Sample records for all-electron full potential

  1. Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite

    NASA Astrophysics Data System (ADS)

    Edelbro, R.; Sandström, Å.; Paul, J.

    2003-02-01

    The bulk electronic structures of Sphalerite, Pyrite and Chalcopyrite have been calculated within an ab initio, full potential, density functional approach. The exchange term was approximated with the Dirac exchange functional, the Vosko-Wilk-Nusair parameterization of the Cepler-Alder free electron gas was used for correlation and linear combinations of Gaussian type orbitals were used as basis functions. The Sphalerite (zinc blende) band gap was calculated to be direct with a width of 2.23 eV. The Sphalerite valence band was 5.2 eV wide and composed of a mixture of sulfur and zinc orbitals. The band below the valence band located around -6.2 eV was mainly composed of Zn 3d orbitals. The S 3s orbitals gave rise to a band located around -12.3 eV. Pyrite was calculated to be a semiconductor with an indirect band gap of 0.51 eV, and a direct gap of 0.55 eV. The valence band was 1.25 eV wide and mainly composed of non-bonding Fe 3d orbitals. The band below the valence band was 4.9 eV wide and composed of a mixture of sulfur and iron orbitals. Due to the short inter-atomic distance between the sulfur dumbbells, the S 3s orbitals in Pyrite were split into a bonding and an anti-bonding range. Chalcopyrite was predicted to be a conductor, with no band-crossings at the Fermi level. The bands at -13.2 eV originate from the sulfur 3s orbitals and were quite similar to the sulfur 3s bands in Sphalerite, though somewhat shifted to lower energy. The top of the valence band consisted of a mixture of orbitals from all the atoms. The lower part of the same band showed metal character. Computational modeling as a tool for illuminating the flotation and leaching processes of Pyrite and Chalcopyrite, in connection with surface science experiments, is discussed.

  2. Full-Potential Calculation of Structural, Electronic, and Thermodynamic Properties of Fluoroperovskite { CsMF}3 (M = Be and Mg)

    NASA Astrophysics Data System (ADS)

    Harmel, M.; Khachai, H.; Ameri, A.; Baki, N.; Haddou, A.; Khalfa, M.; Abbar, B.; Omran, S. Bin; Uğur, G.; Uğur, Ş.; Khenata, R.

    2012-12-01

    The structural and electronic properties of the cubic fluoroperoveskite { CsBeF}3 and { CsMgF}3 have been investigated using the full-potential-linearized augmented plane wave method within the density functional theory. The exchange-correlation potential was treated with the local density approximation and the generalized gradient approximation. The calculations of the electronic band structures show that { CsBeF}_{3 } has an indirect bandgap, whereas { CsMgF}3 has a direct bandgap. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the effect of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and the heat capacity for { CsBeF}3 and { CsMgF}3 compounds are investigated for the first time.

  3. Scholarly Electronic Full-Text Publications via the Internet: Issues and Impacts

    NASA Technical Reports Server (NTRS)

    Kosmin, Linda J.

    1999-01-01

    On-line access to complete texts of scholarly journal articles, conference papers, and books is facilitated by rapidly developing World-wide Web Internet access and capabilities. Meanwhile, print publications continue to be produced and read in spite of the proliferation of many networked electronic publications. The purpose of this presentation is to highlight fundamental issues impacting stakeholder groups, as the trend continues towards migration from paper to affordable ubiquitous networked full-text publications. Librarians, publishers, authors and end-users have various viewpoints, interests, and concerns. There are many issues challenging all stakeholder groups. For instance, all share concerns about administering copyright compliance and enforcing fair use. Uncontrollable electronic downstreaming could result in infringed copyright, while limiting a publisher's entitled revenue stream. Moreover, metered fee-based access may hamper scholarly information research. And, self-authoring on the Internet without peer filtering could lead to information clutter. Many related issues challenge librarians in particular. Among these are rising journal subscription prices, regardless if offered in print or electronic. Some electronic offerings are independent of print, others supplement or duplicate print; several publishers presently require subscribing to print in order to access electronic. Furthermore, numbers of publications are n'ow being marketed via the Internet directly to end-users, which can be viewed as encouraging users to bypass the traditional library. A key issue challenging publishers today is the rapidly expanding electronic user base that is demanding delivery of added-value full-text to desktop computers. Also of growing concern appears to be the decline in print sales to libraries, thereby reducing traditional revenue stream potential. Nowadays, publishers are more hesitant about investing in the production of publications geared toward small niche

  4. Full-potential theoretical investigations of electron inelastic mean free paths and extended x-ray absorption fine structure in molybdenum.

    PubMed

    Chantler, C T; Bourke, J D

    2014-04-09

    X-ray absorption fine structure (XAFS) spectroscopy is one of the most robust, adaptable, and widely used structural analysis tools available for a range of material classes from bulk solids to aqueous solutions and active catalytic structures. Recent developments in XAFS theory have enabled high-accuracy calculations of spectra over an extended energy range using full-potential cluster modelling, and have demonstrated particular sensitivity in XAFS to a fundamental electron transport property-the electron inelastic mean free path (IMFP). We develop electron IMFP theory using a unique hybrid model that simultaneously incorporates second-order excitation losses, while precisely accounting for optical transitions dictated by the complex band structure of the solid. These advances are coupled with improved XAFS modelling to determine wide energy-range absorption spectra for molybdenum. This represents a critical test case of the theory, as measurements of molybdenum K-edge XAFS represent the most accurate determinations of XAFS spectra for any material. We find that we are able to reproduce an extended range of oscillatory structure in the absorption spectrum, and demonstrate a first-time theoretical determination of the absorption coefficient of molybdenum over the entire extended XAFS range utilizing a full-potential cluster model.

  5. All-Optical Electron Injector

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald

    2002-04-01

    Conventional electron acceleration at a place like SLAC needs miles to boost particles up to 50 GeV energies by feeding microwaves into a succession of cavities. In recent years we have been developing alternative acceleration concepts, based on lasers focused into plasmas, that might someday do the job in a much smaller space without the use of cavities. Our near term goal is to produce a first stage accelerator that outputs electron beams with lower energy but with properties that are more suitable for x-ray sources, such as those based on Compton scattering or the proposed linear synchrotrons at SLAC and DESY. In the plasma wakefield approach, for example, a terawatt laser beam is focused onto a gas jet, ionizing it and driving plasma waves that move at relativistic speeds. If timed just right, electrons in the plasma can surf the plasma waves to high speeds, as high as 100 MeV in the space of only a millimeter. NanoCoulombs of charge have been accelerated in well-collimated beams (1-degree divergence angle). One problem with this concept is the mismatch between the electron source (sometimes an external photocathode, sometimes an uncontrolled cloud of electrons from the plasma itself) and the incoming laser pulse. We will be reporting methods for generating electrons in a controllable way, namely the use of a pair of crossed laser beams which position, heat, and synchronize the insertion of electrons into the plasma wave. We show that this "all-optical injection" increases the number and energy of energetic electrons as compared with use of only one laser beam. It has been shown theoretically that this approach can ultimately be used to reduce the electron energy spread to a few percent. Besides potential applications to particle physics and x-ray lasers, high gradient acceleration schemes are also expected to benefit the production of medical radioisotopes and the ignition of thermonuclear fusion reactions.

  6. Potential energy curves of the Na2+ molecular ion from all-electron ab initio relativistic calculations

    NASA Astrophysics Data System (ADS)

    Bewicz, Anna; Musiał, Monika; Kucharski, Stanisław A.

    2017-11-01

    The equation-of-motion coupled-cluster method for electron affinity calculations has been used to study potential energy curves (PECs) for the Na+2 molecular ion. Although the studied molecule represents the open shell system the applied approach employs the closed shell Na+ 22 ion as the reference. In addition the Na+ 22 system dissociates into the closed shell fragments; hence, the restricted Hartree-Fock scheme can be used within the whole range of interatomic distances, from 2 to 45 Å. We used large basis set engaging 268 basis functions with all 21 electrons correlated. The relativistic effects are included via second-order Douglas-Kroll method. The computed PECs, spectroscopic molecular constants and vibrational energy levels agree well with experimental values if the latter are available or with other theoretical data.

  7. Relaxation of Actinide Surfaces: An All Electron Study

    NASA Astrophysics Data System (ADS)

    Atta-Fynn, Raymond; Dholabhai, Pratik; Ray, Asok

    2006-10-01

    Fully relativistic full potential density functional calculations with a linearized augmented plane wave plus local orbitals basis (LAPW + lo) have been performed to investigate the relaxations of heavy actinide surfaces, namely the (111) surface of fcc δ-Pu and the (0001) surface of dhcp Am using WIEN2k. This code uses the LAPW + lo method with the unit cell divided into non-overlapping atom-centered spheres and an interstitial region. The APW+lo basis is used to describe all s, p, d, and f states and LAPW basis to describe all higher angular momentum states. Each surface was modeled by a three-layer periodic slab separated by 60 Bohr vacuum with four atoms per surface unit cell. In general, we have found a contraction of the interlayer separations for both Pu and Am. We will report, in detail, the electronic and geometric structures of the relaxed surfaces and comparisons with the respective non-relaxed surfaces.

  8. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum

    DOE PAGES

    Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.; ...

    2016-09-29

    Optical nonlinearity induced by intense optical excitation of mobile electrons in metallic nanostructures can provide dynamic tuning of their electromagnetic response, which is potentially useful for all-optical information processing. Here we report on the sub-picosecond optical nonlinearity of indium tin oxide nanorod arrays (ITO-NRAs) following intraband, on-plasmon-resonance optical pumping, which enables modulation of the full-visible spectrum with large absolute change of transmission, favorable spectral tunability and beam-steering capability. We semi-quantitatively model the permittivity change, whose large amplitude stems from a significant electron redistribution under intraband pumping due to the low electron concentration. Further, we observe a transient response in themore » microsecond regime associated with the slow lattice cooling, which arises from the large aspect-ratio and low thermal conductivity of ITO-NRAs. Finally, our results demonstrate that all-optical control of the visible spectrum can be achieved by using heavily doped wide-bandgap semiconductors in their transparent regime with speed faster than that of noble metals.« less

  9. Electronic structure of PPP@ZnO from all-electron quasiarticle calculations

    NASA Astrophysics Data System (ADS)

    Höffling, Benjamin; Nabok, Dimitri; Draxl, Claudia; Condensed Matter Theory Group, Humboldt University Berlin Team

    We investigate the electronic properties of poly(para-phenylene) (PPP) adsorbed on the non-polar (001) surface of rocksalt (rs) ZnO using all-electron density functional theory (DFT) as well as quasiparticle (QP) calculations within the GW approach. A particular focus is put on the electronic band discontinuities at the interface, where we investigate the impact of quantum confinement, molecular polarization, and charge rearrangement. For our prototypical system, PPP@ZnO, we find a type-I heterostructure. Comparison of the band offsets derived from a QP-treatment of the hybrid system with predictions based on mesoscopic methods, like the Shockley-Anderson model or alignment via the electrostatic potential, reveals the inadequacy of these simple approaches for the prediction of the electronic structure of such inorganic/organic heterosystems. Finally, we explore the optical excitations of the interface compared to the features of the pristine components and discuss the methodological implications for the ab-initio treatment of interface electronics.

  10. Full-dimensional ground- and excited-state potential energy surfaces and state couplings for photodissociation of thioanisole

    NASA Astrophysics Data System (ADS)

    Li, Shaohong L.; Truhlar, Donald G.

    2017-02-01

    Analytic potential energy surfaces (PESs) and state couplings of the ground and two lowest singlet excited states of thioanisole (C6H5SCH3) are constructed in a diabatic representation based on electronic structure calculations including dynamic correlation. They cover all 42 internal degrees of freedom and a wide range of geometries including the Franck-Condon region and the reaction valley along the breaking S-CH3 bond with the full ranges of the torsion angles. The parameters in the PESs and couplings are fitted to the results of smooth diabatic electronic structure calculations including dynamic electron correlation by the extended multi-configurational quasi-degenerate perturbation theory method for the adiabatic state energies followed by diabatization by the fourfold way. The fit is accomplished by the anchor points reactive potential method with two reactive coordinates and 40 nonreactive degrees of freedom, where the anchor-point force fields are obtained with a locally modified version of the QuickFF package. The PESs and couplings are suitable for study of the topography of the trilayer potential energy landscape and for electronically nonadiabatic molecular dynamics simulations of the photodissociation of the S-CH3 bond.

  11. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds

    DOE PAGES

    Hong, A. J.; Li, L.; He, R.; ...

    2016-03-07

    The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half- Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k codemore » and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Tidoped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. Lastly, the present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.« less

  12. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, A. J.; Li, L.; He, R.

    The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half- Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k codemore » and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Tidoped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. Lastly, the present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.« less

  13. A full-potential approach to the relativistic single-site Green's function

    DOE PAGES

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus; ...

    2016-07-07

    One major purpose of studying the single-site scattering problem is to obtain the scattering matrices and differential equation solutions indispensable to multiple scattering theory (MST) calculations. On the other hand, the single-site scattering itself is also appealing because it reveals the physical environment experienced by electrons around the scattering center. In this study, we demonstrate a new formalism to calculate the relativistic full-potential single-site Green's function. We implement this method to calculate the single-site density of states and electron charge densities. Lastly, the code is rigorously tested and with the help of Krein's theorem, the relativistic effects and full potentialmore » effects in group V elements and noble metals are thoroughly investigated.« less

  14. Self-consistent full-potential linearized-augmented-plane-wave local-density electronic-structure studies of magnetism and superconductivity in C15 compounds: ZrZn2 and ZrV2

    NASA Astrophysics Data System (ADS)

    Huang, Mei-Chun; Jansen, H. J. F.; Freeman, A. J.

    1988-03-01

    The electronic structure and properties of the cubic Laves phase (C15) compounds ZrZn2 and ZrV2 have been determined using our all-electron full-potential linearized-augmented-plane-wave (FLAPW) method for bulk solids. The computations were performed in two stages: (i) self-consistent warped muffin tin and (ii) self-consistent full potential. Spin-orbit coupling was included after either stage. The effects of the inclusion of the nonspherical terms inside the muffin tins on the eigenvalues is found to be small (of order 1 mRy). However, due to the fact that some of the bands near the Fermi level are flat, this effect leads to a much higher value of the density of states at EF in ZnZr2. The most important difference between the materials ZrZn2 and ZrV2 is the position of the d bands derived from the Zr and V atoms. Consequently, these materials have completely different Fermi surfaces. We have investigated the magnetic properties of these compounds by evaluating their generalized Stoner factors and found agreement with experiment. Our results for the superconducting transition temperature for these materials is found to be strongly dependent on the spin fluctuation parameter μsp. Of course, because of the magnetic transition, superconductivity cannot be observed in ZnZr2.

  15. Stress formulation in the all-electron full-potential linearized augmented plane wave method

    NASA Astrophysics Data System (ADS)

    Nagasako, Naoyuki; Oguchi, Tamio

    2012-02-01

    Stress formulation in the linearlized augmented plane wave (LAPW) method has been proposed in 2002 [1] as an extension of the force formulation in the LAPW method [2]. However, pressure calculations only for Al and Si were reported in Ref.[1] and even now stress calculations have not yet been fully established in the LAPW method. In order to make it possible to efficiently relax lattice shape and atomic positions simultaneously and to precisely evaluate the elastic constants in the LAPW method, we reformulate stress formula in the LAPW method with the Soler-Williams representation [3]. Validity of the formulation is tested by comparing the pressure obtained as the trace of stress tensor with that estimated from total energies for a wide variety of material systems. Results show that pressure is estimated within the accuracy of less than 0.1 GPa. Calculations of the shear elastic constant show that the shear components of the stress tensor are also precisely computed with the present formulation [4].[4pt] [1] T. Thonhauser et al., Solid State Commun. 124, 275 (2002).[0pt] [2] R. Yu et al., Phys. Rev. B 43, 6411 (1991).[0pt] [3] J. M. Soler and A. R. Williams, Phys. Rev. B 40, 1560 (1989).[0pt] [4] N. Nagasako and T. Oguchi, J. Phys. Soc. Jpn. 80, 024701 (2011).

  16. Lightning protection of full authority digital electronic systems

    NASA Astrophysics Data System (ADS)

    Crofts, David

    1991-08-01

    Modern electronic systems are vulnerable to transient and they now provide safety critical functions such as full authority digital electronic control (FADEC) units for fly by wire aircraft. Of the traditional suppression technologies available diodes have gained the wider acceptance, however, they lack the current handling capacity to meet existing threat levels. The development of high speed fold back devices where, at a specified voltage, the off state resistance switches to a very low on state one has provided the equivalent to a semiconductor spark gap. The size of the technology enables it to be integrated into connectors of interconnection cables. To illustrate the performance the technology was developed to meet the Lightning Protection requirements for FADEC units within aeroengines. Work was also carried out to study switching behavior with the waveform 5, the 500 us, 10 kA pulse applied to cable assemblies. This test enabled all the switches in a connector to be fired simultaneously.

  17. Lightning protection of full authority digital electronic systems

    NASA Technical Reports Server (NTRS)

    Crofts, David

    1991-01-01

    Modern electronic systems are vulnerable to transient and they now provide safety critical functions such as full authority digital electronic control (FADEC) units for fly by wire aircraft. Of the traditional suppression technologies available diodes have gained the wider acceptance, however, they lack the current handling capacity to meet existing threat levels. The development of high speed fold back devices where, at a specified voltage, the off state resistance switches to a very low on state one has provided the equivalent to a semiconductor spark gap. The size of the technology enables it to be integrated into connectors of interconnection cables. To illustrate the performance the technology was developed to meet the Lightning Protection requirements for FADEC units within aeroengines. Work was also carried out to study switching behavior with the waveform 5, the 500 us, 10 kA pulse applied to cable assemblies. This test enabled all the switches in a connector to be fired simultaneously.

  18. Self-consistent full-potential linearized-augmented-plane-wave local-density electronic-structure studies of magnetism and superconductivity in C15 compounds: ZrZn/sub 2/ and ZrV/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, M.; Jansen, H.J.F.; Freeman, A.J.

    The electronic structure and properties of the cubic Laves phase (C15) compounds ZrZn/sub 2/ and ZrV/sub 2/ have been determined using our all-electron full-potential linearized-augmented-plane-wave (FLAPW) method for bulk solids. The computations were performed in two stages: (i) self-consistent warped muffin tin and (ii) self-consistent full potential. Spin-orbit coupling was included after either stage. The effects of the inclusion of the nonspherical terms inside the muffin tins on the eigenvalues is found to be small (of order 1 mRy). However, due to the fact that some of the bands near the Fermi level are flat, this effect leads to amore » much higher value of the density of states at E/sub F/ in ZnZr/sub 2/. The most important difference between the materials ZrZn/sub 2/ and ZrV/sub 2/ is the position of the d bands derived from the Zr and V atoms. Consequently, these materials have completely different Fermi surfaces. We have investigated the magnetic properties of these compounds by evaluating their generalized Stoner factors and found agreement with experiment. Our results for the superconducting transition temperature for these materials is found to be strongly dependent on the spin fluctuation parameter ..mu../sub sp/. Of course, because of the magnetic transition, superconductivity cannot be observed in ZnZr/sub 2/.« less

  19. Full Parallel Implementation of an All-Electron Four-Component Dirac-Kohn-Sham Program.

    PubMed

    Rampino, Sergio; Belpassi, Leonardo; Tarantelli, Francesco; Storchi, Loriano

    2014-09-09

    A full distributed-memory implementation of the Dirac-Kohn-Sham (DKS) module of the program BERTHA (Belpassi et al., Phys. Chem. Chem. Phys. 2011, 13, 12368-12394) is presented, where the self-consistent field (SCF) procedure is replicated on all the parallel processes, each process working on subsets of the global matrices. The key feature of the implementation is an efficient procedure for switching between two matrix distribution schemes, one (integral-driven) optimal for the parallel computation of the matrix elements and another (block-cyclic) optimal for the parallel linear algebra operations. This approach, making both CPU-time and memory scalable with the number of processors used, virtually overcomes at once both time and memory barriers associated with DKS calculations. Performance, portability, and numerical stability of the code are illustrated on the basis of test calculations on three gold clusters of increasing size, an organometallic compound, and a perovskite model. The calculations are performed on a Beowulf and a BlueGene/Q system.

  20. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum

    NASA Astrophysics Data System (ADS)

    Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.; Diroll, Benjamin T.; Ketterson, John B.; Chang, Robert P. H.

    2016-09-01

    Nonlinear optical responses of materials play a vital role for the development of active nanophotonic and plasmonic devices. Optical nonlinearity induced by intense optical excitation of mobile electrons in metallic nanostructures can provide large-amplitude, dynamic tuning of their electromagnetic response, which is potentially useful for all-optical processing of information and dynamic beam control. Here we report on the sub-picosecond optical nonlinearity of indium tin oxide nanorod arrays (ITO-NRAs) following intraband, on-plasmon-resonance optical pumping, which enables modulation of the full-visible spectrum with large absolute change of transmission, favourable spectral tunability and beam-steering capability. Furthermore, we observe a transient response in the microsecond regime associated with slow lattice cooling, which arises from the large aspect-ratio and low thermal conductivity of ITO-NRAs. Our results demonstrate that all-optical control of light can be achieved by using heavily doped wide-bandgap semiconductors in their transparent regime with speed faster than that of noble metals.

  1. Strong-potential Born calculations for electron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, J.H.; Sil, N.C.

    1983-12-01

    A closed-form expression for 1s-1s electron capture has been developed in the strong-potential Born (SPB) approximation. Terms of the order (Z/sub p//v)/sup 2/ are ignored in our expression, where Z/sub p/ is the charge of the projectile and v is the collision velocity. Our errors of order (Z/sub p//v)/sup 2/ are within the accuracy of the SPB approximation itself, which is valid to first order in the projectile-electron interaction V/sub p/ (and all orders in the stronger target potential V/sub T/). Calculations using our expression are in better agreement with experimental observations of the shape of the Thomas peak thanmore » are other calculations.« less

  2. Investigation of the electronic structure in La1-xCaxCoO3 (x = 0, 0.5) using full potential calculations

    NASA Astrophysics Data System (ADS)

    Sahnoun, M.; Daul, C.; Haas, O.; Wokaun, A.

    2005-12-01

    The electronic and magnetic properties of both LaCoO3 and La0.5Ca0.5CoO3 have been investigated by means of ab initio full-potential augmented plane wave plus local orbitals (APW+lo) calculations carried out with the Wien 2k code. The functional used is the local-density approximation LDA +U. Doping with Ca2+ introduces holes into the Co-O network. We analyse the densities of states and we confirm that the intermediate state (IS) is stabilized by the Ca2+ substitution. This intermediate state in our results turns out to be metallic, and has a large density of states at the Fermi energy. The calculated magnetic moment in La0.5Ca0.5CoO3 is found to be in good agreement with experiment.

  3. Searching for Bill and Jane: Electronic Full-Text Literature.

    ERIC Educational Resources Information Center

    Still, Julie; Kassabian, Vibiana

    1998-01-01

    Examines electronic full-text literature available on the World Wide Web and on CD-ROM. Discusses authors and genres, electronic texts, and fees. Highlights Shakespeare, Jane Austen, and nature writing. Provides a bibliography of Web guides, specialized Shakespeare pages, and pages dealing with the Shakespeare authorship debate and secondary…

  4. An Ab Initio Full Potential Fully Relativistic Study of the (0001) Surface of Double Hexagonal Close Packed Americium*

    NASA Astrophysics Data System (ADS)

    Gao, Da; Ray, Asok

    2007-03-01

    The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and anti-ferromagnetic configurations via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of both bulk and the (0001) surface of dhcp Am with the 5f electrons primarily localized. Our results show that magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Quantum size effects are found to be more pronounced in work functions than in surface energies. *This work is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy and the Welch Foundation, Houston, Texas.

  5. Tattoo-Paper Transfer as a Versatile Platform for All-Printed Organic Edible Electronics.

    PubMed

    Bonacchini, Giorgio E; Bossio, Caterina; Greco, Francesco; Mattoli, Virgilio; Kim, Yun-Hi; Lanzani, Guglielmo; Caironi, Mario

    2018-04-01

    The use of natural or bioinspired materials to develop edible electronic devices is a potentially disruptive technology that can boost point-of-care testing. The technology exploits devices that can be safely ingested, along with pills or even food, and operated from within the gastrointestinal tract. Ingestible electronics can potentially target a significant number of biomedical applications, both as therapeutic and diagnostic tool, and this technology may also impact the food industry, by providing ingestible or food-compatible electronic tags that can "smart" track goods and monitor their quality along the distribution chain. Temporary tattoo-paper is hereby proposed as a simple and versatile platform for the integration of electronics onto food and pharmaceutical capsules. In particular, the fabrication of all-printed organic field-effect transistors on untreated commercial tattoo-paper, and their subsequent transfer and operation on edible substrates with a complex nonplanar geometry is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption.

    PubMed

    Janke, Svenja M; Auerbach, Daniel J; Wodtke, Alec M; Kandratsenka, Alexander

    2015-09-28

    We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

  7. Orbit-orbit relativistic correction calculated with all-electron molecular explicitly correlated Gaussians.

    PubMed

    Stanke, Monika; Palikot, Ewa; Kȩdziera, Dariusz; Adamowicz, Ludwik

    2016-12-14

    An algorithm for calculating the first-order electronic orbit-orbit magnetic interaction correction for an electronic wave function expanded in terms of all-electron explicitly correlated molecular Gaussian (ECG) functions with shifted centers is derived and implemented. The algorithm is tested in calculations concerning the H 2 molecule. It is also applied in calculations for LiH and H 3 + molecular systems. The implementation completes our work on the leading relativistic correction for ECGs and paves the way for very accurate ECG calculations of ground and excited potential energy surfaces (PESs) of small molecules with two and more nuclei and two and more electrons, such as HeH - , H 3 + , HeH 2 + , and LiH 2 + . The PESs will be used to determine rovibrational spectra of the systems.

  8. All-electron GW quasiparticle band structures of group 14 nitride compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Iek-Heng; Cheng, Hai-Ping, E-mail: cheng@qtp.ufl.edu; Kozhevnikov, Anton

    We have investigated the group 14 nitrides (M{sub 3}N{sub 4}) in the spinel phase (γ-M{sub 3}N{sub 4} with M = C, Si, Ge, and Sn) and β phase (β-M{sub 3}N{sub 4} with M = Si, Ge, and Sn) using density functional theory with the local density approximation and the GW approximation. The Kohn-Sham energies of these systems have been first calculated within the framework of full-potential linearized augmented plane waves (LAPW) and then corrected using single-shot G{sub 0}W{sub 0} calculations, which we have implemented in the modified version of the Elk full-potential LAPW code. Direct band gaps at the Γmore » point have been found for spinel-type nitrides γ-M{sub 3}N{sub 4} with M = Si, Ge, and Sn. The corresponding GW-corrected band gaps agree with experiment. We have also found that the GW calculations with and without the plasmon-pole approximation give very similar results, even when the system contains semi-core d electrons. These spinel-type nitrides are novel materials for potential optoelectronic applications because of their direct and tunable band gaps.« less

  9. Supersonic full-potential methods for missile body analysis

    NASA Technical Reports Server (NTRS)

    Pittman, James L.

    1992-01-01

    Accounts are presented of representative applications to missile bodies of arbitrary shape of methods based on the steady form of the full potential equation. The NCOREL and SIMP full-potential codes are compared, and their results are evaluated for the cases of an arrow wing and a wing-body configuration. Attention is given to the effect of cross-sectional and longitudinal geometries. Comparisons of surface pressure and longitudinal force and moment data for circular and elliptic bodies have shown that the full-potential methods yielded excellent results in attached-flow conditions. Results are presented for a conical star body, waveriders, the Shuttle Orbiter, and a highly swept wing-body cruising at Mach 4.

  10. Electronic quantum confinement in cylindrical potential well

    NASA Astrophysics Data System (ADS)

    Baltenkov, Arkadiy S.; Msezane, Alfred Z.

    2016-04-01

    The effects of quantum confinement on the momentum distribution of electrons confined within a cylindrical potential well have been analyzed. The motivation is to understand specific features of the momentum distribution of electrons when the electron behavior is completely controlled by the parameters of a non-isotropic potential cavity. It is shown that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the three-dimensional space within the framework of the same mathematical model. Some low-lying electronic states with different symmetries have been considered and the corresponding wave functions have been calculated; the behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well has been analyzed. Additionally, the momentum distributions of electrons in these states have been calculated. The limiting cases of the ratio of the cylinder length H and its radius R0 have been considered; when the cylinder length H significantly exceeds its radius R0 and when the cylinder radius is much greater than its length. The cylindrical quantum confinement effects on the momentum distribution of electrons in these potential wells have been analyzed. The possible application of the results obtained here for the description of the general features in the behavior of electrons in nanowires with metallic type of conductivity (or nanotubes) and ultrathin epitaxial films (or graphene sheets) are discussed. Possible experiments are suggested where the quantum confinement can be manifested. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  11. Full-potential KKR calculations for vacancies in Al : Screening effect and many-body interactions

    NASA Astrophysics Data System (ADS)

    Hoshino, T.; Asato, M.; Zeller, R.; Dederichs, P. H.

    2004-09-01

    We give ab initio calculations for vacancies in Al . The calculations are based on the generalized-gradient approximation in the density-functional theory and employ the all-electron full-potential Korringa-Kohn-Rostoker Green’s function method for point defects, which guarantees the correct embedding of the cluster of point defects in an otherwise perfect crystal. First, we confirm the recent calculated results of Carling [Phys. Rev. Lett. 85, 3862 (2000)], i.e., repulsion of the first-nearest-neighbor (1NN) divacancy in Al , and elucidate quantitatively the micromechanism of repulsion. Using the calculated results for vacancy formation energies and divacancy binding energies in Na , Mg , Al , and Si of face-centered-cubic, we show that the single vacancy in nearly free-electron systems becomes very stable with increasing free-electron density, due to the screening effect, and that the formation of divacancy destroys the stable electron distribution around the single vacancy, resulting in a repulsion of two vacancies on 1NN sites, so that the 1NN divacancy is unstable. Second, we show that the cluster expansion converges rapidly for the binding energies of vacancy agglomerates in Al . The binding energy of 13 vacancies consisting of a central vacancy and its 12 nearest neighbors, is reproduced within the error of 0.002eV per vacancy, if many-body interaction energies up to the four-body terms are taken into account in the cluster expansion, being compared with the average error (>0.1eV) of the glue models which are very often used to provide interatomic potentials for computer simulations. For the cluster expansion of the binding energies of impurities, we get the same convergence as that obtained for vacancies. Thus, the present cluster-expansion approach for the binding energies of agglomerates of vacancies and impurities in Al may provide accurate data to construct the interaction-parameter model for computer simulations which are strongly requested to study

  12. Criticality of the electron-nucleus cusp condition to local effective potential-energy theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Xiaoyin; Sahni, Viraht; Graduate School of the City University of New York, 360 Fifth Avenue, New York, New York 10016

    2003-01-01

    Local(multiplicative) effective potential energy-theories of electronic structure comprise the transformation of the Schroedinger equation for interacting Fermi systems to model noninteracting Fermi or Bose systems whereby the equivalent density and energy are obtained. By employing the integrated form of the Kato electron-nucleus cusp condition, we prove that the effective electron-interaction potential energy of these model fermions or bosons is finite at a nucleus. The proof is general and valid for arbitrary system whether it be atomic, molecular, or solid state, and for arbitrary state and symmetry. This then provides justification for all prior work in the literature based on themore » assumption of finiteness of this potential energy at a nucleus. We further demonstrate the criticality of the electron-nucleus cusp condition to such theories by an example of the hydrogen molecule. We show thereby that both model system effective electron-interaction potential energies, as determined from densities derived from accurate wave functions, will be singular at the nucleus unless the wave function satisfies the electron-nucleus cusp condition.« less

  13. Full potential study of the elastic, electronic, and optical properties of spinels MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4} under pressure effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semari, F.; Khenata, R.; Depatment of Physics and Astronomy, King Saud University, PO Box 2455, Riyadh 11451

    2010-12-15

    The structural, elastic, electronic, and optical properties of cubic spinel MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4} compounds have been calculated using a full relativistic version of the full-potential linearized-augmented plane wave with the mixed basis FP/APW+lo method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism is also applied to optimize the corresponding potential for band structure calculations. The ground state properties, including the lattice constants, the internal parameter, the bulk modulus, and the pressure derivative of the bulk modulus are in reasonable agreement with the available data. Using the totalmore » energy-strain technique, we have determined the full set of first-order elastic constants C{sub ij} and their pressure dependence, which have not been calculated or measured yet. The shear modulus, Young's modulus, and Poisson's ratio are calculated for polycrystalline XIn{sub 2}S{sub 4} aggregates. The Debye temperature is estimated from the average sound velocity. Electronic band structures show a direct band gap ({Gamma}-{Gamma}) for MgIn{sub 2}S{sub 4} and an indirect band gap (K-{Gamma}) for CdIn{sub 2}S{sub 4}. The calculated band gaps with EVGGA show a significant improvement over the GGA. The optical constants, including the dielectric function {epsilon}({omega}), the refractive index n({omega}), the reflectivity R({omega}), and the energy loss function L({omega}) were calculated for radiation up to 30 eV. -- Graphical abstract: Calculated total and partial densities of states for MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4}« less

  14. Numerical solution of the full potential equation using a chimera grid approach

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1995-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.

  15. Elastic electron-deuteron scattering within a relativistic potential model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khokhlov, N. A., E-mail: nikolakhokhlov@yandex.ru; Vakulyuk, A. A.

    Elastic electron-deuteron scattering was considered in the point form of relativistic quantum mechanics. Observables of this process and the dependence of the deuteron form factors on the 4-momentum transfer Q up to 8 fm{sup −1} were calculated. The nucleon-nucleon potentials used in the calculations included the Nijmegen potentials NijmI and NijmII, the Bonn potential CD-Bonn, and the Moscow potential involving forbidden states. A parametrization of the nucleon form factors that complies with present-day experimental results was used as input data. The results of the calculations that employ all of the above potential types describe experimental data at least up tomore » Q ≈ 5 fm{sup −}1.« less

  16. Changes to Workflow and Process Measures in the PICU During Transition From Semi to Full Electronic Health Record.

    PubMed

    Salib, Mina; Hoffmann, Raymond G; Dasgupta, Mahua; Zimmerman, Haydee; Hanson, Sheila

    2015-10-01

    Studies showing the changes in workflow during transition from semi to full electronic medical records are lacking. This objective study is to identify the changes in workflow in the PICU during transition from semi to full electronic health record. Prospective observational study. Children's Hospital of Wisconsin Institutional Review Board waived the need for approval so this study was institutional review board exempt. This study measured clinical workflow variables at a 72-bed PICU during different phases of transition to a full electronic health record, which occurred on November 4, 2012. Phases of electronic health record transition were defined as follows: pre-electronic health record (baseline data prior to transition to full electronic health record), transition phase (3 wk after electronic health record), and stabilization (6 mo after electronic health record). Data were analyzed for the three phases using Mann-Whitney U test with a two-sided p value of less than 0.05 considered significant. Seventy-two bed PICU. All patients in the PICU were included during the study periods. Five hundred and sixty-four patients with 2,355 patient days were evaluated in the three phases. Duration of rounds decreased from a median of 9 minutes per patient pre--electronic health record to 7 minutes per patient post electronic health record. Time to final note decreased from 2.06 days pre--electronic health record to 0.5 days post electronic health record. Time to first medication administration after admission also decreased from 33 minutes pre--electronic health record and 7 minutes post electronic health record. Time to Time to medication reconciliation was significantly higher pre-electronic health record than post electronic health record and percent of medication reconciliation completion was significantly lower pre--electronic health record than post electronic health record and percent of medication reconciliation completion was significantly higher pre--electronic

  17. All-electron and relativistic pseudopotential studies for the group 1 element polarizabilities from K to element 119.

    PubMed

    Lim, Ivan S; Schwerdtfeger, Peter; Metz, Bernhard; Stoll, Hermann

    2005-03-08

    Two-component and scalar relativistic energy-consistent pseudopotentials for the group 1 elements from K to element 119 are presented using nine electrons for the valence space definition. The accuracy of such an approximation is discussed for dipole polarizabilities and ionization potentials obtained at the coupled-cluster level as compared to experimental and all-electron Douglas-Kroll results.

  18. All-Dielectric Full-Color Printing with TiO2 Metasurfaces.

    PubMed

    Sun, Shang; Zhou, Zhenxing; Zhang, Chen; Gao, Yisheng; Duan, Zonghui; Xiao, Shumin; Song, Qinghai

    2017-05-23

    Recently, color generation in resonant nanostructures have been intensively studied. Despite of their exciting progresses, the structural colors are usually generated by the plasmonic resonances of metallic nanoparticles. Due to the inherent plasmon damping, such plasmonic nanostructures are usually hard to create very distinct color impressions. Here we utilize the concept of metasurfaces to produce all-dielectric, low-loss, and high-resolution structural colors. We have fabricated TiO 2 metasurfaces with electron-beam lithography and a very simple lift-off process. The optical characterizations showed that the TiO 2 metasurfaces with different unit sizes could generate high reflection peaks at designed wavelengths. The maximal reflectance was as high as 64% with full width at half-maximum (fwhm) around 30 nm. Consequently, distinct colors have been observed in bright field and the generated colors covered the entire visible spectral range. The detailed numerical analysis shows that the distinct colors were generated by the electric resonance and magnetic resonances in TiO 2 metasurfaces. Based on the unique properties of magnetic resonances, distinct colors have been observed in bright field when the metasurfaces were reduced to a 4 × 4 array, giving a spatial resolution around 16000 dpi. Considering the cost, stability, and CMOS-compatibility, this research will be important for the structural colors to reach real-world industrial applications.

  19. Electronic structure of stoichiometric and reduced ZnO from periodic relativistic all electron hybrid density functional calculations using numeric atom-centered orbitals.

    PubMed

    Viñes, Francesc; Illas, Francesc

    2017-03-30

    The atomic and electronic structure of stoichiometric and reduced ZnO wurtzite has been studied using a periodic relativistic all electron hybrid density functional (PBE0) approach and numeric atom-centered orbital basis set with quality equivalent to aug-cc-pVDZ. To assess the importance of relativistic effects, calculations were carried out without and with explicit inclusion of relativistic effects through the zero order regular approximation. The calculated band gap is ∼0.2 eV smaller than experiment, close to previous PBE0 results including relativistic calculation through the pseudopotential and ∼0.25 eV smaller than equivalent nonrelativistic all electron PBE0 calculations indicating possible sources of error in nonrelativistic all electron density functional calculations for systems containing elements with relatively high atomic number. The oxygen vacancy formation energy converges rather fast with the supercell size, the predicted value agrees with previously hybrid density functional calculations and analysis of the electronic structure evidences the presence of localized electrons at the vacancy site with a concomitant well localized peak in the density of states ∼0.5 eV above the top of the valence band and a significant relaxation of the Zn atoms near to the oxygen vacancy. Finally, present work shows that accurate results can be obtained in systems involving large supercells containing up to ∼450 atoms using a numeric atomic-centered orbital basis set within a full all electron description including scalar relativistic effects at an affordable cost. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. All-Optical Quasi-Phase Matching for Laser Electron Acceleration

    DTIC Science & Technology

    2016-06-01

    T E C H N IC A L R E P O R T DTRA-TR-16-65 All-Optical Quasi -Phase Matching for Laser Electron Acceleration Distribution Statement A...outcomes of the project “All-Optical Quasi - Phase Matching for Laser Electron Acceleration”, a project awarded to the Pennsylvania State University by the...can be used to simultaneously extend the accel- eration distance beyond several Rayleigh ranges and to achieve quasi -phase matching between the laser

  1. All-Printed Flexible and Stretchable Electronics.

    PubMed

    Mohammed, Mohammed G; Kramer, Rebecca

    2017-05-01

    A fully automated additive manufacturing process that produces all-printed flexible and stretchable electronics is demonstrated. The printing process combines soft silicone elastomer printing and liquid metal processing on a single high-precision 3D stage. The platform is capable of fabricating extremely complex conductive circuits, strain and pressure sensors, stretchable wires, and wearable circuits with high yield and repeatability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco-Pérez, Marco, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx; Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1; Gázquez, José L., E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx

    We extend the definition of the electronic chemical potential (μ{sub e}) and chemical hardness (η{sub e}) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ{sub e}.more » Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.« less

  3. Selective coupling of individual electron and nuclear spins with integrated all-spin coherence protection

    NASA Astrophysics Data System (ADS)

    Terletska, Hanna; Dobrovitski, Viatcheslav

    2015-03-01

    The electron spin of the NV center in diamond is a promising platform for spin sensing. Applying the dynamical decoupling, the NV electron spin can be used to detect the individual weakly coupled carbon-13 nuclear spins in diamond and employ them for small-scale quantum information processing. However, the nuclear spins within this approach remain unprotected from decoherence, which ultimately limits the detection and restricts the fidelity of the quantum operation. Here we investigate possible schemes for combining the resonant decoupling on the NV spin with the decoherence protection of the nuclear spins. Considering several schemes based on pulse and continuous-wave decoupling, we study how the joint electron-nuclear spin dynamics is affected. We identify regimes where the all-spin coherence protection improves the detection and manipulation. We also discuss potential applications of the all-spin decoupling for detecting spins outside diamond, with the purpose of implementing the nanoscale NMR. This work was supported by the US Department of Energy Basic Energy Sciences (Contract No. DE-AC02-07CH11358).

  4. Low potential manganese ions as efficient electron donors in native anoxygenic bacteria.

    PubMed

    Deshmukh, Sasmit S; Protheroe, Charles; Ivanescu, Matei-Alexandru; Lag, Sarah; Kálmán, László

    2018-04-01

    Systematic control over molecular driving forces is essential for understanding the natural electron transfer processes as well as for improving the efficiency of the artificial mimics of energy converting enzymes. Oxygen producing photosynthesis uniquely employs manganese ions as rapid electron donors. Introducing this attribute to anoxygenic photosynthesis may identify evolutionary intermediates and provide insights to the energetics of biological water oxidation. This work presents effective environmental methods that substantially and simultaneously tune the redox potentials of manganese ions and the cofactors of a photosynthetic enzyme from native anoxygenic bacteria without the necessity of genetic modification or synthesis. A spontaneous coordination with bis-tris propane lowered the redox potential of the manganese (II) to manganese (III) transition to an unusually low value (~400 mV) at pH 9.4 and allowed its binding to the bacterial reaction center. Binding to a novel buried binding site elevated the redox potential of the primary electron donor, a dimer of bacteriochlorophylls, by up to 92 mV also at pH 9.4 and facilitated the electron transfer that is able to compete with the wasteful charge recombination. These events impaired the function of the natural electron donor and made BTP-coordinated manganese a viable model for an evolutionary alternative. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Probing electronic binding potentials with attosecond photoelectron wavepackets

    NASA Astrophysics Data System (ADS)

    Kiesewetter, D.; Jones, R. R.; Camper, A.; Schoun, S. B.; Agostini, P.; Dimauro, L. F.

    2018-01-01

    The central goal of attosecond science is to visualize, understand and ultimately control electron dynamics in matter over the fastest relevant timescales. To date, numerous schemes have demonstrated exquisite temporal resolution, on the order of ten attoseconds, in measurements of the response of photo-excited electrons to time-delayed probes. However, attributing this response to specific dynamical mechanisms is difficult, requiring guidance from advanced calculations. Here we show that energy transfer between an oscillating field and low-energy attosecond photoelectron wavepackets directly provides coarse-grained information on the effective binding potential from which the electrons are liberated. We employ a dense extreme ultraviolet (XUV) harmonic comb to photoionize He, Ne and Ar atoms and record the electron spectra as a function of the phase of a mid-infrared dressing field. The amplitude and phase of the resulting interference modulations in the electron spectra reveal the average momentum and change in momentum of the electron wavepackets during the first quarter-period of the dressing field after their creation, reflecting the corresponding coarse characteristics of the binding potential.

  6. Validity of virial theorem in all-electron mixed basis density functional, Hartree–Fock, and GW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwahara, Riichi; Accelrys K. K., Kasumigaseki Tokyu Building 17F, 3-7-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013; Tadokoro, Yoichi

    In this paper, we calculate kinetic and potential energy contributions to the electronic ground-state total energy of several isolated atoms (He, Be, Ne, Mg, Ar, and Ca) by using the local density approximation (LDA) in density functional theory, the Hartree–Fock approximation (HFA), and the self-consistent GW approximation (GWA). To this end, we have implemented self-consistent HFA and GWA routines in our all-electron mixed basis code, TOMBO. We confirm that virial theorem is fairly well satisfied in all of these approximations, although the resulting eigenvalue of the highest occupied molecular orbital level, i.e., the negative of the ionization potential, is inmore » excellent agreement only in the case of the GWA. We find that the wave function of the lowest unoccupied molecular orbital level of noble gas atoms is a resonating virtual bound state, and that of the GWA spreads wider than that of the LDA and thinner than that of the HFA.« less

  7. Femtosecond all-optical synchronization of an X-ray free-electron laser

    DOE PAGES

    Schulz, S.; Grguraš, I.; Behrens, C.; ...

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less

  8. Femtosecond all-optical synchronization of an X-ray free-electron laser

    PubMed Central

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  9. How localized is ``local?'' Efficiency vs. accuracy of O(N) domain decomposition in local orbital based all-electron electronic structure theory

    NASA Astrophysics Data System (ADS)

    Havu, Vile; Blum, Volker; Scheffler, Matthias

    2007-03-01

    Numeric atom-centered local orbitals (NAO) are efficient basis sets for all-electron electronic structure theory. The locality of NAO's can be exploited to render (in principle) all operations of the self-consistency cycle O(N). This is straightforward for 3D integrals using domain decomposition into spatially close subsets of integration points, enabling critical computational savings that are effective from ˜tens of atoms (no significant overhead for smaller systems) and make large systems (100s of atoms) computationally feasible. Using a new all-electron NAO-based code,^1 we investigate the quantitative impact of exploiting this locality on two distinct classes of systems: Large light-element molecules [Alanine-based polypeptide chains (Ala)n], and compact transition metal clusters. Strict NAO locality is achieved by imposing a cutoff potential with an onset radius rc, and exploited by appropriately shaped integration domains (subsets of integration points). Conventional tight rc<= 3å have no measurable accuracy impact in (Ala)n, but introduce inaccuracies of 20-30 meV/atom in Cun. The domain shape impacts the computational effort by only 10-20 % for reasonable rc. ^1 V. Blum, R. Gehrke, P. Havu, V. Havu, M. Scheffler, The FHI Ab Initio Molecular Simulations (aims) Project, Fritz-Haber-Institut, Berlin (2006).

  10. Electronic reporting of all reference laboratory results: An important step toward a truly all-encompassing, integrated health record.

    PubMed

    Kratz, Alexander

    2016-09-01

    Results from reference laboratories are often not easily available in electronic health records. This article describes a multi-pronged, long-term approach that includes bringing send-out tests in-house, upgrading the laboratory information system, interfacing more send-out tests and more reference laboratories, utilizing the "miscellaneous assay" option offered by some reference laboratories, and scanning all remaining paper reports from reference laboratories for display in the electronic health record. This allowed all laboratory results obtained in association with a patient visit, whether performed in-house or at a reference laboratory, to be available in the integrated electronic health record. This was achieved without manual data entry of reference laboratory results, thereby avoiding the risk of transcription errors. A fully integrated electronic health record that contains all laboratory results can be achieved by maximizing the number of interfaced reference laboratory assays and making all non-interfaced results available as scanned documents. © The Author(s) 2015.

  11. Label-free all-electronic biosensing in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Stanton, Michael A.

    Label-free, all-electronic detection techniques offer great promise for advancements in medical and biological analysis. Electrical sensing can be used to measure both interfacial and bulk impedance changes in conducting solutions. Electronic sensors produced using standard microfabrication processes are easily integrated into microfluidic systems. Combined with the sensitivity of radiofrequency electrical measurements, this approach offers significant advantages over competing biological sensing methods. Scalable fabrication methods also provide a means of bypassing the prohibitive costs and infrastructure associated with current technologies. We describe the design, development and use of a radiofrequency reflectometer integrated into a microfluidic system towards the specific detection of biologically relevant materials. We developed a detection protocol based on impedimetric changes caused by the binding of antibody/antigen pairs to the sensing region. Here we report the surface chemistry that forms the necessary capture mechanism. Gold-thiol binding was utilized to create an ordered alkane monolayer on the sensor surface. Exposed functional groups target the N-terminus, affixing a protein to the monolayer. The general applicability of this method lends itself to a wide variety of proteins. To demonstrate specificity, commercially available mouse anti- Streptococcus Pneumoniae monoclonal antibody was used to target the full-length recombinant pneumococcal surface protein A, type 2 strain D39 expressed by Streptococcus Pneumoniae. We demonstrate the RF response of the sensor to both the presence of the surface decoration and bound SPn cells in a 1x phosphate buffered saline solution. The combined microfluidic sensor represents a powerful platform for the analysis and detection of cells and biomolecules.

  12. Understanding electron magnetic circular dichroism in a transition potential approach

    NASA Astrophysics Data System (ADS)

    Barthel, J.; Mayer, J.; Rusz, J.; Ho, P.-L.; Zhong, X. Y.; Lentzen, M.; Dunin-Borkowski, R. E.; Urban, K. W.; Brown, H. G.; Findlay, S. D.; Allen, L. J.

    2018-04-01

    This paper introduces an approach based on transition potentials for inelastic scattering to understand the underlying physics of electron magnetic circular dichroism (EMCD). The transition potentials are sufficiently localized to permit atomic-scale EMCD. Two-beam and three-beam systematic row cases are discussed in detail in terms of transition potentials for conventional transmission electron microscopy, and the basic symmetries which arise in the three-beam case are confirmed experimentally. Atomic-scale EMCD in scanning transmission electron microscopy (STEM), using both a standard STEM probe and vortex beams, is discussed.

  13. An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells.

    PubMed

    Dou, Chuandong; Long, Xiaojing; Ding, Zicheng; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang

    2016-01-22

    A double B←N bridged bipyridyl (BNBP) is a novel electron-deficient building block for polymer electron acceptors in all-polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low-lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P-BNBP-T) exhibits high electron mobility, low-lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all-polymer solar cell (all-PSC) devices with P-BNBP-T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38%, which is among the highest values of all-PSCs with PTB7 as the electron donor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Comprehensive electronic medical record implementation levels not associated with 30-day all-cause readmissions within Medicare beneficiaries with heart failure.

    PubMed

    Patterson, M E; Marken, P; Zhong, Y; Simon, S D; Ketcherside, W

    2014-01-01

    Regulatory standards for 30-day readmissions incentivize hospitals to improve quality of care. Implementing comprehensive electronic health record systems potentially decreases readmission rates by improving medication reconciliation at discharge, demonstrating the additional benefits of inpatient EHRs beyond improved safety and decreased errors. To compare 30-day all-cause readmission incidence rates within Medicare fee-for-service with heart failure discharged from hospitals with full implementation levels of comprehensive EHR systems versus those without. This retrospective cohort study uses data from the American Hospital Association Health IT survey and Medicare Part A claims to measure associations between hospital EHR implementation levels and beneficiary readmissions. Multivariable Cox regressions estimate the hazard ratio of 30-day all-cause readmissions within beneficiaries discharged from hospitals implementing comprehensive EHRs versus those without, controlling for beneficiary health status and hospital organizational factors. Propensity scores are used to account for selection bias. The proportion of heart failure patients with 30-day all-cause readmissions was 30%, 29%, and 32% for those discharged from hospitals with full, some, and no comprehensive EHR systems. Heart failure patients discharged from hospitals with fully implemented comprehensive EHRs compared to those with no comprehensive EHR systems had equivalent 30-day readmission incidence rates (HR = 0.97, 95% CI 0.73 - 1.3). Implementation of comprehensive electronic health record systems does not necessarily improve a hospital's ability to decrease 30-day readmission rates. Improving the efficiency of post-acute care will require more coordination of information systems between inpatient and ambulatory providers.

  15. Mechanical, electronic and thermodynamic properties of full Heusler compounds Fe2VX(X = Al, Ga)

    NASA Astrophysics Data System (ADS)

    Khalfa, M.; Khachai, H.; Chiker, F.; Baki, N.; Bougherara, K.; Yakoubi, A.; Murtaza, G.; Harmel, M.; Abu-Jafar, M. S.; Omran, S. Bin; Khenata, R.

    2015-11-01

    The electronic structure, mechanical and thermodynamic properties of Fe2VX, (with X = Al and Ga), have been studied self consistently by employing state-of-the-art full-potential linearized approach of augmented plane wave plus local orbitals (FP-LAPW + lo) method. The exchange-correlation potential is treated with the local density and generalized gradient approximations (LDA and GGA). Our predicted ground state properties such as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA, and these results are in very good agreement with the available experimental and theoretical data. Further, thermodynamic properties of Fe2VAl and Fe2VGa are predicted with pressure and temperature in the ranges of 0-40 GPa and 0-1500 K using the quasi-harmonic Debye model. We have obtained successfully the variations of the heat capacities, primitive cell volume and volume expansion coefficient.

  16. Full-potential multiple scattering theory with space-filling cells for bound and continuum states.

    PubMed

    Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R

    2010-05-12

    We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.

  17. Exact exchange-correlation potentials of singlet two-electron systems

    NASA Astrophysics Data System (ADS)

    Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.

    2017-10-01

    We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.

  18. Electronic Rearrangement in Molecular Plasmons: An Electron Density and Electrostatic Potential-Based Study.

    PubMed

    Paul, Mishu; Balanarayan, P

    2018-06-05

    Plasmonic modes in single-molecule systems have been previously identified by scaling two-electron interactions in calculating excitation energies. Analysis of transition dipole moments for states of polyacenes based on configuration interaction is another method for characterising molecular plasmons. The principal features in the electronic absorption spectra of polyacenes are a low-intensity, lower-in-energy peak and a high-intensity, higher-in-energy peak. From calculations using time-dependent density functional theory with the B3LYP/cc-pVTZ basis set, both these peaks are found to result from the same set of electronic transitions, that is, HOMO-n to LUMO and HOMO to LUMO+n, where n varies as the number of fused rings increases. In this work, the excited states of polyacenes, naphthalene through pentacene, are analysed using electron densities and molecular electrostatic potential (MESP) topography. Compared to other excited states the bright and dark plasmonic states involve the least electron rearrangement. Quantitatively, the MESP topography indicates that the variance in MESP values and the displacement in MESP minima positions, calculated with respect to the ground state, are lowest for plasmonic states. The excited-state electronic density profiles and electrostatic potential topographies suggest the least electron rearrangement for the plasmonic states. Conversely, high electron rearrangement characterises a single-particle excitation. The molecular plasmon can be called an excited state most similar to the ground state in terms of one-electron properties. This is found to be true for silver (Ag 6 ) and sodium (Na 8 ) linear chains as well. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Self-consistent many-electron theory of electron work functions and surface potential characteristics for selected metals

    NASA Technical Reports Server (NTRS)

    Smith, J. R.

    1969-01-01

    Electron work functions, surface potentials, and electron number density distributions and electric fields in the surface region of 26 metals were calculated from first principles within the free electron model. Calculation proceeded from an expression of the total energy as a functional of the electron number density, including exchange and correlation energies, as well as a first inhomogeneity term. The self-consistent solution was obtained via a variational procedure. Surface barriers were due principally to many-body effects; dipole barriers were small only for some alkali metals, becoming quite large for the transition metals. Surface energies were inadequately described by this model, which neglects atomistic effects. Reasonable results were obtained for electron work functions and surface potential characteristics, maximum electron densities varying by a factor of over 60.

  20. Exchange repulsive potential adaptable for electronic structure changes during chemical reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp

    2015-04-28

    Hybrid methods combining quantum mechanical (QM) and classical calculations are becoming important tools in chemistry. The popular approach to calculate the interaction between QM and classical calculations employs interatomic potentials. In most cases, the interatomic potential is constructed of an electrostatic (ES) potential and a non-ES potential. Because QM treatment is employed in the calculation of the ES potential, the electronic change can be considered in this ES potential. However, QM treatment of the non-ES potential is difficult because of high computational cost. To overcome this difficulty of evaluating the non-ES potential, we proposed an exchange repulsive potential as themore » main part of the non-ES potential on the basis of a QM approach. This potential is independent of empirical parameters and adaptable for electronic structure. We combined this potential with the reference interaction site model self-consistent field explicitly including spatial electron density distribution and successfully applied it to the chemical reactions in aqueous phase.« less

  1. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    PubMed

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-02

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  2. Electron Flow in Multiheme Bacterial Cytochromes is a Balancing Act Between Heme Electronic Interaction and Redox Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen

    The naturally widespread process of electron transfer from metal reducing bacteria to extracellular solid metal oxides entails unique biomolecular machinery optimized for long-range electron transport. To perform this function efficiently microorganisms have adapted multi-heme c-type cytochromes to arrange heme cofactors into wires that cooperatively span the cellular envelope, transmitting electrons along distances greater than 100 Angstroms. Implications and opportunities for bionanotechnological device design are self-evident. However, at the molecular level how these proteins shuttle electrons along their heme wires, navigating intraprotein intersections and interprotein interfaces effciently, remains a mystery so far inaccessible to experiment. To shed light on this criticalmore » topic, we carried out extensive computer simulations to calculate Marcus theory quantities for electron transfer along the ten heme cofactors in the recently crystallized outer membrane cytochrome MtrF. The combination of electronic coupling matrix elements with free energy calculations of heme redox potentials and reorganization energies for heme-to-heme electron transfer allows the step-wise and overall electron transfer rate to be estimated and understood in terms of structural and dynamical characteristics of the protein. By solving a master equation for electron hopping, we estimate an intrinsic, maximum possible electron flux through solvated MtrF of 104-105 s-1, consistent with recently measured rates for the related MtrCAB protein complex. Intriguingly, this flux must navigate thermodynamically uphill steps past low potential hemes. Our calculations show that the rapid electron transport through MtrF is the result of a clear correlation between heme redox potential and the strength of electronic coupling along the wire: Thermodynamically uphill steps occur only between electronically well connected stacked heme pairs. This suggests that the protein evolved to harbor low

  3. Potential applications of electron emission membranes in medicine

    NASA Astrophysics Data System (ADS)

    Bilevych, Yevgen; Brunner, Stefan E.; Chan, Hong Wah; Charbon, Edoardo; van der Graaf, Harry; Hagen, Cornelis W.; Nützel, Gert; Pinto, Serge D.; Prodanović, Violeta; Rotman, Daan; Santagata, Fabio; Sarro, Lina; Schaart, Dennis R.; Sinsheimer, John; Smedley, John; Tao, Shuxia; Theulings, Anne M. M. G.

    2016-02-01

    With a miniaturised stack of transmission dynodes, a noise free amplifier is being developed for the detection of single free electrons, with excellent time- and 2D spatial resolution and efficiency. With this generic technology, a new family of detectors for individual elementary particles may become possible. Potential applications of such electron emission membranes in medicine are discussed.

