Science.gov

Sample records for all-fiber passively mode-locked

  1. All-fiber passively mode-locked Ho-laser pumped by ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Filatova, S. A.; Kamynin, V. A.; Zhluktova, I. V.; Trikshev, A. I.; Tsvetkov, V. B.

    2016-11-01

    We report an all-fiber mode-lock holmium-doped ring laser passively mode-locked by nonlinear polarization rotation without dispersion compensation. The laser produced picosecond pulses at 2.057 µm. The average output power was 4.5 mW.

  2. All-fiber passively mode-locked laser based on a chiral fiber grating.

    PubMed

    Du, Yueqing; Shu, Xuewen; Xu, Zuowei

    2016-01-15

    A novel passively mode-locked all-fiber laser using a chiral fiber grating as a polarization-selective element is demonstrated for the first time, to the best of our knowledge. The chiral fiber grating serves as a key component to form an artificial saturable absorber to realize mode locking through nonlinear polarization rotation in the cavity. The laser generates stable short pulses with energy of 0.34 nJ, a fundamental repetition rate of 3.27 MHz, and an FWHM bandwidth of 28 nm. We also show that harmonic mode-locked pulse trains of different orders can be obtained by increasing the pump power.

  3. All-fiber passively mode-locked thulium/holmium laser with two center wavelengths.

    PubMed

    Kadel, Rajesh; Washburn, Brian R

    2012-09-20

    We have demonstrated a self-starting, passively mode-locked Tm/Ho codoped fiber laser that lases at one of two center wavelengths. An amplified 1.56 μm distributed feedback laser pumps a ring laser cavity which contains 1 m of Tm/Ho codoped silica fiber. Mode locking is obtained via nonlinear polarization rotation using a c-band polarization sensitive isolator with two polarization controllers. The laser is able to pulse separately at either 1.97 or 2.04 μm by altering the intracavity polarization during the initiation of mode locking. The codoped fiber permits pulsing at one of two wavelengths, where the shorter is due to the Tm(3+) emission and the longer due to the Ho(3+) emission. The laser produces a stable pulse train at 28.4 MHz with 25 mW average power, and a pulse duration of 966 fs with 9 nm bandwidth.

  4. All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes.

    PubMed

    Li, Jianfeng; Zhang, Zuxing; Sun, Zhongyuan; Luo, Hongyu; Liu, Yong; Yan, Zhijun; Mou, Chengbo; Zhang, Lin; Turitsyn, Sergei K

    2014-04-01

    A self-starting all-fiber passively mode-locked Tm(3+)-doped fiber laser based on nonlinear loop mirror (NOLM) is demonstrated. Stable soliton pulses centered at 2017.33 nm with 1.56 nm FWHM were produced at a repetition rate of 1.514 MHz with pulse duration of 2.8 ps and pulse energy of 83.8 pJ. As increased pump power, the oscillator can also operate at noise-like (NL) regime. Stable NL pulses with coherence spike width of 341 fs and pulse energy of up to 249.32 nJ was achieved at a center wavelength of 2017.24 nm with 21.33 nm FWHM. To the best of our knowledge, this is the first 2 µm region NOLM-based mode-locked fiber laser operating at two regimes with the highest single pulse energy for NL pulses. PMID:24718163

  5. Hybrid mode-locked erbium-doped all-fiber soliton laser with a distributed polarizer.

    PubMed

    Chernykh, D S; Krylov, A A; Levchenko, A E; Grebenyukov, V V; Arutunyan, N R; Pozharov, A S; Obraztsova, E D; Dianov, E M

    2014-10-10

    A soliton-type erbium-doped all-fiber ring laser hybrid mode-locked with a co-action of arc-discharge single-walled carbon nanotubes (SWCNTs) and nonlinear polarization evolution (NPE) is demonstrated. For the first time, to the best of our knowledge, boron nitride-doped SWCNTs were used as a saturable absorber for passive mode-locking initiation. Moreover, the NPE was introduced through the implementation of the short-segment polarizing fiber. Owing to the NPE action in the laser cavity, significant pulse length shortening as well as pulse stability improvement were observed as compared with a SWCNTs-only mode-locked laser. The shortest achieved pulse width of near transform-limited solitons was 222 fs at the output average power of 9.1 mW and 45.5 MHz repetition frequency, corresponding to the 0.17 nJ pulse energy.

  6. All-fiber normal-dispersion single-polarization passively mode-locked laser based on a 45°-tilted fiber grating.

    PubMed

    Liu, Xianglian; Wang, Hushan; Yan, Zhijun; Wang, Yishan; Zhao, Wei; Zhang, Wei; Zhang, Lin; Yang, Zhi; Hu, Xiaohong; Li, Xiaohui; Shen, Deyuan; Li, Cheng; Chen, Guangde

    2012-08-13

    An all-fiber normal-dispersion Yb-doped fiber laser with 45°-tilted fiber grating (TFG) is, to the best of our knowledge, experimentally demonstrated for the first time. Stable linearly-chirped pulses with the duration of 4 ps and the bandwidth of 9 nm can be directly generated from the laser cavity. By employing the 45° TFG with the polarization-dependent loss of 33 dB, output pulses with high polarization extinction ratio of 26 dB are implemented in the experiment. Our result shows that the 45° TFG can work effectively as a polarizer, which could be exploited to single-polarization all-fiber lasers.

  7. All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter

    NASA Astrophysics Data System (ADS)

    Li, N.; Liu, M. Y.; Gao, X. J.; Zhang, L.; Jia, Z. X.; Feng, Y.; Ohishi, Y.; Qin, G. S.; Qin, W. P.

    2016-07-01

    We demonstrated a widely tunable mode-locked thulium doped fiber laser (TDFL) by using a homemade multimode interference filter (MMIF). The MMIF had a structure of single mode fiber (SMF)—multimode fiber (MMF)—SMF and three main transmission peaks at 1901.2, 1957.2 and 2043.2 nm. By mechanically bending the MMIF, the three main transmission peaks were tuned in the range of 1860-2024 nm due to multimode interference effect. By inserting the MMIF into a passively mode-locked TDFL cavity pumped by a 1570 nm fiber laser, a tunable mode-locked TDFL with a tuning range of 1919.6-2014.9 nm was achieved by adjusting the MMIF. To the best of our knowledge, such a tunable range is the largest among all-fiber tunable mode-locked TDFLs.

  8. Widely tunable Tm-doped mode-locked all-fiber laser.

    PubMed

    Yan, Zhiyu; Sun, Biao; Li, Xiaohui; Luo, Jiaqi; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2016-06-06

    We demonstrated a widely tunable Tm-doped mode-locked all-fiber laser, with the widest tunable range of 136 nm, from 1842 to 1978 nm. Nonlinear polarization evolution (NPE) technique is employed to enable mode-locking and the wavelength-tunable operation. The widely tunable range attributes to the NPE-induced transmission modulation and bidirectional pumping mechanism. Such kind of tunable mode-locked laser can find various applications in optical communications, spectroscopy, time-resolved measurement, and among others.

  9. Widely tunable Tm-doped mode-locked all-fiber laser

    NASA Astrophysics Data System (ADS)

    Yan, Zhiyu; Sun, Biao; Li, Xiaohui; Luo, Jiaqi; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2016-06-01

    We demonstrated a widely tunable Tm-doped mode-locked all-fiber laser, with the widest tunable range of 136 nm, from 1842 to 1978 nm. Nonlinear polarization evolution (NPE) technique is employed to enable mode-locking and the wavelength-tunable operation. The widely tunable range attributes to the NPE-induced transmission modulation and bidirectional pumping mechanism. Such kind of tunable mode-locked laser can find various applications in optical communications, spectroscopy, time-resolved measurement, and among others.

  10. Widely tunable Tm-doped mode-locked all-fiber laser

    PubMed Central

    Yan, Zhiyu; Sun, Biao; Li, Xiaohui; Luo, Jiaqi; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2016-01-01

    We demonstrated a widely tunable Tm-doped mode-locked all-fiber laser, with the widest tunable range of 136 nm, from 1842 to 1978 nm. Nonlinear polarization evolution (NPE) technique is employed to enable mode-locking and the wavelength-tunable operation. The widely tunable range attributes to the NPE-induced transmission modulation and bidirectional pumping mechanism. Such kind of tunable mode-locked laser can find various applications in optical communications, spectroscopy, time-resolved measurement, and among others. PMID:27263655

  11. Doubly active Q switching and mode locking of an all-fiber laser.

    PubMed

    Cuadrado-Laborde, Christian; Díez, Antonio; Cruz, Jose L; Andrés, Miguel V

    2009-09-15

    Simultaneous and independent active Q switching and active mode locking of an erbium-doped fiber laser is demonstrated using all-fiber modulation techniques. A magnetostrictive rod attached to the output fiber Bragg grating modulates the Q factor of the Fabry-Perot cavity, whereas active mode locking is achieved by amplitude modulation with a Bragg-grating-based acousto-optic device. Fully modulated Q-switched mode-locked trains of optical pulses were obtained for a wide range of pump powers and repetition rates. For a Q-switched repetition rate of 500 Hz and a pump power of 100 mW, the laser generates trains of 12-14 mode-locked pulses of about 1 ns each, within an envelope of 550 ns, an overall energy of 0.65 microJ, and a peak power higher than 250 W for the central pulses of the train.

  12. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser

    SciTech Connect

    Zhang, Z.; Popa, D. Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C.; Ilday, F. Ö.

    2015-12-14

    We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.

  13. 1000-1400-nm partially mode-locked pulse from a simple all-fiber cavity.

    PubMed

    Wei, Xiaoming; Xu, Yiqing; Wong, Kenneth K Y

    2015-07-01

    We demonstrate a partially mode-locked pulse laser delivering ultra-wideband optical spectrum, i.e., 1000-1400 nm at 30 dB, from a simple all-fiber short cavity with all-normal dispersion. Examined by both real-time temporal and spectral analyzers, the partially mode-locked pulse exhibits double-scale noise-like characteristics-the fast L-shaped mode-locked pulse modulated by slow free-running Q-switched envelopes. Moreover, the statistical analysis as a function of its optical bandwidth shows that the spectral tuning does not compromise the temporal stability, but affects the pulsing periodicity. It is believed that the wide spectrum of knowledge obtained here would enrich the field of noise-like pulse, such as being beneficial to the rogue wave generation. PMID:26125353

  14. Actively mode-locked all fiber laser with cylindrical vector beam output.

    PubMed

    Zhou, Yong; Wang, Anting; Gu, Chun; Sun, Biao; Xu, Lixin; Li, Feng; Chung, Dick; Zhan, Qiwen

    2016-02-01

    We demonstrated an all fiber actively mode-locked laser that emits a cylindrical vector beam. An intra-cavity few-mode fiber Bragg grating inscribed in a short section of four-mode fiber is employed to provide mode selection and spectrum filtering functions. Mode coupling is achieved by offset splicing between the single-mode fiber and the four-mode fiber in the laser cavity. A LiNbO3 Mach-Zehnder modulator is used to achieve active mode-locking in the laser. The laser operates at 1547 nm with 30 dB spectrum width of 0.2 nm. The mode-locked pulses have a duration of 2 ns and repetition of 12.06 MHz. Through adjusting the polarization state in the laser cavity, both radially and azimuthally polarized beams have been obtained with high mode purity.

  15. Actively mode-locked all fiber laser with cylindrical vector beam output.

    PubMed

    Zhou, Yong; Wang, Anting; Gu, Chun; Sun, Biao; Xu, Lixin; Li, Feng; Chung, Dick; Zhan, Qiwen

    2016-02-01

    We demonstrated an all fiber actively mode-locked laser that emits a cylindrical vector beam. An intra-cavity few-mode fiber Bragg grating inscribed in a short section of four-mode fiber is employed to provide mode selection and spectrum filtering functions. Mode coupling is achieved by offset splicing between the single-mode fiber and the four-mode fiber in the laser cavity. A LiNbO3 Mach-Zehnder modulator is used to achieve active mode-locking in the laser. The laser operates at 1547 nm with 30 dB spectrum width of 0.2 nm. The mode-locked pulses have a duration of 2 ns and repetition of 12.06 MHz. Through adjusting the polarization state in the laser cavity, both radially and azimuthally polarized beams have been obtained with high mode purity. PMID:26907420

  16. All-fiber mode-locked laser based on microfiber polarizer.

    PubMed

    Zhang, Zhishen; Gan, Jiulin; Yang, Tong; Wu, Yuqing; Li, Qingyu; Xu, Shanhui; Yang, Zhongmin

    2015-03-01

    A novel all-fiber mode-locked fiber laser based on microfiber polarizer is proposed and demonstrated. The microfiber polarizer is composed of two pieces of microfibers that are finely manipulated to be partly overlapped. Because of the asymmetric cross section, the microfiber polarizer shows a strong birefringence that ultimately induces a high polarization-selective feature. Compared with other polarizers, the microfiber polarizer owns the merits of simpler fabrication, lower cost, broader band, and more compact size. The polarization extinction ratio of the microfiber polarizer is 26 dB, and the stable pulse sequence with the duration of 2.9 ps is generated from this microfiber polarizer based all-fiber mode-locked laser.

  17. High-energy wave-breaking-free pulse from all-fiber mode-locked laser system.

    PubMed

    Tian, Xiaolong; Tang, Ming; Cheng, Xueping; Shum, Perry Ping; Gong, Yandong; Lin, Chinlon

    2009-04-27

    We demonstrated an all-fiber mode-locked laser system which generated high-energy wave-breaking-free pulses with low repetition rate. The system included a passively mode-locked fiber laser which acted as a master oscillator and an Yb-doped fiber amplifier. By increasing the cavity length of the laser, pulse energy could be significantly increased. According to different cavity length, wave-breaking-free pulse with 2.9 nJ-6.9 nJ pulse energy and 870 kHz-187 kHz repetition rate has been achieved from the master oscillator. Over 4 microJ pulse can be obtained after amplification.

  18. All fiber actively mode-locked fiber laser emitting cylindrical vector beam

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Wang, Anting; Gu, Chun; Xu, Lixin; Zhan, Qiwen

    2015-08-01

    We demonstrated an all fiber actively mode-locked laser emitting cylindrical vector beam. A few-mode fiber Bragg grating is adopted to achieve mode selecting and spectrum filtering. An offset splicing of single-mode fiber with fourmode fiber is utilized as a mode coupler in the laser cavity. A LiNbO3 Mach-Zehnder modulator is used to achieve active mode locking in the laser. The laser operates at 1547nm with 30 dB spectrum width of 0.3nm. The emitted modelocked pulses have a duration of 1ns and repetition of 12.06MHz. Both radially and azimuthally polarized beams have been obtained with very good modal symmetry by adjusting the polarization in the laser cavity.

  19. Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser.

    PubMed

    Han, D D; Liu, X M; Cui, Y D; Wang, G X; Zeng, C; Yun, L

    2014-03-15

    We propose a compact nanotube-mode-locked all-fiber laser that can simultaneously generate picosecond and femtosecond solitons at different wavelengths. The pulse durations of picosecond and femtosecond solitons are measured to be ∼10.6  ps and ∼466  fs, respectively. Numerical results agree well with the experimental observations and clearly reveal that the dynamic evolutions of the picosecond and femtosecond solitons are qualitatively distinct in the intracavity. Our study presents a simple, stable, low-cost, and dual-scale ultrafast-pulsed laser source suitable for practical applications in optical communications.

  20. Optical repetition rate stabilization of a mode-locked all-fiber laser.

    PubMed

    Rieger, Steffen; Hellwig, Tim; Walbaum, Till; Fallnich, Carsten

    2013-02-25

    We designed an all-fiber mode-locked Erbium laser with optically stabilized repetition rate of 31.4 MHz. The stabilization was achieved by changing the refractive index of an Ytterbium-doped fiber in the resonator via optical pumping at a wavelength of 978 nm; and for long-term stability the local temperature of the fiber was additionally controlled with a thermo-electric element. The repetition rate was stabilized over 12 hours, and an Allan deviation of 2.5 × 10⁻¹² for an averaging time of 1 s could be achieved.

  1. 152 fs nanotube-mode-locked thulium-doped all-fiber laser

    PubMed Central

    Wang, Jinzhang; Liang, Xiaoyan; Hu, Guohua; Zheng, Zhijian; Lin, Shenghua; Ouyang, Deqin; Wu, Xu; Yan, Peiguang; Ruan, Shuangchen; Sun, Zhipei; Hasan, Tawfique

    2016-01-01

    Ultrafast fiber lasers with broad bandwidth and short pulse duration have a variety of applications, such as ultrafast time-resolved spectroscopy and supercontinuum generation. We report a simple and compact all-fiber thulium-doped femtosecond laser mode-locked by carbon nanotubes. The oscillator operates in slightly normal cavity dispersion at 0.055 ps2, and delivers 152 fs pulses with 52.8 nm bandwidth and 0.19 nJ pulse energy. This is the shortest pulse duration and the widest spectral width demonstrated from Tm-doped all-fiber lasers based on 1 or 2 dimensional nanomaterials, underscoring their growing potential as versatile saturable absorber materials. PMID:27374764

  2. 152 fs nanotube-mode-locked thulium-doped all-fiber laser.

    PubMed

    Wang, Jinzhang; Liang, Xiaoyan; Hu, Guohua; Zheng, Zhijian; Lin, Shenghua; Ouyang, Deqin; Wu, Xu; Yan, Peiguang; Ruan, Shuangchen; Sun, Zhipei; Hasan, Tawfique

    2016-01-01

    Ultrafast fiber lasers with broad bandwidth and short pulse duration have a variety of applications, such as ultrafast time-resolved spectroscopy and supercontinuum generation. We report a simple and compact all-fiber thulium-doped femtosecond laser mode-locked by carbon nanotubes. The oscillator operates in slightly normal cavity dispersion at 0.055 ps(2), and delivers 152 fs pulses with 52.8 nm bandwidth and 0.19 nJ pulse energy. This is the shortest pulse duration and the widest spectral width demonstrated from Tm-doped all-fiber lasers based on 1 or 2 dimensional nanomaterials, underscoring their growing potential as versatile saturable absorber materials. PMID:27374764

  3. 152 fs nanotube-mode-locked thulium-doped all-fiber laser.

    PubMed

    Wang, Jinzhang; Liang, Xiaoyan; Hu, Guohua; Zheng, Zhijian; Lin, Shenghua; Ouyang, Deqin; Wu, Xu; Yan, Peiguang; Ruan, Shuangchen; Sun, Zhipei; Hasan, Tawfique

    2016-07-04

    Ultrafast fiber lasers with broad bandwidth and short pulse duration have a variety of applications, such as ultrafast time-resolved spectroscopy and supercontinuum generation. We report a simple and compact all-fiber thulium-doped femtosecond laser mode-locked by carbon nanotubes. The oscillator operates in slightly normal cavity dispersion at 0.055 ps(2), and delivers 152 fs pulses with 52.8 nm bandwidth and 0.19 nJ pulse energy. This is the shortest pulse duration and the widest spectral width demonstrated from Tm-doped all-fiber lasers based on 1 or 2 dimensional nanomaterials, underscoring their growing potential as versatile saturable absorber materials.

  4. 152 fs nanotube-mode-locked thulium-doped all-fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Jinzhang; Liang, Xiaoyan; Hu, Guohua; Zheng, Zhijian; Lin, Shenghua; Ouyang, Deqin; Wu, Xu; Yan, Peiguang; Ruan, Shuangchen; Sun, Zhipei; Hasan, Tawfique

    2016-07-01

    Ultrafast fiber lasers with broad bandwidth and short pulse duration have a variety of applications, such as ultrafast time-resolved spectroscopy and supercontinuum generation. We report a simple and compact all-fiber thulium-doped femtosecond laser mode-locked by carbon nanotubes. The oscillator operates in slightly normal cavity dispersion at 0.055 ps2, and delivers 152 fs pulses with 52.8 nm bandwidth and 0.19 nJ pulse energy. This is the shortest pulse duration and the widest spectral width demonstrated from Tm-doped all-fiber lasers based on 1 or 2 dimensional nanomaterials, underscoring their growing potential as versatile saturable absorber materials.

  5. Switchable dual-wavelength all-fiber laser mode-locked by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kong, Y. C.; Yang, H. R.; Li, W. L.; Chen, G. W.

    2015-01-01

    We have proposed a compact dual-wavelength all-fiber pulse laser based on a single-walled carbon nanotube and chirped fiber Bragg gratings (CFBGs). A transmission filter is composed of a circulator and two CFBGs and is capable of controlling the operation of the proposed fiber laser. Mode-locking operations can be switched between 1551.2 and 1548.6 nm with the appropriate adjustment of polarization controller. Our laser delivers the pulses with the spectral bandwidth of about 0.6 nm and the pulse duration of about 7 ps. This work provides a low-cost, stable, and dual-wavelength ultrafast-pulsed laser source suitable for practical applications.

  6. Mode locking of an all-fiber laser by acousto-optic superlattice modulation.

    PubMed

    Cuadrado-Laborde, C; Diez, A; Delgado-Pinar, M; Cruz, J L; Andrés, M V

    2009-04-01

    Active mode locking of an erbium-doped all-fiber laser with a Bragg-grating-based acousto-optic modulator is demonstrated. The fiber Bragg grating was acoustically modulated by a standing longitudinal elastic wave, which periodically modulates the sidebands at twice the acoustic frequency. The laser has a Fabry-Perot configuration in which cavity loss modulation is achieved by tuning the output fiber Bragg grating to one of the acoustically induced sidebands. Optical pulses at 9 MHz repetition rate, 120 mW peak power, and 780 ps temporal width were obtained. The output results to be stable and has a timing jitter below 40 ps. The measured linewidth, 2.8 pm, demonstrates that these pulses are transform limited.

  7. All-normal dispersion, all-fibered PM laser mode-locked by SESAM.

    PubMed

    Lecourt, Jean-Bernard; Duterte, Charles; Narbonneau, François; Kinet, Damien; Hernandez, Yves; Giannone, Domenico

    2012-05-21

    We report a PM all-normal, all-in-fiber passively mode-locked laser operating at 1030 nm. The main pulse shaping mechanism is provided by a tilted chirped-FBG. The laser delivers nanojoule range highly chirped pulses at a repetition rate of about 40 MHz. The FWHM of the optical spectrum is up to 7.8 nm leading to sub-500 fs compressed optical pulses. The influence of the filtering bandwidth and the output coupling ratio has been investigated. PMID:22714177

  8. Thulium-doped all-fiber mode-locked laser based on NPR and 45°-tilted fiber grating.

    PubMed

    Li, Jianfeng; Yan, Zhijun; Sun, Zhongyuan; Luo, Hongyu; He, Yulian; Li, Zhuo; Liu, Yong; Zhang, Lin

    2014-12-15

    A nonlinear polarization rotation based all-fiber passively mode-locked Tm³⁺-doped fiber laser is demonstrated by using a 45° tilted fiber grating (TFG) as an in-line polarizer. The 45° TFG centered at 2000 nm with polarization dependent loss (PDL) of >12 dB at 1850 nm~2150 nm range was UV inscribed for the first time in SM28 fiber using a 244 nm Ar⁺ continuous wave laser and a phase mask with 25 mm long uniform pitch and titled period pattern of 33.7° with respect to the fiber axis. Stable soliton pulses centered at 1992.7 nm with 2.02 nm FWHM bandwidth were produced at a repetition rate of 1.902 MHz with pulse duration of 2.2 ps and pulse energy of 74.6 pJ. As increased pump power, the laser also can operate at noise-like regime with 18.1 nm FWHM bandwidth and pulse energy of up to 250.1 nJ. Using the same 45° TFG, both stable soliton and noise-like mode-locking centered at ~1970 nm and ~2050 nm, were also achieved by shortening and extending the length of Tm³⁺-doped fiber, respectively, exhibiting advantages of broadband and low insertion loss at 2 µm band. PMID:25607051

  9. Mode-locked, 1.94-μm, all-fiberized laser using WS₂ based evanescent field interaction.

    PubMed

    Jung, Minwan; Lee, Junsu; Park, June; Koo, Joonhoi; Jhon, Young Min; Lee, Ju Han

    2015-07-27

    We demonstrate the use of an all-fiberized, mode-locked 1.94 μm laser with a saturable absorption device based on a tungsten disulfide (WS2)-deposited side-polished fiber. The WS2 particles were prepared via liquid phase exfoliation (LPE) without centrifugation. A series of measurements including Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the prepared particles had thick nanostructures of more than 5 layers. The prepared saturable absorption device used the evanescent field interaction mechanism between the oscillating beam and WS2 particles and its modulation depth was measured to be ~10.9% at a wavelength of 1925 nm. Incorporating the WS2-based saturable absorption device into a thulium-holmium co-doped fiber ring cavity, stable mode-locked pulses with a temporal width of ~1.3 ps at a repetition rate of 34.8 MHz were readily obtained at a wavelength of 1941 nm. The results of this experiment confirm that WS2 can be used as an effective broadband saturable absorption material that is suitable to passively generate pulses at 2 μm wavelengths. PMID:26367658

  10. Thulium-doped all-fiber mode-locked laser based on NPR and 45°-tilted fiber grating.

    PubMed

    Li, Jianfeng; Yan, Zhijun; Sun, Zhongyuan; Luo, Hongyu; He, Yulian; Li, Zhuo; Liu, Yong; Zhang, Lin

    2014-12-15

    A nonlinear polarization rotation based all-fiber passively mode-locked Tm³⁺-doped fiber laser is demonstrated by using a 45° tilted fiber grating (TFG) as an in-line polarizer. The 45° TFG centered at 2000 nm with polarization dependent loss (PDL) of >12 dB at 1850 nm~2150 nm range was UV inscribed for the first time in SM28 fiber using a 244 nm Ar⁺ continuous wave laser and a phase mask with 25 mm long uniform pitch and titled period pattern of 33.7° with respect to the fiber axis. Stable soliton pulses centered at 1992.7 nm with 2.02 nm FWHM bandwidth were produced at a repetition rate of 1.902 MHz with pulse duration of 2.2 ps and pulse energy of 74.6 pJ. As increased pump power, the laser also can operate at noise-like regime with 18.1 nm FWHM bandwidth and pulse energy of up to 250.1 nJ. Using the same 45° TFG, both stable soliton and noise-like mode-locking centered at ~1970 nm and ~2050 nm, were also achieved by shortening and extending the length of Tm³⁺-doped fiber, respectively, exhibiting advantages of broadband and low insertion loss at 2 µm band.

  11. Different mode-locking methods in high energy all-normal dispersion Yb femtosecond all-fiber lasers

    NASA Astrophysics Data System (ADS)

    Szczepanek, Jan; Michalska, Maria; Kardaś, Tomasz; Radzewicz, Czesław; Stepanenko, Yuriy

    2015-05-01

    Ultrafast all-fiber oscillators are currently one of the most rapidly developing laser technologies. Many advantages like: environmental stability, low sensitivity to misalignment, excellent beam quality (intrinsic single transverse mode operation), high energy and an excellent active medium efficiency make them the lasers of choice for a variety of applications. In this paper the designs of all-fiber all-normal dispersion femtosecond lasers are described. Due to large positive chirp, the pulses inside the cavity are highly stretched in time and they can achieve higher energies with the same peak power as shorter pulses. High insensitivity to mechanical perturbations or temperature drift is another highly valued property of presented configurations. Two of reported lasers are extremely stable due to the fact that their cavities are built entirely of polarization maintaining fibers and optical elements. We used highly Yb3+ ions doped fibers as an active medium pumped by a fiber coupled 976 nm laser diode. The central wavelength of our laser oscillators was 1030 nm. Three methods of passive mode-locking in all-fiber cavities were studied. In particular, the designs with Nonlinear Polarization Evolution (NPE), Nonlinear Optical Loop Mirror (NOLM) and Nonlinear Amplifying Loop Mirror (NALM) as artificial saturable absorbers were investigated. The most attention was paid to all-PM-fiber configurations. We present two self-starting, high energy, all-fiber configurations: one delivering pulses with energy of 4.3 nJ and dechirped pulse duration of 150 fs based on the NALM and another with a 6.8 nJ, 390 fs pulses in configuration with the NOLM. The influence of different artificial saturable absorber on output pulse characteristics were studied and analyzed.

  12. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber.

    PubMed

    Sobon, Grzegorz; Sotor, Jaroslaw; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Abramski, Krzysztof M

    2013-05-20

    We report an all-fiber Tm-doped fiber laser mode-locked by graphene saturable absorber. The laser emits 1.2 ps pulses at 1884 nm center wavelength with 4 nm of bandwidth and 20.5 MHz mode spacing. The graphene layers were grown on copper foils by chemical vapor deposition (CVD) and transferred onto the fiber connector end. Up to date this is the shortest reported pulse duration achieved from a Tm-doped laser mode-locked by graphene saturable absorber. Such cost-effective and stable fiber lasers might be considered as sources for mid-infrared spectroscopy and remote sensing.

  13. Environmentally stable, simple passively mode-locked fiber ring laser using a four-port circulator.

    PubMed

    Masuda, Shin; Niki, Shoji; Nakazawa, Masataka

    2009-04-13

    We present here a self-starting passively mode-locked fiber ring laser with a novel cavity configuration using a four-port optical circulator. Our special ring cavity design enables highly stable mode-locked operation between 25 and 60 degrees C to be maintained without the need for any polarization-adjusting devices. The pulse width and the integrated timing jitter from 10 Hz to 10 MHz of our fiber ring laser were measured to be 120 fs and 39.1 fs, respectively. As a result, a robust and environmentally stable all-fiber mode-locked fiber ring laser with a simple ring cavity configuration in a small package has been achieved.

  14. Characterization of mode-locking in an all-fiber, all normal dispersion ytterbium based fiber oscillator

    NASA Astrophysics Data System (ADS)

    Cserteg, András.; Sági, Veronika; Drozdy, András.; Varallyay, Zoltán.; Gajdátsy, Gábor

    2015-03-01

    An ytterbium based all fiber, all normal dispersion fiber oscillator with integrated SESAM can have several operation modes like mode-locked, Q-switched and noise-like. To know and to control the quality of the mode-locking is essential for the application of such laser oscillators, otherwise the whole laser setup can be damaged or the expected operation characteristics of the oscillator driven systems cannot be achieved. Usually the two-photon signal generated by the short pulses is used to indicate the mode locked operation, however such detection can be misleading in certain cases and not always able to predict the forthcoming degradation or vanishing of mode locking. The characterization method that we propose uses only the radio frequency spectrum of the oscillator output and can identify the different operation regimes of our laser setup. The optical spectra measured simultaneously with the RF signals proves the reliability of our method. With this kind of characterization stable mode locking can be initiated and maintained during the laser operation. The method combined with the ability to align the polarization states automatically in the laser cavity leads to the possibility to record a polarization map where the stability domains can be identified and classified. With such map the region where the mode locking is self starting and maintainable with minimal polarization alignment can be selected. The developed oscillator reported here with its compact setup and self alignment ability can be a reliable source with long term error free operation without the need of expensive monitoring tools.

  15. Three-dimensional graphene based passively mode-locked fiber laser.

    PubMed

    Yang, Y; Loeblein, M; Tsang, S H; Chow, K K; Teo, E H T

    2014-12-15

    We present an all-fiber passively mode-locked fiber laser incorporating three-dimensional (3D) graphene as a saturable absorber (SA) for the first time to the best of our knowledge. The 3D graphene is synthesized by template-directed chemical vapor deposition (CVD). The SA is then simply formed by sandwiching the freestanding 3D graphene between two conventional fiber connectors without any deposition process. It is demonstrated that such 3D graphene based SA is capable to produce high quality mode-locked pulses. A passively mode-locked fiber laser is constructed and stable output pulses with a fundamental repetition rate of ~9.9 MHz and a pulse width of ~1 ps are generated from the fiber laser. The average output power of the laser is ~10.5 mW while the output pulse is operating at single pulse region. The results imply that the freestanding 3D graphene can be applied as an effective saturable absorption material for passively mode-locked lasers. PMID:25607096

  16. Three-dimensional graphene based passively mode-locked fiber laser.

    PubMed

    Yang, Y; Loeblein, M; Tsang, S H; Chow, K K; Teo, E H T

    2014-12-15

    We present an all-fiber passively mode-locked fiber laser incorporating three-dimensional (3D) graphene as a saturable absorber (SA) for the first time to the best of our knowledge. The 3D graphene is synthesized by template-directed chemical vapor deposition (CVD). The SA is then simply formed by sandwiching the freestanding 3D graphene between two conventional fiber connectors without any deposition process. It is demonstrated that such 3D graphene based SA is capable to produce high quality mode-locked pulses. A passively mode-locked fiber laser is constructed and stable output pulses with a fundamental repetition rate of ~9.9 MHz and a pulse width of ~1 ps are generated from the fiber laser. The average output power of the laser is ~10.5 mW while the output pulse is operating at single pulse region. The results imply that the freestanding 3D graphene can be applied as an effective saturable absorption material for passively mode-locked lasers.

  17. Mode-locked all-fiber laser producing radially polarized rectangular pulses.

    PubMed

    Sun, Biao; Wang, Anting; Gu, Chun; Chen, Guoliang; Xu, Lixin; Chung, Dick; Zhan, Qiwen

    2015-04-15

    We propose and demonstrate a radially polarized mode-locked fiber laser through the use of a figure-8 cavity in combination with cascade fiber Bragg gratings (FBGs). The mode-locked laser emits rectangular pulses with width tunable from 2.8 to 23 ns under an increasing pump power at 1056.3 nm with 0.2-nm 30-dB linewidth. A polarization purity as high as 96% for the output transverse mode has been achieved simultaneously. PMID:25872049

  18. Intricate solitons state in passively mode-locked fiber lasers.

    PubMed

    Amrani, Foued; Salhi, Mohamed; Leblond, Hervé; Haboucha, Adil; Sanchez, François

    2011-07-01

    We report a novel spontaneous soliton pattern formation in a figure-of-eight passively mode-locked erbium-doped double-clad fiber laser. It consists in a condensate phase in which there is almost periodic arrangement of alternate crystal and liquid soliton phases. Thanks to an adapted ansatz for the electric field, we perform a reconstruction allowing to clearly identify the soliton distribution along the cavity.

  19. Active/passive mode-locked laser oscillator

    DOEpatents

    Fountain, William D.; Johnson, Bertram C.

    1977-01-01

    A Q-switched/mode-locked Nd:YAG laser oscillator employing simultaneous active (electro-optic) and passive (saturable absorber) loss modulation within the optical cavity is described. This "dual modulation" oscillator can produce transform-limited pulses of duration ranging from about 30 psec to about 5 nsec with greatly improved stability compared to other mode-locked systems. The pulses produced by this system lack intrapulse frequency or amplitude modulation, and hence are idealy suited for amplification to high energies and for other applications where well-defined pulses are required. Also, the pulses of this system have excellent interpulse characteristics, wherein the optical noise between the individual pulses of the pulse train has a power level well below the power of the peak pulse of the train.

  20. High average/peak power linearly polarized all-fiber picosecond MOPA seeded by mode-locked noise-like pulses

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Ma, P. F.; Tao, R. M.; Wang, X. L.; Zhou, P.; Chen, J. B.

    2015-06-01

    The characteristics of mode-locked noise-like pulses generated from a passively mode-locked fiber oscillator are experimentally investigated. By carefully adjusting the two polarization controllers, stable mode-locked noise-like pulse emission with a high radio frequency signal/noise ratio of  >55 dB is successfully achieved, ensuring the safety and possibility of high power amplification. To investigate the amplification characteristics of such pulses, one all-fiber master oscillator power amplifier (MOPA) is built to boost the power and energy of such pulses. Amplified noise-like pulses with average output power of 423 W, repetition rate of 18.71 MHz, pulse energy of 22.61 μJ, pulse duration of 72.1 ps and peak power of 314 kW are obtained. Near diffraction-limited beam is also demonstrated with M2 factor measured at full power operation of ~1.2 in the X and Y directions. The polarization extinction ratio at output power of 183 W is measured to be ~13 dB. To the best of our knowledge, this is the first demonstration of high-power amplification of noise-like pulses and the highest peak power ever reported in all-fiber picosecond MOPAs. The temporal self-compression process of such pulses and high peak power when amplified make it an ideal pump source for generation of high-power supercontinuum. Other potential applications, such as material processing and optical coherent tomography, could also be foreseen.

  1. cw passive mode locking of a Ti:sapphire laser

    SciTech Connect

    Sarukura, N.; Ishida, Y.; Nakano, H.; Yamamoto, Y. )

    1990-02-26

    cw passive mode locking of a Ti:sapphire laser is achieved with 1,1{prime}-dietyl-2,2{prime}-dicarbocyanine iodide as the saturable absorber dye, using a 5 {mu}m thin dye jet flow. The pulse width is 4.0 ps, which is almost the transform-limited pulse for the observed spectrum width. The output power is {similar to}50 mW, when it is pumped by a 5 W cw Ar laser, while the tuning range is 745--755 nm.

  2. Generation of stretched pulses and dissipative solitons at 2  μm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers.

    PubMed

    Wang, Yu; Alam, Shaif-Ul; Obraztsova, Elena D; Pozharov, Anatoly S; Set, Sze Y; Yamashita, Shinji

    2016-08-15

    We demonstrate for the first time, to the best of our knowledge, a thulium-doped, all-fiber, mode-locked laser using a carbon nanotube saturable absorber, operating in the dissipative-soliton regime and the stretched-pulse-soliton regime. The net dispersion of the laser cavity is adjusted by inserting different lengths of normal dispersion fiber, resulting in different mode-locking regimes. These results could serve as a foundation for the optimization of mode-locked fiber-laser cavity design at the 2 μm wavelength region. PMID:27519109

  3. Generation of stretched pulses and dissipative solitons at 2  μm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers.

    PubMed

    Wang, Yu; Alam, Shaif-Ul; Obraztsova, Elena D; Pozharov, Anatoly S; Set, Sze Y; Yamashita, Shinji

    2016-08-15

    We demonstrate for the first time, to the best of our knowledge, a thulium-doped, all-fiber, mode-locked laser using a carbon nanotube saturable absorber, operating in the dissipative-soliton regime and the stretched-pulse-soliton regime. The net dispersion of the laser cavity is adjusted by inserting different lengths of normal dispersion fiber, resulting in different mode-locking regimes. These results could serve as a foundation for the optimization of mode-locked fiber-laser cavity design at the 2 μm wavelength region.

  4. Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter.

    PubMed

    Fedotov, Y S; Kobtsev, S M; Arif, R N; Rozhin, A G; Mou, C; Turitsyn, S K

    2012-07-30

    We examined methods of controlling the pulse duration, spectral width and wavelength of the output from an all-fiber Yb laser mode-locked by carbon nanotubes. It is shown that a segment of polarization maintaining (PM) fiber inserted into a standard single mode fiber based laser cavity can function as a spectral selective filter. Adjustment of the length of the PM fiber from 1 to 2 m led to a corresponding variation in the pulse duration from 2 to 3.8 ps, the spectral bandwidth of the laser output changes from 0.15 to 1.26 nm. Laser output wavelength detuning within up to 5 nm was demonstrated with a fixed length of the PM fiber by adjustment of the polarization controller. PMID:23038330

  5. Statistical light-mode dynamics of multipulse passive mode locking.

    PubMed

    Weill, Rafi; Well, Rafi; Vodonos, Boris; Gordon, Ariel; Gat, Omri; Fischer, Baruch

    2007-09-01

    We study the multipulse formation in passive mode locking in the framework of the statistical light-mode dynamics theory. It is a many-body theory that treats the complex many-mode laser system by statistical mechanics. We give a detailed theory and experimental verification for the important case of multiple-pulse formation in the laser cavity. We follow and extend our former work on the subject. We give a detailed analysis with a rigorous calculation of the partition function, the free energy, and the order parameter in the coarse-graining method within the mean-field theory that is exact in the light-mode system. The outcome is a comprehensive picture of multipulse formation and annihilation, pulse after pulse, in an almost quantized manner, as the noise ("temperature") or the light power is varied. We obtain the phase diagram of the system, showing a series of first-order phase transitions, each belonging to a different number of pulses. We also study the hysteresis behavior, typical for such thermodynamic systems. We elaborate on the role of the saturable absorber structure in determining the multipulse formation. The theoretical results are compared to experimental measurements that we obtained with mode-locked fiber lasers, and we find an excellent agreement. PMID:17930204

  6. All-fiber Q-switched and self-mode-locking Er3+/Yb3+-codoped ring laser

    NASA Astrophysics Data System (ADS)

    Zhang, Shumin; Lu, Fuyun; Wang, Jian; Xie, Chunxia; Wang, Hongjie; Dong, Xiaoyi

    2005-01-01

    A high efficiency Q-switched and self-mode-locked Er3+/Yb3+ co-doped fiber ring laser with a Mach-Zehnder interferometer (MZI) is proposed. The fiber laser with threshold of 126.84 mw and linewidth of 0.06nm has been demonstrated. The average power of 62.6mW, the peak power of 1231.8mW of the Q-switched giant pulses with the pulse duration of 2.6μs can be achieved. It is found that in order to generate Q-switched giant pulses, different repetition frequency must be selected as pumping power is changed. This phenomenon is observed for the first time to our knowledge. In the experiment, it is also found that stable passive Q-switch pulses can be observed, which waveform is not the same with the different pump power, although the arms lengths of the interferometer is not changed. When the absorbed pumped power is increased to 591.8mW, a self-mode-locking pulse can be formed and it is given a detailed theoretically illustration in this paper.

