLD Collabor...
1995-10-01
We have compared a new QCD calculation by Clay and Ellis of energy-energy correlations (EEC`s) and their asymmetry (AEEC`s) in {ital e}{sup +}{ital e}{sup {minus}} annihilation into hadrons with data collected by the SLD experiment at SLAC. From fits of the new calculation, complete at {ital O}({alpha}{sub {ital s}}{sup 2}), we obtained {alpha}{sub {ital s}}({ital M}{sub {ital Z}}{sup 2})=0.1184{plus_minus}0.0031(expt){plus_minus}0.0129(theory) (EEC) and {alpha}{sub {ital s}}({ital M}{sub {ital Z}}{sup 2})=0.1120{plus_minus}0.0034(expt){plus_minus}0.0036(theory) (AEEC). The EEC result is significantly lower than that obtained from comparable fits using the {ital O}({alpha}{sub {ital s}}{sup 2}) calculation of Kunszt and Nason.
Jung, Yousung; Head-Gordon, Martin
2006-06-28
A new implementation of the scaled opposite spin Møller-Plesset (SOS-MP2) method is briefly described, which exploits the locality and sparsity of expansion coefficients and as a result has computational costs that increase approximately quadratically with molecular size. The performance of SOS-MP2 for describing stacked pi-complexes is carefully investigated using the benzene, ethylene, uracil, and naphthalene dimers as model systems. It is demonstrated that counterpoise-corrected SOS-MP2 results, extrapolated towards the complete basis set (CBS) limit using a two-point extrapolation scheme, can yield association energies that are reasonably close to the best available numbers, when the single scale factor is chosen as 1.55 for extrapolating results at the cc-pVDZ and cc-pVTZ levels. This methodology yields an interaction energy for the fullerene-tetraphenylporphyrin dimer of -31.47 kcal mol(-1) while Hartree-Fock (HF) with the cc-pVTZ basis finds the dimer at the same geometry is unbound by +10.83 kcal mol(-1). This implies that the net binding is a result of substantial correlation effects, presumably long-range London dispersions.
NASA Astrophysics Data System (ADS)
Shastry, B. Sriram; Perepelitsky, Edward
2016-07-01
We present the results for the low-energy properties of the infinite-dimensional t -J model with J =0 , using O (λ2) equations of the extremely correlated Fermi liquid formalism. The parameter λ ∈[0 ,1 ] is analogous to the inverse spin parameter 1 /(2 S ) in quantum magnets. The present analytical scheme allows us to approach the physically most interesting regime near the Mott insulating state n ≲1 . It overcomes the limitation to low densities n ≲0.7 of earlier calculations, by employing a variant of the skeleton graph expansion, and a high-frequency cutoff that is essential for maintaining the known high-T entropy. The resulting quasiparticle weight Z , the low ω ,T self-energy, and the resistivity are reported. These are quite close at all densities to the exact numerical results of the U =∞ Hubbard model, obtained using the dynamical mean field theory. The present calculation offers the advantage of generalizing to finite T rather easily, and allows the visualization of the loss of coherence of Fermi liquid quasiparticles by raising T . The present scheme is generalizable to finite dimensions and a nonvanishing J .
Tobaruela, Almudena; Rojo, Francisco Javier; García Paez, José María; Bourges, Jean Yves; Herrero, Eduardo Jorge; Millán, Isabel; Alvarez, Lourdes; Cordon, Ángeles; Guinea, Gustavo V
2016-08-01
The aim of this study was to evaluate the variation of hardness with fatigue in calf pericardium, a biomaterial commonly used in bioprosthetic heart valves, and its relationship with the energy dissipated during the first fatigue cycle that has been shown to be a predictor of fatigue-life (García Páez et al., 2006, 2007; Rojo et al., 2010). Fatigue tests were performed in vitro on 24 pericardium specimens cut in a root-to-apex direction. The specimens were subjected to a maximum stress of 1MPa in blocks of 10, 25, 50, 100, 250, 500, 1000 and 1500 cycles. By means of a modified Shore A hardness test procedure, the hardness of the specimen was measured before and after fatigue tests. Results showed a significant correlation of such hardness with fatigue performance and with the energy dissipated in the first cycle of fatigue, a predictor of pericardium durability. The study showed indentation hardness as a simple and reliable indicator of mechanical performance, one which could be easily implemented in improving tissue selection.
Basis-set limit binding energies of Be{sub n} and Mg{sub n} (n=2,3,4) clusters
Lee, Jae Shin
2003-10-01
The general applicability of the basis set and correlation-dependent extrapolation method [J. Chem. Phys. 118, 3035 (2003)], which fits two successive correlation energies with correlation-consistent cc-pVXZ and cc-pV(X+1)Z basis sets [X=D(2),T(3),Q(4)] by (X+k){sup -3} with varying k according to basis-set quality and correlation level, was explored by examining the basis-set limit binding energies of the metallic clusters of Be{sub n} and Mg{sub n} (n=2,3,4) at the MP2 (second-order Moller-Plesset perturbation theory) and CCSD(T) (single and double coupled cluster method with perturbative triple correction) level. The comparison of the extrapolated basis-set limit estimates with the highly accurate reference basis-set limits suggests that the extrapolation of correlation contributions of binding energies with only cc-pVDZ and cc-pVTZ basis sets already yields the basis-set limit estimates close to the reference complete basis-set limits within 1 m-hartree in most cases, signifying the utility of this extrapolation method in the study of larger clusters. The natural extension of this extrapolation method to all electron correlated computations including core electrons with core-valence cc-pCVXZ basis sets is also made, which shows the similar accuracy of the extrapolated estimates for all electron correlated results as the valence electron only correlated results. The comparison of the MP2 and CCSD(T) basis-set limit binding energies with DFT (density-functional theory) results manifests the capability and limitation of the current DFT methods in studying the binding of such clusters.
Aartsen, M. G.
2016-01-20
This study presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size of the UHECRmore » magnetic deflections. Finally, we perform another likelihood analysis stacking the UHECR directions and using a sample of through-going muon tracks optimized for neutrino point-source searches with sub-degree angular resolution. No indications of correlations at discovery level are obtained for any of the searches performed. The smallest of the p-values comes from the search for correlation between UHECRs with IceCube high-energy cascades, a result that should continue to be monitored.« less
IceCube Collaboration; Pierre Auger Collaboration; Telescope Array Collaboration
2016-01-01
This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size of the UHECR magnetic deflections. Finally, we perform another likelihood analysis stacking the UHECR directions and using a sample of through-going muon tracks optimized for neutrino point-source searches with sub-degree angular resolution. No indications of correlations at discovery level are obtained for any of the searches performed. The smallest of the p-values comes from the search for correlation between UHECRs with IceCube high-energy cascades, a result that should continue to be monitored.
Petersen, Hannah; Bass, Steffen A.; Renk, Thorsten
2011-01-15
We investigate the contribution of medium-modified jets and initial state fluctuations to the asymmetry in charged-particle production with respect to the reaction plane. This asymmetry has been suggested as a compelling signature for the chiral magnetic effect in QCD and makes the study of conventional scenarios for the creation of such charged-particle multiplicity fluctuations a timely endeavor. The different path-length combinations of jets through the medium in noncentral heavy ion collisions result in finite correlations of like and different charged particles emitted in the different hemispheres. Our calculation is based on the combination of jet events from Yet another Jet Energy-Loss Model (YaJEM) and a bulk-medium evolution. It is found that the jet production probabilities are too small to observe this effect. The influence of initial state fluctuations on this observable is explored by using an event-by-event (3+1)-dimensional hybrid approach that is based on Ultra-relativistic Quantum Molecular Dynamics (UrQMD) with an ideal hydrodynamic evolution. In this calculation, momentum conservation and elliptic flow are explicitly taken into account. The asymmetries in the initial state are translated to a final state momentum asymmetry by the hydrodynamic flow profile. Dependent on the size of the initial state fluctuations, the resulting charged-particle asymmetries are in qualitative agreement with the preliminary STAR (solenoid tracker at the Relativistic Heavy Ion Collider) results. The multiparticle correlation as proposed by the PHENIX Collaboration can, in principle, be used to disentangle the different contributions, however, in practice, is affected substantially by the procedure to subtract trivial resonance decay contributions.