  4. End-boundary sheath potential, electron and ion energy distribution in the low-pressure non-ambipolar electron plasma

    NASA Astrophysics Data System (ADS)

    Chen, Lee; Chen, Zhiying; Funk, Merritt

    2013-12-01

    The end-boundary floating-surface sheath potential, electron and ion energy distribution functions (EEDf, IEDf) in the low-pressure non-ambipolar electron plasma (NEP) are investigated. The NEP is heated by an electron beam extracted from an inductively coupled electron-source plasma (ICP) through a dielectric injector by an accelerator located inside the NEP. This plasma's EEDf has a Maxwellian bulk followed by a broad energy continuum connecting to the most energetic group with energies around the beam energy. The NEP pressure is 1-3 mTorr of N2 and the ICP pressure is 5-15 mTorr of Ar. The accelerator is biased positively from 80 to 600 V and the ICP power range is 200-300 W. The NEP EEDf and IEDf are determined using a retarding field energy analyser. The EEDf and IEDf are measured at various NEP pressures, ICP pressures and powers as a function of accelerator voltage. The accelerator current and sheath potential are also measured. The IEDf reveals mono-energetic ions with adjustable energy and it is proportionally controlled by the sheath potential. The NEP end-boundary floating surface is bombarded by a mono-energetic, space-charge-neutral plasma beam. When the injected energetic electron beam is adequately damped by the NEP, the sheath potential is linearly controlled at almost a 1 : 1 ratio by the accelerator voltage. If the NEP parameters cannot damp the electron beam sufficiently, leaving an excess amount of electron-beam power deposited on the floating surface, the sheath potential will collapse and become unresponsive to the accelerator voltage.

  5. Electron interactions in graphene through an effective Coulomb potential

    NASA Astrophysics Data System (ADS)

    Rodrigues, Joao N. B.; Adam, Shaffique

    A recent numerical work [H.-K. Tang et al, PRL 115, 186602 (2015)] considering graphene's π-electrons interacting through an effective Coulomb potential that is finite at short-distances, stressed the importance of the sp2 -electrons in determining the semimetal to Mott insulator phase transition in graphene. Some years ago, I. F. Herbut [PRL 97, 146401 (2006)] studied such a transition by mapping graphene's π-electrons into a Gross-Neveu model. From a different perspective, D. T. Son [PRB 75, 235423 (2007)] put the emphasis on the long-range interactions by modelling graphene as Dirac fermions interacting through a bare Coulomb potential. Here we build on these works and explore the phase diagram of Dirac fermions interacting through an effective Coulomb-like potential screened at short-distances. The interaction potential used allows for analytic results that controllably switch between the two perspectives above. This work was supported by the Singapore National Research Foundation (NRF-NRFF2012-01 and CA2DM medium-sized centre program) and by the Singapore Ministry of Education and Yale-NUS College (R-607-265-01312).

  6. Optical-model potential for electron and positron elastic scattering by atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvat, Francesc

    2003-07-01

    An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkurmore » approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from {approx}100 eV up to {approx}5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.« less

  7. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography.

    PubMed

    Somodi, P K; Twitchett-Harrison, A C; Midgley, P A; Kardynał, B E; Barnes, C H W; Dunin-Borkowski, R E

    2013-11-01

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p-n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p-n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. © 2013 Elsevier B.V. All rights reserved.

  8. Electron injection dynamics in high-potential porphyrin photoanodes.

    PubMed

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    There is a growing need to utilize carbon neutral energy sources, and it is well known that solar energy can easily satisfy all of humanity's requirements. In order to make solar energy a viable alternative to fossil fuels, the problem of intermittency must be solved. Batteries and supercapacitors are an area of active research, but they currently have relatively low energy-to-mass storage capacity. An alternative and very promising possibility is to store energy in chemical bonds, or make a solar fuel. The process of making solar fuel is not new, since photosynthesis has been occurring on earth for about 3 billion years. In order to produce any fuel, protons and electrons must be harvested from a species in its oxidized form. Photosynthesis uses the only viable source of electrons and protons on the scale needed for global energy demands: water. Because artificial photosynthesis is a lofty goal, water oxidation, which is a crucial step in the process, has been the initial focus. This Account provides an overview of how terahertz spectroscopy is used to study electron injection, highlights trends from previously published reports, and concludes with a future outlook. It begins by exploring similarities and differences between dye-sensitized solar cells (DSSCs) for producing electricity and a putative device for splitting water and producing a solar fuel. It then identifies two important problems encountered when adapting DSSC technology to water oxidation-improper energy matching between sensitizer energy levels with the potential for water oxidation and the instability of common anchoring groups in water-and discusses steps to address them. Emphasis is placed on electron injection from sensitizers to metal oxides because this process is the initial step in charge transport. Both the rate and efficiency of electron injection are analyzed on a sub-picosecond time scale using time-resolved terahertz spectroscopy (TRTS). Bio-inspired pentafluorophenyl porphyrins are

  9. Energy and pitch angle-dispersed auroral electrons suggesting a time-variable, inverted-V potential structure

    NASA Astrophysics Data System (ADS)

    Arnoldy, R. L.; Lynch, K. A.; Austin, J. B.; Kintner, P. M.

    1999-10-01

    the entire potential drop all start to do so at the same time when the potential is turned on. The FABs seem to fluctuate at either ~10 Hz or near 100 Hz. An important constraint of the on/off mechanism is whether cold electrons (1 eV) can fill the inverted-V volume during the off cycle. The maximum vertical height of the 10 kV potential region for the 10 Hz events would be the order of 100 and 10 km for the 100 Hz events. To get 10 kV, these heights require parallel electric fields of 0.1 and 1 V/m respectively for the 10 and 100 Hz events assuming that the filling is along B from below the inverted-V potential. Alternative mechanisms are also discussed in the light of the data presented.

  10. Electron Flow to a Satellite at High Positive Potential

    NASA Technical Reports Server (NTRS)

    Sheldon, John W.

    1996-01-01

    The Tethered Satellite System (TSS) is designed to deploy a 1.6 m diameter spherical satellite a distance of 20 km above the space shuttle orbiter on an insulated conducting tether. Because of the passage of the conducting tether through the earth's magnetic field, an emf is generated producing a positive satellite potential of about 5000 V. Electron flow under the influence of this high positive potential is the focus of the present analysis. The ionospheric parameters at TSS orbit altitude are; thermal velocity of electrons, 1.9 x 10(exp 5) M/S, thermal velocity of the ions, 1.1 x 10(exp 3) m/s, velocity of the satellite 8 x 10(exp 3) m/s. The electrons, with a Debye length, lambda(D) = 0.49 cm, spiral about the earth's magnetic field lines (0.4 Gauss) with a radius of about 3 cm and the ions spiral with a radius of 5 m. Under these conditions, the electron thermal energy, kT is 0.17 eV. The TSS satellite radius, r(p) is 163 Debye lengths. There is an extensive literature on the interaction of satellites with the near-earth ionospheric plasma. The space charge limitation to the electron current collected by a sphere at positive electrical potential was calculated by Langmuir and Blodgett (1924). Parker and Murphy (1967) recognized the importance of the influence of the earth's magnetic field and used the guiding center approximation to calculate the electron current collected by a positive charged satellite. More recently Ma and Schunk (1989) have calculated the time dependent flow of electrons to a spherical satellite at positive potential utilizing numerical methods and Sheldon (1994) used similar methods to solve this problem for the steady state. In order to analyze some of the phenomena that occurred in the ionosphere during the TSS flights, it would be useful to have analytic expressions for these electron flows. The governing equations are very complex and an exact analytical solution is not likely. An approximate analytical solution is feasible however

  11. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics.

    PubMed

    Guo, Hengyu; Yeh, Min-Hsin; Lai, Ying-Chih; Zi, Yunlong; Wu, Changsheng; Wen, Zhen; Hu, Chenguo; Wang, Zhong Lin

    2016-11-22

    Recently, a self-charging power unit consisting of an energy harvesting device and an energy storage device set the foundation for building a self-powered wearable system. However, the flexibility of the power unit working under extremely complex deformations (e.g., stretching, twisting, and bending) becomes a key issue. Here, we present a prototype of an all-in-one shape-adaptive self-charging power unit that can be used for scavenging random body motion energy under complex mechanical deformations and then directly storing it in a supercapacitor unit to build up a self-powered system for wearable electronics. A kirigami paper based supercapacitor (KP-SC) was designed to work as the flexible energy storage device (stretchability up to 215%). An ultrastretchable and shape-adaptive silicone rubber triboelectric nanogenerator (SR-TENG) was utilized as the flexible energy harvesting device. By combining them with a rectifier, a stretchable, twistable, and bendable, self-charging power package was achieved for sustainably driving wearable electronics. This work provides a potential platform for the flexible self-powered systems.

  12. Role of modified Becke-Johnson potential in computation of electronic and optical properties of mixed crystals CdxZn1-xSe

    NASA Astrophysics Data System (ADS)

    Talreja, Sonal; Ahuja, B. L.

    2015-08-01

    Electronic and optical properties of CdxZn1-xSe (x = 0, 0.25, 0.5, 0.75, 1) compounds are investigated using the first-principles full potential linearized augmented plane wave method. In particular, we have used modified version of the exchange potential of Becke and Johnson, so called mBJ potential. We have discussed the energy bands, density of states, and optical properties such as dielectric constants, refractive indices, reflection spectra, extinction coefficients of all the CdxZn1-xSe compounds. Our mBJ potential based data are found to be in excellent agreement with the available experimental data, which unambiguously validates the applicability of orbital independent exchange-correlation potential in mixed semiconductor crystals. The optical properties are discussed in terms of applicability of Cd-Zn-Se system in light-emitting diodes, UV detectors and filters, etc.

  13. Full-orbit and backward Monte Carlo simulation of runaway electrons

    NASA Astrophysics Data System (ADS)

    Del-Castillo-Negrete, Diego

    2017-10-01

    High-energy relativistic runaway electrons (RE) can be produced during magnetic disruptions due to electric fields generated during the thermal and current quench of the plasma. Understanding this problem is key for the safe operation of ITER because, if not avoided or mitigated, RE can severely damage the plasma facing components. In this presentation we report on RE simulation efforts centered in two complementary approaches: (i) Full orbit (6-D phase space) relativistic numerical simulations in general (integrable or chaotic) 3-D magnetic and electric fields, including radiation damping and collisions, using the recently developed particle-based Kinetic Orbit Runaway electron Code (KORC) and (ii) Backward Monte-Carlo (MC) simulations based on a recently developed efficient backward stochastic differential equations (BSDE) solver. Following a description of the corresponding numerical methods, we present applications to: (i) RE synchrotron radiation (SR) emission using KORC and (ii) Computation of time-dependent runaway probability distributions, RE production rates, and expected slowing-down and runaway times using BSDE. We study the dependence of these statistical observables on the electric and magnetic field, and the ion effective charge. SR is a key energy dissipation mechanism in the high-energy regime, and it is also extensively used as an experimental diagnostic of RE. Using KORC we study full orbit effects on SR and discuss a recently developed SR synthetic diagnostic that incorporates the full angular dependence of SR, and the location and basic optics of the camera. It is shown that oversimplifying the angular dependence of SR and/or ignoring orbit effects can significantly modify the shape and overestimate the amplitude of the spectra. Applications to DIII-D RE experiments are discussed.

  14. Potential resource and toxicity impacts from metals in waste electronic devices.

    PubMed

    Woo, Seung H; Lee, Dae Sung; Lim, Seong-Rin

    2016-04-01

    As a result of the continuous release of new electronic devices, existing electronic devices are quickly made obsolete and rapidly become electronic waste (e-waste). Because e-waste contains a variety of metals, information about those metals with the potential for substantial environmental impact should be provided to manufacturers, recyclers, and disposers to proactively reduce this impact. This study assesses the resource and toxicity (i.e., cancer, noncancer, and ecotoxicity) potentials of various heavy metals commonly found in e-waste from laptop computers, liquid-crystal display (LCD) monitors, LCD TVs, plasma TVs, color cathode ray tube (CRT) TVs, and cell phones and then evaluates such potentials using life cycle impact-based methods. Resource potentials derive primarily from Cu, Sb, Ag, and Pb. Toxicity potentials derive primarily from Pb, Ni, and Hg for cancer toxicity; from Pb, Hg, Zn, and As for noncancer toxicity; and from Cu, Pb, Hg, and Zn for ecotoxicity. Therefore, managing these heavy metals should be a high priority in the design, recycling, and disposal stages of electronic devices. © 2015 SETAC.

  15. Calculation of smooth potential energy surfaces using local electron correlation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mata, Ricardo A.; Werner, Hans-Joachim

    2006-11-14

    The geometry dependence of excitation domains in local correlation methods can lead to noncontinuous potential energy surfaces. We propose a simple domain merging procedure which eliminates this problem in many situations. The method is applied to heterolytic bond dissociations of ketene and propadienone, to SN2 reactions of Cl{sup -} with alkylchlorides, and in a quantum mechanical/molecular mechanical study of the chorismate mutase enzyme. It is demonstrated that smooth potentials are obtained in all cases. Furthermore, basis set superposition error effects are reduced in local calculations, and it is found that this leads to better basis set convergence when computing barriermore » heights or weak interactions. When the electronic structure strongly changes between reactants or products and the transition state, the domain merging procedure leads to a balanced description of all structures and accurate barrier heights.« less

  16. Full potential methods for analysis/design of complex aerospace configurations

    NASA Technical Reports Server (NTRS)

    Shankar, Vijaya; Szema, Kuo-Yen; Bonner, Ellwood

    1986-01-01

    The steady form of the full potential equation, in conservative form, is employed to analyze and design a wide variety of complex aerodynamic shapes. The nonlinear method is based on the theory of characteristic signal propagation coupled with novel flux biasing concepts and body-fitted mapping procedures. The resulting codes are vectorized for the CRAY XMP and the VPS-32 supercomputers. Use of the full potential nonlinear theory is demonstrated for a single-point supersonic wing design and a multipoint design for transonic maneuver/supersonic cruise/maneuver conditions. Achievement of high aerodynamic efficiency through numerical design is verified by wind tunnel tests. Other studies reported include analyses of a canard/wing/nacelle fighter geometry.

  17. Comparison of local exchange potentials of electron-N2 scattering

    NASA Astrophysics Data System (ADS)

    Rumble, J. R., Jr.; Truhlar, D. G.

    1980-05-01

    Vibrationally and electronically elastic electron scattering by N2 at 2-30 eV impact energy is considered. Static, static-exchange, and static-exchange-plus-polarization potentials, Cade-Sales-Wahl and INDO/1s wave functions, and semiclassical exchange and Hara free-electron-gas exchange potentials are examined. It is shown that the semiclassical exchange approximation is too attractive at low energy for N2. It is also shown quantitatively by consideration of partial and total integral cross sections how the effects of approximations to exchange become smaller as the incident energy is increased until the differences are about 8% for the total integral cross section at 30 eV.

  18. Monolithic barrier-all-around high electron mobility transistor with planar GaAs nanowire channel.

    PubMed

    Miao, Xin; Zhang, Chen; Li, Xiuling

    2013-06-12

    High-quality growth of planar GaAs nanowires (NWs) with widths as small as 35 nm is realized by comprehensively mapping the parameter space of group III flow, V/III ratio, and temperature as the size of the NWs scales down. Using a growth mode modulation scheme for the NW and thin film barrier layers, monolithically integrated AlGaAs barrier-all-around planar GaAs NW high electron mobility transistors (NW-HEMTs) are achieved. The peak extrinsic transconductance, drive current, and effective electron velocity are 550 μS/μm, 435 μA/μm, and ~2.9 × 10(7) cm/s, respectively, at 2 V supply voltage with a gate length of 120 nm. The excellent DC performance demonstrated here shows the potential of this bottom-up planar NW technology for low-power high-speed very-large-scale-integration (VLSI) circuits.

  19. Voltage mode electronically tunable full-wave rectifier

    NASA Astrophysics Data System (ADS)

    Petrović, Predrag B.; Vesković, Milan; Đukić, Slobodan

    2017-01-01

    The paper presents a new realization of bipolar full-wave rectifier of input sinusoidal signals, employing one MO-CCCII (multiple output current controlled current conveyor), a zero-crossing detector (ZCD), and one resistor connected to fixed potential. The circuit provides the operating frequency up to 10 MHz with increased linearity and precision in processing of input voltage signal, with a very low harmonic distortion. The errors related to the signal processing and errors bound were investigated and provided in the paper. The PSpice simulations are depicted and agree well with the theoretical anticipation. The maximum power consumption of the converter is approximately 2.83 mW, at ±1.2 V supply voltages.

  20. Full 3D opto-electronic simulation tool for nanotextured solar cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Michallon, Jérôme; Collin, Stéphane

    2017-04-01

    Increasing efforts on the photovoltaics research have recently been devoted to material savings, leading to the emergence of new designs based on nanotextured and nanowire-based solar cells. The use of small absorber volumes, light-trapping nanostructures and unconventional carrier collection schemes (radial nanowire junctions, point contacts in planar structures,…) increases the impact of surfaces recombination and induces homogeneity in the photogenerated carrier concentrations. The investigation of their impacts on the device performances need to be addressed using full 3D coupled opto-electrical modeling. In this context, we have developed a new tool for full 3D opto-electrical simulation using the most advanced optical and electrical simulation techniques. We will present an overview of its simulation capabilities and the key issues that have been solved to make it fully operational and reliable. We will provide various examples of opto-electronic simulation of (i) nanostructured solar cells with localized contacts and (ii) nanowire solar cells. We will also show how opto-electronic simulation can be used to simulate light- and electron-beam induced current (LBIC/EBIC) experiments, targeting quantitative analysis of the passivation properties of surfaces.

  1. Use of portable electronic devices in a hospital setting and their potential for bacterial colonization.

    PubMed

    Khan, Amber; Rao, Amitha; Reyes-Sacin, Carlos; Hayakawa, Kayoko; Szpunar, Susan; Riederer, Kathleen; Kaye, Keith; Fishbain, Joel T; Levine, Diane

    2015-03-01

    Portable electronic devices are increasingly being used in the hospital setting. As with other fomites, these devices represent a potential reservoir for the transmission of pathogens. We conducted a convenience sampling of devices in 2 large medical centers to identify bacterial colonization rates and potential risk factors. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Braams, Bastiaan J.; Bowman, Joel M.; Carter, Stuart; Tew, David P.

    2008-06-01

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and ``exact'' full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased ``fixed-node'' diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm-1 in Cartesian coordinates and 22.6 cm-1 in normal coordinates, with an uncertainty of 2-3 cm-1. This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm-1. The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm-1. These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm-1, and agree well with the experimental values of 21.6 and 2.9 cm-1 for the H and D transfer, respectively.

  3. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface.

    PubMed

    Wang, Yimin; Braams, Bastiaan J; Bowman, Joel M; Carter, Stuart; Tew, David P

    2008-06-14

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.

  4. Relaxation and approximate factorization methods for the unsteady full potential equation

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Ide, H.; Gorski, J.

    1984-01-01

    The unsteady form of the full potential equation is solved in conservation form, using implicit methods based on approximate factorization and relaxation schemes. A local time linearization for density is introduced to enable solution to the equation in terms of phi, the velocity potential. A novel flux-biasing technique is applied to generate proper forms of the artificial viscosity, to treat hyperbolic regions with shocks and sonic lines present. The wake is properly modeled by accounting not only for jumps in phi, but also for jumps in higher derivatives of phi obtained from requirements of density continuity. The far field is modeled using the Riemann invariants to simulate nonreflecting boundary conditions. Results are presented for flows over airfoils, cylinders, and spheres. Comparisons are made with available Euler and full potential results.

  5. Electrostatic potential barrier for electron emission at graphene edges induced by the nearly free electron states

    NASA Astrophysics Data System (ADS)

    Gao, Yanlin; Okada, Susumu

    2017-05-01

    Using the density functional theory, we studied the electronic structures of zigzag graphene nanoribbons with hydroxyl, H, ketone, aldehyde, or carboxyl terminations under a lateral electric field. The critical electric field for electron emission is proportional to the work function of the functionalized edges except the hydroxylated edge, which leads to the anomalous electric field outside the edge, owing to the electrons in the nearly free electron (NFE) state in the vacuum region. The strong electric field also causes a potential barrier for the electron emission from the H-terminated edge owing to the downward shift of the NFE state.

  6. 32 CFR 270.12 - Payment in full satisfaction of all claims against the United States.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Payment in full satisfaction of all claims... INCARCERATED BY THE DEMOCRATIC REPUBLIC OF VIETNAM Payment § 270.12 Payment in full satisfaction of all claims... part shall constitute full satisfaction of all claims by or on behalf of that person against the United...

  7. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    PubMed

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo.

    PubMed

    Overy, Catherine; Booth, George H; Blunt, N S; Shepherd, James J; Cleland, Deidre; Alavi, Ali

    2014-12-28

    Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.

  9. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overy, Catherine; Blunt, N. S.; Shepherd, James J.

    2014-12-28

    Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamicmore » itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.« less

  10. Efficient mixing scheme for self-consistent all-electron charge density

    NASA Astrophysics Data System (ADS)

    Shishidou, Tatsuya; Weinert, Michael

    2015-03-01

    In standard ab initio density-functional theory calculations, the charge density ρ is gradually updated using the ``input'' and ``output'' densities of the current and previous iteration steps. To accelerate the convergence, Pulay mixing has been widely used with great success. It expresses an ``optimal'' input density ρopt and its ``residual'' Ropt by a linear combination of the densities of the iteration sequences. In large-scale metallic systems, however, the long range nature of Coulomb interaction often causes the ``charge sloshing'' phenomenon and significantly impacts the convergence. Two treatments, represented in reciprocal space, are known to suppress the sloshing: (i) the inverse Kerker metric for Pulay optimization and (ii) Kerker-type preconditioning in mixing Ropt. In all-electron methods, where the charge density does not have a converging Fourier representation, treatments equivalent or similar to (i) and (ii) have not been described so far. In this work, we show that, by going through the calculation of Hartree potential, one can accomplish the procedures (i) and (ii) without entering the reciprocal space. Test calculations are done with a FLAPW method.

  11. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates.

    PubMed

    Morita, Masahiko; Malvankar, Nikhil S; Franks, Ashley E; Summers, Zarath M; Giloteaux, Ludovic; Rotaru, Amelia E; Rotaru, Camelia; Lovley, Derek R

    2011-01-01

    Mechanisms for electron transfer within microbial aggregates derived from an upflow anaerobic sludge blanket reactor converting brewery waste to methane were investigated in order to better understand the function of methanogenic consortia. The aggregates were electrically conductive, with conductivities 3-fold higher than the conductivities previously reported for dual-species aggregates of Geobacter species in which the two species appeared to exchange electrons via interspecies electron transfer. The temperature dependence response of the aggregate conductance was characteristic of the organic metallic-like conductance previously described for the conductive pili of Geobacter sulfurreducens and was inconsistent with electron conduction through minerals. Studies in which aggregates were incubated with high concentrations of potential electron donors demonstrated that the aggregates had no significant capacity for conversion of hydrogen to methane. The aggregates converted formate to methane but at rates too low to account for the rates at which that the aggregates syntrophically metabolized ethanol, an important component of the reactor influent. Geobacter species comprised 25% of 16S rRNA gene sequences recovered from the aggregates, suggesting that Geobacter species may have contributed to some but probably not all of the aggregate conductivity. Microorganisms most closely related to the acetate-utilizing Methanosaeta concilii accounted for more than 90% of the sequences that could be assigned to methane producers, consistent with the poor capacity for hydrogen and formate utilization. These results demonstrate for the first time that methanogenic wastewater aggregates can be electrically conductive and suggest that direct interspecies electron transfer could be an important mechanism for electron exchange in some methanogenic systems.

  12. Relationship between the Geotail spacecraft potential and the magnetospheric electron number density including the distant tail regions

    NASA Astrophysics Data System (ADS)

    Ishisaka, K.; Okada, T.; Tsuruda, K.; Hayakawa, H.; Mukai, T.; Matsumoto, H.

    2001-04-01

    The spacecraft potential has been used to derive the electron number density surrounding the spacecraft in the magnetosphere and solar wind. We have investigated the correlation between the spacecraft potential of the Geotail spacecraft and the electron number density derived from the plasma waves in the solar wind and almost all the regions of the magnetosphere, except for the high-density plasmasphere, and obtained an empirical formula to show their relation. The new formula is effective in the range of spacecraft potential from a few volts up to 90 V, corresponding to the electron number density from 0.001 to 50 cm-3. We compared the electron number density obtained by the empirical formula with the density obtained by the plasma wave and plasma particle measurements. On occasions the density determined by plasma wave measurements in the lobe region is different from that calculated by the empirical formula. Using the difference in the densities measured by two methods, we discuss whether or not the lower cutoff frequency of the plasma waves, such as continuum radiation, indicates the local electron density near the spacecraft. Then we applied the new relation to the spacecraft potential measured by the Geotail spacecraft during the period from October 1993 to December 1995, and obtained the electron spatial distribution in the solar wind and magnetosphere, including the distant tail region. Higher electron number density is clearly observed on the dawnside than on the duskside of the magnetosphere in the distant tail beyond 100RE.

  13. Advancing Efficient All-Electron Electronic Structure Methods Based on Numeric Atom-Centered Orbitals for Energy Related Materials

    NASA Astrophysics Data System (ADS)

    Blum, Volker

    This talk describes recent advances of a general, efficient, accurate all-electron electronic theory approach based on numeric atom-centered orbitals; emphasis is placed on developments related to materials for energy conversion and their discovery. For total energies and electron band structures, we show that the overall accuracy is on par with the best benchmark quality codes for materials, but scalable to large system sizes (1,000s of atoms) and amenable to both periodic and non-periodic simulations. A recent localized resolution-of-identity approach for the Coulomb operator enables O (N) hybrid functional based descriptions of the electronic structure of non-periodic and periodic systems, shown for supercell sizes up to 1,000 atoms; the same approach yields accurate results for many-body perturbation theory as well. For molecular systems, we also show how many-body perturbation theory for charged and neutral quasiparticle excitation energies can be efficiently yet accurately applied using basis sets of computationally manageable size. Finally, the talk highlights applications to the electronic structure of hybrid organic-inorganic perovskite materials, as well as to graphene-based substrates for possible future transition metal compound based electrocatalyst materials. All methods described here are part of the FHI-aims code. VB gratefully acknowledges contributions by numerous collaborators at Duke University, Fritz Haber Institute Berlin, TU Munich, USTC Hefei, Aalto University, and many others around the globe.

  14. Electron dynamics and potential jump across slow mode shocks

    NASA Technical Reports Server (NTRS)

    Schwartz, Steven J.; Douglas, Fraser T.; Thomsen, Michelle F.; Feldman, William C.

    1987-01-01

    In the de Hoffmann-Teller reference frame, the cross-shock electric field is simply the thermoelectric field responsible for preserving charge neutrality. As such, it gives information regarding the heating and dissipation occurring within the shock. The total cross-shock potential can be determined by integrating a weighted electron pressure gradient through the shock, but this requires knowledge of the density and temperature profiles. Here, a recently proposed alternative approach relying on particle dynamics is exploited to provide an independent estimate of this potential. Both determinations are applied to slow mode shocks which form the plasma sheet boundary in the deep geomagnetic tail as observed by ISEE 3. The two methods correlate well. There is no indication of the expected transition from resistive to viscous shocks, although the highest Mach number shocks show the highest potentials. The implications of these results for the electron dissipation mechanisms and turbulence at the shock are discussed.

  15. MITHRA 1.0: A full-wave simulation tool for free electron lasers

    NASA Astrophysics Data System (ADS)

    Fallahi, Arya; Yahaghi, Alireza; Kärtner, Franz X.

    2018-07-01

    Free Electron Lasers (FELs) are a solution for providing intense, coherent and bright radiation in the hard X-ray regime. Due to the low wall-plug efficiency of FEL facilities, it is crucial and additionally very useful to develop complete and accurate simulation tools for better optimizing a FEL interaction. The highly sophisticated dynamics involved in a FEL process was the main obstacle hindering the development of general simulation tools for this problem. We present a numerical algorithm based on finite difference time domain/Particle in cell (FDTD/PIC) in a Lorentz boosted coordinate system which is able to fulfill a full-wave simulation of a FEL process. The developed software offers a suitable tool for the analysis of FEL interactions without considering any of the usual approximations. A coordinate transformation to bunch rest frame makes the very different length scales of bunch size, optical wavelengths and the undulator period transform to values with the same order. Consequently, FDTD/PIC simulations in conjunction with efficient parallelization techniques make the full-wave simulation feasible using the available computational resources. Several examples of free electron lasers are analyzed using the developed software, the results are benchmarked based on standard FEL codes and discussed in detail.

  16. Determination of the mean inner potential of cadmium telluride via electron holography

    NASA Astrophysics Data System (ADS)

    Cassidy, C.; Dhar, A.; Shintake, T.

    2017-04-01

    Mean inner potential is a fundamental material parameter in solid state physics and electron microscopy and has been experimentally measured in CdTe, a technologically important semiconductor. As a first step, the inelastic mean free path for electron scattering in CdTe was determined, using electron energy loss spectroscopy, to enable precise thickness mapping of thin CdTe lamellae. The obtained value was λi(CdTe, 300 kV) = 192 ± 10 nm. This value is relatively large, given the high density of the material, and is discussed in the text. Next, electron diffraction and specimen tilting were employed to identify weakly diffracting lattice orientations, to enable the straightforward measurement of the electron phase shift. Finally, electron holography was utilized to quantitatively map the phase shift experienced by electron waves passing through a CdTe crystal, with several different propagation vectors. Utilization of both thickness and phase data allowed computation of mean inner potential as V0 (CdTe) = 14.0 ± 0.9 V, within the range of previous theoretical estimates.

  17. Toward all-carbon electronics: fabrication of graphene-based flexible electronic circuits and memory cards using maskless laser direct writing.

    PubMed

    Liang, Jiajie; Chen, Yongsheng; Xu, Yanfei; Liu, Zhibo; Zhang, Long; Zhao, Xin; Zhang, Xiaoliang; Tian, Jianguo; Huang, Yi; Ma, Yanfeng; Li, Feifei

    2010-11-01

    Owing to its extraordinary electronic property, chemical stability, and unique two-dimensional nanostructure, graphene is being considered as an ideal material for the highly expected all-carbon-based micro/nanoscale electronics. Herein, we present a simple yet versatile approach to constructing all-carbon micro/nanoelectronics using solution-processing graphene films directly. From these graphene films, various graphene-based microcosmic patterns and structures have been fabricated using maskless computer-controlled laser cutting. Furthermore, a complete system involving a prototype of a flexible write-once-read-many-times memory card and a fast data-reading system has been demonstrated, with infinite data retention time and high reliability. These results indicate that graphene could be the ideal material for fabricating the highly demanded all-carbon and flexible devices and electronics using the simple and efficient roll-to-roll printing process when combined with maskless direct data writing.

  18. All-electron density functional calculation on insulin with quasi-canonical localized orbitals.

    PubMed

    Inaba, Toru; Tahara, Saisei; Nisikawa, Nobutaka; Kashiwagi, Hiroshi; Sato, Fumitoshi

    2005-07-30

    An all-electron density functional (DF) calculation on insulin was performed by the Gaussian-based DF program, ProteinDF. Quasi-canonical localized orbitals (QCLOs) were used to improve the initial guess for the self-consistent field (SCF) calculation. All calculations were carried out by parallel computing on eight processors of an Itanium2 cluster (SGI Altix3700) with a theoretical peak performance of 41.6 GFlops. It took 35 h for the whole calculation. Insulin is a protein hormone consisting of two peptide chains linked by three disulfide bonds. The numbers of residues, atoms, electrons, orbitals, and auxiliary functions are 51, 790, 3078, 4439, and 8060, respectively. An all-electron DF calculation on insulin was successfully carried out, starting from connected QCLOs. Regardless of a large molecule with complicated topology, the differences in the total energy and the Mulliken atomic charge between initial and converged wavefunctions were very small. The calculation proceeded smoothly without any trial and error, suggesting that this is a promising method to obtain SCF convergence on large molecules such as proteins.

  19. Rapid Bacterial Detection via an All-Electronic CMOS Biosensor

    PubMed Central

    Nikkhoo, Nasim; Cumby, Nichole; Gulak, P. Glenn; Maxwell, Karen L.

    2016-01-01

    The timely and accurate diagnosis of infectious diseases is one of the greatest challenges currently facing modern medicine. The development of innovative techniques for the rapid and accurate identification of bacterial pathogens in point-of-care facilities using low-cost, portable instruments is essential. We have developed a novel all-electronic biosensor that is able to identify bacteria in less than ten minutes. This technology exploits bacteriocins, protein toxins naturally produced by bacteria, as the selective biological detection element. The bacteriocins are integrated with an array of potassium-selective sensors in Complementary Metal Oxide Semiconductor technology to provide an inexpensive bacterial biosensor. An electronic platform connects the CMOS sensor to a computer for processing and real-time visualization. We have used this technology to successfully identify both Gram-positive and Gram-negative bacteria commonly found in human infections. PMID:27618185

  20. High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential

    DOE PAGES

    Lu, Tzu -Ming; Laroche, Dominique; Huang, S. -H.; ...

    2016-01-01

    In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned overmore » a wide range, from 4.4 × 10 10 cm –2 to 1.8 × 10 11 cm –2, with a peak mobility of 6.4 × 10 5 cm 2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. Lastly, this result is then compared to a conventional lateral superlattice model potential.« less

  1. Validation of ISS Floating Potential Measurement Unit Electron Densities and Temperatures

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Minow, Joseph I.; Parker, Linda N.; Bui, Them; Wright, Kenneth, Jr.; Koontz, Steven L.; Schneider, T.; Vaughn, J.; Craven, P.

    2007-01-01

    Validation of the Floating Potential Measurement Unit (FPMU) electron density and temperature measurements is an important step in the process of evaluating International Space Station spacecraft charging issues .including vehicle arcing and hazards to crew during extravehicular activities. The highest potentials observed on Space Station are due to the combined VxB effects on a large spacecraft and the collection of ionospheric electron and ion currents by the 160 V US solar array modules. Ionospheric electron environments are needed for input to the ISS spacecraft charging models used to predict the severity and frequency of occurrence of ISS charging hazards. Validation of these charging models requires comparing their predictions with measured FPMU values. Of course, the FPMU measurements themselves must also be validated independently for use in manned flight safety work. This presentation compares electron density and temperatures derived from the FPMU Langmuir probes and Plasma Impedance Probe against the independent density and temperature measurements from ultraviolet imagers, ground based incoherent scatter radar, and ionosonde sites.

  2. A method to obtain static potential for electron-molecule scattering

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajesh; Das, Tapasi; Stauffer, Allan

    2014-05-01

    Electron scattering from molecules is complicated by the fact that molecules are a multi-centered target with the nuclei of the constituent atoms being a center of charge. One of the most important parts of a scattering calculation is to obtain the static potential which represents the interaction of the incident electron with the unperturbed charge distribution of the molecule. A common way to represent the charge distribution of molecules is with Gaussian orbitals centered on the various nuclei. We have derived a way to calculate spherically-averaged molecular static potentials using this form of molecular wave function which is mostly analytic. This method has been applied to elastic electron scattering from water molecules and we obtained differential cross sections which are compared with previous experimental and theoretical results. The method can be extended to more complex molecules. One of us (RS) is thankful to IAEA, Vienna, Austria and DAE-BRNS, Mumbai, India for financial support.

  3. Unrealized potential and residual consequences of electronic prescribing on pharmacy workflow in the outpatient pharmacy.

    PubMed

    Nanji, Karen C; Rothschild, Jeffrey M; Boehne, Jennifer J; Keohane, Carol A; Ash, Joan S; Poon, Eric G

    2014-01-01

    Electronic prescribing systems have often been promoted as a tool for reducing medication errors and adverse drug events. Recent evidence has revealed that adoption of electronic prescribing systems can lead to unintended consequences such as the introduction of new errors. The purpose of this study is to identify and characterize the unrealized potential and residual consequences of electronic prescribing on pharmacy workflow in an outpatient pharmacy. A multidisciplinary team conducted direct observations of workflow in an independent pharmacy and semi-structured interviews with pharmacy staff members about their perceptions of the unrealized potential and residual consequences of electronic prescribing systems. We used qualitative methods to iteratively analyze text data using a grounded theory approach, and derive a list of major themes and subthemes related to the unrealized potential and residual consequences of electronic prescribing. We identified the following five themes: Communication, workflow disruption, cost, technology, and opportunity for new errors. These contained 26 unique subthemes representing different facets of our observations and the pharmacy staff's perceptions of the unrealized potential and residual consequences of electronic prescribing. We offer targeted solutions to improve electronic prescribing systems by addressing the unrealized potential and residual consequences that we identified. These recommendations may be applied not only to improve staff perceptions of electronic prescribing systems but also to improve the design and/or selection of these systems in order to optimize communication and workflow within pharmacies while minimizing both cost and the potential for the introduction of new errors.

  4. Two-electron states of a group-V donor in silicon from atomistic full configuration interactions

    NASA Astrophysics Data System (ADS)

    Tankasala, Archana; Salfi, Joseph; Bocquel, Juanita; Voisin, Benoit; Usman, Muhammad; Klimeck, Gerhard; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.; Rogge, Sven; Rahman, Rajib

    2018-05-01

    Two-electron states bound to donors in silicon are important for both two-qubit gates and spin readout. We present a full configuration interaction technique in the atomistic tight-binding basis to capture multielectron exchange and correlation effects taking into account the full band structure of silicon and the atomic-scale granularity of a nanoscale device. Excited s -like states of A1 symmetry are found to strongly influence the charging energy of a negative donor center. We apply the technique on subsurface dopants subjected to gate electric fields and show that bound triplet states appear in the spectrum as a result of decreased charging energy. The exchange energy, obtained for the two-electron states in various confinement regimes, may enable engineering electrical control of spins in donor-dot hybrid qubits.

  5. Electronic tunneling through a potential barrier on the surface of a topological insulator

    NASA Astrophysics Data System (ADS)

    Zhou, Benliang; Zhou, Benhu; Zhou, Guanghui

    2016-12-01

    We investigate the tunneling transport for electrons on the surface of a topological insulator (TI) through an electrostatic potential barrier. By using the Dirac equation with the continuity conditions for all segments of wave functions at the interfaces between regions inside and outside the barrier, we calculate analytically the transmission probability and conductance for the system. It is demonstrated that, the Klein paradox can also been observed in the system same as in graphene system. Interestingly, the conductance reaches the minimum value when the incident electron energy is equal to the barrier strength. Moreover, with increasing barrier width, the conductance turns up some tunneling oscillation peaks, and larger barrier strength can cause lower conductance, shorter period but larger oscillation amplitude. The oscillation amplitude decreases as the barrier width increases, which is similar as that of the system consisting of the compressive uniaxial strain applied on a TI, but somewhat different from that of graphene system where the oscillation amplitude is a constant. The findings here imply that an electrostatic barrier can greatly influence the electron tunneling transport of the system, and may provide a new way to realize directional filtering of electrons.

  6. Strong-potential Born calculations for 1s-1s electron capture from atoms by protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, J.H.; Kletke, R.E.; Sil, N.C.

    1985-08-01

    The strong-potential Born (SPB) approximation is examined by comparing various SPB calculations of high-velocity 1s-1s electron capture cross sections with one another and with experimental data. Above about 1 MeV, calculations using the SPB method of McGuire and Sil (SPMS) (Phys. Rev. A 28, 3679 (1983)) are in good agreement with total-cross-section observations for protons on H, He, C, Ne, and Ar as expected. For p+H and p+He, the SPB full-peaking (SPB-FP) approximation of Macek and Alston (Phys. Rev. A 26, 250 (1982)) and the SPB transverse-peaking (SPB-TP) approximation of Alston (Phys. Rev. A 27, 2342 (1982)) differ from ourmore » SPMS total cross sections by typically a factor of 2, as expected from general validity criteria. However, the differential cross sections at very forward angles (well within the Thomas angle) are the same in SPMS, SPB-FP, and SPB-TP methods in all cases. Below 1 MeV, cross sections obtained with use of various SPB methods differ considerably from one another, placing a limit of validity for these SPB calculations. We also suggest that in the gap between those energies where continuum intermediate states simply dominate, and above those energies where bound intermediate states simply dominate, detailed conceptual understanding of electron capture is incomplete.« less

  7. Full-dimensional, high-level ab initio potential energy surfaces for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2} with application to hydrogen clathrate hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H{sub 2}(H{sub 2}O) two-body and H{sub 2}(H{sub 2}O){sub 2} three-body potentials. The database for H{sub 2}(H{sub 2}O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are comparedmore » to computationally faster ones obtained via “purified” symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H{sub 2}, H{sub 2}O, and (H{sub 2}O){sub 2}, to obtain full PESs for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2}. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H{sub 2}(H{sub 2}O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H{sub 2}@(H{sub 2}O){sub 20}. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H{sub 2} from the calculated equilibrium structure.« less

  8. Electronic Polarizability and the Effective Pair Potentials of Water

    PubMed Central

    Leontyev, I. V.; Stuchebrukhov, A. A.

    2014-01-01

    Employing the continuum dielectric model for electronic polarizability, we have developed a new consistent procedure for parameterization of the effective nonpolarizable potential of liquid water. The model explains the striking difference between the value of water dipole moment μ~3D reported in recent ab initio and experimental studies with the value μeff~2.3D typically used in the empirical potentials, such as TIP3P or SPC/E. It is shown that the consistency of the parameterization scheme can be achieved if the magnitude of the effective dipole of water is understood as a scaled value μeff=μ∕εel, where εel =1.78 is the electronic (high-frequency) dielectric constant of water, and a new electronic polarization energy term, missing in the previous theories, is included. The new term is evaluated by using Kirkwood - Onsager theory. The new scheme is fully consistent with experimental data on enthalpy of vaporization, density, diffusion coefficient, and static dielectric constant. The new theoretical framework provides important insights into the nature of the effective parameters, which is crucial when the computational models of liquid water are used for simulations in different environments, such as proteins, or for interaction with solutes. PMID:25383062

  9. Targeting excited states in all-trans polyenes with electron-pair states.

    PubMed

    Boguslawski, Katharina

    2016-12-21

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  10. All-passive nonreciprocal metastructure.

    PubMed

    Mahmoud, Ahmed M; Davoyan, Arthur R; Engheta, Nader

    2015-09-28

    One-way propagation of light, analogous to the directional flow of electrons in the presence of electric potential difference, has been an important goal in the wave-matter interaction. Breaking time-reversal symmetry in photonic flows is faced with challenges different from those for electron flows. In recent years several approaches and methods have been offered towards achieving this goal. Here we investigate another systematic approach to design all-passive relatively high-throughput metastructures that exhibit nonreciprocal properties and achieve wave-flow isolation. Moreover, we build on those findings and propose a paradigm for a quasi-two-dimensional metastructure that mimics the nonreciprocal property of Faraday rotation without using any magnetic or electric biasing. We envision that the proposed approaches may serve as a building block for all-passive time-reversal symmetry breaking with potential applications for future nonreciprocal systems and devices.

  11. ``If it's not on the Web, it doesn't exist at all'': Electronic Information Resources -- Myth and Reality

    NASA Astrophysics Data System (ADS)

    Stevens-Rayburn, Sarah; Bouton, Ellen N.

    In this paper, we review the current status of astronomical research via electronic means, with an eye towards separating the hype from the hypothetical in hopes of revealing the actual state of affairs. We will review both anecdotal and scholarly work aimed at documenting the state of research using the World Wide Web and demonstrate that although there is enormous potential in electronic research, much of that potential is as yet unrealized. In addition, especially in astronomy, a significant amount of material is not (yet) available electronically and likely will never be. Finally, we will point out the potential danger of a looming paradigm shift in the way astronomers conduct research and the possible consequences thereof. \\end{abstract}

  12. All-digital full waveform recording photon counting flash lidar

    NASA Astrophysics Data System (ADS)

    Grund, Christian J.; Harwit, Alex

    2010-08-01

    Current generation analog and photon counting flash lidar approaches suffer from limitation in waveform depth, dynamic range, sensitivity, false alarm rates, optical acceptance angle (f/#), optical and electronic cross talk, and pixel density. To address these issues Ball Aerospace is developing a new approach to flash lidar that employs direct coupling of a photocathode and microchannel plate front end to a high-speed, pipelined, all-digital Read Out Integrated Circuit (ROIC) to achieve photon-counting temporal waveform capture in each pixel on each laser return pulse. A unique characteristic is the absence of performance-limiting analog or mixed signal components. When implemented in 65nm CMOS technology, the Ball Intensified Imaging Photon Counting (I2PC) flash lidar FPA technology can record up to 300 photon arrivals in each pixel with 100 ps resolution on each photon return, with up to 6000 range bins in each pixel. The architecture supports near 100% fill factor and fast optical system designs (f/#<1), and array sizes to 3000×3000 pixels. Compared to existing technologies, >60 dB ultimate dynamic range improvement, and >104 reductions in false alarm rates are anticipated, while achieving single photon range precision better than 1cm. I2PC significantly extends long-range and low-power hard target imaging capabilities useful for autonomous hazard avoidance (ALHAT), navigation, imaging vibrometry, and inspection applications, and enables scannerless 3D imaging for distributed target applications such as range-resolved atmospheric remote sensing, vegetation canopies, and camouflage penetration from terrestrial, airborne, GEO, and LEO platforms. We discuss the I2PC architecture, development status, anticipated performance advantages, and limitations.

  13. A simultaneous all-optical half/full-subtraction strategy using cascaded highly nonlinear fibers

    NASA Astrophysics Data System (ADS)

    Singh, Karamdeep; Kaur, Gurmeet; Singh, Maninder Lal

    2018-02-01

    Using non-linear effects such as cross-gain modulation (XGM) and cross-phase modulation (XPM) inside two highly non-linear fibres (HNLF) arranged in cascaded configuration, a simultaneous half/full-subtracter is proposed. The proposed simultaneous half/full-subtracter design is attractive due to several features such as input data pattern independence and usage of minimal number of non-linear elements i.e. HNLFs. Proof of concept simulations have been conducted at 100 Gbps rate, indicating fine performance, as extinction ratio (dB) > 6.28 dB and eye opening factors (EO) > 77.1072% are recorded for each implemented output. The proposed simultaneous half/full-subtracter can be used as a key component in all-optical information processing circuits.

  14. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharoff, Lori; Chan, Chi Ho; Bond, Daniel R.

    2015-09-05

    The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to extracellular electron acceptors with redox potentials greater than - 0.1 V vs. SHE, but ImcH is not essential for electron transfer to lower potential acceptors. In contrast, deletion of cbcL, encoding an inner membrane protein consisting of b-type and multiheme c-type cytochrome domains, severely affected reduction of low potential electron acceptors such as Fe(III)-oxides and electrodes poisedmore » at - 0.1 V vs. SHE. Catalytic cyclic voltammetry of a ΔcbcL strain growing on poised electrodes revealed a 50 mV positive shift in driving force required for electron transfer out of the cell. In non-catalytic conditions, low-potential peaks present in wild type biofilms were absent in ΔcbcL mutants. Expression of cbcL in trans increased growth at low redox potential and restored features to cyclic voltammetry. This evidence supports a model where CbcL is a component of a second electron transfer pathway out of the G. sulfurreducens inner membrane that dominates when redox potential is at or below - 0.1 V vs. SHE.« less

  15. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens.

    PubMed

    Zacharoff, Lori; Chan, Chi Ho; Bond, Daniel R

    2016-02-01

    The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to extracellular electron acceptors with redox potentials greater than -0.1 V vs. SHE, but ImcH is not essential for electron transfer to lower potential acceptors. In contrast, deletion of cbcL, encoding an inner membrane protein consisting of b-type and multiheme c-type cytochrome domains, severely affected reduction of low potential electron acceptors such as Fe(III)-oxides and electrodes poised at -0.1 V vs. SHE. Catalytic cyclic voltammetry of a ΔcbcL strain growing on poised electrodes revealed a 50 mV positive shift in driving force required for electron transfer out of the cell. In non-catalytic conditions, low-potential peaks present in wild type biofilms were absent in ∆cbcL mutants. Expression of cbcL in trans increased growth at low redox potential and restored features to cyclic voltammetry. This evidence supports a model where CbcL is a component of a second electron transfer pathway out of the G. sulfurreducens inner membrane that dominates when redox potential is at or below -0.1 V vs. SHE. Copyright © 2015. Published by Elsevier B.V.

  16. The limits of local correlation theory: electronic delocalization and chemically smooth potential energy surfaces.

    PubMed

    Subotnik, Joseph E; Sodt, Alex; Head-Gordon, Martin

    2008-01-21

    Local coupled-cluster theory provides an algorithm for measuring electronic correlation quickly, using only the spatial locality of localized electronic orbitals. Previously, we showed [J. Subotnik et al., J. Chem. Phys. 125, 074116 (2006)] that one may construct a local coupled-cluster singles-doubles theory which (i) yields smooth potential energy surfaces and (ii) achieves near linear scaling. That theory selected which orbitals to correlate based only on the distances between the centers of different, localized orbitals, and the approximate potential energy surfaces were characterized as smooth using only visual identification. This paper now extends our previous algorithm in three important ways. First, locality is now based on both the distances between the centers of orbitals as well as the spatial extent of the orbitals. We find that, by accounting for the spatial extent of a delocalized orbital, one can account for electronic correlation in systems with some electronic delocalization using fast correlation methods designed around orbital locality. Second, we now enforce locality on not just the amplitudes (which measure the exact electron-electron correlation), but also on the two-electron integrals themselves (which measure the bare electron-electron interaction). Our conclusion is that we can bump integrals as well as amplitudes, thereby gaining a tremendous increase in speed and paradoxically increasing the accuracy of our LCCSD approach. Third and finally, we now make a rigorous definition of chemical smoothness as requiring that potential energy surfaces not support artificial maxima, minima, or inflection points. By looking at first and second derivatives from finite difference techniques, we demonstrate complete chemical smoothness of our potential energy surfaces (bumping both amplitudes and integrals). These results are significant both from a theoretical and from a computationally practical point of view.

  17. The concept of electron activity and its relation to redox potentials in aqueous geochemical systems

    USGS Publications Warehouse

    Thorstenson, D.C.

    1984-01-01

    The definition of a formal thermodynamic activity of electrons in redox reactions appears in the literature of the 1920's. The concept of pe as -log (electron activity) was introduced by Jorgensen in 1945 and popularized in the geochemical literature by Sillen, who considered pe and pH as master variables in geochemical reactions. The physical significance of the concept of electron activity was challenged as early as 1928. However, only in the last two decades have sufficient thermodynamic data become available to examine this question quantitatively. The chemical nature of hydrated electrons differs greatly from that of hydrated protons, and thermodynamic data show that hydrated electrons cannot exist at physically meaningful equilibrium concentrations under natural conditions. This has important consequences for the understanding of redox processes in natural waters. These are: (1) the analogy between pe and pH as master variables is generally carried much further than is justified; (2) a thermodynamically meaningful value of redox potential cannot be assigned to disequilibrium systems; (3) the most useful approach to the study of redox characteristics is the analysis and study of multiple redox couples in the system; and (4) for all practical purposes, thermodynamically defined redox potentials do not exist (and thus cannot be measured) in natural waters. The overall implication for natural systems is that, in terms of redox reactions, each case must be considered on an individual and detailed basis. Field studies would appear to be a mandatory part of any site-specific study; conclusions regarding redox processes cannot be based solely on electrode measurements or thermodynamic stability calculations. (USGS)

  18. Long-range spin coherence in a strongly coupled all-electronic dot-cavity system

    NASA Astrophysics Data System (ADS)

    Ferguson, Michael Sven; Oehri, David; Rössler, Clemens; Ihn, Thomas; Ensslin, Klaus; Blatter, Gianni; Zilberberg, Oded

    2017-12-01

    We present a theoretical analysis of spin-coherent electronic transport across a mesoscopic dot-cavity system. Such spin-coherent transport has been recently demonstrated in an experiment with a dot-cavity hybrid implemented in a high-mobility two-dimensional electron gas [C. Rössler et al., Phys. Rev. Lett. 115, 166603 (2015), 10.1103/PhysRevLett.115.166603] and its spectroscopic signatures have been interpreted in terms of a competition between Kondo-type dot-lead and molecular-type dot-cavity singlet formation. Our analysis brings forward all the transport features observed in the experiments and supports the claim that a spin-coherent molecular singlet forms across the full extent of the dot-cavity device. Our model analysis includes (i) a single-particle numerical investigation of the two-dimensional geometry, its quantum-coral-type eigenstates, and associated spectroscopic transport features, (ii) the derivation of an effective interacting model based on the observations of the numerical and experimental studies, and (iii) the prediction of transport characteristics through the device using a combination of a master-equation approach on top of exact eigenstates of the dot-cavity system, and an equation-of-motion analysis that includes Kondo physics. The latter provides additional temperature scaling predictions for the many-body phase transition between molecular- and Kondo-singlet formation and its associated transport signatures.

  19. All-dimensional H2-CO potential: Validation with fully quantum second virial coefficients.

    PubMed

    Garberoglio, Giovanni; Jankowski, Piotr; Szalewicz, Krzysztof; Harvey, Allan H

    2017-02-07

    We use a new high-accuracy all-dimensional potential to compute the cross second virial coefficient B 12 (T) between molecular hydrogen and carbon monoxide. The path-integral method is used to fully account for quantum effects. Values are calculated from 10 K to 2000 K and the uncertainty of the potential is propagated into uncertainties of B 12 . Our calculated B 12 (T) are in excellent agreement with most of the limited experimental data available, but cover a much wider range of temperatures and have lower uncertainties. Similar to recently reported findings from scattering calculations, we find that the reduced-dimensionality potential obtained by averaging over the rovibrational motion of the monomers gives results that are a good approximation to those obtained when flexibility is fully taken into account. Also, the four-dimensional approximation with monomers taken at their vibrationally averaged bond lengths works well. This finding is important, since full-dimensional potentials are difficult to develop even for triatomic monomers and are not currently possible to obtain for larger molecules. Likewise, most types of accurate quantum mechanical calculations, e.g., spectral or scattering, are severely limited in the number of dimensions that can be handled.

  20. Introduction of an all-electronic administrative process for a major international pediatric surgical meeting.

    PubMed

    Applebaum, Harry; Boles, Kay; Atkinson, James B

    2003-12-01

    The administrative process for annual meetings is time consuming and increasingly costly when accomplished by traditional postal, fax, and telephone methods. The Pacific Association of Pediatric Surgeons introduced an all-electronic communication format for its 2002 annual meeting. Attendee acceptance and administrative and financial impact were evaluated. Interested physicians were directed to a Website containing detailed information and electronic forms. E-mail was used for the abstract selection and manuscript submission processes. Attendees were surveyed to evaluate the new format. Administrative costs for the new format were compared with estimated costs for a comparable traditionally managed meeting. Attendance was similar to that at previous US meetings. Eighty-two percent of respondents approved of the all-electronic format, although 48% believed a choice should remain. None suggested a complete return to the traditional format. Abstract and manuscript processing time was reduced substantially as were administrative costs (79.43 dollars savings per physician registrant). Adoption of an all-electronic annual meeting administrative process was associated with substantial cost reduction, increased efficiency, and excellent attendee satisfaction. This technology can help avoid increased registration fees while easing the burden on physician volunteers.

  1. Potential reuse of small household waste electrical and electronic equipment: Methodology and case study.

    PubMed

    Bovea, María D; Ibáñez-Forés, Valeria; Pérez-Belis, Victoria; Quemades-Beltrán, Pilar

    2016-07-01

    This study proposes a general methodology for assessing and estimating the potential reuse of small waste electrical and electronic equipment (sWEEE), focusing on devices classified as domestic appliances. Specific tests for visual inspection, function and safety have been defined for ten different types of household appliances (vacuum cleaner, iron, microwave, toaster, sandwich maker, hand blender, juicer, boiler, heater and hair dryer). After applying the tests, reuse protocols have been defined in the form of easy-to-apply checklists for each of the ten types of appliance evaluated. This methodology could be useful for reuse enterprises, since there is a lack of specific protocols, adapted to each type of appliance, to test its potential of reuse. After applying the methodology, electrical and electronic appliances (used or waste) can be segregated into three categories: the appliance works properly and can be classified as direct reuse (items can be used by a second consumer without prior repair operations), the appliance requires a later evaluation of its potential refurbishment and repair (restoration of products to working order, although with possible loss of quality) or the appliance needs to be finally discarded from the reuse process and goes directly to a recycling process. Results after applying the methodology to a sample of 87.7kg (96 units) show that 30.2% of the appliances have no potential for reuse and should be diverted for recycling, while 67.7% require a subsequent evaluation of their potential refurbishment and repair, and only 2.1% of them could be directly reused with minor cleaning operations. This study represents a first approach to the "preparation for reuse" strategy that the European Directive related to Waste Electrical and Electronic Equipment encourages to be applied. However, more research needs to be done as an extension of this study, mainly related to the identification of the feasibility of repair or refurbishment operations

  2. Electron-beam-induced potentials in semiconductors: calculation and measurement with an SEM/SPM hybrid system

    NASA Astrophysics Data System (ADS)

    Thomas, Ch; Joachimsthaler, I.; Heiderhoff, R.; Balk, L. J.

    2004-10-01

    In this work electron-beam-induced potentials are analysed theoretically and experimentally for semiconductors. A theoretical model is developed to describe the surface potential distribution produced by an electron beam. The distribution of generated carriers is calculated using semiconductor equations. This distribution causes a local change in surface potential, which is derived with the help of quasi-Fermi energies. The potential distribution is simulated using the model developed and measured with a scanning probe microscope (SPM) built inside a scanning electron microscope (SEM), for different samples, for different beam excitations and for different cantilever voltages of SPM. In the end, some fields of application are shown where material properties can be determined using an SEM/SPM hybrid system.

  3. How to Help Children with Learning Differences Reach Their Full Potential

    ERIC Educational Resources Information Center

    Lavoie, Theresa

    2008-01-01

    This article is the third part of a 10-part series that explores Attention Deficit Hyperactivity Disorder (ADHD). It offers and discusses tips on how to help children with learning differences reach their full potential. These include: (1) start with good nutrition; (2) be sure your child is exercising; (3) make sure your child is getting enough…

  4. Theoretical determination of one-electron redox potentials for DNA bases, base pairs, and stacks.

    PubMed

    Paukku, Y; Hill, G

    2011-05-12

    Electron affinities, ionization potentials, and redox potentials for DNA bases, base pairs, and N-methylated derivatives are computed at the DFT/M06-2X/6-31++G(d,p) level of theory. Redox properties of a guanine-guanine stack model are explored as well. Reduction and oxidation potentials are in good agreement with the experimental ones. Electron affinities of base pairs were found to be negative. Methylation of canonical bases affects the ionization potentials the most. Base pair formation and base stacking lower ionization potentials by 0.3 eV. Pairing of guanine with the 5-methylcytosine does not seem to influence the redox properties of this base pair much.