  7. Passively mode-locked Nd:GdVO4 laser at 912nm

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wei, Zhi-Yi; Zhang, Ling; Zhang, Chun-Yu; Zhang, Zhi-Guo

    2006-11-01

    This paper demonstrates the passively mode-locked Nd:GdVO4 laser operating on the 4F3/2-4I9/2 transition at 912 nm by using a semiconductor saturable-absorber mirror for passive mode locking, stable continuous wave mode-locked 912 nm laser was achieved with a repetition rate of 176 MHz. At the incident pump power of 17.7 W, 22.6 mW average output power of stable mode-locked laser was obtained with a slope efficiency of 0.3%.

  8. Long-cavity all-fiber ring laser actively mode locked with an in-fiber bandpass acousto-optic modulator.

    PubMed

    Cuadrado-Laborde, C; Bello-Jiménez, M; Díez, A; Cruz, J L; Andrés, M V

    2014-01-01

    We demonstrate low-frequency active mode locking of an erbium-doped all-fiber ring laser. As the mode locker, we used a new in-fiber bandpass acousto-optic modulator showing 74% modulation depth, 3.7 dB power insertion losses, 4.5 nm of optical bandwidth, and 20 dB of nonresonant light suppression. The laser generates 330 ps mode-locked pulses over a 10 ns pedestal, at a 1.538 MHz frequency, with 130 mW of pump power.

  9. Passive mode locking of a Nd:KGW laser with hot-band diode pumping

    NASA Astrophysics Data System (ADS)

    Eibna Halim, M. Z.; Talukder, R. C.; Waritanant, T.; Major, A.

    2016-10-01

    Passive mode locking of a Nd:KGW laser with hot-band diode pumping at 910 nm was demonstrated. A semiconductor saturable absorber mirror was used as a mode locking mechanism. The laser generated 2.4 ps pulses at a repetition rate of ~83.8 MHz. An average output power of 87 mW was obtained at 1067 nm. To the best of our knowledge, this is the first report on passive mode locking of a Nd:KGW laser with low quantum defect pumping which holds great promise for further output power scaling.

  10. Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber.

    PubMed

    Chernysheva, M A; Krylov, A A; Kryukov, P G; Arutyunyan, N R; Pozharov, A S; Obraztsova, E D; Dianov, E M

    2012-12-10

    We present a thulium-doped fiber laser mode-locked by a carboxymetylcellulose high-optical quality film with dispersed single-walled carbon nanotubes. Laser system based on the nonlinear amplifying loop mirror generates the shortest pulses earlier obtained in SWCNT mode-locked thulium-doped fiber lasers with a duration of 450 fs and 18 mW maximum average power at 1870 nm.

  11. Regimes of operation states in passively mode-locked fiber soliton ring laser

    NASA Astrophysics Data System (ADS)

    Gong, Y. D.; Shum, P.; Tang, D. Y.; Lu, C.; Guo, X.; Paulose, V.; Man, W. S.; Tam, H. Y.

    2004-06-01

    The principal of passively mode-locked fiber soliton ring lasers is summarized, including its three output operation states: normal soliton, bound-solitons and noise-like pulse. The experimental results of the passively mode-locked fiber soliton ring lasers developed by us are given. Bound-solitons with different discrete separations and three-bound-solitons state have been observed in our fiber laser for the first time. The relationship among three operation states in fiber soliton laser is analyzed.

  12. Numerical simulation of passively mode-locked fiber laser based on semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Yang, Jingwen; Jia, Dongfang; Zhang, Zhongyuan; Chen, Jiong; Liu, Tonghui; Wang, Zhaoying; Yang, Tianxin

    2013-03-01

    Passively mode-locked fiber laser (MLFL) has been widely used in many applications, such as optical communication system, industrial production, information processing, laser weapons and medical equipment. And many efforts have been done for obtaining lasers with small size, simple structure and shorter pulses. In recent years, nonlinear polarization rotation (NPR) in semiconductor optical amplifier (SOA) has been studied and applied as a mode-locking mechanism. This kind of passively MLFL has faster operating speed and makes it easier to realize all-optical integration. In this paper, we had a thorough analysis of NPR effect in SOA. And we explained the principle of mode-locking by SOA and set up a numerical model for this mode-locking process. Besides we conducted a Matlab simulation of the mode-locking mechanism. We also analyzed results under different working conditions and several features of this mode-locking process are presented. Our simulation shows that: Firstly, initial pulse with the peak power exceeding certain threshold may be amplified and compressed, and stable mode-locking may be established. After about 25 round-trips, stable mode-locked pulse can be obtained which has peak power of 850mW and pulse-width of 780fs.Secondly, when the initial pulse-width is greater, narrowing process of pulse is sharper and it needs more round-trips to be stable. Lastly, the bias currents of SOA affect obviously the shape of mode-locked pulse and the mode-locked pulse with high peak power and narrow width can be obtained through adjusting reasonably the bias currents of SOA.

  13. Investigation of passively mode-locked fiber laser with adjustable pulse-width

    NASA Astrophysics Data System (ADS)

    Xu, Huiwen; Fu, Xiquan; Lei, Dajun; Wen, Shuangchun

    2006-09-01

    In the paper, we have numerically studied how the initial conditions influence the mode-locked soliton formation in the passively mode-locked fiber laser by using the nonlinear polarization rotation technique. We find that once the laser gain is fixed, a soliton with fixed peak power and pulse width will be formed, which is independent of the initial seed pulse conditions. Further numerical simulations have shown that both the peak power and the pulse width of the mode-locked soliton are varied with the linear cavity delay bias setting. We identified that the larger the linear cavity phase setting, the higher the soliton peak and the narrower the soliton pulse achievable in certain range, and adjustable pulse width passively mode-locked fiber laser can be formed by turning the linear cavity delay bias.

  14. Multistability and hysteresis phenomena in passively mode-locked fiber lasers

    SciTech Connect

    Komarov, Andrey; Leblond, Herve; Sanchez, Francois

    2005-05-15

    A passively mode-locked fiber laser is theoretically investigated. The mode locking is achieved using the nonlinear polarization technique. We consider the practical case of the ytterbium-doped fiber laser operating in the normal dispersion regime. The effect of the phase plates is explicitly taken into account. The resulting model reduces to one iterative equation for the optical Kerr nonlinearity, the phase plates and the polarizer, and one partial differential equation for the gain and the dispersion. Numerical simulations allow us to describe several features observed in passively mode-locked fiber lasers such as bistability between the mode lock and the continuous regime, multiple pulse behavior, hysteresis phenomena. The dynamics of the number of pulses as a function of the pumping power is also reported. Pump power hysteresis is demonstrated.

  15. All fiber passively Q-switched laser

    DOEpatents

    Soh, Daniel B. S.; Bisson, Scott E

    2015-05-12

    Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.

  16. A passively mode locked thulium doped fiber laser using bismuth telluride deposited multimode interference

    NASA Astrophysics Data System (ADS)

    Jung, M.; Lee, J.; Song, W.; Lee, J. H.; Shin, W.

    2016-03-01

    We experimentally demonstrate a passively mode-locked thulium doped fiber laser using a bismuth telluride deposited multimode interference (MMI) fiber at a wavelength of 1958 nm. Our MMI based saturable absorber was fabricated by fusion splicing with single mode fiber and null core fiber. The center wavelength and insertion loss of MMI fiber were measured to be ~ 1958 nm and 3.4 dB. We observed a passively mode locked thulium doped fiber laser operating at a wavelength of 1958 nm. The temporal pulse width of output pulses is 4.2 ps with repetition rate of 22.7 MHz.

  17. Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers.

    PubMed

    Li, Huihui; Liu, Jiang; Cheng, Zhaochen; Xu, Jia; Tan, Fangzhou; Wang, Pu

    2015-03-01

    Different pulse-shaping mechanisms were investigated experimentally and numerically in passively mode-locked thulium-doped fiber lasers. Conventional solitons were demonstrated in a passively semiconductor saturable absorber mirror mode-locked anomalous dispersion thulium-doped fiber laser. With normal dispersion fiber and spectral filter added in cavity, pulse-shaping processes were theoretically analyzed in the presence of dispersion map and dissipation in thulium-doped fiber lasers. The existence of parabolic pulse as nonlinear attraction was proved and distinct pulse intensity profiles evolution from Gaussian shape to parabolic shape was proposed in dissipative dispersion-managed thulium-doped fiber lasers.

  18. High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity

    NASA Astrophysics Data System (ADS)

    Lin, J.-H.; Wang, D.; Lin, K.-H.

    2011-01-01

    Robust passively mode-locked pulse generation with low pulse repetition rate and giant spectrum bandwidth in an all-fiber, all-normal-dispersion ytterbium-doped fiber laser has been experimentally demonstrated using nonlinear polarization evolution technique. The highest pulse energy over 20 nJ with spectrum bandwidth over 50 nm can be experimentally obtained at 175 mW pump power. The mode-locked pulses reveal broadened 3-dB pulsewidth about several nanosecond and widened pedestal in time trace that is resulted from enormous dispersion in laser cavity and gain dynamics. At certain mode-locking state, a spectrum gap around 1056 nm are observed between the three and four energy levels of Yb-doped fiber laser. By properly rotating the polarization controller, the gap can be eliminated due to four-wave mixing to produce more flattened spectrum output.

  19. 980-nm all-fiber mode-locked Yb-doped phosphate fiber oscillator based on semiconductor saturable absorber mirror and its amplifier

    NASA Astrophysics Data System (ADS)

    Li, Ping-Xue; Yao, Yi-Fei; Chi, Jun-Jie; Hu, Hao-Wei; Zhang, Guang-Ju; Liang, Bo-Xing; Zhang, Meng-Meng; Ma, Chun-Mei; Su, Ning

    2016-08-01

    A 980-nm semiconductor saturable absorber mirror (SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introduced into the oscillator to obtain a robust and stable mode-locked seed source. When the cavity length is chosen to be 6 m, the oscillator generates an average output power of 3.5 mW and a pulse width of 76.27 ps with a repetition rate of 17.08 MHz. As the cavity length is optimized to short, 4.4-mW maximum output power and 61.15-ps pulse width are produced at a repetition rate of 20.96 MHz. The output spectrum is centered at 980 nm with a narrow spectral bandwidth of 0.13 nm. In the experiment, no undesired amplified spontaneous emission (ASE) nor harmful oscillation around 1030 nm is observed. Moreover, through a two-stage all-fiber-integrated amplifier, an output power of 740 mW is generated with a pulse width of 200 ps. Project supported by the National Natural Science Foundation of China (Grant No. 61205047).

  20. 980-nm all-fiber mode-locked Yb-doped phosphate fiber oscillator based on semiconductor saturable absorber mirror and its amplifier

    NASA Astrophysics Data System (ADS)

    Li, Ping-Xue; Yao, Yi-Fei; Chi, Jun-Jie; Hu, Hao-Wei; Zhang, Guang-Ju; Liang, Bo-Xing; Zhang, Meng-Meng; Ma, Chun-Mei; Su, Ning

    2016-08-01

    A 980-nm semiconductor saturable absorber mirror (SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introduced into the oscillator to obtain a robust and stable mode-locked seed source. When the cavity length is chosen to be 6 m, the oscillator generates an average output power of 3.5 mW and a pulse width of 76.27 ps with a repetition rate of 17.08 MHz. As the cavity length is optimized to short, 4.4-mW maximum output power and 61.15-ps pulse width are produced at a repetition rate of 20.96 MHz. The output spectrum is centered at 980 nm with a narrow spectral bandwidth of 0.13 nm. In the experiment, no undesired amplified spontaneous emission (ASE) nor harmful oscillation around 1030 nm is observed. Moreover, through a two-stage all-fiber-integrated amplifier, an output power of 740 mW is generated with a pulse width of 200 ps. Project supported by the National Natural Science Foundation of China (Grant No. 61205047).

  1. All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber.

    PubMed

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Cha, Yong-Ho; Jeong, Do-Young; Yeom, Dong-Il

    2014-09-22

    We demonstrate a dissipative soliton fiber laser with high pulse energy (>30 nJ) based on a single-walled carbon nanotube saturable absorber (SWCNT-SA). In-line SA that evanescently interacts with the high quality SWCNT/polymer composite film was fabricated under optimized conditions, increasing the damage threshold of the saturation fluence of the SA to 97 mJ/cm(2). An Er-doped mode-locked all-fiber laser operating at net normal intra-cavity dispersion was built including the fabricated in-line SA. The laser stably delivers linearly chirped pulses with a pulse duration of 12.7 ps, and exhibits a spectral bandwidth of 12.1 nm at the central wavelength of 1563 nm. Average power of the laser output is measured as 335 mW at an applied pump power of 1.27 W. The corresponding pulse energy is estimated to be 34 nJ at the fundamental repetition rate of 9.80 MHz; this is the highest value, to our knowledge, reported in all-fiber Er-doped mode-locked laser using an SWCNT-SA.

  2. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating.

    PubMed

    He, Xiaoying; Liu, Zhi-bo; Wang, D N

    2012-06-15

    We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.

  3. Diode-pumped passively mode-locked Nd:GdVO 4 laser at 912 nm

    NASA Astrophysics Data System (ADS)

    Xu, Changwen; Wei, Zhiyi; He, Kunna; Li, Dehua; Zhang, Yongdong; Zhang, Zhiguo

    2008-09-01

    We have demonstrated the stable mode-locked Nd:GdVO4 laser operating on the 4F3/2-4I9/2 transition at 912 nm. With a four-mirror-folded cavity and a semiconductor saturable absorber mirror for passive mode-locking, we have gained 6.5 ps laser pulses at a repetition rate of 178 MHz. The laser is diode-end-pumped, and the total output power from the out coupler is 128 mw at an incident pump power of 19.7 W.

  4. Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Si Fodil, Rachid; Amrani, Foued; Yang, Changxi; Kellou, Abdelhamid; Grelu, Ph.

    2016-07-01

    We experimentally investigate multipulse regimes obtained within a passively-mode-locked fiber laser that includes a Mach-Zehnder (MZ) interferometer. By adjusting the time delay imbalance of the MZ, ultrashort pulse trains at multi-GHz repetition rates are generated. We compare the observed dynamics with high-harmonic mode locking, and show that the multi-GHz pulse trains display an inherent instability, which has been overlooked. By using a recirculation loop containing the MZ, we demonstrate a significant improvement of the pulse train stability.

  5. Spectral sidebands and multipulse formation in passively mode-locked lasers

    SciTech Connect

    Weill, Rafi; Bekker, Alexander; Smulakovsky, Vladimir; Fischer, Baruch; Gat, Omri

    2011-04-15

    Pulses in passively mode-locked lasers are often accompanied by dispersive waves that form spectral sidebands due to spatial inhomogeneities in the laser cavity. Here we present an explicit calculation of the amplitude, frequency, and precise shape of the sidebands accompanying a solitonlike pulse. We then extend the study to the global steady state of mode-locked lasers with a variable number of pulses, and present experimental results in a mode-locked fiber laser that confirm the theory. The strong correlation between the temporal width of the sidebands and the measured spacing between the pulses in a multipulse operation suggests that the sidebands have an important role in the interpulse interaction.

  6. Repetition rate switching in a passively mode-locked fibre laser

    NASA Astrophysics Data System (ADS)

    Tian, X. L.; Tang, M.; Gong, Y. D.; Shum, P.

    2006-09-01

    Here we demonstrated a dispersion stretched passively mode-locked fiber laser. The laser was mode-locked by nonlinear polarization rotation (NPR) technical. Both dispersion managed soliton and noise-like pulses were observed in the experiment. Harmonic mode-locked noise-like pulses were observed. By changing the pump power or rotating the waveplates, noise-like pulse could split and always form equally spaced pulse train, thus the repetition rate of the output pulse could be switched among different orders of harmonic frequency. The experiment results were analyzed. We found that peak power clamping caused by NPR module led to pulse splitting, the pulse interaction through the Raman light drives the pulse to space equally.

  7. Generation regimes of bidirectional hybridly mode-locked ultrashort pulse erbium-doped all-fiber ring laser with a distributed polarizer.

    PubMed

    Krylov, Alexander A; Chernykh, Dmitriy S; Arutyunyan, Natalia R; Grebenyukov, Vyacheslav V; Pozharov, Anatoly S; Obraztsova, Elena D

    2016-05-20

    We report on the stable picosecond and femtosecond pulse generation from the bidirectional erbium-doped all-fiber ring laser hybridly mode-locked with a coaction of a single-walled carbon nanotube-based saturable absorber and nonlinear polarization evolution that was introduced through the insertion of the short-segment polarizing fiber. Depending on the total intracavity dispersion value, the laser emits conservative solitons, transform-limited Gaussian pulses, or highly chirped stretched pulses with almost 20 nm wide parabolic spectrum in both clockwise (CW) and counterclockwise (CCW) directions of the ring. Owing to the polarizing action in the cavity, we have demonstrated for the first time, to the best of our knowledge, an efficient tuning of soliton pulse characteristics for both CW and CCW channels via an appropriate polarization control. We believe that the bidirectional laser presented may be highly promising for gyroscopic and other dual-channel applications. PMID:27411151

  8. Generation regimes of bidirectional hybridly mode-locked ultrashort pulse erbium-doped all-fiber ring laser with a distributed polarizer.

    PubMed

    Krylov, Alexander A; Chernykh, Dmitriy S; Arutyunyan, Natalia R; Grebenyukov, Vyacheslav V; Pozharov, Anatoly S; Obraztsova, Elena D

    2016-05-20

    We report on the stable picosecond and femtosecond pulse generation from the bidirectional erbium-doped all-fiber ring laser hybridly mode-locked with a coaction of a single-walled carbon nanotube-based saturable absorber and nonlinear polarization evolution that was introduced through the insertion of the short-segment polarizing fiber. Depending on the total intracavity dispersion value, the laser emits conservative solitons, transform-limited Gaussian pulses, or highly chirped stretched pulses with almost 20 nm wide parabolic spectrum in both clockwise (CW) and counterclockwise (CCW) directions of the ring. Owing to the polarizing action in the cavity, we have demonstrated for the first time, to the best of our knowledge, an efficient tuning of soliton pulse characteristics for both CW and CCW channels via an appropriate polarization control. We believe that the bidirectional laser presented may be highly promising for gyroscopic and other dual-channel applications.

  9. Ultra-short pulse generation in the hybridly mode-locked erbium-doped all-fiber ring laser with a distributed polarizer

    NASA Astrophysics Data System (ADS)

    Krylov, Alexander A.; Sazonkin, Stanislav G.; Lazarev, Vladimir A.; Dvoretskiy, Dmitriy A.; Leonov, Stanislav O.; Pnev, Alexey B.; Karasik, Valeriy E.; Grebenyukov, Vyacheslav V.; Pozharov, Anatoly S.; Obraztsova, Elena D.; Dianov, Evgeny M.

    2015-06-01

    We report for the first time to the best of our knowledge on the ultra-short pulse (USP) generation in the dispersion-managed erbium-doped all-fiber ring laser hybridly mode-locked with boron nitride-doped single-walled carbon nanotubes in the co-action with a nonlinear polarization evolution in the ring cavity with a distributed polarizer. Stable 92.6 fs dechirped pulses were obtained via precise polarization state adjustment at a central wavelength of 1560 nm with 11.2 mW average output power, corresponding to the 2.9 kW maximum peak power. We have also observed the laser switching from a USP generation regime to a chirped pulse one with a corresponding pulse-width of 7.1 ps at the same intracavity dispersion.

  10. Can silicon carbide serve as a saturable absorber for passive mode-locked fiber lasers?

    PubMed

    Cheng, Chih-Hsien; Lin, Yung-Hsiang; Chen, Ting-Hui; Chen, Hsiang-Yu; Chi, Yu-Chieh; Lee, Chao-Kuei; Leeb, Chao-Kuei; Wu, Chih-I; Wua, Chih-I; Lin, Gong-Ru

    2015-01-01

    The study presents a novel demonstration of a passively mode-locked erbium-doped fiber laser (EDFL) that is based on a silicon carbide (SixC1-x) saturable absorber. When the C/Si composition ratio is increased to 1.83, the SixC1-x film transforms from two-photon absorption to nonlinear saturable absorption, and the corresponding value reaches -3.9 × 10(-6) cm/W. The Si-rich SixC1-x film cannot mode lock the EDFL because it induced high intracavity loss through two-photon absorption. Even when a stoichiometric SiC is used, the EDFL is mode locked, similar to an EDFL operating under weak nonlinear-polarization-rotation condition. A C-rich SixC1-x film containing sp(2)-orbital C-C bonds with a linear absorbance of 0.172 and nonlinear absorbance of 0.04 at a 181 MW/cm(2) saturation intensity demonstrates nonlinear transmittance. The C-rich SixC1-x saturable absorber successfully generates a short mode-locked EDFL pulse of 470 fs. The fluctuation of the pulse-train envelope dropps considerably from 11.6% to 0.8% when a strong saturable-absorption-induced self-amplitude modulation process occurs in the C-rich SixC1-x film. PMID:26558531

  11. Can silicon carbide serve as a saturable absorber for passive mode-locked fiber lasers?

    PubMed

    Cheng, Chih-Hsien; Lin, Yung-Hsiang; Chen, Ting-Hui; Chen, Hsiang-Yu; Chi, Yu-Chieh; Lee, Chao-Kuei; Leeb, Chao-Kuei; Wu, Chih-I; Wua, Chih-I; Lin, Gong-Ru

    2015-11-12

    The study presents a novel demonstration of a passively mode-locked erbium-doped fiber laser (EDFL) that is based on a silicon carbide (SixC1-x) saturable absorber. When the C/Si composition ratio is increased to 1.83, the SixC1-x film transforms from two-photon absorption to nonlinear saturable absorption, and the corresponding value reaches -3.9 × 10(-6) cm/W. The Si-rich SixC1-x film cannot mode lock the EDFL because it induced high intracavity loss through two-photon absorption. Even when a stoichiometric SiC is used, the EDFL is mode locked, similar to an EDFL operating under weak nonlinear-polarization-rotation condition. A C-rich SixC1-x film containing sp(2)-orbital C-C bonds with a linear absorbance of 0.172 and nonlinear absorbance of 0.04 at a 181 MW/cm(2) saturation intensity demonstrates nonlinear transmittance. The C-rich SixC1-x saturable absorber successfully generates a short mode-locked EDFL pulse of 470 fs. The fluctuation of the pulse-train envelope dropps considerably from 11.6% to 0.8% when a strong saturable-absorption-induced self-amplitude modulation process occurs in the C-rich SixC1-x film.

  12. Tunable passively harmonic mode-locked Yb-doped fiber laser with Lyot-Sagnac filter.

    PubMed

    Li, Ming; Zou, Xin; Wu, Jian; Shi, Jindan; Qiu, Jifang; Hong, Xiaobin

    2015-10-10

    A novel passively harmonic mode-locked dissipative soliton Yb-doped fiber laser with all normal dispersion is proposed and experimentally demonstrated based on a semiconductor saturable absorption mirror and tunable Lyot-Sagnac filter. By only tuning the bandwidth of the filter at fixed pump power, the repetition rate of 9.87 to 167.8 MHz (corresponding to 17th-order harmonic) is obtained. This is the highest repetition rate and harmonic order for a passively harmonic mode-locked dissipative soliton Yb-doped fiber laser with all-normal dispersion to the best of our knowledge. The signal-to-noise ratio and super-mode suppression ratio for all harmonic orders are higher than 65 and 35 dB, respectively, which shows the high stability of the fiber laser.

  13. Tunable passively harmonic mode-locked Yb-doped fiber laser with Lyot-Sagnac filter.

    PubMed

    Li, Ming; Zou, Xin; Wu, Jian; Shi, Jindan; Qiu, Jifang; Hong, Xiaobin

    2015-10-10

    A novel passively harmonic mode-locked dissipative soliton Yb-doped fiber laser with all normal dispersion is proposed and experimentally demonstrated based on a semiconductor saturable absorption mirror and tunable Lyot-Sagnac filter. By only tuning the bandwidth of the filter at fixed pump power, the repetition rate of 9.87 to 167.8 MHz (corresponding to 17th-order harmonic) is obtained. This is the highest repetition rate and harmonic order for a passively harmonic mode-locked dissipative soliton Yb-doped fiber laser with all-normal dispersion to the best of our knowledge. The signal-to-noise ratio and super-mode suppression ratio for all harmonic orders are higher than 65 and 35 dB, respectively, which shows the high stability of the fiber laser. PMID:26479821

  14. Passively mode-locked 1 GHz MOPA system generating sub-500-fs pulses after external compression

    NASA Astrophysics Data System (ADS)

    Ulm, Thorsten; Harth, Florian; Klehr, Andreas; Erbert, Götz; L'huillier, Johannes

    2012-06-01

    We compared the performance of DQW and TQW edge-emitters in a passively mode-locked 1GHz MOPA system at 1075 nm wavelength. Passive mode-locking is induced by applying a reverse DC voltage to the absorber section. The average power is increased up to 0.9Wby a single-stripe pre-amplifier and a tapered amplifier. After compensation of the quadratic chirp in a grating compressor we achieved a pulse duration of 342 fs. We found that the oscillator gain current and the absorber bias voltage have significant impact on the pulse duration. Both parameters were used to optimize the MOPA system with respect to the shortest pulse length after compression.

  15. Simultaneous compression of the passively mode-locked pulsewidth and pulse train

    NASA Technical Reports Server (NTRS)

    Yang, Xiang-Chun; Zhu, Xiao-Lei; Wu, Zhao-Qing; Sun, Zhan-Ao; Yang, Fu-Min; Tan, De-Tong; Chen, Wan-Zhen; Lu, Wen-Hu; Xiao, Chi-Kun

    1993-01-01

    Simultaneous compression of the passively mode-locked pulse width and pulse train have been achieved by using a plano-convex unstable resonator hybrided by a nonlinear Sagnac ring interferometer. The greater than 30 mJ single pulse energy of a lone oscillator and less than or equal to 10 ps pulsewidth have been obtained. Using this system, the LAGEOS and ETALON satellites' laser ranging have been performed successfully.

  16. High brightness photonic band crystal semiconductor lasers in the passive mode locking regime

    SciTech Connect

    Rosales, R.; Kalosha, V. P.; Miah, M. J.; Bimberg, D.; Posilović, K.; Pohl, J.; Weyers, M.

    2014-10-20

    High brightness photonic band crystal lasers in the passive mode locking regime are presented. Optical pulses with peak power of 3 W and peak brightness of about 180 MW cm{sup −2} sr{sup −1} are obtained on a 5 GHz device exhibiting 15 ps pulses and a very low beam divergence in both the vertical and horizontal directions.

  17. Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser

    SciTech Connect

    Liu Xueming

    2010-02-15

    A model describing the dissipative soliton evolution in a passively mode-locked fiber laser is proposed by using the nonlinear polarization rotation technique and the spectral filtering effect. It is numerically found that the laser alternately evolves on the stable and unstable mode-locking states as a function of the pump strength. Numerical simulations show that the passively mode-locked fiber lasers with large net normal dispersion can operate on multiple pulse behavior and hysteresis phenomena. The experimental observations confirm the theoretical predictions. The theoretical and experimental results achieved are qualitatively distinct from those observed in net-anomalous-dispersion conventional-soliton fiber lasers.

  18. Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser.

    PubMed

    Lin, Chang-Yi; Grillot, Frederic; Li, Yan; Raghunathan, Ravi; Lester, Luke F

    2010-10-11

    The timing jitter performance of a 5 GHz quantum dot passively mode-locked laser is investigated at different harmonics in the RF spectrum. The necessity of measuring the phase noise at relatively large harmonic numbers is motivated experimentally in the context of determining the corner frequency, its correlation to the RF linewidth, and the related white noise plateau level. The single-sideband phase noise with an integrated timing jitter of 211 fs (4-80 MHz) is reported. An all-microwave technique has been used to determine a pulse-to-pulse rms timing jitter of 96 fs/cycle. This low timing jitter value makes the chip-scale quantum dot mode-locked laser an attractive source for low noise applications such as optical clocking and sampling. PMID:20941093

  19. Can silicon carbide serve as a saturable absorber for passive mode-locked fiber lasers?

    PubMed Central

    Cheng, Chih-Hsien; Lin, Yung-Hsiang; Chen, Ting-Hui; Chen, Hsiang-Yu; Chi, Yu-Chieh; Leeb, Chao-Kuei; Wua, Chih-I; Lin, Gong-Ru

    2015-01-01

    The study presents a novel demonstration of a passively mode-locked erbium-doped fiber laser (EDFL) that is based on a silicon carbide (SixC1−x) saturable absorber. When the C/Si composition ratio is increased to 1.83, the SixC1−x film transforms from two-photon absorption to nonlinear saturable absorption, and the corresponding value reaches −3.9 × 10−6 cm/W. The Si-rich SixC1−x film cannot mode lock the EDFL because it induced high intracavity loss through two-photon absorption. Even when a stoichiometric SiC is used, the EDFL is mode locked, similar to an EDFL operating under weak nonlinear-polarization-rotation condition. A C-rich SixC1−x film containing sp2-orbital C–C bonds with a linear absorbance of 0.172 and nonlinear absorbance of 0.04 at a 181 MW/cm2 saturation intensity demonstrates nonlinear transmittance. The C-rich SixC1−x saturable absorber successfully generates a short mode-locked EDFL pulse of 470 fs. The fluctuation of the pulse-train envelope dropps considerably from 11.6% to 0.8% when a strong saturable-absorption-induced self-amplitude modulation process occurs in the C-rich SixC1−x film. PMID:26558531

  20. Self-stabilized and dispersion-compensated passively mode-locked Yb:Yttrium aluminum garnet laser

    NASA Astrophysics Data System (ADS)

    Agnesi, A.; Guandalini, A.; Reali, G.

    2005-04-01

    Self-stabilized passive mode-locking of a diode-pumped Yb:yttrium aluminum garnet laser with a semiconductor saturable absorber was achieved using an off-phase-matching second-harmonic crystal. According to the numerical model, such a condition is accomplished by self-defocusing in the nonlinear crystal in the presence of positive intracavity dispersion. Robust mode locking with Fourier-limited 1.0-ps pulses was obtained, whereas mode locking, unassisted by the nonlinear crystal, yielded 2.2-ps pulses, with the laser operating near the edge of the stability region in order to minimize the saturation energy of the semiconductor device.

  1. Reciprocal passive mode locking of a rhodamine 6G dye laser and the Ar/sup +/ pump laser

    SciTech Connect

    Yasa, Z.A.; Amer, N.M.

    1981-02-01

    A rhodamine 6G dye laser, internally pumped within the extended cavity of an Ar/sup +/-ion laser, is mode locked when its cavity length is matched to half that of the pump laser: the 5145-A argon laser line is passively mode locked by the combination of the saturable absorption and the lasing action of the dye, which is in turn synchronously pumped and mode locked. Tunable (5650-5950-A)approx.10 psec pulses are generated, and the average output power is approx.80 mW.

  2. Reciprocal passive mode locking of a rhodamine 6G dye laser and the Ar+ pump laser

    SciTech Connect

    Yasa, Zafer A.; Amer, Nabil M.

    1981-02-01

    We report that a rhodamine 6G dye laser, internally pumped within the extended cavity of an Ar+-ion laser, is mode locked when its cavity length is matched to half that of the pump laser: the 5145-Å argon laser line is passively mode locked by the combination of the saturable absorption and the lasing action of the dye, which is in turn synchronously pumped and mode locked. Tunable (5650–5950-Å) ~10 psec pulses are generated, and the average output power is ~80 mW.

  3. Self-starting, passively mode-locked Fabry-Perot fiber soliton laser using nonlinear polarization evolution

    SciTech Connect

    Matsas, V.J.; Loh, W.H.; Richardson, D.J. )

    1993-05-01

    During the last three years the potential of mode-locked rare-earth-doped fiber lasers for ultrashort pulse generation has been explored and both passive and active mode-locking schemes have been demonstrated. Three cavity configurations are most commonly used: Fabry-Perot, ring, and those which exploit the nonlinear properties of the fiber Sagnac loop mirror. Systems which use nonlinear polarization evolution (NLPE) in conjunction with an intracavity polarizer to provide the passive mode-locking mechanism have so far been demonstrated in ring and Fabry-Perot configurations, the latter of which employed an intracavity bulk polarizer and modulator. Here, the authors demonstrate pure self-starting mode-locked operation in a fiber Fabry-Perot cavity. The laser produces 1.6 ps transform-limited soliton pulses by means of nonlinear polarization evolution in conjunction with an intracavity fiber polarizer.

  4. Theory of stationary ultarshort pulses in solid-state laserswith passive mode locking

    SciTech Connect

    Komarov, K.P.

    1986-02-01

    The formation of steady-state pulses in solid-state lasers with passive mode locking is investigated under conditions when the refractive index is frequency dispersive and nonlinear. The case of a noninertial absorber is considered as well as that of an inertial one. It is shown that when the nonlinearity of the refractive index exceeds a certain critical level phase modulation of the pulse leads to instability of the steady-state regime. The possibility is discussed of forming extremely short pulses in wide-band amplifying media such as alexandrite.

  5. Passive mode locking of an energy transfer continuous-wave dye laser

    SciTech Connect

    French, P.M.W.; Taylor, J.R.

    1986-08-01

    The first passive mode locking of a continuous-wave energy transfer dye laser is reported. Using an argon ion laser-pumped mixture of rhodamine 6G and sulphur rhodamine 101 as the active medium, pulses of less than 500 fs duration have been generated over the spectral range 652-694 nm using two different saturable absorbers in a simple linear cavity without dispersion optimization. Pulses as short as 120 fs have been measured using standard second-harmonic generation autocorrelation techniques.

  6. Picosecond pulse generation in a passively mode-locked Bi-doped fibre laser

    SciTech Connect

    Krylov, Aleksandr A; Kryukov, P G; Dianov, Evgenii M; Okhotnikov, Oleg G

    2009-10-31

    CW passive mode locking is achieved in a bismuth-doped fibre laser using a semiconductor saturable absorber mirror optimised for operation in the range 1100-1200 nm. The pump source is a cw ytterbium fibre laser (1075 nm, maximum output power of 2.7 W), and the pulse parameters can be tuned by varying the intracavity group velocity dispersion using a diffraction grating pair. Stable laser pulses are obtained with a duration down to {tau}{sub p} {approx} 1.1 ps. (control of laser radiation parameters)

  7. Energy characteristics of light from a passively mode-locked Ar/sup +/ laser

    SciTech Connect

    Gafurov, K.G.; Krindach, D.P.; Nazarov, B.I.; Novoderezhkin, V.I.

    1983-08-01

    Results are reported from an experimental study of the maximum average and pulse powers of a passively mode-locked Ar/sup +/ laser containing a gas discharge absorber. The peak pulse power is found to increase roughly linearly with increasing absorption; it was found to depend more strongly on the ratio S of the beam cross sections in the amplifying and absorbing media. The value of S was determined experimentally for the case when several pulses were generated during the period T/sub 0/ of the Ar/sup +/ laser cavity and interacted in the absorber.

  8. Spatio-temporal intensity dynamics of passively mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Churkin, Dmitry V.; Sugavanam, Srikanth

    2016-03-01

    We present recent results on measurements of intensity spatio-temporal dynamics in passively mode-locked fibre laser. We experimentally uncover distinct, dynamic and stable spatio-temporal generation regimes of various stochasticity and periodicity properties in though-to-be unstable laser. We present a method to distinguish various types of generated coherent structures, including rogue and shock waves, within the radiation by means of introducing of intensity ACF evolution map. We also discuss how the spectral dynamics could be measured in fiber lasers generating irregular train of pulses of quasi-CW generation via combination of heterodyning and intensity spatio-temporal measurement concept.

  9. 1.21 W passively mode-locked Tm:LuAG laser.

    PubMed

    Feng, T; Yang, K; Zhao, J; Zhao, S; Qiao, W; Li, T; Dekorsy, T; He, J; Zheng, L; Wang, Q; Xu, X; Su, L; Xu, J

    2015-05-01

    A watt-level output passively mode-locked Tm:LuAG bulk laser with an InGaAs semiconductor saturable absorber mirror (SESAM) is demonstrated for the first time. A maximum average output power of 1.21 W at 2022.9 nm has been achieved with a pulse duration of 38 ps and a repetition rate of 129.2 MHz. The results indicate the potential of Tm:LuAG crystals as candidate for realizing high power ultrafast lasers at 2 μm. PMID:25969273

  10. Nd:YAG laser with passive-active mode-locking

    NASA Astrophysics Data System (ADS)

    Zhao, Weijiang; Chen, Zhenlei; Ren, Deming; Qu, Yanchen; Mo, Shuang; Huang, Jinjer; Andreev, Yury M.; Gorobets, Vadim A.; Petukhov, Vladimir O.; Zemlyanov, Aleksei A.

    2008-03-01

    All solid-state flash-lamp pumped passive-active mode-locked Nd3+:YAG laser is designed and experimentally studded. Saturation absorber Cr4+:YAG with initial transparency 25 and 47% are used as a passive Q-switcher and acousto-optical fused quartz modulator as an active mode-locker. Efficient length of the laser cavity with fixed mirror positions (1.45 m spaced) is droved by changes of 100% flat mirror for concave mirrors with different focus lengths. Changeable output mirrors with transparencies of 15 and 50% are used. Driving of the cavity parameters, laser and acousto-optical modulator power supply voltages let us to control output pulse train and single pulse parameters. As it goes from the analyses of oscillograms fixed with pyroelectric detector (τ=0.5 ns) and 1 GHz oscilloscope, over 95% of pulse output energy has been mode-locked. Average duration of the pulse train envelope of 5 to 50 single pulses at FWHM has been droved within 50 to 600 ns. When this single pulse duration is controlled but did not exceed 2 ns.

  11. Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser.

    PubMed

    Sobon, Grzegorz; Sotor, Jaroslaw; Martynkien, Tadeusz; Abramski, Krzysztof M

    2016-03-21

    We report generation of ultra-broadband dissipative solitons and noise-like pulses from a simple, fully fiberized mode-locked Tm-doped fiber laser. The oscillator operates in the normal net dispersion regime and is mode-locked via nonlinear polarization evolution. Depending on the cavity dispersion, the laser was capable of generating 60 nm or 100 nm broad dissipative solitons. These are the broadest spectra generated from a normal dispersion mode-locked Tm-doped fiber laser so far. The same oscillator might also operate in the noise-like pulse regime with extremely broad emission spectra (over 300 nm), which also significantly outperforms the previous reports.

  12. Dynamics of a passively mode-locked semiconductor laser subject to dual-cavity optical feedback

    NASA Astrophysics Data System (ADS)

    Jaurigue, Lina; Nikiforov, Oleg; Schöll, Eckehard; Breuer, Stefan; Lüdge, Kathy

    2016-02-01

    We study the influence of dual-cavity optical feedback on the emission dynamics and timing stability of a passively mode-locked semiconductor laser using a delay differential equation model and verify the timing stability results by an initial experiment. By bifurcation analysis in dependence of the feedback delay times and feedback strength bistability, quasiperiodic and chaotic dynamics, as well as fundamental mode-locking are investigated, yielding a comprehensive overview on the nonlinear emission dynamics arising due to dual-cavity optical feedback. Optimum self-locking ranges for improving the timing stability by dual-cavity optical feedback are identified. A timing jitter reduction and an increase of the repetition rate tuning range of up to a factor of three, compared with single-cavity feedback, are predicted for the parameter ranges investigated. Improved timing stability on short and long timescales is predicted for dual-cavity feedback through the suppression of noise-induced fluctuations. Based on the numerical predictions, experimentally, a maximum timing jitter reduction up to a factor of 180 is found, accompanied by a side-band reduction by a factor of 58 dB, when both feedback cavities are resonant.

  13. Passive mode-locking of acentric Yb-doped borate crystals

    NASA Astrophysics Data System (ADS)

    Petrov, V.; Mateos, X.; Schmidt, A.; Rivier, S.; Griebner, U.; Zhang, H.; Wang, J.; Li, J.; Liu, J.

    2010-05-01

    Passive mode locking of the self-frequency doubling Yb:YAB and Yb:YCOB crystals with a saturable absorber mirror is studied at the fundamental wavelength with diode pumping. All essential polarization orientations including the self-frequency doubling configuration are considered. For the first time sub-90 fs pulses at the fundamental are obtained with both materials and the improvement in terms of pulse length in comparison to previous work is about 2.3 times (Yb:YAB) and 2.8 times (Yb:YCOB). The Yb:YAB laser generates pulses as short as 87 fs at 1050 nm with a 0.4% output coupler. The shortest pulses (76 fs) are obtained with a Y-cut Yb:YCOB for E ∥ Z. With an output coupler of 0.4% the oscillation wavelength is 1056 nm. For E ∥ X the mode-locked Yb:YCOB laser operates on a different Stark transition (at longer wavelengths) than for E ∥ gg and E ∥ Z.