NASA Astrophysics Data System (ADS)
Cai, Bao-Jun; Li, Bao-An
2016-01-01
It is well known that short-range nucleon-nucleon correlations (SRC) from the tensor components and/or the repulsive core of nuclear forces lead to a high- (low-)momentum tail (depletion) in the single-nucleon momentum distribution above (below) the nucleon Fermi surface in cold nucleonic matter. Significant progress was made recently in constraining the isospin-dependent parameters characterizing the SRC-modified single-nucleon momentum distribution in neutron-rich nucleonic matter using both experimental data and microscopic model calculations. Using the constrained single-nucleon momentum distribution in a nonlinear relativistic mean field (RMF) model, we study the equation of state (EOS) of asymmetric nucleonic matter (ANM), especially the density dependence of nuclear symmetry energy Esym(ρ ) . First, as a test of the model, the average nucleon kinetic energy extracted recently from electron-nucleus scattering experiments using a neutron-proton dominance model is well reproduced by the RMF model incorporating effects of the SRC-induced high-momentum nucleons, while it is significantly under predicted by the RMF model using a step function for the single-nucleon momentum distribution as in free Fermi gas (FFG) models. Second, consistent with earlier findings within nonrelativistic models, the kinetic symmetry energy of quasinucleons is found to be Esymkin(ρ0) =-16.94 ±13.66 MeV which is dramatically different from the prediction of Esymkin(ρ0) ≈12.5 MeV by FFG models at nuclear matter saturation density ρ0=0.16 fm-3 . Third, comparing the RMF calculations with and without the high-momentum nucleons using two sets of model parameters both reproducing identically all empirical constraints on the EOS of symmetric nuclear matter (SNM) and the symmetry energy of ANM at ρ0, the SRC-modified single-nucleon momentum distribution is found to make the Esym(ρ ) more concave around ρ0 by softening it significantly at both subsaturation and suprasaturation
Gautam, R K; Thakur, R
2009-09-01
The paper aims to draw out biosocial correlates of nutrition through body mass index (BMI) and chronic energy deficiency (CED). The findings are based on cross-sectional data of 446 women aged 18-60 years from six different endogamous groups of two ecological zones. The mean age of studied women varied from 31 to 36 years. The mean age at menarche was found to be 14.50±1.32 years. Similarly mean age at menopause was found to be 46.22±4.00 years. The mean of reproductive life span varied from 27 to 35 years. Average number of pregnancies per women was 4.44±2.52, average foetal loss was 0.11, children surviving per women was 3.61, whereas average child loss per women was found to be 0.62 and average family size was 9.51. Variations in mean BMI kg/m2 between populations ranged between 18.56 and 20.71. Prevalence of CED was highest among the Brahmin women of Uttarakhand (58.3%) followed by Ahirwar of Madhya Pradesh (47.1%). Incidence of CED was found lowest among Brahmin women of Madhya Pradesh (24.0%). Linear regression coefficient (b ± standard error) of BMI on Cormic Index for these women was 33.1 ± 8.1 (t=4.0, p=0.001), and correlation coefficient (R) was 0.189. Out of 6 anthropometric variables considered for regression analysis, 5, namely weight, hip circumference, waist circumference, mid arm circumference and sitting height showed significant correlations with BMI. Significant differences in sitting height and Cormic Index of women from the hills and plains indicate the role of ecology in shaping its habitants. Out of 9 demographic variables, only age of respondent and family size were found to have a significant impact on low BMI status. The present study postulates that the nutritional status of women has improved over the last decades.
Vysotskii, V. I.; Adamenko, S. V.; Vysotskyy, M. V.
2012-10-15
We consider peculiarities in the formation of a coherent correlated state (CCS) of a particle in a periodically modulated harmonic oscillator with damping for various types of stochastic perturbation. It is shown that in the absence of stochastic perturbation, an optimal relation exists between the damping parameter (damping coefficient) and the modulation depth, for which the 'extrinsic' characteristics of the oscillator (amplitudes of 'classical' oscillation and the momentum of a particle) remain unchanged, while the correlation coefficient rapidly increases from |r| = 0 to |r|{sub max} Almost-Equal-To 1; this corresponds to a completely correlated coherent state. Under nonoptimal conditions, the formation of the CCS with a simultaneous increase in is accompanied by damping or excitation of the oscillator. It is shown that for a certain relation between the damping coefficient and the modulation depth, the presence of a stochastic external force acting on the nonstationary oscillator does not prevent the formation of a CCS with |r|{sub max} {yields} 1. A fundamentally different effect is observed under a stochastic influence on the nonstationary frequency of the oscillator; this effect always limits the value of vertical bar r vertical bar at a level |r|{sub max} < 1; a CCR cannot be formed with an unlimited increase in its intensity, and |r|{sub max} {yields} 0. The influence of the CCS formation on the averaged probability Left-Pointing-Angle-Bracket D Right-Pointing-Angle-Bracket of the tunnel effect (transparency of the potential barrier) is considered for a particle in an oscillator with damping both in the absence and in the presence of a stochastic force. It is shown using a specific example that complete clearing of the potential barrier and the increase in the barrier transparency from the initial value Left-Pointing-Angle-Bracket D{sub r=0} Right-Pointing-Angle-Bracket 10{sup -80} to Left-Pointing-Angle-Bracket D Right-Pointing-Angle-Bracket Almost
Abdurakhmanov, U. U. Gulamov, K. G.; Zhokhova, S. I.; Navotny, V. Sh.
2010-01-15
Inter- and intragroup azimuthal correlations of target and projectile fragments and of shower particles in the interactions between gold nuclei of energy 10.6 GeV per nucleon and silver and bromine nuclei of a track emulsion are studied at intermediate values of the impact parameter. The asymmetry index {beta}'{sub 1} and the collinearity index {beta}'{sub 2} of groups' asymmetry vectors are used to study azimuthal correlations between two and three groups of particles. The interplay of effects of intra- and intergroup azimuthal particle correlations is investigated.
Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.
2014-01-01
Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques. PMID:24736640
NASA Astrophysics Data System (ADS)
Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.
2014-04-01
Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques.
Pseudopotentials for correlated electron systems
NASA Astrophysics Data System (ADS)
Trail, J. R.; Needs, R. J.
2013-07-01
A scheme is developed for creating pseudopotentials for use in correlated-electron calculations. Pseudopotentials for the light elements H, Li, Be, B, C, N, O, and F, are reported, based on data from high-level quantum chemical calculations. Results obtained with these correlated electron pseudopotentials (CEPPs) are compared with data for atomic energy levels and the dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules obtained from coupled cluster single double triple calculations with large basis sets. The CEPPs give better results in correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.
Martz, Meghan E.; Patrick, Megan E.; Schulenberg, John E.
2015-01-01
Purpose The consumption of alcohol mixed with energy drinks (AmED) is a risky drinking behavior, most commonly studied using college samples. We know little about rates of AmED use and its associations with other risk behaviors, including unsafe driving, among high school students. This study examined the prevalence and correlates of AmED use among high school seniors in the United States. Methods Nationally representative analytic samples included 6,498 12th-grade students who completed Monitoring the Future surveys in 2012 and 2013. Focal measures included AmED use, sociodemographic characteristics, academic and social factors, other substance use, and unsafe driving (i.e., tickets/warnings and accidents) following alcohol consumption. Results Approximately one in four students (24.8%) reported AmED use during the past 12 months. Rates of AmED use were highest among males and White students. Using multivariable logistic regression models controlling for sociodemographic characteristics, results indicate that students who cut class, spent more evenings out for fun and recreation, and reported binge drinking, marijuana use, and illicit drug use had a greater likelihood of AmED use. AmED use was also associated with greater odds of alcohol-related unsafe driving, even after controlling for sociodemographic, academic, and social factors, and other substance use. Conclusions AmED use among 12th-grade students is common and associated with certain sociodemographic, academic, social, and substance use factors. AmED use is also related to alcohol-related unsafe driving, which is a serious public health concern. PMID:25907654
NASA Astrophysics Data System (ADS)
Kirnosov, Nikita; Sharkey, Keeper L.; Adamowicz, Ludwik
2015-11-01
Direct variational calculations, where the Born-Oppenheimer (BO) approximation is not assumed, are performed for all 26 bound rovibrational states corresponding to the lowest rotational excitation (i.e. the N = 1 states) of the tritium molecule (T2). The non-BO energies are used to determine the ortho-para isomerization energies. All-particle explicitly correlated Gaussian basis functions are employed in the calculations and over 11 000 Gaussians independently generated for each state are used. The exponential parameters of the Gaussians are optimized with the aid of analytically calculated energy gradient determined with respect to these parameters. The non-BO wave functions are used to calculate expectation values of the inter-particle distances and the triton-triton correlation functions.
Loussert Fonta, Céline; Humbel, Bruno M
2015-09-01
In recent years correlative microscopy, combining the power and advantages of different imaging system, e.g., light, electrons, X-ray, NMR, etc., has become an important tool for biomedical research. Among all the possible combinations of techniques, light and electron microscopy, have made an especially big step forward and are being implemented in more and more research labs. Electron microscopy profits from the high spatial resolution, the direct recognition of the cellular ultrastructure and identification of the organelles. It, however, has two severe limitations: the restricted field of view and the fact that no live imaging can be done. On the other hand light microscopy has the advantage of live imaging, following a fluorescently tagged molecule in real time and at lower magnifications the large field of view facilitates the identification and location of sparse individual cells in a large context, e.g., tissue. The combination of these two imaging techniques appears to be a valuable approach to dissect biological events at a submicrometer level. Light microscopy can be used to follow a labelled protein of interest, or a visible organelle such as mitochondria, in time, then the sample is fixed and the exactly same region is investigated by electron microscopy. The time resolution is dependent on the speed of penetration and fixation when chemical fixatives are used and on the reaction time of the operator for cryo-fixation. Light microscopy can also be used to identify cells of interest, e.g., a special cell type in tissue or cells that have been modified by either transfections or RNAi, in a large population of non-modified cells. A further application is to find fluorescence labels in cells on a large section to reduce searching time in the electron microscope. Multiple fluorescence labelling of a series of sections can be correlated with the ultrastructure of the individual sections to get 3D information of the distribution of the marked proteins: array
Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.
2010-04-13
A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.