  5. COMPUTATIONAL ELECTROCHEMISTRY: AQUEOUS ONE-ELECTRON OXIDATION POTENTIALS FOR SUBSTITUTED ANILINES

    EPA Science Inventory

    Semiempirical molecular orbital theory and density functional theory are used to compute one-electron oxidation potentials for aniline and a set of 21 mono- and di-substituted anilines in aqueous solution. Linear relationships between theoretical predictions and experiment are co...

  6. Full empirical potential curves for the X{sup 1}Σ{sup +} and A{sup 1}Π states of CH{sup +} from a direct-potential-fit analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Young-Sang; Le Roy, Robert J.

    2016-01-14

    All available “conventional” absorption/emission spectroscopic data have been combined with photodissociation data and translational spectroscopy data in a global analysis that yields analytic potential energy and Born-Oppenheimer breakdown functions for the X{sup 1}Σ{sup +} and A{sup 1}Π states of CH{sup +} and its isotopologues that reproduce all of the data (on average) within their assigned uncertainties. For the ground X{sup 1}Σ{sup +} state, this fully quantum mechanical “Direct-Potential-Fit” analysis yielded an improved empirical well depth of D{sub e} = 34 362.8(3) cm{sup −1} and equilibrium bond length of r{sub e} = 1.128 462 5 (58) Å. For the A{sup 1}Π state, the resulting wellmore » depth and equilibrium bond length are D{sub e} = 10 303.7(3) cm{sup −1} and r{sub e} = 1.235 896 (14) Å, while the electronic isotope shift from the hydride to the deuteride is ΔT{sub e} = − 5.99(±0.08) cm{sup −1}.« less

  7. All optical electron injector using an intense ultrashort pulse laser and a solid wire target

    NASA Astrophysics Data System (ADS)

    Palchan, T.; Eisenmann, S.; Zigler, A.; Kaganovich, D.; Hubbard, R. F.; Fraenkel, M.; Fisher, D.; Henis, Z.

    2006-05-01

    Energetic electron bunches were generated by irradiating a solid tungsten wire 13 μm wide with 50 femtosecond pulses at an intensity of ˜3×1018 W/cm2. The electron yield, energy spectrum and angular distribution were measured. These energetic electron bunches are suitable for injection into a laser driven plasma accelerator. An all-optical electron injector based on this approach could simplify timing and alignment in future laser-plasma accelerator experiments.

  8. Potential electron mediators to extract electron energies of RBC glycolysis for prolonged in vivo functional lifetime of hemoglobin vesicles.

    PubMed

    Kettisen, Karin; Bülow, Leif; Sakai, Hiromi

    2015-04-15

    Developing a functional blood substitute as an alternative to donated blood for clinical use is believed to relieve present and future blood shortages, and to reduce the risks of infection and blood type mismatching. Hemoglobin vesicle (HbV) encapsulates a purified and concentrated human-derived Hb solution in a phospholipid vesicle (liposome). The in vivo safety and efficacy of HbV as a transfusion alternative have been clarified. Auto-oxidation of ferrous Hb in HbV gradually increases the level of ferric methemoglobin (metHb) and impairs the oxygen transport capabilities. The extension of the functional half-life of HbV has recently been proposed using an electron mediator, methylene blue (MB), which acts as a shuttle between red blood cells (RBC) and HbV. MB transfers electron energies of NAD(P)H, produced by RBC glycolysis, to metHb in HbV. Work presented here focuses on screening of 15 potential electron mediators, with appropriate redox potential and water solubility, for electron transfer from RBC to HbV. The results are assessed with regard to the chemical properties of the candidates. The compounds examined in this study were dimethyl methylene blue (DMB), methylene green, azure A, azure B, azure C, toluidine blue (TDB), thionin acetate, phenazine methosulfate, brilliant cresyl blue, cresyl violet, gallocyanine, toluylene blue, indigo carmine, indigotetrasulfonate, and MB. Six candidates were found to be unsuitable because of their insufficient diffusion across membranes, or overly high or nonexistent reactivity with relevant biomolecules. However, 9 displayed favorable metHb reduction. Among the suitable candidates, phenothiazines DMB and TDB exhibited effectiveness like MB did. In comparison to MB, they showed faster reduction by electron-donating NAD(P)H, coupled with showing a lower rate of reoxidation in the presence of molecular oxygen. Ascertaining the best electron mediator can provide a pathway for extending the lifetime and efficiency of

  9. Full-dimensional quantum calculations of the dissociation energy, zero-point, and 10 K properties of H7+/D7+ clusters using an ab initio potential energy surface.

    PubMed

    Barragán, Patricia; Pérez de Tudela, Ricardo; Qu, Chen; Prosmiti, Rita; Bowman, Joel M

    2013-07-14

    Diffusion Monte Carlo (DMC) and path-integral Monte Carlo computations of the vibrational ground state and 10 K equilibrium state properties of the H7 (+)/D7 (+) cations are presented, using an ab initio full-dimensional potential energy surface. The DMC zero-point energies of dissociated fragments H5 (+)(D5 (+))+H2(D2) are also calculated and from these results and the electronic dissociation energy, dissociation energies, D0, of 752 ± 15 and 980 ± 14 cm(-1) are reported for H7 (+) and D7 (+), respectively. Due to the known error in the electronic dissociation energy of the potential surface, these quantities are underestimated by roughly 65 cm(-1). These values are rigorously determined for first time, and compared with previous theoretical estimates from electronic structure calculations using standard harmonic analysis, and available experimental measurements. Probability density distributions are also computed for the ground vibrational and 10 K state of H7 (+) and D7 (+). These are qualitatively described as a central H3 (+)/D3 (+) core surrounded by "solvent" H2/D2 molecules that nearly freely rotate.

  10. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry

    PubMed Central

    Kumarasinghe, Chathurangi S.; Premaratne, Malin; Gunapala, Sarath D.; Agrawal, Govind P.

    2016-01-01

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors. PMID:26887286

  11. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry.

    PubMed

    Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P

    2016-02-18

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.

  12. Basis set limit and systematic errors in local-orbital based all-electron DFT

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Behler, Jörg; Gehrke, Ralf; Reuter, Karsten; Scheffler, Matthias

    2006-03-01

    With the advent of efficient integration schemes,^1,2 numeric atom-centered orbitals (NAO's) are an attractive basis choice in practical density functional theory (DFT) calculations of nanostructured systems (surfaces, clusters, molecules). Though all-electron, the efficiency of practical implementations promises to be on par with the best plane-wave pseudopotential codes, while having a noticeably higher accuracy if required: Minimal-sized effective tight-binding like calculations and chemically accurate all-electron calculations are both possible within the same framework; non-periodic and periodic systems can be treated on equal footing; and the localized nature of the basis allows in principle for O(N)-like scaling. However, converging an observable with respect to the basis set is less straightforward than with competing systematic basis choices (e.g., plane waves). We here investigate the basis set limit of optimized NAO basis sets in all-electron calculations, using as examples small molecules and clusters (N2, Cu2, Cu4, Cu10). meV-level total energy convergence is possible using <=50 basis functions per atom in all cases. We also find a clear correlation between the errors which arise from underconverged basis sets, and the system geometry (interatomic distance). ^1 B. Delley, J. Chem. Phys. 92, 508 (1990), ^2 J.M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002).

  13. First-Principles Prediction of Electronic, Magnetic, and Optical Properties of Co2MnAs Full-Heusler Half-Metallic Compound

    NASA Astrophysics Data System (ADS)

    Bakhshayeshi, A.; Sarmazdeh, M. Majidiyan; Mendi, R. Taghavi; Boochani, A.

    2017-04-01

    Electronic, magnetic, and optical properties of Co2MnAs full-Heusler compound have been calculated using a first-principles approach with the full-potential linearized augmented plane-wave (FP-LAPW) method and generalized gradient approximation plus U (GGA + U). The results are compared with various properties of Co2Mn Z ( Z = Si, Ge, Al, Ga, Sn) full-Heusler compounds. The results of our calculations show that Co2MnAs is a half-metallic ferromagnetic compound with 100% spin polarization at the Fermi level. The total magnetic moment and half-metallic gap of Co2MnAs compound are found to be 6.00 μ B and 0.43 eV, respectively. It is also predicted that the spin-wave stiffness constant and Curie temperature of Co2MnAs compound are about 3.99 meV nm2 and 1109 K, respectively. The optical results show that the dominant behavior, at energy below 2 eV, is due to interactions of free electrons in the system. Interband optical transitions have been calculated based on the imaginary part of the dielectric function and analysis of critical points in the second energy derivative of the dielectric function. The results show that there is more than one plasmon energy for Co2MnAs compound, with the highest occurring at 25 eV. Also, the refractive index variations and optical reflectivity for radiation at normal incidence are calculated for Co2MnAs. Because of its high magnetic moment, high Curie temperature, and 100% spin polarization at the Fermi level as well as its optical properties, Co2MnAs is a good candidate for use in spintronic components and magnetooptical devices.

  14. Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer.

    PubMed

    Pintscher, Sebastian; Kuleta, Patryk; Cieluch, Ewelina; Borek, Arkadiusz; Sarewicz, Marcin; Osyczka, Artur

    2016-03-25

    In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemesb The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on hemebligand mutants of cytochromebc1in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functionalin vivo This reveals that cytochromebc1can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemesbin this cytochrome and in other membranous cytochromesbact as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Electron cooling and finite potential drop in a magnetized plasma expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Sanchez, M.; Navarro-Cavallé, J.; Ahedo, E.

    2015-05-15

    The steady, collisionless, slender flow of a magnetized plasma into a surrounding vacuum is considered. The ion component is modeled as mono-energetic, while electrons are assumed Maxwellian upstream. The magnetic field has a convergent-divergent geometry, and attention is restricted to its paraxial region, so that 2D and drift effects are ignored. By using the conservation of energy and magnetic moment of particles and the quasi-neutrality condition, the ambipolar electric field and the distribution functions of both species are calculated self-consistently, paying attention to the existence of effective potential barriers associated to magnetic mirroring. The solution is used to find themore » total potential drop for a set of upstream conditions, plus the axial evolution of various moments of interest (density, temperatures, and heat fluxes). The results illuminate the behavior of magnetic nozzles, plasma jets, and other configurations of interest, showing, in particular, in the divergent plasma the collisionless cooling of electrons, and the generation of collisionless electron heat fluxes.« less

  16. An entropy correction method for unsteady full potential flows with strong shocks

    NASA Technical Reports Server (NTRS)

    Whitlow, W., Jr.; Hafez, M. M.; Osher, S. J.

    1986-01-01

    An entropy correction method for the unsteady full potential equation is presented. The unsteady potential equation is modified to account for entropy jumps across shock waves. The conservative form of the modified equation is solved in generalized coordinates using an implicit, approximate factorization method. A flux-biasing differencing method, which generates the proper amounts of artificial viscosity in supersonic regions, is used to discretize the flow equations in space. Comparisons between the present method and solutions of the Euler equations and between the present method and experimental data are presented. The comparisons show that the present method more accurately models solutions of the Euler equations and experiment than does the isentropic potential formulation.

  17. Event-related potentials elicited by social commerce and electronic-commerce reviews.

    PubMed

    Bai, Yan; Yao, Zhong; Cong, Fengyu; Zhang, Linlin

    2015-12-01

    There is an increasing interest regarding the use of electroencephalography (EEG) in social commerce and electronic commerce (e-commerce) research. There are several reviews in the field of social commerce or e-commerce; these have great potential value and mining them is fundamental and significant. To our knowledge, EEG is rarely applied to study these. In this study, we examined the neural correlates of social commerce reviews (SCRs) and e-commerce reviews (ECRs) by using them as stimuli to evoke event-related potentials. All SCRs were from friends through a social media platform, whereas ECRs were from strangers through an e-commerce platform. The experimental design was similar to that of a priming paradigm, and included 40 pairs of stimuli consisting of product information (prime stimulus) and reviews (target stimulus). The results showed that the P300 component was successfully evoked by SCR and ECR stimuli. Moreover, the P300 components elicited by SCRs had higher amplitudes than those elicited by ECRs. These findings indicate that participants paid more attention to SCRs than to ECRs. In addition, the associations between neural responses and reviews in social commerce have the potential to assist companies in studying consumer behaviors, thus permitting them to enhance their social commerce strategies.

  18. Is the full potential of the biopharmaceutics classification system reached?

    PubMed

    Bergström, Christel A S; Andersson, Sara B E; Fagerberg, Jonas H; Ragnarsson, Gert; Lindahl, Anders

    2014-06-16

    In this paper we analyse how the biopharmaceutics classification system (BCS) has been used to date. A survey of the literature resulted in a compilation of 242 compounds for which BCS classes were reported. Of these, 183 compounds had been reported to belong to one specific BCS class whereas 59 compounds had been assigned to multiple BCS classes in different papers. Interestingly, a majority of the BCS class 2 compounds had fraction absorbed (FA) values >85%, indicating that they were completely absorbed after oral administration. Solubility was computationally predicted at pH 6.8 for BCS class 2 compounds to explore the impact of the pH of the small intestine, where most of the absorption occurs, on the solubility. In addition, the solubilization capacity of lipid aggregates naturally present in the intestine was studied computationally and experimentally for a subset of 12 compounds. It was found that all acidic compounds with FA>85% were completely dissolved in the pH of the small intestine. Further, lipids at the concentration used in fasted state simulated intestinal fluid (FaSSIF) dissolved the complete dose given of the most lipophilic (logD6.5>3) compounds studied. Overall, biorelevant dissolution media (pure buffer of intestinal pH or FaSSIF) identified that for 20 of the 29 BCS class 2 compounds with FA>85% the complete dose given orally would be dissolved. These results indicate that a more relevant pH restriction for acids and/or dissolution medium with lipids present better forecast solubility-limited absorption in vivo than the presently used BCS solubility criterion. The analysis presented herein further strengthens the discussion on the requirement of more physiologically relevant dissolution media for the in vitro solubility classification performed to reach the full potential of the BCS. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Electronic prescribing in ambulatory practice: promises, pitfalls, and potential solutions.

    PubMed

    Papshev, D; Peterson, A M

    2001-07-01

    To examine advantages of and obstacles to electronic prescribing in the ambulatory care environment. MEDLINE and International Pharmaceutical Abstract searches were conducted for the period from January 1980 to September 2000. Key words were electronic prescribing, computerized physician order entry, prior authorization, drug utilization review, and consumer satisfaction. In September 2000, a public search engine (www.google.com) was used to find additional technical information. In addition, pertinent articles were cross-referenced to identify other resources. Articles, symposia proceedings, and organizational position statements published in the United States on electronic prescribing and automation in healthcare are cited. Electronic prescribing can eliminate the time gap between point of care and point of service, reduce medication errors, improve quality of care, and increase patient satisfaction. Considerable funding requirements, segmentation of healthcare markets, lack of technology standardization, providers' resistance to change, and regulatory indecisiveness create boundaries to the widespread use of automated prescribing. The potential solutions include establishing a standardizing warehouse or a router and gaining stakeholder support in implementation of the technology. Electronic prescribing can provide immense benefits to healthcare providers, patients, and managed care. Resolution of several obstacles that limit feasibility of this technology will determine its future.

  20. Synchrotron emission diagnostic of full-orbit kinetic simulations of runaway electrons in tokamaks plasmas

    NASA Astrophysics Data System (ADS)

    Carbajal Gomez, Leopoldo; Del-Castillo-Negrete, Diego

    2017-10-01

    Developing avoidance or mitigation strategies of runaway electrons (RE) for the safe operation of ITER is imperative. Synchrotron radiation (SR) of RE is routinely used in current tokamak experiments to diagnose RE. We present the results of a newly developed camera diagnostic of SR for full-orbit kinetic simulations of RE in DIII-D-like plasmas that simultaneously includes: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We observe a strong dependence of the SR measured by the camera on the pitch angle distribution of RE, namely we find that crescent shapes of the SR on the camera pictures relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of RE with larger pitch angles. A weak dependence of the SR measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is found. Furthermore, we observe that oversimplifying the angular distribution of the SR changes the synchrotron spectra and overestimates its amplitude. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U. S. DoE.

  1. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea.

    PubMed

    Sukhova, Ekaterina; Mudrilov, Maxim; Vodeneev, Vladimir; Sukhov, Vladimir

    2018-05-01

    Local damage (mainly burning, heating, and mechanical wounding) induces propagation of electrical signals, namely, variation potentials, which are important signals during the life of plants that regulate different physiological processes, including photosynthesis. It is known that the variation potential decreases the rate of CO 2 assimilation by the Calvin-Benson cycle; however, its influence on light reactions has been poorly investigated. The aim of our work was to investigate the influence of the variation potential on the light energy flow that is absorbed, trapped and dissipated per active reaction centre in photosystem II and on the flow of electrons through the chloroplast electron transport chain. We analysed chlorophyll fluorescence in pea leaves using JIP-test and PAM-fluorometry; we also investigated delayed fluorescence. The electrical signals were registered using extracellular electrodes. We showed that the burning-induced variation potential stimulated a nonphotochemical loss of energy in photosystem II under dark conditions. It was also shown that the variation potential gradually increased the flow of light energy absorbed, trapped and dissipated by photosystem II. These changes were likely caused by an increase in the fraction of absorbed light distributed to photosystem II. In addition, the variation potential induced a transient increase in electron flow through the photosynthetic electron transport chain. Some probable mechanisms for the influence of the variation potential on the light reactions of photosynthesis (including the potential role of intracellular pH decrease) are discussed in the work.

  2. IR Spectra of (HCOOH)2 and (DCOOH)2: Experiment, VSCF/VCI, and Ab Initio Molecular Dynamics Calculations Using Full-Dimensional Potential and Dipole Moment Surfaces.

    PubMed

    Qu, Chen; Bowman, Joel M

    2018-05-17

    We report quantum VSCF/VCI and ab initio molecular dynamics (AIMD) calculations of the IR spectra of (HCOOH) 2 and (DCOOH) 2 , using full-dimensional, ab initio potential energy and dipole moment surfaces (PES and DMS). These surfaces are fits, using permutationally invariant polynomials, to 13 475 ab initio CCSD(T)-F12a electronic energies and MP2 dipole moments. Here "AIMD" means using these ab initio potential and dipole moment surfaces in the MD calculations. The VSCF/VCI calculations use all (24) normal modes for coupling, with a four-mode representation of the potential. The quantum spectra align well with jet-cooled and room-temperature experimental spectra over the spectral range 600-3600 cm -1 . Analyses of the complex O-H and C-H stretch bands are made based on the mixing of the VSCF/VCI basis functions. The comparisons of the AIMD IR spectra with both experimental and VSCF/VCI ones provide tests of the accuracy of the AIMD approach. These indicate good accuracy for simple bands but not for the complex O-H stretch band, which is upshifted from experimental and VSCF/VCI bands by roughly 300 cm -1 . In addition to testing the AIMD approach, the PES, DMS, and VSCF/VCI calculations for formic acid dimer provide opportunities for testing other methods to represent high-dimensional data and other methods that perform postharmonic vibrational calculations.

  3. Potential drug related problems detected by electronic expert support system in patients with multi-dose drug dispensing.

    PubMed

    Tora, Hammar; Bo, Hovstadius; Bodil, Lidström; Göran, Petersson; Birgit, Eiermann

    2014-10-01

    Background Drug related problems (DRPs) are frequent and cause suffering for patients and substantial costs for society. Multi-dose drug dispensing (MDDD) is a service by which patients receive their medication packed in bags with one unit for each dose occasion. The clinical decision support system (CDSS) electronic expert support (EES) analyses patients' prescriptions in the Swedish national e-prescription repository and provides alerts if potential DRPs are detected, i.e. drug-drug interactions, duplicate therapy, drug-disease contraindications, high dose, gender warnings, geriatric, and paediatric alerts. Objective To analyse potential DRPs in patients with MDDD, detected by means of EES. Setting A register study of all electronically stored prescriptions for patients with MDDD in Sweden (n = 180,059) March 5-June 5, 2013. Method Drug use and potential DRPs detected in the study population during the 3 month study period by EES were analysed. The potential DRPs were analysed in relation to patients' age, gender, number of drugs, and type of medication. Main outcome measure Prevalence of potential DRPs measured as EES alerts. Results The study population was on average 75.8 years of age (± 17.5, range 1-110) and had 10.0 different medications (± 4.7, range 1-53). EES alerted for potential DRPs in 76 % of the population with a mean of 2.2 alerts per patient (± 2.4, range 0-27). The older patients received a lower number of alerts compared to younger patients despite having a higher number of drugs. The most frequent alert categories were drug-drug interactions (37 % of all alerts), duplicate therapy (30 %), and geriatric warnings for high dose or inappropriate drugs (23 %). Psycholeptics, psychoanaleptics, antithrombotic agents, anti-epileptics, renin-angiotensin system agents, and analgesics represented 71 % of all drugs involved in alerts. Conclusions EES detected potential DRPs in the majority of patients with MDDD. The number of potential DRPs was

  4. Effective mass in bilayer graphene at low carrier densities: The role of potential disorder and electron-electron interaction

    NASA Astrophysics Data System (ADS)

    Li, J.; Tan, L. Z.; Zou, K.; Stabile, A. A.; Seiwell, D. J.; Watanabe, K.; Taniguchi, T.; Louie, Steven G.; Zhu, J.

    2016-10-01

    In a two-dimensional electron gas, the electron-electron interaction generally becomes stronger at lower carrier densities and renormalizes the Fermi-liquid parameters, such as the effective mass of carriers. We combine experiment and theory to study the effective masses of electrons and holes me* and mh* in bilayer graphene in the low carrier density regime on the order of 1 ×1011c m-2 . Measurements use temperature-dependent low-field Shubnikov-de Haas oscillations observed in high-mobility hexagonal boron nitride supported samples. We find that while me* follows a tight-binding description in the whole density range, mh* starts to drop rapidly below the tight-binding description at a carrier density of n =6 ×1011c m-2 and exhibits a strong suppression of 30% when n reaches 2 ×1011c m-2 . Contributions from the electron-electron interaction alone, evaluated using several different approximations, cannot explain the experimental trend. Instead, the effect of the potential fluctuation and the resulting electron-hole puddles play a crucial role. Calculations including both the electron-electron interaction and disorder effects explain the experimental data qualitatively and quantitatively. This Rapid Communication reveals an unusual disorder effect unique to two-dimensional semimetallic systems.

  5. Protonic/electronic hybrid oxide transistor gated by chitosan and its full-swing low voltage inverter applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Jin Yu; Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; Zhu, Li Qiang, E-mail: lqzhu@nimte.ac.cn

    Modulation of charge carrier density in condensed materials based on ionic/electronic interaction has attracted much attention. Here, protonic/electronic hybrid indium-zinc-oxide (IZO) transistors gated by chitosan based electrolyte were obtained. The chitosan-based electrolyte illustrates a high proton conductivity and an extremely strong proton gating behavior. The transistor illustrates good electrical performances at a low operating voltage of ∼1.0 V such as on/off ratio of ∼3 × 10{sup 7}, subthreshold swing of ∼65 mV/dec, threshold voltage of ∼0.3 V, and mobility of ∼7 cm{sup 2}/V s. Good positive gate bias stress stabilities are obtained. Furthermore, a low voltage driven resistor-loaded inverter was built by using an IZO transistor inmore » series with a load resistor, exhibiting a linear relationship between the voltage gain and the supplied voltage. The inverter is also used for decreasing noises of input signals. The protonic/electronic hybrid IZO transistors have potential applications in biochemical sensors and portable electronics.« less

  6. Electronically tunable femtosecond all-fiber optical parametric oscillator for multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Hellwig, Tim; Brinkmann, Maximilian; Fallnich, Carsten

    2018-02-01

    We present a femtosecond fiber-based optical parametric oscillator (FOPO) for multiphoton microscopy with wavelength tuning by electronic repetition rate tuning in combination with a dispersive filter in the FOPO cavity. The all-spliced, all-fiber FOPO cavity is based on polarization-maintaining fibers and a broadband output coupler, allowing to get access to the resonant signal pulses as well as the idler pulses simultaneously. The system was pumped by a gain-switched fiber-coupled laser diode emitting pulses at a central wavelength of 1030 nm and an electronically tunable repetition frequency of about 2 MHz. The pump pulses were amplified in an Ytterbium fiber amplifier system with a pulse duration after amplification of 13 ps. Tuning of the idler (1140 nm - 1300 nm) and signal wavelengths (850 nm - 940 nm) was achieved by changing the repetition frequency of the pump laser by about 4 kHz. The generated signal pulses reached a pulse energy of up to 9.2 nJ at 920 nm and were spectrally broadened to about 6 nm in the FOPO by a combination of self-phase and cross-phase modulation. We showed external compression of the idler pulses at 920 nm to about 430 fs and appleid them to two-photon excitation microscopy with green fluorescent dyes. The presented system constitutes an important step towards a fully fiber-integrated all-electronically tunable and, thereby, programmable light source and already embodies a versatile and flexible light source for applications, e.g., for smart microscopy.

  7. Influence of the contact potential and space-charge effect on the performance of a Stoffel-Johnson design electron source for inverse photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maniraj, M.; Barman, Sudipta Roy

    By imaging the spatial intensity distribution of the electrons from a Stoffel-Johnson (SJ) type low energy electron source for inverse photoemission spectroscopy (IPES), we find that the focus is distorted when the beam current exceeds the limiting value due to space charge effect. The space charge effect and the contact potential difference suppress the beam current at low energies (<10 eV). In this work, we show that these limitations of the SJ source can be overcome by compensation of the contact potential difference between the cathode and the lens electrodes and an uniform well focused electron beam with the set kineticmore » energy can be obtained. The size of the electron beam is around 1 mm full width at half maximum over the whole energy range of 5 to 30 eV generally used for IPES. The compensation of the contact potential difference also enhances the beam current substantially at low energies (<10 eV) and uniform beam current is achieved for the whole energy range. We find that the drift in the electron beam position is sensitive to the lens electrode separation and it is about 1 mm over the whole energy range. By measuring the n = 1 image potential state on Cu(100), we show that the resolution is better when the cathode filament current is set to lower values.« less

  8. Density functional theory study on the ionization potentials and electron affinities of thymine-formamide complexes

    NASA Astrophysics Data System (ADS)

    Sun, Haitao; Tang, Ke; Li, Yanmin; Su, Chunfang; Zhou, Zhengyu; Wang, Zhizhong

    The effect of hydrogen bond interactions on ionization potentials (IPs) and electron affinities (EAs) of thymine-formamide complexes (T-F) have been investigated employing the density functional theory B3LYP at 6-311++G(d, p) basis set level. All complexes experience a geometrical change on either electron detachment or attachment, and the change might be facilitated or hindered according to the strength of the hydrogen-bonding interaction involved. The strength of hydrogen bonds presents an opposite changing trend on the two processes. A more important role that H-bonding interaction plays in the process of electron attachment than in the process of electron detachment can be seen by a comparison of the IPs and EAs of complexes with that of isolated thymine. Futhermore, the EAs of isolated thymine are in good agreement with the experimental values (AEA is 0.79 eV, VEA is -0.29 eV [Wetmore et al., Chem Phys Lett 2000, 322, 129]). The calculated total NPA charge distributions reveal that nearly all the negative charges locate on thymine monomer in the anions and even in the cationic states, there are a few negative charges on thymine monomer. An analysis of dissociation energies predicts the processes T-F+→ T++ F and T-F- → T- + F to be the most energetically favorable for T-F+ and T-F-, respectively. Content:text/plain; charset="UTF-8"

  9. The ignitability of petrol vapours and potential for vapour phase explosion by use of TASER® law enforcement electronic control device.

    PubMed

    Clarke, C; Andrews, S P

    2014-12-01

    An experimental study was made of the potential of the TASER-X26™ law enforcement electronic control device to ignite petrol vapours if used by an officer to incapacitate a person soaked in petrol, or within a flammable atmosphere containing petrol vapour. Bench scale tests have shown that a wooden mannequin with pig skin covering the chest was a suitable representation of a human target. Full scale tests using the mannequin have shown that the arc from a TASER-X26™ is capable of igniting petrol/air vapours on a petrol-soaked person. Further tests in a 1/5 scale and a full scale compartment have shown that if a TASER is used within a compartment, a petrol vapour explosion (deflagration) may be achieved. It is evident from this research that if used in a flammable vapour rich environment, the device could prove fatal not only to the target but the TASER® operator as well. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  10. All-Dimensional H2–CO Potential: Validation with Fully Quantum Second Virial Coefficients

    PubMed Central

    Garberoglio, Giovanni; Jankowski, Piotr; Szalewicz, Krzysztof; Harvey, Allan H.

    2017-01-01

    We use a new high-accuracy all-dimensional potential to compute the cross second virial coefficient B12(T) between molecular hydrogen and carbon monoxide. The path-integral method is used to fully account for quantum effects. Values are calculated from 10 K to 2000 K and the uncertainty of the potential is propagated into uncertainties of B12. Our calculated B12(T) are in excellent agreement with most of the limited experimental data available, but cover a much wider range of temperatures and have lower uncertainties. Similar to recently reported findings from scattering calculations, we find that the reduced-dimensionality potential obtained by averaging over the rovibrational motion of the monomers gives results that are a good approximation to those obtained when flexibility is fully taken into account. Also, the four-dimensional approximation with monomers taken at their vibrationally averaged bond lengths works well. This finding is important, since full-dimensional potentials are difficult to develop even for triatomic monomers and are not currently possible to obtain for larger molecules. Likewise, most types of accurate quantum mechanical calculations, e.g., spectral or scattering, are severely limited in the number of dimensions that can be handled. PMID:28178790

  11. Improved electron injection in all-solution-processed n-type organic field-effect transistors with an inkjet-printed ZnO electron injection layer

    NASA Astrophysics Data System (ADS)

    Roh, Jeongkyun; Kim, Hyeok; Park, Myeongjin; Kwak, Jeonghun; Lee, Changhee

    2017-10-01

    Interface engineering for the improved injection properties of all-solution-processed n-type organic field-effect transistors (OFETs) arising from the use of an inkjet-printed ZnO electron injection layer were demonstrated. The characteristics of ZnO in terms of electron injection and transport were investigated, and then we employed ZnO as the electron injection layer via inkjet-printing during the fabrication of all-solution-processed, n-type OFETs. With the inkjet-printed ZnO electron injection layer, the devices exhibited approximately five-fold increased mobility (0.0058 cm2/V s to 0.030 cm2/V s), more than two-fold increased charge concentration (2.76 × 1011 cm-2 to 6.86 × 1011 cm-2), and two orders of magnitude reduced device resistance (120 MΩ cm to 3 MΩ cm). Moreover, n-type polymer form smoother film with ZnO implying denser packing of polymer, which results in higher mobility.

  12. The effect of photoelectrons on boom-satellite potential differences during electron beam ejection

    NASA Technical Reports Server (NTRS)

    Lai, Shu T.; Cohen, Herbert A.; Aggson, Thomas L.; Mcneil, William J.

    1987-01-01

    Data taken on the SCATHA satellite at geosynchronous altitudes during periods of electron beam ejection in sunlight showed that the potential difference between an electrically isolated boom and the satellite main body was a function of beam current, energy, and boom-sun angle. The potential difference decreased as the boom area illuminated by the sun increased; the maximum and minimum potential differences were measured when minimum and maximum boom areas, respectively, were exposed to the sun. It is shown that photoelectrons, created on the boom, could be engulfed in the electrostatic field of the highly charged satellite main body. Theoretical calculations made using a simple current balance model showed that these electrons could provide a substantial discharging current to the main body and cause the observed variations in the potential difference between the main body and the booms.

  13. Giant titanium electron wave function in gallium oxide: A potential electron-nuclear spin system for quantum information processing

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé

    2010-11-01

    The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.

  14. High-Throughput Fabrication of Flexible and Transparent All-Carbon Nanotube Electronics.

    PubMed

    Chen, Yong-Yang; Sun, Yun; Zhu, Qian-Bing; Wang, Bing-Wei; Yan, Xin; Qiu, Song; Li, Qing-Wen; Hou, Peng-Xiang; Liu, Chang; Sun, Dong-Ming; Cheng, Hui-Ming

    2018-05-01

    This study reports a simple and effective technique for the high-throughput fabrication of flexible all-carbon nanotube (CNT) electronics using a photosensitive dry film instead of traditional liquid photoresists. A 10 in. sized photosensitive dry film is laminated onto a flexible substrate by a roll-to-roll technology, and a 5 µm pattern resolution of the resulting CNT films is achieved for the construction of flexible and transparent all-CNT thin-film transistors (TFTs) and integrated circuits. The fabricated TFTs exhibit a desirable electrical performance including an on-off current ratio of more than 10 5 , a carrier mobility of 33 cm 2 V -1 s -1 , and a small hysteresis. The standard deviations of on-current and mobility are, respectively, 5% and 2% of the average value, demonstrating the excellent reproducibility and uniformity of the devices, which allows constructing a large noise margin inverter circuit with a voltage gain of 30. This study indicates that a photosensitive dry film is very promising for the low-cost, fast, reliable, and scalable fabrication of flexible and transparent CNT-based integrated circuits, and opens up opportunities for future high-throughput CNT-based printed electronics.

  15. Agriculture’s Soil Conservation Programs Miss Full Potential in the Fight against Soil Erosion.

    DTIC Science & Technology

    1983-11-28

    Soil Loss Equation ( USLE ) and Wind Erosion Equation can be used with a reasonable degree of accuracy. It is the intention of ASCS to expand VC/SL to...HD-R37 495 AGRICULTURE’S SOIL CONSERVATION PROGRAMS MISS FULL i/i POTENTIAL IN THE FIGHT.(U) GENERAL ACCOUNTING OFFICE WASHINGTON DC RESOURCES...GENERAL Report To The Congress OF THE UNITED STATES Agriculture’s Soil Conservation Programs Miss Full Potential In The Fight Against Soil Erosion

  16. Application of a Chimera Full Potential Algorithm for Solving Aerodynamic Problems

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1997-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the three dimensional full potential equation is described. Special emphasis is placed on describing the spatial differencing algorithm around the chimera interface. Results from two spatial discretization variations are presented; one using a hybrid first-order/second-order-accurate scheme and the second using a fully second-order-accurate scheme. The presentation is highlighted with a number of transonic wing flow field computations.

  17. Development and application of accurate analytical models for single active electron potentials

    NASA Astrophysics Data System (ADS)

    Miller, Michelle; Jaron-Becker, Agnieszka; Becker, Andreas

    2015-05-01

    The single active electron (SAE) approximation is a theoretical model frequently employed to study scenarios in which inner-shell electrons may productively be treated as frozen spectators to a physical process of interest, and accurate analytical approximations for these potentials are sought as a useful simulation tool. Density function theory is often used to construct a SAE potential, requiring that a further approximation for the exchange correlation functional be enacted. In this study, we employ the Krieger, Li, and Iafrate (KLI) modification to the optimized-effective-potential (OEP) method to reduce the complexity of the problem to the straightforward solution of a system of linear equations through simple arguments regarding the behavior of the exchange-correlation potential in regions where a single orbital dominates. We employ this method for the solution of atomic and molecular potentials, and use the resultant curve to devise a systematic construction for highly accurate and useful analytical approximations for several systems. Supported by the U.S. Department of Energy (Grant No. DE-FG02-09ER16103), and the U.S. National Science Foundation (Graduate Research Fellowship, Grants No. PHY-1125844 and No. PHY-1068706).

  18. Possibility designing half-wave and full-wave molecular rectifiers by using single benzene molecule

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2018-02-01

    This work focused on possibility designing half-wave and full-wave molecular rectifiers by using single and two benzene rings, respectively. The benzene rings were threaded by a magnetic flux that changes over time. The quantum interference effect was considered as the basic idea in the rectification action, the para and meta configurations were investigated. All the calculations are performed by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The electrical conductance and the electric current are considered as DC output signals of half-wave and full-wave molecular rectifiers. The finding in this work opens up the exciting potential to use these molecular rectifiers in molecular electronics.

  19. Development of a 1.5D plasma transport code for coupling to full orbit runaway electron simulations

    NASA Astrophysics Data System (ADS)

    Lore, J. D.; Del Castillo-Negrete, D.; Baylor, L.; Carbajal, L.

    2017-10-01

    A 1.5D (1D radial transport + 2D equilibrium geometry) plasma transport code is being developed to simulate runaway electron generation, mitigation, and avoidance by coupling to the full-orbit kinetic electron transport code KORC. The 1.5D code solves the time-dependent 1D flux surface averaged transport equations with sources for plasma density, pressure, and poloidal magnetic flux, along with the Grad-Shafranov equilibrium equation for the 2D flux surface geometry. Disruption mitigation is simulated by introducing an impurity neutral gas `pellet', with impurity densities and electron cooling calculated from ionization, recombination, and line emission rate coefficients. Rapid cooling of the electrons increases the resistivity, inducing an electric field which can be used as an input to KORC. The runaway electron current is then included in the parallel Ohm's law in the transport equations. The 1.5D solver will act as a driver for coupled simulations to model effects such as timescales for thermal quench, runaway electron generation, and pellet impurity mixtures for runaway avoidance. Current progress on the code and details of the numerical algorithms will be presented. Work supported by the US DOE under DE-AC05-00OR22725.

  20. Exact Time-Dependent Exchange-Correlation Potential in Electron Scattering Processes

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasumitsu; Lacombe, Lionel; Watanabe, Kazuyuki; Maitra, Neepa T.

    2017-12-01

    We identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection. These results may explain the underestimation of scattering probabilities in some recent studies on molecules and surfaces.

  1. Effect of the δ-potential on spin-dependent electron tunneling in double barrier semiconductor heterostructure

    NASA Astrophysics Data System (ADS)

    Chandrasekar, L. Bruno; Gnanasekar, K.; Karunakaran, M.

    2018-06-01

    The effect of δ-potential was studied in GaAs/Ga0.6Al0·4As double barrier heterostructure with Dresselhaus spin-orbit interaction. The role of barrier height and position of the δ- potential in the well region was analysed on spin-dependent electron tunneling using transfer matrix method. The spin-separation between spin-resonances on energy scale depends on both height and position of the δ- potential, whereas the tunneling life time of electrons highly influenced by the position of the δ- potential and not on the height. These results might be helpful for the fabrication of spin-filters.

  2. A fast, time-accurate unsteady full potential scheme

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Ide, H.; Gorski, J.; Osher, S.

    1985-01-01

    The unsteady form of the full potential equation is solved in conservation form by an implicit method based on approximate factorization. At each time level, internal Newton iterations are performed to achieve time accuracy and computational efficiency. A local time linearization procedure is introduced to provide a good initial guess for the Newton iteration. A novel flux-biasing technique is applied to generate proper forms of the artificial viscosity to treat hyperbolic regions with shocks and sonic lines present. The wake is properly modeled by accounting not only for jumps in phi, but also for jumps in higher derivatives of phi, obtained by imposing the density to be continuous across the wake. The far field is modeled using the Riemann invariants to simulate nonreflecting boundary conditions. The resulting unsteady method performs well which, even at low reduced frequency levels of 0.1 or less, requires fewer than 100 time steps per cycle at transonic Mach numbers. The code is fully vectorized for the CRAY-XMP and the VPS-32 computers.

  3. Manipulation of electron transport in graphene by nanopatterned electrostatic potential on an electret

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Wang, Rui; Wang, Shengnan; Zhang, Dongdong; Jiang, Xingbin; Cheng, Zhihai; Qiu, Xiaohui

    2018-01-01

    The electron transport characteristics of graphene can be finely tuned using local electrostatic fields. Here, we use a scanning probe technique to construct a statically charged electret gate that enables in-situ fabrication of graphene devices with precisely designed potential landscapes, including p-type and n-type unipolar graphene transistors and p-n junctions. Electron dynamic simulation suggests that electron beam collimation and focusing in graphene can be achieved via periodic charge lines and concentric charge circles. This approach to spatially manipulating carrier density distribution may offer an efficient way to investigate the novel electronic properties of graphene and other low-dimensional materials.

  4. An all-electric single-molecule motor.

    PubMed

    Seldenthuis, Johannes S; Prins, Ferry; Thijssen, Joseph M; van der Zant, Herre S J

    2010-11-23

    Many types of molecular motors have been proposed and synthesized in recent years, displaying different kinds of motion, and fueled by different driving forces such as light, heat, or chemical reactions. We propose a new type of molecular motor based on electric field actuation and electric current detection of the rotational motion of a molecular dipole embedded in a three-terminal single-molecule device. The key aspect of this all-electronic design is the conjugated backbone of the molecule, which simultaneously provides the potential landscape of the rotor orientation and a real-time measure of that orientation through the modulation of the conductivity. Using quantum chemistry calculations, we show that this approach provides full control over the speed and continuity of motion, thereby combining electrical and mechanical control at the molecular level over a wide range of temperatures. Moreover, chemistry can be used to change all key parameters of the device, enabling a variety of new experiments on molecular motors.

  5. Challenge of Engaging All Students via Self-Paced Interactive Electronic Learning Tutorials for Introductory Physics

    ERIC Educational Resources Information Center

    DeVore, Seth; Marshman, Emily; Singh, Chandralekha

    2017-01-01

    As research-based, self-paced electronic learning tools become increasingly available, a critical issue educators encounter is implementing strategies to ensure that all students engage with them as intended. Here, we first discuss the effectiveness of electronic learning tutorials as self-paced learning tools in large enrollment brick and mortar…

  6. Algorithm for quantum-mechanical finite-nuclear-mass variational calculations of atoms with two p electrons using all-electron explicitly correlated Gaussian basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharkey, Keeper L.; Pavanello, Michele; Bubin, Sergiy

    2009-12-15

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with two p electrons or a single d electron have been derived and implemented. The Hamiltonian used in the approach was obtained by rigorously separating the center-of-mass motion and it explicitly depends on the finite mass of the nucleus. The approach was employed to perform test calculations on the isotopes of the carbon atom in their ground electronic states and to determine the finite-nuclear-mass corrections for these states.

  7. Two-potential approach for electron-molecular collisions at intermediate and high energies - Application to e-N2 scatterings

    NASA Technical Reports Server (NTRS)

    Choi, B. H.; Poe, R. T.; Sun, J. C.; Shan, Y.

    1979-01-01

    A general theoretical approach is proposed for the calculation of elastic, vibrational, and rotational transitions for electron-molecule scattering at intermediate and high-electron-impact energies. In this formulation, contributions to the scattering process come from the incoherent sum of two dominant potentials: a short-range shielded nuclear Coulomb potential from individual atomic centers, and a permanent/induced long-range potential. Application to e-N2 scattering from 50-500 eV incident electron energies has yielded good agreement with absolutely calibrated experiments. Comparisons with other theoretical approaches are made. The physical picture as well as the general features of electron-molecule scattering process are discussed within the framework of the two-potential approach.

  8. Image Size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography

    NASA Astrophysics Data System (ADS)

    Sasaki, Hisayuki; Yamamoto, Kenji; Ichihashi, Yasuyuki; Senoh, Takanori

    2014-02-01

    In electronic holography, various methods have been considered for using multiple spatial light modulators (SLM) to increase the image size. In a previous work, we used a monochrome light source for a method that located an optical system containing lens arrays and other components in front of multiple SLMs. This paper proposes a colourization technique for that system based on time division multiplexing using laser light sources of three colours (red, green, and blue). The experimental device we constructed was able to perform video playback (20 fps) in colour of full parallax holographic three-dimensional (3D) images with an image size of 63 mm and a viewing-zone angle of 5.6 degrees without losing any part of the 3D image.

  9. New Advancements in the Study of the Uniform Electron Gas with Full Configuration Interaction Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Ruggeri, Michele; Luo, Hongjun; Alavi, Ali

    Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is able to give remarkably accurate results in the study of atoms and molecules. The study of the uniform electron gas (UEG) on the other hand has proven to be much harder, particularly in the low density regime. The source of this difficulty comes from the strong interparticle correlations that arise at low density, and essentially forbid the study of the electron gas in proximity of Wigner crystallization. We extend a previous study on the three dimensional electron gas computing the energy of a fully polarized gas for N=27 electrons at high and medium density (rS = 0 . 5 to 5 . 0). We show that even when dealing with a polarized UEG the computational cost of the study of systems with rS > 5 . 0 is prohibitive; in order to deal with correlations and to extend the density range that to be studied we introduce a basis of localized states and an effective transcorrelated Hamiltonian.

  10. All-electron molecular Dirac-Hartree-Fock calculations - Properties of the group IV monoxides GeO, SnO, and PbO

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1993-01-01

    Dirac-Hartree-Fock calculations have been carried out on the ground states of the group IV monoxides GeO, SnO and PbO. Geometries, dipole moments and infrared data are presented. For comparison, nonrelativistic, first-order perturbation and relativistic effective core potential calculations have also been carried out. Where appropriate the results are compared with the experimental data and previous calculations. Spin-orbit effects are of great importance for PbO, where first-order perturbation theory including only the mass-velocity and Darwin terms is inadequate to predict the relativistic corrections to the properties. The relativistic effective core potential results show a larger deviation from the all-electron values than for the hydrides, and confirm the conclusions drawn on the basis of the hydride calculations.

  11. All-electron molecular Dirac-Hartree-Fock calculations: Properties of the group IV monoxides GeO, SnO and PbO

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1991-01-01

    Dirac-Hartree-Fock calculations have been carried out on the ground states of the group IV monoxides GeO, SnO and PbO. Geometries, dipole moments and infrared data are presented. For comparison, nonrelativistic, first-order perturbation and relativistic effective core potential calculations have also been carried out. Where appropriate the results are compared with the experimental data and previous calculations. Spin-orbit effects are of great importance for PbO, where first-order perturbation theory including only the mass-velocity and Darwin terms is inadequate to predict the relativistic corrections to the properties. The relativistic effective core potential results show a larger deviation from the all-electron values than for the hydrides, and confirm the conclusions drawn on the basis of the hydride calculations.

  12. Experimental Potential Energy Curve for the 43 Π Electronic State of NaCs

    NASA Astrophysics Data System (ADS)

    Steely, Andrew; Cooper, Hannah; Zain, Hareem; Whipp, Ciara; Faust, Carl; Kortyna, Andrew; Huennekens, John

    2017-04-01

    We present results from experimental studies of the 43 Π electronic state of the NaCs molecule. This electronic state is interesting in that its potential energy curve likely exhibits a double minimum. As a result, interference effects are observed in the resolved bound-free fluorescence spectra. The optical-optical double resonance method was used to obtain Doppler-free excitation spectra for the 43 Π state. This dataset of measured level energies was expanded largely by observing fluorescence from levels populated by collisions. To aid in level assignments, simulations of resolved bound-free fluorescence spectra were calculated using the BCONT program (R. J. Le Roy, University of Waterloo). Spectroscopic constants were determined to summarize data belonging to inner well, outer well, and above barrier regions of the electronic state. Current work focuses on using the IPA method to construct an experimental potential energy curve. Work supported by NSF and Susquehanna University.

  13. Quantum Mechanics/Molecular Mechanics Method Combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations.

    PubMed

    Shen, Lin; Yang, Weitao

    2016-04-12

    We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.

  14. Full-Potential Modeling of Blade-Vortex Interactions. Degree awarded by George Washington Univ., Feb. 1987

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.

    1997-01-01

    A study of the full-potential modeling of a blade-vortex interaction was made. A primary goal of this study was to investigate the effectiveness of the various methods of modeling the vortex. The model problem restricts the interaction to that of an infinite wing with an infinite line vortex moving parallel to its leading edge. This problem provides a convenient testing ground for the various methods of modeling the vortex while retaining the essential physics of the full three-dimensional interaction. A full-potential algorithm specifically tailored to solve the blade-vortex interaction (BVI) was developed to solve this problem. The basic algorithm was modified to include the effect of a vortex passing near the airfoil. Four different methods of modeling the vortex were used: (1) the angle-of-attack method, (2) the lifting-surface method, (3) the branch-cut method, and (4) the split-potential method. A side-by-side comparison of the four models was conducted. These comparisons included comparing generated velocity fields, a subcritical interaction, and a critical interaction. The subcritical and critical interactions are compared with experimentally generated results. The split-potential model was used to make a survey of some of the more critical parameters which affect the BVI.

  15. Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.

  16. Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.

  17. Correlation of intercalation potential with d-electron configurations for cathode compounds of lithium-ion batteries.

    PubMed

    Chen, Zhenlian; Zhang, Caixia; Zhang, Zhiyong; Li, Jun

    2014-07-14

    The d-electron localization is widely recognized as important to transport properties of transition metal compounds, but its role in the energy conversion of intercalation reactions of cathode compounds is still not fully explored. In this work, the correlation of intercalation potential with electron affinity, a key energy term controlling electron intercalation, then with d-electron configuration, is investigated. Firstly, we find that the change of the intercalation potential with respect to the transition metal cations within the same structure class is correlated in an approximately mirror relationship with the electron affinity, based on first-principles calculations on three typical categories of cathode compounds including layered oxides and polyoxyanions Then, by using a new model Hamiltonian based on the crystal-field theory, we reveal that the evolution is governed by the combination of the crystal-field splitting and the on-site d-d exchange interactions. Further, we show that the charge order in solid-solution composites and the compatibility of multi-electron redox steps could be inferred from the energy terms with the d-electron configuration alternations. These findings may be applied to rationally designing new chemistry for the lithium-ion batteries and other metal-ion batteries.

  18. Full-potential modeling of blade-vortex interactions

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Caradonna, F. X.

    1986-01-01

    A comparison is made of four different models for predicting the unsteady loading induced by a vortex passing close to an airfoil. (1) The first model approximates the vortex effect as a change in the airfoil angle of attack. (2) The second model is related to the first but, instead of imposing only a constant velocity on the airfoil, the distributed effect of the vortex is computed and used. This is analogous to a lifting surface method. (3) The third model is to specify a branch cut discontinuity in the potential field. The vortex is modeled as a jump in potential across the branch cut, the edge of which represents the center of the vortex. (4) The fourth method models the vortex expressing the potential as the sum of a known potential due to the vortex and an unknown perturbation due to the airfoil. The purpose of the current study is to investigate the four vortex models described above and to determine their relative merits and suitability for use in large three-dimensional codes.

  19. Inner magnetospheric electron temperature and spacecraft potential estimated from concurrent Polar upper hybrid frequency and relative potential measurements

    NASA Astrophysics Data System (ADS)

    Boardsen, S. A.; Adrian, M. L.; Pfaff, R.; Menietti, J. D.

    2014-10-01

    Direct measurement of low < 1 eV electron temperature is difficult to make in the Earth's inner magnetosphere for electron densities (Ne) < 3 × 102 cm-3. We compute these quantities by solving current balance equations in low-density regions. Concurrent measurements from the Polar spacecraft of the relative potential (VS - VP), between the spacecraft body and the electric field probe, and the electron density (Ne), derived from upper hybrid frequency (fUHR), were used in the current balance equations to solve for the electron temperature (Te), Vs, and Vp. Where VP is the probe potential and VS is the spacecraft potential relative to the nearby plasma. The assumption that the bulk plasma electrons are Maxwellian is used in the computations. Our data set covered 1.5 years of measurements when fUHR was detectable (L < 10). The following "averaged" Te versus L relation for 3 < L < 5 was obtained: Te = 0.58 + 0.49 (L - 3) eV. This expression is in reasonable agreement with extrapolations of ionospheric Te measurements by Akebono at lower altitudes. However, the solution is sensitive to the photoemission coefficients, substituting those of Scudder et al. (2000) with those of Escoubet et al. (1997), the Te curve shifted upward by ~1 eV. Also, the solution is sensitive to measurement error of VS - VP, applying a voltage shift of ±0.1 and ±0.2 V to VS - VP, the relative median error for our data set was computed to be 0.27 and 1.04, respectively. We believe that our Te values computed outside the plasmasphere are unrealistically low. We conclude that this method shows promise inside the plasmasphere but should be used with caution. We also quantified the Ne versus VS - VP relationship. The running median Ne versus VS - VP curve shows no significant variation over the 1.5 year period of the data set, suggesting that the photoemission coefficients did not change significantly over this time span. The Scudder et al. (2000) Ne model, based on only one Polar orbit, is in

  20. Electronic Tongue—A Tool for All Tastes?

    PubMed Central

    Podrażka, Marta; Bączyńska, Ewa; Kundys, Magdalena; Jeleń, Paulina S.; Witkowska Nery, Emilia

    2017-01-01

    Electronic tongue systems are traditionally used to analyse: food products, water samples and taste masking technologies for pharmaceuticals. In principle, their applications are almost limitless, as they are able to almost completely reduce the impact of interferents and can be applied to distinguish samples of extreme complexity as for example broths from different stages of fermentation. Nevertheless, their applications outside the three principal sample types are, in comparison, rather scarce. In this review, we would like to take a closer look on what are real capabilities of electronic tongue systems, what can be achieved using mixed sensor arrays and by introduction of biosensors or molecularly imprinted polymers in the matrix. We will discuss future directions both in the sense of applications as well as system development in the ever-growing trend of low cost analysis. PMID:29301230

  1. ESD and Education for All: Synergies and Potential Conflicts

    ERIC Educational Resources Information Center

    Gadotti, Moacir

    2010-01-01

    This paper analyses how Education for Sustainable Development (ESD) can assist in increasing access to quality education and discusses how it can contribute to the content and learning methods on the Education for All (EFA) agenda. It explores both the tensions and the common ground between ESD and EFA, and identifies the potential synergies…

  2. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, R., E-mail: ross.webster07@imperial.ac.uk; Harrison, N. M.; Bernasconi, L.

    2015-06-07

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features ofmore » the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.« less

  3. Geothrix fermentans Secretes Two Different Redox-Active Compounds To Utilize Electron Acceptors across a Wide Range of Redox Potentials

    PubMed Central

    Mehta-Kolte, Misha G.

    2012-01-01

    The current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial genera Geobacter and Shewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of the Acidobacteria, Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE), G. fermentans required potentials as high as 0.55 V to respire at its maximum rate. In addition, G. fermentans secreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found in G. fermentans supernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals that Geothrix is able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined to Shewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies of Geothrix and Geobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential. PMID:22843516

  4. Full PIC simulations of solar radio emission

    NASA Astrophysics Data System (ADS)

    Sgattoni, A.; Henri, P.; Briand, C.; Amiranoff, F.; Riconda, C.

    2017-12-01

    Solar radio emissions are electromagnetic (EM) waves emitted in the solar wind plasma as a consequence of electron beams accelerated during solar flares or interplanetary shocks such as ICMEs. To describe their origin, a multi-stage model has been proposed in the 60s which considers a succession of non-linear three-wave interaction processes. A good understanding of the process would allow to infer the kinetic energy transfered from the electron beam to EM waves, so that the radio waves recorded by spacecraft can be used as a diagnostic for the electron beam.Even if the electrostatic problem has been extensively studied, full electromagnetic simulations were attempted only recently. Our large scale 2D-3V electromagnetic PIC simulations allow to identify the generation of both electrostatic and EM waves originated by the succession of plasma instabilities. We tested several configurations varying the electron beam density and velocity considering a background plasma of uniform density. For all the tested configurations approximately 105 of the electron-beam kinetic energy is transfered into EM waves emitted in all direction nearly isotropically. With this work we aim to design experiments of laboratory astrophysics to reproduce the electromagnetic emission process and test its efficiency.

  5. Vibrational spectra of halide-water dimers: Insights on ion hydration from full-dimensional quantum calculations on many-body potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco

    2018-03-01

    Full-dimensional vibrational spectra are calculated for both X-(H2O) and X-(D2O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.

  6. In situ potential distribution measurement in an all-vanadium flow battery.

    PubMed

    Liu, Qinghua; Turhan, Ahmet; Zawodzinski, Thomas A; Mench, Matthew M

    2013-07-18

    An experimental method for measurement of local redox potential within multilayer electrodes was developed and applied to all-vanadium redox flow batteries (VRFBs). Through-plane measurement at the positive side reveals several important phenomena including potential distribution, concentration distribution of active species and the predominant reaction location within the porous carbon electrodes.

  7. An Inner Membrane Cytochrome Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors

    PubMed Central

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.

    2014-01-01

    ABSTRACT Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤−0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to −0.1 V versus SHE triggered exponential growth. At potentials of ≤−0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found. PMID:25425235

  8. Electron heating and the potential jump across fast mode shocks. [in interplanetary space

    NASA Technical Reports Server (NTRS)

    Schwartz, Steven J.; Thomsen, Michelle F.; Bame, S. J.; Stansberry, John

    1988-01-01

    Two different methods were applied to determine the cross-shock potential jump in the de Hoffmann-Teller reference frame, using a data set that represented 66 crossings of the terrestrial bow shock and 14 interplanetary shocks observed by various ISEE spacecraft, and one crossing each of the Jovian bow shock and the Uranian bow shock made by the Voyager spacecraft. Results for estimates of the electrostatic potential based on an estimate of the jump in electron enthalpy correlated well with estimates based on Liouville's theorem, although the Liouville-determined values were systematically the higher of the two, suggesting that significant irreversible processes contribute to the shape of the downstream distribution. The potential jump corresponds to approximately 12-15 percent of the incident ion ram kinetic energy, and was found not to be controlled by the Mach number, plasma beta, shock geometry, or electron to ion temperature ratios.

  9. Determining the electron energy distribution near the plasma potential in the earth's ionosphere

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.; Hays, P. B.; Cutler, J. R.; Dobbs, M. E.

    1981-01-01

    A determination of the plasma potential using an electrostatic analyzer is described in which the potential difference between the instrument slit system and surrounding plasma is minimized. Data obtained from rocket-borne instrumentation demonstrate the viability of this technique for electron fluxes between thermal energies (about 0.5 V) and suprathermal energies (many volts).

  10. A description of electron heating with an electrostatic potential jump in a parallel, collisionless, fire hose shock

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.

    1988-01-01

    The electron heating required if protons scatter elastically in a parallel, collisionless shock is calculated. Near-elastic proton scattering off large amplitude background magnetic field fluctuations might be expected if the waves responsible for the shock dissipation are generated by the fire hose instability. The effects of an electrostatic potential jump in the shock layer are included by assuming that the energy lost by protons in traversing the potential jump is converted into electron thermal pressure. It is found that the electron temperature increase is a strong function of the potential jump. Comparison is made to the parallel shock plasma simulation of Quest (1987).

  11. Brain state-dependence of electrically evoked potentials monitored with head-mounted electronics.

    PubMed

    Richardson, Andrew G; Fetz, Eberhard E

    2012-11-01

    Inferring changes in brain connectivity is critical to studies of learning-related plasticity and stimulus-induced conditioning of neural circuits. In addition, monitoring spontaneous fluctuations in connectivity can provide insight into information processing during different brain states. Here, we quantified state-dependent connectivity changes throughout the 24-h sleep-wake cycle in freely behaving monkeys. A novel, head-mounted electronic device was used to electrically stimulate at one site and record evoked potentials at other sites. Electrically evoked potentials (EEPs) revealed the connectivity pattern between several cortical sites and the basal forebrain. We quantified state-dependent changes in the EEPs. Cortico-cortical EEP amplitude increased during slow-wave sleep, compared to wakefulness, while basal-cortical EEP amplitude decreased. The results demonstrate the utility of using portable electronics to document state-dependent connectivity changes in freely behaving primates.