  14. Reduced group delay dispersion in quantum dot passively mode-locked lasers operating at elevated temperature

    NASA Astrophysics Data System (ADS)

    Mee, J. K.; Raghunathan, R.; Murrell, D.; Braga, A.; Li, Y.; Lester, L. F.

    2014-09-01

    A detailed study of the pulse characteristics emitted from a monolithic Quantum Dot (QD) passively Mode-Locked Laser (MLL) has been performed using a state-of-the-art Frequency Resolved Optical Gating (FROG) pulse measurement system. While traditionally the time-domain pulse characteristics of semiconductor MLLs have been studied using digital sampling oscilloscope or intensity autocorrelation techniques, the FROG measurements allow for simultaneous characterization of time and frequency, which has been shown to be necessary and sufficient for true determination of mode-locked stability. In this paper, FROG pulse measurements are presented on a two-section QD MLL operating over wide temperature excursions. The FROG measurement allows for extraction of the temporal and spectral intensity and phase profiles from which the Group Delay Dispersion (GDD) can be determined. The magnitude of the GDD is found to decrease from 16.1 to 3.5 ps/nm when the temperature is increased from 20 to 50 oC, mirroring the trend of pulse width reduction at elevated temperature, which has been shown to correlate strongly with reduced unsaturated absorption. The possibility to further optimize pulse generation via intra-cavity dispersion compensation in a novel three-section MLL design is also examined, and shows strong potential toward providing valuable insight into the optimal cavity designs and operating parameters for QD MLLs.

  15. Influence of pumping schemes on the characteristics of self-similar pulses in a passively mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Huo, Jiayu; Xu, Tiantian; Guo, Yubin; Wang, Ke; Gao, Bo

    2016-05-01

    Self-similar pulses are one of the domestic and international research hotspots in the field of nonlinear fiber optics because it can suppress optical wave breaking at high energies. The influence of pumping schemes on the characteristics of self-similar pulses in a passively mode-locked Yb-doped fiber laser is theoretically investigated. The temporal profile and optical spectrum of self-similar pulses in passively mode-locked fiber lasers of different pumping schemes are obtained in the simulation. This study focuses on analyzing the influence of gain bandwidth of gain fiber on the pulse duration, peak power, and single-pulse energy of self-similar pulses.

  16. Theoretical analysis of the operating regime of a passively-mode-locked fiber laser through nonlinear polarization rotation

    SciTech Connect

    Komarov, Andrey; Leblond, Herve; Sanchez, Francois

    2005-12-15

    The dynamics of a fiber laser passively mode-locked through nonlinear polarization rotation is theoretically investigated. The model is based on an iterative equation for the nonlinear polarization rotation and the phase plates and on a scalar differential equation for the gain, the Kerr nonlinearity, and the dispersion. It is demonstrated that depending on the orientation of the phase plates, the laser can be continuous, mode-locked, or Q-switched. In the latter case, an additional equation for the gain dynamics must be taken into account. Hysteresis dependence of the operating regime versus the orientation angles of the phase plates is shown. A large bistability domain between the Q-switch and the continuous regimes is demonstrated. This model allows us to obtain the main features observed in passively-mode-locked fiber lasers.

  17. Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber

    PubMed Central

    Yan, Peiguang; Liu, Aijiang; Chen, Yushan; Wang, JinZhang; Ruan, Shuangchen; Chen, Hao; Ding, Jinfei

    2015-01-01

    A cell-type saturable absorber has been demonstrated by filling the single mode photonic crystal fiber (SMPCF) with tungsten disulfide (WS2) nanosheets. The modulation depth, saturable intensity, and non-saturable loss of this SA are measured to be 3.53%, 159 MW/cm2 and 23.2%, respectively. Based on this SA, a passively mode-locked EDF laser has been achieved with pulse duration of 808 fs and repetition rate of 19.57 MHz, and signal-noise-ratio (SNR) of 60.5 dB. Our results demonstrate that the cell-type WS2 nanosheets SA can serve as a good candidate for short-pulse mode locker. PMID:26213180

  18. Passively mode-locked Yb:KLu(WO4)2 oscillators.

    PubMed

    Griebner, U; Rivier, S; Petrov, V; Zorn, M; Erbert, G; Weyers, M; Mateos, X; Aguiló, M; Massons, J; Díaz, F

    2005-05-01

    We demonstrate passive mode locking based on the novel monoclinic double tungstate crystal Yb:KLu(WO4)2. We report the shortest pulses ever produced with an Yb-doped tungstate laser using a semiconductor saturable absorber. A pulse duration of 81 fs has been achieved for an average power of 70 mW at 1046 nm. We compare the performance of the polarization oriented parallel to the Nm- and Np-crystallo-optic axes. Results in the femtosecond and picosecond regime are presented applying either Ti:sapphire or diode laser pumping. The great potential of Yb:KLu(WO4)2 as an active medium for ultrashort pulses is demonstrated for the first time, to our knowledge.

  19. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers

    SciTech Connect

    Tang, D.Y.; Zhao, L.M.; Zhao, B.; Liu, A.Q.

    2005-10-15

    We report results of numerical simulations on multiple-soliton generation and soliton energy quantization in a soliton fiber ring laser passively mode locked by using the nonlinear polarization rotation technique. We found numerically that the formation of multiple solitons in the laser is caused by a peak-power-limiting effect of the laser cavity. It is also the same effect that suppresses the soliton pulse collapse, an intrinsic feature of solitons propagating in gain media, and makes the solitons stable in the laser. Furthermore, we show that the soliton energy quantization observed in the lasers is a natural consequence of the gain competition between the multiple solitons. Enlightened by the numerical result we speculate that multisoliton formation and soliton energy quantization observed in other types of soliton fiber lasers could have a similar mechanism.

  20. Switching among pulse-generation regimes in passively mode-locked fibre laser by adaptive filtering

    NASA Astrophysics Data System (ADS)

    Peng, Junsong; Boscolo, Sonia

    2016-04-01

    We show both numerically and experimentally that dispersion management can be realized by manipulating the dispersion of a filter in a passively mode-locked fibre laser. A programmable filter the dispersion of which can be software configured is employed in the laser. Solitons, stretched-pulses, and dissipative solitons can be targeted reliably by controlling the filter transmission function only, while the length of fibres is fixed in the laser. This technique shows remarkable advantages in controlling operation regimes in ultrafast fibre lasers, in contrast to the traditional technique in which dispersion management is achieved by optimizing the relative length of fibres with opposite-sign dispersion. Our versatile ultrafast fibre laser will be attractive for applications requiring different pulse profiles such as in optical signal processing and optical communications.

  1. Interaction and motion of solitons in passively-mode-locked fiber lasers

    SciTech Connect

    Liu, Xueming

    2011-11-15

    Interaction and motion of multiple solitons in passively-mode-locked (PML) fiber lasers are investigated numerically. Three types of relative motions of two solitons are found in PML fiber lasers. The numerical results show that the relative motion of solitons attributes to the phase shift, which corresponds to the instantaneous frequency at pulse peak to be nonzero. Different from the classical dynamics of billiard balls, the interaction of solitons is similar to the Feynman diagram which is a pictorial way to represent the interaction of particles. After solitons interact with one another, their shapes do not change, but their phases shift and relative motions change. The theoretical results demonstrate that the separation of neighboring solitons in the laser cavity is about several hundred picoseconds to several nanoseconds. The theoretical predictions are in good agreement with the experimental results.

  2. Tuning the external optical feedback-sensitivity of a passively mode-locked quantum dot laser

    SciTech Connect

    Raghunathan, R. Kovanis, V.; Lester, L. F.; Grillot, F.; Mee, J. K.; Murrell, D.

    2014-07-28

    The external optical feedback-sensitivity of a two-section, passively mode-locked quantum dot laser operating at elevated temperature is experimentally investigated as a function of absorber bias voltage. Results show that the reverse-bias voltage on the absorber has a direct impact on the damping rate of the free-running relaxation oscillations of the optical signal output, thereby enabling interactive external control over the feedback-response of the device, even under the nearly resonant cavity configuration. The combination of high temperature operation and tunable feedback-sensitivity is highly promising from a technological standpoint, in particular, for applications requiring monolithic integration of multi-component architectures on a single chip in order to accomplish, for instance, the dual-objectives of stable pulse quality and isolation from parasitic reflections.

  3. A passively mode locked thulium doped fiber laser using bismuth telluride deposited multimode interference

    NASA Astrophysics Data System (ADS)

    Jung, M.; Lee, J.; Song, W.; Lee, Y. L.; Lee, J. H.; Shin, W.

    2016-05-01

    We proposed a multimode interference (MMI) fiber based saturable absorber using bismuth telluride at  ∼2 μm region. Our MMI based saturable absorber was fabricated by fusion splicing with single mode fiber and null core fiber. The MMI functioned as both wavelength fixed filter and saturable absorber. The 3 dB bandwidth and insertion loss of MMI were 42 nm and 3.4 dB at wavelength of 1958 nm, respectively. We have also reported a passively mode locked thulium doped fiber laser operating at a wavelength of 1958 nm using a multimode interference. A temporal bandwidth of  ∼46 ps was experimentally obtained at a repetition rate of 8.58 MHz.

  4. Passively Q-switched mode-locking of Tm:YAP laser based on Cr:ZnS saturable absorber.

    PubMed

    Wang, Zhaowei; Zhang, Baitao; He, Jingliang; Yang, Kejian; Han, Kezhen; Ning, Jian; Hou, Jia; Lou, Fei

    2015-05-10

    Using a Cr:ZnS wafer as the saturable absorber, diode-pumped passively Q-switched mode-locking of a Tm:YAP laser at 1976 nm has been realized for the first time, to the best of our knowledge, and nearly 100% modulation depth of Q-switched mode-locking was achieved. The width of the mode-locked pulse was estimated to be about 980 ps with a repetition rate of 350 MHz within a roughly 300-ns-long Q-switched pulse envelope. A maximum output power of 940 mW was obtained, corresponding to the Q-switched pulse energy of 0.55 mJ. The emission wavelength evolution between the continuous-wave and Q-switched mode-locked operations was presented and discussed. The experimental results indicate that the Cr:ZnS absorber is a promising saturable absorber for passively Q-switched mode-locking operation around 2 μm. PMID:25967485

  5. Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser.

    PubMed

    Sobon, Grzegorz; Sotor, Jaroslaw; Martynkien, Tadeusz; Abramski, Krzysztof M

    2016-03-21

    We report generation of ultra-broadband dissipative solitons and noise-like pulses from a simple, fully fiberized mode-locked Tm-doped fiber laser. The oscillator operates in the normal net dispersion regime and is mode-locked via nonlinear polarization evolution. Depending on the cavity dispersion, the laser was capable of generating 60 nm or 100 nm broad dissipative solitons. These are the broadest spectra generated from a normal dispersion mode-locked Tm-doped fiber laser so far. The same oscillator might also operate in the noise-like pulse regime with extremely broad emission spectra (over 300 nm), which also significantly outperforms the previous reports. PMID:27136809

  6. Room temperature passive mode-locked laser based on InAs/GaAs quantum-dot superlattice.

    PubMed

    Sobolev, Mikhail; Buyalo, Mikhail; Gadzhiev, Idris; Bakshaev, Ilya; Zadiranov, Yurii; Portnoi, Efim

    2012-10-02

    Passive mode-locking is achieved in two sectional lasers with an active layer based on superlattice formed by ten layers of quantum dots. Tunnel coupling of ten layers changes the structural polarization properties: the ratio between the transverse electric and transverse magnetic polarization absorption coefficients is less by a factor of 1.8 in the entire electroluminescence spectrum range for the superlattice.

  7. All solid-state cw passively mode-locked Ti:sapphire laser using a colored glass filter

    SciTech Connect

    Sarukura, N.; Ishida, Y.; Yanagawa, T.; Nakano, H. )

    1990-07-16

    All solid-state cw passive mode locking of a Ti:sapphire laser is accomplished using a colored glass filter, instead of an organic dye, as a saturable absorber. The tuning range is remarkably wide (785--855 nm), and 2.7 ps pulses are obtained directly from the cavity.

  8. Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation.

    PubMed

    Wang, Xiong; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2014-03-10

    We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses' repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses. PMID:24663948

  9. Modeling and analysis of distributed feedback quantum dot passively mode-locked lasers.

    PubMed

    Rahimi, Javad; Ahmadi, Vahid; Yavari, Mohammad Hasan

    2016-07-01

    In this paper, we investigate numerically two proposed monolithic distributed feedback quantum dot passively mode-locked lasers (DFB-QDMLLs) with and without gratings in the saturable absorber (SA) section in order to enhance two important performances of QDMLLs for ultrahigh-bit-rate and single-mode applications. We find out that depending on the length of the grating, optical pulses with durations of about 3-8 ps at approximately 2nd and 4th harmonics of cavity round-trip frequencies can be generated by the proposed structures. We also compare the temporal and spectral behaviors of these structures under specified bias conditions and SA lengths. It is shown that DFB-QDMLLs have the ability to generate optical pulses with more peak power than grating-embedded saturable absorber (GESA-DFB-QDMLL) structures which generate shorter pulses with narrower spectral bandwidths. We also show that DFB-QDMLLs operate in a larger range of absorber voltages while the other structure is very sensitive to absorber voltage and operates well for middle ranges of this parameter.

  10. Single-walled carbon nanotube passively mode-locked O-band Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Steinberg, D.; Saito, L. A. M.; Rosa, H. G.; Thoroh de Souza, E. A.

    2016-05-01

    We present a detailed analysis of a nanosecond-pulse single-walled carbon nanotube (SWCNT) passively mode-locked O-band Raman fiber lasers. As gain medium, single mode fiber (SMF) and highly nonlinear Raman gain were used at three different experimental setups. By incorporating 1.0 nm mean diameter SWCNT as saturable absorbers (SA) at 2.3 km SMF long-length gain medium setup, soliton-like spectrum followed by nanosecond high chirped pulse was observed at cavity fundamental repetition rate. In order to shorter the chirped pulse, intracavity anomalous dispersion was introduced with normal dispersion shift fiber (DSF) lengths and pulse duration decreased from 4.20 to 2.30 ns. By using highly nonlinear Raman gain medium in the O-band Raman laser configuration, the laser generated clean and well-defined nanosecond high chirped pulses, achieving pulse duration as short as 2.30 ns with 230 m gain medium length. Also, we could estimate the picosecond pulse duration region as a function of gain medium length of this laser and compared with SMF pulse shortening curve. As results, the lasers presented similar tendencies, indicating a strong influence of nonlinearities and dispersion in the pulse duration shortening.

  11. Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers

    PubMed Central

    Tandoi, Giuseppe; Ironside, Charles N.; Marsh, John H.; Bryce, A. Catrina

    2013-01-01

    We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers. PMID:23843678

  12. Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers.

    PubMed

    Tandoi, Giuseppe; Ironside, Charles N; Marsh, John H; Bryce, A Catrina

    2012-03-01

    We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers.

  13. High power passive mode-locked L-band fiber laser based on microfiber topological insulator saturable absorber

    NASA Astrophysics Data System (ADS)

    Semaan, Georges; Meng, Yichang; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois

    2016-04-01

    In this communication, we demonstrate a passive mode-locked Er:Yb co-doped double-clad fiber laser using a tapered microfiber topological insulator (Bi2Se3) saturable absorber (TISA). The topological insulator is drop-casted onto the tapered fiber and optically deposited by optical tweezer effect. We use a ring laser setup including the fabricated TISA. By carefully optimizing the cavity losses and output coupling ratio, the mode-locked laser can operate in L-band with a high average output power. At a maximum pump power of 5 W, we obtain the 91st harmonic mode-locking of soliton bunches with a 3dB spectral bandwidth of 1.06nm, a repetition rate of 640.9 MHz and an average output power of 308mW. As far as we know, this is the highest output power yet reported of a mode-locked fiber laser operating with a TISA.

  14. Synchronized two-color operation of a passively mode-locked erbium-doped fiber laser by dual injection locking

    SciTech Connect

    Margalit, M.; Orenstein, M.; Eisenstein, G.

    1996-10-01

    The recently introduced harmonic injection locking is a method for generating pulse trains at high repetition rates from passively mode-locked lasers. We report the simultaneous injection locking of two spectral bands in an erbium-doped fiber laser by injection of two spectrally distinct and temporally synchronized pulse trains. The injection-locked laser simultaneously produced pulses at wavelengths of 1.53 and 1.55{mu}m, each at a 7.5-GHz repetition rate and with a pulse width of 10ps. We compared the experimental results with those of a previous model [G. Agrawal, {ital Nonlinear} {ital Fiber} {ital Optics} (Academic, San Diego, Calif., 1989)], using a recently introduced method for passively mode-locked laser simulation. {copyright} {ital 1996 Optical Society of America.}

  15. Generation of stable high order harmonic noise-like pulses in a passively mode-locked double clad fiber ring laser

    NASA Astrophysics Data System (ADS)

    Hernandez-Garcia, J. C.; Pottiez, O.; Ibarra-Escamilla, B.; Estudillo-Ayala, J. M.; Rojas-Laguna, R.; Kuzin, E.; Muñoz-Lopez, A.; Filoteo-Razo, J. D.

    2015-03-01

    We study a passively mode-locked double-clad Erbium-Ytterbium fiber ring laser producing noise-like pulse through nonlinear polarization evolution and polarization selection. Single noise-like pulsing is only observed at moderate pump power. As pump power is increased, and through polarization controllers adjustments, harmonic mode-locking of growing order were successively appearing. For pump powers close to the damage threshold of the setup, we reach harmonic orders beyond 1200 and repetition frequencies in excess of a quarter of a GHz. Finally, these experimental results could be useful in the quest for higher pulse energies and higher repetition rates in passively mode-locked fiber lasers.

  16. Compact optical displacement sensing by detection of microwave signals generated from a monolithic passively mode-locked laser under feedback

    NASA Astrophysics Data System (ADS)

    Simos, Christos; Simos, Hercules; Nikas, Thomas; Syvridis, Dimitris

    2015-05-01

    A monolithic passively mode-locked laser is proposed as a compact optical sensor for displacements and vibrations of a reflecting object. The sensing principle relies on the change of the laser repetition frequency that is induced by optical feedback from the object under measurement. It has been previously observed that, when a semiconductor passively mode locked laser receives a sufficient level of optical feedback from an external reflecting surface it exhibits a repetition frequency that is no more determined by the mode-locking rule of the free-running operation but is imposed by the length of the external cavity. Therefore measurement of the resulting laser repetition frequency under self-injection permits the accurate and straightforward determination of the relative position of the reflecting object. The system has an inherent wireless capability since the repetition rate of the laser can be wirelessly detected by means of a simple antenna which captures the microwave signal generated by the saturable absorber and is emitted through the wiring of the laser. The sensor setup is very simple as it requires few optical components besides the laser itself. Furthermore, the deduction of the relative position of the reflecting object is straightforward and does not require any processing of the detected signal. The proposed sensor has a theoretical sub-wavelength resolution and its performance depends on the RF linewidth of the laser and the resolution of the repetition frequency measurement. Other physical parameters that induce phase changes of the external cavity could also be quantified.

  17. Self-phase-modulation-controlled passively mode-locked dye laser

    SciTech Connect

    Wang, C.; Ishida, Y.; Yamamoto, Y. )

    1990-09-01

    We demonstrate a laser that permits self-phase modulation to be controlled independently of other parameters in a colliding-pulse mode-locked laser system. With this laser system, pulse compression by a factor of 1.5 was observed, and a stronger soliton effect was found.

  18. Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber.

    PubMed

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Yeom, Dong-Il

    2013-11-01

    We report the continuous control of the pulse width of a passively mode-locked fiber laser via polarization state adjustment in a single-walled carbon nanotube saturable absorber (SWCNT-SA). The SWCNT, coated on the side-polished fiber, was fabricated with optimized conditions and used for stable mode-locking of the fiber laser without Q-switching instabilities for any polarization state of the laser intra-cavity. The 3-dB spectral bandwidth of the mode-locked pulses can be continuously tuned from 1.8 nm to 8.5 nm with the polarization control for a given laser cavity length and applied pump power. A pulse duration varying from 470 fs to 1.6 ps was also observed with a change in the spectral bandwidth. The linear and the nonlinear transmission properties of the SA were analyzed, and found to exhibit different modulation depths depending on the input polarization state in the SA. The largest modulation depth of the SA was observed at the polarization state of the transverse electric mode that delivers shortest pulses at the laser output.

  19. Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber.

    PubMed

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Yeom, Dong-Il

    2013-11-01

    We report the continuous control of the pulse width of a passively mode-locked fiber laser via polarization state adjustment in a single-walled carbon nanotube saturable absorber (SWCNT-SA). The SWCNT, coated on the side-polished fiber, was fabricated with optimized conditions and used for stable mode-locking of the fiber laser without Q-switching instabilities for any polarization state of the laser intra-cavity. The 3-dB spectral bandwidth of the mode-locked pulses can be continuously tuned from 1.8 nm to 8.5 nm with the polarization control for a given laser cavity length and applied pump power. A pulse duration varying from 470 fs to 1.6 ps was also observed with a change in the spectral bandwidth. The linear and the nonlinear transmission properties of the SA were analyzed, and found to exhibit different modulation depths depending on the input polarization state in the SA. The largest modulation depth of the SA was observed at the polarization state of the transverse electric mode that delivers shortest pulses at the laser output. PMID:24216924

  20. Active and passive mode locking in a diode-pumped Nd:Gd{sub 0.7}Y{sub 0.3}VO{sub 4} laser

    SciTech Connect

    Zavartsev, Yu D; Zagumennyi, A I; Kalachev, Yu L; Kutovoi, S A; Mikhailov, V A; Sirotkin, A A; Shcherbakov, Ivan A; Renner-Erny, R; Luethy, W; Feurer, T

    2007-04-30

    Diode-pumped lasers based on mixed Nd:Gd{sub 0.7}Y{sub 0.3}VO{sub 4} vanadate crystals are studied. Continuous-wave lasing with the slope efficiency of 71% and the average output power up to 8.2 W is obtained. Active mode locking with an acousto-optic modulator, passive mode locking by the Kerr nonlinearity, and hybrid mode locking are investigated. Picosecond laser pulses of duration 1.7 ps are obtained at an average output power of 340 mW and a pulse repetition rate of 140 MHz. (lasers)

  1. Fifty-ps Raman fiber laser with hybrid active-passive mode locking.

    PubMed

    Kuznetsov, A G; Kharenko, D S; Podivilov, E V; Babin, S A

    2016-07-25

    Actively mode locked Raman lasing in a ring PM-fiber cavity pumped by a linearly polarized Yb-doped fiber laser is studied. At co-propagating pumping, a stochastic pulse with duration defined by the AOM switching time (~15 ns) is generated with the round-trip period. At counter-propagating pumping, one or several sub-ns pulses (within the AOM switching envelope) are formed. It has been found that the formation of such stable multi-pulse structure is defined by the single-pulse energy limit (~20 nJ) set by the second-order Raman generation. Adding a NPE-based saturable absorber in the actively mode locked cavity, results in sufficient shortening of the generated pulses both in single- and multi-pulse regimes (down to 50 ps). A model is developed adequately describing the regimes. PMID:27464081

  2. Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser.

    PubMed

    Wang, Shi-Ke; Ning, Qiu-Yi; Luo, Ai-Ping; Lin, Zhen-Bin; Luo, Zhi-Chao; Xu, Wen-Cheng

    2013-01-28

    The generation of mode-locked rectangular pulses operating in dissipative soliton resonance (DSR) region is demonstrated in an erbium-doped figure-eight fiber laser with net anomalous dispersion. The duration of the wave-breaking-free rectangular pulse broadens with the increase of pump power. At a maximum pump power of 341 mW, the pulse energy can be up to 3.25 nJ with a repetition rate of 3.54 MHz. Particularly, the spectrum of rectangular pulse operating in DSR exhibits conventional soliton sidebands. The observed results show that the formation of pulse operating in DSR region is independent of mode-locking techniques, which may be helpful for further understanding the DSR phenomenon.

  3. Generation of 0. 7--0. 8. mu. picosecond pulses in an alexandrite laser with passive mode locking

    SciTech Connect

    Lisitsyn, V.N.; Matrosov, V.N.; Orekhova, V.P.; Pestryakov, E.V.; Sevast'yanov, B.K.; Trunov, V.I.; Zenin, V.N.; Remigailo, Y.L.

    1982-03-01

    Picosecond pulses of 0.7--0.8 ..mu.. wavelengths were generated in an alexandrite laser as a result of electronic--vibrational transitions /sup 4/T/sub 2/ ..-->.. /sup 4/A/sub 2/+h..omega../sub phonon/. Passive mode locking was ensured by the use of DS1 and DTTS saturable absorbers. The duration of the pulses generated using DS1 was 8 psec at wavelengths of 0.725--0.745 ..mu.., whereas the duration of the pulses generated using DTTS was 90 psec in the range 0.75--0.775 ..mu...

  4. Control over the performance characteristics of a passively mode-locked erbium-doped fibre ring laser

    SciTech Connect

    Chernysheva, M A; Krylov, A A; Dianov, E M; Ogleznev, A A; Arutyunyan, N R; Pozharov, A S; Obraztsova, E D

    2013-08-31

    We report an all-fibre ultrashort pulse erbium-doped ring laser passively mode-locked by single-wall carbon nanotubes dispersed in carboxymethylcellulose-based polymer films. Owing to intracavity dispersion management and controlled absorption in the polymer films, the laser is capable of generating both femto- and picosecond pulses of various shapes in the spectral range 1.53 – 1.56 μm. We have demonstrated and investigated the generation of almost transform- limited, inversely modified solitons at a high normal cavity dispersion. (control of laser radiation parameters)

  5. Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser

    NASA Astrophysics Data System (ADS)

    Tang, D. Y.; Zhao, L. M.; Zhao, B.

    2005-04-01

    A passively mode-locked soliton fiber ring laser with dispersion managed cavity is reported. The laser emits intense bunched noise-like pulses including the transform limited pulses. The optical spectrum of the laser emission has a bandwidth as broad as 32.10 nm. It was found that purely depending on the linear cavity phase delay the laser could be switched between the soliton operation and the noise-like pulse emission. Numerical simulations showed that the laser emission was caused by the combined effect of soliton collapse and positive cavity feedback in the laser.

  6. Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser.

    PubMed

    Tang, D; Zhao, L; Zhao, B

    2005-04-01

    A passively mode-locked soliton fiber ring laser with dispersion managed cavity is reported. The laser emits intense bunched noise-like pulses including the transform limited pulses. The optical spectrum of the laser emission has a bandwidth as broad as 32.10 nm. It was found that purely depending on the linear cavity phase delay the laser could be switched between the soliton operation and the noise-like pulse emission. Numerical simulations showed that the laser emission was caused by the combined effect of soliton collapse and positive cavity feedback in the laser. PMID:19495118

  7. All-fiber supercontinuum source based on a mode-locked ytterbium laser with dispersion compensation by linearly chirped Bragg grating.

    PubMed

    Kivistö, S; Herda, R; Okhotnikov, O G

    2008-01-01

    We demonstrate an all-fiber picosecond soliton laser with dispersion management performed by a chirped Bragg grating that generates ~1.6 ps pulses representing the shortest pulsewidth reported to date using this technology. The large anomalous dispersion provided by the grating allows building of a long-length cavity laser with an extremely low fundamental repetition rate of 2.6 MHz. This source allows us to use an original approach for producing energetic pulses that after boosting in a medium power core-pumped amplifier produce an octave-spanning supercontinuum radiation in a nonlinear photonic crystal fiber.

  8. Experimental and theoretical studies of complex pulse evolutions in a passively mode-locked ring dye laser

    SciTech Connect

    Avramopoulos, H.; French, P.M.W.; Williams, J.A.R.; New, G.H.C.; Taylor, J.R. )

    1988-09-01

    The optimization of any femtosecond laser requires the various sources of frequency chirp to be taken into account. In particular, for a passively mode-locked CPM ring dye laser, the effects of group velocity dispersion and self-phase modulation arising from time-dependent absorption saturation and the optical Kerr effect must be considered. In this paper a detailed experimental and theoretical study has been made of the role of these parameters in a Rhodamine 110 CPM dye laser. Periodic pulse evolutions are observed, when both positive and negative frequency chirp are present, which are reminiscent of those governed by the nonlinear Schrodinger equation but which are, in fact, distinctly different. Similar results have been obtained with the standard Rhodamine 6G system and it is believed that the theoretical model is generally applicable to any passively mode-locked femtosecond dye laser. An important consequence of this work is that is permits the absolute value of the net group velocity dispersion in the laser cavity to be estimated.

  9. Direct observation of two-color pulse dynamics in passively synchronized Er and Yb mode-locked fiber lasers.

    PubMed

    Hsiang, Wei-Wei; Chiao, Wei-Chih; Wu, Chia-Yi; Lai, Yinchieh

    2011-11-21

    We report direct experimental observation of interesting pulse synchronization dynamics in a cavity-combined Er and Yb mode-locked fiber lasers by measuring the relative position between the two-color pulses in the shared fiber section. The influence of the 1.03 μm pulse on the 1.56 μm single pulse as well as bound soliton pairs can be clearly identified as an effective phase modulation through the XPM effect with the walk-off effect taken into account. For the 1.56 μm single pulse under synchronization, the dependence of the relative position variation and the center wavelength shift on the cavity mismatch detuning is found analogous to the typical characteristics of FM mode-locked lasers with modulation frequency detuning. Moreover, depending on the cavity mismatch, the passively synchronized 1.56 μm bound soliton pairs are found to exhibit two different dynamical behaviors, i.e., phase-locked (in-phase) as well as non-phase-locked. The physical origins for these two kinds of bound soliton pairs are investigated experimentally by disclosing their locations with respective to the copropagating 1.03 μm pulse.

  10. Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm

    SciTech Connect

    Merghem, K.; Aubin, G.; Ramdane, A.; Teissier, R.; Baranov, A. N.; Monakhov, A. M.

    2015-09-14

    We demonstrate passive mode locking of a GaSb-based diode laser emitting at 2.1 μm. The active region of the studied device consists in two 10-nm-thick GaInSbAs/GaAlSbAs quantum wells. Passive mode locking has been achieved in a two-section laser with one of the sections used as a saturable absorber. A microwave signal at 20.6 GHz, measured in the electrical circuit of the absorber, corresponds to the fundamental photon round-trip frequency in the laser resonator. The linewidth of this signal as low as ∼10 kHz has been observed at certain operating conditions, indicating low phase noise mode-locked operation.

  11. High-power passively mode-locked laser at 1062.4  nm based on Nd:LaGGG disordered crystal.

    PubMed

    Su, Xiancui; Zhao, Ruwei; Zhang, Baitao; Jia, Zhitai; Hou, Jia; He, Jingliang

    2015-03-10

    A diode-pumped passively continuous-wave mode-locked Nd:(La(x)Gd(1-x))3Ga5O12 (Nd:LaGGG) laser at 1062.4 nm with a semiconductor saturable absorber mirror was demonstrated for the first time, to the best of our knowledge. Pulses with duration of 12.78 ps were produced at a repetition rate of 59.8 MHz. A maximum average mode-locked output power of 3.18 W was obtained at the absorbed pumped power of 10.12 W, corresponding to a slope efficiency of 35.7% and a peak power of 4.2 kW. As far as we know, this is the highest power obtained in the passively mode-locking operation with Nd3+-doped disordered garnet crystals. PMID:25968392

  12. Sub-300 femtosecond soliton tunable fiber laser with all-anomalous dispersion passively mode locked by black phosphorus.

    PubMed

    Chen, Yu; Chen, Shuqing; Liu, Jun; Gao, Yanxia; Zhang, Wenjing

    2016-06-13

    By using evanescent field optical deposition method, we had successfully fabricated an effective optoelectronic device based on multi-layer black phosphorus (BP), which is been heavily investigating 2 dimensional (2D) semiconducting material with similar structure as graphene and thickness dependent direct band-gap. By placing this BP-based optoelectronic device inside a highly compact all-anomalous dispersion fiber laser cavity, stable passive mode-locking operation could be ensured and eventually a record 280 fs transmission limited soliton pulse with tunable central wavelength had been obtained through finely tailoring the cavity length. Other operation states, like bound soliton and noise-like state, had also been observed as well. This work demonstrates the enormous potential of BP for ultra-short pulse generation as an effective optoelectronic device. PMID:27410348

  13. A stable polarization switching laser from a bidirectional passively mode-locked thulium-doped fiber oscillator.

    PubMed

    Zhou, Wei; Shen, Deyuan; Wang, Yishan; Ma, Hefeng; Wang, Fei

    2013-04-01

    We report on a novel polarization switching laser from a bidirectional passively mode-locked thulium(Tm)-doped fiber oscillator, which was characterized by the periodical change of polarization state of every pulse. The switching laser was created by combing two orthogonally stable vector solitons, which were found to be wave-breaking-free pulses in the all-anomalous-dispersion regime. The measured repetition rates of switching laser and the corresponding vector solitons were 49.596 MHz, 24.798 MHz, and 24.798MHz. By controlling wave plates, either of the polarized pulse trains can be switched on or off. To our knowledge, this is the first report of polarization switching laser with vector solitons in Tm fiber oscillators.

  14. COMPONENTS OF LASER SYSTEMS AND STABILITY PROBLEMS: Highly stable subpicosecond neodymium (Nd3+) glass laser with passive mode locking and negative feedback

    NASA Astrophysics Data System (ADS)

    Burneĭka, K.; Grigonis, R.; Piskarskas, A.; Sinkyavichyus, G.; Sirutkaĭtis, V.

    1988-08-01

    An electrically controlled feedback loop was used in a phosphate glass laser with passive mode locking to ensure stable generation of 500-600 fs pulses. This negative feedback loop ensured a high reproducibility of the energy and time characteristics of the pulses. The product of the spectral width of the pulses and their duration was 0.44.

  15. High efficiency passively mode-locked Nd:YVO4 laser with direct in-band pumping at 914 nm.

    PubMed

    Waritanant, Tanant; Major, Arkady

    2016-06-13

    We report on the performance of a semiconductor saturable absorber mirror passively mode-locked Nd:YVO4 laser with in-band pumping at 914 nm and with the highest slope efficiency to date among the mode-locked Nd-lasers. The laser produced 6.7 W of output power with repetition rate of 87 MHz and pulse duration of 16 ps. The slope efficiency of 77.1% and the optical-to-optical efficiency of 60.7% were achieved. PMID:27410304

  16. Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning.

    PubMed

    Zhao, Xin; Zheng, Zheng; Liu, Lei; Liu, Ya; Jiang, Yaxing; Yang, Xin; Zhu, Jinsong

    2011-01-17

    We demonstrate a dual-wavelength passively mode-locked soliton fiber laser based on the single-wall carbon nanotube saturable absorber. By using a simple scheme of adjusting the intracavity loss, the gain profile of the erbium-doped fiber laser is effectively controlled. Besides operating at a single wavelength, the laser is able to simultaneously generate sub-picosecond pulses at both ~1532 and 1557 nm wavelength. The mode-locking wavelength can also be quickly switched from one wavelength to the other by changing the intracavity loss with a tunable attenuator.

  17. Passively Q-switched and mode-locked dual-wavelength Nd:GGG laser with Cr4+:YAG as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Chu, Hongwei; Zhao, Shengzhi; Li, Yufei; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhao, Jia; Qiao, Wenchao; Li, Tao; Feng, Chuansheng; Zhang, Haijuan

    2014-03-01

    By using neodymium-doped gadolinium gallium garnet (Nd:GGG) as a laser medium, a simultaneously passively Q-switched and mode-locked (QML) dual-wavelength laser with Cr4+:YAG as a saturable absorber is presented. The laser simultaneously oscillated at 1061 nm and 1063 nm, corresponding to a frequency difference of 0.53 THz. QML pulses with nearly 100% modulation depth were observed. The mode-locked pulse duration underneath the Q-switched envelope was estimated to be about 908 ps. The experimental results indicated that the dual-wavelength QML Nd:GGG laser can be an excellent candidate for the generation of THz waves.

  18. Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers.

    PubMed

    Tahvili, M S; Du, L; Heck, M J R; Nötzel, R; Smit, M K; Bente, E A J M

    2012-03-26

    We present an investigation of passive and hybrid mode-locking in Fabry-Pérot type two-section InAs/InP(100) quantum dot lasers that show dual wavelength operation. Over the whole current and voltage range for mode-locking of these lasers, the optical output spectra show two distinct lobes. The two lobes provide a coherent bandwidth and are verified to lead to two synchronized optical pulses. The generated optical pulses are elongated in time due to a chirp which shows opposite signs over the two spectral lobes. Self-induced mode-locking in the single-section laser shows that the dual-wavelength spectra correspond to emission from ground state. In the hybrid mode-locking regime, a map of locking range is presented by measuring the values of timing jitter for several values of power and frequency of the external electrical modulating signal. An overview of the systematic behavior of InAs/InP(100) quantum dot mode-locked lasers is presented as conclusion.

  19. High-order harmonic noise-like pulsing of a passively mode-locked double-clad Er/Yb fibre ring laser

    NASA Astrophysics Data System (ADS)

    Pottiez, O.; Hernández-García, J. C.; Ibarra-Escamilla, B.; Kuzin, E. A.; Durán-Sánchez, M.; González-García, A.

    2014-11-01

    In this paper, we study noise-like pulse generation in a km-long fibre ring laser including a double-clad erbium-ytterbium fibre and passively mode-locked through nonlinear polarization evolution. Although single noise-like pulsing is only observed at moderate pump power, pulse energies as high as 120 nJ are reached in this regime. For higher pump power, the pulse splits into several noise-like pulses, which then rearrange into a stable and periodic pulse train. Harmonic mode locking from the 2nd to the 48th orders is readily obtained. At pump powers close to the damage threshold of the setup, much denser noise-like pulse trains are demonstrated, reaching harmonic orders beyond 1200 and repetition frequencies in excess of a quarter of a GHz. The mechanisms leading to noise-like pulse breaking and stable high-order harmonic mode locking are discussed.

  20. Single-walled carbon nanotube saturable absorber for a diode-pumped passively mode-locked Nd,Y:SrF2 laser

    NASA Astrophysics Data System (ADS)

    Li, Chun; Cai, Wei; Liu, Jie; Su, Liangbi; Jiang, Dapeng; Ma, Fengkai; Zhang, Qian; Xu, Jun; Wang, Yonggang

    2016-08-01

    A reflective single-walled carbon nanotube as saturable absorber has been firstly adopted to a passively mode-locked Nd,Y:SrF2 crystal. Without any dispersion compensation, the stably mode-locked laser delivers pulses with pulse width as short as 1.7 ps, repetition rate of 107.8 MHz and center wavelength of 1056 nm. The oscillator produces maximum average output power of 319 mW corresponding with a high slope efficiency of 20.2%. The single pulse energy and the peak power are 2.96 nJ and 1.74 kW, respectively. The experimental results show that single-walled carbon nanotube is an excellent saturable absorber for mode-locked lasers.

  1. Watt-level passively mode-locked Er(3+)-doped ZBLAN fiber laser at 2.8  μm.

    PubMed

    Tang, Pinghua; Qin, Zhipeng; Liu, Jun; Zhao, Chujun; Xie, Guoqiang; Wen, Shuangchun; Qian, Liejia

    2015-11-01

    We experimentally demonstrated a stable, high-average-power, continuous-wave (CW) passively mode-locked Er(3+)-doped ZBLAN fiber laser at 2.8 μm based on a semiconductor saturable absorber mirror. A stable mode-locked laser with a signal-to-noise ratio of 52 dB and a slope efficiency of 14% was obtained. The highest average output power in excess of 1 W was generated at the incident pump power of 8.2 W, with a pulse repetition rate of 22.56 MHz and pulse duration of 25 ps. To the best of our knowledge, this is the highest average output power of a CW mode-locked ZBLAN fiber laser in the mid-infrared wavelength regime up to now.

  2. Watt-level passively mode-locked Er(3+)-doped ZBLAN fiber laser at 2.8  μm.

    PubMed

    Tang, Pinghua; Qin, Zhipeng; Liu, Jun; Zhao, Chujun; Xie, Guoqiang; Wen, Shuangchun; Qian, Liejia

    2015-11-01

    We experimentally demonstrated a stable, high-average-power, continuous-wave (CW) passively mode-locked Er(3+)-doped ZBLAN fiber laser at 2.8 μm based on a semiconductor saturable absorber mirror. A stable mode-locked laser with a signal-to-noise ratio of 52 dB and a slope efficiency of 14% was obtained. The highest average output power in excess of 1 W was generated at the incident pump power of 8.2 W, with a pulse repetition rate of 22.56 MHz and pulse duration of 25 ps. To the best of our knowledge, this is the highest average output power of a CW mode-locked ZBLAN fiber laser in the mid-infrared wavelength regime up to now. PMID:26512467

  3. Passive mode-locking characteristics from the Nd:Gd0.19Y0.81VO4 laser at 1.34 μm

    NASA Astrophysics Data System (ADS)

    Qiao, Wenchao; Chu, Hongwei; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian; Li, Tao; Zhao, Jia

    2016-08-01

    We report a passively continuous-wave mode-locked (CWML) Nd:Gd0.19Y0.81VO4 laser oscillating at 1342.3 nm for the first time in this paper. Stable mode-locked pulse cluster with a pulse width of 7.2 ps and a pulse repetition frequency of 32.8 MHz has been realized with a semiconductor saturable absorber mirror (SESAM). The highest output power was 880 mW when the incident pump power was 7.1 W, corresponding to an optical conversion efficiency of 12.4%. The mode-locked pulse energy was about 26.83 nJ, while the peak power was 3.73 kW.