Loussert Fonta, Céline; Humbel, Bruno M
2015-09-01
In recent years correlative microscopy, combining the power and advantages of different imaging system, e.g., light, electrons, X-ray, NMR, etc., has become an important tool for biomedical research. Among all the possible combinations of techniques, light and electron microscopy, have made an especially big step forward and are being implemented in more and more research labs. Electron microscopy profits from the high spatial resolution, the direct recognition of the cellular ultrastructure and identification of the organelles. It, however, has two severe limitations: the restricted field of view and the fact that no live imaging can be done. On the other hand light microscopy has the advantage of live imaging, following a fluorescently tagged molecule in real time and at lower magnifications the large field of view facilitates the identification and location of sparse individual cells in a large context, e.g., tissue. The combination of these two imaging techniques appears to be a valuable approach to dissect biological events at a submicrometer level. Light microscopy can be used to follow a labelled protein of interest, or a visible organelle such as mitochondria, in time, then the sample is fixed and the exactly same region is investigated by electron microscopy. The time resolution is dependent on the speed of penetration and fixation when chemical fixatives are used and on the reaction time of the operator for cryo-fixation. Light microscopy can also be used to identify cells of interest, e.g., a special cell type in tissue or cells that have been modified by either transfections or RNAi, in a large population of non-modified cells. A further application is to find fluorescence labels in cells on a large section to reduce searching time in the electron microscope. Multiple fluorescence labelling of a series of sections can be correlated with the ultrastructure of the individual sections to get 3D information of the distribution of the marked proteins: array
ERIC Educational Resources Information Center
Online-Offline, 1998
1998-01-01
This issue focuses on the theme of "Energy," and describes several educational resources (Web sites, CD-ROMs and software, videos, books, activities, and other resources). Sidebars offer features on alternative energy, animal energy, internal combustion engines, and energy from food. Subthemes include harnessing energy, human energy, and natural…
DD correlations in photoproduction
NASA Astrophysics Data System (ADS)
Alvarez, M. P.; Barate, R.; Bloch, D.; Bonamy, P.; Borgeaud, P.; Burchell, M.; Burmeister, H.; Brunet, J. M.; Calvino, F.; Cattaneo, M.; Crespo, J. M.; D'Almagne, B.; David, M.; di Ciaccio, L.; Dixon, J.; Druet, P.; Duane, A.; Engel, J. P.; Ferrer, A.; Filippas, T. A.; Fokitis, E.; Forty, R. W.; Foucault, P.; Gazis, E. N.; Gerber, J. P.; Giomataris, Y.; Hofmokl, T.; Katsoufis, E. C.; Koratzinos, M.; Krafft, C.; Lefievre, B.; Lemoigne, Y.; Lopez, A.; Lui, W. K.; Magneville, C.; Maltezos, A.; McEwen, J. G.; Papadopoulou, T.; Pattison, B.; Poutot, D.; Primout, M.; Rahmani, H.; Roudeau, P.; Seez, C.; Six, J.; Strub, R.; Treille, D.; Triscos, P.; Tristram, G.; Villet, G.; Volte, A.; Wayne, M.; Websdale, D. M.; Wormser, G.; Zolnierowski, Y.
1992-03-01
Kinematic correlations between the charmed D and D mesons produced by a photon beam of mean energy 100 GeV/c have been measured by the NA14/2 experiment at CERN using a sample of almost background-free fully reconstructed DD events. The observed D and DD distributions are compared to the predictions of production models using different parameters for the charm fragmentation function and for the intrinsic transverse momentum of the partons.
NASA Astrophysics Data System (ADS)
Ruigrok, Elmer; Gibbons, Steven; Wapenaar, Kees
2016-10-01
An areal distribution of sensors can be used for estimating the direction of incoming waves through beamforming. Beamforming may be implemented as a phase-shifting and stacking of data recorded on the different sensors (i.e., conventional beamforming). Alternatively, beamforming can be applied to cross-correlations between the waveforms on the different sensors. We derive a kernel for beamforming cross-correlated data and call it cross-correlation beamforming (CCBF). We point out that CCBF has slightly better resolution and aliasing characteristics than conventional beamforming. When auto-correlations are added to CCBF, the array response functions are the same as for conventional beamforming. We show numerically that CCBF is more resilient to non-coherent noise. Furthermore, we illustrate that with CCBF individual receiver-pairs can be removed to improve mapping to the slowness domain. An additional flexibility of CCBF is that cross-correlations can be time-windowed prior to beamforming, e.g., to remove the directionality of a scattered wavefield. The observations on synthetic data are confirmed with field data from the SPITS array (Svalbard). Both when beamforming an earthquake arrival and when beamforming ambient noise, CCBF focuses more of the energy to a central beam. Overall, the main advantage of CCBF is noise suppression and its flexibility to remove station pairs that deteriorate the signal-related beampower.
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kostarakis, P.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molñar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira da Costa, H.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shahzad, M. I.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; de Souza, R. D.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yang, H.; Yang, P.; Yano, S.; Yasin, Z.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration
2016-05-01
Three- and four-pion Bose-Einstein correlations are presented in p p ,p -Pb, and Pb-Pb collisions at the LHC. We compare our measured four-pion correlations to the expectation derived from two- and three-pion measurements. Such a comparison provides a method to search for coherent pion emission. We also present mixed-charge correlations in order to demonstrate the effectiveness of several analysis procedures such as Coulomb corrections. Same-charge four-pion correlations in p p and p -Pb appear consistent with the expectations from three-pion measurements. However, the presence of non-negligible background correlations in both systems prevent a conclusive statement. In Pb-Pb collisions, we observe a significant suppression of three- and four-pion Bose-Einstein correlations compared to expectations from two-pion measurements. There appears to be no centrality dependence of the suppression within the 0%-50% centrality interval. The origin of the suppression is not clear. However, by postulating either coherent pion emission or large multibody Coulomb effects, the suppression may be explained.
NASA Astrophysics Data System (ADS)
Mietlicki, David John
In the production of top-antitop quark pairs during pp¯ collisions, the spins of the t and t¯ are correlated. This correlation is quantified by the spin correlation coefficient kappa or the fraction of top quarks produced with opposite helicity FOH, which are determined by the QCD interaction mechanism that produces tt¯ pairs. A deviation of the correlation from the predicted value could be an indication of new production mechanisms. We describe a measurement of the tt¯ spin correlation using the lepton plus jets decay channel, where the decay proceeds via tt¯ → W+bW -b¯ → (qq¯'b) (ℓnuℓb¯) or (ℓnuℓb)( qq¯'b¯), in data corresponding to 4.3 fb-1 of integrated luminosity collected with t he CDF detector. In the helicity basis, we find an opposite helicity fraction FOH = 0.80 +/- 0.25stat +/- 0.08 syst and a spin correlation coefficient kappa = 0.60 +/- 0.50stat +/- 0.16 syst, which are in good agreement with the theoretical predictions FOH = 0.70 and kappa = 0.40.
Morrison, Robert C.
2015-01-07
Accurate densities were determined from configuration interaction wave functions for atoms and ions of Li, Be, and B with up to four electrons. Exchange-correlation potentials, V{sub xc}(r), and functional derivatives of the noninteracting kinetic energy, δK[ρ]/δρ(r), obtained from these densities were used to examine their discontinuities as the number of electrons N increases across integer boundaries for N = 1, N = 2, and N = 3. These numerical results are consistent with conclusions that the discontinuities are characterized by a jump in the chemical potential while the shape of V{sub xc}(r) varies continuously as an integer boundary is crossed. The discontinuity of the V{sub xc}(r) is positive, depends on the ionization potential, electron affinity, and orbital energy differences, and the discontinuity in δK[ρ]/δρ(r) depends on the difference between the energies of the highest occupied and lowest unoccupied orbitals. The noninteracting kinetic energy and the exchange correlation energy have been computed for integer and noninteger values of N between 1 and 4.
Squeezed Particle-Antiparticle Correlations
NASA Astrophysics Data System (ADS)
Padula, S. S.; Dudek, D. M.; Socolowski, O., Jr.
2009-04-01
A novel type of correlation involving particle-antiparticle pairs was found out in the 1990's. Currently known as squeezed or Back-to-Back Correlations (BBC), they should be present if the hadronic masses are modified in the hot and dense medium formed in high energy heavy ion collisions. Although well-established theoretically, such hadronic correlations have not yet been observed experimentally. In this phenomenological study we suggest a promising way to search for the BBC signal, by looking into the squeezed correlation function of phi phi and K+ K- pairs at RHIC energies, as function of the pair average momentum, K12=(@BOLD@ k1+@BOLD@ k2)/2. The effects of in-medium mass-shift on the identical particle correlations (Hanbury-Brown and Twiss effect) are also discussed.
Dean, M P M; Cao, Y; Liu, X; Wall, S; Zhu, D; Mankowsky, R; Thampy, V; Chen, X M; Vale, J G; Casa, D; Kim, Jungho; Said, A H; Juhas, P; Alonso-Mori, R; Glownia, J M; Robert, A; Robinson, J; Sikorski, M; Song, S; Kozina, M; Lemke, H; Patthey, L; Owada, S; Katayama, T; Yabashi, M; Tanaka, Yoshikazu; Togashi, T; Liu, J; Rayan Serrao, C; Kim, B J; Huber, L; Chang, C-L; McMorrow, D F; Först, M; Hill, J P
2016-06-01
Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity. Recently, photo-excitation has been used to induce similarly exotic states transiently. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state, 2 ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. The marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.