  12. Excitation and characterization of image potential state electrons on quasi-free-standing graphene

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Li, Yunzhe; Sadowski, Jerzy T.; Jin, Wencan; Dadap, Jerry I.; Hybertsen, Mark S.; Osgood, Richard M.

    2018-04-01

    We investigate the band structure of image potential states in quasi-free-standing graphene (QFG) monolayer islands using angle-resolved two-photon-photoemission spectroscopy. Direct probing by low-energy electron diffraction shows that QFG is formed following oxygen intercalation into the graphene-Ir(111) interface. Despite the apparent decoupling of the monolayer graphene from the Ir substrate, we find that the binding energy of the n =1 image potential state on these QFG islands increases by 0.17 eV, as compared to the original Gr/Ir(111) interface. We use calculations based on density-functional theory to construct an empirical, one-dimensional potential that quantitatively reproduces the image potential state binding energy and links the changes in the interface structure to the shift in energy. Specifically, two factors contribute comparably to this energy shift: a deeper potential well arising from the presence of intercalated oxygen adatoms and a wider potential well associated with the increase in the graphene-Ir distance. While image potential states have not been observed previously on QFG by photoemission, our paper now demonstrates that they may be strongly excited in a well-defined QFG system produced by oxygen intercalation. This opens an opportunity for studying the surface electron dynamics in QFG systems, beyond those found in typical nonintercalated graphene-on-substrate systems.

  13. Excitation and characterization of image potential state electrons on quasi-free-standing graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yi; Li, Yunzhe; Sadowski, Jerzy T.

    We investigate the band structure of image potential states in quasi-free-standing graphene (QFG) monolayer islands using angle-resolved two-photon-photoemission spectroscopy. Direct probing by low-energy electron diffraction shows that QFG is formed following oxygen intercalation into the graphene-Ir(111) interface. Despite the apparent decoupling of the monolayer graphene from the Ir substrate, we find that the binding energy of the n = 1 image potential state on these QFG islands increases by 0.17 eV, as compared to the original Gr/Ir(111) interface. We use calculations based on density-functional theory to construct an empirical, one-dimensional potential that quantitatively reproduces the image potential state binding energymore » and links the changes in the interface structure to the shift in energy. Specifically, two factors contribute comparably to this energy shift: a deeper potential well arising from the presence of intercalated oxygen adatoms and a wider potential well associated with the increase in the graphene-Ir distance. While image potential states have not been observed previously on QFG by photoemission, our paper now demonstrates that they may be strongly excited in a well-defined QFG system produced by oxygen intercalation. Finally, this opens an opportunity for studying the surface electron dynamics in QFG systems, beyond those found in typical nonintercalated graphene-on-substrate systems.« less

  14. Excitation and characterization of image potential state electrons on quasi-free-standing graphene

    DOE PAGES

    Lin, Yi; Li, Yunzhe; Sadowski, Jerzy T.; ...

    2018-04-09

    We investigate the band structure of image potential states in quasi-free-standing graphene (QFG) monolayer islands using angle-resolved two-photon-photoemission spectroscopy. Direct probing by low-energy electron diffraction shows that QFG is formed following oxygen intercalation into the graphene-Ir(111) interface. Despite the apparent decoupling of the monolayer graphene from the Ir substrate, we find that the binding energy of the n = 1 image potential state on these QFG islands increases by 0.17 eV, as compared to the original Gr/Ir(111) interface. We use calculations based on density-functional theory to construct an empirical, one-dimensional potential that quantitatively reproduces the image potential state binding energymore » and links the changes in the interface structure to the shift in energy. Specifically, two factors contribute comparably to this energy shift: a deeper potential well arising from the presence of intercalated oxygen adatoms and a wider potential well associated with the increase in the graphene-Ir distance. While image potential states have not been observed previously on QFG by photoemission, our paper now demonstrates that they may be strongly excited in a well-defined QFG system produced by oxygen intercalation. Finally, this opens an opportunity for studying the surface electron dynamics in QFG systems, beyond those found in typical nonintercalated graphene-on-substrate systems.« less

  15. Analyses on hydrophobicity and attractiveness of all-atom distance-dependent potentials

    PubMed Central

    Shirota, Matsuyuki; Ishida, Takashi; Kinoshita, Kengo

    2009-01-01

    Accurate model evaluation is a crucial step in protein structure prediction. For this purpose, statistical potentials, which evaluate a model structure based on the observed atomic distance frequencies in comparison with those in reference states, have been widely used. The reference state is a virtual state where all of the atomic interactions are turned off, and it provides a standard to measure the observed frequencies. In this study, we examined seven all-atom distance-dependent potentials with different reference states. As results, we observed that the variations of atom pair composition and those of distance distributions in the reference states produced systematic changes in the hydrophobic and attractive characteristics of the potentials. The performance evaluations with the CASP7 structures indicated that the preference of hydrophobic interactions improved the correlation between the energy and the GDT-TS score, but decreased the Z-score of the native structure. The attractiveness of potential improved both the correlation and Z-score for template-based modeling targets, but the benefit was smaller in free modeling targets. These results indicated that the performances of the potentials were more strongly influenced by their characteristics than by the accuracy of the definitions of the reference states. PMID:19588493

  16. Theoretical study on the dissociation energies, ionization potentials and electron affinities of three perfluoroalkyl iodides

    NASA Astrophysics Data System (ADS)

    Cheng, Li; Shen, Zuochun; Lu, Jianye; Gao, Huide; Lü, Zhiwei

    2005-11-01

    Dissociation energies, ionization potentials and electron affinities of three perfluoroalkyl iodides, CF 3I, C 2F 5I, and i-C 3F 7I are calculated accurately with B3LYP, MP n ( n = 2-4), QCISD, QCISD(T), CCSD, and CCSD(T) methods. Calculations are performed by using large-core correlation-consistent pseudopotential basis set (SDB-aug-cc-pVTZ) for iodine atom. In all energy calculations, the zero point vibration energy is corrected. And the basis set superposition error is corrected by counterpoise method in the calculation of dissociation energy. Theoretical results are compared with the experimental values.

  17. Calculation of spin-spin zero-field splitting within periodic boundary conditions: Towards all-electron accuracy

    NASA Astrophysics Data System (ADS)

    Biktagirov, Timur; Schmidt, Wolf Gero; Gerstmann, Uwe

    2018-03-01

    For high-spin centers, one of the key spectroscopic fingerprints is the zero-field splitting (ZFS) addressable by electron paramagnetic resonance. In this paper, an implementation of the spin-spin contribution to the ZFS tensor within the projector augmented-wave (PAW) formalism is reported. We use a single-determinant approach proposed by M. J. Rayson and P. R. Briddon [Phys. Rev. B 77, 035119 (2008), 10.1103/PhysRevB.77.035119], and complete it by adding a PAW reconstruction term which has not been taken into account before. We benchmark the PAW approach against a well-established all-electron method for a series of diatomic radicals and defects in diamond and cubic silicon carbide. While for some of the defect centers the PAW reconstruction is found to be almost negligible, in agreement with the common assumption, we show that in general it significantly improves the calculated ZFS towards the all-electron results.

  18. Wedge-shaped potential and Airy-function electron localization in oxide superlattices.

    PubMed

    Popovic, Z S; Satpathy, S

    2005-05-06

    Oxide superlattices and microstructures hold the promise for creating a new class of devices with unprecedented functionalities. Density-functional studies of the recently fabricated, lattice-matched perovskite titanates (SrTiO3)n/(LaTiO3)m reveal a classic wedge-shaped potential well for the monolayer (m = 1) structure, originating from the Coulomb potential of a two-dimensional charged La sheet. The potential in turn confines the electrons in the Airy-function-localized states. Magnetism is suppressed for the monolayer structure, while in structures with a thicker LaTiO3 part, bulk antiferromagnetism is recovered, with a narrow transition region separating the magnetic LaTiO3 and the nonmagnetic SrTiO3.

  19. Electronic control of different generation regimes in mode-locked all-fibre F8 laser

    NASA Astrophysics Data System (ADS)

    Kobtsev, Sergey; Ivanenko, Aleksey; Kokhanovskiy, Alexey; Smirnov, Sergey

    2018-04-01

    We demonstrate for the first time an electronically controlled realisation of markedly different generation regimes in a mode-locked all-fibre figure-eight (F8) Yb-doped laser. Electronic adjustment of the ratio of pumping powers of two amplification stages in a nonlinear amplifying loop mirror enables the establishment of stable pulse generation regimes with different degrees of coherence and control over their parameters within relatively broad limits, with the pulse duration range exceeding a factor of two in the picosecond domain for coherent and incoherent pulses, the energy range exceeding an order of magnitude for incoherent pulses (2.2-24.8 nJ) and over a factor of 8 for coherent pulses (1.9-16.2 nJ). Adjustment of the pumping powers allows one to maintain the duration of the coherent pulses and to set their peak power in the range of 32.5-292.5 W. The proposed configuration of electronic control over the radiation parameters of a mode-locked all-fibre F8 laser enables reproducible generation of pulses of different types with specified parameters within a broad range of values.

  20. One size fits all electronics for insole-based activity monitoring.

    PubMed

    Hegde, Nagaraj; Bries, Matthew; Melanson, Edward; Sazonov, Edward

    2017-07-01

    Footwear based wearable sensors are becoming prominent in many areas of monitoring health and wellness, such as gait and activity monitoring. In our previous research we introduced an insole based wearable system SmartStep, which is completely integrated in a socially acceptable package. From a manufacturing perspective, SmartStep's electronics had to be custom made for each shoe size, greatly complicating the manufacturing process. In this work we explore the possibility of making a universal electronics platform for SmartStep - SmartStep 3.0, which can be used in the most common insole sizes without modifications. A pilot human subject experiments were run to compare the accuracy between the one-size fits all (SmartStep 3.0) and custom size SmartStep 2.0. A total of ~10 hours of data was collected in the pilot study involving three participants performing different activities of daily living while wearing SmartStep 2.0 and SmartStep 3.0. Leave one out cross validation resulted in a 98.5% average accuracy from SmartStep 2.0, while SmartStep 3.0 resulted in 98.3% accuracy, suggesting that the SmartStep 3.0 can be as accurate as SmartStep 2.0, while fitting most common shoe sizes.

  1. Net mitigation potential of straw return to Chinese cropland: estimation with a full greenhouse gas budget model.

    PubMed

    Lu, Fei; Wang, Xiaoke; Han, Bing; Ouyang, Zhiyun; Duan, Xiaonan; Zheng, Hua

    2010-04-01

    Based on the carbon-nitrogen cycles and greenhouse gas (GHG) mitigation and emission processes related to straw return and burning, a compound greenhouse gas budget model, the "Straw Return and Burning Model" (SRBM), was constructed to estimate the net mitigation potential of straw return to the soil in China. As a full GHG budget model, the SRBM addressed the following five processes: (1) soil carbon sequestration, (2) mitigation of synthetic N fertilizer substitution, (3) methane emission from rice paddies, (4) additional fossil fuel use for straw return, and (5) CH4 and N2O emissions from straw burning in the fields. Two comparable scenarios were created to reflect different degrees of implementation for straw return and straw burning. With GHG emissions and mitigation effects of the five processes converted into global warming potential (GWP), the net GHG mitigation was estimated. We concluded that (1) when the full greenhouse gas budget is considered, the net mitigation potential of straw return differs from that when soil carbon sequestration is considered alone; (2) implementation of straw return across a larger area of cropland in 10 provinces (i.e., Shanghai, Jiangsu, Zhejiang, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, and Hainan) will increase net GHG emission; (3) if straw return is promoted as a feasible mitigation measure in the remaining provinces, the total net mitigation potential before soil organic carbon (SOC) saturation will be 71.89 Tg CO2 equivalent (eqv)/yr, which is equivalent to 1.733% of the annual carbon emission from fossil fuel use in China in 2003; (4) after SOC saturation, only 13 of 21 provinces retain a relatively small but permanent net mitigation potential, while in the others the net GHG mitigation potential will gradually diminish; and (5) the major obstacle to the feasibility or permanence of straw return as a mitigation measure is the increased CH4 emission from rice paddies. The paper also suggests that comparable

  2. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. II. High-frequency electron-acoustic solitons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.

    2012-12-15

    A three-component plasma model composed of ions, cool electrons, and hot electrons is adopted to investigate the existence of large amplitude electron-acoustic solitons not only for the model for which inertia and pressure are retained for all plasma species which are assumed to be adiabatic but also neglecting inertial effects of the hot electrons. Using the Sagdeev potential formalism, the Mach number ranges supporting the existence of large amplitude electron-acoustic solitons are presented. The limitations on the attainable amplitudes of electron-acoustic solitons having negative potentials are attributed to a number of different physical reasons, such as the number density ofmore » either the cool electrons or hot electrons ceases to be real valued beyond the upper Mach number limit, or, alternatively, a negative potential double layer occurs. Electron-acoustic solitons having positive potentials are found to be supported only if inertial effects of the hot electrons are retained and these are found to be limited only by positive potential double layers.« less

  3. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    DOE PAGES

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; ...

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore » greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less

  4. Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme

    NASA Astrophysics Data System (ADS)

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus; Stocks, G. Malcolm

    2018-03-01

    The Green function plays an essential role in the Korringa-Kohn-Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn-Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). The pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. By using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.

  5. Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus

    The Green function plays an essential role in the Korringa–Kohn–Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn–Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). Themore » pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. Here, by using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.« less

  6. Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme

    DOE PAGES

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus; ...

    2017-10-28

    The Green function plays an essential role in the Korringa–Kohn–Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn–Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). Themore » pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. Here, by using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.« less

  7. Field-Aligned Electrostatic Potentials Above the Martian Exobase From MGS Electron Reflectometry: Structure and Variability

    NASA Astrophysics Data System (ADS)

    Lillis, Robert J.; Halekas, J. S.; Fillingim, M. O.; Poppe, A. R.; Collinson, G.; Brain, David A.; Mitchell, D. L.

    2018-01-01

    Field-aligned electrostatic potentials in the Martian ionosphere play potentially important roles in maintaining current systems, driving atmospheric escape and producing aurora. The strength and polarity of the potential difference between the observation altitude and the exobase ( 180 km) determine the energy dependence of electron pitch angle distributions (PADs) measured on open magnetic field lines (i.e. those connected both to the collisional atmosphere and to the interplanetary magnetic field). Here we derive and examine a data set of 3.6 million measurements of the potential between 185 km and 400 km altitude from PADs measured by the Mars Global Surveyor Magnetometer/Electron Reflectometer experiment at 2 A.M./2 P.M. local time from May 1999 to November 2006. Potentials display significant variability, consistent with expected variable positive and negative divergences of the convection electric field in the highly variable and dynamic Martian plasma environment. However, superimposed on this variability are persistent patterns whereby potential magnitudes depend positively on crustal magnetic field strength, being close to zero where crustal fields are weak or nonexistent. Average potentials are typically positive near the center of topologically open crustal field regions where field lines are steeper, and negative near the edges of such regions where fields are shallower, near the boundaries with closed fields. This structure is less pronounced for higher solar wind pressures and (on the dayside) higher solar EUV irradiance. Its causes are uncertain at present but may be due to differential motion of electrons and ions in Mars's substantial but (compared to Earth) weak magnetic fields.

  8. One Size Fits All? Slow Cortical Potentials Neurofeedback: A Review

    ERIC Educational Resources Information Center

    Mayer, Kerstin; Wyckoff, Sarah N.; Strehl, Ute

    2013-01-01

    Objective: The intent of this manuscript was to review all published studies on slow cortical potentials (SCP) neurofeedback for the treatment of ADHD, with emphasis on neurophysiological rationale, study design, protocol, outcomes, and limitations. Method: For review, PubMed, MEDLINE, ERIC, and Google Scholar searches identified six studies and…

  9. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  10. Neurophysiological analytics for all! Free open-source software tools for documenting, analyzing, visualizing, and sharing using electronic notebooks.

    PubMed

    Rosenberg, David M; Horn, Charles C

    2016-08-01

    Neurophysiology requires an extensive workflow of information analysis routines, which often includes incompatible proprietary software, introducing limitations based on financial costs, transfer of data between platforms, and the ability to share. An ecosystem of free open-source software exists to fill these gaps, including thousands of analysis and plotting packages written in Python and R, which can be implemented in a sharable and reproducible format, such as the Jupyter electronic notebook. This tool chain can largely replace current routines by importing data, producing analyses, and generating publication-quality graphics. An electronic notebook like Jupyter allows these analyses, along with documentation of procedures, to display locally or remotely in an internet browser, which can be saved as an HTML, PDF, or other file format for sharing with team members and the scientific community. The present report illustrates these methods using data from electrophysiological recordings of the musk shrew vagus-a model system to investigate gut-brain communication, for example, in cancer chemotherapy-induced emesis. We show methods for spike sorting (including statistical validation), spike train analysis, and analysis of compound action potentials in notebooks. Raw data and code are available from notebooks in data supplements or from an executable online version, which replicates all analyses without installing software-an implementation of reproducible research. This demonstrates the promise of combining disparate analyses into one platform, along with the ease of sharing this work. In an age of diverse, high-throughput computational workflows, this methodology can increase efficiency, transparency, and the collaborative potential of neurophysiological research. Copyright © 2016 the American Physiological Society.

  11. Neurophysiological analytics for all! Free open-source software tools for documenting, analyzing, visualizing, and sharing using electronic notebooks

    PubMed Central

    2016-01-01

    Neurophysiology requires an extensive workflow of information analysis routines, which often includes incompatible proprietary software, introducing limitations based on financial costs, transfer of data between platforms, and the ability to share. An ecosystem of free open-source software exists to fill these gaps, including thousands of analysis and plotting packages written in Python and R, which can be implemented in a sharable and reproducible format, such as the Jupyter electronic notebook. This tool chain can largely replace current routines by importing data, producing analyses, and generating publication-quality graphics. An electronic notebook like Jupyter allows these analyses, along with documentation of procedures, to display locally or remotely in an internet browser, which can be saved as an HTML, PDF, or other file format for sharing with team members and the scientific community. The present report illustrates these methods using data from electrophysiological recordings of the musk shrew vagus—a model system to investigate gut-brain communication, for example, in cancer chemotherapy-induced emesis. We show methods for spike sorting (including statistical validation), spike train analysis, and analysis of compound action potentials in notebooks. Raw data and code are available from notebooks in data supplements or from an executable online version, which replicates all analyses without installing software—an implementation of reproducible research. This demonstrates the promise of combining disparate analyses into one platform, along with the ease of sharing this work. In an age of diverse, high-throughput computational workflows, this methodology can increase efficiency, transparency, and the collaborative potential of neurophysiological research. PMID:27098025

  12. Full wave characterization of microstrip open end discontinuities patterned on anisotropic substrates using potential theory

    NASA Technical Reports Server (NTRS)

    Toncich, S. S.; Collin, R. E.; Bhasin, K. B.

    1993-01-01

    A technique for a full wave characterization of microstrip open end discontinuities fabricated on uniaxial anisotropic substrates using potential theory is presented. The substrate to be analyzed is enclosed in a cutoff waveguide, with the anisotropic axis aligned perpendicular to the air-dielectric interface. A full description of the sources on the microstrip line is included with edge conditions built in. Extention to other discontinuities is discussed.

  13. Full-color laser cathode ray tube (L-CRT) projector

    NASA Astrophysics Data System (ADS)

    Kozlovskiy, Vladimir; Nasibov, Alexander S.; Popov, Yuri M.; Reznikov, Parvel V.; Skasyrsky, Yan K.

    1995-04-01

    A full color TV projector based on three laser cathode-ray tubes (L-CRT) is described. A water-cooled laser screen (LS) is the radiation element of the L-CRT. We have produced three main colors (blue, green and red) by using the LS made of three II-VI compounds: ZnSe ((lambda) equals 475 nm), CdS ((lambda) equals 530 nm) and ZnCdSe (630 nm). The total light flow reaches 1500 Lm, and the number of elements per line is not less than 1000. The LS efficiency may be about 10 Lm/W. In our experiments we have tested new electron optics: - (30 - 37) kV are applied to the cathode unit of the electron gun; the anode of the e-gun and the e-beam intensity modulator are under low potential; the LS has a potential + (30 - 37) kV. The accelerating voltage is divided into two parts, and this enables us to diminish the size and weight of the projector.

  14. Effect of doping on electronic properties of HgSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nag, Abhinav, E-mail: abhinavn76@gmail.com; Sastri, O. S. K. S., E-mail: sastri.osks@gmail.com; Kumar, Jagdish, E-mail: jagdishphysicist@gmail.com

    2016-05-23

    First principle study of electronic properties of pure and doped HgSe have been performed using all electron Full Potential Linearized Augmented Plane Wave (FP-LAPW) method using ELK code. The electronic exchange and co-relations are considered using Generalized Gradient Approach (GGA). Lattice parameter, Density of States (DOS) and Band structure calculations have been performed. The total energy curve (Energy vs Lattice parameter), DOS and band structure calculations are in good agreement with the experimental values and those obtained using other DFT codes. The doped material is studied within the Virtual Crystal Approximation (VCA) with doping levels of 10% to 25% ofmore » electrons (hole) per unit cell. Results predict zero band gap in undopedHgSe and bands meet at Fermi level near the symmetry point Γ. For doped HgSe, we found that by electron (hole) doping, the point where conduction and valence bands meet can be shifted below (above) the fermi level.« less

  15. Vacuum Potentials for the Two Only Permanent Free Particles, Proton and Electron. Pair Productions

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J. X.

    2012-02-01

    The two only species of isolatable, smallest, or unit charges +e and -e present in nature interact with the universal vacuum in a polarisable dielectric representation through two uniquely defined vacuum potential functions. All of the non-composite subatomic particles containing one-unit charges, +e or -e, are therefore formed in terms of the IED model of the respective charges, of zero rest masses, oscillating in either of the two unique vacuum potential fields, together with the radiation waves of their own charges. In this paper we give a first principles treatment of the dynamics of charge in a dielectric vacuum, based on which, combined with solutions for the radiation waves obtained previously, we subsequently derive the vacuum potential function for a given charge q, which we show to be quadratic and consist each of quantised potential levels, giving therefore rise to quantised characteristic oscillation frequencies of the charge and accordingly quantised, sharply-defined masses of the IED particles. By further combining with relevant experimental properties as input information, we determine the IED particles built from the charges +e, -e at their first excited states in the respective vacuum potential wells to be the proton and the electron, the observationally two only stable (permanently lived) and "free" particles containing one-unit charges. Their antiparticles as produced in pair productions can be accordingly determined. The characteristics of all of the other more energetic single-charged non-composite subatomic particles can also be recognised. We finally discuss the energy condition for pair production, which requires two successive energy supplies to (1) first disintegrate the bound pair of vaculeon charges +e, -e composing a vacuuon of the vacuum and (2) impart masses to the disintegrated charges.

  16. Ab initio full-potential fully relativistic study of atomic carbon, nitrogen, and oxygen chemisorption on the (111) surface of δ-Pu

    NASA Astrophysics Data System (ADS)

    Atta-Fynn, Raymond; Ray, Asok K.

    2007-05-01

    First-principles total-energy calculations within the framework of generalized gradient approximation to density-functional theory have been performed for atomic carbon, nitrogen, and oxygen chemisorption on the (111) surface of δ-Pu . The full-potential all-electron linearized augmented plane wave plus local orbitals method with the Perdew-Burke-Ernzerhof exchange-correlation functional has been employed. Chemisorption energies have been optimized with respect to the distance of the adatom from the Pu surface for four adsorption sites, namely, the top, bridge, hollow fcc, and hollow hcp sites, with the adlayer structure corresponding to a coverage of 0.50 of a monolayer in all cases. Computations were carried out at two theoretical levels, one without spin-orbit coupling (NSOC) and one with spin-orbit coupling (SOC). For NSOC calculations, the hollow fcc adsorption site was found to be the most stable site for C and N with chemisorption energies of 6.272 and 6.504eV , respectively, while the hollow hcp adsorption site was found to be the most stable site for O with chemisorption energy of 8.025eV . For SOC calculations, the hollow fcc adsorption site was found to be the most stable site in all cases with chemisorption energies for C, N, and O being 6.539, 6.714, and 8.2eV , respectively. The respective distances of the C, N, and O adatoms from the surface were found to be 1.16, 1.08, and 1.25Å . Our calculations indicate that SOC has negligible effect on the chemisorption geometries, but energies with SOC are more stable than the cases with NSOC within a range of 0.05-0.27eV . The work function and net magnetic moments, respectively, increased and decreased in all cases upon chemisorption compared with the bare δ-Pu (111) surface. The partial charges inside the muffin tins, difference charge-density distributions, and the local density of states have been used to analyze the Pu-adatom bond interactions.

  17. Response under low-energy electron irradiation of a thin film of a potential copper precursor for focused electron beam induced deposition (FEBID)

    PubMed Central

    Sala, Leo; Szymańska, Iwona B; Dablemont, Céline; Lafosse, Anne

    2018-01-01

    Background: Focused electron beam induced deposition (FEBID) allows for the deposition of free standing material within nanometre sizes. The improvement of the technique needs a combination of new precursors and optimized irradiation strategies to achieve a controlled fragmentation of the precursor for leaving deposited material of desired composition. Here a new class of copper precursors is studied following an approach that probes some surface processes involved in the fragmentation of precursors. We use complexes of copper(II) with amines and perfluorinated carboxylate ligands that are solid and stable under ambient conditions. They are directly deposited on the surface for studying the fragmentation with surface science tools. Results: Infrared spectroscopy and high-resolution electron energy loss spectroscopy (HREELS) are combined to show that the precursor is able to spontaneously lose amine ligands under vacuum. This loss can be enhanced by mild heating. The combination of mass spectrometry and low-energy electron irradiation (0–15 eV) shows that full amine ligands can be released upon irradiation, and that fragmentation of the perfluorinated ligands is induced by electrons of energy as low as 1.5 eV. Finally, the cross section for this process is estimated from the temporal evolution in the experiments on electron-stimulated desorption (ESD). Conclusion: The release of full ligands under high vacuum and by electron irradiation, and the cross section measured here for ligands fragmentation allow one to envisage the use of the two precursors for FEBID studies. PMID:29379701

  18. All-printed smart structures: a viable option?

    NASA Astrophysics Data System (ADS)

    O'Donnell, John; Ahmadkhanlou, Farzad; Yoon, Hwan-Sik; Washington, Gregory

    2014-03-01

    The last two decades have seen evolution of smart materials and structures technologies from theoretical concepts to physical realization in many engineering fields. These include smart sensors and actuators, active damping and vibration control, biomimetics, and structural health monitoring. Recently, additive manufacturing technologies such as 3D printing and printed electronics have received attention as methods to produce 3D objects or electronic components for prototyping or distributed manufacturing purposes. In this paper, the viability of manufacturing all-printed smart structures, with embedded sensors and actuators, will be investigated. To this end, the current 3D printing and printed electronics technologies will be reviewed first. Then, the plausibility of combining these two different additive manufacturing technologies to create all-printed smart structures will be discussed. Potential applications for this type of all-printed smart structures include most of the traditional smart structures where sensors and actuators are embedded or bonded to the structures to measure structural response and cause desired static and dynamic changes in the structure.

  19. Humin as an electron donor for enhancement of multiple microbial reduction reactions with different redox potentials in a consortium.

    PubMed

    Zhang, Dongdong; Zhang, Chunfang; Xiao, Zhixing; Suzuki, Daisuke; Katayama, Arata

    2015-02-01

    A solid-phase humin, acting as an electron donor, was able to enhance multiple reductive biotransformations, including dechlorination of pentachlorophenol (PCP), dissimilatory reduction of amorphous Fe (III) oxide (FeOOH), and reduction of nitrate, in a consortium. Humin that was chemically reduced by NaBH4 served as an electron donor for these microbial reducing reactions, with electron donating capacities of 0.013 mmol e(-)/g for PCP dechlorination, 0.15 mmol e(-)/g for iron reduction, and 0.30 mmol e(-)/g for nitrate reduction. Two pairs of oxidation and reduction peaks within the humin were detected by cyclic voltammetry analysis. 16S rRNA gene sequencing-based microbial community analysis of the consortium incubated with different terminal electron acceptors, suggested that Dehalobacter sp., Bacteroides sp., and Sulfurospirillum sp. were involved in the PCP dechlorination, dissimilatory iron reduction, and nitrate reduction, respectively. These findings suggested that humin functioned as a versatile redox mediator, donating electrons for multiple respiration reactions with different redox potentials. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Theoretical study of the electron affinities of MF6 and MF - 6 (M=Cr, Mo, and W) using a model potential method

    NASA Astrophysics Data System (ADS)

    Sakai, Yoshiko; Miyoshi, Eisaku

    1987-09-01

    Electronic structures of MF6, MF-6, and MF2-6 (M=Cr, Mo, and W) were calculated using a model potential method in the Hartree-Fock-Roothaan scheme. Major relativistic effects were taken into account for the calculations on MoFq6 and WFq6 (q=0, -1, and -2). It is shown that the calculated electron affinities (EAs) are extremely high for all the MF6 molecules, and that the CrF-6 and MoF-6 anions also have positive EAs, whereas the WF-6 anion has a slightly negative EA. The behaviors of the EAs are interpreted with reference to the electronic structures of the MFq6 systems.

  1. Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses

    PubMed Central

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2015-01-01

    All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system. In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection. Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals. PMID:26323238

  2. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  3. Structure of the Full-length VEGFR-1 Extracellular Domain in Complex with VEGF-A.

    PubMed

    Markovic-Mueller, Sandra; Stuttfeld, Edward; Asthana, Mayanka; Weinert, Tobias; Bliven, Spencer; Goldie, Kenneth N; Kisko, Kaisa; Capitani, Guido; Ballmer-Hofer, Kurt

    2017-02-07

    Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel development upon activation of three receptor tyrosine kinases: VEGFR-1, -2, and -3. Partial structures of VEGFR/VEGF complexes based on single-particle electron microscopy, small-angle X-ray scattering, and X-ray crystallography revealed the location of VEGF binding and domain arrangement of individual receptor subdomains. Here, we describe the structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A at 4 Å resolution. We combined X-ray crystallography, single-particle electron microscopy, and molecular modeling for structure determination and validation. The structure reveals the molecular details of ligand-induced receptor dimerization, in particular of homotypic receptor interactions in immunoglobulin homology domains 4, 5, and 7. Functional analyses of ligand binding and receptor activation confirm the relevance of these homotypic contacts and identify them as potential therapeutic sites to allosterically inhibit VEGFR-1 activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Studies for determining thermal ion extraction potential for aluminium plasma generated by electron beam evaporator

    NASA Astrophysics Data System (ADS)

    Dileep Kumar, V.; Barnwal, Tripti A.; Mukherjee, Jaya; Gantayet, L. M.

    2010-02-01

    For effective evaporation of refractory metal, electron beam is found to be most suitable vapour generator source. Using electron beam, high throughput laser based purification processes are carried out. But due to highly concentrated electron beam, the vapour gets ionised and these ions lead to dilution of the pure product of laser based separation process. To estimate the concentration of these ions and extraction potential requirement to remove these ions from vapour stream, experiments have been conducted using aluminium as evaporant. The aluminium ingots were placed in water cooled copper crucible. Inserts were used to hold the evaporant, in order to attain higher number density in the vapour processing zone and also for confining the liquid metal. Parametric studies with beam power, number density and extraction potential were conducted. In this paper we discuss the trend of the generation of thermal ions and electrostatic field requirement for extraction.

  5. Intersubunit distances in full-length, dimeric, bacterial phytochrome Agp1, as measured by pulsed electron-electron double resonance (PELDOR) between different spin label positions, remain unchanged upon photoconversion.

    PubMed

    Kacprzak, Sylwia; Njimona, Ibrahim; Renz, Anja; Feng, Juan; Reijerse, Edward; Lubitz, Wolfgang; Krauss, Norbert; Scheerer, Patrick; Nagano, Soshichiro; Lamparter, Tilman; Weber, Stefan

    2017-05-05

    Bacterial phytochromes are dimeric light-regulated histidine kinases that convert red light into signaling events. Light absorption by the N-terminal photosensory core module (PCM) causes the proteins to switch between two spectrally distinct forms, Pr and Pfr, thus resulting in a conformational change that modulates the C-terminal histidine kinase region. To provide further insights into structural details of photoactivation, we investigated the full-length Agp1 bacteriophytochrome from the soil bacterium Agrobacterium fabrum using a combined spectroscopic and modeling approach. We generated seven mutants suitable for spin labeling to enable application of pulsed EPR techniques. The distances between attached spin labels were measured using pulsed electron-electron double resonance spectroscopy to probe the arrangement of the subunits within the dimer. We found very good agreement of experimental and calculated distances for the histidine-kinase region when both subunits are in a parallel orientation. However, experimental distance distributions surprisingly showed only limited agreement with either parallel- or antiparallel-arranged dimer structures when spin labels were placed into the PCM region. This observation indicates that the arrangements of the PCM subunits in the full-length protein dimer in solution differ significantly from that in the PCM crystals. The pulsed electron-electron double resonance data presented here revealed either no or only minor changes of distance distributions upon Pr-to-Pfr photoconversion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Arbitrary amplitude fast electron-acoustic solitons in three-electron component space plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mbuli, L. N.; Maharaj, S. K.; Department of Physics, University of the Western Cape

    We examine the characteristics of fast electron-acoustic solitons in a four-component unmagnetised plasma model consisting of cool, warm, and hot electrons, and cool ions. We retain the inertia and pressure for all the plasma species by assuming adiabatic fluid behaviour for all the species. By using the Sagdeev pseudo-potential technique, the allowable Mach number ranges for fast electron-acoustic solitary waves are explored and discussed. It is found that the cool and warm electron number densities determine the polarity switch of the fast electron-acoustic solitons which are limited by either the occurrence of fast electron-acoustic double layers or warm and hotmore » electron number density becoming unreal. For the first time in the study of solitons, we report on the coexistence of fast electron-acoustic solitons, in addition to the regular fast electron-acoustic solitons and double layers in our multi-species plasma model. Our results are applied to the generation of broadband electrostatic noise in the dayside auroral region.« less

  7. A conservative implicit finite difference algorithm for the unsteady transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Caradonna, F. X.

    1980-01-01

    An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.

  8. NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations

    NASA Astrophysics Data System (ADS)

    de Wijs, G. A.; Laskowski, R.; Blaha, P.; Havenith, R. W. A.; Kresse, G.; Marsman, M.

    2017-02-01

    We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.

  9. NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations.

    PubMed

    de Wijs, G A; Laskowski, R; Blaha, P; Havenith, R W A; Kresse, G; Marsman, M

    2017-02-14

    We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.

  10. Effects of complete vitamin and mineral supplementation in full potential all-milk diets on growth and health of Holstein bull calves

    USDA-ARS?s Scientific Manuscript database

    Pre-ruminant Holstein bull calves were fed two diets of pasteurized whole milk (PWM) in amounts that either limited intake or that maximized intake according to common commercial practice. Diets then were either supplemented or not supplemented with a full complement of vitamins and trace minerals ...

  11. Free-Free Transitions in the Presence of Laser Fields and Debye Potential at Very Low Incident Electron Energies

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand

    2012-01-01

    We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.

  12. Quantifying the potential export flows of used electronic products in Macau: a case study of PCs.

    PubMed

    Yu, Danfeng; Song, Qingbin; Wang, Zhishi; Li, Jinhui; Duan, Huabo; Wang, Jinben; Wang, Chao; Wang, Xu

    2017-12-01

    The used electronic product (UEP) has attracted the worldwide attentions because part of e-waste may be exported from developed countries to developing countries in the name of UEP. On the basis of large foreign trade data of electronic products (e-products), this study adopted the trade data approach (TDA) to quantify the potential exports of UEP in Macau, taking a case study of personal computers (PCs). The results show that the desktop mainframes, LCD monitors, and CRT monitors have more low-unit-value trades with higher trade volumes in the past 10 years, while the laptop and tablet PCs, as the newer technologies, owned the higher ratios of the high-unit-value trades. During the period of 2005-2015, the total mean exports for used laptop and tablet PCs, desktop mainframes, and LCD monitors were approximately 18,592, 79,957, and 43,177 units, respectively, while the possible export volume of used CRT monitors was higher, up to 430,098 units in 2000-2010. Noticed that these potential export volumes could be the lower bound because not all used PCs may be shipped using the PC trade code. For all the four kinds of used PCs, the majority (61.6-98.82%) of the export volumes have gone to Hong Kong, followed by Mainland China and Taiwan. Since 2011, there was no CRT monitor export; however, the other kinds of used PC exports will still exist in Macau in the future. The outcomes are helpful to understand and manage the current export situations of used products in Macau, and can also provide a reference for other countries and regions.

  13. Multi-electron double quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    Nielsen, Erik; Kestner, Jason; Barnes, Edwin; Das Sarma, Sankar

    2013-03-01

    Double quantum dot (DQD) spin quits in a solid state environment typically consist of two electron spins confined to a DQD potential. We analyze the viability and potential advantages of DQD qubits which use greater then two electrons, and present results for six-electron qubits using full configuration interaction methods. The principal results of this work are that such six electron DQDs can retain an isolated low-energy qubit space that is more robust to charge noise due to screening. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong

    1989-01-01

    Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.

  15. PIC code modeling of spacecraft charging potential during electron beam injection into a background of neutral gas and plasma, part 1

    NASA Technical Reports Server (NTRS)

    Koga, J. K.; Lin, C. S.; Winglee, R. M.

    1989-01-01

    Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.

  16. Modeling electron transfer in photosystem I.

    PubMed

    Makita, Hiroki; Hastings, Gary

    2016-06-01

    Nanosecond to millisecond time-resolved absorption spectroscopy has been used to study electron transfer processes in photosystem I particles from Synechocystis sp. PCC 6803 with eight different quinones incorporated into the A1 binding site, at both 298 and 77K. A detailed kinetic model was constructed and solved within the context of Marcus electron transfer theory, and it was found that all of the data could be well described only if the in situ midpoint potentials of the quinones fell in a tightly defined range. For photosystem I with phylloquinone incorporated into the A1 binding site all of the time-resolved optical data is best modeled when the in situ midpoint potential of phylloquinone on the A/B branch is -635/-690 mV, respectively. With the midpoint potential of the F(X) iron sulfur cluster set at -680 mV, this indicates that forward electron transfer from A(1)(-) to F(X) is slightly endergonic/exergonic on the A/B branch, respectively. Additionally, for forward electron transfer from A(1)(-) to F(X), on both the A and B branches the reorganization energy is close to 0.7 eV. Reorganization energies of 0.4 or 1.0 eV are not possible. For the eight different quinones incorporated, the same kinetic model was used, allowing us to establish in situ redox potentials for all of the incorporated quinones on both branches. A linear correlation was found between the in situ and in vitro midpoint potentials of the quinones on both branches. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Electronic medical records and genomics (eMERGE) network exploration in cataract: Several new potential susceptibility loci

    PubMed Central

    Verma, Shefali S.; Hall, Molly A.; Goodloe, Robert J.; Berg, Richard L.; Carrell, Dave S.; Carlson, Christopher S.; Chen, Lin; Crosslin, David R.; Denny, Joshua C.; Jarvik, Gail; Li, Rongling; Linneman, James G.; Pathak, Jyoti; Peissig, Peggy; Rasmussen, Luke V.; Ramirez, Andrea H.; Wang, Xiaoming; Wilke, Russell A.; Wolf, Wendy A.; Torstenson, Eric S.; Turner, Stephen D.; McCarty, Catherine A.

    2014-01-01

    Purpose Cataract is the leading cause of blindness in the world, and in the United States accounts for approximately 60% of Medicare costs related to vision. The purpose of this study was to identify genetic markers for age-related cataract through a genome-wide association study (GWAS). Methods In the electronic medical records and genomics (eMERGE) network, we ran an electronic phenotyping algorithm on individuals in each of five sites with electronic medical records linked to DNA biobanks. We performed a GWAS using 530,101 SNPs from the Illumina 660W-Quad in a total of 7,397 individuals (5,503 cases and 1,894 controls). We also performed an age-at-diagnosis case-only analysis. Results We identified several statistically significant associations with age-related cataract (45 SNPs) as well as age at diagnosis (44 SNPs). The 45 SNPs associated with cataract at p<1×10−5 are in several interesting genes, including ALDOB, MAP3K1, and MEF2C. All have potential biologic relationships with cataracts. Conclusions This is the first genome-wide association study of age-related cataract, and several regions of interest have been identified. The eMERGE network has pioneered the exploration of genomic associations in biobanks linked to electronic health records, and this study is another example of the utility of such resources. Explorations of age-related cataract including validation and replication of the association results identified herein are needed in future studies. PMID:25352737

  18. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    PubMed

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.

  19. Theoretical investigation of electronic states and spectroscopic properties of tellurium selenide molecule employing relativistic effective core potentials.

    PubMed

    Chattopadhyaya, Surya; Nath, Abhijit; Das, Kalyan Kumar

    2014-04-24

    Ab initio based relativistic configuration interaction calculations have been performed to study the electronic states and spectroscopic properties of tellurium selenide (TeSe) - the heaviest heteronuclear diatomic group 16-16 molecule. Potential energy curves of several spin-excluded (Λ-S) electronic states of TeSe have been constructed and spectroscopic constants of low-lying bound Λ-S states within 3.85 eV are reported in the first stage of calculations. The X(3)Σ(-), a(1)Δ and b(1)Σ(+) are found as the ground, first excited and second excited state, respectively, at the Λ-S level and all these three states are mainly dominated by …π(4)π(*2) configuration. The computed ground state dissociation energy is in very good agreement with the experimental results. In the next stage of calculations, effects of spin-orbit coupling on the potential energy curves and spectroscopic properties of the species are investigated in details and compared with the existing experimental results. After inclusion of spin-orbit coupling the X(3)(1)Σ(-)(0(+)) is found as the ground-state spin component of TeSe. The computed spin-orbit splitting between two components of X(3)Σ(-) state is 1285 cm(-1). Also, significant amount of spin-orbit splitting are found between spin-orbit components (Ω-components) of several other excited states. Transition moments of some important spin-allowed and spin-forbidden transitions are calculated from configuration interaction wave functions. The spin-allowed transition B(3)Σ(-)-X(3)Σ(-) and spin-forbidden transition b(1)Σ(+)(0(+))-X(3)(1)Σ(-)(0(+)) are found to be the strongest in their respective categories. Electric dipole moments of all the bound Λ-S states along with those of the two Ω-components of X(3)Σ(-) are also calculated in the present study. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Modeling Biophysical and Biological Properties From the Characteristics of the Molecular Electron Density, Electron Localization and Delocalization Matrices, and the Electrostatic Potential

    PubMed Central

    Matta*, Chérif F

    2014-01-01

    The electron density and the electrostatic potential are fundamentally related to the molecular hamiltonian, and hence are the ultimate source of all properties in the ground- and excited-states. The advantages of using molecular descriptors derived from these fundamental scalar fields, both accessible from theory and from experiment, in the formulation of quantitative structure-to-activity and structure-to-property relationships, collectively abbreviated as QSAR, are discussed. A few such descriptors encode for a wide variety of properties including, for example, electronic transition energies, pKa's, rates of ester hydrolysis, NMR chemical shifts, DNA dimers binding energies, π-stacking energies, toxicological indices, cytotoxicities, hepatotoxicities, carcinogenicities, partial molar volumes, partition coefficients (log P), hydrogen bond donor capacities, enzyme–substrate complementarities, bioisosterism, and regularities in the genetic code. Electronic fingerprinting from the topological analysis of the electron density is shown to be comparable and possibly superior to Hammett constants and can be used in conjunction with traditional bulk and liposolubility descriptors to accurately predict biological activities. A new class of descriptors obtained from the quantum theory of atoms in molecules' (QTAIM) localization and delocalization indices and bond properties, cast in matrix format, is shown to quantify transferability and molecular similarity meaningfully. Properties such as “interacting quantum atoms (IQA)” energies which are expressible into an interaction matrix of two body terms (and diagonal one body “self” terms, as IQA energies) can be used in the same manner. The proposed QSAR-type studies based on similarity distances derived from such matrix representatives of molecular structure necessitate extensive investigation before their utility is unequivocally established. © 2014 The Author and the Journal of Computational Chemistry Published

  1. Ultrafast electron transfer in all-carbon-based SWCNT-C60 donor-acceptor nanoensembles connected by poly(phenylene-ethynylene) spacers

    NASA Astrophysics Data System (ADS)

    Barrejón, Myriam; Gobeze, Habtom B.; Gómez-Escalonilla, María J.; Fierro, José Luis G.; Zhang, Minfang; Yudasaka, Masako; Iijima, Sumio; D'Souza, Francis; Langa, Fernando

    2016-08-01

    Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices.Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an

  2. Breaking the barriers of all-polymer solar cells: Solving electron transporter and morphology problems

    NASA Astrophysics Data System (ADS)

    Gavvalapalli, Nagarjuna

    All-polymer solar cells (APSC) are a class of organic solar cells in which hole and electron transporting phases are made of conjugated polymers. Unlike polymer/fullerene solar cell, photoactive material of APSC can be designed to have hole and electron transporting polymers with complementary absorption range and proper frontier energy level offset. However, the highest reported PCE of APSC is 5 times less than that of polymer/fullerene solar cell. The low PCE of APSC is mainly due to: i) low charge separation efficiency; and ii) lack of optimal morphology to facilitate charge transfer and transport; and iii) lack of control over the exciton and charge transport in each phase. My research work is focused towards addressing these issues. The charge separation efficiency of APSC can be enhanced by designing novel electron transporting polymers with: i) broad absorption range; ii) high electron mobility; and iii) high dielectric constant. In addition to with the above parameters chemical and electronic structure of the repeating unit of conjugated polymer also plays a role in charge separation efficiency. So far only three classes of electron transporting polymers, CN substituted PPV, 2,1,3-benzothiadiazole derived polymers and rylene diimide derived polymers, are used in APSC. Thus to enhance the charge separation efficiency new classes of electron transporting polymers with the above characteristics need to be synthesized. I have developed a new straightforward synthetic strategy to rapidly generate new classes of electron transporting polymers with different chemical and electronic structure, broad absorption range, and high electron mobility from readily available electron deficient monomers. In APSCs due to low entropy of mixing, polymers tend to micro-phase segregate rather than forming the more useful nano-phase segregation. Optimizing the polymer blend morphology to obtain nano-phase segregation is specific to the system under study, time consuming, and not

  3. Potential Effects of the Electronic Health Record on the Small Physician Practice: A Delphi Study.

    PubMed

    Sines, Chad C; Griffin, Gerald R

    2017-01-01

    The Health Information Technology for Economic and Clinical Health (HITECH) Act established the requirement of all medical practices to have certified electronic health records (EHRs). Some primary concerns that have been delaying implementation are issues of cost, revenue impact, and the effect on the patient encounter. Small physician practices (one to four physicians) account for 46 percent of all physicians. The purpose of this qualitative study using a modified Delphi research design was to examine the potential effect of the adoption of the EHR on revenue, unintended costs or savings, and changes in the patient encounter. Fifteen expert panelists completed the three-round survey process. The expert panelists reached a consensus that EHRs would reduce the number of patients seen per day, thereby reducing their revenue. Although the panelists limited their discussion on the effect of patient outcomes, their most dominant concern was the loss of face-to-face time with the patient. They felt that the use of an EHR would reduce the focus on the patient and potentially cause physicians to miss medical conditions. The results of this study indicate an avenue for EHR vendors to develop educational avenues to teach physicians how to optimize the EHR as well as to share success stories that demonstrate improved financial impact.

  4. Potential Effects of the Electronic Health Record on the Small Physician Practice: A Delphi Study

    PubMed Central

    Sines, Chad C.; Griffin, Gerald R.

    2017-01-01

    The Health Information Technology for Economic and Clinical Health (HITECH) Act established the requirement of all medical practices to have certified electronic health records (EHRs). Some primary concerns that have been delaying implementation are issues of cost, revenue impact, and the effect on the patient encounter. Small physician practices (one to four physicians) account for 46 percent of all physicians. The purpose of this qualitative study using a modified Delphi research design was to examine the potential effect of the adoption of the EHR on revenue, unintended costs or savings, and changes in the patient encounter. Fifteen expert panelists completed the three-round survey process. The expert panelists reached a consensus that EHRs would reduce the number of patients seen per day, thereby reducing their revenue. Although the panelists limited their discussion on the effect of patient outcomes, their most dominant concern was the loss of face-to-face time with the patient. They felt that the use of an EHR would reduce the focus on the patient and potentially cause physicians to miss medical conditions. The results of this study indicate an avenue for EHR vendors to develop educational avenues to teach physicians how to optimize the EHR as well as to share success stories that demonstrate improved financial impact. PMID:28566989

  5. The Electron Bifurcating FixABCX Protein Complex from Azotobacter vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysis

    DOE PAGES

    Ledbetter, Rhesa N.; Garcia Costas, Amaya M.; Lubner, Carolyn E.; ...

    2017-07-13

    The biological reduction of dinitrogen (N 2) to ammonia (NH 3) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (E m = -320 mV) coupled tomore » reduction of flavodoxin semiquinone (E m = -460 mV) and reduction of coenzyme Q (E m = 10 mV). Knocking out fix genes rendered ..delta..rnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Altogether, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.« less

  6. The Electron Bifurcating FixABCX Protein Complex from Azotobacter vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysis.

    PubMed

    Ledbetter, Rhesa N; Garcia Costas, Amaya M; Lubner, Carolyn E; Mulder, David W; Tokmina-Lukaszewska, Monika; Artz, Jacob H; Patterson, Angela; Magnuson, Timothy S; Jay, Zackary J; Duan, H Diessel; Miller, Jacquelyn; Plunkett, Mary H; Hoben, John P; Barney, Brett M; Carlson, Ross P; Miller, Anne-Frances; Bothner, Brian; King, Paul W; Peters, John W; Seefeldt, Lance C

    2017-08-15

    The biological reduction of dinitrogen (N 2 ) to ammonia (NH 3 ) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (E m = -320 mV) coupled to reduction of flavodoxin semiquinone (E m = -460 mV) and reduction of coenzyme Q (E m = 10 mV). Knocking out fix genes rendered Δrnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Overall, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.

  7. Wake coupling to full potential rotor analysis code

    NASA Technical Reports Server (NTRS)

    Torres, Francisco J.; Chang, I-Chung; Oh, Byung K.

    1990-01-01

    The wake information from a helicopter forward flight code is coupled with two transonic potential rotor codes. The induced velocities for the near-, mid-, and far-wake geometries are extracted from a nonlinear rigid wake of a standard performance and analysis code. These, together with the corresponding inflow angles, computation points, and azimuth angles, are then incorporated into the transonic potential codes. The coupled codes can then provide an improved prediction of rotor blade loading at transonic speeds.

  8. The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves

    NASA Technical Reports Server (NTRS)

    Goodrich, C. C.; Scudder, J. D.

    1984-01-01

    The adiabatic energy gain of electrons in the stationary electric and magnetic field structure of collisionless shock waves was examined analytically in reference to conditions of the earth's bow shock. The study was performed to characterize the behavior of electrons interacting with the cross-shock potential. A normal incidence frame (NIF) was adopted in order to calculate the reversible energy change across a time stationary shock, and comparisons were made with predictions made by the de Hoffman-Teller (HT) model (1950). The electron energy gain, about 20-50 eV, is demonstrated to be consistent with a 200-500 eV potential jump in the bow shock quasi-perpendicular geometry. The electrons lose energy working against the solar wind motional electric field. The reversible energy process is close to that modeled by HT, which predicts that the motional electric field vanishes and the electron energy gain from the electric potential is equated to the ion energy loss to the potential.

  9. The Electronic Portfolio Boom: What's It All About?

    ERIC Educational Resources Information Center

    Batson, Trent

    2002-01-01

    Discusses the use of electronic portfolios in higher education. Highlights include availability of the Web and databases; the growth of vendors in this area; benefits to students, faculty, and administrators, including statistics for accreditation; data storage; data security; certification issues; and a list of ePortfolio tools and resources.…

  10. Multi-scale full-orbit analysis on phase-space behavior of runaway electrons in tokamak fields with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yulei; Liu, Jian, E-mail: jliuphy@ustc.edu.cn; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026

    In this paper, the secular full-orbit simulations of runaway electrons with synchrotron radiation in tokamak fields are carried out using a relativistic volume-preserving algorithm. Detailed phase-space behaviors of runaway electrons are investigated in different dynamical timescales spanning 11 orders. In the small timescale, i.e., the characteristic timescale imposed by Lorentz force, the severely deformed helical trajectory of energetic runaway electron is witnessed. A qualitative analysis of the neoclassical scattering, a kind of collisionless pitch-angle scattering phenomena, is provided when considering the coupling between the rotation of momentum vector and the background magnetic field. In large timescale up to 1 s,more » it is found that the initial condition of runaway electrons in phase space globally influences the pitch-angle scattering, the momentum evolution, and the loss-gain ratio of runaway energy evidently. However, the initial value has little impact on the synchrotron energy limit. It is also discovered that the parameters of tokamak device, such as the toroidal magnetic field, the loop voltage, the safety factor profile, and the major radius, can modify the synchrotron energy limit and the strength of neoclassical scattering. The maximum runaway energy is also proved to be lower than the synchrotron limit when the magnetic field ripple is considered.« less

  11. Characterization of Electrostatic Potential and Trapped Charge in Semiconductor Nanostructures using Off-Axis Electron Holography

    NASA Astrophysics Data System (ADS)

    Gan, Zhaofeng

    Off-axis electron holography (EH) has been used to characterize electrostatic potential, active dopant concentrations and charge distribution in semiconductor nanostructures, including ZnO nanowires (NWs) and thin films, ZnTe thin films, Si NWs with axial p-n junctions, Si-Ge axial heterojunction NWs, and Ge/Li xGe core/shell NW. The mean inner potential (MIP) and inelastic mean free path (IMFP) of ZnO NWs have been measured to be 15.3V+/-0.2V and 55+/-3nm, respectively, for 200keV electrons. These values were then used to characterize the thickness of a ZnO nano-sheet and gave consistent values. The MIP and IMFP for ZnTe thin films were measured to be 13.7+/-0.6V and 46+/-2nm, respectively, for 200keV electrons. A thin film expected to have a p-n junction was studied, but no signal due to the junction was observed. The importance of dynamical effects was systematically studied using Bloch wave simulations. The built-in potentials in Si NWs across the doped p-n junction and the Schottky junction due to Au catalyst were measured to be 1.0+/-0.3V and 0.5+/-0.3V, respectively. Simulations indicated that the dopant concentrations were ~1019cm-3 for donors and ~1017 cm-3 for acceptors. The effects of positively charged Au catalyst, a possible n+-n --p junction transition region and possible surface charge, were also systematically studied using simulations. Si-Ge heterojunction NWs were studied. Dopant concentrations were extracted by atom probe tomography. The built-in potential offset was measured to be 0.4+/-0.2V, with the Ge side lower. Comparisons with simulations indicated that Ga present in the Si region was only partially activated. In situ EH biasing experiments combined with simulations indicated the B dopant in Ge was mostly activated but not the P dopant in Si. I-V characteristic curves were measured and explained using simulations. The Ge/LixGe core/shell structure was studied during lithiation. The MIP for LixGe decreased with time due to increased Li

  12. A new generation of effective core potentials for correlated calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Michael Chandler; Melton, Cody A.; Annaberdiyev, Abdulgani

    Here, we outline ideas on desired properties for a new generation of effective core potentials (ECPs) that will allow valence-only calculations to reach the full potential offered by recent advances in many-body wave function methods. The key improvements include consistent use of correlated methods throughout ECP constructions and improved transferability as required for an accurate description of molecular systems over a range of geometries. The guiding principle is the isospectrality of all-electron and ECP Hamiltonians for a subset of valence states. We illustrate these concepts on a few first- and second-row atoms (B, C, N, O, S), and we obtainmore » higher accuracy in transferability than previous constructions while using semi-local ECPs with a small number of parameters. In addition, the constructed ECPs enable many-body calculations of valence properties with higher (or same) accuracy than their all-electron counterparts with uncorrelated cores. This implies that the ECPs include also some of the impacts of core-core and core-valence correlations on valence properties. The results open further prospects for ECP improvements and refinements.« less

  13. A new generation of effective core potentials for correlated calculations

    DOE PAGES

    Bennett, Michael Chandler; Melton, Cody A.; Annaberdiyev, Abdulgani; ...

    2017-12-12

    Here, we outline ideas on desired properties for a new generation of effective core potentials (ECPs) that will allow valence-only calculations to reach the full potential offered by recent advances in many-body wave function methods. The key improvements include consistent use of correlated methods throughout ECP constructions and improved transferability as required for an accurate description of molecular systems over a range of geometries. The guiding principle is the isospectrality of all-electron and ECP Hamiltonians for a subset of valence states. We illustrate these concepts on a few first- and second-row atoms (B, C, N, O, S), and we obtainmore » higher accuracy in transferability than previous constructions while using semi-local ECPs with a small number of parameters. In addition, the constructed ECPs enable many-body calculations of valence properties with higher (or same) accuracy than their all-electron counterparts with uncorrelated cores. This implies that the ECPs include also some of the impacts of core-core and core-valence correlations on valence properties. The results open further prospects for ECP improvements and refinements.« less

  14. A full potential flow analysis with realistic wake influence for helicopter rotor airload prediction

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Sparks, S. Patrick

    1987-01-01

    A 3-D, quasi-steady, full potential flow solver was adapted to include realistic wake influence for the aerodynamic analysis of helicopter rotors. The method is based on a finite difference solution of the full potential equation, using an inner and outer domain procedure for the blade flowfield to accommodate wake effects. The nonlinear flow is computed in the inner domain region using a finite difference solution method. The wake is modeled by a vortex lattice using prescribed geometry techniques to allow for the inclusion of realistic rotor wakes. The key feature of the analysis is that vortices contained within the finite difference mesh (inner domain) were treated with a vortex embedding technique while the influence of the remaining portion of the wake (in the outer domain) is impressed as a boundary condition on the outer surface of the finite difference mesh. The solution procedure couples the wake influence with the inner domain solution in a consistent and efficient solution process. The method has been applied to both hover and forward flight conditions. Correlation with subsonic and transonic hover airload data is shown which demonstrates the merits of the approach.

  15. Electron temperature and de Hoffmann-Teller potential change across the Earth's bow shock: New results from ISEE 1

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Scudder, J. D.; Fitzenreiter, R. J.; Ogilvie, K. W.; Newbury, J. A.; Russell, C. T.