  4. Orthogonally dual-polarization passively mode-locking operation of Nd:La0.25Gd0.75VO4 crystal

    NASA Astrophysics Data System (ADS)

    Xu, Honghao; Tang, Dingyuan; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2016-11-01

    We demonstrated in an a-cut Nd:La0.25Gd0.75VO4 mixed crystal the passively mode locking laser of two different wavelengths in orthogonal polarization states with a semiconductor saturable absorber mirror (SESAM). Due to the special anisotropic gain feature of the mixed crystal, through careful controlling on the cavity loss anisotropy, the simultaneous orthogonal polarization states laser were also achieved. In σ polarization states, the pulse width of 2.2 ps was close to the shortest pulse width obtained with Nd-doped vanadate crystal to my knowledge. What's more, dual-wavelength synchronized mode locking and bound-soliton-like pulse mode locking was also experimentally observed.

  5. As-grown uniform MoS2/mica saturable absorber for passively Q-switched mode-locked Nd:GdVO4 laser

    NASA Astrophysics Data System (ADS)

    Xu, Yuanyuan; Yang, Cheng; Ge, Pengguang; Liu, Jie; Jiang, Shouzhen; Li, Chun; Man, Baoyuan

    2016-08-01

    Molybdenum disulfide (MoS2) has recently attracted growing attention due to its distinctive properties and potential applications in optoelectronics and electronics. Here, large-area and high-quality MoS2 film with uniform thickness was obtained by thermally decomposing ammonium thiomolybdate. Besides, it is firstly demonstrated that the as-grown MoS2/mica can be directly inserted into Nd:GdVO4 laser cavity as saturable absorber for the output of diode-pumped passively Q-switched mode-locked pulse trains. Using the MoS2 saturable absorbers, the stable Q-switched mode-locked pulse trains with high modulation depth were realized, suggesting that the broadband MoS2 SA could potentially be employed in mode-locking laser system

  6. Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber.

    PubMed

    Sotor, Jaroslaw; Sobon, Grzegorz; Tarka, Jan; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Abramski, Krzysztof M

    2014-03-10

    In this work we present for the first time, to the best of our knowledge, a passively synchronized thulium (Tm) and erbium (Er) doped fiber laser mode-locked by a common graphene saturable absorber (GSA). The laser consists of two ring resonators combined with a 90 cm long common fiber branch incorporating the saturable absorber (SA). Such laser generates optical solitons centered at 1558.5 nm and 1938 nm with pulse durations of 915 fs and 1.57 ps, respectively. Both laser loops were passively synchronized at repetition frequency of 20.5025 MHz by nonlinear interaction (cross phase modulation, XPM) in common fiber branch between generated pulses. The maximum cavity mismatch of the Er-laser in synchronization regime was 0.78 mm. The synchronization mechanism was also investigated. We demonstrate that the third order nonlinearities of graphene enhance the synchronization range. In our case the range was increased about 85%. The integrated RMS timing jitter between the synchronized pulses was 67 fs.

  7. High-power passively mode-locked Nd:YVO(4) laser using SWCNT saturable absorber fabricated by dip coating method.

    PubMed

    Tang, Chun Yin; Chai, Yang; Long, Hui; Tao, Lili; Zeng, Long Hui; Tsang, Yuen Hong; Zhang, Ling; Lin, Xuechun

    2015-02-23

    Passive mode locked laser is typically achieved by the Semiconductor Saturable absorber Mirror, SESAM, saturable absorber, which is produced by expensive and complicated metal organic chemical vapor deposition method. Carbon based single wall carbon nanotube (SWCNT), saturable absorber, is a promising material which is capable to produce stable passive mode-locking in the high power laser cavity over a wide operational wavelength range. This study has successfully demonstrated the high power mode locking laser system operating at 1 micron by using SWCNT based absorbers fabricated by dip coating method. The proposed fabrication method is practical, simple and cost effective for fabricating SWCNT saturable absorber. The demonstrated high power Nd:YVO(4) mode-locked laser operating at 1064nm have maximum output power up to 2.7W,with the 167MHz repetition rate and 3.1 ps pulse duration, respectively. The calculated output pulse energy and peak power are 16.1nJ and 5.2kW, respectively. PMID:25836523

  8. Timing jitter of passively-mode-locked semiconductor lasers subject to optical feedback: A semi-analytic approach

    NASA Astrophysics Data System (ADS)

    Jaurigue, Lina; Pimenov, Alexander; Rachinskii, Dmitrii; Schöll, Eckehard; Lüdge, Kathy; Vladimirov, Andrei G.

    2015-11-01

    We study the effect of delayed coherent optical feedback on the pulse timing jitter in passively-mode-locked semiconductor lasers with the help of a semi-analytical method which we develop to calculate the timing fluctuations in these lasers. Through the proposed method physical insights into the feedback dependence of the timing jitter are gained and the greatly reduced computation times allow for the investigation of the dependence of timing fluctuations over greater parameter domains. We show that resonant feedback leads to a reduction in the timing jitter and that a frequency-pulling region forms about the main resonances, within which a timing jitter reduction is observed. The width of these frequency-pulling regions increases linearly with short feedback delay times. We derive an analytic expression for the timing jitter, which predicts a monotonic decrease in the timing jitter for resonant feedback of increasing delay lengths, when timing jitter effects are fully separated from amplitude jitter effects. For long feedback cavities the decrease in timing jitter scales approximately as 1 /τ with increasing feedback delay time τ . This behavior is not related to the stability of the system but is instead due to the influence of the noise, on the timing jitter, being reduced since the solution space is larger for increasing τ .

  9. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber

    PubMed Central

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106

  10. CONTROLLING THE CHARACTERISTICS OF LASER LIGHT: Passive mode locking of neodymium lasers using glasses with CuInS2xSe2(1-x) microcrystallites

    NASA Astrophysics Data System (ADS)

    Yumashev, K. V.; Mikhaĭlov, V. P.; Bondar', I. V.; Demchuk, M. I.; Prokoshin, P. V.; Dashyan, R. S.

    1993-09-01

    We report passive mode locking of Nd:YAG and Nd:YAlO3 lasers using glasses with microcrystallites of CuInS2xSe2(1-x). We show that it is possible for these glasses to act as saturable absorbers in lasers with active negative feedback. We have obtained ultrashort pulses with a duration of 16 ps and an energy of 20 mJ.

  11. Determination of topological parameters of a laser with passive mode-locking on the basis of InGaAlAs/InGaAs/InP heterostructures

    NASA Astrophysics Data System (ADS)

    Mikhailovskii, G. A.; Polukhin, I. S.; Rybalko, D. A.; Solov'ev, Yu. V.; Odnoblyudov, M. A.

    2016-05-01

    Topological parameters of a strip-geometry laser with passive mode-locking on the basis of an InGaAlAs/InGaAs/InP heterostructure are determined from the condition for the existence of one transverse mode in a strip waveguide. The strip width was 1.5 μm, the mesa etch depth was 1.32 μm, and the thickness of the dielectric layer was 0.36 μm.

  12. 1.61 μm high-order passive harmonic mode locking in a fiber laser based on graphene saturable absorber.

    PubMed

    Meng, Yichang; Niang, Alioune; Guesmi, Khmaies; Salhi, Mohamed; Sanchez, Francois

    2014-12-01

    We demonstrate a passive mode-locked Er:Yb doped double-clad ring fiber laser based on graphene saturable absorber. By adjusting the polarization controller and minimizing the cavity loss, the laser can operate at hundreds of harmonics of the fundamental repetition frequency of the resonator with the central wavelength of 1.61 μm. Up to 683rd harmonic (which corresponds to 5.882 GHz) of the fundamental repetition frequency was achieved. PMID:25606922

  13. Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Cheng, Kuang-Nan; Lin, Yung-Hsiang; Lin, Gong-Ru

    2013-04-01

    The passive mode-locking of an erbium-doped fiber laser (EDFL) with a medium gain is demonstrated and compared by using three different types of carbon nanotubes (CNTs) doped in polyvinyl alcohol (PVA) films. Nano-scale clay is used to disperse the CNTs doped in the PVA polymer aqueous solution to serve as a fast saturable absorber to initiate passive mode-locking. The three types of CNT based saturable absorbers, namely single-walled (SW), double-walled (DW) and multi-walled (MW), are characterized by Raman scattering and optical absorption spectroscopy. The SW-CNTs with a diameter of 1.26 nm have two absorption peaks located around 1550 ± 70 and 860 ± 50 nm. In contrast, the DW-CNTs with a diameter of 1.33 nm reveal two absorption peaks located at 1580 ± 40 and 920 ± 50 nm. By using the SW-CNT based saturable absorber, the passively mode-locked EDFL exhibits a pulsewidth of 1.28 ps and a spectral linewidth of 1.99 nm. Due to the increased linear absorption of the DW-CNT based saturable absorber, the intra-cavity net gain of the EDFL is significantly attenuated to deliver an incompletely mode-locked pulsewidth of 6.8 ps and a spectral linewidth of 0.62 nm. No distinct pulse-train is produced by using the MW-CNT film as the saturable absorber, which is attributed to the significant insertion loss of the EDFL induced by the large linear absorption of the MW-CNT film.

  14. Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber.

    PubMed

    Yu, Hao; Zheng, Xin; Yin, Ke; Cheng, Xiang'ai; Jiang, Tian

    2015-12-01

    By coupling black phosphorus (BP) nanoplatelets (NPs) with a fiber-taper evanescent light field, a saturable absorber (SA) based on the BP NPs has been successfully fabricated and used in a thulium/holmium-doped fiber laser as the mode locker. The SA had a modulation depth of ∼9.8% measured at 1.93 μm. A stable mode-locking operation at 1898 nm was achieved with a pulse width of 1.58 ps and a fundamental mode-lock repetition rate of 19.2 MHz. By increasing the pump intensity, phenomena of multi-pulsing operations, including harmonic mode-locked states and soliton bunches, were obtained in the experiment, showing that the BP NPs possess an ultrafast optical response time. This work suggests that the BP NPs-based SA is potentially useful for ultrashort, pulsed laser operations in the eye-safe region of 2 μm. PMID:26836690

  15. Modeling and characterization of pulse shape and pulse train dynamics in two-section passively mode-locked quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Raghunathan, R.; Mee, J. K.; Crowley, M. T.; Grillot, F.; Kovanis, V.; Lester, L. F.

    2013-03-01

    A nonlinear delay differential equation model for passive mode-locking in semiconductor lasers, seeded with parameters extracted from the gain and loss spectra of a quantum dot laser, is employed to simulate and study the dynamical regimes of mode-locked operation of the device. The model parameter ranges corresponding to these regimes are then mapped to externally-controllable parameters such as gain current and absorber bias voltage. Using this approach, a map indicating the approximate regions corresponding to fundamental and harmonically mode locked operation is constructed as a function of gain current and absorber bias voltage. This is shown to be a highly useful method of getting a sense of the highest repetition rates achievable in principle with a simple, two-section device, and provides a guideline toward achieving higher repetition rates by simply adjusting external biasing conditions instantaneously while the device is in operation, as opposed to re-engineering the device with additional passive or saturable absorber sections. The general approach could potentially aid the development of numerical modeling techniques aimed at providing a systematic guideline geared toward developing microwave and RF photonic sources for THz applications.

  16. Experimental demonstration of change of dynamical properties of a passively mode-locked semiconductor laser subject to dual optical feedback by dual full delay-range tuning.

    PubMed

    Nikiforov, O; Jaurigue, L; Drzewietzki, L; Lüdge, K; Breuer, S

    2016-06-27

    In this contribution we experimentally demonstrate the change and improvement of dynamical properties of a passively mode-locked semiconductor laser subject to optical feedback from two external cavities by coupling the feedback pulses back into the gain segment. Hereby, we tune the full delay-phase of the pulse-to-pulse period of both external cavities separately and demonstrate the change of the repetition rate, timing jitter, multi-pulse formation and side-band suppression for the first time for such a dual feedback configuration. In addition, we thereby confirm modeling predictions by achieving both a good qualitative and quantitative agreement of experimental and simulated results. Our findings suggest a path towards the realization of side-band free all-optical photonic oscillators based on mode-locked lasers. PMID:27410585

  17. Generation of high energy square-wave pulses in all anomalous dispersion Er:Yb passive mode locked fiber ring laser.

    PubMed

    Semaan, Georges; Ben Braham, Fatma; Salhi, Mohamed; Meng, Yichang; Bahloul, Faouzi; Sanchez, François

    2016-04-18

    We have experimentally demonstrated square pulses emission from a co-doped Er:Yb double-clad fiber laser operating in anomalous dispersion DSR regime using the nonlinear polarization evolution technique. Stable mode-locked pulses have a repetition rate of 373 kHz with 2.27 µJ energy per pulse under a pumping power of 30 W in cavity. With the increase of pump power, both the duration and the energy of the output square pulses broaden. The experimental results demonstrate that the passively mode-locked fiber laser operating in the anomalous regime can also realize a high-energy pulse, which is different from the conventional low-energy soliton pulse.

  18. Compression mechanism of subpicosecond pulses by malachite green dye in passively mode-locked rhodamine 6G/DODCI CW dye lasers

    SciTech Connect

    Watanabe, A.; Hara, M.; Kobayashi, H.; Takemura, H.; Tanaka, S.

    1983-04-01

    The pulse width compression effect of a malachite green (MG) dye upon subpicosecond pulses has been experimentally investigated in a CW passively mode-locked rhodamine 6G/DODCI dye laser. The pulse width reduces as MG concentration increases, and reaches 0.34 ps at 1.5 X 10/sup -6/ M. By adding the MG dye, good mode locking is achieved in a rather wide pumping-power range. A computer simulation of pulse growth has also been carried out by using simple rate equations, in which the fast-recovery component of loss due to the MG dye is taken into account. The simulated results can explain some experimental results qualitatively such as pulse width compression and pumping-power restriction. The pulse width compression results essentially from the fast recovery of cavity loss caused by the MG dye.

  19. Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion

    NASA Astrophysics Data System (ADS)

    Liu, Shuo; Yan, Feng-Ping; Zhang, Lu-Na; Han, Wen-Guo; Bai, Zhuo-Ya; Zhou, Hong

    2016-01-01

    A passively mode-locked thulium-doped fiber laser (TDFL) based on a nonlinear amplifying loop mirror (NALM) is presented. By adjusting the polarization controllers, stable noise-like (NL) mode-locked femtosecond pulse operation is obtained at the 2 μm band. In the experimental period of 200 min, the output power fluctuation is less than 0.06 dB and the 3 dB spectral bandwidth variation is less than 0.02 nm, indicating that the pulsed TDFL possesses good long-term stability. To the best of our knowledge, this is the first 2 μm band NALM-based TDFL with small net anomalous dispersion for a NL femtosecond pulse. At the maximum pump power of 3.52 W, the emitting laser has a NL pulse width of 460 fs, the repetition rate of 9.1 MHz, and the NL pulse energy of 32.72 nJ.

  20. Passively Q-switched and mode-locked Nd:GGG laser with a Bi-doped GaAs saturable absorber.

    PubMed

    Cong, Wen; Li, Dechun; Zhao, Shengzhi; Yang, Kejian; Li, Xiangyang; Qiao, Hui; Liu, Ji

    2014-06-16

    A simultaneously passively Q-switched and mode-locked (QML) Nd:GGG laser using a Bi-doped GaAs wafer as saturable absorber is accomplished for the first time. The Bi-doped GaAs wafer is fabricated by ion implantation and subsequent annealing. In comparison to the passively QML laser with GaAs, the QML laser with Bi-doped GaAs can generate more stable pulses with 99% modulation depth. The experiment results indicate that the Bi-doped GaAs could be an excellent saturable absorber for diode-pumped QML lasers.

  1. Passively Q-switched and mode-locked Nd:GGG laser with a Bi-doped GaAs saturable absorber.

    PubMed

    Cong, Wen; Li, Dechun; Zhao, Shengzhi; Yang, Kejian; Li, Xiangyang; Qiao, Hui; Liu, Ji

    2014-06-16

    A simultaneously passively Q-switched and mode-locked (QML) Nd:GGG laser using a Bi-doped GaAs wafer as saturable absorber is accomplished for the first time. The Bi-doped GaAs wafer is fabricated by ion implantation and subsequent annealing. In comparison to the passively QML laser with GaAs, the QML laser with Bi-doped GaAs can generate more stable pulses with 99% modulation depth. The experiment results indicate that the Bi-doped GaAs could be an excellent saturable absorber for diode-pumped QML lasers. PMID:24977576

  2. High power diode-pumped passively Q-switched and mode-locking Nd:GdVO 4 laser at 912 nm

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Yu, Xin; Li, Xudong; Yan, Renpeng; Wang, Cheng; Chen, Deying; Zhang, Zhonghua; Yu, Junhua

    2011-01-01

    A high power diode-end-pumped passively Q-switched and mode-locking (QML) Nd:GdVO 4 laser at 912 nm was demonstrated for the first time, to the best of our knowledge. A Z-type laser cavity with Cr 4+:YAG crystals as the intracavity saturable absorber were employed in the experiments. Influence of the initial transmission ( TU) of the saturable absorber on the QML laser performance was investigated. Using the TU = 95% Cr 4+:YAG, as much as an average output power of 2.0 W pulsed 912 nm laser was produced at an absorbed pump power of 25.0 W, then the repetition rates of the Q-switched envelope and the mode-locking pulse were ~ 224 kHz and ~ 160 MHz, respectively. Whereas the maximum output power was reduced to 1.3 W using the TU = 90% Cr 4+:YAG, we obtained a 100% modulation depth for the mode-locking pulses inside the Q-switched envelope.

  3. Passively mode-locked fiber laser by using monolayer chemical vapor deposition of graphene on D-shaped fiber.

    PubMed

    Chen, Tao; Liao, Changrui; Wang, D N; Wang, Yiping

    2014-05-01

    We demonstrate a monolayer graphene saturable absorber (SA) based on D-shaped fiber for operation of the mode-locked fiber laser. The monolayer graphene is grown by chemical vapor deposition (CVD) on Cu substrate and transferred onto the polymer, and then covered with D-shaped fiber, which allows light-graphene interaction via the evanescent field of the fiber. Due to the side-coupled interaction, the length of graphene is long enough to avoid optical power-induced thermal damage. Using such a graphene-based SA, stable mode-locked solitons with 4.5 nm spectral bandwidth and 713 fs pulsewidth at the 1563 nm wavelength have been obtained under 280 mW pump power. The influence of total cavity dispersion on the optical spectrum and pulse is also investigated by adding different lengths of single-mode fiber in the laser cavity.

  4. Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser.

    PubMed

    Sobon, Grzegorz; Sotor, Jaroslaw; Jagiello, Joanna; Kozinski, Rafal; Zdrojek, Mariusz; Holdynski, Marcin; Paletko, Piotr; Boguslawski, Jakub; Lipinska, Ludwika; Abramski, Krzysztof M

    2012-08-13

    In this work we demonstrate comprehensive studies on graphene oxide (GO) and reduced graphene oxide (rGO) based saturable absorbers (SA) for mode-locking of Er-doped fiber lasers. The paper describes the fabrication process of both saturable absorbers and detailed comparison of their parameters. Our results show, that there is no significant difference in the laser performance between the investigated SA. Both provided stable, mode-locked operation with sub-400 fs soliton pulses and more than 9 nm optical bandwidth at 1560 nm center wavelength. It has been shown that GO might be successfully used as an efficient SA without the need of its reduction to rGO. Taking into account simpler manufacturing technology and the possibility of mass production, GO seems to be a good candidate as a cost-effective material for saturable absorbers for Er-doped fiber lasers.

  5. Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser.

    PubMed

    Smirnov, Sergey V; Kobtsev, Sergey M; Kukarin, Sergey V

    2014-01-13

    For the first time we report the results of both numerical simulation and experimental observation of second-harmonic generation as an example of non-linear frequency conversion of pulses generated by passively mode-locked fiber master oscillator in different regimes including conventional (stable) and double-scale (partially coherent and noise-like) ones. We show that non-linear frequency conversion efficiency of double-scale pulses is slightly higher than that of conventional picosecond laser pulses with the same energy and duration despite strong phase fluctuations of double-scale pulses. PMID:24515065

  6. Passively mode-locked pulse generation in a c-cut Nd:LuVO4 laser at 1086 nm with a semiconductor saturable-absorber mirror

    NASA Astrophysics Data System (ADS)

    Lin, Ja-Hon; Yang, Pao-Keng; Lin, Wei-Cheng

    2012-04-01

    We demonstrate a diode-pumped passively mode-locked (ML) c-cut Nd:LuVO4 laser with central wavelength at 1086 nm by shifting the reflectance band of the SESAM into a longer wavelength to result in larger loss around 1068 nm. At 15 W absorbed pump power, the highest output power of the ML pulse was about 2.6 W that corresponded to the 17.3% optical-to-optical conversion efficiency and the slope efficiency of laser was about 22.9%. Using our ML laser as the light source, we have also successfully measured the saturation fluence of the SESAM at 1086 nm.

  7. Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers

    SciTech Connect

    Latkowski, Sylwester; Maldonado-Basilio, Ramon; Carney, Kevin; Parra-Cetina, Josue; Philippe, Severine; Landais, Pascal

    2010-08-23

    An all-optical heterodyne approach based on a room-temperature controlled semiconductor optical amplifier (SOA) for measuring the frequency and linewidth of the terahertz beat-tone signal from a passively mode-locked laser is proposed. Under the injection of two external cavity lasers, the SOA acts as a local oscillator at their detuning frequency and also as an optical frequency mixer whose inputs are the self-modulated spectrum of the device under test and the two laser beams. Frequency and linewidth of the intermediate frequency signal (and therefore, the beat-tone signal) are resolved by using a photodiode and an electrical spectrum analyzer.

  8. Numerical analysis of a broadband spectrum generated in a standard fiber by noise-like pulses from a passively mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Hernandez-Garcia, J. C.; Pottiez, O.; Estudillo-Ayala, J. M.; Rojas-Laguna, R.

    2012-04-01

    This paper covers a numerical analysis of supercontinuum spectrum generation in a piece of standard fiber by using as the pump noise-like pulses produced by a passively mode-locked fiber laser. An experimental study was also carried out, yielding results that support the numerical results. In the numerical study we estimated that the spectral extension of the generated supercontinuum reaches ~ 1000 nm, and that it presents a high flatness over a region of ~ 220 nm (1630 nm-1850 nm) when we use as the pump noise-like pulses with a wide optical bandwidth (~ 50 nm) and a peak power of ~ 2 kW. Experimentally, the output signal spectrum extends from ~ 1530 nm to at least 1750 nm and presents a high flatness over a region of 1640 nm to 1750 nm for the same value of numerical input power, 1750 nm being the upper limit of the optical spectrum analyzer. The numerical analysis presented here is thus an essential part to overcome the severe limitation in measuring capabilities and to understand the phenomena of supercontinuum generation, which is mainly related to Raman self-frequency shift. Finally, this work demonstrates the potential of noise-like pulses from a passively mode-locked fiber laser for broadband spectrum generation.

  9. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets.

    PubMed

    Mao, Dong; She, Xiaoyang; Du, Bobo; Yang, Dexing; Zhang, Wending; Song, Kun; Cui, Xiaoqi; Jiang, Biqiang; Peng, Tao; Zhao, Jianlin

    2016-01-01

    Few-layer transition-metal dichalcogenide WSe2/MoSe2 nanosheets are fabricated by a liquid exfoliation technique using sodium deoxycholate bile salt as surfactant, and their nonlinear optical properties are investigated based on a balanced twin-detector measurement scheme. It is demonstrated that both types of nanosheets exhibit nonlinear saturable absorption properties at the wavelength of 1.55 μm. By depositing the nanosheets on side polished fiber (SPF) or mixing the nanosheets with polyvinyl alcohol (PVA) solution, SPF-WSe2 saturable absorber (SA), SPF-MoSe2 SA, PVA-WSe2 SA, and PVA-MoSe2 SA are successfully fabricated and further tested in erbium-doped fiber lasers. The SPF-based SA is capable of operating at the high pump regime without damage, and a train of 3252.65 MHz harmonically mode-locked pulses are obtained based on the SPF-WSe2 SA. Soliton mode locking operations are also achieved in the fiber laser separately with other three types of SAs, confirming that the WSe2 and MoSe2 nanosheets could act as cost-effective high-power SAs for ultrafast optics. PMID:27010509

  10. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets.

    PubMed

    Mao, Dong; She, Xiaoyang; Du, Bobo; Yang, Dexing; Zhang, Wending; Song, Kun; Cui, Xiaoqi; Jiang, Biqiang; Peng, Tao; Zhao, Jianlin

    2016-03-24

    Few-layer transition-metal dichalcogenide WSe2/MoSe2 nanosheets are fabricated by a liquid exfoliation technique using sodium deoxycholate bile salt as surfactant, and their nonlinear optical properties are investigated based on a balanced twin-detector measurement scheme. It is demonstrated that both types of nanosheets exhibit nonlinear saturable absorption properties at the wavelength of 1.55 μm. By depositing the nanosheets on side polished fiber (SPF) or mixing the nanosheets with polyvinyl alcohol (PVA) solution, SPF-WSe2 saturable absorber (SA), SPF-MoSe2 SA, PVA-WSe2 SA, and PVA-MoSe2 SA are successfully fabricated and further tested in erbium-doped fiber lasers. The SPF-based SA is capable of operating at the high pump regime without damage, and a train of 3252.65 MHz harmonically mode-locked pulses are obtained based on the SPF-WSe2 SA. Soliton mode locking operations are also achieved in the fiber laser separately with other three types of SAs, confirming that the WSe2 and MoSe2 nanosheets could act as cost-effective high-power SAs for ultrafast optics.

  11. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets

    NASA Astrophysics Data System (ADS)

    Mao, Dong; She, Xiaoyang; Du, Bobo; Yang, Dexing; Zhang, Wending; Song, Kun; Cui, Xiaoqi; Jiang, Biqiang; Peng, Tao; Zhao, Jianlin

    2016-03-01

    Few-layer transition-metal dichalcogenide WSe2/MoSe2 nanosheets are fabricated by a liquid exfoliation technique using sodium deoxycholate bile salt as surfactant, and their nonlinear optical properties are investigated based on a balanced twin-detector measurement scheme. It is demonstrated that both types of nanosheets exhibit nonlinear saturable absorption properties at the wavelength of 1.55 μm. By depositing the nanosheets on side polished fiber (SPF) or mixing the nanosheets with polyvinyl alcohol (PVA) solution, SPF-WSe2 saturable absorber (SA), SPF-MoSe2 SA, PVA-WSe2 SA, and PVA-MoSe2 SA are successfully fabricated and further tested in erbium-doped fiber lasers. The SPF-based SA is capable of operating at the high pump regime without damage, and a train of 3252.65 MHz harmonically mode-locked pulses are obtained based on the SPF-WSe2 SA. Soliton mode locking operations are also achieved in the fiber laser separately with other three types of SAs, confirming that the WSe2 and MoSe2 nanosheets could act as cost-effective high-power SAs for ultrafast optics.

  12. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets

    PubMed Central

    Mao, Dong; She, Xiaoyang; Du, Bobo; Yang, Dexing; Zhang, Wending; Song, Kun; Cui, Xiaoqi; Jiang, Biqiang; Peng, Tao; Zhao, Jianlin

    2016-01-01

    Few-layer transition-metal dichalcogenide WSe2/MoSe2 nanosheets are fabricated by a liquid exfoliation technique using sodium deoxycholate bile salt as surfactant, and their nonlinear optical properties are investigated based on a balanced twin-detector measurement scheme. It is demonstrated that both types of nanosheets exhibit nonlinear saturable absorption properties at the wavelength of 1.55 μm. By depositing the nanosheets on side polished fiber (SPF) or mixing the nanosheets with polyvinyl alcohol (PVA) solution, SPF-WSe2 saturable absorber (SA), SPF-MoSe2 SA, PVA-WSe2 SA, and PVA-MoSe2 SA are successfully fabricated and further tested in erbium-doped fiber lasers. The SPF-based SA is capable of operating at the high pump regime without damage, and a train of 3252.65 MHz harmonically mode-locked pulses are obtained based on the SPF-WSe2 SA. Soliton mode locking operations are also achieved in the fiber laser separately with other three types of SAs, confirming that the WSe2 and MoSe2 nanosheets could act as cost-effective high-power SAs for ultrafast optics. PMID:27010509

  13. Optical frequency comb generator based on a monolithically integrated passive mode-locked ring laser with a Mach-Zehnder interferometer.

    PubMed

    Corral, V; Guzmán, R; Gordón, C; Leijtens, X J M; Carpintero, G

    2016-05-01

    We report the demonstration of an optical-frequency comb generator based on a monolithically integrated ring laser fabricated in a multiproject wafer run in an active/passive integration process in a generic foundry using standardized building blocks. The device is based on a passive mode-locked ring laser architecture, which includes a Mach-Zehnder interferometer to flatten the spectral shape of the comb output. This structure allows monolithic integration with other optical components, such as optical filters for wavelength selection, or dual wavelength lasers for their stabilization. The results show a -10  dB span of the optical comb of 8.7 nm (1.08 THz), with comb spacing of 10.16 GHz. We also obtain a flatness of 44 lines within a 1.8 dB power variation.

  14. Optical frequency comb generator based on a monolithically integrated passive mode-locked ring laser with a Mach-Zehnder interferometer.

    PubMed

    Corral, V; Guzmán, R; Gordón, C; Leijtens, X J M; Carpintero, G

    2016-05-01

    We report the demonstration of an optical-frequency comb generator based on a monolithically integrated ring laser fabricated in a multiproject wafer run in an active/passive integration process in a generic foundry using standardized building blocks. The device is based on a passive mode-locked ring laser architecture, which includes a Mach-Zehnder interferometer to flatten the spectral shape of the comb output. This structure allows monolithic integration with other optical components, such as optical filters for wavelength selection, or dual wavelength lasers for their stabilization. The results show a -10  dB span of the optical comb of 8.7 nm (1.08 THz), with comb spacing of 10.16 GHz. We also obtain a flatness of 44 lines within a 1.8 dB power variation. PMID:27128043

  15. Mode-locked fiber lasers based on doped fiber arrays.

    PubMed

    Zhang, Xiao; Song, Yanrong

    2014-05-10

    We designed a new kind of mode-locked fiber laser based on fiber arrays, where the central core is doped. A theoretical model is given for an all-fiber self-starting mode-locked laser based on this kind of doped fiber array. Two different kinds of fiber lasers with negative dispersion and positive dispersion are simulated and discussed. The stable mode-locked pulses are generated from initial noise conditions by the realistic parameters. The process of self-starting mode-locking multipulse transition and the relationship between the energy of the central core and the propagation distance of the pulses are discussed. Finally, we analyze the difference between the averaged mode-locked laser and the discrete mode-locked laser.

  16. The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wu, Man; Tang, Pinghua; Chen, Shuqing; Du, Juan; Jiang, Guobao; Li, Ying; Zhao, Chujun; Zhang, Han; Wen, Shuangchun

    2014-05-01

    We experimentally investigated the formation of various multi-soliton patterns and noise-like (NL) pulses in an erbium-doped fiber laser passively mode-locked by a new type of saturable absorber: topological insulator. With the increase of pump power, various multi-soliton operation states—ordered, chaotic and bunched multiple-soliton—were subsequently obtained. Once the pump power exceeds 401 mW, an NL pulse state emerged, with a maximum 3 dB bandwidth of about 9.3 nm. This systematic study clearly demonstrated that a topological insulator could be an effective saturable absorber for the formation of various soliton operation states in a fiber laser cavity.

  17. Optimization of passively mode-locked quasi-continuously diode-pumped Nd:GdVO4 laser in bounce geometry

    NASA Astrophysics Data System (ADS)

    Frank, Milan; Jelínek, Michal; Kubeček, Václav

    2015-01-01

    In this paper the operation of pulsed diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively modelocked using semiconductor saturable absorber mirror (SAM), generating microjoule level picosecond pulses at wavelength of 1063 nm, is reported. Optimization of the output coupling for generation either Q-switched mode locked pulse trains or cavity dumped single pulses with maximum energy was performed, which resulted in extraction of single pulses as short as 10 ps and energy of 20 uJ. In comparison with the previous results obtained with this Nd:GdVO4 oscillator and saturable absorber in transmission mode, the achieved pulse duration is five times shorter. Using different absorbers and parameters of single pulse extraction enables generation of the pulses with duration up to 100 ps with the energy in the range from 10 to 20 μJ.

  18. Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity.

    PubMed

    Liu, Xueming

    2009-12-01

    Dissipative soliton evolution in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity is investigated numerically and confirmed experimentally. I have proposed a theoretical model including the nonlinear polarization evolution and spectral filtering effect. This model successfully predicts the pulse behaviors of the proposed laser, such as the multi-soliton evolution, quasi-rectangle-spectrum profile, trapezoid-spectrum profile, and unstable state. Numerical results show that, in contrast to the typical net- or all-normal-dispersion fiber lasers with the slight variation of the pulse breathing, the breathing ratios of the pulse duration and spectral width of our laser are more than three and two during the intra-cavity propagation, respectively. The nonlinear polarization rotation mechanism together with spectral filtering effect plays the key roles on the pulse evolution. The experimental observations confirm the theoretical predictions.

  19. Synchronization of two passively mode-locked erbium-doped fiber lasers by an acousto-optic modulator and grating scheme

    SciTech Connect

    Jiang, M.; Sha, W.; Rahman, L.; Barnett, B.C.; Andersen, J.K.; Islam, M.N.; Reddy, K.V.

    1996-06-01

    We synchronize two passively mode-locked erbium-doped fiber lasers by adjusting only the cavity length to correct both the repetition rate and the phase. The interlaser jitter is less than 6ps (1.3times the pulse width) and is extracted from the cross correlation of the two lasers. The lock can be maintained for extended periods of time. These results are obtained by use of a novel acousto-optic-modulator{endash}grating scheme, which provides an equivalent of 300 {mu}m in cavity length tuning with a bandwidth of 10 kHz. These parameters are 30 times the length and 10 times the bandwidth of a typical piezoelectric transducer. {copyright} {ital 1996 Optical Society of America.}

  20. Generation of "gigantic" ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Denisov, G. G.; Vilkov, M. N.; Zotova, I. V.; Sergeev, A. S.

    2016-05-01

    A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated "gigantic" pulses can exceed not only the level of steady-state generation but also, in the optimal case, the power of the driving electron beam.

  1. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-09-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.

  2. Effect of beam expansion loss in a carbon nanotube-doped PVA film on passively mode-locked erbium-doped fiber lasers with different feedback ratios

    NASA Astrophysics Data System (ADS)

    Cheng, Kuang-Nan; Chi, Yu-Chieh; Cheng, Chih-Hsien; Lin, Yung-Hsiang; Lo, Jui-Yung; Lin, Gong-Ru

    2014-10-01

    The effect of beam expansion induced divergent loss in a single-wall carbon nanotube (SWCNT) doped polyvinyl alcohol (PVA) based ultrafast saturable absorber (SA) film thickness on the passive mode-locking (PML) performances of erbium-doped fiber lasers are demonstrated. The variation on the PML pulsewidth of the EDFL is discussed by changing the SWCNT-PVA SA film thicknesses, together with adjusting the pumping power and the intra-cavity feedback ratio. An almost 6 dB increment of divergent loss when enlarging the SWCNT-PVA based SA film thickness from 30-130 µm is observed. When shrinking the SA thickness to 30 µm at the largest pumping power of 52.5 mW, the optical spectrum red-shifts to 1558.8 nm with its 3 dB spectral linewidth broadening up to 2.7 nm, while the pulse has already entered the soliton regime with multi-order Kelly sidebands aside the spectral shoulder. The soliton pulsewidth is as short as 790 fs, which is much shorter than those obtained with other thicker SWCNT doped PVA polymer film based SAs; therefore, the peak power from the output of the PML-EDFL is significantly enlarged accompanied by a completely suppressed residual continuous-wave level to achieve the largest on/off extinction ratio. The main mechanism of pulse shortening with reducing thickness of SWCNT doped PVA polymer film based SA is attributed to the limited beam expansion as well as the enlarged modulation depth, which results in shortened soliton pulsewidth with a clean dc background, and broadened spectrum with enriched Kelly sidebands. The increase of total SWCNT amount in the thicker SA inevitably causes a higher linear absorption; hence, the mode-locking threshold also rises accordingly. By enlarging pumping power from 38.5-52.5 mW, the highest ascent on pulse extinction of up to 32 dB is observed among all kinds of feedback conditions. Nevertheless, the enlargement on the extinction slightly decays with increasing the feedback ratio from 30-90%, as

  3. A 31 mW, 280 fs passively mode-locked fiber soliton laser using a high heat-resistant SWNT/P3HT saturable absorber coated with siloxane.

    PubMed

    Ono, Takato; Hori, Yuichiro; Yoshida, Masato; Hirooka, Toshihiko; Nakazawa, Masataka; Mata, Junji; Tsukamoto, Jun

    2012-10-01

    We report a substantial increase in the heat resistance in a connector-type single-wall carbon nanotube (SWNT) saturable absorber by sealing SWNT/P3HT composite with siloxane. By applying the saturable absorber to a passively mode-locked Er fiber laser, we successfully demonstrated 280 fs, 31 mW pulse generation with a fivefold improvement in heat resistance.

  4. Experimental demonstration of a passive all-fiber Q-switched erbium- and samarium-doped laser.

    PubMed

    Preda, Cristina Elena; Ravet, Gautier; Mégret, Patrice

    2012-02-15

    Self-Q-switched operation of the all-fiber laser using erbium and samarium fibers in the cavity is realized experimentally. This passively Q-switched all-fiber laser produces very stable pulses with energy of 142 nJ and duration of 450 ns. The experimental results were well reproduced by the results obtained through the numerical integration of a rate-equations model.

  5. Delay differential equations for mode-locked semiconductor lasers.

    PubMed

    Vladimirov, Andrei G; Turaev, Dmitry; Kozyreff, Gregory

    2004-06-01

    We propose a new model for passive mode locking that is a set of ordinary delay differential equations. We assume a ring-cavity geometry and Lorentzian spectral filtering of the pulses but do not use small gain and loss and weak saturation approximations. By means of a continuation method, we study mode-locking solutions and their stability. We find that stable mode locking can exist even when the nonlasing state between pulses becomes unstable.

  6. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction.

    PubMed

    Du, Juan; Wang, Qingkai; Jiang, Guobao; Xu, Changwen; Zhao, Chujun; Xiang, Yuanjiang; Chen, Yu; Wen, Shuangchun; Zhang, Han

    2014-01-01

    By coupling few-layer Molybdenum Disulfide (MoS2) with fiber-taper evanescent light field, a new type of MoS2 based nonlinear optical modulating element had been successfully fabricated as a two-dimensional layered saturable absorber with strong light-matter interaction. This MoS2-taper-fiber device is not only capable of passively mode-locking an all-normal-dispersion ytterbium-doped fiber laser and enduring high power laser excitation (up to 1 W), but also functions as a polarization sensitive optical modulating component (that is, different polarized light can induce different nonlinear optical response). Thanks to the combined advantages from the strong nonlinear optical response in MoS2 together with the sufficiently-long-range interaction between light and MoS2, this device allows for the generation of high power stable dissipative solitons at 1042.6 nm with pulse duration of 656 ps and a repetition rate of 6.74 MHz at a pump power of 210 mW. Our work may also constitute the first example of MoS2-enabled wave-guiding photonic device, and potential y give some new insights into two-dimensional layered materials related photonics. PMID:25213108

  7. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction.

    PubMed

    Du, Juan; Wang, Qingkai; Jiang, Guobao; Xu, Changwen; Zhao, Chujun; Xiang, Yuanjiang; Chen, Yu; Wen, Shuangchun; Zhang, Han

    2014-09-12

    By coupling few-layer Molybdenum Disulfide (MoS2) with fiber-taper evanescent light field, a new type of MoS2 based nonlinear optical modulating element had been successfully fabricated as a two-dimensional layered saturable absorber with strong light-matter interaction. This MoS2-taper-fiber device is not only capable of passively mode-locking an all-normal-dispersion ytterbium-doped fiber laser and enduring high power laser excitation (up to 1 W), but also functions as a polarization sensitive optical modulating component (that is, different polarized light can induce different nonlinear optical response). Thanks to the combined advantages from the strong nonlinear optical response in MoS2 together with the sufficiently-long-range interaction between light and MoS2, this device allows for the generation of high power stable dissipative solitons at 1042.6 nm with pulse duration of 656 ps and a repetition rate of 6.74 MHz at a pump power of 210 mW. Our work may also constitute the first example of MoS2-enabled wave-guiding photonic device, and potential y give some new insights into two-dimensional layered materials related photonics.