Dean, M P M; Cao, Y; Liu, X; Wall, S; Zhu, D; Mankowsky, R; Thampy, V; Chen, X M; Vale, J G; Casa, D; Kim, Jungho; Said, A H; Juhas, P; Alonso-Mori, R; Glownia, J M; Robert, A; Robinson, J; Sikorski, M; Song, S; Kozina, M; Lemke, H; Patthey, L; Owada, S; Katayama, T; Yabashi, M; Tanaka, Yoshikazu; Togashi, T; Liu, J; Rayan Serrao, C; Kim, B J; Huber, L; Chang, C-L; McMorrow, D F; Först, M; Hill, J P
2016-06-01
Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity. Recently, photo-excitation has been used to induce similarly exotic states transiently. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state, 2 ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. The marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics. PMID:27159018
Dean, M. P. M.; Cao, Y.; Liu, X.; Wall, S.; Zhu, D.; Mankowsky, R.; Thampy, V.; Chen, X. M.; Vale, J. G.; Casa, D.; et al
2016-05-09
Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity1, 2, 3, 4. Recently, photo-excitation has been used to induce similarly exotic states transiently5, 6, 7. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state, 2 ps after the excitation,more » exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. In conclusion, the marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.« less
NASA Astrophysics Data System (ADS)
Dean, M. P. M.; Cao, Y.; Liu, X.; Wall, S.; Zhu, D.; Mankowsky, R.; Thampy, V.; Chen, X. M.; Vale, J. G.; Casa, D.; Kim, Jungho; Said, A. H.; Juhas, P.; Alonso-Mori, R.; Glownia, J. M.; Robert, A.; Robinson, J.; Sikorski, M.; Song, S.; Kozina, M.; Lemke, H.; Patthey, L.; Owada, S.; Katayama, T.; Yabashi, M.; Tanaka, Yoshikazu; Togashi, T.; Liu, J.; Rayan Serrao, C.; Kim, B. J.; Huber, L.; Chang, C.-L.; McMorrow, D. F.; Först, M.; Hill, J. P.
2016-06-01
Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity. Recently, photo-excitation has been used to induce similarly exotic states transiently. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state, 2 ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. The marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Sordillo, Peter P.; Budansky, Yury; Pu, Yang; Alfano, Robert R.
2014-12-01
The correlation between histologic grade, an increasingly important measure of prognosis for patients with breast cancer, and tryptophan levels from tissues of 15 breast carcinoma patients was investigated. Changes in the relative content of key native organic biomolecule tryptophan were seen from the fluorescence spectra of cancerous and paired normal tissues with excitation wavelengths of 280 and 300 nm. Due to a large spectral overlap and matching excitation-emission spectra, fluorescence resonance energy transfer from tryptophan-donor to reduced nicotinamide adenine dinucleotides-acceptor was noted. We used the ratios of fluorescence intensities at their spectral emission peaks, or spectral fingerprint peaks, at 340, 440, and 460 nm. Higher ratios correlated strongly with high histologic grade, while lower-grade tumors had low ratios. Large tumor size also correlated with high ratios, while the number of lymph node metastases, a major factor in staging, was not correlated with tryptophan levels. High histologic grade correlates strongly with increased content of tryptophan in breast cancer tissues and suggests that measurement of tryptophan content may be useful as a part of the evaluation of these patients.
Accurate nonrelativistic ground-state energies of 3d transition metal atoms
Scemama, A.; Applencourt, T.; Giner, E.; Caffarel, M.
2014-12-28
We present accurate nonrelativistic ground-state energies of the transition metal atoms of the 3d series calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC). Selected multi-determinantal expansions obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) method and including the most prominent determinants of the full configuration interaction expansion are used as trial wavefunctions. Using a maximum of a few tens of thousands determinants, fixed-node errors on total DMC energies are found to be greatly reduced for some atoms with respect to those obtained with Hartree-Fock nodes. To the best of our knowledge, the FN-DMC/(CIPSI nodes) ground-state energies presented here are the lowest variational total energies reported so far. They differ from the recently recommended non-variational values of McCarthy and Thakkar [J. Chem. Phys. 136, 054107 (2012)] only by a few percents of the correlation energy. Thanks to the variational property of FN-DMC total energies, our results provide exact lower bounds for the absolute value of all-electron correlation energies, |E{sub c}|.
Vallinotto, Alberto; Viel, Matteo; Das, Sudeep; Spergel, David N. E-mail: viel@oats.inaf.it E-mail: dns@astro.princeton.edu
2011-07-01
We expect a detectable correlation between two seemingly unrelated quantities: the four-point function of the cosmic microwave background (CMB) and the amplitude of flux decrements in quasar (QSO) spectra. The amplitude of CMB convergence in a given direction measures the projected surface density of matter. Measurements of QSO flux decrements trace the small-scale distribution of gas along a given line of sight. While the cross-correlation between these two measurements is small for a single line of sight, upcoming large surveys should enable its detection. This paper presents analytical estimates for the signal-to-noise ratio (S/N) for measurements of the cross-correlation between the flux decrement and the convergence, <{delta}F{kappa}>, and for measurements of the cross-correlation between the variance in flux decrement and the convergence, <({delta}F){sup 2}{kappa}>. For the ongoing BOSS (SDSS-III) and Planck surveys, we estimate an S/N of 30 and 9.6 for these two correlations. For the proposed BigBOSS and ACTPOL surveys, we estimate an S/N of 130 and 50, respectively. Since <({delta}F){sup 2}{kappa}>{proportional_to}{sigma}{sub 8}{sup 4}, the amplitude of these cross-correlations can potentially be used to measure the amplitude of {sigma}{sub 8} at z {approx} 2%-2.5% with BOSS and Planck and even better with future data sets. These measurements have the potential to test alternative theories for dark energy and to constrain the mass of the neutrino. The large potential signal estimated in our analytical calculations motivates tests with nonlinear hydrodynamic simulations and analyses of upcoming data sets.
CMB Lensing Cross Correlations
NASA Astrophysics Data System (ADS)
Bleem, Lindsey
2014-03-01
A new generation of experiments designed to conduct high-resolution, low-noise observations of the Cosmic Microwave Background (CMB)--including ACTpol, Planck, POLARBEAR and SPTpol--are producing exquisite measurements of the gravitational lensing of the CMB. Such measurements, covering large fractions of the sky, provide detailed maps of the projected mass distribution extending to the surface of the CMB's last scattering. Concurrently, a large number of deep, wide-area imaging and spectroscopic surveys (e.g., the Dark Energy Survey (DES),WISE all-sky survey, Subaru HyperSuprimeCam Survey, LSST, MS-DESI, BigBoss, etc.) are, or will soon be, providing maps of the distribution of galaxies in the Universe. Correlations of such tracer populations with lensing data allows new probes of where and how galaxies form in the dark matter skeleton of the Universe. Recent correlations of maps of galaxy and quasar densities with lensing convergence maps have produced significant measurements of galaxy bias. The near-term prospect for improvements in such measurements is notable as more precise lensing data from CMB polarization experiments will help to break cosmological and astrophysical parameter degeneracies. Work by the Planck, SPT, and POLARBEAR collaborations has also focused on the correlation of the Cosmic Infrared Background (CIB) with CMB lensing convergence maps. This correlation is particularly strong as the redshifts of the CIB and CMB lensing kernel are well matched. Such correlations probe high-redshift structure, constraining models of star-formation and the characteristic mass scale for halos hosting CIB galaxies and have also been used to demonstrate the first detection of CMB B-mode polarization--an important milestone in CMB observations. Finally, combining galaxy number density, cosmic shear and CMB lensing maps has the potential to provide valuable systematic tests for upcoming cosmological results from large optical surveys such as LSST.
Bao, Junwei Lucas; Sand, Andrew; Gagliardi, Laura; Truhlar, Donald G
2016-09-13
Predicting the singlet-triplet splittings of divalent radicals is a challenging task for electronic structure theory. In the present work, we investigate the performance of multiconfiguration pair-density functional theory (MC-PDFT) for computing the singlet-triplet splitting for small main-group divalent radicals for which accurate experimental data are available. In order to define theoretical model chemistries that can be assessed consistently, we define three correlated participating orbitals (CPO) schemes (nominal, moderate, and extended, abbreviated as nom, mod, and ext) to define the constitution of complete active spaces, and we test them systematically. Broken-symmetry Kohn-Sham DFT calculations have also been carried out for comparison. We found that the extended CPO-PDFT scheme with translated on-top pair-density functionals have smaller mean unsigned errors than weighted-average broken-symmetry Kohn-Sham DFT with the corresponding exchange-correlation functional. The accuracy of the translated Perdew-Burke-Ernzerhof (tPBE) on-top pair-density functionals with ext-CPO active space is even better than some of the more accurately parametrized exchange-correlation density functionals that we tested; this is very encouraging for MC-PDFT theory. PMID:27438755
Electronic correlations in the ironpnictides
Qazilbash, M. M.; Hamlin, J. J.; Baumbach, R. E.; Zhang, Lijun; Singh, David J; Maple, M. B.; Basov, D. N.
2009-01-01
In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electron's kinetic energy, leading to remarkable experimental manifestations in optical spectroscopy. The high-transition-temperature (Tc) superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here, we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. We deduce that electronic many-body effects are important in the iron pnictides despite the absence of a Mott transition.