    We present a survey of the trends between the electron temperature increase ΔTe and the de Hoffmann-Teller frame (HTF) electrostatic potential jump ΔΦHT and their correlation with other parameters that characterize the shock transition using a new ISEE 1 database of 129 Earth bow shock crossings. A fundamental understanding of the HTF potential is central to distinguishing the reversible and irreversible changes to electron temperature across collisionless shocks. The HTF potential is estimated using three different techniques: (1) integrating the steady state, electron fluid momentum equation across the shock layer using high time resolution plasma and field data from ISEE 1, (2) using the steady state, electron fluid energy equation, and (3) using an electron polytrope approximation. We find that ΔΦHT and ΔTe are strongly and positively correlated with |Δ(mpUn2/2)|, which is in good qualitative agreement with earlier experimental surveys [Thomsen et al., 1987b; Schwartz et al., 1988] that used bow shock model normals and used the flow in the spacecraft frame. There is a strong linear organization of the ΔTe with ΔΦHT, which suggests an average effective electron polytropic index of <γe>~2. In addition, ΔTe and ΔΦHT are organized by βe, although our results may be biased by our limited sampling of shock conditions. Comparisons indicate that the differentials in the HTF potential δΦHT are proportional to the differentials in the magnetic field intensity δB across the shock, with a proportionality constant κ that is a fixed constant for a given shock crossing.

  16. High-order harmonic generation in solid slabs beyond the single-active-electron approximation

    NASA Astrophysics Data System (ADS)

    Hansen, Kenneth K.; Deffge, Tobias; Bauer, Dieter

    2017-11-01

    High-harmonic generation by a laser-driven solid slab is simulated using time-dependent density functional theory. Multiple harmonic plateaus up to very high harmonic orders are observed already at surprisingly low field strengths. The full all-electron harmonic spectra are, in general, very different from those of any individual Kohn-Sham orbital. Freezing the Kohn-Sham potential instead is found to be a good approximation for the laser intensities and harmonic orders considered. The origins of the plateau cutoffs are explained in terms of band gaps that can be reached by Kohn-Sham electrons and holes moving through the band structure.

  17. All-polymer solar cells with bulk heterojunction nanolayers of chemically doped electron-donating and electron-accepting polymers.

    PubMed

    Nam, Sungho; Shin, Minjung; Park, Soohyeong; Lee, Sooyong; Kim, Hwajeong; Kim, Youngkyoo

    2012-11-21

    We report the improved performance of all-polymer solar cells with bulk heterojunction nanolayers of an electron-donating polymer (poly(3-hexylthiophene) (P3HT)) and an electron-accepting polymer (poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT)), which were both doped with 4-ethylbenzenesulfonic acid (EBSA). To choose the doping ratio of P3HT for all-polymer solar cells, various EBSA doping ratios (0, 1, 3, 5, 10, 20 wt%) were tested by employing optical absorption spectroscopy, photoluminescence spectroscopy, photoelectron yield spectroscopy, and space-charge-limited current (SCLC) mobility measurement. The doping reaction of P3HT with EBSA was followed by observing the colour change in solutions. The final doping ratio for P3HT was chosen as 1 wt% from the best hole mobility measured in the thickness direction, while that for F8BT was fixed as 10 wt% (F8BT-EBSA). The polymer:polymer solar cells with bulk heterojunction nanolayers of P3HT-EBSA (EBSA-doped P3HT) and F8BT-EBSA (EBSA-doped F8BT) showed greatly improved short circuit current density (J(SC)) and open circuit voltage (V(OC)), compared to the undoped solar cells. As a result, the power conversion efficiency (PCE) was enhanced by ca. 300% for the 6 : 4 (P3HT-EBSA : F8BT-EBSA) composition and ca. 400% for the 8 : 2 composition. The synchrotron-radiation grazing incidence angle X-ray diffraction (GIXD) measurement revealed that the crystallinity of the doped nanolayers significantly increased by EBSA doping owing to the formation of advanced phase segregation morphology, as supported by the surface morphology change measured by atomic force microscopy. Thus the improved PCE can be attributed to the enhanced charge transport by the formation of permanent charges and better charge percolation paths by EBSA doping.

  18. Spin- and Valley-Dependent Electronic Structure in Silicene Under Periodic Potentials

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Li, Yun-Fang; Tian, Hong-Yu

    2018-03-01

    We study the spin- and valley-dependent energy band and transport property of silicene under a periodic potential, where both spin and valley degeneracies are lifted. It is found that the Dirac point, miniband, band gap, anisotropic velocity, and conductance strongly depend on the spin and valley indices. The extra Dirac points appear as the voltage potential increases, the critical values of which are different for electron with different spins and valleys. Interestingly, the velocity is greatly suppressed due to the electric field and exchange field, other than the gapless graphene. It is possible to achieve an excellent collimation effect for a specific spin near a specific valley. The spin- and valley-dependent band structure can be used to adjust the transport, and perfect transmissions are observed at Dirac points. Therefore, a remarkable spin and valley polarization is achieved which can be switched effectively by the structural parameters. Importantly, the spin and valley polarizations are greatly enhanced by the disorder of the periodic potential.

  19. Optical potential approach to the electron-atom impact ionization threshold problem

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Hahn, Y.

    1973-01-01

    The problem of the threshold law for electron-atom impact ionization is reconsidered as an extrapolation of inelastic cross sections through the ionization threshold. The cross sections are evaluated from a distorted wave matrix element, the final state of which describes the scattering from the Nth excited state of the target atom. The actual calculation is carried for the e-H system, and a model is introduced which is shown to preserve the essential properties of the problem while at the same time reducing the dimensionability of the Schrodinger equation. Nevertheless, the scattering equation is still very complex. It is dominated by the optical potential which is expanded in terms of eigen-spectrum of QHQ. It is shown by actual calculation that the lower eigenvalues of this spectrum descend below the relevant inelastic thresholds; it follows rigorously that the optical potential contains repulsive terms. Analytical solutions of the final state wave function are obtained with several approximations of the optical potential.

  20. Time-resolved generation of membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and OH states.

    PubMed

    Siletsky, Sergey A; Belevich, Ilya; Belevich, Nikolai P; Soulimane, Tewfik; Wikström, Mårten

    2017-11-01

    Two electrogenic phases with characteristic times of ~14μs and ~290μs are resolved in the kinetics of membrane potential generation coupled to single-electron reduction of the oxidized "relaxed" O state of ba 3 oxidase from T. thermophilus (O→E transition). The rapid phase reflects electron redistribution between Cu A and heme b. The slow phase includes electron redistribution from both Cu A and heme b to heme a 3 , and electrogenic proton transfer coupled to reduction of heme a 3 . The distance of proton translocation corresponds to uptake of a proton from the inner water phase into the binuclear center where heme a 3 is reduced, but there is no proton pumping and no reduction of Cu B . Single-electron reduction of the oxidized "unrelaxed" state (O H →E H transition) is accompanied by electrogenic reduction of the heme b/heme a 3 pair by Cu A in a "fast" phase (~22μs) and transfer of protons in "middle" and "slow" electrogenic phases (~0.185ms and ~0.78ms) coupled to electron redistribution from the heme b/heme a 3 pair to the Cu B site. The "middle" and "slow" electrogenic phases seem to be associated with transfer of protons to the proton-loading site (PLS) of the proton pump, but when all injected electrons reach Cu B the electronic charge appears to be compensated by back-leakage of the protons from the PLS into the binuclear site. Thus proton pumping occurs only to the extent of ~0.1 H + /e - , probably due to the formed membrane potential in the experiment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of hydrogen-like impurity and electromagnetic field on quantum transition of an electron in a Gaussian potential with QD thickness

    NASA Astrophysics Data System (ADS)

    Xin, Wei; Zhao, Yu-Wei; Sudu; Eerdunchaolu

    2018-05-01

    Considering Hydrogen-like impurity and the thickness effect, the eigenvalues and eigenfunctions of the electronic ground and first exited states in a quantum dot (QD) are derived by using the Lee-Low-Pins-Pekar variational method with the harmonic and Gaussian potentials as the transverse and longitudinal confinement potentials, respectively. A two-level system is constructed on the basis of those two states, and the electronic quantum transition affected by an electromagnetic field is discussed in terms of the two-level system theory. The results indicate the Gaussian potential reflects the real confinement potential more accurately than the parabolic one; the influence of the thickness of the QD on the electronic transition probability is interesting and significant, and cannot be ignored; the electronic transition probability Γ is influenced significantly by some physical quantities, such as the strength of the electron-phonon coupling α, the electric-field strength F, the magnetic-field cyclotron frequency ωc , the barrier height V0 and confinement range L of the asymmetric Gaussian potential, suggesting the transport and optical properties of the QD can be manipulated further though those physical quantities.

  2. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer.

    PubMed

    Babauta, Jerome T; Nguyen, Hung Duc; Harrington, Timothy D; Renslow, Ryan; Beyenal, Haluk

    2012-10-01

    The limitation of pH inside electrode-respiring biofilms is a well-known concept. However, little is known about how pH and redox potential are affected by increasing current inside biofilms respiring on electrodes. Quantifying the variations in pH and redox potential with increasing current is needed to determine how electron transfer is tied to proton transfer within the biofilm. In this research, we quantified pH and redox potential variations in electrode-respiring Geobacter sulfurreducens biofilms as a function of respiration rates, measured as current. We also characterized pH and redox potential at the counter electrode. We concluded that (1) pH continued to decrease in the biofilm through different growth phases, showing that the pH is not always a limiting factor in a biofilm and (2) decreasing pH and increasing redox potential at the biofilm electrode were associated only with the biofilm, demonstrating that G. sulfurreducens biofilms respire in a unique internal environment. Redox potential inside the biofilm was also compared to the local biofilm potential measured by a graphite microelectrode, where the tip of the microelectrode was allowed to acclimatize inside the biofilm. Copyright © 2012 Wiley Periodicals, Inc.

  3. Analysis of Martian ionosphere and solar wind electron gas data from the planar retarding potential analyzer on the Viking spacecraft

    NASA Technical Reports Server (NTRS)

    Mantas, G. P.; Hanson, W. B.

    1987-01-01

    Approximate expressions for the electron current collected by a planar retarding potential analyzer (RPA) mounted on a moving, conducting, charged spacecraft are derived. They are utilized for the analysis of electron current data obtained by the RPAs on the Viking spacecraft in the ionosphere of Mars and in the disturbed and undisturbed solar wind near this planet. It is shown that contamination currents by photoelectrons emitted from the spacecraft can be distinguished and removed from the signal. Parameters deduced from the analysis of RPA electron sampling data are the multicomponent electron temperatures, the number densities, and the spacecraft potential.

  4. Circuit for Full Charging of Series Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Ott, William E.; Saunders, David L.

    2007-01-01

    An advanced charger has been proposed for a battery that comprises several lithium-ion cells in series. The proposal is directed toward charging the cells in as nearly an optimum manner as possible despite unit-to-unit differences among the nominally identical cells. The particular aspect of the charging problem that motivated the proposal can be summarized as follows: During bulk charging (charging all the cells in series at the same current), the voltages of individual cells increase at different rates. Once one of the cells reaches full charge, bulk charging must be stopped, leaving other cells less than fully charged. To make it possible to bring all cells up to full charge once bulk charging has been completed, the proposed charger would include a number of top-off chargers one for each cell. The top-off chargers would all be powered from the same DC source, but their outputs would be DC-isolated from each other and AC-coupled to their respective cells by means of transformers, as described below. Each top-off charger would include a flyback transformer, an electronic switch, and an output diode. For suppression of undesired electromagnetic emissions, each top-off charger would also include (1) a resistor and capacitor configured to act as a snubber and (2) an inductor and capacitor configured as a filter. The magnetic characteristics of the flyback transformer and the duration of its output pulses determine the energy delivered to the lithium-ion cell. It would be necessary to equip the cell with a precise voltage monitor to determine when the cell reaches full charge. In response to a full-charge reading by this voltage monitor, the electronic switch would be held in the off state. Other cells would continue to be charged similarly by their top-off chargers until their voltage monitors read full charge.

  5. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1987-01-01

    In recent years, there was a growing need for electronics capable of sustained high-temperature operation for aerospace propulsion system instrumentation, control and condition monitoring, and integrated sensors. The desired operating temperature in some applications exceeds 600 C, which is well beyond the capability of currently available semiconductor devices. Silicon carbide displays a number of properties which make it very attractive as a semiconductor material, one of which is the ability to retain its electronic integrity at temperatures well above 600 C. An IR-100 award was presented to NASA Lewis in 1983 for developing a chemical vapor deposition process to grow single crystals of this material on standard silicon wafers. Silicon carbide devices were demonstrated above 400 C, but much work remains in the areas of crystal growth, characterization, and device fabrication before the full potential of silicon carbide can be realized. The presentation will conclude with current and future high-temperature electronics program plans. Although the development of silicon carbide falls into the category of high-risk research, the future looks promising, and the potential payoffs are tremendous.

  6. Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.

    1996-01-01

    We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.

  7. On the importance of full-dimensionality in low-energy molecular scattering calculations

    PubMed Central

    Faure, Alexandre; Jankowski, Piotr; Stoecklin, Thierry; Szalewicz, Krzysztof

    2016-01-01

    Scattering of H2 on CO is of great importance in astrophysics and also is a benchmark system for comparing theory to experiment. We present here a new 6-dimensional potential energy surface for the ground electronic state of H2-CO with an estimated uncertainty of about 0.6 cm−1 in the global minimum region, several times smaller than achieved earlier. This potential has been used in nearly exact 6-dimensional quantum scattering calculations to compute state-to-state cross-sections measured in low-energy crossed-beam experiments. Excellent agreement between theory and experiment has been achieved in all cases. We also show that the fully 6-dimensional approach is not needed with the current accuracy of experimental data since an equally good agreement with experiment was obtained using only a 4-dimensional treatment, which validates the rigid-rotor approach widely used in scattering calculations. This finding, which disagrees with some literature statements, is important since for larger systems full-dimensional scattering calculations are currently not possible. PMID:27333870

  8. Interplanetary Parameters Leading to Relativistic Electron Enhancement and Persistent Depletion Events at Geosynchronous Orbit and Potential for Prediction

    NASA Astrophysics Data System (ADS)

    Pinto, Victor A.; Kim, Hee-Jeong; Lyons, Larry R.; Bortnik, Jacob

    2018-02-01

    We have identified 61 relativistic electron enhancement events and 21 relativistic electron persistent depletion events during 1996 to 2006 from the Geostationary Operational Environmental Satellite (GOES) 8 and 10 using data from the Energetic Particle Sensor (EPS) >2 MeV fluxes. We then performed a superposed epoch time analysis of the events to find the characteristic solar wind parameters that determine the occurrence of such events, using the OMNI database. We found that there are clear differences between the enhancement events and the persistent depletion events, and we used these to establish a set of threshold values in solar wind speed, proton density and interplanetary magnetic field (IMF) Bz that can potentially be useful to predict sudden increases in flux. Persistent depletion events are characterized by a low solar wind speed, a sudden increase in proton density that remains elevated for a few days, and a northward turning of IMF Bz shortly after the depletion starts. We have also found that all relativistic electron enhancement or persistent depletion events occur when some geomagnetic disturbance is present, either a coronal mass ejection or a corotational interaction region; however, the storm index, SYM-H, does not show a strong connection with relativistic electron enhancement events or persistent depletion events. We have tested a simple threshold method for predictability of relativistic electron enhancement events using data from GOES 11 for the years 2007-2010 and found that around 90% of large increases in electron fluxes can be identified with this method.

  9. Full cycle rapid scan EPR deconvolution algorithm.

    PubMed

    Tseytlin, Mark

    2017-08-01

    period. Separation of the interfering up- and down-field scan responses remains a challenge for reaching the full potential of this new method. For this reason, only a factor of two increase in the scan rate was achieved, in comparison with the standard half-scan RS EPR algorithm. It is important for practical use that faster scans not necessarily increase the signal bandwidth because acceleration of the Larmor frequency driven by the changing magnetic field changes its sign after passing the inflection points on the scan. The half-scan and full-scan algorithms are compared using a LiNC-BuO spin probe of known line-shape, demonstrating that the new method produces stable solutions when RS signals do not completely decay by the end of each half-scan. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Atomic electron energies including relativistic effects and quantum electrodynamic corrections

    NASA Technical Reports Server (NTRS)

    Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.

    1977-01-01

    Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.

  11. Electron wavepacket dynamics in highly quasi-degenerate coupled electronic states: a theory for chemistry where the notion of adiabatic potential energy surface loses the sense.

    PubMed

    Yonehara, Takehiro; Takatsuka, Kazuo

    2012-12-14

    We develop a theory and the method of its application for chemical dynamics in systems, in which the adiabatic potential energy hyper-surfaces (PES) are densely quasi-degenerate to each other in a wide range of molecular geometry. Such adiabatic electronic states tend to couple each other through strong nonadiabatic interactions. Technically, therefore, it is often extremely hard to accurately single out the individual PES in those systems. Moreover, due to the mutual nonadiabatic couplings that may spread wide in space and due to the energy-time uncertainty relation, the notion of the isolated and well-defined potential energy surface should lose the sense. On the other hand, such dense electronic states should offer a very interesting molecular field in which chemical reactions to proceed in characteristic manners. However, to treat these systems, the standard theoretical framework of chemical reaction dynamics, which starts from the Born-Oppenheimer approximation and ends up with quantum nuclear wavepacket dynamics, is not very useful. We here explore this problem with our developed nonadiabatic electron wavepacket theory, which we call the phase-space averaging and natural branching (PSANB) method [T. Yonehara and K. Takatsuka, J. Chem. Phys. 129, 134109 (2008)], or branching-path representation, in which the packets are propagated in time along the non-Born-Oppenheimer branching paths. In this paper, after outlining the basic theory, we examine using a one-dimensional model how well the PSANB method works with such densely quasi-degenerate nonadiabatic systems. To do so, we compare the performance of PSANB with the full quantum mechanical results and those given by the fewest switches surface hopping (FSSH) method, which is known to be one of the most reliable and flexible methods to date. It turns out that the PSANB electron wavepacket approach actually yields very good results with far fewer initial sampling paths. Then we apply the electron wavepacket

  12. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: From antidot lattice to quantum dot lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib

    2013-12-04

    We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides themore » opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.« less

  13. Electronic structure calculations toward new potentially AChE inhibitors

    NASA Astrophysics Data System (ADS)

    de Paula, A. A. N.; Martins, J. B. L.; Gargano, R.; dos Santos, M. L.; Romeiro, L. A. S.

    2007-10-01

    The main purpose of this study was the use of natural non-isoprenoid phenolic lipid of cashew nut shell liquid from Anacardium occidentale as lead material for generating new potentially candidates of acetylcholinesterase inhibitors. Therefore, we studied the electronic structure of 15 molecules derivatives from the cardanol using the following groups: methyl, acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, N, N-diethylamine, piperidine, pyrrolidine, and N-benzylamine. The calculations were performed at RHF level using 6-31G, 6-31G(d), 6-31+G(d) and 6-311G(d,p) basis functions. Among the proposed compounds we found that the structures with substitution by acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine indicating possible activity.

  14. 10 CFR 960.3-2-2-1 - Evaluation of all potentially acceptable sites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Evaluation of all potentially acceptable sites. 960.3-2-2-1 Section 960.3-2-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-1 Evaluation...

  15. Determination of aerodynamic sensitivity coefficients based on the three-dimensional full potential equation

    NASA Technical Reports Server (NTRS)

    Elbanna, Hesham M.; Carlson, Leland A.

    1992-01-01

    The quasi-analytical approach is applied to the three-dimensional full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. Results are compared to those obtained by the direct finite difference approach and both methods are evaluated to determine their computational accuracy and efficiency. The quasi-analytical approach is shown to be accurate and efficient for large aerodynamic systems.

  16. Flight test of a full authority Digital Electronic Engine Control system in an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Barrett, W. J.; Rembold, J. P.; Burcham, F. W.; Myers, L.

    1981-01-01

    The Digital Electronic Engine Control (DEEC) system considered is a relatively low cost digital full authority control system containing selectively redundant components and fault detection logic with capability for accommodating faults to various levels of operational capability. The DEEC digital control system is built around a 16-bit, 1.2 microsecond cycle time, CMOS microprocessor, microcomputer system with approximately 14 K of available memory. Attention is given to the control mode, component bench testing, closed loop bench testing, a failure mode and effects analysis, sea-level engine testing, simulated altitude engine testing, flight testing, the data system, cockpit, and real time display.

  17. Full multiple-scattering calculations on silicates and oxides at the Al K edge

    NASA Astrophysics Data System (ADS)

    Cabaret, Delphine; Sainctavit, Philippe; Ildefonse, Philippe; Flank, Anne-Marie

    1996-05-01

    We present full multiple-scattering calculations at the aluminium K edge that we compare with experiments for four crystalline silicates and oxide minerals. In the different minerals aluminium atoms are either fourfold or sixfold coordinated to oxygen atoms in Al sites that are poorly symmetric. The calculations are based on different choices of one-electron potentials according to aluminium coordinations and crystallographic structures of the compounds. Hence it is possible to determine how the near-edge spectral features are a sensitive probe of the effective potential seen by the photoelectron in the molecular environment. The purpose of this work is to determine on the one hand the relation between Al K-edge spectral features and the geometrical arrangements around the aluminium sites, and on the other hand the electronic structure of the compounds.

  18. Electron energy distributions measured during electron beam/plasma interactions. [in E region

    NASA Technical Reports Server (NTRS)

    Jost, R. J.; Anderson, H. R.; Mcgarity, J. O.

    1980-01-01

    In the large vacuum facility at the NASA-Johnson Space Center an electron beam was projected 20 m parallel to B from a gun with variable accelerating potential (1.0 to 2.5 kV) to an aluminum target. The ionospheric neutral pressure and field were approximated. Beam electron energy distributions were measured directly using an electrostatic deflection analyzer and indirectly with a detector that responded to the X-rays produced by electron impact on the target. At low currents the distribution is sharply peaked at the acceleration potential. At high currents a beam plasma discharge occurs and electrons are redistributed in energy so that the former energy peak broadens to 10-15 percent FWHM with a strongly enhanced low energy tail. At the 10% of maximum point the energy spectrum ranges from less than 1/2 to 1.2 times the gun energy. The effect is qualitatively the same at all pitch angles and locations sampled.

  19. The erosive potential of soft drinks on enamel surface substrate: an in vitro scanning electron microscopy investigation.

    PubMed

    Owens, Barry M; Kitchens, Michael

    2007-11-01

    Using scanning electron and light microscopy, this study qualitatively evaluated the erosive potential of carbonated cola beverages as well as sports and high-energy drinks on enamel surface substrate. Beverages used in this study included: Coca Cola Classic, Diet Coke, Gatorade sports drink, Red Bull high-energy drink, and tap water (control). Extracted human permanent molars free of hypocalcification and/or caries were used in this study. The coronal portion of each tooth was removed and sectioned longitudinally from the buccal to the lingual surface. The crown sections were embedded in acrylic resin, leaving the enamel surfaces exposed. Following finishing and polishing of all surfaces, one side was covered with red nail varnish while the remaining side was exposed to individual beverage immersion for 14 days, 24 hours per day, at 37 degrees C. The specimens were evaluated for enamel surface changes using scanning electron and light microscopy. Enamel specimens exhibited visual surface changes following immersion in the test beverages with Red Bull and Gatorade revealing the most striking surface morphological changes. Specimens subjected to Coca Cola Classic and Diet Coke immersion also displayed irregular post-treatment surface morphology. As verified by microscopic evaluation, all test beverages displayed enamel dissolution in the following order: Red Bull>Gatorade>Coca-Cola Classic>Diet Coke.

  20. Electron inertia and quasi-neutrality in the Weibel instability

    NASA Astrophysics Data System (ADS)

    Camporeale, Enrico; Tronci, Cesare

    2017-06-01

    While electron kinetic effects are well known to be of fundamental importance in several situations, the electron mean-flow inertia is often neglected when length scales below the electron skin depth become irrelevant. This has led to the formulation of different reduced models, where electron inertia terms are discarded while retaining some or all kinetic effects. Upon considering general full-orbit particle trajectories, this paper compares the dispersion relations emerging from such models in the case of the Weibel instability. As a result, the question of how length scales below the electron skin depth can be neglected in a kinetic treatment emerges as an unsolved problem, since all current theories suffer from drawbacks of different nature. Alternatively, we discuss fully kinetic theories that remove all these drawbacks by restricting to frequencies well below the plasma frequency of both ions and electrons. By giving up on the length scale restrictions appearing in previous works, these models are obtained by assuming quasi-neutrality in the full Vlasov-Maxwell system.

  1. Resonant tunneling of 1-dimensional electrons across an array of 3-dimensionally confined potential wells

    NASA Astrophysics Data System (ADS)

    Allee, D. R.; Chou, S. Y.; Harris, J. S.; Pease, R. F. W.

    A lateral resonant tunneling field effect transistor has been fabricated with a gate electrode in the form of a railway such that the two rails form a lateral double barrier potential at the GaAs/AlGaAs interface. The ties confine the electrons in the third dimension forming an array of potential boxes or three dimensionally confined potential wells. The width of the ties and rails is 50nm; the spacings between the ties and between the two rails are 230nm and 150nm respectively. The ties are 750nm long and extend beyond the the two rails forming one dimensional wires on either side. Conductance oscillations are observed in the drain current at 4.2K as the gate voltage is scanned. Comparison with devices with a solid gate, and with a monorail gate with ties fabricated on the same wafer suggest that these conductance oscillations are electron resonant tunneling from one dimensional wires through the quasi-bound states of the three dimensionally confined potential wells. Comparison with a device with a two rail gate without ties (previously published) indicates that additional confinement due to the ties enhances the strength of the conductance oscillations.

  2. Simulations of Plasmasheet Electrons in a Model Magnetosphere with AMIE Potentials: Implications for Diffuse Aurora

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Schulz, M.; Lu, G.

    2001-12-01

    We obtain distributions of precipitating electrons by tracing drift shells of plasmasheet electrons in the limit of strong pitch angle diffusion in Dungey's model magnetosphere, which consists of a dipolar magnetic field plus a uniform southward field. Under strong pitch-angle diffusion particles drift so as to conserve an adiabatic invariant Λ equal to the enclosed phase-space volume (i.e., the cube of the particle momentum p times the occupied flux-tube volume per unit magnetic flux). In the past we applied a quiescent Stern-Volland electric-field model with a cross-tail potential drop of 25 kV and added to it a storm-associated Brice-Nishida cross-magnetospheric electric field with impulses to represent substorm effects. For the present study we use the more realistic Assimilative Model of Ionospheric Electrodynamics (AMIE). We use an analytical expansion to express the AMIE ionospheric potential as a function of latitude and magnetic local time. We map this AMIE potential to latitudes >= 50^o to magnetospheric field lines with (L \\ge 2.5) in Dungey's magnetic field model. We trace the bounce-averaged drift motion of representative plasmasheet electrons for values of \\Lambda corresponding to energies of 0.25-64 keV on field lines of equatorial radial distance r = 6 R_E (L = 5.7), which maps to \\approx 65^o$ latitude in the ionosphere. We use the simulation results to map stormtime phase space distributions taking into account loss due to precipitation. We consider 2 models of electron scattering: (1) the limit of strong scattering everywhere, and (2) an MLT-dependent scattering that is less than everywhere strong in the plasma sheet. From the phase space distributions we calculate the total precipitating electron energy flux into the ionosphere. For this study we focus on the October 19, 1998, storm. We compare qualitatively the simulated energy flux with X-ray intensity from Polar/PIXIE images during this storm.

  3. Quantum Effects of Electric Fields and Potentials on Electron Motion: An Introduction to Theoretical and Practical Aspects

    ERIC Educational Resources Information Center

    Matteucci, G.

    2007-01-01

    In the so-called electric Aharonov-Bohm effect, a quantum interference pattern shift is produced when electrons move in an electric field free region but, at the same time, in the presence of a time-dependent electric potential. Analogous fringe shifts are observed in interference experiments where electrons, travelling through an electrostatic…

  4. Pair potentials for liquid sodium near freezing from electron theory and from inversion of the measured structure factor

    NASA Astrophysics Data System (ADS)

    Perrot, F.; March, N. H.

    An effective pair potential for liquid sodium near freezing has been calculated from electron theory using the density-functional method. The main features of the potential extracted by Reatto, Levesque, and Weis [phys. Rev. A 33, 3451 (1986)] by inverting the measured structure factor of Greenfield, Wellendorf, and Wiser [Phys. Rev. A 4, 1607 (1971)] are faithfully reflected by electron theory. To obtain precise agreement between the two methods will evidently require further progress in setting up nonlocal exchange and correlation functionals.

  5. Transonic flow analysis for rotors. Part 1: Three-dimensional quasi-steady, full-potential calculation

    NASA Technical Reports Server (NTRS)

    Chang, I. C.

    1984-01-01

    A new computer program is presented for calculating the quasi-steady transonic flow past a helicopter rotor blade in hover as well as in forward flight. The program is based on the full potential equations in a blade attached frame of reference and is capable of treating a very general class of rotor blade geometries. Computed results show good agreement with available experimental data for both straight and swept tip blade geometries.

  6. Biodegradable Polymeric Materials in Degradable Electronic Devices

    PubMed Central

    2018-01-01

    Biodegradable electronics have great potential to reduce the environmental footprint of devices and enable advanced health monitoring and therapeutic technologies. Complex biodegradable electronics require biodegradable substrates, insulators, conductors, and semiconductors, all of which comprise the fundamental building blocks of devices. This review will survey recent trends in the strategies used to fabricate biodegradable forms of each of these components. Polymers that can disintegrate without full chemical breakdown (type I), as well as those that can be recycled into monomeric and oligomeric building blocks (type II), will be discussed. Type I degradation is typically achieved with engineering and material science based strategies, whereas type II degradation often requires deliberate synthetic approaches. Notably, unconventional degradable linkages capable of maintaining long-range conjugation have been relatively unexplored, yet may enable fully biodegradable conductors and semiconductors with uncompromised electrical properties. While substantial progress has been made in developing degradable device components, the electrical and mechanical properties of these materials must be improved before fully degradable complex electronics can be realized. PMID:29632879

  7. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.

    PubMed

    Qi, Jing Shan; Huang, Jian Yu; Feng, Ji; Shi, Da Ning; Li, Ju

    2011-05-24

    Graphene is an interesting electronic material. However, flat monolayer graphene does not have significant gap in the electronic density of states, required for a large on-off ratio in logic applications. We propose here a novel device architecture, composed of self-folded carbon nanotube-graphene hybrids, which have been recently observed experimentally in Joule-heated graphene. These experiments demonstrated the feasibility of cutting, folding, and welding few-layer graphene in situ to form all-carbon nanostructures with complex topologies. The electronic gap of self-folded nanotubes can be combined with the semimetallicity of graphene electrodes to form a "metal-semiconductor-metal" junction. By ab initio calculations we demonstrate large energy gaps in the transmission spectra of such junctions, which preserve the intrinsic transport characteristics of the semiconducting nanotubes despite topologically necessary disinclinations at the flat graphene-curved nanotube interface. These all-carbon devices are proposed to be constructed by contact probe cutting and high-temperature annealing and, if produced, would be chemically stable at room temperature under normal gas environments.

  8. First-Principles Study on the Structural, Electronic, Magnetic and Thermodynamic Properties of Full Heusler Alloys Co2VZ (Z = Al, Ga)

    NASA Astrophysics Data System (ADS)

    Bentouaf, Ali; Hassan, Fouad H.; Reshak, Ali H.; Aïssa, Brahim

    2017-01-01

    We report on the investigation of the structural and physical properties of the Co2VZ (Z = Al, Ga) Heusler alloys, with L21 structure, through first-principles calculations involving the full potential linearized augmented plane-wave method within density functional theory. These physical properties mainly revolve around the electronic, magnetic and thermodynamic properties. By using the Perdew-Burke-Ernzerhof generalized gradient approximation, the calculated lattice constants and spin magnetic moments were found to be in good agreement with the experimental data. Furthermore, the thermal effects using the quasi-harmonic Debye model have been investigated in depth while taking into account the lattice vibrations, the temperature and the pressure effects on the structural parameters. The heat capacities, the thermal expansion coefficient and the Debye temperatures have also been determined from the non-equilibrium Gibbs functions. An application of the atom in molecule theory is presented and discussed in order to analyze the bonding nature of the Heusler alloys. The focus is on the mixing of the metallic and covalent behavior of Co2VZ (Z = Al, Ga) Heusler alloys.

  9. Band structure of an electron in a kind of periodic potentials with singularities

    NASA Astrophysics Data System (ADS)

    Hai, Kuo; Yu, Ning; Jia, Jiangping

    2018-06-01

    Noninteracting electrons in some crystals may experience periodic potentials with singularities and the governing Schrödinger equation cannot be defined at the singular points. The band structure of a single electron in such a one-dimensional crystal has been calculated by using an equivalent integral form of the Schrödinger equation. Both the perturbed and exact solutions are constructed respectively for the cases of a general singular weak-periodic system and its an exactly solvable version, Kronig-Penney model. Any one of them leads to a special band structure of the energy-dependent parameter, which results in an effective correction to the previous energy-band structure and gives a new explanation for forming the band structure. The used method and obtained results could be a valuable aid in the study of energy bands in solid-state physics, and the new explanation may trigger investigation to different physical mechanism of electron band structures.

  10. Realizing the full potential of a RITA spectrometer

    NASA Astrophysics Data System (ADS)

    Lefmann, K.; Niedermayer, Ch.; Abrahamsen, A. B.; Bahl, C. R. H.; Christensen, N. B.; Jacobsen, H. S.; Larsen, T. L.; Häfliger, P.; Filges, U.; Rønnow, H. M.

    2006-11-01

    The “re-invented triple-axis spectrometer (RITA) concept has existed for a decade. Recent developments at RITA-2 at PSI, have revealed more of the potential of this instrument class. We demonstrate the performance of the multi-blade imaging mode, which has been applied e.g. to studies of dispersion relations and emphasize the power of this mode in combination with the low background of RITA-2. In addition, we present other ways of utilizing the position sensitive detector in a RITA instrument. Simulations of a planned upgrade of the guide-monochromator system at RITA-2 have shown a potential to increase the flux at the sample position by a factor 5.

  11. Potential-dependent recombination kinetics of photogenerated electrons in n- and p-type GaN photoelectrodes studied by time-resolved IR absorption spectroscopy.

    PubMed

    Yamakata, Akira; Yoshida, Masaaki; Kubota, Jun; Osawa, Masatoshi; Domen, Kazunari

    2011-07-27

    Recombination kinetics of photogenerated electrons in n-type and p-type GaN photoelectrodes active for H(2) and O(2) evolution, respectively, from water was examined by time-resolved IR absorption (TR-IR) spectroscopy. Illumination of a GaN film with UV pulse (355 nm and 6 ns in duration) gives transient interference spectra in both transmittance and reflection modes. Simulation shows that the interference spectra are caused by photogenerated electrons. We observed that recombination in the microsecond region is greatly affected by the applied potentials, the lifetime becoming longer at negative and positive potentials for n- and p-type GaN electrodes, respectively. There is a good correlation between potential dependence of the steady-state reaction efficiency and that of the number of surviving electrons in the millisecond region. We also performed potential jump measurement to examine the shift in Fermi level by photogenerated charge carriers. In the case of n-type GaN, the electrode potential jumps to the negative side by accumulation of electrons in the bulk. However, in the case of p-type GaN, the electrode potential first jumps to the negative side within 20 μs and gradually shifts to the positive side in a few milliseconds, while the number of charge carriers is constant at >0.2 ms. This two-step process is ascribed to electron transport from the bulk to the surface of GaN, because the electrode potential is sensitive to the number of electrons in the bulk. The results confirm that TR-IR combined with potential jump measurement provides useful information for understanding the behavior of charge carriers in photoelectrochemical systems.

  12. A full potential inverse method based on a density linearization scheme for wing design

    NASA Technical Reports Server (NTRS)

    Shankar, V.

    1982-01-01

    A mixed analysis inverse procedure based on the full potential equation in conservation form was developed to recontour a given base wing to produce density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FL030 finite volume analysis code was modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for a trailing edge closure model are proposed for further study.

  13. All-electric control of donor nuclear spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Sigillito, Anthony J.; Tyryshkin, Alexei M.; Schenkel, Thomas; Houck, Andrew A.; Lyon, Stephen A.

    2017-10-01

    The electronic and nuclear spin degrees of freedom of donor impurities in silicon form ultra-coherent two-level systems that are potentially useful for applications in quantum information and are intrinsically compatible with industrial semiconductor processing. However, because of their smaller gyromagnetic ratios, nuclear spins are more difficult to manipulate than electron spins and are often considered too slow for quantum information processing. Moreover, although alternating current magnetic fields are the most natural choice to drive spin transitions and implement quantum gates, they are difficult to confine spatially to the level of a single donor, thus requiring alternative approaches. In recent years, schemes for all-electrical control of donor spin qubits have been proposed but no experimental demonstrations have been reported yet. Here, we demonstrate a scalable all-electric method for controlling neutral 31P and 75As donor nuclear spins in silicon. Using coplanar photonic bandgap resonators, we drive Rabi oscillations on nuclear spins exclusively using electric fields by employing the donor-bound electron as a quantum transducer, much in the spirit of recent works with single-molecule magnets. The electric field confinement leads to major advantages such as low power requirements, higher qubit densities and faster gate times. Additionally, this approach makes it possible to drive nuclear spin qubits either at their resonance frequency or at its first subharmonic, thus reducing device bandwidth requirements. Double quantum transitions can be driven as well, providing easy access to the full computational manifold of our system and making it convenient to implement nuclear spin-based qudits using 75As donors.

  14. All optical experimental design for neuron excitation, inhibition, and action potential detection

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Tolstykh, Gleb; Martens, Stacey; Sedelnikova, Anna; Ibey, Bennett L.; Beier, Hope T.

    2016-03-01

    Recently, infrared light has been shown to both stimulate and inhibit excitatory cells. However, studies of infrared light for excitatory cell inhibition have been constrained by the use of invasive and cumbersome electrodes for cell excitation and action potential recording. Here, we present an all optical experimental design for neuronal excitation, inhibition, and action potential detection. Primary rat neurons were transfected with plasmids containing the light sensitive ion channel CheRiff. CheRiff has a peak excitation around 450 nm, allowing excitation of transfected neurons with pulsed blue light. Additionally, primary neurons were transfected with QuasAr2, a fast and sensitive fluorescent voltage indicator. QuasAr2 is excited with yellow or red light and therefore does not spectrally overlap CheRiff, enabling imaging and action potential activation, simultaneously. Using an optic fiber, neurons were exposed to blue light sequentially to generate controlled action potentials. A second optic fiber delivered a single pulse of 1869nm light to the neuron causing inhibition of the evoked action potentials (by the blue light). When used in concert, these optical techniques enable electrode free neuron excitation, inhibition, and action potential recording, allowing research into neuronal behaviors with high spatial fidelity.

  15. Equation of motion coupled cluster methods for electron attachment and ionization potential in polyacenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Jarrell, Mark

    2015-11-05

    Polyacenes have attracted considerable attention due to their use in organic based optoelectronic materials. Polyacenes are polycyclic aromatic hydrocarbons composed of fused benzene rings. Key to understanding and design of new functional materials is an understanding of their excited state properties starting with their electron affinity (EA) and ionization potential (IP). We have developed a highly accurate and com- putationally e*fficient EA/IP equation of motion coupled cluster singles and doubles (EA/IP-EOMCCSD) method that is capable of treating large systems and large basis set. In this study we employ the EA/IP-EOMCCSD method to calculate the electron affinity and ionization potential ofmore » naphthalene, anthracene, tetracene, pentacene, hex- acene and heptacene. We have compared our results with other previous theoretical studies and experimental data. Our EA/IP results are in very good agreement with experiment and when compared with the other theoretical investigations our results represent the most accurate calculations as compared to experiment.« less

  16. Coupled Cluster Studies of Ionization Potentials and Electron Affinities of Single-Walled Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Bo; Govind, Niranjan; Aprà, Edoardo

    In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent ofmore » nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.« less

  17. Mycobacterium tuberculosis and whole-genome sequencing: how close are we to unleashing its full potential?

    PubMed

    Satta, G; Lipman, M; Smith, G P; Arnold, C; Kon, O M; McHugh, T D

    2018-06-01

    Nearly two decades after completion of the genome sequence of Mycobacterium tuberculosis (MTB), and with the advent of next generation sequencing technologies (NGS), whole-genome sequencing (WGS) has been applied to a wide range of clinical scenarios. Starting in 2017, England is the first country in the world to pioneer its use on a national scale for the diagnosis of tuberculosis, detection of drug resistance, and typing of MTB. This narrative review critically analyses the current applications of WGS for MTB and explains how close we are to realizing its full potential as a diagnostic, epidemiologic, and research tool. We searched for reports (both original articles and reviews) published in English up to 31 May 2017, with combinations of the following keywords: whole-genome sequencing, Mycobacterium, and tuberculosis. MEDLINE, Embase, and Scopus were used as search engines. We included articles that covered different aspects of whole-genome sequencing in relation to MTB. This review focuses on three main themes: the role of WGS for the prediction of drug susceptibility, MTB outbreak investigation and genetic diversity, and research applications of NGS. Many of the original expectations have been accomplished, and we believe that with its unprecedented sensitivity and power, WGS has the potential to address many unanswered questions in the near future. However, caution is still needed when interpreting WGS data as there are some important limitations to be aware of, from correct interpretation of drug susceptibilities to the bioinformatic support needed. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste.

    PubMed

    Kang, Daniel Hsing Po; Chen, Mengjun; Ogunseitan, Oladele A

    2013-05-21

    Rechargeable lithium-ion (Li-ion) and lithium-polymer (Li-poly) batteries have recently become dominant in consumer electronic products because of advantages associated with energy density and product longevity. However, the small size of these batteries, the high rate of disposal of consumer products in which they are used, and the lack of uniform regulatory policy on their disposal means that lithium batteries may contribute substantially to environmental pollution and adverse human health impacts due to potentially toxic materials. In this research, we used standardized leaching tests, life-cycle impact assessment (LCIA), and hazard assessment models to evaluate hazardous waste classification, resource depletion potential, and toxicity potentials of lithium batteries used in cellphones. Our results demonstrate that according to U.S. federal regulations, defunct Li-ion batteries are classified hazardous due to their lead (Pb) content (average 6.29 mg/L; σ = 11.1; limit 5). However, according to California regulations, all lithium batteries tested are classified hazardous due to excessive levels of cobalt (average 163,544 mg/kg; σ = 62,897; limit 8000), copper (average 98,694 mg/kg; σ = 28,734; limit 2500), and nickel (average 9525 mg/kg; σ = 11,438; limit 2000). In some of the Li-ion batteries, the leached concentrations of chromium, lead, and thallium exceeded the California regulation limits. The environmental impact associated with resource depletion and human toxicity is mainly associated with cobalt, copper, nickel, thallium, and silver, whereas the ecotoxicity potential is primarily associated with cobalt, copper, nickel, thallium, and silver. However, the relative contribution of aluminum and lithium to human toxicity and ecotoxicity could not be estimated due to insufficient toxicity data in the models. These findings support the need for stronger government policy at the local, national, and international levels to encourage recovery, recycling, and

  19. Potential Environmental and Human Health Impacts of Rechargeable Lithium Batteries in Electronic Waste

    PubMed Central

    Kang, Daniel Hsing Po; Chen, Mengjun; Ogunseitan, Oladele A.

    2013-01-01

    Rechargeable lithium-ion (Li-ion) and lithium-polymer (Li-poly) batteries have recently become dominant in consumer electronic products because of advantages associated with energy density and product longevity. However, the small size of these batteries, the high rate of disposal of consumer products in which they are used, and the lack of uniform regulatory policy on their disposal means that lithium batteries may contribute substantially to environmental pollution and adverse human health impacts due to potentially toxic materials. In this research, we used standardized leaching tests, life-cycle impact assessment (LCIA), and hazard assessment models to evaluate hazardous waste classification, resource depletion potential, and toxicity potentials of lithium batteries used in cellphones. Our results demonstrate that according to U.S. federal regulations, defunct Li-ion batteries are classified hazardous due to their lead (Pb) content (average 6.29 mg/L; σ = 11.1; limit 5). However, according to California regulations, all lithium batteries tested are classified hazardous due to excessive levels of cobalt (average 163 544 mg/kg; σ = 62 897; limit 8000), copper (average 98 694 mg/kg; σ = 28 734; limit 2500), and nickel (average 9525 mg/kg; σ = 11 438; limit 2000). In some of the Li-ion batteries, the leached concentrations of chromium, lead, and thallium exceeded the California regulation limits. The environmental impact associated with resource depletion and human toxicity is mainly associated with cobalt, copper, nickel, thallium, and silver, whereas the ecotoxicity potential is primarily associated with cobalt, copper, nickel, thallium, and silver. However, the relative contribution of aluminum and lithium to human toxicity and ecotoxicity could not be estimated due to insufficient toxicity data in the models. These findings support the need for stronger government policy at the local, national, and international levels to encourage recovery, recycling, and

  20. Nanoscale multireference quantum chemistry: full configuration interaction on graphical processing units.

    PubMed

    Fales, B Scott; Levine, Benjamin G

    2015-10-13

    Methods based on a full configuration interaction (FCI) expansion in an active space of orbitals are widely used for modeling chemical phenomena such as bond breaking, multiply excited states, and conical intersections in small-to-medium-sized molecules, but these phenomena occur in systems of all sizes. To scale such calculations up to the nanoscale, we have developed an implementation of FCI in which electron repulsion integral transformation and several of the more expensive steps in σ vector formation are performed on graphical processing unit (GPU) hardware. When applied to a 1.7 × 1.4 × 1.4 nm silicon nanoparticle (Si72H64) described with the polarized, all-electron 6-31G** basis set, our implementation can solve for the ground state of the 16-active-electron/16-active-orbital CASCI Hamiltonian (more than 100,000,000 configurations) in 39 min on a single NVidia K40 GPU.

  1. Energetic Electron Injections Deep Into the Inner Magnetosphere: A Result of the Subauroral Polarization Stream (SAPS) Potential Drop

    NASA Astrophysics Data System (ADS)

    Lejosne, Solène; Kunduri, B. S. R.; Mozer, F. S.; Turner, D. L.

    2018-05-01

    It has been reported that the dynamics of energetic (tens to hundreds of keV) electrons and ions is inconsistent with the theoretical picture in which the large-scale electric field is a superposition of corotation and convection electric fields. Combining one year of measurements by the Super Dual Auroral Radar Network, DMSP F-18, and the Van Allen Probes, we show that subauroral polarization streams (SAPSs) are observed when energetic electrons have penetrated below L = 4. Outside the plasmasphere in the premidnight region, potential energy is subtracted from the total energy of ions and added to the total energy of electrons during SAPS onset. This potential energy is converted into radial motion as the energetic particles drift around Earth and leave the SAPS azimuthal sector. As a result, energetic electrons are injected deeper than energetic ions when SAPSs are included in the large-scale electric field picture, in line with observations.

  2. When Anatase Nanoparticles Become Bulklike: Properties of Realistic TiO2 Nanoparticles in the 1-6 nm Size Range from All Electron Relativistic Density Functional Theory Based Calculations.

    PubMed

    Lamiel-Garcia, Oriol; Ko, Kyoung Chul; Lee, Jin Yong; Bromley, Stefan T; Illas, Francesc

    2017-04-11

    All electron relativistic density functional theory (DFT) based calculations using numerical atom-centered orbitals have been carried out to explore the relative stability, atomic, and electronic structure of a series of stoichiometric TiO 2 anatase nanoparticles explicitly containing up to 1365 atoms as a function of size and morphology. The nanoparticles under scrutiny exhibit octahedral or truncated octahedral structures and span the 1-6 nm diameter size range. Initial structures were obtained using the Wulff construction, thus exhibiting the most stable (101) and (001) anatase surfaces. Final structures were obtained from geometry optimization with full relaxation of all structural parameters using both generalized gradient approximation (GGA) and hybrid density functionals. Results show that, for nanoparticles of a similar size, octahedral and truncated octahedral morphologies have comparable energetic stabilities. The electronic structure properties exhibit a clear trend converging to the bulk values as the size of the nanoparticles increases but with a marked influence of the density functional employed. Our results suggest that electronic structure properties, and hence reactivity, for the largest anatase nanoparticles considered in this study will be similar to those exhibited by even larger mesoscale particles or by bulk systems. Finally, we present compelling evidence that anatase nanoparticles become effectively bulklike when reaching a size of ∼20 nm diameter.

  3. Full-band quantum simulation of electron devices with the pseudopotential method: Theory, implementation, and applications

    NASA Astrophysics Data System (ADS)

    Pala, M. G.; Esseni, D.

    2018-03-01

    This paper presents the theory, implementation, and application of a quantum transport modeling approach based on the nonequilibrium Green's function formalism and a full-band empirical pseudopotential Hamiltonian. We here propose to employ a hybrid real-space/plane-wave basis that results in a significant reduction of the computational complexity compared to a full plane-wave basis. To this purpose, we provide a theoretical formulation in the hybrid basis of the quantum confinement, the self-energies of the leads, and the coupling between the device and the leads. After discussing the theory and the implementation of the new simulation methodology, we report results for complete, self-consistent simulations of different electron devices, including a silicon Esaki diode, a thin-body silicon field effect transistor (FET), and a germanium tunnel FET. The simulated transistors have technologically relevant geometrical features with a semiconductor film thickness of about 4 nm and a channel length ranging from 10 to 17 nm. We believe that the newly proposed formalism may find applications also in transport models based on ab initio Hamiltonians, as those employed in density functional theory methods.

  4. Photosensitized electron transport across lipid vesicle walls: Enhancement of quantum yield by ionophores and transmembrane potentials

    PubMed Central

    Laane, Colja; Ford, William E.; Otvos, John W.; Calvin, Melvin

    1981-01-01

    The photosensitized reduction of heptylviologen in the bulk aqueous phase of phosphatidylcholine vesicles containing EDTA inside and a membrane-bound tris(2,2′-bipyridine)ruthenium(2+) derivative is enhanced by a factor of 6.5 by the addition of valinomycin in the presence of K+. A 3-fold stimulation by gramicidin and carbonyl cyanide m-chlorophenylhydrazone is observed. The results suggest that, under these conditions, the rate of photoinduced electron transfer across vesicle walls in the absence of ion carriers is limited by cotransport of cations. The rate of electron transfer across vesicle walls could be influenced further by generating transmembrane potentials with K+ gradients in the presence of valinomycin. When vesicles are made with transmembrane potentials, interior more negative, the quantum yield of heptylviologen reduction is doubled, and, conversely, when vesicles are made with transmembrane potentials, interior more positive, the quantum yield is decreased and approaches the value found in the absence of valinomycin. PMID:16593002

  5. Evaluation of synergistic antioxidant potential of complex mixtures using oxygen radical absorbance capacity (ORAC) and electron paramagnetic resonance (EPR).

    PubMed

    Parker, Tory L; Miller, Samantha A; Myers, Lauren E; Miguez, Fernando E; Engeseth, Nicki J

    2010-01-13

    Previous research has demonstrated that certain combinations of compounds result in a decrease in toxic or pro-oxidative effects, previously noted when compounds were administered singly. Thus, there is a need to study many complex interactions further. Two in vitro techniques [electron paramagnetic resonance (EPR) and oxygen radical absorbance capacity (ORAC) assays] were used in this study to assess pro- and antioxidant capacity and synergistic potential of various compounds. Rutin, p-coumaric acid, abscisic acid, ascorbic acid, and a sugar solution were evaluated individually at various concentrations and in all 26 possible combinations at concentrations found in certain foods (honey or papaya), both before and after simulated digestion. EPR results indicated sugar-containing combinations provided significantly higher antioxidant capacity; those combinations containing sugars and ascorbic acid demonstrated synergistic potential. The ORAC assay suggested additive effects, with some combinations having synergistic potential, although fewer combinations were significantly synergistic after digestion. Finally, ascorbic acid, caffeic acid, quercetin, and urate were evaluated at serum-achievable levels. EPR analysis did not demonstrate additive or synergistic potential, although ORAC analysis did, principally in combinations containing ascorbic acid.

  6. Bottom-up, Robust Graphene Ribbon Electronics in All-Carbon Molecular Junctions.

    PubMed

    Supur, Mustafa; Van Dyck, Colin; Bergren, Adam J; McCreery, Richard L

    2018-02-21

    Large-area molecular electronic junctions consisting of 5-carbon wide graphene ribbons (GR) with lengths of 2-12 nm between carbon electrodes were fabricated by electrochemical reduction of diazotized 1,8-diaminonaphthalene. Their conductance greatly exceeds that observed for other molecular junctions of similar thicknesses, by a factor of >1 × 10 4 compared to polyphenylenes and >1 × 10 7 compared to alkane chains. The remarkable increase of conductance of the GR nanolayer results from (i) uninterrupted planarity of fused-arene structure affording extensive π-electron delocalization and (ii) enhanced electronic coupling of molecular layer with the carbon bottom contact by two-point covalent bonding, in agreement with DFT-based simulations.

  7. In silico study toward the identification of new and safe potential inhibitors of photosynthetic electron transport.

    PubMed

    Ribeiro, Taisa Pereira Piacentini; Manarin, Flávia Giovana; Borges de Melo, Eduardo

    2018-05-30

    To address the rising global demand for food, it is necessary to search for new herbicides that can control resistant weeds. We performed a 2D-quantitative structure-activity relationship (QSAR) study to predict compounds with photosynthesis-inhibitory activity. A data set of 44 compounds (quinolines and naphthalenes), which are described as photosynthetic electron transport (PET) inhibitors, was used. The obtained model was approved in internal and external validation tests. 2D Similarity-based virtual screening was performed and 64 compounds were selected from the ZINC database. By using the VEGA QSAR software, 48 compounds were shown to have potential toxic effects (mutagenicity and carcinogenicity). Therefore, the model was also tested using a set of 16 molecules obtained by a similarity search of the ZINC database. Six compounds showed good predicted inhibition of PET. The obtained model shows potential utility in the design of new PET inhibitors, and the hit compounds found by virtual screening are novel bicyclic scaffolds of this class. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Ab initio effective core potentials including relativistic effects and their application to the electronic structure calculations of heavy atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.S.

    1977-11-01

    The effects of the 4f shell of electrons and the relativity of valence electrons are compared. The effect of 4f shell (lanthanide contraction) is estimated from the numerical Hartree-Fock (HF) calculations of pseudo-atoms corresponding to Hf, Re, Au, Hg, Tl, Pb and Bi without 4f electrons and with atomic numbers reduced by 14. The relativistic effect estimated from the numerical Dirac-Hartree-Fock (DHF) calculations of those atoms is comparable in the magnitude with that of the 4f shell of electrons. Both are larger for 6s than for 5d or 6p electrons. The various relativistic effects on valence electrons are discussed inmore » detail to determine the proper level of the approximation for the valence electron calculations of systems with heavy elements. An effective core potential system has been developed for heavy atoms in which relativistic effects are included in the effective potentials.« less

  9. Theoretical determination of the ionization potential and the electron affinity of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Susumu

    2017-11-01

    Ionization potential and electron affinity of organic semicondutors are important quantities, which are relevant to charge injection barriers. The electrostatic and dynamical contributions to the polarization energies for the injected charges in pentacene polymorphs were investigated. While the dynamical polarization induced narrowing of the energy gap, the electrostatic effect shifted up or down the frontier energy levels, which is sensitive to the molecular orientation at the surface.

  10. On the predictive potential of Pc5 ULF waves to forecast relativistic electrons based on their relationships over two solar cycles

    NASA Astrophysics Data System (ADS)

    Lam, Hing-Lan

    2017-01-01

    A statistical study of relativistic electron (>2 MeV) fluence derived from geosynchronous satellites and Pc5 ultralow frequency (ULF) wave power computed from a ground magnetic observatory data located in Canada's auroral zone has been carried out. The ground observations were made near the foot points of field lines passing through the GOESs from 1987 to 2009 (cycles 22 and 23). We determine statistical relationships between the two quantities for different phases of a solar cycle and validate these relationships in two different cycles. There is a positive linear relationship between log fluence and log Pc5 power for all solar phases; however, the power law indices vary for different phases of the cycle. High index values existed during the descending phase. The Pearson's cross correlation between electron fluence and Pc5 power indicates fluence enhancement 2-3 days after strong Pc5 wave activity for all solar phases. The lag between the two quantities is shorter for extremely high fluence (due to high Pc5 power), which tends to occur during the declining phases of both cycles. Most occurrences of extremely low fluence were observed during the extended solar minimum of cycle 23. The precursory attribute of Pc5 power with respect to fluence and the enhancement of fluence due to rising Pc5 power both support the notion of an electron acceleration mechanism by Pc5 ULF waves. This precursor behavior establishes the potential of using Pc5 power to predict relativistic electron fluence.

  11. Transonic flow analysis for rotors. Part 2: Three-dimensional, unsteady, full-potential calculation

    NASA Technical Reports Server (NTRS)

    Chang, I. C.

    1985-01-01

    A numerical method is presented for calculating the three-dimensional unsteady, transonic flow past a helicopter rotor blade of arbitrary geometry. The method solves the full-potential equations in a blade-fixed frame of reference by a time-marching implicit scheme. At the far-field, a set of first-order radiation conditions is imposed, thus minimizing the reflection of outgoing wavelets from computational boundaries. Computed results are presented to highlight radial flow effects in three dimensions, to compare surface pressure distributions to quasi-steady predictions, and to predict the flow field on a swept-tip blade. The results agree well with experimental data for both straight- and swept-tip blade geometries.

  12. Simultaneous total electron content and all-sky camera measurements of an auroral arc

    NASA Astrophysics Data System (ADS)

    Kintner, P. M.; Kil, H.; Deehr, C.; Schuck, P.

    2002-07-01

    We present an example of Global Positioning System (GPS) derived total electron content (TEC) and all-sky camera (ASC) images that show increases of TEC by ~10 × 1016 electrons m-2 (10 TEC units) occurring simultaneously with auroral light in ASC images. The TEC example appears to be an E region density enhancement produced by two discrete auroral arcs occurring in the late morning auroral oval at 1000 LT. This suggests that GPS signal TEC measurements can be used to detect individual auroral arcs and that individual discrete auroral arcs are responsible for some high-latitude phase scintillations. The specific auroral feature detected was a poleward moving auroral form believed to occur in the polar cap where the ionosphere is convecting antisunward. The magnitude of the rate of change of TEC (dTEC/dt) is comparable to that previously reported. However, the timescales associated with the event, the order of 1 min, suggest that the data sampling technique commonly used by chain GPS TEC receivers (averaging and time decimation) will undersample E region TEC perturbations produced by active auroral displays. The localized nature of this example implies that L1 ranging errors of at least 1.6 m will be introduced by auroral arcs into systems relying on differential GPS for navigation or augmentation. Although the TEC and auroral arcs presented herein occurred in the late morning auroral oval, we expect that the effects of discrete auroral arcs on GPS TEC and subsequent ranging errors should occur at all local times. Furthermore, GPS receivers can be used to detect individual discrete arcs.