  8. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction

    PubMed Central

    Du, Juan; Wang, Qingkai; Jiang, Guobao; Xu, Changwen; Zhao, Chujun; Xiang, Yuanjiang; Chen, Yu; Wen, Shuangchun; Zhang, Han

    2014-01-01

    By coupling few-layer Molybdenum Disulfide (MoS2) with fiber-taper evanescent light field, a new type of MoS2 based nonlinear optical modulating element had been successfully fabricated as a two-dimensional layered saturable absorber with strong light-matter interaction. This MoS2-taper-fiber device is not only capable of passively mode-locking an all-normal-dispersion ytterbium-doped fiber laser and enduring high power laser excitation (up to 1 W), but also functions as a polarization sensitive optical modulating component (that is, different polarized light can induce different nonlinear optical response). Thanks to the combined advantages from the strong nonlinear optical response in MoS2 together with the sufficiently-long-range interaction between light and MoS2, this device allows for the generation of high power stable dissipative solitons at 1042.6 nm with pulse duration of 656 ps and a repetition rate of 6.74 MHz at a pump power of 210 mW. Our work may also constitute the first example of MoS2-enabled wave-guiding photonic device, and potentially give some new insights into two-dimensional layered materials related photonics. PMID:25213108

  9. Actively mode-locked Raman fiber laser.

    PubMed

    Yang, Xuezong; Zhang, Lei; Jiang, Huawei; Fan, Tingwei; Feng, Yan

    2015-07-27

    Active mode-locking of Raman fiber laser is experimentally investigated for the first time. An all fiber connected and polarization maintaining loop cavity of ~500 m long is pumped by a linearly polarized 1120 nm Yb fiber laser and modulated by an acousto-optic modulator. Stable 2 ns width pulse train at 1178 nm is obtained with modulator opening time of > 50 ns. At higher power, pulses become longer, and second order Raman Stokes could take place, which however can be suppressed by adjusting the open time and modulation frequency. Transient pulse evolution measurement confirms the absence of relaxation oscillation in Raman fiber laser. Tuning of repetition rate from 392 kHz to 31.37 MHz is obtained with harmonic mode locking. PMID:26367642

  10. Diode-pumped Nd:Gd3Ga5O12-KTiOPO4 green laser doubly passively Q-switched mode-locked by GaAs and Cr4+:YAG saturable absorbers

    NASA Astrophysics Data System (ADS)

    Qiao, Junpeng; Zhao, Jia; Yang, Kejian; Zhao, Shengzhi; Li, Yufei; Li, Guiqiu; Li, Dechun; Qiao, Wenchao; Li, Tao; Chu, Hongwei

    2015-03-01

    By simultaneously employing GaAs and Cr4+:YAG saturable absorbers, a diode-pumped doubly passively Q-switched and mode-locked (DP-QML) Nd:Gd3Ga5O12 (Nd:GGG)/KTiOPO4 (KTP) green laser has been presented. At the maximum incident pump power of 7.69 W, the obtained average output power, the pulse duration of the Q-switched envelope, the mode-locked pulse width and the pulse repetition rate are 62 mW, 16.8 ns, 352 ps, and 15.5 kHz, respectively, corresponding to a pulse energy of 4.2 µJ and a peak power of 0.25 kW. In comparison with singly passively Q-switched and mode-locked (SP-QML) green laser with GaAs or Cr4+:YAG saturable absorbers, the DP-QML green laser can generate shorter pulse width, deeper modulation depth and higher peak power. The coupled equations for diode-pumped doubly passively QML Nd:GGG/KTP green laser are given and the numerical simulations are in good agreement with the experimental results.

  11. Mode-locked fiber laser based on chalcogenide microwires.

    PubMed

    Al-Kadry, Alaa; El Amraoui, Mohammed; Messaddeq, Younès; Rochette, Martin

    2015-09-15

    We report the first mode-locked fiber laser using a chalcogenide microwire as the nonlinear medium. The laser is passively mode-locked with nonlinear polarization rotation and can be adjusted for the emission of solitons or noise-like pulses. The use of the microwire leads to a mode-locking threshold at the microwatt level and shortens the cavity length by 4 orders of magnitude with respect to other lasers of its kind. The controlled birefringence of the microwire, combined with a linear polarizer in the cavity, enables multiwavelength laser operation with tunable central wavelength, switchable wavelength separation, and a variable number of laser wavelengths. PMID:26371923

  12. Mode-locked fiber laser based on chalcogenide microwires.

    PubMed

    Al-Kadry, Alaa; El Amraoui, Mohammed; Messaddeq, Younès; Rochette, Martin

    2015-09-15

    We report the first mode-locked fiber laser using a chalcogenide microwire as the nonlinear medium. The laser is passively mode-locked with nonlinear polarization rotation and can be adjusted for the emission of solitons or noise-like pulses. The use of the microwire leads to a mode-locking threshold at the microwatt level and shortens the cavity length by 4 orders of magnitude with respect to other lasers of its kind. The controlled birefringence of the microwire, combined with a linear polarizer in the cavity, enables multiwavelength laser operation with tunable central wavelength, switchable wavelength separation, and a variable number of laser wavelengths.

  13. Optimization of the pulse-width of diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4 laser with a GaAs saturable absorber.

    PubMed

    Han, Chao; Zhao, Shengzhi; Li, Dechun; Li, Guiqiu; Yang, Kejian; Zhang, Gang; Cheng, Kang

    2011-11-01

    By considering the single-photon absorption and two-photon absorption processes in the GaAs saturable absorber, the coupled rate equations for a diode-pumped passively Q-switched and mode-locked (QML) laser with GaAs coupler under Gaussian approximation are given. These rate equations are solved numerically. The key parameters of an optimally coupled passively QML laser with the shortest pulse-width envelope are determined. These key parameters include the parameters of the gain medium, the saturable absorber, and the resonator, which can minimize the pulse-width of a singly Q-switched envelope. Sample calculations for a diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO(4) laser with a GaAs coupler are presented to demonstrate that the shortest pulse-width envelope can be obtained by selecting the optimal small-signal transmission of the saturable absorber and the reflectivity of the output mirror.

  14. Fast wavelength-tunable picosecond pulses from a passively mode-locked Er fiber laser using a galvanometer-driven intracavity filter.

    PubMed

    Ozeki, Yasuyuki; Tashiro, Daigo

    2015-06-15

    We experimentally investigate fast wavelength-tuning characteristics of a polarization-maintaining Er fiber laser, which is mode-locked with a semiconductor saturable absorber mirror. Wavelength tuning was accomplished with an intracavity filter incorporating a galvanometer mirror and a diffraction grating. Within the tunability of 30 nm, we achieved a wavelength-tuning speed of <5 ms. We also show that the variation of repetition rates can be suppressed to <200 Hz by simply shifting the position of the grating. The presented scheme for generating wavelength-tunable pulses will be potentially useful for coherent Raman spectral imaging.

  15. Fast wavelength-tunable picosecond pulses from a passively mode-locked Er fiber laser using a galvanometer-driven intracavity filter.

    PubMed

    Ozeki, Yasuyuki; Tashiro, Daigo

    2015-06-15

    We experimentally investigate fast wavelength-tuning characteristics of a polarization-maintaining Er fiber laser, which is mode-locked with a semiconductor saturable absorber mirror. Wavelength tuning was accomplished with an intracavity filter incorporating a galvanometer mirror and a diffraction grating. Within the tunability of 30 nm, we achieved a wavelength-tuning speed of <5 ms. We also show that the variation of repetition rates can be suppressed to <200 Hz by simply shifting the position of the grating. The presented scheme for generating wavelength-tunable pulses will be potentially useful for coherent Raman spectral imaging. PMID:26193501

  16. Long-term stable passive synchronization of 50 µJ femtosecond Yb-doped fiber chirped-pulse amplifier with a mode-locked Ti:sapphire laser.

    PubMed

    Yoshitomi, Dai; Zhou, Xiangyu; Kobayashi, Yohei; Takada, Hideyuki; Torizuka, Kenji

    2010-12-01

    We report long-term stable passive synchronization of a femtosecond Yb-doped fiber chirped-pulse amplifier (CPA) with a mode-locked Ti:sapphire laser for pump-seed synchronization of an optical parametric chirped-pulse amplification (OPCPA) system. The fiber CPA system delivers pulses with a wavelength of 1035 nm, energy of 50 µJ, and duration of 690 fs at a repetition rate of 0.4 MHz. The seed fiber oscillator is passively synchronized with a mode-locked Ti:sapphire laser by injection of the Ti:sapphire laser pulses into the cavity of the fiber oscillator. The second harmonic (SH) output with a wavelength of 518 nm, energy of 18 µJ, and duration of 1.2 ps was prepared for the OPCPA pump. The measured timing jitter between the pump (fiber SH) and the seed (Ti:sapphire) was 42 ± 14 fs, while the jitter between two oscillator outputs was 1.4 ± 0.5 fs. The robust synchronization technique allows long-term stable operation over 8 h.

  17. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.

    PubMed

    Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2014-11-17

    Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.

  18. Passively Q-switched erbium all-fiber lasers by use of thulium-doped saturable-absorber fibers.

    PubMed

    Tsai, Tzong-Yow; Fang, Yen-Cheng; Hung, Shih-Hao

    2010-05-10

    We demonstrate all-fiber passively Q-switched erbium lasers at 1570 nm using Tm(3+)-doped saturable-absorber fibers. The absorption cross section of a Tm(3+)-doped fiber at 1570 nm was measured in a bleaching experiment to be about 1.44 x 10(-20) cm(2). With a thulium-doped fiber, sequential pulses with a pulse energy of 9 microJ and a pulse duration of about 420 ns were stably produced at repetition rates in the range 0.1 to 2 kHz. The maximum pulse repetition rate was 6 kHz, limited by the maximum pump power of a 980-nm laser diode, about 230 mW.

  19. Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser.

    PubMed

    Liu, Meng; Zheng, Xu-Wu; Qi, You-Li; Liu, Hao; Luo, Ai-Ping; Luo, Zhi-Chao; Xu, Wen-Cheng; Zhao, Chu-Jun; Zhang, Han

    2014-09-22

    We reported on the generation of high-order harmonic mode-locking in a fiber laser using a microfiber-based molybdenum disulfide (MoS(2)) saturable absorber (SA). Taking advantage of both the saturable absorption and large third-order nonlinear susceptibilities of the few-layer MoS(2), up to 2.5 GHz repetition rate HML pulse could be obtained at a pump power of 181 mW, corresponding to 369th harmonic of fundamental repetition frequency. The results provide the first demonstration of the simultaneous applications of both highly nonlinear and saturable absorption effects of the MoS(2), indicating that the microfiber-based MoS(2) photonic device could serve as high-performance SA and highly nonlinear optical component for application fields such as ultrafast nonlinear optics.

  20. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    NASA Technical Reports Server (NTRS)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  1. 7.6  W 1342  nm passively mode-locked picosecond composite Nd:YVO4/YVO4 laser with a semiconductor saturable absorber mirror.

    PubMed

    Tu, Wei; Chen, Ying; Zong, Nan; Liu, Ke; Wang, Zhi-Min; Zhang, Feng-Feng; Zhang, Shen-Jin; Yang, Feng; Yuan, Lei; Bo, Yong; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan

    2015-04-10

    A high average power 1342 nm passively CW mode-locked picoseconds (ps) composite Nd:YVO4 laser was demonstrated with a semiconductor saturable absorber mirror (SESAM). The oscillator cavity was carefully designed to optimize the laser beam radii in the crystal and on the SESAM. The combination of composite bonded laser crystal, direct pumping, and dual end-pumped configuration was adopted to reduce the thermal effect and produce high output power with high beam quality. A maximum average output power of 7.63 W was obtained with a repetition rate of 77 MHz and a pulse duration of 24.2 ps under an absorbed pump power of 38.6 W, corresponding to an optical-optical efficiency of 19.7% and a slope efficiency of 25.9%, respectively. The beam quality factor M(2) was measured to be 1.49. PMID:25967328

  2. 948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution

    NASA Astrophysics Data System (ADS)

    Boivinet, S.; Lecourt, J.-B.; Hernandez, Y.; Fotiadi, A.; Mégret, P.

    2014-05-01

    We present in this study a PM all-fiber laser oscillator passively mode-locked (ML) at 1.03 μm. The laser is based on Nonlinear Polarization Evolution (NPE) in polarization maintaining (PM) fibers. In order to obtain the mode-locking regime, a nonlinear reflective mirror including a fibered polarizer, a long fiber span and a fibered Faraday mirror (FM) is inserted in a Fabry-Perot laser cavity. In this work we explain the principles of operation of this original laser design that permits to generate ultrashort pulses at low repetition (lower that 1MHz) rate with a cavity length of 100 m of fiber. In this experiment, the measured pulse duration is about 6 ps. To our knowledge this is the first all-PM mode-locked laser based on the NPE with a cavity of 100m length fiber and a delivered pulse duration of few picosecondes. Furthermore, the different mode-locked regimes of the laser, i.e. multi-pulse, noise-like mode-locked and single pulse, are presented together with the ways of controlling the apparition of these regimes. When the single pulse mode-locking regime is achieved, the laser delivers linearly polarized pulses in a very stable way. Finally, this study includes numerical results which are obtained with the resolution of the NonLinear Schrodinger Equations (NLSE) with the Split-Step Fourier (SSF) algorithm. This modeling has led to the understanding of the different modes of operation of the laser. In particular, the influence of the peak power on the reflection of the nonlinear mirror and its operation are studied.

  3. All-normal dispersion passively mode-locked Yb-doped fiber laser using MoS2-PVA saturable absorber

    NASA Astrophysics Data System (ADS)

    Sathiyan, S.; Velmurugan, V.; Senthilnathan, K.; Babu, P. Ramesh; Sivabalan, S.

    2016-05-01

    We demonstrate the generation of a dissipative soliton in an all-normal dispersion ytterbium (Yb)-doped fiber laser using few-layer molybdenum disulfide (MoS2) as a saturable absorber. The saturable absorber is prepared by mixing few-layer MoS2 solution with polyvinyl alcohol (PVA) to form a free-standing composite film. The modulation depth and saturation intensity of the MoS2-PVA film are 11% and 5.86 MW cm-2, respectively. By incorporating the MoS2 saturable absorber in the fiber laser cavity, the mode-locked pulses are generated with a pulse width of 1.55 ns and a 3 dB spectral bandwidth of 0.9 nm centered at 1037.5 nm. The fundamental repetition rate and the average power are measured as 15.43 MHz and 1.5 mW, respectively. These results reveal the feasibility of deploying liquid-phase exfoliated few-layer MoS2 nanosheets for dissipative soliton generation in the near-IR region.

  4. High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier.

    PubMed

    Liu, Jiang; Liu, Chen; Shi, Hongxing; Wang, Pu

    2016-06-27

    We demonstrated a linearly-polarized picosecond thulium-doped all-fiber-integrated master-oscillator power-amplifier system, which yielded 240 W of average output power at 127 MHz repetition rate. The seed source is a passively mode-locked polarization-maintaining thulium-doped all-fiber oscillator with a nearly transform-limited pulse duration of 10 ps. In combination with a pre-chirp fiber having a positive group velocity dispersion and a three stage polarization-maintaining thulium-doped all-fiber amplifier, output pulse energies up to 1.89 µJ with 42 kW pulse peak power are obtained without the need of complex free-space stretcher or compressor setups. To the best of our knowledge, this is the highest average output power ever reported for a picosecond all-fiber-integrated laser at 2 µm wavelength region.

  5. High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier.

    PubMed

    Liu, Jiang; Liu, Chen; Shi, Hongxing; Wang, Pu

    2016-06-27

    We demonstrated a linearly-polarized picosecond thulium-doped all-fiber-integrated master-oscillator power-amplifier system, which yielded 240 W of average output power at 127 MHz repetition rate. The seed source is a passively mode-locked polarization-maintaining thulium-doped all-fiber oscillator with a nearly transform-limited pulse duration of 10 ps. In combination with a pre-chirp fiber having a positive group velocity dispersion and a three stage polarization-maintaining thulium-doped all-fiber amplifier, output pulse energies up to 1.89 µJ with 42 kW pulse peak power are obtained without the need of complex free-space stretcher or compressor setups. To the best of our knowledge, this is the highest average output power ever reported for a picosecond all-fiber-integrated laser at 2 µm wavelength region. PMID:27410651

  6. All-fiber wavelength-tunable picosecond nonlinear reflectivity measurement setup for characterization of semiconductor saturable absorber mirrors

    NASA Astrophysics Data System (ADS)

    Viskontas, K.; Rusteika, N.

    2016-09-01

    Semiconductor saturable absorber mirror (SESAM) is the key component for many passively mode-locked ultrafast laser sources. Particular set of nonlinear parameters is required to achieve self-starting mode-locking or avoid undesirable q-switch mode-locking for the ultra-short pulse laser. In this paper, we introduce a novel all-fiber wavelength-tunable picosecond pulse duration setup for the measurement of nonlinear properties of saturable absorber mirrors at around 1 μm center wavelength. The main advantage of an all-fiber configuration is the simplicity of measuring the fiber-integrated or fiber-pigtailed saturable absorbers. A tunable picosecond fiber laser enables to investigate the nonlinear parameters at different wavelengths in ultrafast regime. To verify the capability of the setup, nonlinear parameters for different SESAMs with low and high modulation depth were measured. In the operating wavelength range 1020-1074 nm, <1% absolute nonlinear reflectivity accuracy was demonstrated. Achieved fluence range was from 100 nJ/cm2 to 2 mJ/cm2 with corresponding intensity from 10 kW/cm2 to 300 MW/cm2.

  7. All fiber laser using a ring cavity

    NASA Astrophysics Data System (ADS)

    Flores, Alberto Varguez; Pérez, Georgina Beltrán; Aguirre, Severino Muñoz; Mixcóatl, Juan Castillo

    2008-04-01

    Mode-locked laser have a number of potential applications, depending on the wavelength and pulse width. They could be used as sources in communications systems for time division multiplexing (TDM) or wavelength-division-multiplexing (WDM) as spectroscopic tools in the laboratory for time-resolved studies of fast nonlinear phenomena in semiconductors, or as seeds for solid-state amplifers such as Nd:Glass, color center alexandrite, or Ti:Sapphire. Short pulses also have potential use in electro-optic sampling systems, as a source for pulsed sensors, or as tunable seed pulses for lasers in medical applications. Applications such as optical coherent tomography could take advantage of the broad bandwidth of a mode-locked fiber laser rather that the temporal ultra-short pulse width. This work shows the characterization of active mode-locking all-fiber laser by using an acousto-optic frequency shifter to the ring cavity, an erbium doped fiber (EDF) and polarization controllers (PC). The results shows a highly stable mode-locked, low noise of pulse generation with repetition rate of 10 MHz and width of 1.6 ns

  8. Versatile mode-locked fiber laser with switchable operation states of bound solitons.

    PubMed

    Zou, Xin; Qiu, Jifang; Wang, Xiaodong; Ye, Zi; Shi, Jindan; Wu, Jian

    2016-06-01

    Bound states of two solitons are among the typical forms of bound states and can be observed in various operation states of mode-locked fiber lasers. We experimentally investigated bound solitons (BSs) in a passively mode-locked erbium-doped fiber laser based on a semiconductor saturable absorber mirror, whose operation states can be switched among multiple pulses, passively harmonic mode-locking, and "giant pulses" by simply adjusting the in-line polarization controller with the pump power fixed. Up to four pulses, fourth-order harmonic mode-locking (HML), and a "giant pulse" with four BSs were obtained with increasing pump power. Experimental results showed a correlative relationship among those operation states (N pulses/Nth-order HML/"giant pulses" of N bound solitons) at different pump power levels. The birefringence induced by the erbium-doped fiber inside the laser cavity played a vital role in the transitions of those operation states. PMID:27411182

  9. Versatile mode-locked fiber laser with switchable operation states of bound solitons.

    PubMed

    Zou, Xin; Qiu, Jifang; Wang, Xiaodong; Ye, Zi; Shi, Jindan; Wu, Jian

    2016-06-01

    Bound states of two solitons are among the typical forms of bound states and can be observed in various operation states of mode-locked fiber lasers. We experimentally investigated bound solitons (BSs) in a passively mode-locked erbium-doped fiber laser based on a semiconductor saturable absorber mirror, whose operation states can be switched among multiple pulses, passively harmonic mode-locking, and "giant pulses" by simply adjusting the in-line polarization controller with the pump power fixed. Up to four pulses, fourth-order harmonic mode-locking (HML), and a "giant pulse" with four BSs were obtained with increasing pump power. Experimental results showed a correlative relationship among those operation states (N pulses/Nth-order HML/"giant pulses" of N bound solitons) at different pump power levels. The birefringence induced by the erbium-doped fiber inside the laser cavity played a vital role in the transitions of those operation states.

  10. High power L-band mode-locked fiber laser based on topological insulator saturable absorber.

    PubMed

    Meng, Yichang; Semaan, Georges; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois

    2015-09-01

    We demonstrate a passive mode-locked Er:Yb doped double-clad fiber laser using a microfiber-based topological insulator (Bi(2)Se(3)) saturable absorber (TISA). By optimizing the cavity loss and output coupling ratio, the mode-locked fiber laser can operate in L-band with high average output power. With the highest pump power of 5 W, 91st harmonic mode locking of soliton bunches with average output power of 308 mW was obtained. This is the first report that the TISA based erbium-doped fiber laser operating above 1.6 μm and is also the highest output power yet reported in TISA based passive mode-locked fiber laser.

  11. All-fiber dual wavelength passive Q-switched fiber laser using a dispersion-decreasing taper fiber in a nonlinear loop mirror.

    PubMed

    Ahmad, Harith; Dernaika, Mohamad; Harun, Sulaiman Wadi

    2014-09-22

    This paper describes a proposal and successful demonstration of a dual wavelength all-fiber passively Q-switched erbium-doped fiber ring laser. The Q-switch operation was realized by using a nonlinear loop mirror that incorporated an unbalanced dispersion-decreasing taper fiber to act as a saturable absorber without additional elements. This setup enabled a fiber ring laser to achieve a performance of 48.7 kHz repetition rate with pulse duration of around 3.2 μs and approximate pulse energy of 20 nJ. PMID:25321748

  12. Self-mode-locking semiconductor disk laser.

    PubMed

    Gaafar, Mahmoud; Richter, Philipp; Keskin, Hakan; Möller, Christoph; Wichmann, Matthias; Stolz, Wolfgang; Rahimi-Iman, Arash; Koch, Martin

    2014-11-17

    The development of mode-locked semiconductor disk lasers received striking attention in the last 14 years and there is still a vast potential of such pulsed lasers to be explored and exploited. While for more than one decade pulsed operation was strongly linked to the employment of a saturable absorber, self-mode-locking emerged recently as an effective and novel technique in this field - giving prospect to a reduced complexity and improved cost-efficiency of such lasers. In this work, we highlight recent achievements regarding self-mode-locked semiconductor devices. It is worth to note, that although nonlinear effects in the active medium are expected to give rise to self-mode-locking, this has to be investigated with care in future experiments. However, there is a controversy whether results presented with respect to self-mode-locking truly show mode-locking. Such concerns are addressed in this work and we provide a clear evidence of mode-locking in a saturable-absorber-free device. By using a BBO crystal outside the cavity, green light originating from second-harmonic generation using the out-coupled laser beam is demonstrated. In addition, long-time-span pulse trains as well as radiofrequency-spectra measurements are presented for our sub-ps pulses at 500 MHz repetition rate which indicate the stable pulse operation of our device. Furthermore, a long-time-span autocorrelation trace is introduced which clearly shows absence of a pedestal or double pulses. Eventually, a beam-profile measurement reveals the excellent beam quality of our device with an M-square factor of less than 1.1 for both axes, showing that self-mode-locking can be achieved for the fundamental transverse mode.

  13. 70-fs mode-locked erbium-doped fiber laser with topological insulator.

    PubMed

    Liu, Wenjun; Pang, Lihui; Han, Hainian; Tian, Wenlong; Chen, Hao; Lei, Ming; Yan, Peiguang; Wei, Zhiyi

    2016-01-01

    Femtosecond optical pulses have applications in optical communication, astronomical frequency combs, and laser spectroscopy. Here, a hybrid mode-locked erbium-doped fiber (EDF) laser with topological insulator (TI) is proposed, for the first time to our best knowledge. The pulsed laser deposition (PLD) method is employed to fabricate the fiber-taper TI saturable absorber (TISA). By virtue of the fiber-taper TISA, the hybrid EDF laser is passively mode-locked using the nonlinear polarization evolution (NPE), and emits 70 fs pulses at 1542 nm, whose 3 dB spectral width is 63 nm with a repetition rate and transfer efficiency of 95.4 MHz and 14.12%, respectively. Our experiments indicate that the proposed hybrid mode-locked EDF lasers have better performance to achieve shorter pulses with higher power and lower mode-locking threshold in the future. PMID:26813439

  14. 70-fs mode-locked erbium-doped fiber laser with topological insulator

    PubMed Central

    Liu, Wenjun; Pang, Lihui; Han, Hainian; Tian, Wenlong; Chen, Hao; Lei, Ming; Yan, Peiguang; Wei, Zhiyi

    2016-01-01

    Femtosecond optical pulses have applications in optical communication, astronomical frequency combs, and laser spectroscopy. Here, a hybrid mode-locked erbium-doped fiber (EDF) laser with topological insulator (TI) is proposed, for the first time to our best knowledge. The pulsed laser deposition (PLD) method is employed to fabricate the fiber-taper TI saturable absorber (TISA). By virtue of the fiber-taper TISA, the hybrid EDF laser is passively mode-locked using the nonlinear polarization evolution (NPE), and emits 70 fs pulses at 1542 nm, whose 3 dB spectral width is 63 nm with a repetition rate and transfer efficiency of 95.4 MHz and 14.12%, respectively. Our experiments indicate that the proposed hybrid mode-locked EDF lasers have better performance to achieve shorter pulses with higher power and lower mode-locking threshold in the future. PMID:26813439

  15. 70-fs mode-locked erbium-doped fiber laser with topological insulator.

    PubMed

    Liu, Wenjun; Pang, Lihui; Han, Hainian; Tian, Wenlong; Chen, Hao; Lei, Ming; Yan, Peiguang; Wei, Zhiyi

    2016-01-27

    Femtosecond optical pulses have applications in optical communication, astronomical frequency combs, and laser spectroscopy. Here, a hybrid mode-locked erbium-doped fiber (EDF) laser with topological insulator (TI) is proposed, for the first time to our best knowledge. The pulsed laser deposition (PLD) method is employed to fabricate the fiber-taper TI saturable absorber (TISA). By virtue of the fiber-taper TISA, the hybrid EDF laser is passively mode-locked using the nonlinear polarization evolution (NPE), and emits 70 fs pulses at 1542 nm, whose 3 dB spectral width is 63 nm with a repetition rate and transfer efficiency of 95.4 MHz and 14.12%, respectively. Our experiments indicate that the proposed hybrid mode-locked EDF lasers have better performance to achieve shorter pulses with higher power and lower mode-locking threshold in the future.

  16. Quantum dot mode locked lasers for coherent frequency comb generation

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Calò, C.; Rosales, R.; Watts, R. T.; Merghem, K.; Accard, A.; Lelarge, F.; Barry, L. P.; Ramdane, A.

    2013-12-01

    Monolithic semiconductor passively mode locked lasers (MLL) are very attractive components for many applications including high bit rate telecommunications, microwave photonics and instrumentation. Owing to the three dimensional confinement of the charge carriers, quantum dot based mode-locked lasers have been the subject of intense investigations because of their improved performance compared to conventional material systems. Indeed, the inhomogeneous gain broadening and the ultrafast absorption recovery dynamics are an asset for short pulse generation. Moreover, the weak coupling of amplified spontaneous emission with the guided modes plus low loss waveguide leads to low timing jitter. Our work concentrates on InAs quantum dash nanostructures grown on InP substrate, intended for applications in the 1.55 μm telecom window. InAs/InP quantum dash based lasers, in particular, have demonstrated efficient mode locking in single section Fabry-Perot configurations. The flat optical spectrum of about 12 nm, combined with the narrow RF beat note linewidth of about 10 kHz make them a promising technology for optical frequency comb generation. Coherence between spectral modes was assessed by means of spectral phase measurements. The parabolic spectral phase profile indicates that short pulses can be obtained provided the intracavity dispersion can be compensated by inserting a single mode fiber.

  17. SESAM mode-locked red praseodymium laser.

    PubMed

    Gaponenko, Maxim; Metz, Philip Werner; Härkönen, Antti; Heuer, Alexander; Leinonen, Tomi; Guina, Mircea; Südmeyer, Thomas; Huber, Günter; Kränkel, Christian

    2014-12-15

    We present the first semiconductor saturable absorber mirror (SESAM) mode-locked praseodymium solid-state laser. The laser is based on a Pr(3+):LiYF(4) crystal as gain medium and a GaInP-quantum well-based SESAM. Self-starting continuous-wave mode-locked laser operation with an average output power of 16 mW is achieved at a center wavelength of 639.5 nm. The laser operates at a repetition rate of ∼85.55  MHz and emits pulses with a duration of ∼18  ps.

  18. SESAM mode-locked red praseodymium laser.

    PubMed

    Gaponenko, Maxim; Metz, Philip Werner; Härkönen, Antti; Heuer, Alexander; Leinonen, Tomi; Guina, Mircea; Südmeyer, Thomas; Huber, Günter; Kränkel, Christian

    2014-12-15

    We present the first semiconductor saturable absorber mirror (SESAM) mode-locked praseodymium solid-state laser. The laser is based on a Pr(3+):LiYF(4) crystal as gain medium and a GaInP-quantum well-based SESAM. Self-starting continuous-wave mode-locked laser operation with an average output power of 16 mW is achieved at a center wavelength of 639.5 nm. The laser operates at a repetition rate of ∼85.55  MHz and emits pulses with a duration of ∼18  ps. PMID:25503035

  19. Soliton generation from an actively mode-locked fiber laser incorporating an electro-optic fiber modulator.

    PubMed

    Malmström, Mikael; Margulis, Walter; Tarasenko, Oleksandr; Pasiskevicius, Valdas; Laurell, Fredrik

    2012-01-30

    This work demonstrates an actively mode-locked fiber laser operating in soliton regime and employing an all-fiber electro-optic modulator. Nonlinear polarization rotation is utilized for femtosecond pulse generation. Stable operation of the all-fiber ring laser is readily achieved at a fundamental repetition rate of 2.6 MHz and produces 460 fs pulses with a spectral bandwidth of 5.3 nm.

  20. Dynamic control of the operation regimes of a mode-locked fiber laser based on intracavity polarizing fibers: experimental and theoretical validation.

    PubMed

    Villanueva, Guillermo E; Pérez-Millán, Pere

    2012-06-01

    An intracavity polarizing fiber is proposed to control the emission regime of a passively mode-locked fiber laser. Stable operation in self-starting high and low dispersion soliton mode-locking and 100 GHz multiwavelength regimes is demonstrated through numerical simulations and experimental validation. Mode-locking stability is ensured by a saturable absorber in the ring cavity. The effective selection of operation regime is dynamically carried out by controlling the intracavity polarization state.

  1. Mode-locked long fibre master oscillator with intra-cavity power management and pulse energy > 12 µJ.

    PubMed

    Ivanenko, Alexey; Kobtsev, Sergey; Smirnov, Sergey; Kemmer, Anna

    2016-03-21

    Combined lengthening of the cavity of a passive mode-locked fibre master oscillator and implementation of a new concept of intra-cavity power management led to achievement of a record-high pulse energy directly at the output of the mode-locked fibre master oscillator (without any subsequent amplification) exceeding 12 µJ. Output powers at the level of > 12 µJ obtainable from a long-cavity mode-locked fibre master oscillator open new possibilities of application of all pulse types that can be generated in such oscillators.

  2. All-fiber ring Raman laser generating parabolic pulses

    SciTech Connect

    Kruglov, V. I.; Mechin, D.; Harvey, J. D.

    2010-02-15

    We present theoretical and numerical results for an all-fiber laser using self-similar parabolic pulses ('similaritons') designed to operate using self-similar propagation regimes. The similariton laser features a frequency filter and a Sagnac loop which operate together to generate an integrated all-fiber mode-locked laser. Numerical studies show that this laser generates parabolic pulses with linear chirp in good agreement with analytical predictions. The period for propagating similariton pulses in stable regimes can vary from one to two round trips for different laser parameters. Two-round-trip-period operation in the mode-locked laser appears at bifurcation points for certain cavity parameters. The stability of the similariton regimes has been confirmed by numerical simulations for large numbers of round trips.

  3. Mode-locking via dissipative Faraday instability

    PubMed Central

    Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.

    2016-01-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin–Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system—spectrally dependent losses—achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin–Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering. PMID:27503708

  4. Whispering-Gallery Mode-Locked Lasers

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Iltchenko, Vladimir; Savchenkov, Anatoly; Maleki, Lute

    2003-01-01

    Mode-locked lasers of a proposed type would incorporate features of the design and operation of previously demonstrated miniature electro-optical modulators and erbium-doped glass lasers that contain whispering-gallery-mode (WGM) resonators. That is to say, WGM lasers and WGM electro-optical modulators would be integrated into monolithic units that, when suitably excited with pump light and microwaves, would function as mode-locked lasers. The proposed devices are intended to satisfy an anticipated demand for compact, low-power devices that could operate in the optical-communication wavelength band centered at a wavelength of 1.55 m and could generate pulses as short as picoseconds at repetition rates of multiple gigahertz.

  5. Mode-locking via dissipative Faraday instability

    NASA Astrophysics Data System (ADS)

    Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.

    2016-08-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system--spectrally dependent losses--achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  6. Mode-locking via dissipative Faraday instability.

    PubMed

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-01-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering. PMID:27503708

  7. Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses

    SciTech Connect

    Bek, R. Kahle, H.; Schwarzbäck, T.; Jetter, M.; Michler, P.

    2013-12-09

    We report on passive mode locking of a semiconductor disk laser emitting pulses shorter than 250 fs at 664 nm with a repetition frequency of 836 MHz. A fast saturable absorber mirror fabricated by metal-organic vapor-phase epitaxy in a near-resonant design was used to enable the mode locking operation. It includes two GaInP quantum wells located close to the surface and an additional fused silica coating. The emission spectrum shows the superposition of a soliton-like part and a smaller “continuum” part.

  8. Carbon nanotube mode-locked vertical external-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Seger, K.; Meiser, N.; Choi, S. Y.; Jung, B. H.; Yeom, D.-I.; Rotermund, F.; Okhotnikov, O.; Laurell, F.; Pasiskevicius, V.

    2014-03-01

    Mode-locking an optically pumped semiconductor disk laser has been demonstrated using low-loss saturable absorption containing a mixture of single-walled carbon nanotubes in PMM polymer. The modulator was fabricated by a simple spin-coating technique on fused silica substrate and was operating in transmission. Stable passive fundamental modelocking was obtained at a repetition rate of 613 MHz with a pulse length of 1.23 ps. The mode-locked semiconductor disk laser in a compact geometry delivered a maximum average output power of 136 mW at 1074 nm.

  9. A 12.1-W SESAM mode-locked Yb:YAG thin disk laser

    NASA Astrophysics Data System (ADS)

    Yingnan, Peng; Zhaohua, Wang; Dehua, Li; Jiangfeng, Zhu; Zhiyi, Wei

    2016-05-01

    Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror (SESAM). 12.1 W mode-locked pulses were obtained with pulse duration of 698 fs at the repetition rate of 57.43 MHz. Measurement showed that the beam quality was close to the diffraction limit. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB922402), the National Major Instrument Program of China (Grant No. 2012YQ120047), and the National Natural Science Foundation of China (Grant No. 61210017).

  10. Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.

    PubMed

    Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis

    2014-02-01

    We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.

  11. Graphene oxide mode-locked Yb:GAGG bulk laser operating in the femtosecond regime

    NASA Astrophysics Data System (ADS)

    Cui, Liang; Lou, Fei; Li, Yan-bin; Hou, Jia; He, Jing-Liang; Jia, Zhi-Tai; Liu, Jing-Quan; Zhang, Bai-Tao; Yang, Ke-Jian; Wang, Zhao-Wei; Tao, Xu-Tang

    2015-04-01

    High-quality graphene oxide saturable absorber (SA) is successfully fabricated with 1-2 layer graphene oxide. By employing this SA, we have demonstrated femtosecond pulse generation from a graphene oxide passively mode locked bulk laser for the first time to our best knowledge. With two Gires-Tournois interferometer mirrors for dispersion compensation, pulses as short as 493 fs with an average power of 500 mW are obtained at the central wavelength of 1035.5 nm. These results presented here indicate the great potential of GO for generating femtosecond mode-locked pulses in the bulk laser.

  12. Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm.

    PubMed

    Wang, Yicheng; Lan, Ruijun; Mateos, Xavier; Li, Jiang; Hu, Chen; Li, Chaoyu; Suomalainen, Soile; Härkönen, Antti; Guina, Mircea; Petrov, Valentin; Griebner, Uwe

    2016-08-01

    A passively mode-locked Ho:YAG ceramic laser around 2.1 µm is demonstrated using GaSb-based near-surface SESAM as saturable absorber. Stable and self-starting mode-locked operation is realized in the entire tuning range from 2059 to 2121 nm. The oscillator operated at 82 MHz with a maximum output power of 230 mW at 2121 nm. The shortest pulses with duration of 2.1 ps were achieved at 2064 nm. We also present spectroscopic properties of Ho:YAG ceramics at room temperature. PMID:27505767

  13. Deep-red semiconductor monolithic mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Kong, L.; Wang, H. L.; Bajek, D.; White, S. E.; Forrest, A. F.; Wang, X. L.; Cui, B. F.; Pan, J. Q.; Ding, Y.; Cataluna, M. A.

    2014-12-01

    A deep-red semiconductor monolithic mode-locked laser is demonstrated. Multi-section laser diodes based on an AlGaAs multi-quantum-well structure were passively mode-locked, enabling the generation of picosecond optical pulses at 752 nm, at pulse repetition rates of 19.37 GHz. An investigation of the dependence of the pulse duration as a function of reverse bias revealed a predominantly exponential decay trend of the pulse duration, varying from 10.5 ps down to 3.5 ps, which can be associated with the concomitant reduction of absorption recovery time with increasing applied field. A 30-MHz-tunability of the pulse repetition rate with bias conditions is also reported. The demonstration of such a compact, efficient and versatile ultrafast laser in this spectral region paves the way for its deployment in a wide range of applications such as biomedical microscopy, pulsed terahertz generation as well as microwave and millimeter-wave generation, with further impact on sensing, imaging and optical communications.

  14. Deep-red semiconductor monolithic mode-locked lasers

    SciTech Connect

    Kong, L.; Bajek, D.; White, S. E.; Forrest, A. F.; Cataluna, M. A.; Wang, H. L.; Pan, J. Q.; Wang, X. L.; Cui, B. F.; Ding, Y.

    2014-12-01

    A deep-red semiconductor monolithic mode-locked laser is demonstrated. Multi-section laser diodes based on an AlGaAs multi-quantum-well structure were passively mode-locked, enabling the generation of picosecond optical pulses at 752 nm, at pulse repetition rates of 19.37 GHz. An investigation of the dependence of the pulse duration as a function of reverse bias revealed a predominantly exponential decay trend of the pulse duration, varying from 10.5 ps down to 3.5 ps, which can be associated with the concomitant reduction of absorption recovery time with increasing applied field. A 30-MHz-tunability of the pulse repetition rate with bias conditions is also reported. The demonstration of such a compact, efficient and versatile ultrafast laser in this spectral region paves the way for its deployment in a wide range of applications such as biomedical microscopy, pulsed terahertz generation as well as microwave and millimeter-wave generation, with further impact on sensing, imaging and optical communications.

  15. Wideband-tuneable, nanotube mode-locked, fibre laser

    NASA Astrophysics Data System (ADS)

    Wang, F.; Rozhin, A. G.; Scardaci, V.; Sun, Z.; Hennrich, F.; White, I. H.; Milne, W. I.; Ferrari, A. C.

    2008-12-01

    Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths. Semiconductor saturable absorber mirrors are widely used in fibre lasers, but their operating range is typically limited to a few tens of nanometres, and their fabrication can be challenging in the 1.3-1.5 µm wavelength region used for optical communications. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness. Here, we engineer a nanotube-polycarbonate film with a wide bandwidth (>300 nm) around 1.55 µm, and then use it to demonstrate a 2.4 ps Er3+-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.

  16. Mode-locked fiber/waveguide lasers based on a fiber taper embedded in carbon nanotubes/polymer composite

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Khanh, Kieu; Honkanen, Seppo; Kueppers, Franko

    2008-04-01

    We generated 2 nJ, ~690 fs pulses with 10 MHz repetition rate from a linear cavity mode-locked Er 3+-doped fiber laser with a fiber taper embedded in carbon nanotubes (CNTs)/polymer composite. Evanescent field out of the taper section can interact with CNTs to see saturation of absorption. With the fiber based saturable absorber this laser has simple and robust all-fiber configuration comparing to traditional linear cavity mode-locked lasers with semiconductor saturable absorbers. In addition, we have demonstrated a mode-locked ring laser, with a similar saturable absorber, by using an ion-exchanged Er 3+-Yb 3+-codoped planar waveguide as the gain medium.