Yang, Qing-Dan; Li, Ho-Wa; Cheng, Yuanhang; Guan, Zhiqiang; Liu, Taili; Ng, Tsz-Wai; Lee, Chun-Sing; Tsang, Sai-Wing
2016-03-23
Energy level alignment at the organic donor and acceptor interface is a key to determine the photovoltaic performance in organic solar cells, but direct probing of such energy alignment is still challenging especially for solution-processed bulk heterojunction (BHJ) thin films. Here we report a systematic investigation on probing the energy level alignment with different approaches in five commonly used polymer:[6,6]-phenyl-C71-butyric acid methyl ester (PCBM) BHJ systems. We find that by tuning the weight ratio of polymer to PCBM the electronic features from both polymer and PCBM can be obtained by photoemission spectroscopy. Using this approach, we find that some of the BHJ blends simply follow vacuum level alignment, but others show strong energy level shifting as a result of Fermi level pinning. Independently, by measuring the temperature-dependent open-circuit voltage (VOC), we find that the effective energy gap (Eeff), the energy difference between the highest occupied molecular orbital of the polymer donor (EHOMO-D) and lowest unoccupied molecular orbital of the PCBM acceptor (ELUMO-A), obtained by photoemission spectroscopy in all polymer:PCBM blends has an excellent agreement with the extrapolated VOC at 0 K. Consequently, the photovoltage loss of various organic BHJ photovoltaic devices at room temperature is in a range of 0.3-0.6 V. It is believed that the demonstrated direct measurement approach of the energy level alignment in solution-processed organic BHJ will bring deeper insight into the origin of the VOC and the corresponding photovoltage loss mechanism in organic photovoltaic cells. PMID:26926667
Yang, Qing-Dan; Li, Ho-Wa; Cheng, Yuanhang; Guan, Zhiqiang; Liu, Taili; Ng, Tsz-Wai; Lee, Chun-Sing; Tsang, Sai-Wing
2016-03-23
Energy level alignment at the organic donor and acceptor interface is a key to determine the photovoltaic performance in organic solar cells, but direct probing of such energy alignment is still challenging especially for solution-processed bulk heterojunction (BHJ) thin films. Here we report a systematic investigation on probing the energy level alignment with different approaches in five commonly used polymer:[6,6]-phenyl-C71-butyric acid methyl ester (PCBM) BHJ systems. We find that by tuning the weight ratio of polymer to PCBM the electronic features from both polymer and PCBM can be obtained by photoemission spectroscopy. Using this approach, we find that some of the BHJ blends simply follow vacuum level alignment, but others show strong energy level shifting as a result of Fermi level pinning. Independently, by measuring the temperature-dependent open-circuit voltage (VOC), we find that the effective energy gap (Eeff), the energy difference between the highest occupied molecular orbital of the polymer donor (EHOMO-D) and lowest unoccupied molecular orbital of the PCBM acceptor (ELUMO-A), obtained by photoemission spectroscopy in all polymer:PCBM blends has an excellent agreement with the extrapolated VOC at 0 K. Consequently, the photovoltage loss of various organic BHJ photovoltaic devices at room temperature is in a range of 0.3-0.6 V. It is believed that the demonstrated direct measurement approach of the energy level alignment in solution-processed organic BHJ will bring deeper insight into the origin of the VOC and the corresponding photovoltage loss mechanism in organic photovoltaic cells.
Correlation consistent basis sets for lanthanides: The atoms La-Lu
NASA Astrophysics Data System (ADS)
Lu, Qing; Peterson, Kirk A.
2016-08-01
Using the 3rd-order Douglas-Kroll-Hess (DKH3) Hamiltonian, all-electron correlation consistent basis sets of double-, triple-, and quadruple-zeta quality have been developed for the lanthanide elements La through Lu. Basis sets designed for the recovery of valence correlation (defined here as 4f5s5p5d6s), cc-pVnZ-DK3, and outer-core correlation (valence + 4s4p4d), cc-pwCVnZ-DK3, are reported (n = D, T, and Q). Systematic convergence of both Hartree-Fock and correlation energies towards their respective complete basis set (CBS) limits are observed. Benchmark calculations of the first three ionization potentials (IPs) of La through Lu are reported at the DKH3 coupled cluster singles and doubles with perturbative triples, CCSD(T), level of theory, including effects of correlation down through the 4s electrons. Spin-orbit coupling is treated at the 2-component HF level. After extrapolation to the CBS limit, the average errors with respect to experiment were just 0.52, 1.14, and 4.24 kcal/mol for the 1st, 2nd, and 3rd IPs, respectively, compared to the average experimental uncertainties of 0.03, 1.78, and 2.65 kcal/mol, respectively. The new basis sets are also used in CCSD(T) benchmark calculations of the equilibrium geometries, atomization energies, and heats of formation for Gd2, GdF, and GdF3. Except for the equilibrium geometry and harmonic frequency of GdF, which are accurately known from experiment, all other calculated quantities represent significant improvements compared to the existing experimental quantities. With estimated uncertainties of about ±3 kcal/mol, the 0 K atomization energies (298 K heats of formation) are calculated to be (all in kcal/mol): 33.2 (160.1) for Gd2, 151.7 (-36.6) for GdF, and 447.1 (-295.2) for GdF3.
Chatrchyan, Serguei; et al.
2011-07-01
First measurements of dihadron correlations for charged particles are presented for central PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV over a broad range in relative pseudorapidity, Delta(eta), and the full range of relative azimuthal angle, Delta(phi). The data were collected with the CMS detector, at the LHC. A broadening of the away-side (Delta(phi) approximately pi) azimuthal correlation is observed at all Delta(eta), as compared to the measurements in pp collisions. Furthermore, long-range dihadron correlations in Delta(eta) are observed for particles with similar phi values. This phenomenon, also known as the "ridge", persists up to at least |Delta(eta)| = 4. For particles with transverse momenta (pt) of 2-4 GeV/c, the ridge is found to be most prominent when these particles are correlated with particles of pt = 2-6 GeV/c, and to be much reduced when paired with particles of pt = 10-12 GeV/c.
Geremew, Kumlachew; Gedefaw, Molla; Dagnew, Zewdu; Jara, Dube
2014-01-01
Background. Traditional biomass has been the major source of cooking energy for major segment of Ethiopian population for thousands of years. Cognizant of this energy poverty, the Government of Ethiopia has been spending huge sum of money to increase hydroelectric power generating stations. Objective. To assess current levels and correlates of traditional cooking energy sources utilization. Methods. A community based cross-sectional study was conducted employing both quantitative and qualitative approaches on systematically selected 423 households for quantitative and purposively selected 20 people for qualitative parts. SPSS version 16 for windows was used to analyze the quantitative data. Logistic regression was fitted to assess possible associations and its strength was measured using odds ratio at 95% CI. Qualitative data were analyzed thematically. Result. The study indicated that 95% of households still use traditional biomass for cooking. Those who were less knowledgeable about negative health and environmental effects of traditional cooking energy sources were seven and six times more likely to utilize them compared with those who were knowledgeable (AOR (95% CI) = 7.56 (1.635, 34.926), AOR (95% CI) = 6.68 (1.80, 24.385), resp.). The most outstanding finding of this study was that people use traditional energy for cooking mainly due to lack of the knowledge and their beliefs about food prepared using traditional energy. That means “…people still believe that food cooked with charcoal is believed to taste delicious than cooked with other means.” Conclusion. The majority of households use traditional biomass for cooking due to lack of knowledge and belief. Therefore, mechanisms should be designed to promote electric energy and to teach the public about health effects of traditional cooking energy source. PMID:24895591
Awes, Terry C; Batsouli, Sotiria; Cianciolo, Vince; Efremenko, Yuri; Plasil, F; Read Jr, Kenneth F; Silvermyr, David O; Sorensen, Soren P; Stankus, Paul W; Young, Glenn R; Zhang, Chun; PHENIX, Collaboration
2007-06-01
We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from dijets in Cu+Cu and Au+Au collisions at {radical}(s{sub NN})=62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from {Delta}{phi}={pi} in central and semicentral collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.
NASA Astrophysics Data System (ADS)
Fawzy, Wafaa M.; Elsayed, Mahmoud; Zhang, Yuchen
2013-01-01
This work reports the first highly correlated ab initio study of the intermolecular and intramolecular potential energy surfaces in the ground electronic state of the O_2^ - (X{}^2Π _g) - HF(X{}^1Σ^+) complex. Accurate electronic structure calculations were performed using the coupled cluster method including single and double excitations with addition of the perturbative triples correction [CCSD(T)] with the Dunning's correlation consistent basis sets aug-cc-pVnZ, n = 2-5. Also, the explicitly correlated CCSD(T)-F12a level of theory was employed with the AVnZ basis as well as the Peterson and co-workers VnZ-F12 basis sets with n = 2 and 3. Results of all levels of calculations predicted two equivalent minimum energy structures of planar geometry and Cs symmetry along the A″ surface of the complex, whereas the A' surface is repulsive. Values of the geometrical parameters and the counterpoise corrected dissociation energies (Cp-De) that were calculated using the CCSD(T)-F12a/VnZ-F12 level of theory are in excellent agreement with those obtained from the CCSD(T)/aug-cc-pV5Z calculations. The minimum energy structure is characterized by a very short hydrogen bond of length of 1.328 Å, with elongation of the HF bond distance in the complex by 0.133 Å, and De value of 32.313 Kcal/mol. Mulliken atomic charges showed that 65% of the negative charge is localized on the hydrogen bonded end of the superoxide radical and the HF unit becomes considerably polarized in the complex. These results suggest that the hydrogen bond is an incipient ionic bond. Exploration of the potential energy surface confirmed the identified minimum and provided support for vibrationally induced intramolecular proton transfer within the complex. The T-shaped geometry that possesses C2v symmetry presents a saddle point on the top of the barrier to the in-plane bending of the hydrogen above and below the axis that connects centers of masses of the monomers. The height of this barrier is 7
ERIC Educational Resources Information Center
Emepue, Nicholas; Soyibo, Kola
2009-01-01
This study was designed to assess whether the level of performance of selected Jamaican 11th-grade physics students on some numerical problems on the energy concept was satisfactory and if there were significant differences in their performance linked to their gender, socioeconomic background (SEB), school location, English language and…
NASA Astrophysics Data System (ADS)
Roberts, Peter M.