  13. Electron-beam-induced-current and active secondary-electron voltage-contrast with aberration-corrected electron probes

    DOE PAGES

    Han, Myung-Geun; Garlow, Joseph A.; Marshall, Matthew S. J.; ...

    2017-03-23

    The ability to map out electrostatic potentials in materials is critical for the development and the design of nanoscale electronic and spintronic devices in modern industry. Electron holography has been an important tool for revealing electric and magnetic field distributions in microelectronics and magnetic-based memory devices, however, its utility is hindered by several practical constraints, such as charging artifacts and limitations in sensitivity and in field of view. In this article, we report electron-beam-induced-current (EBIC) and secondary-electron voltage-contrast (SE-VC) with an aberration-corrected electron probe in a transmission electron microscope (TEM), as complementary techniques to electron holography, to measure electric fieldsmore » and surface potentials, respectively. These two techniques were applied to ferroelectric thin films, multiferroic nanowires, and single crystals. Electrostatic potential maps obtained by off-axis electron holography were compared with EBIC and SE-VC to show that these techniques can be used as a complementary approach to validate quantitative results obtained from electron holography analysis.« less

  14. New modes of electron microscopy for materials science enabled by fast direct electron detectors

    NASA Astrophysics Data System (ADS)

    Minor, Andrew

    There is an ongoing revolution in the development of electron detector technology that has enabled modes of electron microscopy imaging that had only before been theorized. The age of electron microscopy as a tool for imaging is quickly giving way to a new frontier of multidimensional datasets to be mined. These improvements in electron detection have enabled cryo-electron microscopy to resolve the three-dimensional structures of non-crystalized proteins, revolutionizing structural biology. In the physical sciences direct electron detectors has enabled four-dimensional reciprocal space maps of materials at atomic resolution, providing all the structural information about nanoscale materials in one experiment. This talk will highlight the impact of direct electron detectors for materials science, including a new method of scanning nanobeam diffraction. With faster detectors we can take a series of 2D diffraction patterns at each position in a 2D STEM raster scan resulting in a four-dimensional data set. For thin film analysis, direct electron detectors hold the potential to enable strain, polarization, composition and electrical field mapping over relatively large fields of view, all from a single experiment.

  15. Nano-Electronics and Bio-Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Viewgraph presentation on Nano-Electronics and Bio-Electronics is discussed. Topics discussed include: NASA Ames nanotechnology program, Potential Carbon Nanotube (CNT) application, CNT synthesis,Computational Nanotechnology, and protein nanotubes.

  16. A consistent spatial differencing scheme for the transonic full-potential equation in three dimensions

    NASA Technical Reports Server (NTRS)

    Thomas, S. D.; Holst, T. L.

    1985-01-01

    A full-potential steady transonic wing flow solver has been modified so that freestream density and residual are captured in regions of constant velocity. This numerically precise freestream consistency is obtained by slightly altering the differencing scheme without affecting the implicit solution algorithm. The changes chiefly affect the fifteen metrics per grid point, which are computed once and stored. With this new method, the outer boundary condition is captured accurately, and the smoothness of the solution is especially improved near regions of grid discontinuity.

  17. Analytic Empirical Potentials for all Stable Isotopologues of the Ground X(^1Σ^+) State of ZnO from Purely Rotational Measurements

    NASA Astrophysics Data System (ADS)

    Dattani, Nikesh S.; Zack, Lindsay; Sun, Ming; Johnson, Erin R.; Le Roy, Robert; Ziurys, Lucy

    2014-06-01

    We report eight new ultra-high precision (±5 kHz) measurements of purely rotational N(1←0) transitions in several vibrational states of all stable isotopologues of the ground X(11Σ+) -state of ZnO. Combined with previous high-resolution (±50 kHz) measurements of purely rotational transitions between higher rotational states for the same system, we are able to build analytic potentials for 64Zn16O, 66Zn16O, 67Zn16O, 68Zn16O, and 70Zn16O, that are in full agreement with all known spectroscopic measurements of the system. Despite there being absolutely no vibrational information, our empirical potentials are able to determine the size of the vibrational spacings and the bond lengths, each with a precision of more than two orders of magnitude greater than the most precise empirical values previously known. We then use the XDM method to calculate values for the C6, C8, and C10 long-range constants for this molecule, and use these to accurately anchor the long-range regions of the potentials, where no measurements have yet been performed. In the region lying between the short-range measurements and the long-range theory on which our potentials are based, our final analytic global potentials are in very good agreement with state of the art ab initio potentials. L. N. Zack, R. L. Pulliam, L. M. Ziurys, J. Mol. Spec., 256, 186-191 (2009).

  18. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gastegger, Michael; Kauffmann, Clemens; Marquetand, Philipp, E-mail: philipp.marquetand@univie.ac.at

    Many approaches, which have been developed to express the potential energy of large systems, exploit the locality of the atomic interactions. A prominent example is the fragmentation methods in which the quantum chemical calculations are carried out for overlapping small fragments of a given molecule that are then combined in a second step to yield the system’s total energy. Here we compare the accuracy of the systematic molecular fragmentation approach with the performance of high-dimensional neural network (HDNN) potentials introduced by Behler and Parrinello. HDNN potentials are similar in spirit to the fragmentation approach in that the total energy ismore » constructed as a sum of environment-dependent atomic energies, which are derived indirectly from electronic structure calculations. As a benchmark set, we use all-trans alkanes containing up to eleven carbon atoms at the coupled cluster level of theory. These molecules have been chosen because they allow to extrapolate reliable reference energies for very long chains, enabling an assessment of the energies obtained by both methods for alkanes including up to 10 000 carbon atoms. We find that both methods predict high-quality energies with the HDNN potentials yielding smaller errors with respect to the coupled cluster reference.« less

  19. Neutral beamline with ion energy recovery based on magnetic blocking of electrons

    DOEpatents

    Stirling, William L.

    1982-01-01

    A neutral beamline generator with energy recovery of the full-energy ion ponent of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the electrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.

  20. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    USDA-ARS?s Scientific Manuscript database

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  1. Hydrodynamic parameters estimation from self-potential data in a controlled full scale site

    NASA Astrophysics Data System (ADS)

    Chidichimo, Francesco; De Biase, Michele; Rizzo, Enzo; Masi, Salvatore; Straface, Salvatore

    2015-03-01

    A multi-physical approach developed for the hydrodynamic characterization of porous media using hydrogeophysical information is presented. Several pumping tests were performed in the Hydrogeosite Laboratory, a controlled full-scale site designed and constructed at the CNR-IMAA (Consiglio Nazionale delle Ricerche - Istituto di Metodologia per l'Analisi Ambientale), in Marsico Nuovo (Basilicata Region, Southern Italy), in order to obtain an intermediate stage between laboratory experiments and field survey. The facility consists of a pool, used to study water infiltration processes, to simulate the space and time dynamics of subsurface contamination phenomena, to improve and to find new relationship between geophysical and hydrogeological parameters, to test and to calibrate new geophysical techniques and instruments. Therefore, the Hydrogeosite Laboratory has the advantage of carrying out controlled experiments, like in a flow cell or sandbox, but at field comparable scale. The data collected during the experiments have been used to estimate the saturated hydraulic conductivity ks [ms-1] using a coupled inversion model working in transient conditions, made up of the modified Richards equation describing the water flow in a variably saturated porous medium and the Poisson equation providing the self-potential ϕ [V], which naturally occurs at points of the soil surface owing to the presence of an electric field produced by the motion of underground electrolytic fluids through porous systems. The result obtained by this multi-physical numerical approach, which removes all the approximations adopted in previous works, makes a useful instrument for real heterogeneous aquifer characterization and for predictive analysis of its behavior.

  2. pH-dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts.

    PubMed

    Horvath, Samantha; Fernandez, Laura E; Appel, Aaron M; Hammes-Schiffer, Sharon

    2013-04-01

    The nickel-based P2(Ph)N2(Bn) electrocatalysts comprised of a nickel atom and two 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane ligands catalyze H2 production in acetonitrile. Recent electrochemical experiments revealed a linear dependence of the Ni(II/I) reduction potential on pH with a slope of 57 mV/pH unit, implicating a proton-coupled electron transfer (PCET) process with the same number of electrons and protons transferred. The combined theoretical and experimental studies herein provide an explanation for this pH dependence in the context of the overall proposed catalytic mechanism. In the proposed mechanisms, the catalytic cycle begins with a series of intermolecular proton transfers from an acid to the pendant amine ligand and electrochemical electron transfers to the nickel center to produce the doubly protonated Ni(0) species, a precursor to H2 evolution. The calculated Ni(II/I) reduction potentials of the doubly protonated species are in excellent agreement with the experimentally observed reduction potential in the presence of strong acid, suggesting that the catalytically active species leading to the peak observed in these cyclic voltammetry (CV) experiments is doubly protonated. The Ni(I/0) reduction potential was found to be slightly more positive than the Ni(II/I) reduction potential, indicating that the Ni(I/0) reduction occurs spontaneously after the Ni(II/I) reduction, as implied by the experimental observation of a single CV peak. These results suggest that the PCET process observed in the CV experiments is a two-electron/two-proton process corresponding to an initial double protonation followed by two reductions. On the basis of the experimental and theoretical data, the complete thermodynamic scheme and the Pourbaix diagram were generated for this catalyst. The Pourbaix diagram, which identifies the most thermodynamically stable species at each reduction potential and pH value, illustrates that this catalyst undergoes

  3. Cardiac action potential repolarization revisited: early repolarization shows all-or-none behaviour.

    PubMed

    Trenor, Beatriz; Cardona, Karen; Saiz, Javier; Noble, Denis; Giles, Wayne

    2017-11-01

    In healthy mammalian hearts the action potential (AP) waveform initiates and modulates each contraction, or heartbeat. As a result, AP height and duration are key physiological variables. In addition, rate-dependent changes in ventricular AP duration (APD), and variations in APD at a fixed heart rate are both reliable biomarkers of electrophysiological stability. Present guidelines for the likelihood that candidate drugs will increase arrhythmias rely on small changes in APD and Q-T intervals as criteria for safety pharmacology decisions. However, both of these measurements correspond to the final repolarization of the AP. Emerging clinical evidence draws attention to the early repolarization phase of the action potential (and the J-wave of the ECG) as an additional important biomarker for arrhythmogenesis. Here we provide a mechanistic background to this early repolarization syndrome by summarizing the evidence that both the initial depolarization and repolarization phases of the cardiac action potential can exhibit distinct time- and voltage-dependent thresholds, and also demonstrating that both can show regenerative all-or-none behaviour. An important consequence of this is that not all of the dynamics of action potential repolarization in human ventricle can be captured by data from single myocytes when these results are expressed as 'repolarization reserve'. For example, the complex pattern of cell-to-cell current flow that is responsible for AP conduction (propagation) within the mammalian myocardium can change APD and the Q-T interval of the electrocardiogram alter APD stability, and modulate responsiveness to pharmacological agents (such as Class III anti-arrhythmic drugs). © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  4. The topology of the Coulomb potential density. A comparison with the electron density, the virial energy density, and the Ehrenfest force density.

    PubMed

    Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan

    2017-12-15

    The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Full Scale Software Support on Mobile Lightweight Devices by Utilization of All Types of Wireless Technologies

    NASA Astrophysics Data System (ADS)

    Krejcar, Ondrej

    New kind of mobile lightweight devices can run full scale applications with same comfort as on desktop devices only with several limitations. One of them is insufficient transfer speed on wireless connectivity. Main area of interest is in a model of a radio-frequency based system enhancement for locating and tracking users of a mobile information system. The experimental framework prototype uses a wireless network infrastructure to let a mobile lightweight device determine its indoor or outdoor position. User location is used for data prebuffering and pushing information from server to user’s PDA. All server data is saved as artifacts along with its position information in building or larger area environment. The accessing of prebuffered data on mobile lightweight device can highly improve response time needed to view large multimedia data. This fact can help with design of new full scale applications for mobile lightweight devices.

  6. Aligning Solution-Derived Carbon Nanotube Film with Full Surface Coverage for High-Performance Electronics Applications.

    PubMed

    Zhu, Ma-Guang; Si, Jia; Zhang, Zhiyong; Peng, Lian-Mao

    2018-06-01

    The main challenge for application of solution-derived carbon nanotubes (CNTs) in high performance field-effect transistor (FET) is how to align CNTs into an array with high density and full surface coverage. A directional shrinking transfer method is developed to realize high density aligned array based on randomly orientated CNT network film. Through transferring a solution-derived CNT network film onto a stretched retractable film followed by a shrinking process, alignment degree and density of CNT film increase with the shrinking multiple. The quadruply shrunk CNT films present well alignment, which is identified by the polarized Raman spectroscopy and electrical transport measurements. Based on the high quality and high density aligned CNT array, the fabricated FETs with channel length of 300 nm present ultrahigh performance including on-state current I on of 290 µA µm -1 (V ds = -1.5 V and V gs = -2 V) and peak transconductance g m of 150 µS µm -1 , which are, respectively, among the highest corresponding values in the reported CNT array FETs. High quality and high semiconducting purity CNT arrays with high density and full coverage obtained through this method promote the development of high performance CNT-based electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Chemical wiring and soldering toward all-molecule electronic circuitry.

    PubMed

    Okawa, Yuji; Mandal, Swapan K; Hu, Chunping; Tateyama, Yoshitaka; Goedecker, Stefan; Tsukamoto, Shigeru; Hasegawa, Tsuyoshi; Gimzewski, James K; Aono, Masakazu

    2011-06-01

    Key to single-molecule electronics is connecting functional molecules to each other using conductive nanowires. This involves two issues: how to create conductive nanowires at designated positions, and how to ensure chemical bonding between the nanowires and functional molecules. Here, we present a novel method that solves both issues. Relevant functional molecules are placed on a self-assembled monolayer of diacetylene compound. A probe tip of a scanning tunneling microscope is then positioned on the molecular row of the diacetylene compound to which the functional molecule is adsorbed, and a conductive polydiacetylene nanowire is fabricated by initiating chain polymerization by stimulation with the tip. Since the front edge of chain polymerization necessarily has a reactive chemical species, the created polymer nanowire forms chemical bonding with an encountered molecular element. We name this spontaneous reaction "chemical soldering". First-principles theoretical calculations are used to investigate the structures and electronic properties of the connection. We demonstrate that two conductive polymer nanowires are connected to a single phthalocyanine molecule. A resonant tunneling diode formed by this method is discussed. © 2011 American Chemical Society

  8. High-performance all-printed amorphous oxide FETs and logics with electronically compatible electrode/ channel interface.

    PubMed

    Sharma, Bhupendra Kumar; Stoesser, Anna; Mondal, Sandeep Kumar; Garlapati, Suresh K; Fawey, Mohammed H; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2018-06-12

    Oxide semiconductors typically show superior device performance compared to amorphous silicon or organic counterparts, especially, when they are physical vapor deposited. However, it is not easy to reproduce identical device characteristics when the oxide field-effect transistors (FETs) are solution-processed/ printed; the level of complexity further intensifies with the need to print the passive elements as well. Here, we developed a protocol for designing the most electronically compatible electrode/ channel interface based on the judicious material selection. Exploiting this newly developed fabrication schemes, we are now able to demonstrate high-performance all-printed FETs and logic circuits using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor, indium tin oxide (ITO) as electrodes and composite solid polymer electrolyte as the gate insulator. Interestingly, all-printed FETs demonstrate an optimal electrical performance in terms of threshold voltages and device mobility and may very well be compared with devices fabricated using sputtered ITO electrodes. This observation originates from the selection of electrode/ channel materials from the same transparent semiconductor oxide family, resulting in the formation of In-Sn-Zn-O (ITZO) based diffused a-IGZO/ ITO interface that controls doping density while ensuring high electrical performance. Compressive spectroscopic studies reveal that Sn doping mediated excellent band alignment of IGZO with ITO electrodes is responsible for the excellent device performance observed. All-printed n-MOS based logic circuits have also been demonstrated towards new-generation portable electronics.

  9. Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12

    NASA Astrophysics Data System (ADS)

    Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying

    2016-08-01

    Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and -0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration.

  10. Accurate and Efficient Approximation to the Optimized Effective Potential for Exchange

    NASA Astrophysics Data System (ADS)

    Ryabinkin, Ilya G.; Kananenka, Alexei A.; Staroverov, Viktor N.

    2013-07-01

    We devise an efficient practical method for computing the Kohn-Sham exchange-correlation potential corresponding to a Hartree-Fock electron density. This potential is almost indistinguishable from the exact-exchange optimized effective potential (OEP) and, when used as an approximation to the OEP, is vastly better than all existing models. Using our method one can obtain unambiguous, nearly exact OEPs for any reasonable finite one-electron basis set at the same low cost as the Krieger-Li-Iafrate and Becke-Johnson potentials. For all practical purposes, this solves the long-standing problem of black-box construction of OEPs in exact-exchange calculations.

  11. The Potential-Well Distortion Effect and Coherent Instabilities of Electron Bunches in Storage Rings

    NASA Astrophysics Data System (ADS)

    Korchuganov, V. N.; Smygacheva, A. S.; Fomin, E. A.

    2018-05-01

    The effect of electromagnetic interaction between electron bunches and the vacuum chamber of a storage ring on the longitudinal motion of bunches is studied. Specifically, the potential-well distortion effect and the so-called coherent instabilities of coupled bunches are considered. An approximate analytical solution for the frequencies of incoherent oscillations of bunches distributed arbitrarily within the ring is obtained for a distorted potential well. A new approach to determining frequencies of coherent oscillations and an approximate analytical relation for estimating the stability of a system of bunches as a function of their distribution in the accelerator orbit are presented.

  12. F-15 digital electronic engine control system description

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    A digital electronic engine control (DEEC) was developed for use on the F100-PW-100 turbofan engine. This control system has full authority control, capable of moving all the controlled variables over their full ranges. The digital computational electronics and fault detection and accomodation logic maintains safe engine operation. A hydromechanical backup control (BUC) is an integral part of the fuel metering unit and provides gas generator control at a reduced performance level in the event of an electronics failure. The DEEC's features, hardware, and major logic diagrams are described.

  13. Optimising electron microscopy experiment through electron optics simulation.

    PubMed

    Kubo, Y; Gatel, C; Snoeck, E; Houdellier, F

    2017-04-01

    We developed a new type of electron trajectories simulation inside a complete model of a modern transmission electron microscope (TEM). Our model incorporates the precise and real design of each element constituting a TEM, i.e. the field emission (FE) cathode, the extraction optic and acceleration stages of a 300kV cold field emission gun, the illumination lenses, the objective lens, the intermediate and projection lenses. Full trajectories can be computed using magnetically saturated or non-saturated round lenses, magnetic deflectors and even non-cylindrical symmetry elements like electrostatic biprism. This multi-scale model gathers nanometer size components (FE tip) with parts of meter length (illumination and projection systems). We demonstrate that non-trivial TEM experiments requiring specific and complex optical configurations can be simulated and optimized prior to any experiment using such model. We show that all the currents set in all optical elements of the simulated column can be implemented in the real column (I2TEM in CEMES) and used as starting alignment for the requested experiment. We argue that the combination of such complete electron trajectory simulations in the whole TEM column with automatic optimization of the microscope parameters for optimal experimental data (images, diffraction, spectra) allows drastically simplifying the implementation of complex experiments in TEM and will facilitate the development of advanced use of the electron microscope in the near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. First-principles study of electronic structure and Fermi surface in semimetallic YAs

    DOE PAGES

    Swatek, Przemys?aw Wojciech

    2018-03-23

    In the course of searching for new systems, which exhibit nonsaturating and extremely large positive magnetoresistance, electronic structure, Fermi surface, and de Haas-van Alphen characteristics of the semimetallic YAs compound were studied using the all-electron full-potential linearized augmented-plane wave (FP–LAPW) approach in the framework of the generalized gradient approximation (GGA). In the scalar-relativistic calculation, the cubic symmetry splits fivefold degenerate Y- d orbital into low-energy threefold-degenerate and twofold degenerate doublet states at point around the Fermi energy. Furthermore one of them, together with the threefold degenerate character of As-p orbital, render the YAs semimetal with a topologically trivial band ordermore » and fairly low density of states at the Fermi level. Including spin–orbit (SO) coupling into the calculation leads to pronounced splitting of the state and shifting the bands in the energy scale. Consequently, the determined four different 3-dimensional Fermi surface sheets of YAs consists of three concentric hole-like bands at and one ellipsoidal electron-like sheet centred at the X points. In full accordance with the previous first-principles calculations for isostructural YSb and YBi, the calculated Fermi surface of YAs originates from fairly compensated multi-band electronic structures.« less

  15. First-principles study of electronic structure and Fermi surface in semimetallic YAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swatek, Przemys?aw Wojciech

    In the course of searching for new systems, which exhibit nonsaturating and extremely large positive magnetoresistance, electronic structure, Fermi surface, and de Haas-van Alphen characteristics of the semimetallic YAs compound were studied using the all-electron full-potential linearized augmented-plane wave (FP–LAPW) approach in the framework of the generalized gradient approximation (GGA). In the scalar-relativistic calculation, the cubic symmetry splits fivefold degenerate Y- d orbital into low-energy threefold-degenerate and twofold degenerate doublet states at point around the Fermi energy. Furthermore one of them, together with the threefold degenerate character of As-p orbital, render the YAs semimetal with a topologically trivial band ordermore » and fairly low density of states at the Fermi level. Including spin–orbit (SO) coupling into the calculation leads to pronounced splitting of the state and shifting the bands in the energy scale. Consequently, the determined four different 3-dimensional Fermi surface sheets of YAs consists of three concentric hole-like bands at and one ellipsoidal electron-like sheet centred at the X points. In full accordance with the previous first-principles calculations for isostructural YSb and YBi, the calculated Fermi surface of YAs originates from fairly compensated multi-band electronic structures.« less

  16. Examining the Full Potential of the Extended School

    ERIC Educational Resources Information Center

    Orchard, Linda

    2007-01-01

    This paper describes a project aimed at helping children and their families achieve their potential. It is based in an area of high social disadvantage. The authors explain how parenting classes held at a community college (a comprehensive school with provision for adult education), have led to the development of a suite of courses leading to…

  17. All that glisters is not gold: a comparison of electronic monitoring versus filled prescriptions--an observational study.

    PubMed

    Wetzels, Gwenn E C; Nelemans, Patricia J; Schouten, Jan S A G; van Wijk, Boris L G; Prins, Martin H

    2006-02-10

    Poor compliance with antihypertensive medication is assumed to be an important reason for unsatisfactory control of blood pressure. Poor compliance is difficult to detect. Each method of measuring compliance has its own strengths and weaknesses. The aim of the present study was to compare patient compliance with antihypertensive drugs as measured by two methods, electronic monitoring versus refill compliance. 161 patients with a diagnosis of hypertension for at least a year prior to inclusion, and inadequate blood pressure control (systolic blood pressure > or = 160 mmHg and/or diastolic blood pressure > or = 95 mmHg) despite the use of antihypertensive drugs, were included. Patients' pharmacy records from 12 months prior to inclusion were obtained. Refill compliance was calculated as the number of days for which the pills were prescribed divided by the total number of days in this period. After inclusion compliance was measured with an electronic monitor that records time and date of each opening of the pillbox. Agreement between both compliance measures was calculated using Spearman's correlation coefficient and Cohen's kappa coefficient. There was very little agreement between the two measures. Whereas refill compliance showed a large range of values, compliance as measured by electronic monitoring was high in almost all patients with estimates between 90% and 100%. Cohen's kappa coefficient was 0.005. While electronic monitoring is often considered to be the gold standard for compliance measurements, our results suggest that a short-term electronic monitoring period with the patient being aware of electronic monitoring is probably insufficient to obtain valid compliance data. We conclude that there is a strong need for more studies that explore the effect of electronic monitoring on patient's compliance.

  18. Cavity Born-Oppenheimer Approximation for Correlated Electron-Nuclear-Photon Systems.

    PubMed

    Flick, Johannes; Appel, Heiko; Ruggenthaler, Michael; Rubio, Angel

    2017-04-11

    In this work, we illustrate the recently introduced concept of the cavity Born-Oppenheimer approximation [ Flick et al. PNAS 2017 , 10.1073/pnas.1615509114 ] for correlated electron-nuclear-photon problems in detail. We demonstrate how an expansion in terms of conditional electronic and photon-nuclear wave functions accurately describes eigenstates of strongly correlated light-matter systems. For a GaAs quantum ring model in resonance with a photon mode we highlight how the ground-state electronic potential-energy surface changes the usual harmonic potential of the free photon mode to a dressed mode with a double-well structure. This change is accompanied by a splitting of the electronic ground-state density. For a model where the photon mode is in resonance with a vibrational transition, we observe in the excited-state electronic potential-energy surface a splitting from a single minimum to a double minimum. Furthermore, for a time-dependent setup, we show how the dynamics in correlated light-matter systems can be understood in terms of population transfer between potential energy surfaces. This work at the interface of quantum chemistry and quantum optics paves the way for the full ab initio description of matter-photon systems.

  19. Surface calculations with asymptotically long-ranged potentials in the full-potential linearized augmented plane-wave method

    NASA Astrophysics Data System (ADS)

    Ye, Lin-Hui

    2015-09-01

    Although the supercell method has been widely used for surface calculations, it only works well with short-ranged potentials, but meets difficulty when the potential decays very slowly into the vacuum. Unfortunately, the exact exchange-correlation potential of the density functional theory is asymptotically long ranged, and therefore is not easily handled by use of supercells. This paper illustrates that the authentic slab geometry, another technique for surface calculations, is not affected by this issue: It works equally well with both short- and long-ranged potentials, with the computational cost and the convergence speed being essentially the same. Using the asymptotically long-ranged Becke-Roussel'89 exchange potential as an example, we have calculated six surfaces of various types. We found that accurate potential values can be obtained even in extremely low density regions of more than 100 Å away from the surface. This high performance allows us to explore the asymptotic region, and prove with clean numerical evidence that the Becke-Roussel'89 potential satisfies the correct asymptotic behavior for slab surfaces, as it does for finite systems. Our finding further implies that the Slater component of the exact exchange optimized effective potential is responsible for the asymptotic behavior, not only for jellium slabs, but for slabs of any type. The Becke-Roussel'89 potential may therefore be used to build asymptotically correct model exchange potentials applicable to both finite systems and slab surfaces.

  20. Computers in the examination room and the electronic health record: physicians' perceived impact on clinical encounters before and after full installation and implementation.

    PubMed

    Doyle, Richard J; Wang, Nina; Anthony, David; Borkan, Jeffrey; Shield, Renee R; Goldman, Roberta E

    2012-10-01

    We compared physicians' self-reported attitudes and behaviours regarding electronic health record (EHR) use before and after installation of computers in patient examination rooms and transition to full implementation of an EHR in a family medicine training practice to identify anticipated and observed effects these changes would have on physicians' practices and clinical encounters. We conducted two individual qualitative interviews with family physicians. The first interview was before and second interview was 8 months later after full implementation of an EHR and computer installation in the examination rooms. Data were analysed through project team discussions and subsequent coding with qualitative analysis software. At the first interviews, physicians frequently expressed concerns about the potential negative effect of the EHR on quality of care and physician-patient interaction, adequacy of their skills in EHR use and privacy and confidentiality concerns. Nevertheless, most physicians also anticipated multiple benefits, including improved accessibility of patient data and online health information. In the second interviews, physicians reported that their concerns did not persist. Many anticipated benefits were realized, appearing to facilitate collaborative physician-patient relationships. Physicians reported a greater teaching role with patients and sharing online medical information and treatment plan decisions. Before computer installation and full EHR implementation, physicians expressed concerns about the impact of computer use on patient care. After installation and implementation, however, many concerns were mitigated. Using computers in the examination rooms to document and access patients' records along with online medical information and decision-making tools appears to contribute to improved physician-patient communication and collaboration.

  1. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.

    PubMed

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  2. The injury List of All Deficits (LOAD) Framework--conceptualizing the full range of deficits and adverse outcomes following injury and violence.

    PubMed

    Lyons, Ronan A; Finch, Caroline F; McClure, Rod; van Beeck, Ed; Macey, Steven

    2010-09-01

    Over recent years, there has been increasing recognition that the burden of injuries and violence includes more than just the direct and indirect monetary costs associated with their medical outcomes. However, quantification of the total burden has been seriously hampered by lack of a framework for considering the range of outcomes which comprise the burden, poor identification of the outcomes and their imprecise measurement. This article proposes a new conceptual framework, the List of All Deficits (or LOAD) Framework, that has been developed from extensive expert discussion and consensus meetings to facilitate the measurement of the full burden of injuries and violence. The LOAD Framework recognises the multidimensional nature of injury burden across individual, family and societal domains. This classification of potential consequences of injury was built on the International Classification of Functioning concept of disability. Examples of empirical support for each consequence were obtained from the scientific literature. Determining the multidimensional injury burden requires the assessment and combination of 20 domains of potential consequences. The resulting LOAD Framework classification and concept diagram describes 12 groups of injury consequences for individuals, three for family and close friends and five for wider society. Understanding the extent of the negative implications (or deficits) of injury, through application of the LOAD Framework, is needed to put existing burden of injury studies into context and to highlight the inter-relationship between the direct and indirect burden of injury relative to other conditions.

  3. The Full Story of the Electron Configurations of the Transition Elements

    ERIC Educational Resources Information Center

    Schwarz, W. H. Eugen

    2010-01-01

    The dominant electronic valence configurations of atoms in chemical substances of a transition element of group "G" in period "n" is ("n" - 1)d[superscript "G"]"n"s[superscript 0]. Transition-metal chemistry is d orbital chemistry. In contrast, the ground states of free, unbound atoms derive, in most cases, from configurations ("n" -…

  4. Accuracy of Protein Embedding Potentials: An Analysis in Terms of Electrostatic Potentials.

    PubMed

    Olsen, Jógvan Magnus Haugaard; List, Nanna Holmgaard; Kristensen, Kasper; Kongsted, Jacob

    2015-04-14

    Quantum-mechanical embedding methods have in recent years gained significant interest and may now be applied to predict a wide range of molecular properties calculated at different levels of theory. To reach a high level of accuracy in embedding methods, both the electronic structure model of the active region and the embedding potential need to be of sufficiently high quality. In fact, failures in quantum mechanics/molecular mechanics (QM/MM)-based embedding methods have often been associated with the QM/MM methodology itself; however, in many cases the reason for such failures is due to the use of an inaccurate embedding potential. In this paper, we investigate in detail the quality of the electronic component of embedding potentials designed for calculations on protein biostructures. We show that very accurate explicitly polarizable embedding potentials may be efficiently designed using fragmentation strategies combined with single-fragment ab initio calculations. In fact, due to the self-interaction error in Kohn-Sham density functional theory (KS-DFT), use of large full-structure quantum-mechanical calculations based on conventional (hybrid) functionals leads to less accurate embedding potentials than fragment-based approaches. We also find that standard protein force fields yield poor embedding potentials, and it is therefore not advisable to use such force fields in general QM/MM-type calculations of molecular properties other than energies and structures.

  5. Segmented all-electron Gaussian basis sets of double and triple zeta qualities for Fr, Ra, and Ac

    NASA Astrophysics Data System (ADS)

    Campos, C. T.; de Oliveira, A. Z.; Ferreira, I. B.; Jorge, F. E.; Martins, L. S. C.

    2017-05-01

    Segmented all-electron basis sets of valence double and triple zeta qualities plus polarization functions for the elements Fr, Ra, and Ac are generated using non-relativistic and Douglas-Kroll-Hess (DKH) Hamiltonians. The sets are augmented with diffuse functions with the purpose to describe appropriately the electrons far from the nuclei. At the DKH-B3LYP level, first atomic ionization energies and bond lengths, dissociation energies, and polarizabilities of a sample of diatomics are calculated. Comparison with theoretical and experimental data available in the literature is carried out. It is verified that despite the small sizes of the basis sets, they are yet reliable.

  6. Improving approximate-optimized effective potentials by imposing exact conditions: Theory and applications to electronic statics and dynamics

    NASA Astrophysics Data System (ADS)

    Kurzweil, Yair; Head-Gordon, Martin

    2009-07-01

    We develop a method that can constrain any local exchange-correlation potential to preserve basic exact conditions. Using the method of Lagrange multipliers, we calculate for each set of given Kohn-Sham orbitals a constraint-preserving potential which is closest to the given exchange-correlation potential. The method is applicable to both the time-dependent (TD) and independent cases. The exact conditions that are enforced for the time-independent case are Galilean covariance, zero net force and torque, and Levy-Perdew virial theorem. For the time-dependent case we enforce translational covariance, zero net force, Levy-Perdew virial theorem, and energy balance. We test our method on the exchange (only) Krieger-Li-Iafrate (xKLI) approximate-optimized effective potential for both cases. For the time-independent case, we calculated the ground state properties of some hydrogen chains and small sodium clusters for some constrained xKLI potentials and Hartree-Fock (HF) exchange. The results (total energy, Kohn-Sham eigenvalues, polarizability, and hyperpolarizability) indicate that enforcing the exact conditions is not important for these cases. On the other hand, in the time-dependent case, constraining both energy balance and zero net force yields improved results relative to TDHF calculations. We explored the electron dynamics in small sodium clusters driven by cw laser pulses. For each laser pulse we compared calculations from TD constrained xKLI, TD partially constrained xKLI, and TDHF. We found that electron dynamics such as electron ionization and moment of inertia dynamics for the constrained xKLI are most similar to the TDHF results. Also, energy conservation is better by at least one order of magnitude with respect to the unconstrained xKLI. We also discuss the problems that arise in satisfying constraints in the TD case with a non-cw driving force.

  7. Improving approximate-optimized effective potentials by imposing exact conditions: Theory and applications to electronic statics and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzweil, Yair; Head-Gordon, Martin

    2009-07-15

    We develop a method that can constrain any local exchange-correlation potential to preserve basic exact conditions. Using the method of Lagrange multipliers, we calculate for each set of given Kohn-Sham orbitals a constraint-preserving potential which is closest to the given exchange-correlation potential. The method is applicable to both the time-dependent (TD) and independent cases. The exact conditions that are enforced for the time-independent case are Galilean covariance, zero net force and torque, and Levy-Perdew virial theorem. For the time-dependent case we enforce translational covariance, zero net force, Levy-Perdew virial theorem, and energy balance. We test our method on the exchangemore » (only) Krieger-Li-Iafrate (xKLI) approximate-optimized effective potential for both cases. For the time-independent case, we calculated the ground state properties of some hydrogen chains and small sodium clusters for some constrained xKLI potentials and Hartree-Fock (HF) exchange. The results (total energy, Kohn-Sham eigenvalues, polarizability, and hyperpolarizability) indicate that enforcing the exact conditions is not important for these cases. On the other hand, in the time-dependent case, constraining both energy balance and zero net force yields improved results relative to TDHF calculations. We explored the electron dynamics in small sodium clusters driven by cw laser pulses. For each laser pulse we compared calculations from TD constrained xKLI, TD partially constrained xKLI, and TDHF. We found that electron dynamics such as electron ionization and moment of inertia dynamics for the constrained xKLI are most similar to the TDHF results. Also, energy conservation is better by at least one order of magnitude with respect to the unconstrained xKLI. We also discuss the problems that arise in satisfying constraints in the TD case with a non-cw driving force.« less

  8. Finding Coefficients of the Full Array of Motion-Independent N-Body Potentials of Metric Gravity from Gravity's Exterior and Interior Effacement Algebra

    NASA Astrophysics Data System (ADS)

    Nordtvedt, Kenneth

    2018-01-01

    In the author's previous publications, a recursive linear algebraic method was introduced for obtaining (without gravitational radiation) the full potential expansions for the gravitational metric field components and the Lagrangian for a general N-body system. Two apparent properties of gravity— Exterior Effacement and Interior Effacement—were defined and fully enforced to obtain the recursive algebra, especially for the motion-independent potential expansions of the general N-body situation. The linear algebraic equations of this method determine the potential coefficients at any order n of the expansions in terms of the lower-order coefficients. Then, enforcing Exterior and Interior Effacement on a selecedt few potential series of the full motion-independent potential expansions, the complete exterior metric field for a single, spherically-symmetric mass source was obtained, producing the Schwarzschild metric field of general relativity. In this fourth paper of this series, the complete spatial metric's motion-independent potentials for N bodies are obtained using enforcement of Interior Effacement and knowledge of the Schwarzschild potentials. From the full spatial metric, the complete set of temporal metric potentials and Lagrangian potentials in the motion-independent case can then be found by transfer equations among the coefficients κ( n, α) → λ( n, ɛ) → ξ( n, α) with κ( n, α), λ( n, ɛ), ξ( n, α) being the numerical coefficients in the spatial metric, the Lagrangian, and the temporal metric potential expansions, respectively.

  9. Kohn-Sham potentials from electron densities using a matrix representation within finite atomic orbital basis sets

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Carter, Emily A.

    2018-01-01

    We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.

  10. Electronic and crystal structure of NiTi martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanati, M.; Albers, R.C.; Pinski, F.J.

    1998-11-01

    All of the first-principles electronic-structure calculations for the martensitic structure of NiTi have used the experimental atomic parameters reported by Michal and Sinclair [Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. {bold B37}, 1803 (1981)]. We have used first-principles, full-potential, linear muffin-tin orbital calculations to examine the total energy of all the experimental martensitic structures reported in the literature. We find that another crystal structure, that of Kudoh {ital et al.} [Acta Metall. Mater. {bold 33}, 2049 (1985)], has the lowest total energy at zero temperature. Ground-state and formation energies were calculated for all of the experimental structures. Total andmore » local densities of states were calculated and compared with each other for the structures of both Kudoh {ital et al.} and Michal and Sinclair thinsp {copyright} {ital 1998} {ital The American Physical Society}« less

  11. Evaluation of truncation error and adaptive grid generation for the transonic full potential flow calculations

    NASA Technical Reports Server (NTRS)

    Nakamura, S.

    1983-01-01

    The effects of truncation error on the numerical solution of transonic flows using the full potential equation are studied. The effects of adapting grid point distributions to various solution aspects including shock waves is also discussed. A conclusion is that a rapid change of grid spacing is damaging to the accuracy of the flow solution. Therefore, in a solution adaptive grid application an optimal grid is obtained as a tradeoff between the amount of grid refinement and the rate of grid stretching.

  12. Thermoelectric properties of nano-granular indium-tin-oxide within modified electron filtering model with chemisorption-type potential barriers

    NASA Astrophysics Data System (ADS)

    Brinzari, V.; Nika, D. L.; Damaskin, I.; Cho, B. K.; Korotcenkov, G.

    2016-07-01

    In this work, an approach to the numerical study of the thermoelectric parameters of nanoscale indium tin oxide (ITO, Sn content<10 at%) based on an electron filtering model (EFM) was developed. Potential barriers at grain boundaries were assumed to be responsible for a filtering effect. In the case of the dominant inelastic scattering of electrons, the maximal distance between potential barriers was limited in this modified model. The algorithm for such characteristic length calculation was proposed, and its value was evaluated for ITO. In addition, the contributions of different scattering mechanisms (SMs) in electron transport were examined. It was confirmed that in bulk ITO, the scattering on polar optical phonons (POPs) and ionized impurities dominates, limiting electron transport. In the framework of the filtering model, the basic thermoelectric parameters (i.e., electrical conductivity, mobility, Seebeck coefficient, and power factor (PF)) were calculated for ITO in the temperature range of 100-500 °C as a function of potential barrier height. The results demonstrated a sufficient rise of the Seebeck coefficient with an increase in barrier height and specific behavior of PF. It was found that PF is very sensitive to barrier height, and at its optimal value for granular ITO, it may exceed the PF for bulk ITO by 3-5 times. The PF maximum was achieved by band bending, slightly exceeding Fermi energy. The nature of surface potential barriers in nano-granular ITO with specific grains is due to the oxygen chemisorption effect, and this can be observed despite of the degeneracy of the conduction band (CB). This hypothesis and the corresponding calculations are in good agreement with recent experimental studies [Brinzari et al. Thin Solid Films 552 (2014) 225].

  13. Toward a muon-specific electronic structure theory: effective electronic Hartree-Fock equations for muonic molecules.

    PubMed

    Rayka, Milad; Goli, Mohammad; Shahbazian, Shant

    2018-02-07

    An effective set of Hartree-Fock (HF) equations are derived for electrons of muonic systems, i.e., molecules containing a positively charged muon, conceiving the muon as a quantum oscillator, which are completely equivalent to the usual two-component HF equations used to derive stationary states of the muonic molecules. In these effective equations, a non-Coulombic potential is added to the orthodox coulomb and exchange potential energy terms, which describes the interaction of the muon and the electrons effectively and is optimized during the self-consistent field cycles. While in the two-component HF equations a muon is treated as a quantum particle, in the effective HF equations it is absorbed into the effective potential and practically transformed into an effective potential field experienced by electrons. The explicit form of the effective potential depends on the nature of muon's vibrations and is derivable from the basis set used to expand the muonic spatial orbital. The resulting effective Hartree-Fock equations are implemented computationally and used successfully, as a proof of concept, in a series of muonic molecules containing all atoms from the second and third rows of the Periodic Table. To solve the algebraic version of the equations muon-specific Gaussian basis sets are designed for both muon and surrounding electrons and it is demonstrated that the optimized exponents are quite distinct from those derived for the hydrogen isotopes. The developed effective HF theory is quite general and in principle can be used for any muonic system while it is the starting point for a general effective electronic structure theory that incorporates various types of quantum correlations into the muonic systems beyond the HF equations.

  14. Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation

    PubMed Central

    Wu, Yanling; Wu, Qiong; Sun, Fei; Cheng, Cai; Meng, Sheng; Zhao, Jimin

    2015-01-01

    Generating electron coherence in quantum materials is essential in optimal control of many-body interactions and correlations. In a multidomain system this signifies nonlocal coherence and emergence of collective phenomena, particularly in layered 2D quantum materials possessing novel electronic structures and high carrier mobilities. Here we report nonlocal ac electron coherence induced in dispersed MoS2 flake domains, using coherent spatial self-phase modulation (SSPM). The gap-dependent nonlinear dielectric susceptibility χ(3) measured is surprisingly large, where direct interband transition and two-photon SSPM are responsible for excitations above and below the bandgap, respectively. A wind-chime model is proposed to account for the emergence of the ac electron coherence. Furthermore, all-optical switching is achieved based on SSPM, especially with two-color intraband coherence, demonstrating that electron coherence generation is a ubiquitous property of layered quantum materials. PMID:26351696

  15. All-natural bio-plastics using starch-betaglucan composites.

    PubMed

    Sagnelli, Domenico; Kirkensgaard, Jacob J K; Giosafatto, Concetta Valeria L; Ogrodowicz, Natalia; Kruczała, Krzysztof; Mikkelsen, Mette S; Maigret, Jean-Eudes; Lourdin, Denis; Mortensen, Kell; Blennow, Andreas

    2017-09-15

    Grain polysaccharides represent potential valuable raw materials for next-generation advanced and environmentally friendly plastics. Thermoplastic starch (TPS) is processed using conventional plastic technology, such as casting, extrusion, and molding. However, to adapt the starch to specific functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β-glucan (BG) composite system to produce bio-plastic prototype films. To optimize performing conditions, we investigated the full range of ST:BG ratios for the casting (100:0, 75:25, 50:50, 25:75 and 0:100 BG). The plasticizer used was glycerol. Electron Paramagnetic Resonance (EPR), using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a spin probe, showed that the composite films with high BG content had a flexible chemical environment. They showed decreased brittleness and improved cohesiveness with high stress and strain values at the break. Wide-angle X-ray diffraction displayed a decrease in crystallinity at high BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Correlation energy, correlated electron density, and exchange-correlation potential in some spherically confined atoms.

    PubMed

    Vyboishchikov, Sergei F

    2016-12-05

    We report correlation energies, electron densities, and exchange-correlation potentials obtained from configuration interaction and density functional calculations on spherically confined He, Be, Be 2+ , and Ne atoms. The variation of the correlation energy with the confinement radius R c is relatively small for the He, Be 2+ , and Ne systems. Curiously, the Lee-Yang-Parr (LYP) functional works well for weak confinements but fails completely for small R c . However, in the neutral beryllium atom the CI correlation energy increases markedly with decreasing R c . This effect is less pronounced at the density-functional theory level. The LYP functional performs very well for the unconfined Be atom, but fails badly for small R c . The standard exchange-correlation potentials exhibit significant deviation from the "exact" potential obtained by inversion of Kohn-Sham equation. The LYP correlation potential behaves erratically at strong confinements. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Ultralow Thermal Conductivity in Full Heusler Semiconductors.

    PubMed

    He, Jiangang; Amsler, Maximilian; Xia, Yi; Naghavi, S Shahab; Hegde, Vinay I; Hao, Shiqiang; Goedecker, Stefan; Ozoliņš, Vidvuds; Wolverton, Chris

    2016-07-22

    Semiconducting half and, to a lesser extent, full Heusler compounds are promising thermoelectric materials due to their compelling electronic properties with large power factors. However, intrinsically high thermal conductivity resulting in a limited thermoelectric efficiency has so far impeded their widespread use in practical applications. Here, we report the computational discovery of a class of hitherto unknown stable semiconducting full Heusler compounds with ten valence electrons (X_{2}YZ, X=Ca, Sr, and Ba; Y=Au and Hg; Z=Sn, Pb, As, Sb, and Bi) through high-throughput ab initio screening. These new compounds exhibit ultralow lattice thermal conductivity κ_{L} close to the theoretical minimum due to strong anharmonic rattling of the heavy noble metals, while preserving high power factors, thus resulting in excellent phonon-glass electron-crystal materials.

  18. First-principles study of structural stability, electronic, optical and elastic properties of binary intermetallic: PtZr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Jain, Ekta, E-mail: jainekta05@gmail.com; Sanyal, S. P., E-mail: sps.physicsbu@gmail.com

    2016-05-06

    Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B{sub 1}, B{sub 2} and B{sub 3} for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time.more » Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh’s criteria.« less

  19. Direct observation of spin-resolved full and empty electron states in ferromagnetic surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berti, G., E-mail: giulia.berti@polimi.it; Calloni, A.; Brambilla, A.

    2014-07-15

    We present a versatile apparatus for the study of ferromagnetic surfaces, which combines spin-polarized photoemission and inverse photoemission spectroscopies. Samples can be grown by molecular beam epitaxy and analyzed in situ. Spin-resolved photoemission spectroscopy analysis is done with a hemispherical electron analyzer coupled to a 25 kV-Mott detector. Inverse photoemission spectroscopy experiments are performed with GaAs crystals as spin-polarized electron sources and a UV bandpass photon detector. As an example, measurements on the oxygen passivated Fe(100)-p(1×1)O surface are presented.

  20. Finite grid radius and thickness effects on retarding potential analyzer measured suprathermal electron density and temperature

    NASA Technical Reports Server (NTRS)

    Knudsen, William C.

    1992-01-01

    The effect of finite grid radius and thickness on the electron current measured by planar retarding potential analyzers (RPAs) is analyzed numerically. Depending on the plasma environment, the current is significantly reduced below that which is calculated using a theoretical equation derived for an idealized RPA having grids with infinite radius and vanishingly small thickness. A correction factor to the idealized theoretical equation is derived for the Pioneer Venus (PV) orbiter RPA (ORPA) for electron gasses consisting of one or more components obeying Maxwell statistics. The error in density and temperature of Maxwellian electron distributions previously derived from ORPA data using the theoretical expression for the idealized ORPA is evaluated by comparing the densities and temperatures derived from a sample of PV ORPA data using the theoretical expression with and without the correction factor.

  1. Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe2.

    PubMed

    Winkler, Florian; Tavabi, Amir H; Barthel, Juri; Duchamp, Martial; Yucelen, Emrah; Borghardt, Sven; Kardynal, Beata E; Dunin-Borkowski, Rafal E

    2017-07-01

    The phase and amplitude of the electron wavefunction that has passed through ultra-thin flakes of WSe 2 is measured from high-resolution off-axis electron holograms. Both the experimental measurements and corresponding computer simulations are used to show that, as a result of dynamical diffraction, the spatially averaged phase does not increase linearly with specimen thickness close to an [001] zone axis orientation even when the specimen has a thickness of only a few layers. It is then not possible to infer the local specimen thickness of the WSe 2 from either the phase or the amplitude alone. Instead, we show that the combined analysis of phase and amplitude from experimental measurements and simulations allows an accurate determination of the local specimen thickness. The relationship between phase and projected potential is shown to be approximately linear for extremely thin specimens that are tilted by several degrees in certain directions from the [001] zone axis. A knowledge of the specimen thickness then allows the electrostatic potential to be determined from the measured phase. By using this combined approach, we determine a value for the mean inner potential of WSe 2 of 18.9±0.8V, which is 12% lower than the value calculated from neutral atom scattering factors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Electronic Mentoring of Research.

    ERIC Educational Resources Information Center

    Gregory, Vicki L.

    On July 1, 1991, the ACRL (Association of College and Research Libraries) Research Committee launched a pilot project to mentor academic librarians in their conduct of research. Since the mentors and protegees were potentially from all over the United States, the decision was made to mentor using the electronic conferencing capability of BITNET…

  3. Spin polarization of two-dimensional electron system in parabolic potential

    NASA Astrophysics Data System (ADS)

    Miyake, Takashi; Totsuji, Chieko; Nakanishi, Kenta; Tsuruta, Kenji; Totsuji, Hiroo

    2008-09-01

    We analyze the ground state of the two-dimensional quantum system of electrons confined in a parabolic potential with the system size around 100 at 0 K. We map the system onto a classical system on the basis of the classical-map hypernetted-chain (CHNC) method which has been proven to work in the integral-equation-based analyses of uniform systems and apply classical Monte Carlo and molecular dynamics simulations. We find that, when we decrease the strength of confinement keeping the number of confined electrons fixed, the energy of the spin-polarized state with somewhat lower average density becomes smaller than that of the spin-unpolarized state with somewhat higher average density. This system thus undergoes the transition from the spin-unpolarized state to the spin polarized state and the corresponding critical value of r estimated from the average density is as low as r∼0.4 which is much smaller than the r value for the Wigner lattice formation. When we compare the energies of spin-unpolarized and spin-polarized states for given average density, our data give the critical r value for the transition between unpolarized and polarized states around 10 which is close to but still smaller than the known possibility of polarization at r∼27. The advantage of our method is a direct applicability to geometrically complex systems which are difficult to analyze by integral equations and this is an example.

  4. All-Atom Four-Body Knowledge-Based Statistical Potentials to Distinguish Native Protein Structures from Nonnative Folds

    PubMed Central

    2017-01-01

    Recent advances in understanding protein folding have benefitted from coarse-grained representations of protein structures. Empirical energy functions derived from these techniques occasionally succeed in distinguishing native structures from their corresponding ensembles of nonnative folds or decoys which display varying degrees of structural dissimilarity to the native proteins. Here we utilized atomic coordinates of single protein chains, comprising a large diverse training set, to develop and evaluate twelve all-atom four-body statistical potentials obtained by exploring alternative values for a pair of inherent parameters. Delaunay tessellation was performed on the atomic coordinates of each protein to objectively identify all quadruplets of interacting atoms, and atomic potentials were generated via statistical analysis of the data and implementation of the inverted Boltzmann principle. Our potentials were evaluated using benchmarking datasets from Decoys-‘R'-Us, and comparisons were made with twelve other physics- and knowledge-based potentials. Ranking 3rd, our best potential tied CHARMM19 and surpassed AMBER force field potentials. We illustrate how a generalized version of our potential can be used to empirically calculate binding energies for target-ligand complexes, using HIV-1 protease-inhibitor complexes for a practical application. The combined results suggest an accurate and efficient atomic four-body statistical potential for protein structure prediction and assessment. PMID:29119109

  5. Predicting the Weather and Building the Boats: Full Service Schools as One Avenue to School Success for All of America's Children

    ERIC Educational Resources Information Center

    Kronick, Robert F.

    2003-01-01

    This article describes the evolution of full service schools. Full service schools stress prevention, collaboration and systems change. Prevention is geared toward corrections, mental health and welfare, all topics of keen interest to people working in and studying criminal justice. By providing mental health services at the school for both…

  6. Non-Markovian full counting statistics in quantum dot molecules

    PubMed Central

    Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

  7. Examining the Potential Impact of Full Tuition Fees on Mature Part-Time Students in English Higher Education

    ERIC Educational Resources Information Center

    Shaw, Angela

    2014-01-01

    This paper examines current part-time mature learners' views on the potential impact upon future students as full fees are introduced from 2012. It investigates the problems which part-time mature learners may face with the advent of student loans and subsequent debt, given that they are usually combining complex lives with their studies, with…

  8. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yun, E-mail: caoyun@impcas.ac.cn; Li, Jia Qing; Sun, Liang Ting

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gasmore » was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.« less

  9. Is the arthroscopic modified tension band suture technique suitable for all full-thickness rotator cuff tears?

    PubMed

    Bae, Kyu Hwan; Kim, Jeong Woo; Kim, Tae Kyun; Kweon, Seok Hyun; Kang, Hong Je; Kim, Jong Yun; Joo, Min Su; Kim, Dong Moon

    2016-09-01

    We aimed to identify the clinical and structural outcomes after arthroscopic repair of full-thickness rotator cuff tears of all sizes with a modified tension band suture technique. Among 63 patients who underwent arthroscopic rotator cuff repair for a full-thickness rotator cuff tear with the modified tension band suture technique at a single hospital between July 2011 and March 2013, 47 were enrolled in this study. The mean follow-up period was 29 months. Visual analog scale scores, range of motion, American Shoulder and Elbow Surgeons scores, Constant scores, and Shoulder Strength Index were measured preoperatively and at the final follow-up. For radiologic evaluation, we conducted magnetic resonance imaging 6 months postoperatively and ultrasonography at the final follow-up. We allocated the small and medium tears to group A and the large and massive tears to group B and then compared clinical outcomes and repair integrity. Postoperative clinical outcomes at the final follow-up showed significant improvements compared with those seen during preoperative evaluations (P < .001). However, group B showed worse clinical results than group A. Evaluation with magnetic resonance imaging performed 6 months postoperatively and ultrasonography taken at the final follow-up revealed that group B showed a significantly higher retear rate than did group A (69% vs. 6%, respectively; P < .001). Arthroscopic repair with the modified tension band suture technique for rotator cuff tears was a more suitable method for small to medium tears than for large to massive tears. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  10. Finite-difference simulation of transonic separated flow using a full potential boundary layer interaction approach

    NASA Technical Reports Server (NTRS)

    Van Dalsem, W. R.; Steger, J. L.

    1983-01-01

    A new, fast, direct-inverse, finite-difference boundary-layer code has been developed and coupled with a full-potential transonic airfoil analysis code via new inviscid-viscous interaction algorithms. The resulting code has been used to calculate transonic separated flows. The results are in good agreement with Navier-Stokes calculations and experimental data. Solutions are obtained in considerably less computer time than Navier-Stokes solutions of equal resolution. Because efficient inviscid and viscous algorithms are used, it is expected this code will also compare favorably with other codes of its type as they become available.

  11. Source Parameters from Full Moment Tensor Inversions of Potentially Induced Earthquakes in Western Canada

    NASA Astrophysics Data System (ADS)

    Wang, R.; Gu, Y. J.; Schultz, R.; Kim, A.; Chen, Y.

    2015-12-01

    During the past four years, the number of earthquakes with magnitudes greater than three has substantially increased in the southern section of Western Canada Sedimentary Basin (WCSB). While some of these events are likely associated with tectonic forces, especially along the foothills of the Canadian Rockies, a significant fraction occurred in previously quiescent regions and has been linked to waste water disposal or hydraulic fracturing. A proper assessment of the origin and source properties of these 'induced earthquakes' requires careful analyses and modeling of regional broadband data, which steadily improved during the past 8 years due to recent establishments of regional broadband seismic networks such as CRANE, RAVEN and TD. Several earthquakes, especially those close to fracking activities (e.g. Fox creek town, Alberta) are analyzed. Our preliminary full moment tensor inversion results show maximum horizontal compressional orientations (P-axis) along the northeast-southwest orientation, which agree with the regional stress directions from borehole breakout data and the P-axis of historical events. The decomposition of those moment tensors shows evidence of strike-slip mechanism with near vertical fault plane solutions, which are comparable to the focal mechanisms of injection induced earthquakes in Oklahoma. Minimal isotropic components have been observed, while a modest percentage of compensated-linear-vector-dipole (CLVD) components, which have been linked to fluid migraition, may be required to match the waveforms. To further evaluate the non-double-couple components, we compare the outcomes of full, deviatoric and pure double couple (DC) inversions using multiple frequency ranges and phases. Improved location and depth information from a novel grid search greatly assists the identification and classification of earthquakes in potential connection with fluid injection or extraction. Overall, a systematic comparison of the source attributes of

  12. Correlated electron-nuclear dynamics with conditional wave functions.

    PubMed

    Albareda, Guillermo; Appel, Heiko; Franco, Ignacio; Abedi, Ali; Rubio, Angel

    2014-08-22

    The molecular Schrödinger equation is rewritten in terms of nonunitary equations of motion for the nuclei (or electrons) that depend parametrically on the configuration of an ensemble of generally defined electronic (or nuclear) trajectories. This scheme is exact and does not rely on the tracing out of degrees of freedom. Hence, the use of trajectory-based statistical techniques can be exploited to circumvent the calculation of the computationally demanding Born-Oppenheimer potential-energy surfaces and nonadiabatic coupling elements. The concept of the potential-energy surface is restored by establishing a formal connection with the exact factorization of the full wave function. This connection is used to gain insight from a simplified form of the exact propagation scheme.

  13. Electron emission from surfaces resulting from low energy positron bombardment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Saurabh

    Measurements of the secondary electron energy spectra resulting from very low energy positron bombardment of a polycrystalline Au and Cu (100) surfaces are presented that provide evidence for a single step transition from an unbound scattering state to an image potential bound state. The primary positron energy threshold for secondary electron emission and energy cutoff of the positron induced secondary electron energy peak are consistent with an Auger like process in which an incident positron make a transition from a scattering state to a surface-image potential bound while transferring all of the energy difference to an outgoing secondary electron. We term this process: the Auger mediated quantum sticking effect (AQSE). The intensities of the positron induced secondary electron peak are used to estimate the probability of this process as a function of incident positron energy. Positron annihilation induced Auger spectra (PAES) of Cu and Au are presented that are free of all primary beam induced secondary electron background. This background was eliminated by setting the positron beam energy below AQSE threshold. The background free PAES spectra obtained include the first measurements of the low energy tail of CVV Auger transitions all the way down to zero kinetic energy. The integrated intensity of this tail is several times larger than Auger peak itself which provides strong evidence for multi-electron Auger processes.