  17. Femtosecond pulse mode-locked VECSELs

    NASA Astrophysics Data System (ADS)

    Quarterman, A. H.; Wilcox, K. G.

    2014-03-01

    Femtosecond pulse mode-locked VECSELs have become a significant focus of research in the VECSEL community, with recent progress being made in several directions including power scaling. Power scaling advances in femtosecond VECSELs have included increasing the average power to over 5W [1], producing 3.3W average power with 400 fs pulses [2]. Here I report our recent work reducing the pulse duration of Watt-level VECSELs to 355 fs, and also developing approaches to reach sub-250-fs pulse durations using coherent broadening in photonic crystal fiber in the normal dispersion regime and a grating pulse compressor.

  18. Bandwidth optimization of a Carbon Nanotubes mode-locked Erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Rosa, H. G.; De Souza, E. A.

    2012-03-01

    We present a new method to fabricate thin films using single-walled Carbon Nanotubes (SWCNT) and a urethane-based transparent polymer. We construct an Erbium-doped fiber laser to test our films as saturable absorbers to work as passive mode-locker. As results, pulse-trains were achieved and we carried on an optimization study involving total cavity dispersion, absorption strength of thin films incorporating SWCNT and laser bandwidth to produce broad bandwidths in passive mode-locking regime.

  19. 110  W all-fiber picosecond master oscillator power amplifier based on large-core-diameter ytterbium-doped fiber.

    PubMed

    Yu, Zhenhua; Shi, Wei; Dong, Xinzheng; Li, Jinhui; Zhao, Yizhu; Liu, Huixian

    2016-05-20

    We demonstrate an all-fiber picosecond fiber laser in a master oscillator power amplifier configuration. The seed source is a soliton-type passively mode-locked Yb-doped fiber laser by a semiconductor saturable absorber mirror and chirped fiber Bragg grating. The pulse width of the seed laser is 4.5 ps with a repetition rate of 15 MHz. A highly doped active fiber with a large core diameter (50 μm) is employed to boost the average power of the seed pulses to 117 W with 11 ps pulse width and 709 kW peak power. The corresponding output beam quality factor at maximum output power is 3.7. The all-fiber construction of the whole laser system enables compact size and robust operation. PMID:27411140

  20. Pulse Shaping and Evolution in Normal-Dispersion Mode-Locked Fiber Lasers.

    PubMed

    Renninger, William H; Chong, Andy; Wise, Frank W

    2012-01-01

    Fiber lasers mode locked with large normal group-velocity dispersion have recently achieved femtosecond pulse durations with energies and peak powers at least an order of magnitude greater than those of prior approaches. Several new mode-locking regimes have been demonstrated, including self-similar pulse propagation in passive and active fibers, dissipative solitons, and a pulse evolution that avoids wave breaking at high peak power but has not been reproduced by theoretical treatment. Here, we illustrate the main features of these new pulse-shaping mechanisms through the results of numerical simulations that agree with experimental results. We describe the features that distinguish each new mode-locking state and explain how the interplay of basic processes in the fiber produces the balance of amplitude and phase evolutions needed for stable high-energy pulses. Dissipative processes such as spectral filtering play a major role in normal-dispersion mode locking. Understanding the different mechanisms allows us to compare and contrast them, as well as to categorize them to some extent.

  1. Pulse Shaping and Evolution in Normal-Dispersion Mode-Locked Fiber Lasers

    PubMed Central

    Renninger, William H.; Chong, Andy; Wise, Frank W.

    2012-01-01

    Fiber lasers mode locked with large normal group-velocity dispersion have recently achieved femtosecond pulse durations with energies and peak powers at least an order of magnitude greater than those of prior approaches. Several new mode-locking regimes have been demonstrated, including self-similar pulse propagation in passive and active fibers, dissipative solitons, and a pulse evolution that avoids wave breaking at high peak power but has not been reproduced by theoretical treatment. Here, we illustrate the main features of these new pulse-shaping mechanisms through the results of numerical simulations that agree with experimental results. We describe the features that distinguish each new mode-locking state and explain how the interplay of basic processes in the fiber produces the balance of amplitude and phase evolutions needed for stable high-energy pulses. Dissipative processes such as spectral filtering play a major role in normal-dispersion mode locking. Understanding the different mechanisms allows us to compare and contrast them, as well as to categorize them to some extent. PMID:22899881

  2. Melting and freezing of light pulses and modes in mode-locked lasers.

    PubMed

    Gordon, Ariel; Vodonos, Boris; Smulakovski, Vladimir; Fischer, Baruch

    2003-12-15

    We present a first experimental demonstration of melting of light pulses and freezing of lightwave modes by applying external noise which acts like temperature, verifying our recent theoretical prediction (Gordon and Fischer [1]). The experiment was performed in a fiber laser passively mode-locked by nonlinear rotation of polarization. The first order phase transition was observed directly in time domain and also by measurement of the quartic order parameter (RF power).

  3. Analysis of steady bound soliton-state attributes in hybrid mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Korobko, Dmitry A.; Gumenyuk, Regina; Zolotovskii, Igor O.; Okhotnikov, Oleg G.

    2016-10-01

    We report on an analytical description of the bound states in soliton lasers combining active and passive mode locking. The perturbation theory has been applied to analyze the formation of bound states and to study the influence of cavity parameters on the characteristics of soliton groups generated through active phase modulation in the lasers. This analytical description is in agreement with the numerical simulation data. The theoretical approach demonstrated in this work could possibly be extended to other laser architectures.

  4. 175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes.

    PubMed

    Schmidt, Andreas; Koopmann, Philipp; Huber, Günter; Fuhrberg, Peter; Choi, Sun Young; Yeom, Dong-Il; Rotermund, Fabian; Petrov, Valentin; Griebner, Uwe

    2012-02-27

    Single-walled carbon nanotube saturable absorbers were designed and fabricated for passive mode-locking of bulk lasers operating in the 2 μm spectral range. Mode-locked lasers based on Tm:Lu2O3 single crystals containing different Tm3+-doping concentrations were studied. Nearly transform-limited pulses as short as 175 fs at 2070 nm were generated at 88 MHz repetition rate.

  5. Graphene saturable absorber for diode pumped Yb:Sc2SiO5 mode-locked laser

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Jiang, Shouzhen; Xu, Shicai; Li, Yaqi; Liu, Jie; Li, Chun; Zheng, Lihe; Su, Liangbi; Xu, Jun

    2015-01-01

    High-quality monolayer graphene was successfully fabricated by chemical vapor deposition technology. By using the graphene as a saturable absorber, the Yb:Sc2SiO5 crystal passively mode-locked laser was demonstrated for the first time. Stable mode-locked laser pulses were obtained with a repetition rate of 90.7 MHz and an average output power of 480 mW at the center wavelength of 1062.8 nm. The maximum single pulse energy and the maximum peak power were 5.3 nJ and 378 W, respectively.

  6. Hybrid mode-locked fiber ring laser using graphene and charcoal nanoparticles as saturable absorbers

    NASA Astrophysics Data System (ADS)

    Hu, Hongyu; Zhang, Xiang; Li, Wenbo; Dutta, Niloy K.

    2016-05-01

    A fiber ring laser which implements hybrid mode locking technique has been proposed and experimentally demonstrated to generate pulse train at 20 GHz repetition rate with ultrashort pulse width. Graphene and charcoal nano-particles acting as passive mode lockers are inserted into a rational harmonic mode-locked fiber laser to improve the performance. With graphene saturable absorbers, the pulse duration is shortened from 5.3 ps to 2.8 ps, and with charcoal nano-particles, it is shortened to 3.2 ps. The RF spectra show that supermode noise can be removed in the presence of the saturable absorbers. Numerical simulation of the pulse transmission has also been carried out, which shows good agreement with the experimental results.

  7. Timing stability enhancement of an Erbium Doped mode locked Fiber Laser using SESAM mirror

    NASA Astrophysics Data System (ADS)

    Afifi, G.; Khedr, M. Atta; Badr, Y.; Danailov, M.; Sigalotti, P.; Cinquegrana, P.; Alsous, M. B.; Galaly, A. R.

    2016-05-01

    We report on an examination of pulse timing stability of a home built Erbium Doped Fiber Laser (EDFL) passively mode locked via nonlinear polarization rotation by inserting semiconductor saturable absorber mirror (SESAM) in laser cavity. A very low root mean square (RMS) timing jitter (less than 27 fsec) and faster self-starting mode locking have been established. In order to get clear, low noise signal for time resolving measurements, synchronization of EDFL laser with an external high precision electronic oscillator have been established. Subsequently, it is synchronized and optically cross-correlated with a Ti:Sapphire laser source (Micra). The measured relative timing jitter was found to be less than 65 fsec. In this way, the two, well synchronized Ti:Sapphire and EDFL laser pulses prove to be a powerful tool for time resolving measurements.

  8. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene

    PubMed Central

    Okhrimchuk, Andrey G.; Obraztsov, Petr A.

    2015-01-01

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678

  9. Scalar-vector soliton fiber laser mode-locked by nonlinear polarization rotation.

    PubMed

    Wu, Zhichao; Liu, Deming; Fu, Songnian; Li, Lei; Tang, Ming; Zhao, Luming

    2016-08-01

    We report a passively mode-locked fiber laser by nonlinear polarization rotation (NPR), where both vector and scalar soliton can co-exist within the laser cavity. The mode-locked pulse evolves as a vector soliton in the strong birefringent segment and is transformed into a regular scalar soliton after the polarizer within the laser cavity. The existence of solutions in a polarization-dependent cavity comprising a periodic combination of two distinct nonlinear waves is first demonstrated and likely to be applicable to various other nonlinear systems. For very large local birefringence, our laser approaches the operation regime of vector soliton lasers, while it approaches scalar soliton fiber lasers under the condition of very small birefringence. PMID:27505839

  10. Scalar-vector soliton fiber laser mode-locked by nonlinear polarization rotation.

    PubMed

    Wu, Zhichao; Liu, Deming; Fu, Songnian; Li, Lei; Tang, Ming; Zhao, Luming

    2016-08-01

    We report a passively mode-locked fiber laser by nonlinear polarization rotation (NPR), where both vector and scalar soliton can co-exist within the laser cavity. The mode-locked pulse evolves as a vector soliton in the strong birefringent segment and is transformed into a regular scalar soliton after the polarizer within the laser cavity. The existence of solutions in a polarization-dependent cavity comprising a periodic combination of two distinct nonlinear waves is first demonstrated and likely to be applicable to various other nonlinear systems. For very large local birefringence, our laser approaches the operation regime of vector soliton lasers, while it approaches scalar soliton fiber lasers under the condition of very small birefringence.

  11. Long-term stable microwave signal extraction from mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ludwig, F.; Felber, M.; Kärtner, F. X.

    2007-07-01

    Long-term synchronization between two 10.225 GHz microwave signals at +10 dBm power level, locked to a 44.26 MHz repetition rate passively mode-locked fiber laser, is demonstrated using balanced optical-microwave phase detectors. The out-of-loop measurement result shows 12.8 fs relative timing jitter integrated from 10 Hz to 10 MHz. Long-term timing drift measurement shows 48 fs maximum deviation over one hour, mainly limited by drift of the out-of-loop characterization setup itself. To the best of our knowledge, this is the first time to demonstrate long-term (>1 hour) 3 mrad-level phase stability of a 10.225 GHz microwave signal extracted from a mode-locked laser.

  12. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Jiangfeng; Zhang, Lijuan; Gao, Ziye; Wang, Junli; Wang, Zhaohua; Su, Liangbi; Zheng, Lihe; Wang, Jingya; Xu, Jun; Wei, Zhiyi

    2015-03-01

    A passively mode-locked femtosecond laser based on an Nd, Y-codoped CaF2 disordered crystal was demonstrated. The Y3+-codoping in Nd : CaF2 markedly suppressed the quenching effect and improved the fluorescence quantum efficiency and emission spectra. With a fiber-coupled laser diode as the pump source, the continuous wave tuning range covering from 1042 to 1076 nm was realized, while the mode-locked operation generated 264 fs pulses with an average output power of 180 mW at a repetition rate of 85 MHz. The experimental results show that the Nd, Y-codoped CaF2 disordered crystal has potential in a new generation diode-pumped high repetition rate chirped pulse amplifier.

  13. Tunable multiwavelength mode-locked Tm/Ho-doped fiber laser based on a nonlinear amplified loop mirror.

    PubMed

    Jin, Xiaoxi; Wang, Xiong; Wang, Xiaolin; Zhou, Pu

    2015-10-01

    We propose and demonstrate a tunable multiwavelength mode-locked Tm/Ho-doped fiber laser based on a nonlinear amplified loop mirror (NALM). Without using polarization-maintaining fiber, only passive fibers with low birefringence were inserted into the NALM to help overcome mode competition and realize mode-locking. The spacing between adjacent channels was measured to be ∼6  nm. By adjusting the polarization controllers (PCs) to an appropriate position, self-started mode-locking was achieved, which further overcame the mode competition in the fiber laser. A multiwavelength mode-locked fiber laser with at least three available channels were tunable in the widest range of 30 nm (from 1935 to 1965 nm) with a 3 dB channel bandwidth of ∼1.6  nm. This multiwavelength mode-locked fiber laser is quite stable with the maximum peak fluctuation within 0.47 dB in long-term observations.

  14. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction.

    PubMed

    Li, Xiaohui; Yu, Xuechao; Sun, Zhipei; Yan, Zhiyu; Sun, Biao; Cheng, Yuanbing; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2015-01-01

    Mid-infrared ultrafast fiber lasers are valuable for various applications, including chemical and biomedical sensing, material processing and military applications. Here, we report all-fiber high-power graphene mode-locked Tm/Ho co-doped fiber laser at long wavelength with evanescent field interaction. Ultrafast pulses up to 7.8 MHz are generated at a center wavelength of 1879.4 nm, with a pulse width of 4.7 ps. A graphene absorber integrated with a side-polished fiber can increase the damage threshold significantly. Harmonics mode-locking can be obtained till to the 21(th) harmonics at a pump power of above 500 mW. By using one stage amplifier in the anomalous dispersion regime, the laser can be amplified up to 450 mW and the narrowest pulse duration of 1.4 ps can be obtained simultaneously. Our work paves the way to graphene Tm/Ho co-doped mode-locked all-fiber master oscillator power amplifiers as potentially efficient and economic laser sources for high-power laser applications, such as special material processing and nonlinear optical studies. PMID:26567536

  15. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction

    PubMed Central

    Li, Xiaohui; Yu, Xuechao; Sun, Zhipei; Yan, Zhiyu; Sun, Biao; Cheng, Yuanbing; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2015-01-01

    Mid-infrared ultrafast fiber lasers are valuable for various applications, including chemical and biomedical sensing, material processing and military applications. Here, we report all-fiber high-power graphene mode-locked Tm/Ho co-doped fiber laser at long wavelength with evanescent field interaction. Ultrafast pulses up to 7.8 MHz are generated at a center wavelength of 1879.4 nm, with a pulse width of 4.7 ps. A graphene absorber integrated with a side-polished fiber can increase the damage threshold significantly. Harmonics mode-locking can be obtained till to the 21th harmonics at a pump power of above 500 mW. By using one stage amplifier in the anomalous dispersion regime, the laser can be amplified up to 450 mW and the narrowest pulse duration of 1.4 ps can be obtained simultaneously. Our work paves the way to graphene Tm/Ho co-doped mode-locked all-fiber master oscillator power amplifiers as potentially efficient and economic laser sources for high-power laser applications, such as special material processing and nonlinear optical studies. PMID:26567536

  16. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction.

    PubMed

    Li, Xiaohui; Yu, Xuechao; Sun, Zhipei; Yan, Zhiyu; Sun, Biao; Cheng, Yuanbing; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2015-11-16

    Mid-infrared ultrafast fiber lasers are valuable for various applications, including chemical and biomedical sensing, material processing and military applications. Here, we report all-fiber high-power graphene mode-locked Tm/Ho co-doped fiber laser at long wavelength with evanescent field interaction. Ultrafast pulses up to 7.8 MHz are generated at a center wavelength of 1879.4 nm, with a pulse width of 4.7 ps. A graphene absorber integrated with a side-polished fiber can increase the damage threshold significantly. Harmonics mode-locking can be obtained till to the 21(th) harmonics at a pump power of above 500 mW. By using one stage amplifier in the anomalous dispersion regime, the laser can be amplified up to 450 mW and the narrowest pulse duration of 1.4 ps can be obtained simultaneously. Our work paves the way to graphene Tm/Ho co-doped mode-locked all-fiber master oscillator power amplifiers as potentially efficient and economic laser sources for high-power laser applications, such as special material processing and nonlinear optical studies.

  17. Dual-wavelength synchronous mode-locked Yb:LSO laser using a double-walled carbon nanotube saturable absorber.

    PubMed

    Feng, Chao; Hou, Wei; Yang, Jimin; Liu, Jie; Zheng, Lihe; Su, Liangbi; Xu, Jun; Wang, Yonggang

    2016-05-01

    A dual-wavelength, passively mode-locked Yb:LSO laser was demonstrated using a double-walled carbon nanotube as a saturable absorber. The maximum average output power of the laser was 1.34 W at the incident pump power of 9.94 W. The two central wavelengths were 1057 and 1058 nm. The corresponding pulse duration of the autocorrelation interference pattern was about 15 ps, while the beat pulse repetition rate was 0.17 THz and the width of one beat pulse about 2 ps. When the incident pump power was above 10.25 W, a multiwavelength mode-locked oscillation phenomenon was observed. After employing a pair of SF10 prisms, a 1058.7 nm single-wavelength mode-locked laser was obtained with a pulse width of 7 ps. PMID:27140382

  18. 59 fs mode-locked Yb:KGW oscillator pumped by a single-mode laser diode

    NASA Astrophysics Data System (ADS)

    Kowalczyk, M.; Sotor, J.; Abramski, K. M.

    2016-03-01

    In this letter we present a passively mode-locked Yb:KGW oscillator pumped by a low power single-mode laser diode. Contrary to high power operation, single-mode pumping enabled us to suppress parasitic thermal effects, while keeping the setup compact and its alignment straightforward. Undisturbed mode-locking (ML) stability was achieved without active cooling of the gain medium and the laser was entirely self-starting. Pulses 59 fs in duration were obtained in a semiconductor saturable absorber mirror (SESAM)-assisted Kerr-lens mode-locked regime. The corresponding spectrum was 20.2 nm broad at a central wavelength of 1036 nm approaching the performance limit of the crystal. To the best of our knowledge, these are the shortest pulses generated from a Yb:KGW laser.

  19. An Analytic Technique for Investigating Mode-Locked Lasers

    SciTech Connect

    Usechak, N.G.; Agrawal, G.P.

    2005-09-30

    We present an analytic theory capable of predicting pulse parameters in mode-locked lasers in the presence of dispersion and nonlinearity. Excellent agreement is obtained between this approach and full numerical solutions.

  20. Femtosecond Kerr-lens mode-locked Alexandrite laser.

    PubMed

    Ghanbari, Shirin; Akbari, Reza; Major, Arkady

    2016-06-27

    The generation of 170 fs pulses at 755 nm from a Kerr-lens mode-locked Alexandrite laser was demonstrated. The laser was pumped at 532 nm and produced 780 mW of average output power with 9.8% of optical-to-optical efficiency. To the best of our knowledge, these are the shortest pulses that have been produced from a mode-locked Alexandrite laser to date.

  1. Semi-analytic technique for analyzing mode-locked lasers

    SciTech Connect

    Usechak, N.G.; Agrawal, G.P.

    2005-03-21

    A semi-analytic tool is developed for investigating pulse dynamics in mode-locked lasers. It provides a set of rate equations for pulse energy, width, and chirp, whose solutions predict how these pulse parameters evolve from one round trip to the next and how they approach their final steady-state values. An actively mode-locked laser is investigated using this technique and the results are in excellent agreement with numerical simulations and previous analytical studies.

  2. Femtosecond Kerr-lens mode-locked Alexandrite laser.

    PubMed

    Ghanbari, Shirin; Akbari, Reza; Major, Arkady

    2016-06-27

    The generation of 170 fs pulses at 755 nm from a Kerr-lens mode-locked Alexandrite laser was demonstrated. The laser was pumped at 532 nm and produced 780 mW of average output power with 9.8% of optical-to-optical efficiency. To the best of our knowledge, these are the shortest pulses that have been produced from a mode-locked Alexandrite laser to date. PMID:27410635

  3. Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating.

    PubMed

    Zhang, Zuxing; Mou, Chengbo; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Turitsyn, Sergei

    2013-11-18

    We demonstrate generation of sub-100 fs pulses at 1.5 µm in a mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating element. The laser features a genuine all-fiber configuration. Based on the unique polarization properties of the 45°-tilted fiber grating, we managed to produce sub-100 fs laser pulses through proper dispersion management. To the best of our knowledge, this is the shortest pulse generated from mode-locked lasers with fiber gratings. The output pulse has an average power of 8 mW, with a repetition rate of 47.8 MHz and pulse energy of 1.68 nJ. The performance of laser also matches well the theoretical simulations.

  4. MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser.

    PubMed

    Wei, Rongfei; Zhang, Hang; Tian, Xiangling; Qiao, Tian; Hu, Zhongliang; Chen, Zhi; He, Xin; Yu, Yongze; Qiu, Jianrong

    2016-04-14

    Strong saturable absorption was observed in MoS2 nanoflowers, which were synthesized by a facile solvothermal method. A MoS2 nanoflower-based saturable absorber with a high modulation depth of 51.8% and a large saturable intensity of 275.5 GW cm(-2) was introduced to the application of passively Q-switched fiber laser generation. Stable passively Q-switched fiber laser pulses at 1.56 μm with a low threshold power of 16.10 mW, high signal-to-noise ratio of 52.5 dB and short pulse duration of 1.9 μs were obtained. More importantly, a high output power of 3.10 mW related to a large pulse energy of about 51.84 nJ can be attained at a very low pump power. The efficiency of the laser reaches 4.71%, which is larger than that of the prepared layered MoS2 and recently reported MoS2-based passively Q-switching operations. Such results imply that the MoS2 nanoflowers are an excellent candidate for a saturable absorber in passively Q-switched fiber lasers at a low pump intensity. PMID:26997036

  5. MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser.

    PubMed

    Wei, Rongfei; Zhang, Hang; Tian, Xiangling; Qiao, Tian; Hu, Zhongliang; Chen, Zhi; He, Xin; Yu, Yongze; Qiu, Jianrong

    2016-04-14

    Strong saturable absorption was observed in MoS2 nanoflowers, which were synthesized by a facile solvothermal method. A MoS2 nanoflower-based saturable absorber with a high modulation depth of 51.8% and a large saturable intensity of 275.5 GW cm(-2) was introduced to the application of passively Q-switched fiber laser generation. Stable passively Q-switched fiber laser pulses at 1.56 μm with a low threshold power of 16.10 mW, high signal-to-noise ratio of 52.5 dB and short pulse duration of 1.9 μs were obtained. More importantly, a high output power of 3.10 mW related to a large pulse energy of about 51.84 nJ can be attained at a very low pump power. The efficiency of the laser reaches 4.71%, which is larger than that of the prepared layered MoS2 and recently reported MoS2-based passively Q-switching operations. Such results imply that the MoS2 nanoflowers are an excellent candidate for a saturable absorber in passively Q-switched fiber lasers at a low pump intensity.

  6. Effect of master oscillator stability over pulse repetition frequency on hybrid semiconductor mode-locked laser

    NASA Astrophysics Data System (ADS)

    Castro Alves, D.; Abreu, Manuel; Cabral, Alexandre; Rebordão, J. M.

    2015-04-01

    Semiconductor mode-locked lasers are a very attractive laser pulse source for high accuracy length metrology. However, for some applications, this kind of device does not have the required frequency stability. Operating the laser in hybrid mode will increase the laser pulse repetition frequency (PRF) stability. In this study it is showed that the laser PRF is not only locked to the master oscillator but also maintains the same level of stability of the master oscillator. The device used in this work is a 10 mm long mode-locked asymmetrical cladding single section InAs/InP quantum dash diode laser emitting at 1580 nm with a pulse repetition frequency of ≈4.37 GHz. The laser nominal stability in passive mode (no external oscillator) shows direct dependence with the gain current and the stability range goes from 10-4 to 10-7. Several oscillators with different stabilities were used for the hybrid-mode operation (with external oscillator) and the resulting mode-locked laser stability compared. For low cost oscillators with low stability, the laser PRF stability achieves a value of 10-7 and for higher stable oscillation source (such as oven controlled quartz oscillators (OXCO)) the stability can reach values up to 10-12 (τ =1 s).

  7. High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm.

    PubMed

    Fu, Xing; Kutz, J Nathan

    2013-03-11

    We theoretically demonstrate that in a laser cavity mode-locked by nonlinear polarization rotation (NPR) using sets of waveplates and passive polarizer, the energy performance can be significantly increased by incorporating multiple NPR filters. The NPR filters are engineered so as to mitigate the multi-pulsing instability in the laser cavity which is responsible for limiting the single pulse per round trip energy in a myriad of mode-locked cavities. Engineering of the NPR filters for performance is accomplished by implementing a genetic algorithm that is capable of systematically identifying viable and optimal NPR settings in a vast parameter space. Our study shows that five NPR filters can increase the cavity energy by approximately a factor of five, with additional NPRs contributing little or no enhancements beyond this. With the advent and demonstration of electronic controls for waveplates and polarizers, the analysis suggests a general design and engineering principle that can potentially close the order of magnitude energy gap between fiber based mode-locked lasers and their solid state counterparts.

  8. Ultrafast erbium-doped fiber laser mode-locked with a black phosphorus saturable absorber

    NASA Astrophysics Data System (ADS)

    Ahmed, M. H. M.; Latiff, A. A.; Arof, H.; Harun, S. W.

    2016-09-01

    We experimentally demonstrate a passive mode-locked erbium-doped fiber laser (EDFL) using a multi-layer black phosphorus saturable absorber (BPSA). The BPSA is fabricated by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto scotch tape. A small piece of the tape is then placed between two ferrules and integrated into an EDFL cavity to achieve a self-started soliton mode-locked pulse operation at 1560.7 nm wavelength. The 3 dB bandwidth, pulse width, and repetition rate of the laser are 6.4 nm, 570 fs, and 6.88 MHz, respectively. The average output power is 5.1 mW at pump power of 140 mW and thus, the pulse energy and peak power are estimated at 0.74 nJ and 1.22 kW, respectively. The BPSA was constructed in a simple fabrication process and has a modulation depth of 7% to successfully produce the stable mode-locked fiber laser.

  9. Quantum dot based mode-locked AlGaInP-VECSEL

    NASA Astrophysics Data System (ADS)

    Bek, Roman; Kersteen, Grizelda; Kahle, Hermann; Schwarzbäck, Thomas; Jetter, Michael; Michler, Peter

    2015-03-01

    We present passive mode locking of a vertical external-cavity surface-emitting laser (VECSEL) in the red spectral range with quantum dots (QDs) as active material in the gain and in the absorber structure. Both semiconductor samples are fabricated by metal-organic vapor-phase epitaxy (MOVPE) in a near-anti-resonant design. A vshaped cavity is used to tightly focus onto the semiconductor saturable absorber mirror (SESAM), producing pulses with a duration of less than 1 ps and a repetition rate of 852MHz. In order to increase the field enhancement inside the absorber structure, some SESAM samples were additionally coated with a fused silica layer. The pulse duration as well as the mode locking stability were investigated for different thicknesses of the SiO2 layer. The most stable mode locking operation is observed for a 97 nm SiO2 layer, while the disadvantage of this overall near-resonant SESAM structure is an increased pulse duration of around 2 ps. Due to the improved stability, the transmission of the outcoupling mirror could be increased resulting in an average output power of 10mW at an emission wavelength of 651 nm.

  10. Analytical investigation of a figure-eight single-pulse all-fiber laser based on a nonlinear amplifying loop mirror

    SciTech Connect

    Salhi, M.; Amrani, F.; Leblond, H.; Sanchez, F.

    2010-10-15

    We establish analytically a master equation of a figure-eight all-fiber passively mode-locked laser. The nonlinear amplifying loop mirror (NALM) is used as an effective saturable absorber in order to generate short pulses. The master equation is of the cubic complex Ginzburg-Landau type, in which the coefficients explicitly depend on the characteristics of the cavity, in particular on the orientation of the polarizer, the coupling coefficient, and the length of the NALM. Single-pulse and continuous-wave (cw) solutions in both normal and anomalous dispersion are discussed analytically. In the anomalous dispersion situation, the equation governing the evolution of the system admits stable analytic pulse solutions. The pulse duration and energy are studied. The analysis provides domains in the space of the cavity parameters where energetic soliton and ultrashort pulses are obtained.

  11. 100 W dissipative soliton resonances from a thulium-doped double-clad all-fiber-format MOPA system.

    PubMed

    Zhao, Junqing; Ouyang, Deqin; Zheng, Zhijian; Liu, Minqiu; Ren, Xikui; Li, Chunbo; Ruan, Shuangchen; Xie, Weixin

    2016-05-30

    In this paper, we first achieve nanosecond-scale dissipative soliton resonance (DSR) generation in a thulium-doped double-clad fiber (TDF) laser with all-anomalous-dispersion regime, and also first scale the average power up to 100.4 W by employing only two stage TDF amplifiers, corresponding to gains of 19.3 and 14.4 dB, respectively. It is noted that both the fiber laser oscillator and the amplification system employ double-clad fiber as the gain medium for utilizing the advantages in high-gain-availability, high-power-handling and good-mode-quality-maintaining. DSR mode-locking of the TDF oscillator is realized by using a nonlinear optical loop mirror (NOLM), which exhibits all-fiber-format, high nonlinear and passive saturable absorption properties. The TDF oscillator can deliver rectangular-shape pulses with duration ranging from ~3.74 to ~72.19 ns while maintaining a nearly equal output peak power level of ~0.56 W, namely peak power clamping (PPC) effect. Comparatively, the two stage amplifiers can scale the seeding pulses to similar average power levels, but to dramatically different peak powers ranging from ~0.94 to ~18.1 kW depending on the durations. Our TDF master-oscillator-power-amplifier (MOPA) system can provide a high power 2-μm band all-fiber-format laser source both tunable in pulse duration and peak power. PMID:27410128

  12. Large-energy, wavelength-tunable, all-fiber passively Q-switched Er:Yb-codoped double-clad fiber laser with mono-layer chemical vapor deposition graphene.

    PubMed

    Wu, Duanduan; Xiong, Fengfu; Zhang, Cankun; Chen, Shanshan; Xu, Huiying; Cai, Zhiping; Cai, Weiwei; Che, Kaijun; Luo, Zhengqian

    2014-07-01

    We demonstrate a large-energy, wavelength-tunable, all-fiber passively Q-switched Er:Yb-codoped laser using a mono-layer chemical vapor deposition (CVD) graphene saturable absorber (SA). By exploiting the large laser gain of Er:Yb double-clad fiber and optimizing the coupling ratio of the output coupler, not only can the mono-layer CVD graphene SA be protected from oversaturation and thermal damage, but also a large pulse energy up to 1.05 μJ (corresponding to the average output power of 25.6 mW) is thus achieved. Using a tunable fiber Fabry-Perot filter, stable Q-switched pulses can operate with a tunable range from 1530.97 to 1546.92 nm, covering a wavelength range of ∼16  nm. The Q-switching states at the different lasing wavelengths have been observed and recorded. The Q-switched repetition rate and the pulse duration (with the minimum one of 2.6 μs) have been characterized as well. This is, to the best of our knowledge, the largest pulse energy from an all-fiber graphene Q-switched laser. PMID:25089965

  13. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes

    PubMed Central

    Liu, Xueming; Han, Dongdong; Sun, Zhipei; Zeng, Chao; Lu, Hua; Mao, Dong; Cui, Yudong; Wang, Fengqiu

    2013-01-01

    Multi-wavelength lasers have widespread applications (e.g. fiber telecommunications, pump-probe measurements, terahertz generation). Here, we report a nanotube-mode-locked all-fiber ultrafast oscillator emitting three wavelengths at the central wavelengths of about 1540, 1550, and 1560 nm, which are tunable by stretching fiber Bragg gratings. The output pulse duration is around 6 ps with a spectral width of ~0.5 nm, agreeing well with the numerical simulations. The triple-laser system is controlled precisely and insensitive to environmental perturbations with <0.04% amplitude fluctuation. Our method provides a simple, stable, low-cost, multi-wavelength ultrafast-pulsed source for spectroscopy, biomedical research and telecommunications. PMID:24056500

  14. Pulse shaping mechanism in mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Horikis, Theodoros P.; Bakırtaş, İlkay; Antar, Nalan

    2016-06-01

    A pulse shaping mechanism applied to mode-locked lasers is proposed. By adding a linear (forcing) term in the power energy saturation model, we are able to control the resulting pulses in both energy and shape. In fact, this term also provides a focusing effect keeping most of the pulse’s energy confined within the width of the forcing. The appropriate condition for which mode-locking occurs is also derived and links the physical parameters of the system (gain, loss, filtering) to those of the pulse (amplitude, width, energy). Thus, given the desired pulse one only needs to fix the laser’s parameters accordingly, so as to obey this condition, and mode-locking will occur.

  15. Raman rogue waves in a partially mode-locked fiber laser.

    PubMed

    Runge, Antoine F J; Aguergaray, Claude; Broderick, Neil G R; Erkintalo, Miro

    2014-01-15

    We report on an experimental study of spectral fluctuations induced by intracavity Raman conversion in a passively partially mode-locked, all-normal dispersion fiber laser. Specifically, we use dispersive Fourier transformation to measure single-shot spectra of Raman-induced noise-like pulses, demonstrating that for low cavity gain values Raman emission is sporadic and follows rogue-wave-like probability distributions, while a saturated regime with Gaussian statistics is obtained for high pump powers. Our experiments further reveal intracavity rogue waves originating from cascaded Raman dynamics. PMID:24562136

  16. 1700 nm dispersion managed mode-locked bismuth fiber laser

    PubMed Central

    Noronen, Teppo; Firstov, Sergei; Dianov, Evgeny; Okhotnikov, Oleg G.

    2016-01-01

    We demonstrate the first 1.7 μm bismuth-doped fiber laser generating ultrashort pulses via passive mode-locking. Pulse operation has been achieved for both anomalous and normal dispersion of the laser cavity owing to broadband characteristics of carbon nanotube saturable absorber. The laser delivered 1.65 ps pulses in net anomalous dispersion regime. In normal dispersion regime, the laser delivered 14 ps pulses which could be compressed to 1.2 ps using external fiber compressor. PMID:27097798

  17. Mode-locked fiber laser using an SU8/SWCNT saturable absorber.

    PubMed

    Hernandez-Romano, Ivan; Mandridis, Dimitrios; May-Arrioja, Daniel A; Sanchez-Mondragon, Jose J; Delfyett, Peter J

    2011-06-01

    We report the fabrication of a saturable absorber based on SU8 single wall carbon nanotube (SWCNT) composite material. Thin films with a controllable thickness can be fabricated using a simple and reliable process. These films can be inserted between two FC/APC connectors in order to have an inline saturable absorber. A passive mode-locked laser was built by interleaving the fiberized saturable absorber in an erbium-doped fiber (L-band) ring cavity laser. The laser produces 871 fs pulses with a repetition rate of 21.27 MHz and a maximum average power of 1 mW.

  18. 1700 nm dispersion managed mode-locked bismuth fiber laser

    NASA Astrophysics Data System (ADS)

    Noronen, Teppo; Firstov, Sergei; Dianov, Evgeny; Okhotnikov, Oleg G.

    2016-04-01

    We demonstrate the first 1.7 μm bismuth-doped fiber laser generating ultrashort pulses via passive mode-locking. Pulse operation has been achieved for both anomalous and normal dispersion of the laser cavity owing to broadband characteristics of carbon nanotube saturable absorber. The laser delivered 1.65 ps pulses in net anomalous dispersion regime. In normal dispersion regime, the laser delivered 14 ps pulses which could be compressed to 1.2 ps using external fiber compressor.

  19. Acousto-optic mode-locked soliton laser

    SciTech Connect

    Pinto, J.F.; Yakymyshyn, C.P.; Pollock, C.R.

    1988-05-01

    An acousto-optic modulator has been used to actively mode lock a KCl:Tl/sup 0/ (1) color-center laser at 1.5 ..mu..m. The color-center laser is capable of generating transform-limited pulses as short as 6 psec with 2-W cw pump power. Based on this actively mode-locked KCl:Tl/sup 0/ (1) laser a stable soliton laser has been operated, with performance similar to that of the synchronously pumped soliton laser.

  20. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate

    NASA Astrophysics Data System (ADS)

    Herink, G.; Jalali, B.; Ropers, C.; Solli, D. R.

    2016-05-01

    Mode-locked lasers have enabled some of the most precise measurements ever performed, from attosecond time-domain spectroscopy to metrology with frequency combs. However, such extreme precision belies the complexity of the underlying mode-locking dynamics. This complexity is particularly evident in the emergence of the mode-locked state, an intrinsically singular, non-repetitive transition. Many details of mode-locking are well understood, yet conventional spectroscopy cannot resolve the nascent dynamics in passive mode-locking on their natural nanosecond timescale, the single pulse period. Here, we capture the pulse-resolved spectral evolution of a femtosecond pulse train from the initial fluctuations, recording ∼900,000 consecutive periods. We directly observe critical phenomena on timescales from tens to thousands of roundtrips, including the birth of the broadband spectrum, accompanying wavelength shifts and transient interference dynamics described as auxiliary-pulse mode-locking. Enabled by the time-stretch transform, the results may impact laser design, ultrafast diagnostics and nonlinear optics.

  1. Single-polarization, dual-wavelength mode-locked Yb-doped fiber laser by a 45°-tilted fiber grating

    NASA Astrophysics Data System (ADS)

    Liu, Xianglian; Wang, Hushan; Wang, Yishan; Yan, Zhijun; Zhang, Lin

    2015-06-01

    We experimentally demonstrate an all-fiber single-polarization dual-wavelength Yb-doped fiber laser passively mode-locked with a 45°-tilted fiber grating for the first time. Stable dual-wavelength operation exhibits double-rectangular spectral profile centered at 1033 and 1053 nm, respectively. The 3 dB bandwidth of each rectangular optical spectrum is estimated as 10 nm. The separation of two fundamental repetition rates is 6 kHz. By employing the 45° TFG with the polarization-dependent loss of 33 dB, output pulses with 27 dB polarization extinction ratio are implemented in the experiment. The single pulse centered at 1053 nm is researched by using a filter at the output port of the laser, and the experimental results denote that the output ps pulses are highly chirped. The formation mechanism of dual-wavelength operation is investigated.

  2. Towards monolithic integration of mode-locked vertical cavity surface emitting laser

    NASA Astrophysics Data System (ADS)

    Aldaz, Rafael I.

    2007-12-01

    The speed and performance of today's high end computing and communications systems have placed difficult but still feasible demands on off-chip electrical interconnects. However, future interconnect systems may need aggregate bandwidths well into the terahertz range thereby making electrical bandwidth, density, and power targets impossible to meet. Optical interconnects, and specifically compact semiconductor mode-locked lasers, could alleviate this problem by providing short pulses in time at 10s of GHz repetition rates for Optical Time Division Multiplexing (OTDM) and clock distribution applications. Furthermore, the characteristic spectral comb of frequencies of these lasers could also serve as a multi-wavelength source for Wavelength Division Multiplexing (WDM) applications. A fully integrated mode-locked Vertical Cavity Surface Emitting Laser (VCSEL) is proposed as a low-cost high-speed source for these applications. The fundamental laser platform for such a device has been developed and a continuous-wave version of these lasers has been fabricated and demonstrated excellent results. Output powers close to 60mW have been obtained with very high beam quality factor of M2 < 1.07. The mode-locked laser utilizes a passive mode-locking region provided by a semiconductor saturable absorber integrated together with the gain region. Such an aggressive integration forces the resonant beam in the cavity to have the same area on the gain and absorber sections, placing high demands on the saturation fluence and absorption coefficient for the saturable absorber. Quantum Wells (QWs), excitons in QWs and Quantum Dots (QDs) have been investigated as possible saturable absorbers for the proposed device. QDs have been found to have the lowest saturation fluence and total absorption, necessary to meet the mode-locking requirements for this configuration. The need to further understand QDs as saturable absorbers has led to the development of a theoretical model on the dynamics of

  3. Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser.