The purpose of this study was to examine white noise effects of U.S. crude oil spot prices on the stock prices of a green energy company. Epistemological, Phenomenological, Axiological and Ontological assumptions of Green Energy Management (GEM) Theory were utilized for selecting Air Products and Chemicals Inc. (APD) as the case study. Exxon Mobil (XOM) was used as a control for triangulation purposes. The period of time examined was between January of 1999 and December of 2008. Monthly stock prices for APD and XOM for the ten year period of time were collected from the New York Stock Exchange. Monthly U.S. crude oil spot prices for the ten year period of time were collected from the US Energy Information Administration. The data was entered into SPSS 17.0 software in order to conduct cross-correlation analysis. The six cross-correlation assumptions were satisfied in order to conduct a Cross-correlation Mirror Test (CCMT). The CCMT established the lag time direction and verified that U.S. crude oil spot prices serve as white noise for stock prices of APD and XOM. The Theory of Relative Weakness was employed in order to analyze the results. A 2 year period of time between December, 2006 and December, 2008 was examined. The correlation coefficient r = - .155 indicates that U.S. crude oil spot prices lead APD stock prices by 4 months. During the same 2 year period of time, U.S. crude oil spot prices lead XOM stock prices by 4 months at r = -.283. XOM stock prices and APD stock prices were positively correlated with 0 lag in time with a positive r = .566. The 4 month cycle was an exact match between APD stock prices, XOM stock prices and U.S. crude oil spot prices. The 4 month cycle was due to the random price fluctuation of U.S. crude oil spot prices that obscured the true stock prices of APD and XOM for the 2 year period of time.
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas
2005-01-01
The Energy Finite Element Analysis (EFEA) is a finite element based computational method for high frequency vibration and acoustic analysis. The EFEA solves with finite elements governing differential equations for energy variables. These equations are developed from wave equations. Recently, an EFEA method for computing high frequency vibration of structures either in vacuum or in contact with a dense fluid has been presented. The presence of fluid loading has been considered through added mass and radiation damping. The EFEA developments were validated by comparing EFEA results to solutions obtained by very dense conventional finite element models and solutions from classical techniques such as statistical energy analysis (SEA) and the modal decomposition method for bodies of revolution. EFEA results have also been compared favorably with test data for the vibration and the radiated noise generated by a large scale submersible vehicle. The primary variable in EFEA is defined as the time averaged over a period and space averaged over a wavelength energy density. A joint matrix computed from the power transmission coefficients is utilized for coupling the energy density variables across any discontinuities, such as change of plate thickness, plate/stiffener junctions etc. When considering the high frequency vibration of a periodically stiffened plate or cylinder, the flexural wavelength is smaller than the interval length between two periodic stiffeners, therefore the stiffener stiffness can not be smeared by computing an equivalent rigidity for the plate or cylinder. The periodic stiffeners must be regarded as coupling components between periodic units. In this paper, Periodic Structure (PS) theory is utilized for computing the coupling joint matrix and for accounting for the periodicity characteristics.
Koch, D; Fertitta, E; Paulus, B
2016-07-14
Due to the importance of both static and dynamical correlation in the bond formation, low-dimensional beryllium systems constitute interesting case studies to test correlation methods. Aiming to describe the whole dissociation curve of extended Be systems we chose to apply the method of increments (MoI) in its multireference (MR) formalism. To gain insight into the main characteristics of the wave function, we started by focusing on the description of small Be chains using standard quantum chemical methods. In a next step we applied the MoI to larger beryllium systems, starting from the Be6 ring. The complete active space formalism was employed and the results were used as reference for local MR calculations of the whole dissociation curve. Although this is a well-established approach for systems with limited multireference character, its application regarding the description of whole dissociation curves requires further testing. Subsequent to the discussion of the role of the basis set, the method was finally applied to larger rings and extrapolated to an infinite chain. PMID:27421394
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anson, C. D.; Arkhipkin, D.; Aschenauer, E.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Cai, X. Z.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derradi de Souza, R.; Dhamija, S.; Didenko, L.; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Gliske, S.; Gorbunov, Y. N.; Grebenyuk, O. G.; Grosnick, D.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jena, C.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Kikola, D. P.; Kiryluk, J.; Kisel, I.; Kisiel, A.; Kizka, V.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Luo, X.; Luszczak, A.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Novak, J.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Ostrowski, P.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Powell, C. B.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, B.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, B.; Sharma, M.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Steadman, S. G.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yang, Y.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Zawisza, M.; Zbroszczyk, H.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2014-04-01
A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au + Au collisions at √sNN =200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, Δ, between the like- and unlike-sign up/down-left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic v2obs), where Δ =[1.3±1.4(stat)-1.0+4.0(syst)]×10-5+[3.2±0.2(stat)-0.3+0.4(syst)]×10-3v2obs for 20-40% Au + Au collisions. The implications for the proposed chiral magnetic effect are discussed.
NASA Astrophysics Data System (ADS)
Koch, D.; Fertitta, E.; Paulus, B.
2016-07-01
Due to the importance of both static and dynamical correlation in the bond formation, low-dimensional beryllium systems constitute interesting case studies to test correlation methods. Aiming to describe the whole dissociation curve of extended Be systems we chose to apply the method of increments (MoI) in its multireference (MR) formalism. To gain insight into the main characteristics of the wave function, we started by focusing on the description of small Be chains using standard quantum chemical methods. In a next step we applied the MoI to larger beryllium systems, starting from the Be6 ring. The complete active space formalism was employed and the results were used as reference for local MR calculations of the whole dissociation curve. Although this is a well-established approach for systems with limited multireference character, its application regarding the description of whole dissociation curves requires further testing. Subsequent to the discussion of the role of the basis set, the method was finally applied to larger rings and extrapolated to an infinite chain.
NASA Astrophysics Data System (ADS)
Zhang, Yong; Zhang, Wei-Ning
2016-08-01
We calculate the squeezed back-to-back correlation (BBC) functions of φ φ and K^+K^- for heavy-ion collisions at RHIC and LHC energies, using (2+1)-dimensional hydrodynamics with fluctuating initial conditions. The BBC functions averaged over event-by-event calculations for many events for the hydrodynamic sources are smoothed as a function of the particle momentum. For heavy-ion collisions of Au + Au at √{s_{NN}}=200 GeV, the BBC functions are larger than those for collisions of Pb + Pb at √{s_{NN}}=2.76 TeV. The BBC of φ φ may possibly be observed in peripheral collisions at the RHIC and LHC energies. It is large for the smaller sources of Cu + Cu collisions at √{s_{NN}}=200 GeV.
Sánchez, Pascal; Lorenzo, Olaya; Menéndez, Armando; Menéndez, Jose Luis; Gomez, David; Pereiro, Rosario; Fernández, Beatriz
2011-01-01
The determination of optical parameters, such as absorption and extinction coefficients, refractive index and the bandgap energy, is crucial to understand the behavior and final efficiency of thin film solar cells based on hydrogenated amorphous silicon (a-Si:H). The influence of small variations of the gas flow rates used for the preparation of the p-a-SiC:H layer on the bandgap energy, as well as on the dopant elements concentration, thickness and conductivity of the p-layer, is investigated in this work using several complementary techniques. UV-NIR spectrophotometry and ellipsometry were used for the determination of bandgap energies of four p-a-SiC:H thin films, prepared by using different B(2)H(6) and SiH(4) fluxes (B(2)H(6) from 12 sccm to 20 sccm and SiH(4) from 6 sccm to 10 sccm). Moreover, radiofrequency glow discharge optical emission spectrometry technique was used for depth profiling characterization of p-a-SiC:H thin films and valuable information about dopant elements concentration and distribution throughout the coating was found. Finally, a direct relationship between the conductivity of p-a-SiC:H thin films and the dopant elements concentration, particularly boron and carbon, was observed for the four selected samples.
Niklas, M; Zimmermann, F; Schlegel, J; Schwager, C; Debus, J; Jäkel, O; Abdollahi, A; Greilich, S
2016-09-01
The hybrid technology cell-fluorescent ion track hybrid detector (Cell-Fit-HD) enables the investigation of radiation-related cellular events along single ion tracks on the subcellular scale in clinical ion beams. The Cell-Fit-HD comprises a fluorescent nuclear track detector (FNTD, the physical compartment), a device for individual particle detection and a substrate for viable cell-coating, i.e. the biological compartment. To date both compartments have been imaged sequentially in situ by confocal laser scanning microscopy (CLSM). This is yet in conflict with a functional read-out of the Cell-Fit-HD utilizing a fast live-cell imaging of the biological compartment with low phototoxicity on greater time scales. The read-out of the biological from the physical compartment was uncoupled. A read-out procedure was developed to image the cell layer by conventional widefield microscopy whereas the FNTD was imaged by CLSM. Point mapping registration of the confocal and widefield imaging data was performed. Non-fluorescent crystal defects (spinels) visible in both read-outs were used as control point pairs. The accuracy achieved was on the sub-µm scale. The read-out procedure by widefield microscopy does not impair the unique ability of spatial correlation by the Cell-Fit-HD. The uncoupling will enlarge the application potential of the hybrid technology significantly. The registration allows for an ultimate correlation of microscopic physical beam parameters and cell kinetics on greater time scales. The method reported herein will be instrumental for the introduction of a novel generation of compact detectors facilitating biodosimetric research towards high-throughput analysis.
NASA Astrophysics Data System (ADS)
Niklas, M.; Zimmermann, F.; Schlegel, J.; Schwager, C.; Debus, J.; Jäkel, O.; Abdollahi, A.; Greilich, S.