  14. Electronic Structure Calculation of Permanent Magnets using the KKR Green's Function Method

    NASA Astrophysics Data System (ADS)

    Doi, Shotaro; Akai, Hisazumi

    2014-03-01

    Electronic structure and magnetic properties of permanent magnetic materials, especially Nd2Fe14B, are investigated theoretically using the KKR Green's function method. Important physical quantities in magnetism, such as magnetic moment, Curie temperature, and anisotropy constant, which are obtained from electronics structure calculations in both cases of atomic-sphere-approximation and full-potential treatment, are compared with past band structure calculations and experiments. The site preference of heavy rare-earth impurities are also evaluated through the calculation of formation energy with the use of coherent potential approximations. Further, the development of electronic structure calculation code using the screened KKR for large super-cells, which is aimed at studying the electronic structure of realistic microstructures (e.g. grain boundary phase), is introduced with some test calculations.

  15. Electron beam extraction on plasma cathode electron sources system

    NASA Astrophysics Data System (ADS)

    Purwadi, Agus; Taufik, M., Lely Susita R.; Suprapto, Saefurrochman, H., Anjar A.; Wibowo, Kurnia; Aziz, Ihwanul; Siswanto, Bambang

    2017-03-01

    ELECTRON BEAM EXTRACTION ON PLASMA CATHODE ELECTRON SOURCES SYSTEM. The electron beam extraction through window of Plasma Generator Chamber (PGC) for Pulsed Electron Irradiator (PEI) device and simulation of plasma potential has been studied. Plasma electron beam is extracted to acceleration region for enlarging their power by the external accelerating high voltage (Vext) and then it is passed foil window of the PEI for being irradiated to any target (atmospheric pressure). Electron beam extraction from plasma surface must be able to overcome potential barrier at the extraction window region which is shown by estimate simulation (Opera program) based on data of plasma surface potential of 150 V with Ueks values are varied by 150 kV, 175 kV and 200 kV respectively. PGC is made of 304 stainless steel with cylindrical shape in 30 cm of diameter, 90 cm length, electrons extraction window as many as 975 holes on the area of (15 × 65) cm2 with extraction hole cell in 0.3 mm of radius each other, an cylindrical shape IEP chamber is made of 304 stainless steel in 70 cm diameter and 30 cm length. The research result shown that the acquisition of electron beam extraction current depends on plasma parameters (electron density ne, temperature Te), accelerating high voltage Vext, the value of discharge parameter G, anode area Sa, electron extraction window area Se and extraction efficiency value α.

  16. A computational perspective of vibrational and electronic analysis of potential photosensitizer 2-chlorothioxanthone

    NASA Astrophysics Data System (ADS)

    Ali, Narmeen; Mansha, Asim; Asim, Sadia; Zahoor, Ameer Fawad; Ghafoor, Sidra; Akbar, Muhammad Usman

    2018-03-01

    This paper deals with combined theoretical and experimental study of geometric, electronic and vibrational properties of 2-chlorothioxanthone (CTX) molecule which is potential photosensitizer. The FT-IR spectrum of CTX in solid phase was recorded in 4000-400 cm-1 region. The UV-Vis. absorption spectrum was also recorded in the laboratory as well as computed at DFT/B3LYP level in five different phases viz. gas, water, DMSO, acetone and ethanol. The quantum mechanics based theoretical IR and Raman spectra were also calculated for the title compound employing HF and DFT functional with 3-21G+, 6-31G+ and 6-311G+, 6-311G++ basis sets, respectively, and assignment of each vibrational frequency has been done on the basis of potential energy distribution (PED). A comparison has been made between theoretical and experimental vibrational spectra as well as for the UV-Vis. absorption spectra. The computed infra red & Raman spectra by DFT compared with experimental spectra along with reliable vibrational assignment based on PED. The calculated electronic properties, results of natural bonding orbital (NBO) analysis, charge distribution, dipole moment and energies have been reported in the paper. Bimolecular quenching of triplet state of CTX in the presence of triethylamine, 2-propanol triethylamine and diazobicyclooctane (DABCO) reflect the interactions between them. The bimolecular quenching rate constant is fastest for interaction of 3CTX in the presence of DABCO reflecting their stronger interactions.

  17. Pick-off annihilation of positronium in matter using full correlation single particle potentials: solid He.

    PubMed

    Zubiaga, A; Tuomisto, F; Puska, M J

    2015-01-29

    We investigate the modeling of positronium (Ps) states and their pick-off annihilation trapped at open volumes pockets in condensed molecular matter. Our starting point is the interacting many-body system of Ps and a He atom because it is the smallest entity that can mimic the energy gap between the highest occupied and lowest unoccupied molecular orbitals of molecules, and yet the many-body structure of the HePs system can be calculated accurately enough. The exact-diagonalization solution of the HePs system enables us to construct a pairwise full-correlation single-particle potential for the Ps-He interaction, and the total potential in solids is obtained as a superposition of the pairwise potentials. We study in detail Ps states and their pick-off annihilation rates in voids inside solid He and analyze experimental results for Ps-induced voids in liquid He obtaining the radii of the voids. More importantly, we generalize our conclusions by testing the validity of the Tao-Eldrup model, widely used to analyze ortho-Ps annihilation measurements for voids in molecular matter, against our theoretical results for the solid He. Moreover, we discuss the influence of the partial charges of polar molecules and the strength of the van der Waals interaction on the pick-off annihilation rate.

  18. F + H2 collisions on two electronic potential energy surfaces - Quantum-mechanical study of the collinear reaction

    NASA Technical Reports Server (NTRS)

    Zimmerman, I. H.; Baer, M.; George, T. F.

    1979-01-01

    Collinear quantum calculations are carried out for reactive F + H2 collisions on two electronic potential energy surfaces. The resulting transmission and reflection probabilities exhibit much greater variation with energy than single-surface studies would lead us to anticipate. Transmission to low-lying product channels is increased by orders of magnitude by the presence of the second surface; however, branching ratios among product states are found to be independent of the initial electronic state of the reactants. These apparently contradictory aspects of the calculation are discussed and a tentative explanation put forward to resolve them.

  19. GPU-Accelerated Large-Scale Electronic Structure Theory on Titan with a First-Principles All-Electron Code

    NASA Astrophysics Data System (ADS)

    Huhn, William Paul; Lange, Björn; Yu, Victor; Blum, Volker; Lee, Seyong; Yoon, Mina

    Density-functional theory has been well established as the dominant quantum-mechanical computational method in the materials community. Large accurate simulations become very challenging on small to mid-scale computers and require high-performance compute platforms to succeed. GPU acceleration is one promising approach. In this talk, we present a first implementation of all-electron density-functional theory in the FHI-aims code for massively parallel GPU-based platforms. Special attention is paid to the update of the density and to the integration of the Hamiltonian and overlap matrices, realized in a domain decomposition scheme on non-uniform grids. The initial implementation scales well across nodes on ORNL's Titan Cray XK7 supercomputer (8 to 64 nodes, 16 MPI ranks/node) and shows an overall speed up in runtime due to utilization of the K20X Tesla GPUs on each Titan node of 1.4x, with the charge density update showing a speed up of 2x. Further acceleration opportunities will be discussed. Work supported by the LDRD Program of ORNL managed by UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  20. Instrumentation and Measurements for Electron Emission from Charged Insulators

    NASA Technical Reports Server (NTRS)

    Sim, Alec M.

    2005-01-01

    The electron was first discovered in 1898 by Sir John Joseph Thomson and has since been the subject of detailed study by nearly every scientific discipline. At nearly the same time Heinrich Rudolf Hertz conducted a series of experiments using cathode tubes, high potentials and ultraviolet light. When applying a large potential to a cathode he found that an arching event across the metal plates would occur. In addition, when shining an ultraviolet light on the metal he found that less potential was required to induce the spark. This result, taken together with other electrical phenomena brought about by the shining of light upon metal and was eventually termed the photoelectric effect. The work of Thomson and Hertz represent the beginning of electron emission studies and a body of ideas that pervade nearly all aspects of physics. In particular these ideas tell us a great deal about the nature of physical interactions within solids. In this thesis we will focus on the emission of electrons induced by an incident electron source over a range of energies, in which one can observe changes in emitted electron flux and energy distribution. In particular, when energetic particles impinge on a solid they can impart their energy, exciting electrons within the material. If this energy is sufficient to overcome surface energy barriers such as the work function, electron affinity or surface charge potential, electrons can escape from the material. The extent of electron emission from the material can be quantified as the ratio of incident particle flux to emitted particle flux, and is termed the electron yield.

  1. Adaptive oxide electronics: A review

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Ramanathan, Shriram

    2011-10-01

    be needed to realize the full potential of adaptive oxide electronics.

  2. Investigation of electronic structure and chemical bonding of intermetallic Pd2HfIn: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Bano, Amreen; Gaur, N. K.

    2018-05-01

    Ab-initio calculations are carried out to study the electronic and chemical bonding properties of Intermetallic full Heusler compound Pd2HfIn which crystallizes in F-43m structure. All calculations are performed by using density functional theory (DFT) based code Quantum Espresso. Generalized gradient approximations (GGA) of Perdew- Burke- Ernzerhof (PBE) have been adopted for exchange-correlation potential. Calculated electronic band structure reveals the metallic character of the compound. From partial density of states (PDoS), we found the presence of relatively high intensity electronic states of 4d-Pd atom at Fermi level. We have found a pseudo-gap just abouve the Fermi level and N(E) at Fermi level is observed to be 0.8 states/eV, these finding indicates the existence of superconducting character in Pd2HfIn.

  3. Plasma potential and electron temperature evaluated by ball-pen and Langmuir probes in the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Dimitrova, M.; Popov, Tsv K.; Adamek, J.; Kovačič, J.; Ivanova, P.; Hasan, E.; López-Bruna, D.; Seidl, J.; Vondráček, P.; Dejarnac, R.; Stöckel, J.; Imríšek, M.; Panek, R.; the COMPASS Team

    2017-12-01

    The radial distributions of the main plasma parameters in the scrape-off-layer of the COMPASS tokamak are measured during L-mode and H-mode regimes by using both Langmuir and ball-pen probes mounted on a horizontal reciprocating manipulator. The radial profile of the plasma potential derived previously from Langmuir probes data by using the first derivative probe technique is compared with data derived using ball-pen probes. A good agreement can be seen between the data acquired by the two techniques during the L-mode discharge and during the H-mode regime within the inter-ELM periods. In contrast with the first derivative probe technique, the ball-pen probe technique does not require a swept voltage and, therefore, the temporal resolution is only limited by the data acquisition system. In the electron temperature evaluation, in the far scrape-off layer and in the limiter shadow, where the electron energy distribution is Maxwellian, the results from both techniques match well. In the vicinity of the last closed flux surface, where the electron energy distribution function is bi-Maxwellian, the ball-pen probe technique results are in agreement with the high-temperature components of the electron distribution only. We also discuss the application of relatively large Langmuir probes placed in parallel and perpendicularly to the magnetic field lines to studying the main plasma parameters. The results obtained by the two types of the large probes agree well. They are compared with Thomson scattering data for electron temperatures and densities. The results for the electron densities are compared also with the results from ASTRA code calculation of the electron source due to the ionization of the neutrals by fast electrons and the origin of the bi-Maxwellian electron energy distribution function is briefly discussed.

  4. HDTV versus electronic cinema

    NASA Astrophysics Data System (ADS)

    Tinker, Michael

    1998-12-01

    We are on the brink of transforming the movie theatre with electronic cinema. Technologies are converging to make true electronic cinema, with a 'film look,' possible for the first time. In order to realize the possibilities, we must leverage current technologies in video compression, electronic projection, digital storage, and digital networks. All these technologies have only recently improved sufficiently to make their use in the electronic cinema worthwhile. Video compression, such as MPEG-2, is designed to overcome the limitations of video, primarily limited bandwidth. As a result, although HDTV offers a serious challenge to film-based cinema, it falls short in a number of areas, such as color depth. Freed from the constraints of video transmission, and using the recently improved technologies available, electronic cinema can move beyond video; Although movies will have to be compressed for some time, what is needed is a concept of 'cinema compression,' rather than video compression. Electronic cinema will open up vast new possibilities for viewing experiences at the theater, while at the same time offering up the potential for new economies in the movie industry.

  5. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry.

    PubMed

    Zhang, Peng; Yuly, Jonathon L; Lubner, Carolyn E; Mulder, David W; King, Paul W; Peters, John W; Beratan, David N

    2017-09-19

    How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation. Remarkably, bifurcating electron transfer (ET) proteins typically send one electron uphill and one electron downhill by similar energies, such that the overall reaction is spontaneous, but not profligate. Electron bifurcation in the NADH-dependent reduced ferredoxin: NADP + oxidoreductase I (Nfn) is explored in detail here. Recent experimental progress in understanding the structure and function of Nfn allows us to dissect its workings in the framework of modern ET theory. The first electron that leaves the two-electron donor flavin (L-FAD) executes a positive free energy "uphill" reaction, and the departure of this electron switches on a second thermodynamically spontaneous ET reaction from the flavin along a second pathway that moves electrons in the opposite direction and at a very different potential. The singly reduced ET products formed from the bifurcating flavin are more than two nanometers distant from each other. In Nfn, the second electron to leave the flavin is much more reducing than the first: the potentials are said to be "crossed." The eventually reduced cofactors, NADH and ferredoxin in the case of Nfn, perform crucial downstream redox

  6. Demand-driven biogas production by flexible feeding in full-scale - Process stability and flexibility potentials.

    PubMed

    Mauky, Eric; Weinrich, Sören; Jacobi, Hans-Fabian; Nägele, Hans-Joachim; Liebetrau, Jan; Nelles, Michael

    2017-08-01

    For future energy supply systems with high proportions from renewable energy sources, biogas plants are a promising option to supply demand-driven electricity to compensate the divergence between energy demand and energy supply by uncontrolled sources like wind and solar. Apart expanding gas storage capacity a demand-oriented feeding with the aim of flexible gas production can be an effective alternative. The presented study demonstrated a high degree of intraday flexibility (up to 50% compared to the average) and a potential for an electricity shutdown of up to 3 days (decreasing gas production by more than 60%) by flexible feeding in full-scale. Furthermore, the long-term process stability was not affected negatively due to the flexible feeding. The flexible feeding resulted in a variable rate of gas production and a dynamic progression of individual acids and the respective pH-value. In consequence, a demand-driven biogas production may enable significant savings in terms of the required gas storage volume (up to 65%) and permit far greater plant flexibility compared to constant gas production. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Computational studies of the geometry and electronic structure of an all-inorganic and homogeneous tetra-Ru-polyoxotungstate catalyst for water oxidation and its four subsequent one-electron oxidized forms.

    PubMed

    Quiñonero, David; Kaledin, Alexey L; Kuznetsov, Aleksey E; Geletii, Yurii V; Besson, Claire; Hill, Craig L; Musaev, Djamaladdin G

    2010-01-14

    Geometry and electronic structure of five species [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](10-) (1), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](9-) (2), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](8-) (3), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](7-) (4), and [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](6-) (5) with different oxidation states of Ru centers were studied at the density functional and COSMO levels of theory. These species are expected to be among the possible intermediates of the recently reported 1-catalyzed water oxidation (Geletii, Y. V.; Botar, B.; Kogerler, P.; Hillesheim, D. A.; Musaev, D. G.; Hill, C. L. Angew. Chem. Int. Ed. 2008, 47, 3896-3899 and Sartorel, A.; Carraro, M.; Scorrano, G.; Zorzi, R. D.; Geremia, S.; McDaniel, N. D.; Bernhard, S.; Bonchio, M. J. Am. Chem. Soc. 2008, 130, 5006-5007). It was shown that RI-BP86 correctly describes the geometry and energy of the low-lying electronic states of compound 1, whereas the widely used B3LYP approach overestimates the energy of its high-spin states. Including the solvent and/or countercation effects into calculations improves the agreement between the calculated and experimental data. It was found that the several HOMOs and LUMOs of the studied complexes are bonding and antibonding orbitals of the [Ru(4)O(4)(OH)(2)(H(2)O)(4)](6+) core, and four subsequent one-electron oxidations of 1, leading to formation of 2, 3, 4, and 5, respectively, involve only {Ru(4)} core orbitals. In other words, catalyst instability due to ligand oxidation in the widely studied Ru-blue dimer, [(bpy)(2)(O)Ru(V)-(mu-O)-Ru(V)(O)(bpy)(2)](4+), is not operable for 1: the latter all-inorganic catalyst is predicted to be stable under water oxidation turnover conditions. The calculated HOMOs and LUMOs of all the studied species are very close in energy and exhibit a "quasi-continuum" or "nanoparticle-type" electronic structure similar to that of nanosized transition

  8. An ab initio study on the structural, electronic and mechanical properties of quaternary full-Heusler alloys FeMnCrSn and FeMnCrSb

    NASA Astrophysics Data System (ADS)

    Erkişi, Aytaç

    2018-06-01

    The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.

  9. Inter-professional electronic documents and child health: a study of persisting non-electronic communication in the use of electronic documents.

    PubMed

    Saario, Sirpa; Hall, Christopher; Peckover, Sue

    2012-12-01

    Information and communication technologies are widely used in health and social care settings to replace previous means of record keeping, assessment and communication. Commentary on the strengths and weaknesses of such systems abound, thus it is useful to examine how they are used in practice. This article draws on findings from two separate studies, conducted between 2005 and 2007, which examined how child health and welfare professionals use electronic documents in Finland and England. Known respectively as Miranda and CAF, these systems are different in terms of structure and function but in their everyday use common features are identified, notably the continued use of and reliance on non-electronic means of communication. Based on interviews with professionals, three forms of non-electronic communication are described: alternative records, phone calls and letters, which facilitate the sharing of the electronic record. Finally, the electronic documents are further analysed as potential boundary objects which aim to create common understanding between sites and professionals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Full recovery from a potentially lethal dose of mercuric chloride.

    PubMed

    Beasley, D Michael G; Schep, Leo J; Slaughter, Robin J; Temple, Wayne A; Michel, Jonathan M

    2014-03-01

    Mercuric chloride poisoning is rare yet potentially life-threatening. We report a case of poisoning with a potentially significant amount of mercuric chloride which responded to aggressive management. A 19-year-old female presented to the Emergency Department with nausea, abdominal discomfort, vomiting of blood-stained fluid, and diarrhea following suicidal ingestion of 2-4 g of mercuric chloride powder. An abdominal radiograph showed radio-opaque material within the gastric antrum and the patient's initial blood mercury concentration was 17.9 μmol/L (or 3.58 mg/L) at 3 h post-ingestion. Given the potential toxicity of inorganic mercury, the patient was admitted to the intensive care unit and chelation with dimercaprol was undertaken. Further clinical effects included mild hemodynamic instability, acidosis, hypokalemia, leukocytosis, and fever. The patient's symptoms began to improve 48 h after admission and resolved fully within a week. Mercuric chloride has an estimated human fatal dose of between 1 and 4 g. Despite a reported ingestion of a potentially lethal dose and a high blood concentration, this patient experienced mild to moderate poisoning only and she responded to early and appropriate intervention. Mercuric chloride can produce a range of toxic effects including corrosive injury, severe gastrointestinal disturbances, acute renal failure, circulatory collapse, and eventual death. Treatment includes close observation and aggressive supportive care along with chelation, preferably with 2,3-dimercapto-1-propane sulfonate or 2,3-meso-dimercaptosuccinic acid.

  11. FPCAS3D User's guide: A three dimensional full potential aeroelastic program, version 1

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    1995-01-01

    The FPCAS3D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady three-dimensional full potential equation which is solved for a blade row. The structural analysis is based on a finite-element model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS3D code. A complete description of the input data is provided in this report. In addition, six examples, including inputs and outputs, are provided.

  12. Support for the existence of invertible maps between electronic densities and non-analytic 1-body external potentials in non-relativistic time-dependent quantum mechanics

    NASA Astrophysics Data System (ADS)

    Mosquera, Martín A.

    2017-10-01

    Provided the initial state, the Runge-Gross theorem establishes that the time-dependent (TD) external potential of a system of non-relativistic electrons determines uniquely their TD electronic density, and vice versa (up to a constant in the potential). This theorem requires the TD external potential and density to be Taylor-expandable around the initial time of the propagation. This paper presents an extension without this restriction. Given the initial state of the system and evolution of the density due to some TD scalar potential, we show that a perturbative (not necessarily weak) TD potential that induces a non-zero divergence of the external force-density, inside a small spatial subset and immediately after the initial propagation time, will cause a change in the density within that subset, implying that the TD potential uniquely determines the TD density. In this proof, we assume unitary evolution of wavefunctions and first-order differentiability (which does not imply analyticity) in time of the internal and external force-densities, electronic density, current density, and their spatial derivatives over the small spatial subset and short time interval.

  13. A tunable few electron triple quantum dot

    NASA Astrophysics Data System (ADS)

    Gaudreau, L.; Kam, A.; Granger, G.; Studenikin, S. A.; Zawadzki, P.; Sachrajda, A. S.

    2009-11-01

    In this paper, we report on a tunable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is important as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by complex charge transfer behavior.

  14. Internet of things and Big Data as potential solutions to the problems in waste electrical and electronic equipment management: An exploratory study.

    PubMed

    Gu, Fu; Ma, Buqing; Guo, Jianfeng; Summers, Peter A; Hall, Philip

    2017-10-01

    Management of Waste Electrical and Electronic Equipment (WEEE) is a vital part in solid waste management, there are still some difficult issues require attentionss. This paper investigates the potential of applying Internet of Things (IoT) and Big Data as the solutions to the WEEE management problems. The massive data generated during the production, consumption and disposal of Electrical and Electronic Equipment (EEE) fits the characteristics of Big Data. Through using the state-of-the-art communication technologies, the IoT derives the WEEE "Big Data" from the life cycle of EEE, and the Big Data technologies process the WEEE "Big Data" for supporting decision making in WEEE management. The framework of implementing the IoT and the Big Data technologies is proposed, with its multiple layers are illustrated. Case studies with the potential application scenarios of the framework are presented and discussed. As an unprecedented exploration, the combined application of the IoT and the Big Data technologies in WEEE management brings a series of opportunities as well as new challenges. This study provides insights and visions for stakeholders in solving the WEEE management problems under the context of IoT and Big Data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. All fiber-coupled, long-term stable timing distribution for free-electron lasers with few-femtosecond jitter

    PubMed Central

    Şafak, K.; Xin, M.; Callahan, P. T.; Peng, M. Y.; Kärtner, F. X.

    2015-01-01

    We report recent progress made in a complete fiber-optic, high-precision, long-term stable timing distribution system for synchronization of next generation X-ray free-electron lasers. Timing jitter characterization of the master laser shows less than 170-as RMS integrated jitter for frequencies above 10 kHz, limited by the detection noise floor. Timing stabilization of a 3.5-km polarization-maintaining fiber link is successfully achieved with an RMS drift of 3.3 fs over 200 h of operation using all fiber-coupled elements. This all fiber-optic implementation will greatly reduce the complexity of optical alignment in timing distribution systems and improve the overall mechanical and timing stability of the system. PMID:26798814

  16. All-integrated terahertz modulators

    NASA Astrophysics Data System (ADS)

    Degl'Innocenti, Riccardo; Kindness, Stephen J.; Beere, Harvey E.; Ritchie, David A.

    2018-01-01

    Terahertz (0.1-10 THz corresponding to vacuum wavelengths between 30 μm and 3 mm) research has experienced impressive progress in the last few decades. The importance of this frequency range stems from unique applications in several fields, including spectroscopy, communications, and imaging. THz emitters have experienced great development recently with the advent of the quantum cascade laser, the improvement in the frequency range covered by electronic-based sources, and the increased performance and versatility of time domain spectroscopic systems based on full-spectrum lasers. However, the lack of suitable active optoelectronic devices has hindered the ability of THz technologies to fulfill their potential. The high demand for fast, efficient integrated optical components, such as amplitude, frequency, and polarization modulators, is driving one of the most challenging research areas in photonics. This is partly due to the inherent difficulties in using conventional integrated modulation techniques. This article aims to provide an overview of the different approaches and techniques recently employed in order to overcome this bottleneck.

  17. Platelet-activating factor and group I metabotropic glutamate receptors interact for full development and maintenance of long-term potentiation in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1999-01-01

    In rat brainstem slices, we investigated the interaction between platelet-activating factor and group I metabotropic glutamate receptors in mediating long-term potentiation within the medial vestibular nuclei. We analysed the N1 field potential wave evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation. The group I metabotropic glutamate receptor antagonist, (R,S)-1-aminoindan-1,5-dicarboxylic acid, prevented long-term potentiation induced by a platelet-activating factor analogue [1-O-hexadecyl-2-O-(methylcarbamyl)-sn-glycero-3-phosphocholine], as well as the full development of potentiation, induced by high-frequency stimulation under the blocking agent for synaptosomal platelet-activating factor receptors (ginkolide B), at drug washout. However, potentiation directly induced by the group I glutamate metabotropic receptor agonist, (R,S)-3,5-dihydroxyphenylglycine, was reduced by ginkolide B. These findings suggest that platelet-activating factor, whether exogenous or released following potentiation induction, exerts its effect through presynaptic group I metabotropic glutamate receptors, mediating the increase of glutamate release. In addition, we found that this mechanism, which led to full potentiation through presynaptic group I metabotropic glutamate receptor activation, was inactivated soon after application of potentiation-inducing stimulus. In fact, the long-lasting block of the platelet-activating factor and metabotropic glutamate receptors prevented the full potentiation development and the induced potentiation progressively declined to null. Moreover, ginkolide B, given when high-frequency-dependent potentiation was established, only reduced it within 5 min after potentiation induction. We conclude that to fully develop vestibular long-term potentiation requires presynaptic events. Platelet-activating factor, released after the activation of postsynaptic mechanisms which induce potentiation, is necessary

  18. Gate-Sensing the Potential Landscape of a GaAs Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Croot, Xanthe; Mahoney, Alice; Pauka, Sebastian; Colless, James; Reilly, David; Watson, John; Fallahi, Saeed; Gardner, Geoff; Manfra, Michael; Lu, Hong; Gossard, Arthur

    In situ dispersive gate sensors hold potential as a means of enabling the scalable readout of quantum dot arrays. Sensitive to quantum capacitance, dispersive sensors have been used to detect inter- and intra-dot transitions in GaAs double quantum dots, and can distinguish the spin states of singlet triplet qubits. In addition, the gate-sensing technique is likely of value in probing the physics of Majorana zero modes in nanowire devices. Beyond the readout signatures associated with charge and spin configurations of qubits, gate-sensing is sensitive to trapped charge in the potential landscape. Here, we report gate-sensing signals arising from tunnelling of electrons between puddles of trapped charge in a GaAs 2DEG. We examine these signals in a family of different devices with varying mobilities, and as a function of temperature and bias. Implications for qubit readout using the gate-sensing technique are discussed.

  19. Electron transport through triangular potential barriers with doping-induced disorder

    NASA Astrophysics Data System (ADS)

    Elpelt, R.; Wolst, O.; Willenberg, H.; Malzer, S.; Döhler, G. H.

    2004-05-01

    Electron transport through single-, double-, and triple-barrier structures created by the insertion of suitably δ-doped layers in GaAs is investigated. The results are compared with experiments on barriers of similar shape, but obtained by linear grading of the Al fraction x in AlxGa1-xAs structures. In the case of the doping-induced space-charge potential it is found that the effective barrier height for transport is much lower than expected from a simple model, in which uniform distribution of the doping charge within the doped layers is assumed. This reduction is quantitatively explained by taking into account the random distribution of the acceptor atoms within the δp-doped layers, which results in large spatial fluctuations of the barrier potential. The transport turns out to be dominated by small regions around the energetically lowest saddle points of the random space-charge potential. Additionally, independent on the dimensionality of the transport [three-dimensional (3D) to 3D in the single barrier, from 3D through 2D to 3D in the double barrier, and from 3D through 2D through 2D to 3D in the triple-barrier structure], fingerprints of 2D subband resonances are neither experimentally observed nor theoretically expected in the doping-induced structures. This is attributed to the disorder-induced random spatial fluctuations of the subband energies in the n layers which are uncorrelated for neighboring layers. Our interpretations of the temperature-dependent current-voltage characteristics are corroborated by comparison with the experimental and theoretical results obtained from the corresponding fluctuation-free AlxGa1-xAs structures. Quantitative agreement between theory and experiment is observed in both cases.

  20. Observation of nanoscale magnetic fields using twisted electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grillo, Vincenzo; Harvey, Tyler R.; Venturi, Federico

    Electron waves give an unprecedented enhancement to the field of microscopy by providing higher resolving power compared to their optical counterpart. Further information about a specimen, such as electric and magnetic features, can be revealed in electron microscopy because electrons possess both a magnetic moment and charge. In-plane magnetic structures in materials can be studied experimentally using the effect of the Lorentz force. On the other hand, full mapping of the magnetic field has hitherto remained challenging. Here we measure a nanoscale out-of-plane magnetic field by interfering a highly twisted electron vortex beam with a reference wave. We implement amore » recently developed holographic technique to manipulate the electron wavefunction, which gives free electrons an additional unbounded quantized magnetic moment along their propagation direction. Our finding demonstrates that full reconstruction of all three components of nanoscale magnetic fields is possible without tilting the specimen.« less

  1. Observation of nanoscale magnetic fields using twisted electron beams

    DOE PAGES

    Grillo, Vincenzo; Harvey, Tyler R.; Venturi, Federico; ...

    2017-09-25

    Electron waves give an unprecedented enhancement to the field of microscopy by providing higher resolving power compared to their optical counterpart. Further information about a specimen, such as electric and magnetic features, can be revealed in electron microscopy because electrons possess both a magnetic moment and charge. In-plane magnetic structures in materials can be studied experimentally using the effect of the Lorentz force. On the other hand, full mapping of the magnetic field has hitherto remained challenging. Here we measure a nanoscale out-of-plane magnetic field by interfering a highly twisted electron vortex beam with a reference wave. We implement amore » recently developed holographic technique to manipulate the electron wavefunction, which gives free electrons an additional unbounded quantized magnetic moment along their propagation direction. Our finding demonstrates that full reconstruction of all three components of nanoscale magnetic fields is possible without tilting the specimen.« less

  2. Relative contribution of combined kinetic and exchange energy terms vs the electronic component of molecular electrostatic potential in hardness potential derivatives.

    PubMed

    Bhattacharjee, Rituparna; Roy, Ram Kinkar

    2013-11-14

    The relative contribution of the sum of kinetic [(10/9)CFρ(r)2/3] and exchange energy [(4/9)CXρ(r)1/3] terms to that of the electronic part of the molecular electrostatic potential [Vel(r)] in the variants of hardness potential is investigated to assess the proposed definition of Δ+h(k) = −[VelN+1(k) – VelN(k)] and Δ–h(k) = −[VelN(k) – VelN–1(k)] (Saha; et al. J. Comput. Chem. 2013, 34, 662). Some substituted benzenes and polycyclic aromatic hydrocarbons (PAHs) (undergoing electrophilic aromatic substitution), carboxylic acids, and their derivatives are chosen to carry out the theoretical investigation as stated above. Intra- and intermolecular reactivity trends generated by Δ+h(k) and Δ–h(k) are found to be satisfactory and are correlated reasonably well with experimental results.

  3. Evaluating 99mTc Auger electrons for targeted tumor radiotherapy by computational methods.

    PubMed

    Tavares, Adriana Alexandre S; Tavares, João Manuel R S

    2010-07-01

    Technetium-99m (99mTc) has been widely used as an imaging agent but only recently has been considered for therapeutic applications. This study aims to analyze the potential use of 99mTc Auger electrons for targeted tumor radiotherapy by evaluating the DNA damage and its probability of correct repair and by studying the cellular kinetics, following 99mTc Auger electron irradiation in comparison to iodine-131 (131I) beta minus particles and astatine-211 (211At) alpha particle irradiation. Computational models were used to estimate the yield of DNA damage (fast Monte Carlo damage algorithm), the probability of correct repair (Monte Carlo excision repair algorithm), and cell kinetic effects (virtual cell radiobiology algorithm) after irradiation with the selected particles. The results obtained with the algorithms used suggested that 99mTc CKMMX (all M-shell Coster-Kroning--CK--and super-CK transitions) electrons and Auger MXY (all M-shell Auger transitions) have a therapeutic potential comparable to high linear energy transfer 211At alpha particles and higher than 131I beta minus particles. All the other 99mTc electrons had a therapeutic potential similar to 131I beta minus particles. 99mTc CKMMX electrons and Auger MXY presented a higher probability to induce apoptosis than 131I beta minus particles and a probability similar to 211At alpha particles. Based on the results here, 99mTc CKMMX electrons and Auger MXY are useful electrons for targeted tumor radiotherapy.

  4. Aerodynamic analysis of three advanced configurations using the TranAir full-potential code

    NASA Technical Reports Server (NTRS)

    Madson, M. D.; Carmichael, R. L.; Mendoza, J. P.

    1989-01-01

    Computational results are presented for three advanced configurations: the F-16A with wing tip missiles and under wing fuel tanks, the Oblique Wing Research Aircraft, and an Advanced Turboprop research model. These results were generated by the latest version of the TranAir full potential code, which solves for transonic flow over complex configurations. TranAir embeds a surface paneled geometry definition in a uniform rectangular flow field grid, thus avoiding the use of surface conforming grids, and decoupling the grid generation process from the definition of the configuration. The new version of the code locally refines the uniform grid near the surface of the geometry, based on local panel size and/or user input. This method distributes the flow field grid points much more efficiently than the previous version of the code, which solved for a grid that was uniform everywhere in the flow field. TranAir results are presented for the three configurations and are compared with wind tunnel data.

  5. Neutral beamline with ion energy recovery based on magnetic blocking of electrons

    DOEpatents

    Stirling, W.L.

    1980-07-01

    A neutral beamline generator with energy recovery of the full-energy ion component of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the elecrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.

  6. Determination of adiabatic ionization potentials and electron affinities of energetic molecules with the Gaussian-4 method

    NASA Astrophysics Data System (ADS)

    Manaa, M. Riad

    2017-06-01

    Adiabatic ionization potentials (IPad) and electron affinities (EAad) are determined with the Gaussian-4 (G4) method for the energetic molecules PETN, RDX, β-δ-HMX, CL-17, TNB, TNT, CL-14, DADNE, TNA, and TATB. The IPad and EAad values are in the range of 8.43-11.73 and 0.74-2.86 eV, respectively. Variations are due to substitutional effects of electron withdrawing and donating functional groups. Enthalpies of formation are also determined for several of these molecules to augment the list of recently reported G4 values. The calculated IPad and EAad provide quantitative assessment of such molecular properties as chemical hardness, molecular electronegativity, and "intrinsic" molecular physical hardness.

  7. Photon absorption potential coefficient as a tool for materials engineering

    NASA Astrophysics Data System (ADS)

    Akande, Raphael Oluwole; Oyewande, Emmanuel Oluwole

    2016-09-01

    Different atoms achieve ionizations at different energies. Therefore, atoms are characterized by different responses to photon absorption in this study. That means there exists a coefficient for their potential for photon absorption from a photon source. In this study, we consider the manner in which molecular constituents (atoms) absorb photon from a photon source. We observe that there seems to be a common pattern of variation in the absorption of photon among the electrons in all atoms on the periodic table. We assume that the electrons closest to the nucleus (En) and the electrons closest to the outside of the atom (Eo) do not have as much potential for photon absorption as the electrons at the middle of the atom (Em). The explanation we give to this effect is that the En electrons are embedded within the nuclear influence, and similarly, Eo electrons are embedded within the influence of energies outside the atom that there exists a low potential for photon absorption for them. Unlike En and Eo, Em electrons are conditioned, such that there is a quest for balance between being influenced either by the nuclear force or forces external to the atom. Therefore, there exists a higher potential for photon absorption for Em electrons than for En and Eo electrons. The results of our derivations and analysis always produce a bell-shaped curve, instead of an increasing curve as in the ionization energies, for all elements in the periodic table. We obtained a huge data of PAPC for each of the several materials considered. The point at which two or more PAPC values cross one another is termed to be a region of conflicting order of ionization, where all the atoms absorb equal portion of the photon source at the same time. At this point, a greater fraction of the photon source is pumped into the material which could lead to an explosive response from the material. In fact, an unimaginable and unreported phenomenon (in physics) could occur, when two or more PAPCs cross, and

  8. Potentials of Mean Force With Ab Initio Mixed Hamiltonian Models of Solvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupuis, Michel; Schenter, Gregory K.; Garrett, Bruce C.

    2003-08-01

    We give an account of a computationally tractable and efficient procedure for the calculation of potentials of mean force using mixed Hamiltonian models of electronic structure where quantum subsystems are described with computationally intensive ab initio wavefunctions. The mixed Hamiltonian is mapped into an all-classical Hamiltonian that is amenable to a thermodynamic perturbation treatment for the calculation of free energies. A small number of statistically uncorrelated (solute-solvent) configurations are selected from the Monte Carlo random walk generated with the all-classical Hamiltonian approximation. Those are used in the averaging of the free energy using the mixed quantum/classical Hamiltonian. The methodology ismore » illustrated for the micro-solvated SN2 substitution reaction of methyl chloride by hydroxide. We also compare the potential of mean force calculated with the above protocol with an approximate formalism, one in which the potential of mean force calculated with the all-classical Hamiltonian is simply added to the energy of the isolated (non-solvated) solute along the reaction path. Interestingly the latter approach is found to be in semi-quantitative agreement with the full mixed Hamiltonian approximation.« less

  9. Wide-bandwidth electron bolometric mixers - A 2DEG prototype and potential for low-noise THz receivers

    NASA Technical Reports Server (NTRS)

    Yang, Jian-Xun; Agahi, Farid; Dai, Dong; Musante, Charles F.; Grammer, Wes; Lau, Kei M.; Yngvesson, K. S.

    1993-01-01

    This paper presents a new type of electron bolometric ('hot electron') mixer. We have demonstrated a 3 order-of-magnitude improvement in the bandwidth compared with previously known types of electron bolometric mixers, by using the two-dimensional electron gas (2DEG) medium at the heterointerface between AlGaAs and GaAs. We have tested both in-house MOCVD-grown material and MBE material, with similar results. The conversion loss (Lc) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that Lc can be decreased to about 10 dB in future devices. Calculated and measured curves of Lc versus P(LO), and I(DC), respectively, agree well. We argue that there are several different configurations of electron bolometric mixers, which will all show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.

  10. ALL-ELECTRONIC DROPLET GENERATION ON-CHIP WITH REAL-TIME FEEDBACK CONTROL FOR EWOD DIGITIAL MICROFLUIDICS

    PubMed Central

    Gong, Jian; Kim, Chang-Jin “CJ”

    2009-01-01

    Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabricaion and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1:x (x < 1) mixing, in comparison to the previously considered n:m mixing (i.e., n and m unit droplets). PMID:18497909

  11. All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics.

    PubMed

    Gong, Jian; Kim, Chang-Jin C J

    2008-06-01

    Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabrication and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1 : x (x < 1) mixing, in comparison to the previously considered n : m mixing (i.e., n and m unit droplets).

  12. Full-Authority Fault-Tolerant Electronic Engine Control System for Variable Cycle Engines.

    DTIC Science & Technology

    1982-04-01

    single internally self-checked VLSI micro - processor . The selected configuration is an externally checked pair of com- mercially available...Electronic Engine Control FPMH Failures per Million Hours FTMP Fault Tolerant Multi- Processor FTSC Fault Tolerant Spaceborn Computer GRAMP Generalized...Removal * MTBR Mean Time Between Repair MTTF Mean Time to Failure xiii List of Abbreviations (continued) - NH High Pressure Rotor Speed O&S Operating

  13. Predicting Reduction Rates of Energetic Nitroaromatic Compounds Using Calculated One-Electron Reduction Potentials

    DOE PAGES

    Salter-Blanc, Alexandra; Bylaska, Eric J.; Johnston, Hayley; ...

    2015-02-11

    The evaluation of new energetic nitroaromatic compounds (NACs) for use in green munitions formulations requires models that can predict their environmental fate. The susceptibility of energetic NACs to nitro reduction might be predicted from correlations between rate constants (k) for this reaction and one-electron reduction potentials (E1NAC) / 0.059 V, but the mechanistic implications of such correlations are inconsistent with evidence from other methods. To address this inconsistency, we have reevaluated existing kinetic data using a (non-linear) free-energy relationship (FER) based on the Marcus theory of outer-sphere electron transfer. For most reductants, the results are inconsistent with rate limitation bymore » an initial, outer-sphere electron transfer, suggesting that the strong correlation between k and E1NAC is justified only as an empirical model. This empirical correlation was used to calibrate a new quantitative structure-activity relationship (QSAR) using previously reported values of k for non-energetic NAC reduction by Fe(II) porphyrin and newly reported values of E1NAC determined using density functional theory at the B3LYP/6-311++G(2d,2p) level with the COSMO solvation model. The QSAR was then validated for energetic NACs using newly measured kinetic data for 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,4-dinitroanisole (DNAN). The data show close agreement with the QSAR, supporting its applicability to energetic NACs.« less

  14. Wedge-Shaped GaN Nanowalls: A Potential Candidate for Two-Dimensional Electronics and Spintronics

    NASA Astrophysics Data System (ADS)

    Deb, Swarup; Dhar, Subhabrata

    Schrödingerand Poisson equations are solved self-consistently in order to obtain the potential and charge density distribution in n-type GaN nanowalls tapered along c-axis by different angles. The study shows two-dimensional (2D) quantum confinement of electrons in the central vertical plane of the wall for the entire range of tapering. Calculation of room temperature electron mobility in the 2D channel shows a steady decrease with the increase of the inclination angle of the side facets with respect to the base. However, it is interesting to note that the mobility remains to be much larger than that of bulk GaN even for the inclination angle of 65∘. The properties of high mobility and the vertical orientation of the 2DEG plane in this system can be exploited in fabricating highly conducting transparent interconnects and field effect transistors, which can lead to large scale integration of 2D devices in future.

  15. Electrostatic potential jump across fast-mode collisionless shocks

    NASA Technical Reports Server (NTRS)

    Mandt, M. E.; Kan, J. R.

    1991-01-01

    The electrostatic potential jump across fast-mode collisionless shocks is examined by comparing published observations, hybrid simulations, and a simple model, in order to better characterize its dependence on the various shock parameters. In all three, it is assumed that the electrons can be described by an isotropic power-law equation of state. The observations show that the cross-shock potential jump correlates well with the shock strength but shows very little correlation with other shock parameters. Assuming that the electrons obey an isotropic power law equation of state, the correlation of the potential jump with the shock strength follows naturally from the increased shock compression and an apparent dependence of the power law exponent on the Mach number which the observations indicate. It is found that including a Mach number dependence for the power law exponent in the electron equation of state in the simple model produces a potential jump which better fits the observations. On the basis of the simulation results and theoretical estimates of the cross-shock potential, it is discussed how the cross-shock potential might be expected to depend on the other shock parameters.

  16. Full band all-sky search for periodic gravitational waves in the O1 LIGO data

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H. Y.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciecielag, P.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E. T.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorosh, O.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pisarski, A.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-05-01

    We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0 ,+0.1 ] ×1 0-8 Hz /s . Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h0 is ˜4 ×1 0-25 near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3 ×1 0-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ˜1.5 ×1 0-25.

  17. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics

    NASA Astrophysics Data System (ADS)

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M.; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-01

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV–vis spectroscopy and AFM measurements show that this functionality stems from the films’ ability to structurally tune their HOMO–LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures’ plausibility for on-chip molecular electronics operative at room temperature.

  18. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics.

    PubMed

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-06

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV-vis spectroscopy and AFM measurements show that this functionality stems from the films' ability to structurally tune their HOMO-LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO 2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures' plausibility for on-chip molecular electronics operative at room temperature.

  19. Electron solvation and localization at interfaces

    NASA Astrophysics Data System (ADS)

    Harris, Charles B.; Szymanski, Paul; Garrett-Roe, Sean; Miller, Andre D.; Gaffney, Kelly J.; Liu, Simon H.; Bezel, Ilya

    2003-12-01

    Two-photon photoemission of thiolate/Ag(111), nitrile/Ag(111), and alcohol/Ag(111) interfaces elucidates electron solvation and localization in two dimensions. For low coverages of thiolates on Ag(111), the occupied (HOMO) and unoccupied (LUMO) electronic states of the sulfer-silver bond are localized due to the lattice gas structure of the adsorbate. As the coverage saturates and the adsorbate-adsorbate nearest neighbor distance decreases, the HOMO and LUMO delocalize across many adsorbate molecules. Alcohol- and nitrile-covered Ag(111) surfaces solvate excess image potential state (IPS) electrons. In the case of alcohol-covered surfaces, this solvation is due to a shift in the local workfunction of the surface. For two-monolayer coverages of nitriles/Ag(111), localization accompanies solvation of the IPS. The size of the localized electron can be estimated by Fourier transformation of the wavefunction from momentum- to position-space. The IPS electron localizes to 15 +/- 4 angstroms full-width at half maximum in the plane of the surface, i.e., to a single lattice site.

  20. Excess electrons in methanol clusters: Beyond the one-electron picture

    NASA Astrophysics Data System (ADS)

    Pohl, Gábor; Mones, Letif; Turi, László

    2016-10-01

    We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, ("separators=" CH 3 OH ) n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.

  1. Excess electrons in methanol clusters: Beyond the one-electron picture.

    PubMed

    Pohl, Gábor; Mones, Letif; Turi, László

    2016-10-28

    We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, CH 3 OH n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.

  2. The effect of potential electronic nicotine delivery system regulations on nicotine product selection.

    PubMed

    Pesko, Michael F; Kenkel, Donald S; Wang, Hua; Hughes, Jenna M

    2016-04-01

    To estimate the effect of potential regulations of electronic nicotine delivery systems (ENDS) among adult smokers, including increasing taxes, reducing flavor availability and adding warning labels communicating various levels of risk. We performed a discrete choice experiment (DCE) among a national sample of 1200 adult smokers. We examined heterogeneity in policy responses by age, cigarette quitting interest and current ENDS use. Our experiment overlapped January 2015 by design, providing exogenous variation in cigarette quitting interest from New Year resolutions. KnowledgePanel, an online panel of recruited respondents. A total of 1200 adult smokers from the United States. Hypothetical purchase choice of cigarettes, nicotine replacement therapy and a disposable ENDS. Increasing ENDS prices from $3 to $6 was associated with a 13.6 percentage point reduction in ENDS selection (P < 0.001). Restricting flavor availability in ENDS to tobacco and menthol was associated with a 2.1 percentage point reduction in ENDS selection (P < 0.001). The proposed Food and Drug Administration (FDA) warning label was associated with a 1.1 percentage point reduction in ENDS selection (P < 0.05) and the MarkTen warning label with a 5.1 percentage point reduction (P < 0.001). We estimated an ENDS price elasticity of -1.8 (P < 0.001) among adult smokers. Statistically significant interaction terms (P < 0.001) imply that price responsiveness was higher among adult smokers 18-24 years of age, smokers who have vaped over the last month and smokers with above the median quitting interest. Young adult smokers were 3.7 percentage points more likely to choose ENDS when multiple flavors were available than older adults (P < 0.001). Young adult smokers and those with above the median cigarette quitting interest were also more likely to reduce cigarette selection and increase ENDS selection in January 2015 (P < 0.001), potentially in response to New Year's resolutions to quit

  3. Electron-Electron Interactions in Artificial Graphene

    NASA Astrophysics Data System (ADS)

    Räsänen, E.; Rozzi, C. A.; Pittalis, S.; Vignale, G.

    2012-06-01

    Recent advances in the creation and modulation of graphenelike systems are introducing a science of “designer Dirac materials”. In its original definition, artificial graphene is a man-made nanostructure that consists of identical potential wells (quantum dots) arranged in an adjustable honeycomb lattice in the two-dimensional electron gas. As our ability to control the quality of artificial graphene samples improves, so grows the need for an accurate theory of its electronic properties, including the effects of electron-electron interactions. Here we determine those effects on the band structure and on the emergence of Dirac points.

  4. Materials for bioresorbable radio frequency electronics.

    PubMed

    Hwang, Suk-Won; Huang, Xian; Seo, Jung-Hun; Song, Jun-Kyul; Kim, Stanley; Hage-Ali, Sami; Chung, Hyun-Joong; Tao, Hu; Omenetto, Fiorenzo G; Ma, Zhenqiang; Rogers, John A

    2013-07-12

    Materials, device designs and manufacturing approaches are presented for classes of RF electronic components that are capable of complete dissolution in water or biofluids. All individual passive/active components as well as system-level examples such as wireless RF energy harvesting circuits exploit active materials that are biocompatible. The results provide diverse building blocks for physically transient forms of electronics, of particular potential value in bioresorbable medical implants with wireless power transmission and communication capabilities. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Completion of a Full Course of Primary Schooling among All Children Everywhere by 2015: A Case of Sub-Saharan Africa

    ERIC Educational Resources Information Center

    Wamala, Robert

    2013-01-01

    Achieving the United Nations Millennium Development Goals (MDGs) remains a major challenge, particularly in developing countries. Specifically, achieving the target of completing a full course of primary schooling among all children, which is goal two, is a major challenge for Sub-Saharan Africa. Though literature consensually suggests that the…

  6. Visualizing changes in electron distribution in coupled chains of cytochrome bc(1) by modifying barrier for electron transfer between the FeS cluster and heme c(1).

    PubMed

    Cieluch, Ewelina; Pietryga, Krzysztof; Sarewicz, Marcin; Osyczka, Artur

    2010-02-01

    Cytochrome c(1) of Rhodobacter (Rba.) species provides a series of mutants which change barriers for electron transfer through the cofactor chains of cytochrome bc(1) by modifying heme c(1) redox midpoint potential. Analysis of post-flash electron distribution in such systems can provide useful information about the contribution of individual reactions to the overall electron flow. In Rba. capsulatus, the non-functional low-potential forms of cytochrome c(1) which are devoid of the disulfide bond naturally present in this protein revert spontaneously by introducing a second-site suppression (mutation A181T) that brings the potential of heme c(1) back to the functionally high levels, yet maintains it some 100 mV lower from the native value. Here we report that the disulfide and the mutation A181T can coexist in one protein but the mutation exerts a dominant effect on the redox properties of heme c(1) and the potential remains at the same lower value as in the disulfide-free form. This establishes effective means to modify a barrier for electron transfer between the FeS cluster and heme c(1) without breaking disulfide. A comparison of the flash-induced electron transfers in native and mutated cytochrome bc(1) revealed significant differences in the post-flash equilibrium distribution of electrons only when the connection of the chains with the quinone pool was interrupted at the level of either of the catalytic sites by the use of specific inhibitors, antimycin or myxothiazol. In the non-inhibited system no such differences were observed. We explain the results using a kinetic model in which a shift in the equilibrium of one reaction influences the equilibrium of all remaining reactions in the cofactor chains. It follows a rather simple description in which the direction of electron flow through the coupled chains of cytochrome bc(1) exclusively depends on the rates of all reversible partial reactions, including the Q/QH2 exchange rate to/from the catalytic sites

  7. Quasi-experimental study designs series-paper 13: realizing the full potential of quasi-experiments for health research.

    PubMed

    Rockers, Peter C; Tugwell, Peter; Røttingen, John-Arne; Bärnighausen, Till

    2017-09-01

    Although the number of quasi-experiments conducted by health researchers has increased in recent years, there clearly remains unrealized potential for using these methods for causal evaluation of health policies and programs globally. This article proposes five prescriptions for capturing the full value of quasi-experiments for health research. First, new funding opportunities targeting proposals that use quasi-experimental methods should be made available to a broad pool of health researchers. Second, administrative data from health programs, often amenable to quasi-experimental analysis, should be made more accessible to researchers. Third, training in quasi-experimental methods should be integrated into existing health science graduate programs to increase global capacity to use these methods. Fourth, clear guidelines for primary research and synthesis of evidence from quasi-experiments should be developed. Fifth, strategic investments should be made to continue to develop new innovations in quasi-experimental methodologies. Tremendous opportunities exist to expand the use of quasi-experimental methods to increase our understanding of which health programs and policies work and which do not. Health researchers should continue to expand their commitment to rigorous causal evaluation with quasi-experimental methods, and international institutions should increase their support for these efforts. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors.

    PubMed

    Lv, Tian; Liu, Mingxian; Zhu, Dazhang; Gan, Lihua; Chen, Tao

    2018-04-01

    Because of the rapid development of flexible electronics, it is important to develop high-performance flexible energy-storage devices, such as supercapacitors and metal-ion batteries. Compared with metal-ion batteries, supercapacitors exhibit higher power density, longer cycling life, and excellent safety, and they can be easily fabricated into all-solid-state devices by using polymer gel electrolytes. All-solid-state supercapacitors (ASSSCs) have the advantages of being lightweight and flexible, thus showing great potential to be used as power sources for flexible portable electronics. Because of their high specific surface area and excellent electrical and mechanical properties, nanocarbon materials (such as carbon nanotubes, graphene, carbon nanofibers, and so on) have been widely used as efficient electrode materials for flexible ASSSCs, and great achievements have been obtained. Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices. Current challenges and future perspectives are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Chemical Bonding of AlH3 Hydride by Al-L2,3 Electron Energy-Loss Spectra and First-Principles Calculations

    PubMed Central

    Tatsumi, Kazuyoshi; Muto, Shunsuke; Ikeda, Kazutaka; Orimo, Shin-Ichi

    2012-01-01

    In a previous study, we used transmission electron microscopy and electron energy-loss (EEL) spectroscopy to investigate dehydrogenation of AlH3 particles. In the present study, we systematically examine differences in the chemical bonding states of Al-containing compounds (including AlH3) by comparing their Al-L2,3 EEL spectra. The spectral chemical shift and the fine peak structure of the spectra were consistent with the degree of covalent bonding of Al. This finding will be useful for future nanoscale analysis of AlH3 dehydrogenation toward the cell. PMID:28816996

  10. Electronic field emission models beyond the Fowler-Nordheim one

    NASA Astrophysics Data System (ADS)

    Lepetit, Bruno

    2017-12-01

    We propose several quantum mechanical models to describe electronic field emission from first principles. These models allow us to correlate quantitatively the electronic emission current with the electrode surface details at the atomic scale. They all rely on electronic potential energy surfaces obtained from three dimensional density functional theory calculations. They differ by the various quantum mechanical methods (exact or perturbative, time dependent or time independent), which are used to describe tunneling through the electronic potential energy barrier. Comparison of these models between them and with the standard Fowler-Nordheim one in the context of one dimensional tunneling allows us to assess the impact on the accuracy of the computed current of the approximations made in each model. Among these methods, the time dependent perturbative one provides a well-balanced trade-off between accuracy and computational cost.

  11. Reconfigurable Full-Page Braille Displays

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas

    1994-01-01

    Electrically actuated braille display cells of proposed type arrayed together to form full-page braille displays. Like other braille display cells, these provide changeable patterns of bumps driven by digitally recorded text stored on magnetic tapes or in solid-state electronic memories. Proposed cells contain electrorheological fluid. Viscosity of such fluid increases in strong electrostatic field.

  12. Photosensitized electron transfer processes in SiO2 colloids and sodium lauryl sulfate micellar systems: Correlation of quantum yields with interfacial surface potentials

    PubMed Central

    Laane, Colja; Willner, Itamar; Otvos, John W.; Calvin, Melvin

    1981-01-01

    The effectiveness of negatively charged colloidal SiO2 particles in controlling photosensitized electron transfer reactions has been studied and compared with that of the negatively charged sodium lauryl sulfate (NaLauSO4) micellar system. In particular, the photosensitized reduction of the zwitterionic electron acceptor propylviologen sulfonate (PVS0) with tris(2,2′-bipyridinium)ruthenium(II) [Ru(bipy)32+] as the sensitizer and triethanolamine as the electron donor is found to have a quantum yield of 0.033 for formation of the radical anion (PVS[unk]) in the SiO2 colloid compared with 0.005 in the homogeneous system and 0.0086 in a NaLauSO4 micellar solution. The higher quantum yields obtained with the SiO2 colloidal system are attributed to substantial stabilization against back reaction of the intermediate photoproducts—i.e., Ru(bipy)33+ and PVS[unk]—by electrostatic repulsion of the reduced electron acceptor from the negatively charged particle surface. The binding properties of the SiO2 particles and NaLauSO4 micelles were investigated by flow dialysis. The results show that the sensitizer binds to both interfaces and that the SiO2 interface is characterized by a much higher surface potential than the micellar interface (≈-170 mV vs. -85 mV). The effect of ionic strength on the surface potential was estimated from the Gouy-Chapman theory, and the measured quantum yields of photosensitized electron transfer were correlated with surface potential at different ionic strengths. This correlation shows that the quantum yield is not affected by surface potentials smaller than ≈-40 mV. At larger potentials, the quantum yield increases rapidly. The quantum yield obtained in the micellar system at different strengths fits nicely on the correlation curve for the colloid SiO2 system. These results indicate that the surface potential is the dominant factor in the quantum yield improvement for PVS0 reduction. PMID:16593095

  13. The quantum dynamics of electronically nonadiabatic chemical reactions

    NASA Technical Reports Server (NTRS)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  14. Electronic Structure of Semiconductor Interfaces.

    DTIC Science & Technology

    1984-11-01

    Workshop on Effective One-Electron Potentials In Real Materials, Ossining , New York, Mar. 21-22, 1980 Member, Organizing Committee, Annual Conferences on...Workshop on Effective One-Electron Potentials in Real Materials, Ossining , New York, Mar. 21-22, 1980 (Invited Paper) Electronic Structure of

  15. Is it too early to move to full electronic PROM data collection?: A randomized controlled trial comparing PROM's after hallux valgus captured by e-mail, traditional mail and telephone.

    PubMed

    Palmen, Leonieke N; Schrier, Joost C M; Scholten, Ruben; Jansen, Justus H W; Koëter, Sander

    2016-03-01

    Patient reported outcome measures (PROM's) after hallux valgus surgery are used to rate the effectiveness as perceived by the patient. The interpretability of these PROM's is highly dependent on participation rate. Data capture method may be an important factor contributing to the response rate. We investigated the effect on response rate of traditional paper mail, telephone and e-mail PROM's after hallux valgus surgery. All consecutive patients operated between January and September 2013, were identified. Included patients were randomized by envelope in three groups: traditional pen and paper mail, e-mail and telephone. They were asked to fill in a FFI and EQ-5D. Two weeks later non-responders were sent a reminder. Of the 73 included patients, 25 were approached by mail, 24 by e-mail and 24 patients by telephone. The response rate on traditional mail was highest (88%), while response on e-mail was lowest (33%). Response rate on telephone was also high (79%). Response rate on traditional mail and telephone was significantly higher (p<0.001) than response on e-mail. Though electronic data collection has enormous potential, this study shows that e-mail yields unacceptable low response rates. It is too early to replace traditional pen-and-paper PROM's by electronic questionnaires. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  16. Development of an All Solid State 6 kHz Pulse Generator for Driving Free Electron Laser Amplifiers

    DTIC Science & Technology

    1990-07-16

    programs. 1-6 SCIENCE RESEARCH LABORATORY In these efforts, Science Research Laboratory is exploiting recent progress in Silicon Con- trolled Rectifier...electrons in silicon as opposed to the low pressure gas in the thyratron. In addition these all-solid-state SCR-switched drivers can be engineered to...nsec PFN 2-5 C Li Figure 2.3: Electrical schematic and cross-sectional view of SNOMAD-11 SCR corn - mutated pulse compression driver. 2-5 SCIENCE

  17. Shaping of nested potentials for electron cooling of highly-charged ions in a cooler Penning trap

    NASA Astrophysics Data System (ADS)

    Paul, Stefan; Kootte, Brian; Lascar, Daniel; Gwinner, Gerald; Dilling, Jens; Titan Collaboration

    2016-09-01

    TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) is dedicated to mass spectrometry and decay spectroscopy of short-lived radioactive nuclides in a series of ion traps including a precision Penning trap. In order to boost the achievable precision of mass measurements TITAN deploys an Electron Beam Ion Trap (EBIT) providing Highly-Charged Ions (HCI). However, the charge breeding process in the EBIT leads to an increase in the ion bunch's energy spread which is detrimental to the overall precision gain. To reduce this effect a new cylindrical Cooler PEnning Trap (CPET) is being commissioned to sympathetically cool the HCI via a simultaneously trapped electron plasma. Simultaneous trapping of ions and electrons requires a high level of control over the nested potential landscape and sophisticated switching schemes for the voltages on CPET's multiple ring electrodes. For this purpose, we are currently setting up a new experimental control system for multi-channel voltage switching. The control system employs a Raspberry Pi communicating with a digital-to-analog board via a serial peripheral interface. We report on the implementation of the voltage control system and its performance with respect to electron and ion manipulation in CPET. University of British Columbia, Vancouver, BC, Canada.