    PubMed

    Lin, Yung-Hsiang; Yang, Chun-Yu; Liou, Jia-Hong; Yu, Chin-Ping; Lin, Gong-Ru

    2013-07-15

    A photonic crystal fiber (PCF) with high-quality graphene nano-particles uniformly dispersed in the hole cladding are demonstrated to passively mode-lock the erbium-doped fiber laser (EDFL) by evanescent-wave interaction. The few-layer graphene nano-particles are obtained by a stabilized electrochemical exfoliation at a threshold bias. These slowly and softly exfoliated graphene nano-particle exhibits an intense 2D band and an almost disappeared D band in the Raman scattering spectrum. The saturable phenomena of the extinction coefficient β in the cladding provides a loss modulation for the intracavity photon intensity by the evanescent-wave interaction. The evanescent-wave mode-locking scheme effectively enlarges the interaction length of saturable absorption with graphene nano-particle to provide an increasing transmittance ΔT of 5% and modulation depth of 13%. By comparing the core-wave and evanescent-wave mode-locking under the same linear transmittance, the transmittance of the graphene nano-particles on the end-face of SMF only enlarges from 0.54 to 0.578 with ΔT = 3.8% and the modulation depth of 10.8%. The evanescent wave interaction is found to be better than the traditional approach which confines the graphene nano-particles at the interface of two SMF patchcords. When enlarging the intra-cavity gain by simultaneously increasing the pumping current of 980-nm and 1480-nm pumping laser diodes (LDs) to 900 mA, the passively mode-locked EDFL shortens its pulsewidth to 650 fs and broadens its spectral linewidth to 3.92 nm. An extremely low carrier amplitude jitter (CAJ) of 1.2-1.6% is observed to confirm the stable EDFL pulse-train with the cladding graphene nano-particle based evanescent-wave mode-locking.

  4. Graphene mode-locked femtosecond Cr2+:ZnS laser with ~300 nm tuning range.

    PubMed

    Cho, Won Bae; Choi, Sun Young; Zhu, Chunhui; Kim, Mi Hye; Kim, Jun Wan; Kim, Jin Sun; Park, Hyung Ju; Shin, Dong Ho; Jung, Moon Youn; Wang, Fengqiu; Rotermund, Fabian

    2016-09-01

    Graphene has proved to be an excellent broadband saturable absorber for mode-locked operation of ultrafast lasers. However, for the mid-infrared (mid-IR) range where broadly tunable sources are in great needs, graphene-based broadly tunable ultrafast mid-IR lasers have not been demonstrated so far. Here, we report on passive mode-locking of a mid-IR Cr:ZnS laser by utilizing a transmission-type monolayer graphene saturable absorber and broad spectral tunability between 2120 nm and 2408 nm, which is the broadest tuning bandwidth ever reported for graphene mode-locked mid-IR solid-state lasers. The recovery time of the saturable absorber is measured to be ~2.4 ps by pump-probe technique at a wavelength of 2350 nm. Stably mode-locked Cr:ZnS laser delivers Fourier transform-limited 220-fs pulses with a pulse energy of up to 7.8 nJ. PMID:27607680

  5. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes.

    PubMed

    Martinez, Amos; Yamashita, Shinji

    2011-03-28

    There is an increasing demand for all-fiber passively mode-locked lasers with pulse repetition rates in the order of gigahertz for their potential applications in fields such as telecommunications and metrology. However, conventional mode-locked fiber lasers typically operate at fundamental repetition rates of only a few megahertz. In this paper, we report all-fiber laser operation with fundamental repetition rates of 4.24 GHz, 9.63 GHz and 19.45 GHz. This is, to date and to the best of our knowledge, the highest fundamental repetition rate reported for an all-fiber laser. The laser operation is based on the passive modelocking of a miniature all-fiber Fabry-Pérot laser (FFPL) by a carbon nanotube (CNT) saturable absorber. The key components for such device are a very high-gain Er:Yb phosphosilicate fiber and a fiber compatible saturable absorber with very small foot print and very low losses. The laser output of the three lasers was close to transform-limited with a pulsewidth of approximately 1 ps and low noise. As a demonstration of potential future applications for this laser, we also demonstrated supercontinuum generation with a longitudinal mode-spacing of 0.08 nm by launching the laser operating at 9.63 GHz into 30 m of a highly nonlinear dispersion shifted fiber.

  6. Dispersion-managed semiconductor mode-locked ring laser.

    PubMed

    Resan, Bojan; Archundia, Luis; Delfyett, Peter J; Alphonse, Gerard

    2003-08-01

    A novel breathing-mode external sigma-ring-cavity semiconductor mode-locked laser is developed. Intracavity pulse compression and stretching produce linearly chirped pulses with an asymmetric exponential temporal profile. External dispersion compensation reduces the pulse duration to 274 fs (within 10% of the bandwidth limit).

  7. Carbon nanotubes for mode-locking: polarization study

    NASA Astrophysics Data System (ADS)

    Afkhamiardakani, Hanieh; Kamer, Brian; Diels, Jean-Claude; Arissian, Ladan

    2016-03-01

    Mode-locked fiber lasers are the most promising lasers for intracavity phase interferometry,1 because they offer the possibility to have two orthogonally polarized pulses circulating independently in the cavity. The saturable absorbers based on polarization maintaining tapered fiber coated with carbon nanotubes are developed and analyzed for minimum coupling between the slow and fast axis of the fiber.

  8. Stable Similariton Generation in an All-Fiber Hybrid Mode-Locked Ring Laser for Frequency Metrology.

    PubMed

    Lazarev, Vladimir; Krylov, Alexander; Dvoretskiy, Dmitriy; Sazonkin, Stanislav; Pnev, Alexey; Leonov, Stanislav; Shelestov, Dmitriy; Tarabrin, Mikhail; Karasik, Valeriy; Kireev, Alexey; Gubin, Mikhail

    2016-07-01

    Ultrashort pulse lasers constitute an important tool in the emerging field of optical frequency metrology and are enabling unprecedented measurement capabilities and new applications in a wide range of fields, including precision spectroscopy, atomic clocks, ultracold gases, and molecular fingerprinting. We demonstrate the generation of stable 127-fs self-similar pulses at a central wavelength of 1560 nm with 7.14-mW average output power. Similariton lasers have a low repetition rate deviation in the averaging time interval [Formula: see text], a low relative intensity noise [Formula: see text] (30 Hz to 10 kHz), a narrow single comb line width of 32 kHz, and high reliability. Thus, such lasers are highly promising for further development of the stabilized combs and open up a robust and substantially simplified route to synthesizing low-noise microwaves. PMID:26991926

  9. Wavelength-Tunable Rectangular Pulses Generated from All-Fiber Mode-Locked Laser Based on Semiconductor Saturable Absorber Mirror

    NASA Astrophysics Data System (ADS)

    Wang, Zhao-Kum; Zou, Feng; Wang, Zi-Wei; Du, Song-Tao; Zhou, Jun

    2016-09-01

    Not Available Supported by the National High-Technology Research and Development Program of China under Grant No 2014AA041901, the NSAF Foundation of National Natural Science Foundation of China under Grant No U1330134, the Opening Project of Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques under Grant No 2012ADL02, and the National Natural Science Foundation of China under Grant No 61308024.

  10. Stable Similariton Generation in an All-Fiber Hybrid Mode-Locked Ring Laser for Frequency Metrology.

    PubMed

    Lazarev, Vladimir; Krylov, Alexander; Dvoretskiy, Dmitriy; Sazonkin, Stanislav; Pnev, Alexey; Leonov, Stanislav; Shelestov, Dmitriy; Tarabrin, Mikhail; Karasik, Valeriy; Kireev, Alexey; Gubin, Mikhail

    2016-07-01

    Ultrashort pulse lasers constitute an important tool in the emerging field of optical frequency metrology and are enabling unprecedented measurement capabilities and new applications in a wide range of fields, including precision spectroscopy, atomic clocks, ultracold gases, and molecular fingerprinting. We demonstrate the generation of stable 127-fs self-similar pulses at a central wavelength of 1560 nm with 7.14-mW average output power. Similariton lasers have a low repetition rate deviation in the averaging time interval [Formula: see text], a low relative intensity noise [Formula: see text] (30 Hz to 10 kHz), a narrow single comb line width of 32 kHz, and high reliability. Thus, such lasers are highly promising for further development of the stabilized combs and open up a robust and substantially simplified route to synthesizing low-noise microwaves.

  11. Mode-locked semiconductor laser system with intracavity spatial light modulator for linear and nonlinear dispersion management.

    PubMed

    Balzer, Jan C; Döpke, Benjamin; Brenner, Carsten; Klehr, Andreas; Erbert, Götz; Tränkle, Günther; Hofmann, Martin R

    2014-07-28

    We analyze the influence of second and third order intracavity dispersion on a passively mode-locked diode laser by introducing a spatial light modulator (SLM) into the external cavity. The dispersion is optimized for chirped pulses with highest possible spectral bandwidth that can be externally compressed to the sub picosecond range. We demonstrate that the highest spectral bandwidth is achieved for a combination of second and third order dispersion. With subsequent external compression pulses with a duration of 437 fs are generated.

  12. Terahertz generation and detection using femtosecond mode-locked Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Kong, Moon Sik; Kim, Ji Su; Han, Sang-Pil; Kim, Namje; Moon, Ki Won; Park, Kyung Hyun; Jeon, Min Yong

    2016-02-01

    We successfully demonstrate a THz generation using an ytterbium (Yb)-doped mode-locked femtosecond fiber laser and a home-made low-temperature grown (LTG) InGaAs Photoconductive antenna (PCA) module for THz Time-domain spectroscopy (TDS) systems. The Yb-doped fiber ring laser consists of a pump laser diode (PLD), a wavelength division multiplexer (WDM) coupler, a single-mode fiber (SMF), a 25 cm-long highly Yb-doped fiber, two collimators, two quarter wave plates (QWPs), a half-wave plate (HWP), a 10 nm broadband band pass filter, an isolator, and a polarizing beam splitter (PBS). In order to achieve the passively mode-locked optical short pulse, the nonlinear polarization rotation (NPR) effect is used. The achieved center wavelength and the 3 dB bandwidth of the modelocked fiber laser are 1.03 μm and ~ 15.6 nm, respectively. It has 175 fs duration after pulse compression with 66.2 MHz repetition rate. The average output power of mode-locked laser has more than 275 mW. The LTG-InGaAs PCA modules are used as the emitter and receiver in order to achieve the THz radiation. The PCA modules comprise a hyper-hemispherical Si lens and a log-spiral antenna-integrated LTG-InGaAs PCA chip electronically contacted on a printed circuit board (PCB). An excitation optical average pumping and probing power were ~ 6.3 mW and 5 mW, respectively. The free-space distance between the emitter and the receiver in the THz-TDS system was 70 mm. The spectrum of the THz radiation is achieved higher than 1.5 THz.

  13. Mode-locked solid state lasers using diode laser excitation

    DOEpatents

    Holtom, Gary R.

    2012-03-06

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.

  14. Mode-locked laser autocollimator with an expanded measurement range.

    PubMed

    Chen, Yuan-Liu; Shimizu, Yuki; Kudo, Yukitoshi; Ito, So; Gao, Wei

    2016-07-11

    A mode-locked laser is employed as the light source of a laser autocollimator, instead of the conventionally employed single-wavelength laser, for an expanded range of tilt angle measurement. A group of the spatially separated diffracted beams from a diffraction grating are focused by a collimator objective to form an array of light spots on the focal plane of the collimator objective where a light position-sensing photodiode is located for detecting the linear displacement of the light spot array corresponding to the tilt angle of the reflector. A prototype mode-locked femtosecond laser autocollimator is designed and constructed for achieving a measurement range of 11000 arc-seconds.

  15. Q-switched and mode-locked Er{sup 3+}-doped fibre laser using a single-multi-single fibre filter and piezoelectric

    SciTech Connect

    Ji Wang; Yunjun Zhang; Aotuo Dong; Xiaoxin Xu; Youlun Ju; Baoquan Yao

    2014-04-28

    The active Q-switched and passive mode-locked Er{sup 3+}-doped all-fibre laser is presented. The fibre laser centre wavelength is located at 1563 nm and determined by the homemade singlemulti- single (SMS) in-line fibre filter. The laser spectrum width is nearly 0.1 nm. The active Q-switched mechanism relies on the polarisation state control using a piezoelectric to press a segment of passive fibre on the circular cavity. The nonlinear polarisation rotation technology is used to realise the passive self-started modelocked operation. In the passive mode-locked regimes, the output average power is 2.1 mW, repetition frequency is 11.96 MHz, and single pulse energy is 0.18 nJ. With the 100-Hz Q-switched regimes running, the output average power is 1.5 mW. The total Q-switched pulse width is 15 μs, and every Q-switched pulse is made up by several tens of mode-locked peak pulses. The calculated output pulse energy of the Q-switched fibre laser is about 15 μJ, and the energy of every mode-locked pulse is about 64–68 nJ during a Q-switched pulse taking into account the power fraction propagating between pulses. (lasers)

  16. Q-switched and mode-locked Er3+-doped fibre laser using a single-multi-single fibre filter and piezoelectric

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Zhang, Yunjun; Dong, Aotuo; Xu, Xiaoxin; Ju, Youlun; Yao, Baoquan

    2014-04-01

    The active Q-switched and passive mode-locked Er3+-doped all-fibre laser is presented. The fibre laser centre wavelength is located at 1563 nm and determined by the homemade singlemulti- single (SMS) in-line fibre filter. The laser spectrum width is nearly 0.1 nm. The active Q-switched mechanism relies on the polarisation state control using a piezoelectric to press a segment of passive fibre on the circular cavity. The nonlinear polarisation rotation technology is used to realise the passive self-started modelocked operation. In the passive mode-locked regimes, the output average power is 2.1 mW, repetition frequency is 11.96 MHz, and single pulse energy is 0.18 nJ. With the 100-Hz Q-switched regimes running, the output average power is 1.5 mW. The total Q-switched pulse width is 15 μs, and every Q-switched pulse is made up by several tens of mode-locked peak pulses. The calculated output pulse energy of the Q-switched fibre laser is about 15 μJ, and the energy of every mode-locked pulse is about 64-68 nJ during a Q-switched pulse taking into account the power fraction propagating between pulses.

  17. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror.

    PubMed

    Aguergaray, Claude; Broderick, Neil G R; Erkintalo, Miro; Chen, Jocelyn S Y; Kruglov, Vladimir

    2012-05-01

    We report on a new design for a passively mode locked fibre laser employing all normal dispersion polarisation maintaining fibres operating at 1 μm. The laser produces linearly polarized, linearly chirped pulses that can be recompressed down to 344 fs. Compared to previous laser designs the cavity is mode-locked using a nonlinear amplifying fibre loop mirror that provides an additional degree of freedom allowing easy control over the pulse parameters. This is a robust laser design with excellent reliability and lifetime.

  18. Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier.

    PubMed

    Klopp, Peter; Griebner, Uwe; Zorn, Martin; Klehr, Andreas; Liero, Armin; Weyers, Markus; Erbert, Götz

    2009-06-22

    Almost chirp-free pulses with a duration of 190 fs were achieved from a mode-locked semiconductor disk laser (SDL) emitting at approximately 1045 nm. Pulse shaping was different from the soliton-like mode-locking process known from lasers using dielectric gain media; passive amplitude modulation provided by a fast saturable absorber was essential. The spectrum of the absorber had to be matched to the gain spectrum within a few nm. A tapered diode amplifier was demonstrated to be a device for both picking and amplifying SDL pulses. The pulse repetition rate of the SDL output was reduced from 3 GHz to 47 MHz. PMID:19550482

  19. Nonlinear coupling of relative intensity noise from pump to a fiber ring laser mode-locked with carbon nanotubes.

    PubMed

    Wu, Kan; Wong, Jia Haur; Shum, Ping; Fu, Songnian; Ouyang, Chunmei; Wang, Honghai; Kelleher, E J R; Chernov, A I; Obraztsova, E D; Chen, Jianping

    2010-08-01

    Pump relative intensity noise (RIN) has been recognized as a major source of noise in mode-locked lasers. The coupling of RIN from the pump to the output of a passively mode-locked fiber laser (PMFL) is systematically investigated using a pump modulation technique. It is found that the linear RIN coupling ratio from pump to PMFL is decreased with an increase in modulation frequency and is independent of modulation power. Moreover, the nonlinear RIN coupling from pump to PMFL is clearly demonstrated with a square wave modulated pump. The nonlinear RIN coupling ratio is noise power dependent. An exponential decay model based on the view of gain modulation is proposed and explains well the behavior of the nonlinear coupling phenomena.

  20. Digital-wavelength ytterbium fiber laser mode-locked with MoS2

    NASA Astrophysics Data System (ADS)

    Wang, Shiwei; Zhou, Yan; Wang, Yao; Yan, Shuo; Li, Yue; Zheng, Wanguo; Deng, Ying; Zhu, Qihua; Xu, Jianqiu; Tang, Yulong

    2016-05-01

    In this letter, we report a digital-wavelength ytterbium-doped fiber laser passively mode-locked with layered molybdenum disulfide (MoS2). The MoS2 based saturable absorber (SA) is made by solution coating the MoS2 solution on a gold mirror, showing modulation depth and saturation intensity of 11.4% and 1.37 MW cm-2, respectively. The output pulse has duration of ~300 ps, 3 dB spectral width of ~0.5 nm and maximum output power of 2.6 mW. The mode-locked fundamental frequency is 2.67 MHz with a ~36 dB signal-to-noise ratio. Through tuning the polarization controller (PC) and squeezing/stretching the single mode fiber in the ring cavity, four-bit digital wavelength emission is achieved. It is proposed that the digital-wavelength tuning feature of fiber lasers can be employed in coding and signal processing.

  1. Developing carbon-nitride nanosheets for mode-locking ytterbium fiber lasers.

    PubMed

    Zhou, Yan; Zhao, Min; Wang, Shiwei; Hu, Chen-xia; Wang, Yao; Yan, Shuo; Li, Yue; Xu, Jianqiu; Tang, Yulong; Gao, Lin-Feng; Wang, Qiang; Zhang, Hao-li

    2016-03-15

    Graphitic carbon nitrides (CNs) have appeared as a new type of photocatalyst for water splitting, but their optical properties (e.g., nonlinear absorption), to the best of our knowledge, have been seldom explored. Here, we report the saturable absorption effects of novel 2D carbon-nitride-type nanosheets and use them as saturable absorbers to passively mode-lock Yb-doped fiber lasers. The CN-based saturable absorber is manufactured by solution coating of 2D CN nanosheets on a gold mirror and has a modulation depth and saturation intensity of 12.5% and 7.5  MW/cm2, respectively. Two different output couplers are employed to construct ring laser cavities. With the 10% coupler, the mode-locked fiber laser produces pulses with duration of ∼310  ps, average power of 1.24 mW, and repetition rate of 7.65 MHz. The laser spectrum is centered at 1066 nm with a bandwidth of 2.4 nm. Increasing the coupling ratio to 50% improves the output power to 2.58 mW but at the same time broadens the pulse width to 420 ps. As a new kind of 2D material with strong saturable absorption, CN nanosheets will open a new way for novel photonic and optoelectronic devices. PMID:26977674

  2. Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser.

    PubMed

    Liu, Jun; Chen, Yu; Tang, Pinghua; Xu, Changwen; Zhao, Chujun; Zhang, Han; Wen, Shuangchun

    2015-03-01

    In a passively mode-locked Erbium-doped fiber laser with large anomalous-dispersion, we experimentally demonstrate the formation of noise-like square-wave pulse, which shows quite different features from conventional dissipative soliton resonance (DSR). The corresponding temporal and spectral characteristics of a variety of operation states, including Q-switched mode-locking, continuous-wave mode-locking and Raman-induced noise-like pulse near the lasing threshold, are also investigated. Stable noise-like square-wave mode-locked pulses can be obtained at a fundamental repetition frequency of 195 kHz, with pulse packet duration tunable from 15 ns to 306 ns and per-pulse energy up to 200 nJ. By reducing the linear cavity loss, stable higher-order harmonic mode-locking had also been observed, with pulse duration ranging from 37 ns at the 21st order harmonic wave to 320 ns at the fundamental order. After propagating along a piece of long telecom fiber, the generated square-wave pulses do not show any obvious change, indicating that the generated noise-like square-wave pulse can be considered as high-energy pulse packet for some promising applications. These experimental results should shed some light on the further understanding of the mechanism and characteristics of noise-like square-wave pulses. PMID:25836862

  3. Q-switched mode-locked erbium-doped fiber laser based on topological insulator Bi(2)Se(3) deposited fiber taper.

    PubMed

    Gao, Lei; Huang, Wei; Zhang, Jing Dong; Zhu, Tao; Zhang, Han; Zhao, Chu Jun; Zhang, Wei; Zhang, Hua

    2014-08-10

    We have demonstrated the passive Q-switching mode-locking operation in an erbium-doped fiber (EDF) laser by using topological insulator Bi(2)Se(3) deposited on fiber taper, whose damage threshold can be further increased by the large evanescent field interacting length. Due to the low saturation intensity, stable Q-switched mode-locked fiber lasers centered at 1562 nm can be generated at a pump power of 10 mW. The temporal and spectral characteristics for different pump strengths have also been investigated. To the best of our knowledge, it is the first time a Q-switched mode-locked EDF laser based on the fiber taper deposited by Bi(2)Se(3) was generated. PMID:25320919

  4. Q-switched mode-locked erbium-doped fiber laser based on topological insulator Bi(2)Se(3) deposited fiber taper.

    PubMed

    Gao, Lei; Huang, Wei; Zhang, Jing Dong; Zhu, Tao; Zhang, Han; Zhao, Chu Jun; Zhang, Wei; Zhang, Hua

    2014-08-10

    We have demonstrated the passive Q-switching mode-locking operation in an erbium-doped fiber (EDF) laser by using topological insulator Bi(2)Se(3) deposited on fiber taper, whose damage threshold can be further increased by the large evanescent field interacting length. Due to the low saturation intensity, stable Q-switched mode-locked fiber lasers centered at 1562 nm can be generated at a pump power of 10 mW. The temporal and spectral characteristics for different pump strengths have also been investigated. To the best of our knowledge, it is the first time a Q-switched mode-locked EDF laser based on the fiber taper deposited by Bi(2)Se(3) was generated.

  5. Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser.

    PubMed

    Kong, L C; Qin, Z P; Xie, G Q; Xu, X D; Xu, J; Yuan, P; Qian, L J

    2015-02-01

    We experimentally demonstrated dual-wavelength synchronous operation of a high-power passively mode-locked 2-μm Tm:CaYAlO4 (Tm:CYA) disordered crystal laser with semiconductor saturable absorber mirror (SESAM) as mode locker. The mode-locked laser emitted an average output power as high as 830 mW with pulse duration of 35.3 ps and repetition rate of 145.4 MHz. The mode-locking dual wavelengths were centered at 1958.9 nm and 1960.6 nm, respectively. Autocorrelation trace clearly shows beating pulses with pulse width of 3.5 ps and repetition rate of 0.13 THz. PMID:25680046

  6. Fabrication, optimization, and characterization of monolithic semiconductor mode-locked lasers and colliding, pulse mode-locked lasers at millimeter-wave frequencies

    NASA Astrophysics Data System (ADS)

    Passerini, Marco; Sorel, Marc; Laybourn, Peter J.; Giuliani, Guido; Donati, Silvano

    2004-09-01

    This work reports on the fabrication, optimisation and characterisation of monolithic mode-locked lasers (MLLs) and colliding-pulse mode-locked (CPM) lasers with repetition rate in the range 10-60 GHz. The devices consist of double section split-contact ridge waveguide lasers fabricated in GaAs/AlGaAs double quantum well (DQW) material. For CPM devices, the saturable absorber section was fabricated with a coplanar ground-signal-ground (G-S-G) pad structure. The optimum saturable absorber size for efficient mode-locking is found experimentally. The fabricated devices are characterised in terms of operating regimes (Continuous Wave, Self-Pulsation, Mode-Locking) and the mode-locking signals were observed in the frequency domain using an external fast photodiode. In the case of CPM devices a mm-wave signal could also be extracted directly from the saturable absorber section of the laser using a microwave probe.

  7. Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s.

    PubMed

    Schmeckebier, H; Fiol, G; Meuer, C; Arsenijević, D; Bimberg, D

    2010-02-15

    A complete characterization of pulse shape and phase of a 1.3 microm, monolithic-two-section, quantum-dot mode-locked laser (QD-MLL) at a repetition rate of 40 GHz is presented, based on frequency resolved optical gating. We show that the pulse broadening of the QD-MLL is caused by linear chirp for all values of current and voltage investigated here. The chirp increases with the current at the gain section, whereas larger bias at the absorber section leads to less chirp and therefore to shorter pulses. Pulse broadening is observed at very high bias, likely due to the quantum confined stark effect. Passive- and hybrid-QD-MLL pulses are directly compared. Improved pulse intensity profiles are found for hybrid mode locking. Via linear chirp compensation pulse widths down to 700 fs can be achieved independent of current and bias, resulting in a significantly increased overall mode-locking range of 101 MHz. The suitability of QD-MLL chirp compensated pulse combs for optical communication up to 160 Gbit/s using optical-time-division multiplexing are demonstrated by eye diagrams and autocorrelation measurements.

  8. Optimal operating regime of saturable absorbers in mode-locked lasers

    SciTech Connect

    Narovlyanskaya, N.M.; Tikhonov, E.A.

    1982-01-01

    An investigation was made of ultrashort pulse generation by passive mode locking in a rhodamine 6G jet laser with pulsed laser pumping of up to 300 nsec duration. In order to obtain single ultrashort pulses per axial period in these systems, it was essential to reduce their time of formation to several loop passes. It was shown experimentally that the rate of formation of ultrashort pulses is influenced appreciably by the nonlinear absorber dye and, for a given intracavity intensity, the best dyes are those having a purely electronic transition near the lasing frequency. In this case, the critical bleaching intensity and relaxation time are minimized as a result of the increased role of stimulated resonance transitions in the dye modulator. Optimal types of polymethine dyes are suggested for nonlinear absorbers of tunable ultrashort-pulse rhodamine 6G lasers.

  9. Mode locking in a bismuth fibre laser by using a SESAM

    SciTech Connect

    Krylov, A A; Dvoirin, V V; Mashinsky, V M; Kryukov, P G; Okhotnikov, O G; Guina, M

    2008-03-31

    By using a semiconductor saturable-absorber mirror (SESAM) optimised for operation in the spectral range from 1100 to 1200 nm, passive mode locking is obtained in a cw bismuth-doped fibre laser. Pumping was performed by a cw ytterbium-doped fibre laser at a wavelength of 1075 nm. The operation of the laser is studied by using either a fibre Bragg grating or a loop fibre Sagnac mirror as the output resonator mirror. Stable laser pulses of duration from 50 ps to 3.5 ns, depending on the output mirror type, were generated. The pulse repetition rate was 11 MHz at a wavelength of {approx}1160 nm and the maximum spectral width of 2.1 nm. The maximum average output power was 7.8 mW upon pumping by 1140 mW. (control of laser radiation parameters)

  10. Intra-cavity frequency-doubled mode-locked semiconductor disk laser at 325 nm.

    PubMed

    Bek, Roman; Baumgärtner, Stefan; Sauter, Fabian; Kahle, Hermann; Schwarzbäck, Thomas; Jetter, Michael; Michler, Peter

    2015-07-27

    We present a passively mode-locked semiconductor disk laser (SDL) emitting at 650nm with intra-cavity second harmonic generation to the ultraviolet (UV) spectral range. Both the gain and the absorber structure contain InP quantum dots (QDs) as active material. In a v-shaped cavity using the semiconductor samples as end mirrors, a beta barium borate (BBO) crystal is placed in front of the semiconductor saturable absorber mirror (SESAM) for pulsed UV laser emission in one of the two outcoupled beams. Autocorrelation (AC) measurements at the fundamental wavelength reveal a FWHM pulse duration of 1.22ps. With a repetition frequency of 836MHz, the average output power is 10mW per beam for the red emission and 0.5mW at 325nm.

  11. Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers

    PubMed Central

    Churkin, D. V.; Sugavanam, S.; Tarasov, N.; Khorev, S.; Smirnov, S. V.; Kobtsev, S. M.; Turitsyn, S. K.

    2015-01-01

    Physical systems with co-existence and interplay of processes featuring distinct spatio-temporal scales are found in various research areas ranging from studies of brain activity to astrophysics. The complexity of such systems makes their theoretical and experimental analysis technically and conceptually challenging. Here, we discovered that while radiation of partially mode-locked fibre lasers is stochastic and intermittent on a short time scale, it exhibits non-trivial periodicity and long-scale correlations over slow evolution from one round-trip to another. A new technique for evolution mapping of intensity autocorrelation function has enabled us to reveal a variety of localized spatio-temporal structures and to experimentally study their symbiotic co-existence with stochastic radiation. Real-time characterization of dynamical spatio-temporal regimes of laser operation is set to bring new insights into rich underlying nonlinear physics of practical active- and passive-cavity photonic systems. PMID:25947951

  12. Inter-comb synchronization by mode-to-mode locking

    NASA Astrophysics Data System (ADS)

    Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-08-01

    Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52  ×  10‑16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.

  13. Dissipative soliton in actively mode-locked fiber laser.

    PubMed

    Wang, Ruixin; Dai, Yitang; Yan, Li; Wu, Jian; Xu, Kun; Li, Yan; Lin, Jintong

    2012-03-12

    A dissipative soliton in an all-normal-dispersion actively mode-locked ytterbium-doped fiber laser is reported for the first time. Pulses with 10-ps duration and edge-to-edge bandwidth of 9 nm are generated, and then extra-cavity compressed down to 560 fs due to the large chirp. Widely wavelength tuning between 1031 and 1080 nm is achieved by adjusting the driving frequency only. Our simulation shows that the proposed laser operates in the dissipative soliton shaping regime.

  14. Nanotube-mode-locked linear-cavity fiber laser delivering switchable ultrafast solitons

    NASA Astrophysics Data System (ADS)

    Han, X. X.

    2015-02-01

    We propose a linear-cavity switchable fiber laser based on a single-wall carbon nanotube mode-locker for the first time to the best of our knowledge. Two chirped fiber Bragg gratings (CFBGs) in series and an optical circulator are employed as end mirrors of the linear cavity. The linear-cavity fiber laser is simple and cost-efficient. By adjusting the polarization controllers, a switchable mode-locking operation is obtained at 1551.3 and 1557.9 nm respectively, corresponding to the central wavelengths of two series-wound CFBGs. The pulse duration and spectral bandwidth of ultrafast solitons are ~4.4 ps and ~0.65 nm for the short wavelength operation at 1551.3 nm and ~3.9 ps and ~0.71 nm for the long wavelength operation at 1557.9 nm, respectively. Our experimental observations are well confirmed by the numerical results. The linear-cavity all-fiber laser reduces the cost and is very attractive for ultrafast optics.

  15. WS2 mode-locked ultrafast fiber laser

    PubMed Central

    Mao, Dong; Wang, Yadong; Ma, Chaojie; Han, Lei; Jiang, Biqiang; Gan, Xuetao; Hua, Shijia; Zhang, Wending; Mei, Ting; Zhao, Jianlin

    2015-01-01

    Graphene-like two dimensional materials, such as WS2 and MoS2, are highly anisotropic layered compounds that have attracted growing interest from basic research to practical applications. Similar with MoS2, few-layer WS2 has remarkable physical properties. Here, we demonstrate for the first time that WS2 nanosheets exhibit ultrafast nonlinear saturable absorption property and high optical damage threshold. Soliton mode-locking operations are achieved separately in an erbium-doped fiber laser using two types of WS2-based saturable absorbers, one of which is fabricated by depositing WS2 nanosheets on a D-shaped fiber, while the other is synthesized by mixing WS2 solution with polyvinyl alcohol, and then evaporating them on a substrate. At the maximum pump power of 600 mW, two saturable absorbers can work stably at mode-locking state without damage, indicating that few-layer WS2 is a promising high-power flexible saturable absorber for ultrafast optics. Numerous applications may benefit from the ultrafast nonlinear features of WS2 nanosheets, such as high-power pulsed laser, materials processing, and frequency comb spectroscopy. PMID:25608729

  16. Diode-Pumped Soliton and Non-Soliton Mode-Locked Yb:GYSO Lasers

    NASA Astrophysics Data System (ADS)

    He, Jin-Ping; Liang, Xiao-Yan; Li, Jin-Feng; Zheng, Li-He; Su, Liang-Bi; Xu, Jun

    2011-08-01

    Diode-pumped soliton and non-soliton mode-locked Yb:(Gd1-x Yx)2SiO5(x = 0.5) lasers are demonstrated. Pulses as short as 1.4 ps are generated for the soliton mode-locked operation, with a pair of SF10 prisms as the negative dispersion elements. The central wavelength is 1056 nm and the repetition rate is 48 MHz. For the non-soliton mode locking, the output power could achieve ~1.2 W, and the pulse width is about 20 ps. The critical pulse energy in the soliton-mode locked operation against the Q-switched mode locking is much lower than the critical pulse energy in the non-soliton mode-locked operation.

  17. Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hsiang; Chi, Yu-Chieh; Lin, Gong-Ru

    2013-05-01

    Triturated charcoal nano-powder directly brushed on a fiber connector end-face is used for the first time as a fast saturable absorber for a passively mode-locked erbium-doped fiber-ring laser (EDFL). These dispersant-free charcoal nano-powders with a small amount of crystalline graphene phase and highly disordered carbon structure exhibit a broadened x-ray diffraction peak and their Raman spectrum shows the existence of a carbon related D-band at 1350 cm-1 and the disappearance of the 2D-band peak at 2700 cm-1. The charcoal nano-powder exhibits a featureless linear absorbance in the infrared region with its linear transmittance of 0.66 nonlinearly saturated at 0.73 to give a ΔT/T of 10%. Picosecond mode-locking at a transform-limited condition of a low-gain EDFL is obtained by using the charcoal nano-powder. By using a commercial EDFA with a linear gain of only 17 dB at the saturated output power of 17.5 dB m required to initiate the saturable absorption of the charcoal nano-powder, the EDFL provides a pulsewidth narrowing from 3.3 to 1.36 ps associated with its spectral linewidth broadening from 0.8 to 1.83 nm on increasing the feedback ratio from 30 to 90%. This investigation indicates that all the carbon-based materials containing a crystalline graphene phase can be employed to passively mode-lock the EDFL, however, the disordered carbon structure inevitably induces a small modulation depth and a large mode-locking threshold, thus limiting the pulsewidth shortening. Nevertheless, the nanoscale charcoal passively mode-locked EDFL still shows the potential to generate picosecond pulses under a relatively low cavity gain. An appropriate cavity design can be used to compensate this defect-induced pulsewidth limitation and obtain a short pulsewidth.

  18. Dispersion-compensation-free femtosecond Tm-doped all-fiber laser with a 248  MHz repetition rate.

    PubMed

    Sun, Biao; Luo, Jiaqi; Ng, Boon Ping; Yu, Xia

    2016-09-01

    In this Letter, we report a dispersion-compensation-free ultrafast thulium-doped all-fiber laser based on nonlinear polarization evolution (NPE) mode locking, delivering 330 fs soliton pulses at 1950 nm. A multifunctional hybrid fiberized device was applied in the oscillator to minimize the physical cavity length to ∼80  cm with a total dispersion of -0.045  ps2, enabling a state-of-the-art fundamental mode-locking repetition rate of 248 MHz in an NPE-based oscillator at ∼2  μm. PMID:27607970

  19. Robust double Z-type cavity mode locked Yb:KYW ultrafast laser

    NASA Astrophysics Data System (ADS)

    Wang, Sha; Han, Jing-hua; Wang, Yan-biao; Feng, Guo-ying; Zhou, Shou-huan

    2015-12-01

    Semiconductor saturable absorber mirror (SESAM) mode locked Yb doped ultrafast lasers have been widely used in industrial applications. High laser stability against environment change and delivery process are required for industrial laser systems. A double Z-type ultrafast laser cavity was demonstrated experimentally and theoretically. Compared with the conventional Z-type cavity, this double Z-type cavity SESAM mode locked laser is less sensitive to misalignment and can tolerate more arm length changes while still staying cw mode locking.

  20. Self-mode-locked chromium-doped forsterite laser generates 50-fs pulses

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1993-01-01

    Stable transform-limited (delta nu-delta tau = 0.32) femtosecond pulses with a FWHM of 50 fs were generated from a self-mode-locked chromium-doped forsterite laser. The forsterite laser was synchronously pumped by a CW mode-locked Nd:YAG (82 MHz) laser that generated picosecond pulses (200-300 ps) and provided the starting mechanism for self-mode-locked operation. Maximum output power was 45 mW for 3.9 W of absorbed pumped power with the use of an output coupler with 1 percent transmission. The self-mode-locked forsterite laser was tuned from 1240 to 1270 nm.

  1. Development and commercialization of mode-locked VECSELs

    NASA Astrophysics Data System (ADS)

    Hempler, Nils; Bialkowski, Bartlomiej; Hamilton, Craig J.; Maker, Gareth T.; Malcolm, Graeme P. A.

    2015-03-01

    This paper will describe the current state-of-the-art in commercial mode-locked Vertical External Cavity Surface Emitting Lasers (VECSEL) and demonstrate their efficacy in key applications. Based on indium gallium arsenide quantum well gain structures, our systems operate between 920 nm - 1050 nm with >1 W output powers, 200 MHz pulse repetition rate and <1 ps pulse duration. Crucially, the development issues that have been overcome to bring this promising technology to market will be discussed. These include: thermal management challenges, electronic control system development and robust mechanical design requirements. Having the potential to replace more conventional titanium sapphire laser technology where wavelength flexibility can be traded off against a significantly lower cost point and form factor, we will discuss the use of VECSELs in key applications such as nonlinear microscopy.

  2. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers.

    PubMed

    Li, Xiaohui; Wu, Kan; Sun, Zhipei; Meng, Bo; Wang, Yonggang; Wang, Yishan; Yu, Xuechao; Yu, Xia; Zhang, Ying; Shum, Perry Ping; Wang, Qi Jie

    2016-01-01

    Low phase noise mode-locked fiber laser finds important applications in telecommunication, ultrafast sciences, material science, and biology, etc. In this paper, two types of carbon nano-materials, i.e. single-wall carbon nanotube (SWNT) and graphene oxide (GO), are investigated as efficient saturable absorbers (SAs) to achieve low phase noise mode-locked fiber lasers. Various properties of these wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the performance of the ultrafast pulses. Reduced-noise femtosecond fiber lasers based on such carbon-based SAs are experimentally demonstrated, for which the phase noise has been reduced by more than 10 dB for SWNT SAs and 8 dB for GO SAs at 10 kHz. To the best of our knowledge, this is the first investigation on the relationship between different carbon material based SAs and the phase noise of mode-locked lasers. This work paves the way to generate high-quality low phase noise ultrashort pulses in passively mode-locked fiber lasers. PMID:27126900

  3. Orthogonally polarized bright-dark pulse pair generation in mode-locked fiber laser with a large-angle tilted fiber grating

    NASA Astrophysics Data System (ADS)

    Zhang, Zuxing; Mou, Chengbo; Yan, Zhijun; Sun, Zhongyuan; Zhang, Lin

    2016-06-01

    We report on the generation of orthogonally polarized bright-dark pulse pair in a passively mode-locked fiber laser with a large-angle tilted fiber grating (LA-TFG). The unique polarization properties of the LA-TFG, i.e., polarization-dependent loss and polarization-mode splitting, enable dual-wavelength mode-locking operation. Besides dual-wavelength bright pulses with uniform polarization at two different wavelengths, the bright-dark pulse pair has also been achieved. It is found that the bright-dark pulse pair is formed due to the nonlinear couplings between lights with two orthogonal polarizations and two different wavelengths. Furthermore, harmonic mode-locking of bright-dark pulse pair has been observed. The obtained bright-dark pulse pair could find potential use in secure communication system. It also paves the way to manipulate the generation of dark pulse in terms of wavelength and polarization, using specially designed fiber grating for mode-locking.

  4. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers.

    PubMed

    Li, Xiaohui; Wu, Kan; Sun, Zhipei; Meng, Bo; Wang, Yonggang; Wang, Yishan; Yu, Xuechao; Yu, Xia; Zhang, Ying; Shum, Perry Ping; Wang, Qi Jie

    2016-04-29

    Low phase noise mode-locked fiber laser finds important applications in telecommunication, ultrafast sciences, material science, and biology, etc. In this paper, two types of carbon nano-materials, i.e. single-wall carbon nanotube (SWNT) and graphene oxide (GO), are investigated as efficient saturable absorbers (SAs) to achieve low phase noise mode-locked fiber lasers. Various properties of these wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the performance of the ultrafast pulses. Reduced-noise femtosecond fiber lasers based on such carbon-based SAs are experimentally demonstrated, for which the phase noise has been reduced by more than 10 dB for SWNT SAs and 8 dB for GO SAs at 10 kHz. To the best of our knowledge, this is the first investigation on the relationship between different carbon material based SAs and the phase noise of mode-locked lasers. This work paves the way to generate high-quality low phase noise ultrashort pulses in passively mode-locked fiber lasers.

  5. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Wu, Kan; Sun, Zhipei; Meng, Bo; Wang, Yonggang; Wang, Yishan; Yu, Xuechao; Yu, Xia; Zhang, Ying; Shum, Perry Ping; Wang, Qi Jie

    2016-04-01

    Low phase noise mode-locked fiber laser finds important applications in telecommunication, ultrafast sciences, material science, and biology, etc. In this paper, two types of carbon nano-materials, i.e. single-wall carbon nanotube (SWNT) and graphene oxide (GO), are investigated as efficient saturable absorbers (SAs) to achieve low phase noise mode-locked fiber lasers. Various properties of these wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the performance of the ultrafast pulses. Reduced-noise femtosecond fiber lasers based on such carbon-based SAs are experimentally demonstrated, for which the phase noise has been reduced by more than 10 dB for SWNT SAs and 8 dB for GO SAs at 10 kHz. To the best of our knowledge, this is the first investigation on the relationship between different carbon material based SAs and the phase noise of mode-locked lasers. This work paves the way to generate high-quality low phase noise ultrashort pulses in passively mode-locked fiber lasers.