2016-09-01
The hybrid technology cell-fluorescent ion track hybrid detector (Cell-Fit-HD) enables the investigation of radiation-related cellular events along single ion tracks on the subcellular scale in clinical ion beams. The Cell-Fit-HD comprises a fluorescent nuclear track detector (FNTD, the physical compartment), a device for individual particle detection and a substrate for viable cell-coating, i.e. the biological compartment. To date both compartments have been imaged sequentially in situ by confocal laser scanning microscopy (CLSM). This is yet in conflict with a functional read-out of the Cell-Fit-HD utilizing a fast live-cell imaging of the biological compartment with low phototoxicity on greater time scales. The read-out of the biological from the physical compartment was uncoupled. A read-out procedure was developed to image the cell layer by conventional widefield microscopy whereas the FNTD was imaged by CLSM. Point mapping registration of the confocal and widefield imaging data was performed. Non-fluorescent crystal defects (spinels) visible in both read-outs were used as control point pairs. The accuracy achieved was on the sub-µm scale. The read-out procedure by widefield microscopy does not impair the unique ability of spatial correlation by the Cell-Fit-HD. The uncoupling will enlarge the application potential of the hybrid technology significantly. The registration allows for an ultimate correlation of microscopic physical beam parameters and cell kinetics on greater time scales. The method reported herein will be instrumental for the introduction of a novel generation of compact detectors facilitating biodosimetric research towards high-throughput analysis.
Niklas, M; Zimmermann, F; Schlegel, J; Schwager, C; Debus, J; Jäkel, O; Abdollahi, A; Greilich, S
2016-09-01
The hybrid technology cell-fluorescent ion track hybrid detector (Cell-Fit-HD) enables the investigation of radiation-related cellular events along single ion tracks on the subcellular scale in clinical ion beams. The Cell-Fit-HD comprises a fluorescent nuclear track detector (FNTD, the physical compartment), a device for individual particle detection and a substrate for viable cell-coating, i.e. the biological compartment. To date both compartments have been imaged sequentially in situ by confocal laser scanning microscopy (CLSM). This is yet in conflict with a functional read-out of the Cell-Fit-HD utilizing a fast live-cell imaging of the biological compartment with low phototoxicity on greater time scales. The read-out of the biological from the physical compartment was uncoupled. A read-out procedure was developed to image the cell layer by conventional widefield microscopy whereas the FNTD was imaged by CLSM. Point mapping registration of the confocal and widefield imaging data was performed. Non-fluorescent crystal defects (spinels) visible in both read-outs were used as control point pairs. The accuracy achieved was on the sub-µm scale. The read-out procedure by widefield microscopy does not impair the unique ability of spatial correlation by the Cell-Fit-HD. The uncoupling will enlarge the application potential of the hybrid technology significantly. The registration allows for an ultimate correlation of microscopic physical beam parameters and cell kinetics on greater time scales. The method reported herein will be instrumental for the introduction of a novel generation of compact detectors facilitating biodosimetric research towards high-throughput analysis. PMID:27499388
Correlation consistent basis sets for actinides. I. The Th and U atoms
Peterson, Kirk A.
2015-02-21
New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc − pV nZ − PP and cc − pV nZ − DK3, as well as outer-core correlation (valence + 5s5p5d), cc − pwCV nZ − PP and cc − pwCV nZ − DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Both series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThF{sub n} (n = 2 − 4), ThO{sub 2}, and UF{sub n} (n = 4 − 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF{sub 4}, ThF{sub 3}, ThF{sub 2}, and ThO{sub 2} are all within their experimental uncertainties. Bond dissociation energies of ThF{sub 4} and ThF{sub 3}, as well as UF{sub 6} and UF{sub 5}, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF{sub 4} and ThO{sub 2}. The DKH3 atomization energy of ThO{sub 2} was calculated to be smaller than the DKH2
Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V
2014-12-01
Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth.
Octupole correlation effects in nuclei
Chasman, R.R.
1992-01-01
Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.
Octupole correlation effects in nuclei
Chasman, R.R.
1992-08-01
Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.
Wang, Yi; Wu, Dapeng; Fu, Li-Min; Ai, Xi-Cheng; Xu, Dongsheng; Zhang, Jian-Ping
2015-07-20
The energy and spatial distribution of intragap trap states of the TiO2 photoanode of dye-sensitized solar cells and their impact on charge recombination were investigated by means of time-resolved charge extraction (TRCE) and transient photovoltage (TPV). The photoanodes were built from TiO2 nanospheroids with different aspect ratios, and the TRCE results allowed differentiation of two different types of trap states, that is, deep and shallow ones at the surface and in the bulk of the TiO2 particles, respectively. These trap states exhibit distinctly different characteristic energy with only a slight variation in the particle size, as derived from the results of the density of states. Analyses of the size-dependent TPV kinetics revealed that in a moderate photovoltage regime of about 375-625 mV, the dynamics of electron recombination are dominated by shallow trap states in the bulk, which can be well accounted for by the mechanism of multiple-trap-limited charge transport.
Peterson, Kirk A.; Figgen, Detlev; Goll, Erich; Stoll, Hermann; Dolg, Michael F.
2003-12-01
Series of correlation consistent basis sets have been developed for the post-d group 16-18 elements in conjunction with small-core relativistic pseudopotentials (PPs) of the energy-consistent variety. The latter were adjusted to multiconfiguration Dirac-Hartree-Fock data based on the Dirac-Coulomb-Breit Hamiltonian. The outer-core (n-1)spd shells are explicitly treated together with the nsp valence shell with these PPs. The accompanying cc-pVnZ-PP and aug-cc-pVnZ-PP basis sets range in size from DZ to 5Z quality and yield systematic convergence of both Hartree-Fock and correlated total energies. In addition to the calculation of atomic electron affinities and dipole polarizabilities of the rare gas atoms, numerous molecular benchmark calculations (HBr, HI, HAt, Br2, I2, At2, SiSe, SiTe, SiPo, KrH+, XeH+, and RnH+) are also reported at the coupled cluster level of theory. For the purposes of comparison, all-electron calculations using the Douglas-Kroll-Hess Hamiltonian have also been carried out for the halogen-containing molecules using basis sets of 5Z quality.
Fontaine, G; Aldakar, M; Iwa, T; Mrdja, S; Grosgogeat, Y
1990-09-01
The electrical phenomena produced during the fulguration impulses are analyzed using a digital oscilloscope which enables the calculation, with precision, of the energies consumed all along the curve or between chosen times. Moreover, it enables the calculation of the corresponding impedance values and shows that the latter varies during all the discharge. The explanation for these impedance variations is obtained thanks to rapid cinematography, showing the formation of the fulguration bubble. Hence, one can observe an impedance variation which is quite distinctive from the one which would correspond to the simple passage of an electrical current in saline solution. Particularly at the end of the impulse, an important increase in the impedance corresponds to the loss of ionization of the bubble. Therefore, by simply reading these electrical parameters, it is possible to know the main stages of the fulguration phenomenon for impulses situated around the deflagration threshold. PMID:2264702
Fontaine, G; Aldakar, M; Iwa, T; Mrdja, S; Grosgogeat, Y
1990-09-01
The electrical phenomena produced during the fulguration impulses are analyzed using a digital oscilloscope which enables the calculation, with precision, of the energies consumed all along the curve or between chosen times. Moreover, it enables the calculation of the corresponding impedance values and shows that the latter varies during all the discharge. The explanation for these impedance variations is obtained thanks to rapid cinematography, showing the formation of the fulguration bubble. Hence, one can observe an impedance variation which is quite distinctive from the one which would correspond to the simple passage of an electrical current in saline solution. Particularly at the end of the impulse, an important increase in the impedance corresponds to the loss of ionization of the bubble. Therefore, by simply reading these electrical parameters, it is possible to know the main stages of the fulguration phenomenon for impulses situated around the deflagration threshold.
NASA Astrophysics Data System (ADS)
Udhayabanu, V.; Ravi, K. R.; Murty, B. S.
2016-07-01
In the present study, Fe-10 vol pct Al2O3 in situ nanocomposite has been derived by high-energy ball milling of Fe2O3-Fe-Al powder mixture followed by the consolidation using spark plasma sintering (SPS). The consolidated nanocomposite has bimodal-grained structure consisting of nanometer- and submicron-sized Fe grains along with nanometer-sized Al2O3, and Fe3O4 particles. The mechanical property analysis reveals that compressive yield strength of Fe-10 vol pct Al2O3 nanocomposite is 2100 MPa which is nearly two times higher than that of monolithic Fe processed by Mechanical Milling and SPS. The strengthening contributions obtained from matrix, grain size, and particles in the synthesized nanocomposite have been calculated theoretically, and are found to be matching well with the experimental strength levels.
NASA Astrophysics Data System (ADS)
Udhayabanu, V.; Ravi, K. R.; Murty, B. S.
2016-10-01
In the present study, Fe-10 vol pct Al2O3 in situ nanocomposite has been derived by high-energy ball milling of Fe2O3-Fe-Al powder mixture followed by the consolidation using spark plasma sintering (SPS). The consolidated nanocomposite has bimodal-grained structure consisting of nanometer- and submicron-sized Fe grains along with nanometer-sized Al2O3, and Fe3O4 particles. The mechanical property analysis reveals that compressive yield strength of Fe-10 vol pct Al2O3 nanocomposite is 2100 MPa which is nearly two times higher than that of monolithic Fe processed by Mechanical Milling and SPS. The strengthening contributions obtained from matrix, grain size, and particles in the synthesized nanocomposite have been calculated theoretically, and are found to be matching well with the experimental strength levels.
NASA Technical Reports Server (NTRS)
Lynch, Gillian C.; Steckler, Rozeanne; Varandas, Antonio J. C.; Truhlar, Donald G.; Schwenke, David W.