  18. Two-electron Reduction versus One-electron Oxidation of the Type 3 Pair in the Multicopper Oxidases

    PubMed Central

    Kjaergaard, Christian H.; Jones, Stephen M.; Gounel, Sébastien; Mano, Nicolas; Solomon, Edward I.

    2015-01-01

    Multicopper Oxidases (MCOs) utilize an electron shuttling Type 1 Cu (T1) site in conjunction with a mononuclear Type 2 (T2) and a binuclear Type 3 (T3) site, arranged in a trinuclear copper cluster (TNC), to reduce O2 to H2O. Reduction of O2 occurs with limited overpotential indicating that all the coppers in the active site can be reduced via high-potential electron donors. Two forms of the resting enzyme have been observed in MCOs: the Alternative Resting form (AR), where only one of the three TNC Cu’s is oxidized, and the Resting Oxidized form (RO), where all three TNC Cu’s are oxidized. In contrast to the AR form, we show that in the RO form of a high-potential MCO, the binuclear T3 Cu(II) site can be reduced via the 700 mV T1 Cu. Systematic spectroscopic evaluation reveals that this proceeds by a two-electron process, where delivery of the first electron, forming a high energy, meta-stable half reduced T3 state, is followed by the rapid delivery of a second energetically favorable electron to fully reduce the T3 site. Alternatively, when this fully reduced binuclear T3 site is oxidized via the T1 Cu, a different thermodynamically favored half oxidized T3 form, i.e. the AR site, is generated. This behavior is evaluated by DFT calculations, which reveal that the protein backbone plays a significant role in controlling the environment of the active site coppers. This allows for the formation of the meta-stable, half reduced state and thus the complete reductive activation of the enzyme for catalysis. PMID:26075678

  19. Charge transfer excitons and image potential states on organic semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Qingxin; Muntwiler, Matthias; Zhu, X.-Y.

    2009-09-01

    We report two types of excited electronic states on organic semiconductor surfaces: image potential states (IPS) and charge transfer excitons (CTE). In the former, an excited electron is localized in the surface-normal direction by the image potential and delocalized in the surface plane. In the latter, the electron is localized in all directions by both the image potential and the Coulomb potential from a photogenerated hole on an organic molecule. We use crystalline pentacene and tetracene surfaces as model systems, and time- and angle-resolved two-photon photoemission spectroscopy to probe the energetics and dynamics of both the IPS and the CTE states. On either pentacene or tetracene surfaces, we observe delocalized image bands and a series of CT excitons with binding energies <0.5eV below the image-band minimum. The binding energies of these CT excitons agree well with solutions to the atomic-H-like Schrödinger equation based on the image potential and the electron-hole Coulomb potential. We hypothesize that the formation of CT excitons should be general to the surfaces of organic semiconductors where the relatively narrow valance-band width facilitates the localization of the hole and the low dielectric constant ensures strong electron-hole attraction.

  20. Full cycle rapid scan EPR deconvolution algorithm

    NASA Astrophysics Data System (ADS)

    Tseytlin, Mark

    2017-08-01

    Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan

  1. Incidence of potentially avoidable urgent readmissions and their relation to all-cause urgent readmissions

    PubMed Central

    van Walraven, Carl; Jennings, Alison; Taljaard, Monica; Dhalla, Irfan; English, Shane; Mulpuru, Sunita; Blecker, Saul; Forster, Alan J.

    2011-01-01

    Background: Urgent, unplanned hospital readmissions are increasingly being used to gauge the quality of care. We reviewed urgent readmissions to determine which were potentially avoidable and compared rates of all-cause and avoidable readmissions. Methods: In a multicentre, prospective cohort study, we reviewed all urgent readmissions that occurred within six months among patients discharged to the community from 11 teaching and community hospitals between October 2002 and July 2006. Summaries of the readmissions were reviewed by at least four practising physicians using standardized methods to judge whether the readmission was an adverse event (poor clinical outcome due to medical care) and whether the adverse event could have been avoided. We used a latent class model to determine whether the probability that each readmission was truly avoidable exceeded 50%. Results: Of the 4812 patients included in the study, 649 (13.5%, 95% confidence interval [CI] 12.5%–14.5%) had an urgent readmission within six months after discharge. We considered 104 of them (16.0% of those readmitted, 95% CI 13.3%–19.1%; 2.2% of those discharged, 95% CI 1.8%–2.6%) to have had a potentially avoidable readmission. The proportion of patients who had an urgent readmission varied significantly by hospital (range 7.5%–22.5%; χ2 = 92.9, p < 0.001); the proportion of readmissions deemed avoidable did not show significant variation by hospital (range 1.2%–3.7%; χ2 = 12.5, p < 0.25). We found no association between the proportion of patients who had an urgent readmission and the proportion of patients who had an avoidable readmission (Pearson correlation 0.294; p = 0.38). In addition, we found no association between hospital rankings by proportion of patients readmitted and rankings by proportion of patients with an avoidable readmission (Spearman correlation coefficient 0.28, p = 0.41). Interpretation: Urgent readmissions deemed potentially avoidable were relatively uncommon

  2. Structure of the full-length TRPV2 channel by cryo-EM

    NASA Astrophysics Data System (ADS)

    Huynh, Kevin W.; Cohen, Matthew R.; Jiang, Jiansen; Samanta, Amrita; Lodowski, David T.; Zhou, Z. Hong; Moiseenkova-Bell, Vera Y.

    2016-03-01

    Transient receptor potential (TRP) proteins form a superfamily Ca2+-permeable cation channels regulated by a range of chemical and physical stimuli. Structural analysis of a `minimal' TRP vanilloid subtype 1 (TRPV1) elucidated a mechanism of channel activation by agonists through changes in its outer pore region. Though homologous to TRPV1, other TRPV channels (TRPV2-6) are insensitive to TRPV1 activators including heat and vanilloids. To further understand the structural basis of TRPV channel function, we determined the structure of full-length TRPV2 at ~5 Å resolution by cryo-electron microscopy. Like TRPV1, TRPV2 contains two constrictions, one each in the pore-forming upper and lower gates. The agonist-free full-length TRPV2 has wider upper and lower gates compared with closed and agonist-activated TRPV1. We propose these newly revealed TRPV2 structural features contribute to diversity of TRPV channels.

  3. Structure of the full-length TRPV2 channel by cryo-EM.

    PubMed

    Huynh, Kevin W; Cohen, Matthew R; Jiang, Jiansen; Samanta, Amrita; Lodowski, David T; Zhou, Z Hong; Moiseenkova-Bell, Vera Y

    2016-03-29

    Transient receptor potential (TRP) proteins form a superfamily Ca(2+)-permeable cation channels regulated by a range of chemical and physical stimuli. Structural analysis of a 'minimal' TRP vanilloid subtype 1 (TRPV1) elucidated a mechanism of channel activation by agonists through changes in its outer pore region. Though homologous to TRPV1, other TRPV channels (TRPV2-6) are insensitive to TRPV1 activators including heat and vanilloids. To further understand the structural basis of TRPV channel function, we determined the structure of full-length TRPV2 at ∼5 Å resolution by cryo-electron microscopy. Like TRPV1, TRPV2 contains two constrictions, one each in the pore-forming upper and lower gates. The agonist-free full-length TRPV2 has wider upper and lower gates compared with closed and agonist-activated TRPV1. We propose these newly revealed TRPV2 structural features contribute to diversity of TRPV channels.

  4. Mean-trajectory approximation for electronic and vibrational-electronic nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Loring, Roger F.

    2017-04-01

    Mean-trajectory approximations permit the calculation of nonlinear vibrational spectra from semiclassically quantized trajectories on a single electronically adiabatic potential surface. By describing electronic degrees of freedom with classical phase-space variables and subjecting these to semiclassical quantization, mean-trajectory approximations may be extended to compute both nonlinear electronic spectra and vibrational-electronic spectra. A general mean-trajectory approximation for both electronic and nuclear degrees of freedom is presented, and the results for purely electronic and for vibrational-electronic four-wave mixing experiments are quantitatively assessed for harmonic surfaces with linear electronic-nuclear coupling.

  5. Ultrafast dynamics of photogenerated electrons in CdS nanocluster multilayers assembled on solid substrates: effects of assembly and electrode potential.

    PubMed

    Yagi, Ichizo; Mikami, Kensuke; Okamura, Masayuki; Uosaki, Kohei

    2013-07-22

    The ultrafast dynamics of photogenerated electrons in multilayer assemblies of CdS nanoparticles prepared on quartz and indium-tin oxide (ITO) substrates were followed by femtosecond (fs) visible-pump/mid-IR probe spectroscopy. Based on the observation of the photoinduced transient absorption spectra in the broad mid-IR range at the multilayer assembly of CdS nanoparticles, the occupation and fast relaxation of higher electronic states (1P(e)) were clarified. As compared with the electron dynamics of isolated (dispersed in solution) nanoparticles, the decay of photoexcited electrons in the multilayer assembly was clearly accelerated probably due to both electron hopping and scattering during interparticle electron tunneling. By using an ITO electrode as a substrate, the effect of the electric field on the photoelectron dynamics in the multilayer assembly was also investigated in situ. Both the amplitude and lifetime of photoexcited electrons gradually reduced as the potential became more positive. This result was explained by considering the reduction of the interparticle tunneling probability and the increase in the electron-transfer rate from the CdS nanoparticle assembly to the ITO electrode. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The structure of PccH from Geobactersulfurreducens-a novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dantas, Joana; Campelo, Luisa M.; Duke, Norma E. C.

    The structure of cytochrome c (GSU3274) designated as PccH from Geobactersulfurreducens was determined at a resolution of 2.0 angstrom. PccH is a small (15kDa) cytochrome containing one c-type heme, found to be essential for the growth of G.sulfurreducens with respect to accepting electrons from graphite electrodes poised at -300mV versus standard hydrogen electrode. with fumarate as the terminal electron acceptor. The structure of PccH is unique among the monoheme cytochromes described to date. The structural fold of PccH can be described as forming two lobes with the heme sandwiched in a cleft between the two lobes. In addition, PccH hasmore » a low reduction potential of -24mV at pH7, which is unusual for monoheme cytochromes. Based on difference in structure, together with sequence phylogenetic analysis, we propose that PccH can be regarded as a first characterized example of a new subclass of class I monoheme cytochromes. The low reduction potential of PccH may enable the protein to be redox active at the typically negative potential ranges encountered by G. sulfurreducens. Because PccH is predicted to be located in the periplasm of this bacterium, it could not be involved in the first step of accepting electrons from the electrode but is very likely involved in the downstream electron transport events in the periplasm.« less

  7. Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havu, V.; Fritz Haber Institute of the Max Planck Society, Berlin; Blum, V.

    2009-12-01

    We consider the problem of developing O(N) scaling grid-based operations needed in many central operations when performing electronic structure calculations with numeric atom-centered orbitals as basis functions. We outline the overall formulation of localized algorithms, and specifically the creation of localized grid batches. The choice of the grid partitioning scheme plays an important role in the performance and memory consumption of the grid-based operations. Three different top-down partitioning methods are investigated, and compared with formally more rigorous yet much more expensive bottom-up algorithms. We show that a conceptually simple top-down grid partitioning scheme achieves essentially the same efficiency as themore » more rigorous bottom-up approaches.« less

  8. Electron and Nuclear Pressures in Electron-Nucleus Mixtures

    NASA Astrophysics Data System (ADS)

    Chihara, J.; Yamagiwa, M.

    2007-12-01

    For a solid metal with frozen nuclei, the density-functional theory provides a unique definition of the electron pressure in an electron-nucleus mixture, and the total pressure of this mixture is represented as the sum of the electron and nuclear pressures. This fact leads to definitions of the electron and nuclear pressures on the basis of the virial theorem in terms of the wall potentials confining the electrons and nuclei. These definitions take a general form applicable without use of the adiabatic approximation. In this situation, we show that Janak's definition of the electron pressure in terms of the nuclear virial term is inappropriate; a similar statement holds for the definition of the stress tensor in this mixture. It is also demonstrated that both the electron and nuclear pressures become zero individually for a metal in vacuum, in contrast to the conventional understanding, according to which zero pressure is realized as a result of a cancellation of the elect ron and nuclear pressures. On the basis of these facts, a simple equation of state for liquid metals is derived, and it is examined numerically for the case of liquid alkaline metals by use of the quantum hypernetted chain equation and the Ashcroft model potential.

  9. Potential pathways by which maternal second-hand smoke exposure during pregnancy causes full-term low birth weight.

    PubMed

    Niu, Zhongzheng; Xie, Chuanbo; Wen, Xiaozhong; Tian, Fuying; Yuan, Shixin; Jia, Deqin; Chen, Wei-Qing

    2016-04-29

    It is well documented that maternal exposure to second-hand smoke (SHS) during pregnancy causes low birth weight (LBW), but its mechanism remains unknown. This study explored the potential pathways. We enrolled 195 pregnant women who delivered full-term LBW newborns, and 195 who delivered full-term normal birth weight newborns as the controls. After controlling for maternal age, education level, family income, pre-pregnant body mass index, newborn gender and gestational age, logistic regression analysis revealed that LBW was significantly and positively associated with maternal exposure to SHS during pregnancy, lower placental weight, TNF-α and IL-1β, and that SHS exposure was significantly associated with lower placental weight, TNF-α and IL-1β. Structural equation modelling identified two plausible pathways by which maternal exposure to SHS during pregnancy might cause LBW. First, SHS exposure induced the elevation of TNF-α, which might directly increase the risk of LBW by transmission across the placenta. Second, SHS exposure first increased maternal secretion of IL-1β and TNF-α, which then triggered the secretion of VCAM-1; both TNF-α and VCAM-1 were significantly associated with lower placental weight, thus increasing the risk of LBW. In conclusion, maternal exposure to SHS during pregnancy may lead to LBW through the potential pathways of maternal inflammation and lower placental weight.

  10. All-Electronic Quantification of Neuropeptide-Receptor Interaction Using a Bias-Free Functionalized Graphene Microelectrode.

    PubMed

    Ping, Jinglei; Vishnubhotla, Ramya; Xi, Jin; Ducos, Pedro; Saven, Jeffery G; Liu, Renyu; Johnson, Alan T Charlie

    2018-05-22

    Opioid neuropeptides play a significant role in pain perception, appetite regulation, sleep, memory, and learning. Advances in understanding of opioid peptide physiology are held back by the lack of methodologies for real-time quantification of affinities and kinetics of the opioid neuropeptide-receptor interaction at levels typical of endogenous secretion (<50 pM) in biosolutions with physiological ionic strength. To address this challenge, we developed all-electronic opioid-neuropeptide biosensors based on graphene microelectrodes functionalized with a computationally redesigned water-soluble μ-opioid receptor. We used the functionalized microelectrode in a bias-free charge measurement configuration to measure the binding kinetics and equilibrium binding properties of the engineered receptor with [d-Ala 2 , N-MePhe 4 , Gly-ol]-enkephalin and β-endorphin at picomolar levels in real time.

  11. alpha Arg-237 in Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein affords approximately 200-millivolt stabilization of the FAD anionic semiquinone and a kinetic block on full reduction to the dihydroquinone.

    PubMed

    Talfournier, F; Munro, A W; Basran, J; Sutcliffe, M J; Daff, S; Chapman, S K; Scrutton, N S

    2001-06-08

    The midpoint reduction potentials of the FAD cofactor in wild-type Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein (ETF) and the alphaR237A mutant were determined by anaerobic redox titration. The FAD reduction potential of the oxidized-semiquinone couple in wild-type ETF (E'(1)) is +153 +/- 2 mV, indicating exceptional stabilization of the flavin anionic semiquinone species. Conversion to the dihydroquinone is incomplete (E'(2) < -250 mV), because of the presence of both kinetic and thermodynamic blocks on full reduction of the FAD. A structural model of ETF (Chohan, K. K., Scrutton, N. S., and Sutcliffe, M. J. (1998) Protein Pept. Lett. 5, 231-236) suggests that the guanidinium group of Arg-237, which is located over the si face of the flavin isoalloxazine ring, plays a key role in the exceptional stabilization of the anionic semiquinone in wild-type ETF. The major effect of exchanging alphaArg-237 for Ala in M. methylotrophus ETF is to engineer a remarkable approximately 200-mV destabilization of the flavin anionic semiquinone (E'(2) = -31 +/- 2 mV, and E'(1) = -43 +/- 2 mV). In addition, reduction to the FAD dihydroquinone in alphaR237A ETF is relatively facile, indicating that the kinetic block seen in wild-type ETF is substantially removed in the alphaR237A ETF. Thus, kinetic (as well as thermodynamic) considerations are important in populating the redox forms of the protein-bound flavin. Additionally, we show that electron transfer from trimethylamine dehydrogenase to alphaR237A ETF is severely compromised, because of impaired assembly of the electron transfer complex.

  12. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    PubMed

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Electronic structure and pair potential energy analysis of 4-n-methoxy-4′-cyanobiphenyl: A nematic liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Dipendra, E-mail: d-11sharma@rediffmail.com; Tiwari, S. N., E-mail: sntiwari123@rediffmail.com; Dwivedi, M. K., E-mail: dwivedi-ji@gmail.com

    2016-05-06

    Electronic structure properties of 4-n-methoxy-4′-cyanobiphenyl, a pure nematic liquid crystal have been examined using an ab‒initio, HF/6‒31G(d,p) technique with GAMESS program. Conformational and charge distribution analysis have been carried out. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the liquid crystal molecule have been calculated. Further, stacking, side by side and end to end interactions between a molecular pair have been evaluated. Results have been used to elucidate the physico-chemical and liquid crystalline properties of the system.

  14. Electron-electron interactions in artificial graphene

    NASA Astrophysics Data System (ADS)

    Rasanen, Esa

    2013-03-01

    Recent advances in the creation and modulation of graphenelike systems are introducing a science of ``designer Dirac materials.'' In its original definition, artificial graphene is a man-made nanostructure that consists of identical potential wells (quantum dots) arranged in an adjustable honeycomb lattice in the two-dimensional electron gas. As our ability to control the quality of artificial graphene samples improves, so grows the need for an accurate theory of its electronic properties, including the effects of electron-electron interactions. Here we determine those effects on the band structure and on the emergence of Dirac points, and discuss future investigations and challenges in this field.

  15. Potential of mean force for electrical conductivity of dense plasmas

    NASA Astrophysics Data System (ADS)

    Starrett, C. E.

    2017-12-01

    The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. Current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. We present a new way to define this potential, drawing on ideas from classical fluid theory to define a potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.

  16. Modulated Electron Emission by Scattering-Interference of Primary Electrons

    NASA Astrophysics Data System (ADS)

    Valeri, Sergio; di Bona, Alessandro

    We review the effects of scattering-interference of the primary, exciting beam on the electron emission from ordered atomic arrays. The yield of elastically and inelastically backscattered electrons, Auger electrons and secondary electrons shows a marked dependence on the incidence angle of primary electrons. Both the similarity and the relative importance of processes experienced by incident and excident electrons are discussed. We also present recent studies of electron focusing and defocusing along atomic chains. The interplay between these two processes determines the in-depth profile of the primary electron intensity anisotropy. Finally, the potential for surface-structural studies and limits for quantitative analysis are discussed, in comparison with the Auger electron diffraction (AED) and photoelectron diffraction (PD) techniques.

  17. Excitation of high-frequency electromagnetic waves by energetic electrons with a loss cone distribution in a field-aligned potential drop

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Vinas, Adolfo F.

    1994-01-01

    The electron cyclotron maser instability (CMI) driven by momentum space anisotropy (df/dp (sub perpendicular) greater than 0) has been invoked to explain many aspects, such as the modes of propagation, harmonic emissions, and the source characteristics of the auroral kilometric radiation (AKR). Recent satellite observations of AKR sources indicate that the source regions are often imbedded within the auroral acceleration region characterized by the presence of a field-aligned potential drop. In this paper we investigate the excitation of the fundamental extraordinary mode radiation due to the accelerated electrons. The momentum space distribution of these energetic electrons is modeled by a realistic upward loss cone as modified by the presence of a parallel potential drop below the observation point. On the basis of linear growth rate calculations we present the emission characteristics, such as the frequency spectrum and the emission angular distribution as functions of the plasma parameters. We will discuss the implication of our results on the generation of the AKR from the edges of the auroral density cavities.

  18. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Yuly, Jonathon L.; Lubner, Carolyn E.

    How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that hasmore » only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation.« less

  19. All-optical regenerator of multi-channel signals.

    PubMed

    Li, Lu; Patki, Pallavi G; Kwon, Young B; Stelmakh, Veronika; Campbell, Brandon D; Annamalai, Muthiah; Lakoba, Taras I; Vasilyev, Michael

    2017-10-12

    One of the main reasons why nonlinear-optical signal processing (regeneration, logic, etc.) has not yet become a practical alternative to electronic processing is that the all-optical elements with nonlinear input-output relationship have remained inherently single-channel devices (just like their electronic counterparts) and, hence, cannot fully utilise the parallel processing potential of optical fibres and amplifiers. The nonlinear input-output transfer function requires strong optical nonlinearity, e.g. self-phase modulation, which, for fundamental reasons, is always accompanied by cross-phase modulation and four-wave mixing. In processing multiple wavelength-division-multiplexing channels, large cross-phase modulation and four-wave mixing crosstalks among the channels destroy signal quality. Here we describe a solution to this problem: an optical signal processor employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without such nonlinear crosstalk. We demonstrate, for the first time to our knowledge, simultaneous all-optical regeneration of up to 16 wavelength-division-multiplexing channels by one device. This multi-channel concept can be extended to other nonlinear-optical processing schemes.Nonlinear optical processing devices are not yet fully practical as they are single channel. Here the authors demonstrate all-optical regeneration of up to 16 channels by one device, employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without nonlinear inter-channel crosstalk.

  20. Deceleration of probe beam by stage bias potential improves resolution of serial block-face scanning electron microscopic images.

    PubMed

    Bouwer, James C; Deerinck, Thomas J; Bushong, Eric; Astakhov, Vadim; Ramachandra, Ranjan; Peltier, Steven T; Ellisman, Mark H

    2017-01-01

    Serial block-face scanning electron microscopy (SBEM) is quickly becoming an important imaging tool to explore three-dimensional biological structure across spatial scales. At probe-beam-electron energies of 2.0 keV or lower, the axial resolution should improve, because there is less primary electron penetration into the block face. More specifically, at these lower energies, the interaction volume is much smaller, and therefore, surface detail is more highly resolved. However, the backscattered electron yield for metal contrast agents and the backscattered electron detector sensitivity are both sub-optimal at these lower energies, thus negating the gain in axial resolution. We found that the application of a negative voltage (reversal potential) applied to a modified SBEM stage creates a tunable electric field at the sample. This field can be used to decrease the probe-beam-landing energy and, at the same time, alter the trajectory of the signal to increase the signal collected by the detector. With decelerated low landing-energy electrons, we observed that the probe-beam-electron-penetration depth was reduced to less than 30 nm in epoxy-embedded biological specimens. Concurrently, a large increase in recorded signal occurred due to the re-acceleration of BSEs in the bias field towards the objective pole piece where the detector is located. By tuning the bias field, we were able to manipulate the trajectories of the  primary and secondary electrons, enabling the spatial discrimination of these signals using an advanced ring-type BSE detector configuration or a standard monolithic BSE detector coupled with a blocking aperture.

  1. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    NASA Astrophysics Data System (ADS)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  2. Electronic, thermoelectric and transport properties of cesium cadmium trifluoride: A DFT study

    NASA Astrophysics Data System (ADS)

    Abraham, Jisha Annie; Pagare, G.; Sanyal, Sankar P.

    2018-04-01

    The full potential linearized augmented plane wave method based on density functional theory is employed to investigate the electronic structure of CsCdF3. The electronic properties of this compound have been studied from the band structure plot and density of states. The presence of indirect energy gap reveals its insulating nature. Using constant relaxation time, the electrical conductivity, electronic thermal conductivity, Seebeck coefficient and figure of merit are calculated by using Boltzmann transport theory. We have also studied the temperature dependence of thermoelectric properties of this compound.

  3. One-electron pseudo-potential investigation of NO(X2Π)-Arn clusters (n = 1,2,3,4)

    NASA Astrophysics Data System (ADS)

    Hammami, H.; Ben Mohamed, F. E.; Mohamed, D.; Ben El Hadj Rhouma, M.; Al Mogren, M. M.; Hochlaf, M.

    2017-10-01

    In this work, we investigate the minimal energy and low-lying isomers of the ground state of NOArn clusters using a hybrid pseudo-potential model, where a single electron quantum description is combined with the classical argon-argon pair potential and an expansion in terms of the Legendre polynomials. In such model, we use two centres of polarisation for NO+, where we considered for each nuclear configuration an analytic dipole polarisation for N+ and O+. The reliability of our model is checked by comparison of the NO(X2Π)-Ar potential energy surface with that deduced using the multireference configuration interaction (MRCI+Q) approach. The results of this formalism agree quite well with the MRCI ones over a wide range of nuclear arrangements.

  4. Not all that glitters is gold-Electron microscopy study on uptake of gold nanoparticles in Daphnia magna and related artifacts.

    PubMed

    Jensen, Louise Helene Søgaard; Skjolding, Lars Michael; Thit, Amalie; Sørensen, Sara Nørgaard; Købler, Carsten; Mølhave, Kristian; Baun, Anders

    2017-06-01

    Increasing use of engineered nanoparticles has led to extensive research into their potential hazards to the environment and human health. Cellular uptake from the gut is sparsely investigated, and microscopy techniques applied for uptake studies can result in misinterpretations. Various microscopy techniques were used to investigate internalization of 10-nm gold nanoparticles in Daphnia magna gut lumen and gut epithelial cells following 24-h exposure and outline potential artifacts (i.e., high-contrast precipitates from sample preparation related to these techniques). Light sheet microscopy confirmed accumulation of gold nanoparticles in the gut lumen. Scanning transmission electron microscopy and elemental analysis revealed gold nanoparticles attached to the microvilli of gut cells. Interestingly, the peritrophic membrane appeared to act as a semipermeable barrier between the lumen and the gut epithelium, permitting only single particles through. Structures resembling nanoparticles were also observed inside gut cells. Elemental analysis could not verify these to be gold, and they were likely artifacts from the preparation, such as osmium and iron. Importantly, gold nanoparticles were found inside holocrine cells with disrupted membranes. Thus, false-positive observations of nanoparticle internalization may result from either preparation artifacts or mistaking disrupted cells for intact cells. These findings emphasize the importance of cell integrity and combining elemental analysis with the localization of internalized nanoparticles using transmission electron microscopy. Environ Toxicol Chem 2017;36:1503-1509. © 2016 SETAC. © 2016 SETAC.

  5. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging.

    PubMed

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; Xiao, Kai; Ma, Ying-Zhong

    2017-07-20

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. Here, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3 NH 3 PbI 3-x Cl x ) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. These results show that PL probes effectively the species near or at the film surface.

  6. Mouldable all-carbon integrated circuits.

    PubMed

    Sun, Dong-Ming; Timmermans, Marina Y; Kaskela, Antti; Nasibulin, Albert G; Kishimoto, Shigeru; Mizutani, Takashi; Kauppinen, Esko I; Ohno, Yutaka

    2013-01-01

    A variety of plastic products, ranging from those for daily necessities to electronics products and medical devices, are produced by moulding techniques. The incorporation of electronic circuits into various plastic products is limited by the brittle nature of silicon wafers. Here we report mouldable integrated circuits for the first time. The devices are composed entirely of carbon-based materials, that is, their active channels and passive elements are all fabricated from stretchable and thermostable assemblies of carbon nanotubes, with plastic polymer dielectric layers and substrates. The all-carbon thin-film transistors exhibit a mobility of 1,027 cm(2) V(-1) s(-1) and an ON/OFF ratio of 10(5). The devices also exhibit extreme biaxial stretchability of up to 18% when subjected to thermopressure forming. We demonstrate functional integrated circuits that can be moulded into a three-dimensional dome. Such mouldable electronics open new possibilities by allowing for the addition of electronic/plastic-like functionalities to plastic/electronic products, improving their designability.

  7. Mouldable all-carbon integrated circuits

    NASA Astrophysics Data System (ADS)

    Sun, Dong-Ming; Timmermans, Marina Y.; Kaskela, Antti; Nasibulin, Albert G.; Kishimoto, Shigeru; Mizutani, Takashi; Kauppinen, Esko I.; Ohno, Yutaka

    2013-08-01

    A variety of plastic products, ranging from those for daily necessities to electronics products and medical devices, are produced by moulding techniques. The incorporation of electronic circuits into various plastic products is limited by the brittle nature of silicon wafers. Here we report mouldable integrated circuits for the first time. The devices are composed entirely of carbon-based materials, that is, their active channels and passive elements are all fabricated from stretchable and thermostable assemblies of carbon nanotubes, with plastic polymer dielectric layers and substrates. The all-carbon thin-film transistors exhibit a mobility of 1,027cm2V-1s-1 and an ON/OFF ratio of 105. The devices also exhibit extreme biaxial stretchability of up to 18% when subjected to thermopressure forming. We demonstrate functional integrated circuits that can be moulded into a three-dimensional dome. Such mouldable electronics open new possibilities by allowing for the addition of electronic/plastic-like functionalities to plastic/electronic products, improving their designability.

  8. Electronic transmission in non-linear potential profile of GaAs/AlxGa1-xAs biased quantum well structure

    NASA Astrophysics Data System (ADS)

    Meghoufel, F. Z.; Bentata, S.; Terkhi, S.; Bendahma, F.; Cherid, S.

    2013-05-01

    We study the effect of the nonlinearity on electrons transmission properties in a double barriers structure GaAs/AlxGa1-xAs superlattices. The nonlinearity is introduced as an effective potential in the Schrödinger equation and translates the electronic Colombian repulsion. We have used the transfer matrix formalism and the plane wave functions approximation to solve numerically the equation and calculate the electronic transmission coefficient. We have shown the occurrence of two allowed states within the same well instead of a single, translating the presence of two resonant states at two different energies. The first allowed state intensity strongly decreases with increasing the nonlinear parameter, whereas the second one called the degeneracy state increases. Both the two states evolve towards higher resonances energies.

  9. Blueprinting macromolecular electronics.

    PubMed

    Palma, Carlos-Andres; Samorì, Paolo

    2011-06-01

    Recently, by mastering either top-down or bottom-up approaches, tailor-made macromolecular nano-objects with semiconducting properties have been fabricated. These engineered nanostructures for organic electronics are based on conjugated systems predominantly made up of sp²-hybridized carbon, such as graphene nanoribbons. Here, we describe developments in a selection of these nanofabrication techniques, which include graphene carving, stimulus-induced synthesis of conjugated polymers and surface-assisted synthesis. We also assess their potential to reproduce chemically and spatially precise molecular arrangements, that is, molecular blueprints. In a broad context, the engineering of a molecular blueprint represents the fabrication of an integrated all-organic macromolecular electronic circuit. In this Perspective, we suggest chemical routes, as well as convergent on-surface synthesis and microfabrication approaches, for the ultimate goal of bringing the field closer to technology.

  10. Spacecraft potential control on ISEE-1

    NASA Technical Reports Server (NTRS)

    Gonfalone, A.; Pedersen, A.; Fahleson, U. V.; Faelthammar, C. G.; Mozer, F. S.; Torbert, R. B.

    1979-01-01

    Active control of the potential of the ISEE-1 satellite by the use of electron guns is reviewed. The electron guns contain a special cathode capable of emitting an electron current selectable between 10 to the -8th power and 10 to the -3rd power at energies from approximately .6 to 41 eV. Results obtained during flight show that the satellite potential can be stabilized at a value more positive than the normally positive floating potential. The electron guns also reduce the spin modulation of the spacecraft potential which is due to the aspect dependent photoemission of the long booms. Plasma parameters like electron temperature and density can be deduced from the variation of the spacecraft potential as a function of the gun current. The effects of electron beam emission on other experiments are briefly mentioned.

  11. Going ballistic: Graphene hot electron transistors

    NASA Astrophysics Data System (ADS)

    Vaziri, S.; Smith, A. D.; Östling, M.; Lupina, G.; Dabrowski, J.; Lippert, G.; Mehr, W.; Driussi, F.; Venica, S.; Di Lecce, V.; Gnudi, A.; König, M.; Ruhl, G.; Belete, M.; Lemme, M. C.

    2015-12-01

    This paper reviews the experimental and theoretical state of the art in ballistic hot electron transistors that utilize two-dimensional base contacts made from graphene, i.e. graphene base transistors (GBTs). Early performance predictions that indicated potential for THz operation still hold true today, even with improved models that take non-idealities into account. Experimental results clearly demonstrate the basic functionality, with on/off current switching over several orders of magnitude, but further developments are required to exploit the full potential of the GBT device family. In particular, interfaces between graphene and semiconductors or dielectrics are far from perfect and thus limit experimental device integrity, reliability and performance.

  12. Thermodynamic responses of electronic systems.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-09-07

    We present how the framework of the temperature-dependent chemical reactivity theory can describe the panorama of different types of interactions between an electronic system and external reagents. The key reactivity indicators are responses of an appropriate state function (like the energy or grand potential) to the variables that determine the state of the system (like the number of electrons/chemical potential, external potential, and temperature). We also consider the response of the average electron density to appropriate perturbations. We present computable formulas for these reactivity indicators and discuss their chemical utility for describing electronic, electrostatic, and thermal changes associated with chemical processes.

  13. Thermodynamic responses of electronic systems

    NASA Astrophysics Data System (ADS)

    Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto

    2017-09-01

    We present how the framework of the temperature-dependent chemical reactivity theory can describe the panorama of different types of interactions between an electronic system and external reagents. The key reactivity indicators are responses of an appropriate state function (like the energy or grand potential) to the variables that determine the state of the system (like the number of electrons/chemical potential, external potential, and temperature). We also consider the response of the average electron density to appropriate perturbations. We present computable formulas for these reactivity indicators and discuss their chemical utility for describing electronic, electrostatic, and thermal changes associated with chemical processes.

  14. Exploring full cervical dilatation caesarean sections-A retrospective cohort study.

    PubMed

    Corry, Edward M A; Ramphul, Meenakshi; Rowan, Ann M; Segurado, Ricardo; Mahony, Rhona M; Keane, Declan P

    2018-05-01

    The rate of caesarean sections at full cervical dilatation with their high risk of morbidity continues to rise mirroring the overall increase in caesarean section rates internationally. The objectives of this study were to determine the rate of full dilatation caesarean section in a tertiary referral unit and evaluate key labour, maternal and fetal factors potentially linked to those deliveries. We also assessed maternal and fetal morbidity at full dilatation sections. Where possible, these were compared with successful operative vaginal deliveries carried out in theatre to determine key differences. Retrospective cohort study. We reviewed the rate of full dilatation caesarean section over a 10-year period. We analysed deliveries (caesarean sections or operative vaginal deliveries) in single cephalic pregnancies ≥34 weeks with contemporaneously collected data from our unit's electronic database for 2015. The rate of full dilatation caesarean section increased by over a third in the ten-year period (56/6947 (0.80%) vs 92/7378 (1.24%), p = 0.01). Of 84 full dilatation caesarean sections who met the inclusion criteria, 63 (75%) were nulliparous and the mean maternal age was 33 (±5) years. Oxytocin was used in the second stage in less than half of second stage caesarean sections (22 out of a recorded 57, 38.6%). There were more fetal head malposition (occipito-posterior, or occipito-transverse) at full dilatation caesarean section compared to successful operative vaginal deliveries (41/46 (89.1%) vs 2/21 (9.5), p < 0.001). The rate of significant postpartum haemorrhage (defined as estimated blood loss ≥1000 ml) was similar in both full dilatation caesarean section and operative vaginal deliveries. There was no difference in the mean birthweight at full dilatation caesarean sections compared to operative vaginal delivery (3.88 kg (2.80-5.33 kg) vs 3.48 kg (1.53-4.40 kg)). There was no difference in neonatal morbidity. Fetal head malposition is

  15. Absolute Negative Resistance Induced by Directional Electron-Electron Scattering in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Kaya, Ismet I.; Eberl, Karl

    2007-05-01

    A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two-dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal can be interpreted as the analog of Bernoulli’s effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.

  16. Irreversible electron attachment--a key to DNA damage by solvated electrons in aqueous solution.

    PubMed

    Westphal, K; Wiczk, J; Miloch, J; Kciuk, G; Bobrowski, K; Rak, J

    2015-11-07

    The TYT and TXT trimeric oligonucleotides, where X stands for a native nucleobase, T (thymine), C (cytosine), A (adenine), or G (guanine), and Y indicates a brominated analogue of the former, were irradiated with ionizing radiation generated by a (60)Co source in aqueous solutions containing Tris as a hydroxyl radical scavenger. In the past, these oligomers were bombarded with low energy electrons under an ultra-high vacuum and significant damage to TXT trimers was observed. However, in aqueous solution, hydrated electrons do not produce serious damage to TXT trimers although the employed radiation dose exceeded many times the doses used in radiotherapy. Thus, our studies demonstrate unequivocally that hydrated electrons, which are the major form of electrons generated during radiotherapy, are a negligible factor in damage to native DNA. It was also demonstrated that all the studied brominated nucleobases have a potential to sensitize DNA under hypoxic conditions. Strand breaks, abasic sites and the products of hydroxyl radical attachment to nucleobases have been identified by HPLC and LC-MS methods. Although all the bromonucleobases lead to DNA damage under the experimental conditions of the present work, bromopyrimidines seem to be the radiosensitizers of choice since they lead to more strand breaks than bromopurines.

  17. Electronic Commerce "in the dark"

    NASA Astrophysics Data System (ADS)

    Buzzi, Maria Claudia; Buzzi, Marina; Leporini, Barbara; Senette, Caterina

    The widespread diffusion of electronic commerce offers a great opportunity for blind people. We describe the results of an electronic survey carried out with 22 blind and 22 sighted users in order to understand the difficulties and obstacles they experience shopping on-line, and solicit their expectations and suggestions for making the interaction simpler and more satisfying. Results show that blind users shop on-line much less than their sighted counterparts, since they encounter more difficulties not only when making a purchase, but even in the navigation phase preceding the commercial transaction. Complex layouts and unstructured content can prevent an e-transaction from being successfully completed. Furthermore, security, privacy and trustiness, common concerns for all consumers, also impact on the fear of buying via Internet for the visually impaired. Poor usability leads to a potential loss of revenue for on-line companies and a lost opportunity to increase a blind person's independence. Providing simpler, more understandable UIs would benefit all users and fuel the expansion of electronic commerce.

  18. Numerical studies of electron dynamics in oblique quasi-perpendicular collisionless shock waves

    NASA Technical Reports Server (NTRS)

    Liewer, P. C.; Decyk, V. K.; Dawson, J. M.; Lembege, B.

    1991-01-01

    Linear and nonlinear electron damping of the whistler precursor wave train to low Mach number quasi-perpendicular oblique shocks is studied using a one-dimensional electromagnetic plasma simulation code with particle electrons and ions. In some parameter regimes, electrons are observed to trap along the magnetic field lines in the potential of the whistler precursor wave train. This trapping can lead to significant electron heating in front of the shock for low beta(e). Use of a 64-processor hypercube concurrent computer has enabled long runs using realistic mass ratios in the full particle in-cell code and thus simulate shock parameter regimes and phenomena not previously studied numerically.

  19. Structure of the full-length TRPV2 channel by cryo-EM

    PubMed Central

    Huynh, Kevin W.; Cohen, Matthew R.; Jiang, Jiansen; Samanta, Amrita; Lodowski, David T.; Zhou, Z. Hong; Moiseenkova-Bell, Vera Y.

    2016-01-01

    Transient receptor potential (TRP) proteins form a superfamily Ca2+-permeable cation channels regulated by a range of chemical and physical stimuli. Structural analysis of a ‘minimal' TRP vanilloid subtype 1 (TRPV1) elucidated a mechanism of channel activation by agonists through changes in its outer pore region. Though homologous to TRPV1, other TRPV channels (TRPV2–6) are insensitive to TRPV1 activators including heat and vanilloids. To further understand the structural basis of TRPV channel function, we determined the structure of full-length TRPV2 at ∼5 Å resolution by cryo-electron microscopy. Like TRPV1, TRPV2 contains two constrictions, one each in the pore-forming upper and lower gates. The agonist-free full-length TRPV2 has wider upper and lower gates compared with closed and agonist-activated TRPV1. We propose these newly revealed TRPV2 structural features contribute to diversity of TRPV channels. PMID:27021073

  20. Neutral-atom electron binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations for Z between 2 and 106

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.; Aoyagi, M.; Mark, H.; Chen, M. H.; Crasemann, B.

    1976-01-01

    Electron binding energies in neutral atoms have been calculated relativistically, with the requirement of complete relaxation. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all elements with atomic numbers ranging from 2 to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. Binding energies including relaxation are listed for all electrons in all atoms over the indicated range of atomic numbers. A self-energy correction is included for the 1s, 2s, and 2p(1/2) levels. Results for selected atoms are compared with energies calculated by other methods and with experimental values.

  1. The convergence of complete active space self-consistent-field configuration interaction including all single and double excitation energies to the complete basis set limit

    NASA Astrophysics Data System (ADS)

    Petersson, George A.; Malick, David K.; Frisch, Michael J.; Braunstein, Matthew

    2006-07-01

    Examination of the convergence of full valence complete active space self-consistent-field configuration interaction including all single and double excitation (CASSCF-CISD) energies with expansion of the one-electron basis set reveals a pattern very similar to the convergence of single determinant energies. Calculations on the lowest four singlet states and the lowest four triplet states of N2 with the sequence of n-tuple-ζ augmented polarized (nZaP) basis sets (n =2, 3, 4, 5, and 6) are used to establish the complete basis set limits. Full configuration-interaction (CI) and core electron contributions must be included for very accurate potential energy surfaces. However, a simple extrapolation scheme that has no adjustable parameters and requires nothing more demanding than CAS(10e -,8orb)-CISD/3ZaP calculations gives the Re, ωe, ωeXe, Te, and De for these eight states with rms errors of 0.0006Å, 4.43cm-1, 0.35cm-1, 0.063eV, and 0.018eV, respectively.

  2. Tapping a Potential for the Good of All.

    ERIC Educational Resources Information Center

    Rabo, Annika

    Historically, the spread of universal formal mass education in the West is closely linked to emergence of nation-states. This is also true of the Third World. The salient feature of education today is that it reflects a model of society in which citizens, including children, are seen as a potential to be tapped for development of the nation, as…

  3. Electronics manufacturing and assembly in Japan

    NASA Technical Reports Server (NTRS)

    Kukowski, John A.; Boulton, William R.

    1995-01-01

    In the consumer electronics industry, precision processing technology is the basis for enhancing product functions and for minimizing components and end products. Throughout Japan, manufacturing technology is seen as critical to the production and assembly of advanced products. While its population has increased less than 30 percent over twenty-five years, Japan's gross national product has increase thirtyfold; this growth has resulted in large part from rapid replacement of manual operations with innovative, high-speed, large-scale, continuously running, complex machines that process a growing number of miniaturized components. The JTEC panel found that introduction of next-generation electronics products in Japan goes hand-in-hand with introduction of new and improved production equipment. In the panel's judgment, Japan's advanced process technologies and equipment development and its highly automated factories are crucial elements of its domination of the consumer electronics marketplace - and Japan's expertise in manufacturing consumer electronics products gives it potentially unapproachable process expertise in all electronics markets.

  4. Potential of mean force for electrical conductivity of dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starrett, C. E.

    The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. The current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. Here, we present a new way to define this potential, drawing on ideas from classical fluid theory to define amore » potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.« less

  5. Potential of mean force for electrical conductivity of dense plasmas

    DOE PAGES

    Starrett, C. E.

    2017-09-28

    The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. The current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. Here, we present a new way to define this potential, drawing on ideas from classical fluid theory to define amore » potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.« less

  6. Density functional with full exact exchange, balanced nonlocality of correlations, and constraint satisfaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jianmin; Perdew, John P; Staroverov, Viktor N

    2008-01-01

    We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because ofmore » error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known exact

  7. Flexible, highly efficient all-polymer solar cells

    PubMed Central

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-01-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. PMID:26449658

  8. Duodenal endoscopic full-thickness resection (with video).

    PubMed

    Schmidt, Arthur; Meier, Benjamin; Cahyadi, Oscar; Caca, Karel

    2015-10-01

    Endoscopic resection of duodenal non-lifting adenomas and subepithelial tumors is challenging and harbors a significant risk of adverse events. We report on a novel technique for duodenal endoscopic full-thickness resection (EFTR) by using an over-the-scope device. Data of 4 consecutive patients who underwent duodenal EFTR were analyzed retrospectively. Main outcome measures were technical success, R0 resection, histologic confirmation of full-thickness resection, and adverse events. Resections were done with a novel, over-the-scope device (full-thickness resection device, FTRD). Four patients (median age 60 years) with non-lifting adenomas (2 patients) or subepithelial tumors (2 patients) underwent EFTR in the duodenum. All lesions could be resected successfully. Mean procedure time was 67.5 minutes (range 50-85 minutes). Minor bleeding was observed in 2 cases; blood transfusions were not required. There was no immediate or delayed perforation. Mean diameter of the resection specimen was 28.3 mm (range 22-40 mm). Histology confirmed complete (R0) full-thickness resection in 3 of 4 cases. To date, 2-month endoscopic follow-up has been obtained in 3 patients. In all cases, the over-the-scope clip was still in place and could be removed without adverse events; recurrences were not observed. EFTR in the duodenum with the FTRD is a promising technique that has the potential to spare surgical resections. Modifications of the device should be made to facilitate introduction by mouth. Prospective studies are needed to further evaluate efficacy and safety for duodenal resections. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  9. Highly reactive free radicals in electronic cigarette aerosols.

    PubMed

    Goel, Reema; Durand, Erwann; Trushin, Neil; Prokopczyk, Bogdan; Foulds, Jonathan; Elias, Ryan J; Richie, John P

    2015-09-21

    Electronic cigarette (EC) usage has increased exponentially, but limited data are available on its potential harmful effects. We tested for the presence of reactive, short-lived free radicals in EC aerosols by electron paramagnetic resonance spectroscopy (EPR) using the spin-trap phenyl-N-tert-butylnitrone (PBN). Radicals were detected in aerosols from all ECs and eliquids tested (2.5 × 10(13) to 10.3 × 10(13) radicals per puff at 3.3 V) and from eliquid solvents propylene glycol and glycerol and from "dry puffing". These results demonstrate, for the first time, the production of highly oxidizing free radicals from ECs which may present a potential toxicological risk to EC users.

  10. Electron-Poor Thiophene 1,1-Dioxides: Synthesis, Characterization, and Application as Electron Relays in Photocatalytic Hydrogen Generation.

    PubMed

    Tsai, Chia-Hua; Chirdon, Danielle N; Kagalwala, Husain N; Maurer, Andrew B; Kaur, Aman; Pintauer, Tomislav; Bernhard, Stefan; Noonan, Kevin J T

    2015-08-03

    The synthesis and characterization of electron-poor thiophene 1,1-dioxides bearing cyanated phenyl groups are reported. The electron-accepting nature of these compounds was evaluated by cyclic voltammetry, and highly reversible and facile reductions were observed for several derivatives. Moreover, some of the reduced thiophene dioxides form colorful anions, which were investigated spectroelectrochemically. Photoluminescence spectra of the electron-deficient sulfones were measured in CH2 Cl2, and they emit in the blue-green region with significant variation in the quantum yield depending on the aryl substituents. By expanding the degree of substitution on the phenyl rings, quantum yields up to 34 % were obtained. X-ray diffraction data are reported for two of the thiophene 1,1-dioxides, and the electronic structure was probed for all synthesized derivatives through DFT calculations. The dioxides were also examined as electron relays in a photocatalytic water reduction reaction, and they showed potential to boost the efficiency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Exposure Potential and Health Impacts of Indium and Gallium, Metals Critical to Emerging Electronics and Energy Technologies.

    PubMed

    White, Sarah Jane O; Shine, James P

    2016-12-01

    The rapid growth of new electronics and energy technologies requires the use of rare elements of the periodic table. For many of these elements, little is known about their environmental behavior or human health impacts. This is true for indium and gallium, two technology critical elements. Increased environmental concentrations of both indium and gallium create the potential for increased environmental exposure, though little is known about the extent of this exposure. Evidence is mounting that indium and gallium can have substantial toxicity, including in occupational settings where indium lung disease has been recognized as a potentially fatal disease caused by the inhalation of indium particles. This paper aims to review the basic chemistry, changing environmental concentrations, potential for human exposure, and known health effects of indium and gallium.

  12. Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons

    NASA Astrophysics Data System (ADS)

    Shan, Shaukat Ali; Imtiaz, Nadia

    2018-05-01

    The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.

  13. Functional electronic inversion layers at ferroelectric domain walls

    NASA Astrophysics Data System (ADS)

    Mundy, J. A.; Schaab, J.; Kumagai, Y.; Cano, A.; Stengel, M.; Krug, I. P.; Gottlob, D. M.; Doğanay, H.; Holtz, M. E.; Held, R.; Yan, Z.; Bourret, E.; Schneider, C. M.; Schlom, D. G.; Muller, D. A.; Ramesh, R.; Spaldin, N. A.; Meier, D.

    2017-06-01

    Ferroelectric domain walls hold great promise as functional two-dimensional materials because of their unusual electronic properties. Particularly intriguing are the so-called charged walls where a polarity mismatch causes local, diverging electrostatic potentials requiring charge compensation and hence a change in the electronic structure. These walls can exhibit significantly enhanced conductivity and serve as a circuit path. The development of all-domain-wall devices, however, also requires walls with controllable output to emulate electronic nano-components such as diodes and transistors. Here we demonstrate electric-field control of the electronic transport at ferroelectric domain walls. We reversibly switch from resistive to conductive behaviour at charged walls in semiconducting ErMnO3. We relate the transition to the formation--and eventual activation--of an inversion layer that acts as the channel for the charge transport. The findings provide new insight into the domain-wall physics in ferroelectrics and foreshadow the possibility to design elementary digital devices for all-domain-wall circuitry.

  14. Perspective: Machine learning potentials for atomistic simulations

    NASA Astrophysics Data System (ADS)

    Behler, Jörg

    2016-11-01

    Nowadays, computer simulations have become a standard tool in essentially all fields of chemistry, condensed matter physics, and materials science. In order to keep up with state-of-the-art experiments and the ever growing complexity of the investigated problems, there is a constantly increasing need for simulations of more realistic, i.e., larger, model systems with improved accuracy. In many cases, the availability of sufficiently efficient interatomic potentials providing reliable energies and forces has become a serious bottleneck for performing these simulations. To address this problem, currently a paradigm change is taking place in the development of interatomic potentials. Since the early days of computer simulations simplified potentials have been derived using physical approximations whenever the direct application of electronic structure methods has been too demanding. Recent advances in machine learning (ML) now offer an alternative approach for the representation of potential-energy surfaces by fitting large data sets from electronic structure calculations. In this perspective, the central ideas underlying these ML potentials, solved problems and remaining challenges are reviewed along with a discussion of their current applicability and limitations.

  15. ``Illuminating'' electron diffusion regions of collisionless magnetic reconnection using electron agyrotropy

    NASA Astrophysics Data System (ADS)

    Scudder, Jack; Daughton, William

    2008-06-01

    Agyrotropy is a scalar measure of the departure of the pressure tensor from cylindrical symmetry about the local magnetic field direction. Ordinarily electrons are well modeled as gyrotropic with very small agyrotropy. Intensified layers of electron agyrotropy are demonstrated to highlight the thin electron gyroradius scale boundary regions adjoining separatrices, X and O lines of full particle simulations of collisionless magnetic reconnection. Examples are presented to show these effects in antiparallel and guide field geometries, pair plasmas, and simulations at a variety of mass ratios, including a hydrogen plasma. Agyrotropy has been determined from the PIC pressure tensor using a new, fast algorithm developed to correct discreteness contributions to the apparent agyrotropy. As a local scalar diagnostic, agyrotropy is shown to be potentially useful with single spacecraft data to identify the crossing or proximity of electron scale current layers, thus providing a kinetic level diagnosis of a given layer's ability to be a possible site of the collisionless reconnection process. Such kinetic tools are certainly complimentary to the other macroscopic signatures of reconnection. Because of the extreme circumstances required for electron agyrotropy, detection of these signatures with framing macroscopic signatures might prove useful for the discovery of new reconnection sites in nature and 3-D codes of collisionless reconnection. The agyrotropy in the 2-D PIC codes reflect long-lived bulges on the distribution function that appear to be organized by the direction and size of slowly evolving perpendicular electric fields in these layers and are not consistent with gyrophase bunching.

  16. A statistical study of the inner edge of the electron plasma sheet and the net convection potential as a function of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Jiang, F.; Kivelson, M. G.; Walker, R. J.; Khurana, K. K.; Angelopoulos, V.; Hsu, T.

    2011-06-01

    A widely accepted explanation of the location of the inner edge of the electron plasma sheet and its dependence on electron energy is based on drift motions of individual particles. The boundary is identified as the separatrix between drift trajectories linking the tail to the dayside magnetopause (open paths) and trajectories closed around the Earth. A statistical study of the inner edge of the electron plasma sheet using THEMIS Electrostatic Analyzer plasma data from November 2007 to April 2009 enabled us to examine this model. Using a dipole magnetic field and a Volland-Stern electric field with shielding, we find that a steady state drift boundary model represents the average location of the electron plasma sheet boundary and reflects its variation with the solar wind electric field in the local time region between 21:00 and 06:00, except at high activity levels. However, the model does not reproduce the observed energy dispersion of the boundaries. We have also used the location of the inner edge of the electron plasma sheet to parameterize the potential drop of the tail convection electric field as a function of solar wind electric field (Esw) and geomagnetic activity. The range of Esw examined is small because the data were acquired near solar minimum. For the range of values tested (meaningful statistics only for Esw < 2 mV/m), reasonably good agreement is found between the potential drop of the tail convection electric field inferred from the location of the inner edge and the polar cap potential drop calculated from the model of Boyle et al. (1997).

  17. All-electron quasiparticle self-consistent GW band structures for SrTiO 3 including lattice polarization corrections in different phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Churna; van Schilfgaarde, Mark; Kotani, Takao

    The electronic band structure of SrTiO3 is investigated in the all-electron quasiparticle self-consistent GW (QSGW) approximation. Unlike previous pseudopotential-based QSGW or single-shot G0W0 calculations, the gap is found to be significantly overestimated compared to experiment. After putting in a correction for the underestimate of the screening by the random phase approximation in terms of a 0.8Σ approach, the gap is still overestimated. The 0.8Σ approach is discussed and justified in terms of various recent literature results including electron-hole corrections. Adding a lattice polarization correction (LPC) in the q→0 limit for the screening of W, agreement with experiment is recovered. Themore » LPC is alternatively estimated using a polaron model. Here, we apply our approach to the cubic and tetragonal phases as well as a hypothetical layered postperovskite structure and find that the local density approximation (LDA) to GW gap correction is almost independent of structure.« less

  18. All-electron quasiparticle self-consistent GW band structures for SrTiO 3 including lattice polarization corrections in different phases

    DOE PAGES

    Bhandari, Churna; van Schilfgaarde, Mark; Kotani, Takao; ...

    2018-01-23

    The electronic band structure of SrTiO3 is investigated in the all-electron quasiparticle self-consistent GW (QSGW) approximation. Unlike previous pseudopotential-based QSGW or single-shot G0W0 calculations, the gap is found to be significantly overestimated compared to experiment. After putting in a correction for the underestimate of the screening by the random phase approximation in terms of a 0.8Σ approach, the gap is still overestimated. The 0.8Σ approach is discussed and justified in terms of various recent literature results including electron-hole corrections. Adding a lattice polarization correction (LPC) in the q→0 limit for the screening of W, agreement with experiment is recovered. Themore » LPC is alternatively estimated using a polaron model. Here, we apply our approach to the cubic and tetragonal phases as well as a hypothetical layered postperovskite structure and find that the local density approximation (LDA) to GW gap correction is almost independent of structure.« less

  19. New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range.

    PubMed

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A; Holka, Filip; Szalay, Péter G

    2013-10-07

    An accurate description of the complicated shape of the potential energy surface (PES) and that of the highly excited vibration states is of crucial importance for various unsolved issues in the spectroscopy and dynamics of ozone and remains a challenge for the theory. In this work a new analytical representation is proposed for the PES of the ground electronic state of the ozone molecule in the range covering the main potential well and the transition state towards the dissociation. This model accounts for particular features specific to the ozone PES for large variations of nuclear displacements along the minimum energy path. The impact of the shape of the PES near the transition state (existence of the "reef structure") on vibration energy levels was studied for the first time. The major purpose of this work was to provide accurate theoretical predictions for ozone vibrational band centres at the energy range near the dissociation threshold, which would be helpful for understanding the very complicated high-resolution spectra and its analyses currently in progress. Extended ab initio electronic structure calculations were carried out enabling the determination of the parameters of a minimum energy path PES model resulting in a new set of theoretical vibrational levels of ozone. A comparison with recent high-resolution spectroscopic data on the vibrational levels gives the root-mean-square deviations below 1 cm(-1) for ozone band centres up to 90% of the dissociation energy. New ab initio vibrational predictions represent a significant improvement with respect to all previously available calculations.

  20. Design and commissioning of an aberration-corrected ultrafast spin-polarized low energy electron microscope with multiple electron sources.

    PubMed

    Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin

    2017-03-01

    We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm. Copyright © 2017 Elsevier B.V. All rights reserved.