1991-01-01
New ab initio results and a double many-body expansion formalism have been used to parameterize a new FH2 potential energy surface with improved properties near the saddle point and in the region of long-range attraction. The functional form of the new surface includes dispersion forces by a double many-body expansion. Stationary point properties for the new surface are calculated along with the product-valley barrier maxima of vibrationally adiabatic potential curves for F + H2 - HF(nu-prime = 3) + H, F + HD - HF(nu-prime = 3) + D, and F + D2 - DF(nu-prime = 4) + D. The new surface should prove useful for studying the effect on dynamics of a low, early barrier with a wide, flat bend potential.
NASA Astrophysics Data System (ADS)
Majumder, Moumita; Hegger, Samuel E.; Dawes, Richard; Manzhos, Sergei; Wang, Xiao-Gang; Tucker, Carrington, Jr.; Li, Jun; Guo, Hua
2015-07-01
A data-set of nearly 100,000 symmetry unique multi-configurational ab initio points for methane were generated at the (AE)-MRCI-F12(Q)/CVQZ-F12 level, including energies beyond 30,000 cm-1 above the minimum and fit into potential energy surfaces (PESs) by several permutation invariant schemes. A multi-expansion interpolative fit combining interpolating moving least squares (IMLS) fitting and permutation invariant polynomials (PIP) was able to fit the complete data-set to a root-mean-square deviation of 1.0 cm-1 and thus was used to benchmark the other fitting methods. The other fitting methods include a single PIP expansion and two neural network (NN) based approaches, one of which combines NN with PIP. Full-dimensional variational vibrational calculations using a contracted-iterative method (and a Lanczos eigensolver) were used to assess the spectroscopic accuracy of the electronic structure method. The results show that the NN-based fitting approaches are able to fit the data-set remarkably accurately with the PIP-NN method producing levels in remarkably close agreement with the PIP-IMLS benchmark. The (AE)-MRCI-F12(Q)/CVQZ-F12 electronic structure method produces vibrational levels of near spectroscopic accuracy and a superb equilibrium geometry. The levels are systematically slightly too high, beginning at ∼ 1-2 cm-1 above the fundamentals and becoming correspondingly higher for overtones. The PES is therefore suitable for small ab initio or empirical corrections and since it is based on a multi-reference method, can be extended to represent dynamically relevant dissociation channels.
NASA Astrophysics Data System (ADS)
Karton, Amir; Martin, Jan M. L.
2012-10-01
Accurate isomerization energies are obtained for a set of 45 C8H8 isomers by means of the high-level, ab initio W1-F12 thermochemical protocol. The 45 isomers involve a range of hydrocarbon functional groups, including (linear and cyclic) polyacetylene, polyyne, and cumulene moieties, as well as aromatic, anti-aromatic, and highly-strained rings. Performance of a variety of DFT functionals for the isomerization energies is evaluated. This proves to be a challenging test: only six of the 56 tested functionals attain root mean square deviations (RMSDs) below 3 kcal mol-1 (the performance of MP2), namely: 2.9 (B972-D), 2.8 (PW6B95), 2.7 (B3PW91-D), 2.2 (PWPB95-D3), 2.1 (ωB97X-D), and 1.2 (DSD-PBEP86) kcal mol-1. Isomers involving highly-strained fused rings or long cumulenic chains provide a 'torture test' for most functionals. Finally, we evaluate the performance of composite procedures (e.g. G4, G4(MP2), CBS-QB3, and CBS-APNO), as well as that of standard ab initio procedures (e.g. MP2, SCS-MP2, MP4, CCSD, and SCS-CCSD). Both connected triples and post-MP4 singles and doubles are important for accurate results. SCS-MP2 actually outperforms MP4(SDQ) for this problem, while SCS-MP3 yields similar performance as CCSD and slightly bests MP4. All the tested empirical composite procedures show excellent performance with RMSDs below 1 kcal mol-1.
Design of exchange-correlation functionals through the correlation factor approach
Pavlíková Přecechtělová, Jana E-mail: Matthias.Ernzerhof@UMontreal.ca
2015-10-14
The correlation factor model is developed in which the spherically averaged exchange-correlation hole of Kohn-Sham theory is factorized into an exchange hole model and a correlation factor. The exchange hole model reproduces the exact exchange energy per particle. The correlation factor is constructed in such a manner that the exchange-correlation energy correctly reduces to exact exchange in the high density and rapidly varying limits. Four different correlation factor models are presented which satisfy varying sets of physical constraints. Three models are free from empirical adjustments to experimental data, while one correlation factor model draws on one empirical parameter. The correlation factor models are derived in detail and the resulting exchange-correlation holes are analyzed. Furthermore, the exchange-correlation energies obtained from the correlation factor models are employed to calculate total energies, atomization energies, and barrier heights. It is shown that accurate, non-empirical functionals can be constructed building on exact exchange. Avenues for further improvements are outlined as well.
ERIC Educational Resources Information Center
Shanebrook, J. Richard
This document describes a course designed to acquaint students with the many societal and technological problems facing the United States and the world due to the increasing demand for energy. The course begins with a writing assignment that involves readings on the environmental philosophy of Native Americans and the Chernobyl catastrophe.…
Correlation in instruments - Cross correlation flowmeters
NASA Astrophysics Data System (ADS)
Beck, M. S.
1981-01-01
The principles of cross-correlation flowmeters are presented demonstrating methods of identifying dynamic properties of telecommunication, structural, and process systems. The flowmeters are designed for measurements of the transit time of a tagging signal such as turbulence or clumps of particles in the flow between two axially separated sensors; the transit time is measured by a cross-correlator. Cross-correlation flowmeters can reduce large scale integrated circuit costs and will be applied to environmental and industrial measurement problems.
NASA Astrophysics Data System (ADS)
Franek, J. B.; Nogami, S. H.; Demidov, V. I.; Koepke, M. E.; Barnat, E. V.
2015-06-01
Temporal measurement of electron density, metastable-atom density, and reduced electric field are used to infer the dynamic behavior of the excitation rates describing electron-atom collision-induced excitation in the positive column of a 1 Torr argon plasma by invoking plausible assumptions regarding the shape of the electron energy distribution function performed in Adams et al (2012 Phys. Plasmas 19 023510). These inferred rates are used to predict the 420.1 nm to 419.8 nm argon emission ratio, which agree with experimental results when the assumptions are applicable. Thus the observed emission ratio is demonstrated to be dependent on the metastable-atom density, electron density, and reduced electric field. The established confidence in the validity of this emission-line-ratio model allows us to predict metastable argon-atom density during the post-transient phase of the pulse as suggested by De Joseph et al (2005 Phys. Rev. E 72 036410). Similar inferences of electron density and reduced electric field based on readily available diagnostic signatures may also be afforded by this model.
NASA Astrophysics Data System (ADS)
Yun, Eunsub; Kim, Yong Chan; Lee, Sunghak; Kim, Nack J.
2004-03-01
Stainless-steel-based surface composites reinforced with TiC and SiC carbides were fabricated by high-energy electron beam irradiation. Four types of powder/flux mixtures, i.e., TiC, (Ti + C), SiC, and (Ti + SiC) powders with 40 wt. pct of CaF2 flux, were deposited evenly on an AISI 304 stainless steel substrate, which was then irradiated with an electron beam. TiC agglomerates and pores were found in the surface composite layer fabricated with TiC powders because of insufficient melting of TiC powders. In the composite layer fabricated with Ti and C powders having lower melting points than TiC powders, a number of primary TiC carbides were precipitated while very few TiC agglomerates or pores were formed. This indicated that more effective TiC precipitation was obtained from the melting of Ti and C powders than of TiC powders. A large amount of precipitates such as TiC and Cr7C3 improved the hardness, high-temperature hardness, and wear resistance of the surface composite layer two to three times greater than that of the stainless steel substrate. In particular, the surface composite fabricated with SiC powders had the highest volume fraction of Cr7C3 distributed along solidification cell boundaries, and thus showed the best hardness, high-temperature hardness, and wear resistance.
NASA Astrophysics Data System (ADS)
Sencer, B. H.; Bond, G. M.; Garner, F. A.; Hamilton, M. L.; Maloy, S. A.; Sommer, W. F.
2001-07-01
Alloy 718 is a γ '(Ni 3(Al,Ti))-γ″(Ni 3Nb) hardenable superalloy with attractive strength, and corrosion resistance. This alloy is a candidate material for use in accelerator production of tritium (APT) target and blanket applications, where it would have to withstand low-temperature irradiation by high-energy protons and spallation neutrons. The existing data base, relevant to such irradiation conditions, is very limited. Alloy 718 has therefore been exposed to a particle flux and spectrum at the Los Alamos Neutron Science Center (LANSCE), closely matching those expected in the APT target and blanket applications. The yield stress of Alloy 718 increases with increasing dose up to ˜0.5 dpa, and then decreases with further increase in dose. The uniform elongation, however, drastically decreases with increasing dose at very low doses (<0.5 dpa), and does not recover when the alloy later softens somewhat. Transmission electron microscopy (TEM) investigation of Alloy 718 shows that superlattice spots corresponding to the age-hardening precipitate phases γ ' and γ″ are lost from the diffraction patterns for Alloy 718 by only 0.6 dpa, the lowest proton-induced dose level achieved in this experiment. Examination of samples that were neutron irradiated to doses of only ˜0.1 dpa showed that precipitates are faintly visible in diffraction patterns but are rapidly becoming invisible. It is proposed that the γ ' and γ″ first become disordered (by <0.6 dpa), but remain as solute-rich aggregates that still contribute to the hardness at relatively low dpa levels, and then are gradually dispersed at higher doses.