  6. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers

    PubMed Central

    Li, Xiaohui; Wu, Kan; Sun, Zhipei; Meng, Bo; Wang, Yonggang; Wang, Yishan; Yu, Xuechao; Yu, Xia; Zhang, Ying; Shum, Perry Ping; Wang, Qi Jie

    2016-01-01

    Low phase noise mode-locked fiber laser finds important applications in telecommunication, ultrafast sciences, material science, and biology, etc. In this paper, two types of carbon nano-materials, i.e. single-wall carbon nanotube (SWNT) and graphene oxide (GO), are investigated as efficient saturable absorbers (SAs) to achieve low phase noise mode-locked fiber lasers. Various properties of these wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the performance of the ultrafast pulses. Reduced-noise femtosecond fiber lasers based on such carbon-based SAs are experimentally demonstrated, for which the phase noise has been reduced by more than 10 dB for SWNT SAs and 8 dB for GO SAs at 10 kHz. To the best of our knowledge, this is the first investigation on the relationship between different carbon material based SAs and the phase noise of mode-locked lasers. This work paves the way to generate high-quality low phase noise ultrashort pulses in passively mode-locked fiber lasers. PMID:27126900

  7. 1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    SciTech Connect

    Sadeev, T. Arsenijević, D.; Bimberg, D.; Franke, D.; Kreissl, J.; Künzel, H.

    2015-01-19

    Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 to 300 mA leads to 30 MHz frequency tuning.

  8. Dissipative soliton resonances in all-fiber Er-Yb double clad figure-8 laser.

    PubMed

    Krzempek, Karol

    2015-11-30

    First demonstration of exploiting Dissipative Soliton Resonance (DSR) effects for generating high energy square-shaped pulses in an all-fiber mode-locked Double Clad (DC) erbium-ytterbium (Er-Yb) figure-8 laser (F8L) is presented. The laser was capable of generating 170 ns pulses with an average power of 1.7 W at 800 kHz repetition rate, which corresponds to a record pulse energy of 2.13 μJ, achieved directly from the resonator, without Q-switching, cavity dumping or additional amplifiers. Unique circulator-based out-coupling of high energy pulses in the directional loop is proposed as a method of preventing damage to the all-fiber setup. Appropriate laser design allowed utilizing Peak Power Clamping (PPC) effect for linear pulse duration tuning via changing the pump power. PMID:26698697

  9. Dynamic localization and Bloch oscillations in the spectrum of a frequency mode-locked laser.

    PubMed

    Longhi, Stefano

    2005-04-01

    It is shown that a frequency mode-locked laser with a sinusoidal sweep of modulation frequency around a mode-locking condition represents an ideal optical system for observing in the spectral domain the phenomena of dynamic localization and Bloch oscillations of electrons in an ideal solid placed in an external ac electric field.

  10. Mode-locking of thulium-doped and erbium-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Nelson, Lynn Elizabeth

    This thesis reports work on passive mode-locking of thulium-doped and erbium-doped fiber ring lasers using the technique of polarization additive pulse mode-locking (P-APM). A self-starting, mode-locked Tm+3-doped fiber laser was demonstrated with 360 to 500 fsec pulses tunable from 1.8 to 1.9 μm, the largest tuning range demonstrated from a rare-earth doped fiber. This laser operated in the soliton regime due to the large negative group-velocity dispersion (GVD) of the fiber at 1.8 μm. A possible application to optical coherence tomography on biomedical tissue was explored. A stretched-pulse Er+3-doped laser at 1.55 μm was optimized for the application of frequency-doubling to 775 nm where the pulses can be used as a seed for a Ti:Sapphire regenerative amplifier. This laser incorporated segments of fiber with positive and negative GVD to avoid operation in the soliton regime. Compressed fundamental pulses of 100 fsec and 2.7 nJ were obtained, and three nonlinear crystals, β- BaB2O4 (BBO), KNbO3 (potassium niobate), and LiB3O5 (LBO), were evaluated for frequency doubling. Near transform-limited pulses at 771 nm with average powers of 8.7 mW were obtained with a 1-cm BBO crystal, corresponding to conversion efficiencies of up to 10%. Frequency resolved optical gating (FROG) measurements were performed on both the fundamental and doubled pulses to better characterize the laser. The effect of linear birefringence on P-APM was explored through numerical simulations for the case of standard fibers, where the two are of the same order. Although reduced by the birefringence, pulse shaping still occurred and there was no inherent periodicity due to the fiber beat-length. Measurements of birefringence and temperature sensitivity of both standard and polarization maintaining (PM) fibers were also performed. Experimental work toward an environmentally stable Er+3-doped fiber laser included two different schemes. The first design was comprised of only PM-fiber, but stable

  11. Active mode locking of quantum cascade lasers in an external ring cavity.

    PubMed

    Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A

    2016-05-05

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.

  12. Active mode locking of quantum cascade lasers in an external ring cavity

    PubMed Central

    Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.

    2016-01-01

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409

  13. Active mode locking of quantum cascade lasers in an external ring cavity

    NASA Astrophysics Data System (ADS)

    Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.

    2016-05-01

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.

  14. Nanotube Films and Their Application For Mode-Locked Lasers

    NASA Astrophysics Data System (ADS)

    Rozhin, Alex G.; Ferrar, A. C.

    2009-03-01

    Carbon nanotubes (CNTs) exhibit strong saturable absorption, i.e. they become transparent under sufficiently intense light. This has great potential for applications in photonics. By tuning the nanotube diameter it is easy to tune the saturable absorption in a broad optical range of interest for telecommunications, medicine and military applications. The performance of CNTs based saturable absorbers depends on concentration, bundle size, and transparency of the matrix where CNTs are dispersed. CNT saturable absorbers can be produced by cheap wet chemistry and can be easily integrated into polymer photonic systems. Here, we review the fabrication and characterization of saturable absorber based on CNT-polymer optical composites [1,2,3]. We use strong ultrasonication to obtain CNT solutions. Such solutions with different nanotube bundle sizes are then studied by photoluminescence excitation spectroscopy [4]. We find that exciton energy transfer between semiconducting CNTs is an efficient carrier relaxation channel in the bundles [4]. This fingerprints and quantifies the presence of small bundles and allows us to optimize the solutions used for composites preparation. We demonstrate picosecond pulse generation in a nanotube mode-locked waveguide laser [5], as well as 125 fs generation in an erbium doped fiber laser. We also report a novel SWNT- polycarbonate polymer composite, with a absorption maximum at 1550 nm and a bandwidth of about 300 nm [6]. This has strong saturable absorption with saturation intensity of 7 MW/cm^2. We demonstrate the first SWNT-mode-locked widely tunable fibre ring laser [7]. This is achieved through the control of amplification at the specific transitions of the Er^3+ gain medium by placing a band-pass filter in a laser cavity [7]. [1] A. G. Rozhin et al. Phys. Stat. Sol. (b) 243, 3551 (2006). [2] V. Scardaci et al. Physica E 37, 115 (2007) [3] T. Hasan et al. J. Phys. Chem C 111, 12549 (2007) [4] P. H. Tan et al. Phys. Rev. Lett. 99

  15. Diode-Pumped Mode-Locked LiSAF Laser

    SciTech Connect

    1996-02-01

    Under this contract we have developed Cr{sup 3+}:LiSrAlF{sub 6} (Cr:LiSAF, LiSAF) mode-locked lasers suitable for generation of polarized electrons for CEBAF. As 670 nm is an excellent wavelength for optical pumping of Cr:LiSAF, we have used a LIGHTWAVE developed 670 nm diode pump module that combines the output of ten diode lasers and yields approximately 2 Watts of optical power. By the use of a diffraction limited pump beam however, it is possible to maintain a small mode size through the length of the crystal and hence extract more power from Cr:LiSAF laser. For this purpose we have developed a 1 Watt, red 660nm laser (LIGHTWAVE model 240R) which serves as an ideal pump for Cr:LiSAF and is a potential replacement of costly and less robust krypton laser. This new system is to compliment LIGHTWAVE Series 240, and is currently being considered for commercialization. Partially developed under this contract is LIGHTWAVEs product model 240 which has already been in our production lines for a few months and is commercially available. This laser produces 2 Watts of output at 532 nm using some of the same technology developed for production of the 660nm red system. It is a potential replacement for argon ion lasers and has better current and cooling requirements and is an excellent pump source for Ti:Al{sub 2}O{sub 3}. Also, as a direct result of this contract we now have the capability of commercially developing a mode-locked 100MHz Cr:LiSAF system. Such a laser could be added to our 100 MHz LIGHTWAVE Series 131. The Series 131 lasers provide pico second pulses and were originally developed under another DOE SBIR. Both models of LIGHTWAVE Series 240 lasers, the fiber coupled pump module and the 100MHz LiSAF laser of Series 131 have been partially developed under this contract, and are commercially competitive products.

  16. Diode-pumped Kerr-lens mode-locked Yb: GSO laser generating 72 fs pulses

    NASA Astrophysics Data System (ADS)

    Tian, Wenlong; Wang, Zhaohua; Zhu, Jiangfeng; Zheng, Lihe; Xu, Xiaodong; Xu, Jun; Wei, Zhiyi

    2016-05-01

    The generation of 72 fs hyperbolic secant pulses centered at 1050 nm with 17.8 nm bandwidth from a diode pumped Kerr-lens mode-locked Yb: GSO laser is demonstrated. With the help of a semiconductor saturable absorber mirror, stable mode-locking with an average output power of 85 mW at a repetition rate of 113 MHz is realized. To the best of our knowledge, this is the first demonstration of Kerr-lens mode-locking in Yb: GSO laser.

  17. Mode-locking dynamics of hair cells of the inner ear.

    PubMed

    Fredrickson-Hemsing, Lea; Ji, Seung; Bruinsma, Robijn; Bozovic, Dolores

    2012-08-01

    We explore mode locking of spontaneous oscillations of saccular hair cell bundles to periodic mechanical deflections. A simple dynamic systems framework is presented that captures the main features of the experimentally observed behavior in the form of an Arnold tongue. We propose that the phase-locking transition can proceed via different bifurcations. At low stimulus amplitudes F, the transition to mode locking as a function of the stimulus frequency ω has the character of a saddle-node bifurcation on an invariant circle. At higher stimulus amplitudes, the mode-locking transition has the character of a supercritical Andronov-Hopf bifurcation. PMID:23005793

  18. Mode-Locking Dynamics of Hair Cells of the Inner Ear

    PubMed Central

    Fredrickson-Hemsing, Lea; Ji, Seung; Bruinsma, Robijn; Bozovic, Dolores

    2012-01-01

    We explore mode-locking of spontaneous oscillations of saccular hair cell bundles to periodic mechanical deflections. A simple dynamic systems framework is presented that captures the main features of the experimentally observed behavior in the form of an Arnold Tongue. We propose that the phase-locking transition can proceed via different bifurcations. At low stimulus amplitudes F, the transition to mode-locking as a function of the stimulus frequency ω has the character of a saddle-node bifurcation on an invariant circle. At higher stimulus amplitudes, the mode-locking transition has the character of a supercritical Andronov-Hopf bifurcation. PMID:23005793

  19. A wide bandwidth free-electron laser with mode locking using current modulation.

    SciTech Connect

    Kur, E.; Dunning, D. J.; McNeil, B. W. J.; Wurtele, J.; Zholents, A. A. )

    2011-01-20

    A new scheme for mode locking a free-electron laser amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept, based on the energy modulation of electrons, are improved including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked free-electron laser and self-amplified spontaneous emission free-electron laser. Illustrative examples using a hypothetical mode-locked free-electron laser amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated.

  20. Mode-locking dynamics of hair cells of the inner ear

    NASA Astrophysics Data System (ADS)

    Fredrickson-Hemsing, Lea; Ji, Seung; Bruinsma, Robijn; Bozovic, Dolores

    2012-08-01

    We explore mode locking of spontaneous oscillations of saccular hair cell bundles to periodic mechanical deflections. A simple dynamic systems framework is presented that captures the main features of the experimentally observed behavior in the form of an Arnold tongue. We propose that the phase-locking transition can proceed via different bifurcations. At low stimulus amplitudes F, the transition to mode locking as a function of the stimulus frequency ω has the character of a saddle-node bifurcation on an invariant circle. At higher stimulus amplitudes, the mode-locking transition has the character of a supercritical Andronov-Hopf bifurcation.

  1. Study of the stabilization of a semiconductor mode-lock laser using hybrid mode-lock and optical feedback

    NASA Astrophysics Data System (ADS)

    Castro Alves, D.; Abreu, Manuel; Cabral, Alexandre; Rebordão, J. M.

    2014-08-01

    In this study we present a scheme for modelocked laser stabilization that narrows the RF linewidth and lowers the timing jitter. The aim of this scheme is to stabilize the pulse repetition frequency (PRF) to be used in an absolute long distance measurement technique. In the most of the stabilization schemes, PRF is kept constant, however in this scheme; the PRF is required to perform a sweep, while achieving a relative error in the order of 10-8 or better within the tuning range. The laser used is a symmetrical cladding single section InAs/InP quantum dash emitting at 1550 nm and with a pulse repetition frequency of 4.37 GHz The techniques proposed for stabilization are hybrid mode-locking and optical feed-back. In hybrid modelocking, the PRF is locked to the local oscillator (LO), lowering the RF linewidth and the jitter. By performing a frequency modulation of LO, the PRF is modulated. The optical feedback technique uses a fraction of the output radiation that is fed back into the laser cavity after a certain delay. If the delay line is correctly adjusted, this will reduce the timing jitter of laser. The progress in this technique is in the synchronization of the LO with the delay line, combining the benefits of both techniques. Performing a sweep in PRF, the synchronization circuit adjusts the delay line to match incoming pulses within the cavity. Preliminary results are showed.

  2. Terahertz radiation using log-spiral-based low-temperature-grown InGaAs photoconductive antenna pumped by mode-locked Yb-doped fiber laser.

    PubMed

    Kong, Moon Sik; Kim, Ji Su; Han, Sang Pil; Kim, Namje; Moon, Kiwon; Park, Kyung Hyun; Jeon, Min Yong

    2016-04-01

    We demonstrate a terahertz (THz) radiation using log-spiral-based low-temperature-grown (LTG) InGaAs photoconductive antenna (PCA) modules and a passively mode-locked 1030 nm Yb-doped fiber laser. The passively mode-locked Yb-doped fiber laser is easily implemented with nonlinear polarization rotation in the normal dispersion using a 10-nm spectral filter. The laser generates over 250 mW of the average output power with positively chirped 1.58 ps pulses, which are dechirped to 127 fs pulses using a pulse compressor outside the laser cavity. In order to obtain THz radiation, a home-made emitter and receiver constructed from log-spiral-based LTG InGaAs PCA modules were used to generate and detect THz signals, respectively. We successfully achieved absorption lines over 1.5 THz for water vapor in free space. Therefore, we confirm that a mode-locked Yb-doped fiber laser has the potential to be used as an optical source to generate THZ waves.

  3. Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber

    NASA Astrophysics Data System (ADS)

    Sotor, J.; Sobon, G.; Jagiello, J.; Lipinska, L.; Abramski, K. M.

    2015-04-01

    We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (Frep) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest Frep was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PM fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.

  4. Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber

    SciTech Connect

    Sotor, J. Sobon, G.; Abramski, K. M.; Jagiello, J.; Lipinska, L.

    2015-04-07

    We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (F{sub rep}) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest F{sub rep} was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PM fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.

  5. Observation of Self-Frequency Doubling in Diode-Pumped Mode-Locked Nd-Doped La3Ga5SiO14 Laser

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Xing; Wang, Zhao-Hua; Tian, Wen-Long; Wang, Qing; Zhang, Zhi-Guo; Wei, Zhi-Yi; Yu, Hao-Hai; Zhang, Huai-Jin; Wang, Ji-Yang

    2015-01-01

    A diode-pumped passively mode-locked Nd-doped La3Ga5SiO14 (Nd:LGS) laser is realized by using a semiconductor saturable absorber mirror. With the pump power of 2 W, we obtain a 532 nm self-frequency doubling (SFD) laser together with a 10.9 ps fundamental laser at the repetition rate of 173.7 MHz. To the best of our knowledge, it is the first time for self-frequency doubling in the diode-pumped mode-locked Nd:LGS laser. Benefited from the diode lasers and its self-frequency doubling property, Nd:LGS could be a potential candidate for compact, stable and cheap ultrafast green laser sources.

  6. Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion.

    PubMed

    Wang, Jinzhang; Cai, Zhiping; Xu, Ping; Du, Geguo; Wang, Fengqiu; Ruan, Shuangchen; Sun, Zhipei; Hasan, Tawfique

    2015-04-20

    We numerically and experimentally analyze the output characteristics and pulse dynamics of carbon nanotube mode-locked fiber lasers near zero cavity dispersion (from 0.02 to ~-0.02 ps(2)). We focus on such near zero dispersion cavities to reveal the dispersion related transition between different mode-locking regimes (such as soliton-like, stretched-pulse and self-similar regimes). Using our proposed model, we develop a nanotube-mode-locked fiber laser setup generating ~97 fs pulse which operates in the stretched-pulse regime. The corresponding experimental results and pulse dynamics are in good agreement with the numerical results. Also, the experimental results from soliton-like and self-similar regimes exhibit the same trends with simulations. Our study will aid design of different mode-locking regimes based on other new saturable absorber materials to achieve ultra-short pulse duration.

  7. Pulse Switching and Stability in FM Mode-Locked Fiber Lasers

    SciTech Connect

    Usechak, N.G.; Agrawal, G.P.

    2005-09-30

    We investigate the dynamics of the pulse switching mechanism in FM mode-locked fiber lasers for what we believe to be the first time. Two completely different pulse switching mechanisms are identified.

  8. Automation of Mode Locking in a Nonlinear Polarization Rotation Fiber Laser through Output Polarization Measurements.

    PubMed

    Olivier, Michel; Gagnon, Marc-Daniel; Habel, Joé

    2016-01-01

    When a laser is mode-locked, it emits a train of ultra-short pulses at a repetition rate determined by the laser cavity length. This article outlines a new and inexpensive procedure to force mode locking in a pre-adjusted nonlinear polarization rotation fiber laser. This procedure is based on the detection of a sudden change in the output polarization state when mode locking occurs. This change is used to command the alignment of the intra-cavity polarization controller in order to find mode-locking conditions. More specifically, the value of the first Stokes parameter varies when the angle of the polarization controller is swept and, moreover, it undergoes an abrupt variation when the laser enters the mode-locked state. Monitoring this abrupt variation provides a practical easy-to-detect signal that can be used to command the alignment of the polarization controller and drive the laser towards mode locking. This monitoring is achieved by feeding a small portion of the signal to a polarization analyzer measuring the first Stokes parameter. A sudden change in the read out of this parameter from the analyzer will occur when the laser enters the mode-locked state. At this moment, the required angle of the polarization controller is kept fixed. The alignment is completed. This procedure provides an alternate way to existing automating procedures that use equipment such as an optical spectrum analyzer, an RF spectrum analyzer, a photodiode connected to an electronic pulse-counter or a nonlinear detecting scheme based on two-photon absorption or second harmonic generation. It is suitable for lasers mode locked by nonlinear polarization rotation. It is relatively easy to implement, it requires inexpensive means, especially at a wavelength of 1550 nm, and it lowers the production and operation costs incurred in comparison to the above-mentioned techniques. PMID:26967924

  9. Mode-locked terahertz quantum cascade laser by direct phase synchronization

    SciTech Connect

    Maussang, K.; Maysonnave, J.; Jukam, N.; Freeman, J. R.; Cavalié, P.; Dhillon, S. S.; Tignon, J.; Khanna, S. P.; Linfield, E. H.; Davies, A. G.; Beere, H. E.; Ritchie, D. A.

    2013-12-04

    Mode-locking of a terahertz quantum cascade laser is achieved using multimode injection seeding. Contrary to standard methods that rely on gain modulation, here a fixed phase relationship is directly imprinted to the laser modes. In this work, we demonstrate the generation of 9 ps phase mode-locked pulses around 2.75 THz. A direct measurement of the emitted field phase shows that it results from the phase of the initial injection.

  10. Intermode beating mode-locking technique for O-band mixed-cascaded Raman fiber lasers.

    PubMed

    Luo, Zhengqian; Zhong, Min; Xiong, Fengfu; Wu, Duanduan; Huang, Yizhong; Li, Yingyue; Le, Lili; Xu, Bin; Xu, Huiying; Cai, Zhiping

    2015-02-15

    A novel intermode beating mode-locking (IBML) technique combined with a cascaded Raman process is proposed to mode-lock an O-band two-cascaded Raman fiber laser. Using a 980-m-long phosphosilicate fiber pumped by a 1064 nm laser, the second-order Raman oscillation at 1319 nm is generated by the mixed-cascaded Raman shifts of P2O5 and SiO2. By precisely matching the intermode beating frequencies of the 1064 nm pump laser and the second-order Raman cavity frequency, harmonic mode-locking at 1319 nm is initiated. The dynamic process of the IBML operation in the cascaded Raman laser is experimentally investigated. The 131st-order harmonic mode-locking with a repetition rate of 27.247 MHz is very stable with the radio-frequency (RF) signal-to-noise ratio of >56  dB and the RF supermode-suppression ratio of >43  dB. The mode-locked pulses with the square profile are confirmed as the noise-like pulses by an autocorrelator. The IBML technique, in combination with the cascaded Raman process, could offer an exciting new prospect for obtaining simple, compact, and arbitrary-wavelength mode-locked laser sources. PMID:25680135

  11. 240 GHz pedestal-free colliding-pulse mode-locked laser with a wide operation range

    NASA Astrophysics Data System (ADS)

    Hou, L.; Haji, M.; Marsh, J. H.

    2014-11-01

    A 240 GHz, sixth-harmonic monolithic ~1.55 μm colliding-pulse mode-locked laser is reported using a three-quantum-well active layer design and a passive far-field reduction layer. The device emits 0.88 ps pulses with a peak power of 65 mW and intermediate longitudinal modes suppressed by >30 dB. The device demonstrates a wide operation range compared to the conventional five-quantum-well design as well as having a low divergence angle (12.7° × 26.3°), granting a twofold improvement in butt-coupling efficiency into a flat cleaved single-mode fibre.

  12. Dual-wavelength operation of continuous-wave and mode-locked erbium-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Pottiez, O.; Martinez-Rios, A.; Monzon-Hernandez, D.; Ibarra-Escamilla, B.; Kuzin, E. A.; Hernandez-Garcia, J. C.

    2012-06-01

    We study numerically and experimentally multiple-wavelength operation of an erbium-doped figure-eight fiber laser including a multiple-bandpass optical filter formed by two concatenated fiber tapers. Both continuous-wave and pulsed operations are considered. In the continuous-wave regime, stable long-term operation at multiple closely spaced wavelengths is only obtained if fine adjustments of the cavity losses are performed. Under these conditions, simultaneous lasing at up to four wavelengths separated by 1.5 nm was observed experimentally. Tunable single-wavelength operation over more than 20 nm is also observed in the continuous-wave regime. In the passive mode locking regime, numerical simulations indicate that mechanisms involving the filter losses and the nonlinear transmission characteristic of the NOLM contribute in principle to stabilize dual-wavelength operation, allowing less demanding cavity loss adjustments. In this regime, the problem of synchronization between the pulse trains generated at each wavelength adds an additional dimension to the problem. In presence of cavity dispersion, the pulses at each wavelength tend to be asynchronous if the wavelength separation is large, however they can be synchronous in the case of closely spaced wavelengths, if cross-phase modulation is able to compensate for the dispersion-induced walkoff. Experimentally, fundamental and 2nd-order harmonic mode locking was observed, characterized by the generation of noise-like pulses. Finally, a regime of multi-wavelength passive Q-switching was also observed. We believe that this work will be helpful to guide the design of multiple-wavelength fiber laser sources, which are attractive for a wide range of applications including Wavelength Division Multiplexing transmissions, signal processing and sensing.

  13. All-fiber dual-wavelength laser delivering two types of solitons

    NASA Astrophysics Data System (ADS)

    Li, W. L.

    2015-05-01

    We have proposed a compact all-fiber dual-wavelength laser based on a fiber Bragg grating (FBG) and semiconductor saturable absorber mirror (SESAM). The proposed laser mode locked by single-walled carbon nanotubes (SWNTs) delivers two kinds of solitons with pulse durations of ~1 ps and ~20 ps. The spectral width of the longer soliton pulses is ~0.14 nm, which attributes to the narrow bandwidth of the FBG. Shorter pulses with a spectral width of ~4 nm are mainly determined by the cavity length and intracavity dispersion. Our method provides a simple, stable, low-cost, and dual-scale ultrafast-pulsed laser source suitable for practical applications in optical communications and sensing.

  14. All-fiber smooth supercontinuum generation in highly nonlinear dispersion-shifted fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Xianming; Gu, Chun; Xu, Lixin; Wang, Anting; Chen, Guoliang; Zheng, Huan; Zheng, Rui; Fu, Huaiduo; Ming, Hai

    2009-11-01

    Supercontinuum(SC) source has found numerous applications, such as DWDM, frequency metrology, optical coherence tomography, and optical measurement. We demonstrate an all-fiber supercontimuun source generated in highly nonlinear fiber (HNLF). The HNLF is pumped by our mode-locked fiber laser with pulse width and peak power, 21.1ps and kW, respectively. An ultra-broadband supercontinuum extends from 1000 nm to 1750 nm is obtained, and the spectrum is flat with the amplitude variation less than 4dB except around the fiber zero dispersion wavelength. The spectrum of our supercontinuum source can extend beyond 1750 nm, but due to the limitation of the measured range of optical spectrum analyzer (AQ6317B), the spectrum of the supercontinuum source beyond 1750 nm is not yet obtained in our lab now. The spectral broadening mechanism of smoothed supercontinnum is considered by the higher-order soliton fission and their blue-shifted dispersive wave.

  15. Experimental Investigation of Wavelength-Tunable All-Normal-Dispersion Yb-Doped Mode-Locked Fiber Lasers: Compression and Amplification

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao-Sheng; Hua, Yi

    2015-02-01

    Wavelength-tunable ultrashort pulse source with high energy is highly desired for a lot of applications. The wavelength-tunable all-normal-dispersion (ANDi) mode-locked fiber laser, which can be compressed easily and amplified by an all-fiber structure, is a promising seed of such a source with compact structures. The pulse compression and amplification at different center wavelengths (from 1026 to 1058 nm) of the tunable ANDi Ybdoped mode-locked fiber lasers that we previously proposed are experimentally investigated in this work. It is found that, for different wavelengths, the duration and chirp of the direct output pulse from the oscillator vary considerably, however, the duration of compressed pulse fluctuates less. For the amplification process, due to the unflat gain spectrum of Yb-doped fiber, the gain at a short wavelength is larger than that at a long wavelength. Consequently, the trends of spectrum distortions induced by the amplification process are different for different wavelengths. These results and analyses will be helpful for the design of a high-energy and wavelength-tunable ultrashort pulse source based on an ANDi seed.

  16. High-average-power actively-mode-locked Tm3+ fiber lasers

    NASA Astrophysics Data System (ADS)

    Eckerle, Michael; Kieleck, Christelle; Hübner, Philipp; Świderski, Jacek; Jackson, Stuart D.; Mazé, Gwenael; Eichhorn, Marc

    2012-02-01

    Fiber lasers emitting in the 2 μm wavelength range doped with thulium ions can be used as highly efficient pump sources for nonlinear converters to generate mid-infrared radiation. For spectroscopic purposes, illumination and countermeasures, a broad mid-infrared emission spectrum is advantageous. This can be reached by supercontinuum generation in fibers, e.g. fluoride fibers, which up to now has, however, only been presented with either low average power, complex Raman-shifted 1.55 μm pump sources or multi-stage amplifier pump schemes. Here we present recent results of a new actively-mode-locked single-oscillator scheme that can provide the high-repetition rate sub-ns pump pulses needed for pumping supercontinuum generators. A thulium-doped silica fiber laser is presented that provides > 11 W of average power CW-mode-locked pulses at 38 MHz repetition rate at ~ 38 ps pulse width. Upgrading the setup to allow Q-switched mode-locked operation yields mode-locked 40 MHz pulses arranged in 60 kHz bunched Q-switch envelopes and thus increases further the available peak power. In this Q-switched mode-locked regime over 5 W of average power has been achieved.

  17. Mode locking and island suppression by resonant magnetic perturbations in Rutherford regime

    SciTech Connect

    Huang, Wenlong; Zhu, Ping

    2015-03-15

    We demonstrate in theory that tearing mode locking and magnetic island suppression by resonant magnetic perturbations (RMPs) can correspond to different states of a same dynamic system governed by the torque balance and the nonlinear island evolution in the Rutherford regime. In particular, mode locking corresponds to the exact steady state of this system. A new exact analytic solution has been obtained for such a steady state, which quantifies the dependence of the locked mode island width on RMP amplitude in different plasma regimes. Furthermore, two different branches of mode locking have been revealed with the new analytic solution and the branch with suppressed island width turns out to be unstable in general. On the other hand, the system also admits stable states of island suppression achieved through the RMP modulation of tearing mode rotational frequency. When the RMP amplitude is above a certain threshold, the island suppression is transient until the tearing mode eventually gets locked. When the RMP amplitude is below the mode locking threshold, the island can be suppressed in a steady state on time-average, along with transient oscillations in rotational frequency and island width due to the absence of mode locking.

  18. Mode-Locking Behavior of Izhikevich Neuron Under Periodic External Forcing

    NASA Astrophysics Data System (ADS)

    Farokhniaee, Amirali; Large, Edward

    2015-03-01

    In this study we obtained the regions of existence of various mode-locked states on the periodic-strength plane, which are called Arnold Tongues, for Izhikevich neurons. The study is based on the new model for neurons by Izhikevich (2003) which is the normal form of Hodgkin-Huxley neuron. This model is much simpler in terms of the dimension of the coupled non-linear differential equations compared to other existing models, but excellent for generating the complex spiking patterns observed in real neurons. Many neurons in the auditory system of the brain must encode amplitude variations of a periodic signal. These neurons under periodic stimulation display rich dynamical states including mode-locking and chaotic responses. Periodic stimuli such as sinusoidal waves and amplitude modulated (AM) sounds can lead to various forms of n : m mode-locked states, similar to mode-locking phenomenon in a LASER resonance cavity. Obtaining Arnold tongues provides useful insight into the organization of mode-locking behavior of neurons under periodic forcing. Hence we can describe the construction of harmonic and sub-harmonic responses in the early processing stages of the auditory system, such as the auditory nerve and cochlear nucleus.

  19. A harmonically mode-locked dark soliton and bright-dark soliton pair ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Lv, Zhiguo; Teng, Hao; Fang, Shaobo; Jia, Haotian; Wang, Lina; Wang, Junli; Wei, Zhiyi

    2016-06-01

    We report on an experimental study of a dark soliton and bright-dark soliton pair, harmonically mode-locked, all normal dispersion (ANDi) ytterbium fiber laser with a long cavity length. Mode-locked output up to the fourth harmonic with respect to the fundamental repetition rate has been realized. To the best of our knowledge, this the first such demonstration so far in ANDi mode-locked ytterbium fiber lasers with a birefringence filter as spectral modulation component. The experimentally recorded mode-locked spectrum shows that the generation of a dark soliton is always accompanied by strong continuous-wave emission. Furthermore, by changing the pump power, the fundamental bright-dark soliton pair mode-locked operation can be evolved into the state of the second order bright soliton coexisting with the fundamental dark soliton. Additionally, bright-dark soliton pairs, which are symmetric relative to the vertical coordinate, can be interconverted by rotating waveplates in a fixed maximum pump power condition. The generation of the dark pulse is probably due to the large normal dispersion introduced in the ring cavity except for the nonlinearity.

  20. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    SciTech Connect

    Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico

    2013-12-02

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes.

  1. Different pulse pattern generation by frequency detuning in pulse modulated actively mode-locked ytterbium doped fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, He; Chen, Sheng-Ping; Si, Lei; Zhang, Bin; Jiang, Zong-Fu

    2015-10-01

    We report the results of our recent experimental investigation of the modulation frequency detuning effect on the output pulse dynamics in a pulse modulated actively mode-locked ytterbium doped fiber laser. The experimental study shows the existence of five different mode-locking states that mainly depend on the modulation frequency detuning, which are: (a) amplitude-even harmonic/fundamental mode-locking, (b) Q-switched harmonic/fundamental mode-locking, (c) sinusoidal wave modulation mode, (d) pulses bundle state, and (e) noise-like state. A detailed experimental characterization of the output pulses dynamics in each operating mode is presented.

  2. A wide bandwidth free-electron laser with mode locking using current modulation.

    SciTech Connect

    Kur, E.; Dunning, D. J.; McNeil, B. W. J.; Wurtele, J.; Zholents, A. A. )

    2011-06-08

    A new scheme for mode locking a free-electron laser (FEL) amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept (Thompson and McNeil 2008 Phys. Rev. Lett. 100 203901), based on the energy modulation of electrons, are improved, including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked FEL and a self-amplified spontaneous emission FEL. Illustrative examples using a hypothetical mode-locked FEL amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated.

  3. 2.4 GHz CMOS Power Amplifier with Mode-Locking Structure to Enhance Gain

    PubMed Central

    2014-01-01

    We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm2. PMID:25045755

  4. Resonantly pumped continuous-wave mode-locked Ho:YAP laser

    NASA Astrophysics Data System (ADS)

    Duan, X. M.; Lin, W. M.; Cui, Z.; Yao, B. Q.; Li, H.; Dai, T. Y.

    2016-04-01

    In this paper, we report a continuous-wave mode-locked Ho:YAP laser for the first time to our knowledge. Mode-locked pulse was produced by using an acousto-optic modulator. A 1.91-μm Tm-fiber laser as the pump source, at incident pump power of 25.9 W, the maximum output power of 2.87 W at 2117.8 nm was achieved in continuous-wave mode-locked regime. Pulse as short as 254.8 ps was obtained at repetition frequency of 81.52 MHz. In addition, the beam quality factor M 2 value of 1.6 was obtained.

  5. Widely tunable mode-locked fiber laser using carbon nanotube and LPG W-shaped filter.

    PubMed

    Wang, Jie; Zhang, A Ping; Shen, Yong Hang; Tam, Hwa-yaw; Wai, P K A

    2015-09-15

    A widely tunable mode-locked fiber laser using a carbon nanotube absorber and a fiber-optic W-shaped spectral filter is presented. The W-shaped filter is constructed by sandwiching a phase-shifted long-period grating between two LPGs of different periods. By adjusting the temperature of the W-shaped filter from 23°C to 100°C, the central wavelength of the mode-locked fiber laser can be continuously tuned from 1597 to 1553 nm. The tuning range is further extended to 1531.6 nm when a shorter erbium-doped fiber is used in the fiber oscillator. The experimental results reveal that the large thermal tunability of the proposed LPG filter provides an effective approach to achieve compact widely tunable mode-locked fiber lasers covering both C and L bands.

  6. Generation of the numerator = 2 rational harmonic mode-locked pulses in fiber ring lasers

    NASA Astrophysics Data System (ADS)

    Wang, Pinghe; Zhan, Li; Ye, Qinghao; Xia, Yuxing

    2004-09-01

    In conventional rational harmonic mode-locking, optical pulse trains with the repetition rate of (pn+1)f_(c) are generated when the modulation frequency of the in-cavity modulator is set at f_(m)=(n+1/p)f_(c), where n and p are both integers, f_(c) is the fundamental cavity frequency. In this paper, we report that rational harmonic mode locking phenomenon takes place in the fiber lasers when the modulation frequency is set at f_(m)=(n+2/p)f_(c). The pulse generations are experimentally demonstrated when the numerator of the rational corresponds to 2 in 5th and 7th order rational harmonic mode-locking.

  7. Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser.

    PubMed

    Zhao, Xin; Zheng, Zheng; Liu, Lei; Wang, Qi; Chen, Haiwei; Liu, Jiansheng

    2012-11-01

    A simple, fast and long-scan-range pump-probe scheme is experimentally demonstrated using a dual-wavelength passively mode-locked fiber laser. The pulse trains from the dual-wavelength laser have a small difference in their repetition frequencies inherently determined by the intracavity dispersion. This enables the realization of the asynchronous sampling scheme with a tens-of-nanosecond-long delay range and a picosecond scan step at a millisecond scan speed. Instead of two synchronized ultrafast lasers in the traditional asynchronous sampling scheme, just one fiber laser is needed in our scheme, which could significantly simplify the system setup.

  8. Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses.

    PubMed

    Yoshida, Akira; Schmidt, Andreas; Petrov, Valentin; Fiebig, Christian; Erbert, Götz; Liu, Junhai; Zhang, Huaijin; Wang, Jiyang; Griebner, Uwe

    2011-11-15

    Direct sub-50-fs pulse generation is demonstrated with a mode-locked Yb:YCa4O(BO3)3 laser. With external compression, pulses as short as 35 fs are generated at 1055 nm. The oscillator operating at a repetition rate of 95 MHz is pumped by a two-section distributed Bragg reflector tapered diode laser and mode locked by a semiconductor saturable absorber mirror. The onset of self-Raman-conversion for pulse spectral bandwidths exceeding 40 nm (FWHM) is observed.

  9. Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator.

    PubMed

    Brons, Jonathan; Pervak, Vladimir; Bauer, Dominik; Sutter, Dirk; Pronin, Oleg; Krausz, Ferenc

    2016-08-01

    We have recently demonstrated a simple power scaling procedure for Kerr-lens mode-locked thin-disk oscillators. Here we report on the extension of this scheme to a broadband high-peak-power thin-disk oscillator, delivering 140-fs pulses with a peak and average power of 62 MW and 155 W, respectively. This result shows that reaching the emission bandwidth of the gain material in Kerr-lens mode-locked thin-disk oscillators is feasible without sacrificing output power, efficiency, or stability by relying on high intracavity nonlinearities.

  10. Slow-light propagation using mode locking of spin precession in quantum dots

    SciTech Connect

    Shabaev, A.; Dutton, Z.; Kennedy, T. A.; Efros, Al. L.

    2010-11-15

    We propose using mode locking to enable coherent nonlinear optical effects in inhomogenously broadened spin ensembles. We carry out detailed calculations for quantum dot systems in which increased spin coherence via mode locking has been recently observed [A. Greilich et al., Science 313, 341 (2006); 317, 1896 (2007)]. We show how, in the presence of spin locking, a strong pulse-matching effect occurs, providing a powerful tool for high-bandwidth linear optical processing. We then go on to study 'slow light' in this system and show that high-bandwidth pulses can be controllably delayed by a time comparable to the pulse width.

  11. Pulse formation and characteristics of the cw mode-locked titanium-doped sapphire laser

    NASA Astrophysics Data System (ADS)

    Zschocke, Wolfgang; Stamm, Uwe; Heumann, Ernst; Ledig, Mario; Guenzel, Uwe; Kvapil, Jiri; Koselja, Michael P.; Kubelka, Jiri

    1991-10-01

    We report on measurements of transient and steady-state pulse characteristics of an acousto- optically mode-locked titanium-doped sapphire laser. During the pulse evolution, oscillations in the pulse width and pulse energy are found. A steady state is reached after about 40 to 60 microsecond(s) . The steady-state pulse width is strongly influenced by the mode-locking loss as well as the intracavity bandwidth. Shortest pulses of typically 15 ps are obtained. The experiment is compared with results of a simple computer simulation.

  12. A Q-switched, mode-locked fiber laser employing subharmonic cavity modulation.

    PubMed

    Chang, You Min; Lee, Junsu; Lee, Ju Han

    2011-12-19

    We present a new and simple approach for the generation of Q-switched, mode-locked pulses from a laser cavity. The approach is based on cavity loss modulation that employs a subharmonic frequency of the fundamental intermode frequency spacing. A range of experiments have been carried out using an erbium-doped fiber-based ring cavity laser in order to verify that this simple approach can readily produce high quality Q-switched, mode-locked pulses. An active tuning of the Q-switched envelope repetition rate is also shown to be easily achievable by adjusting the order of the applied subharmonic frequency.

  13. Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser.

    PubMed

    Xu, Jia; Wu, Sida; Li, Huihui; Liu, Jiang; Sun, Ruoyu; Tan, Fangzhou; Yang, Quan-Hong; Wang, Pu

    2012-10-01

    We demonstrated dissipative soliton obtained from a graphene oxide mode-locked Er-doped fiber laser, which operated in normal dispersion cavity by employing the dispersion compensation fiber. The highly chirped pulses at the repetition rate of 19.5 MHz can be compressed from 11 ps to 542 fs by using single mode fiber. Numerical simulations were in good agreement with the experimental results. The hydrophilic graphene oxide with easier fabrication shows great potential to be a novel low-cost saturable absorber in reliable and compact mode-locked fiber laser system.

  14. Chirped pulse formation dynamics in ultra-long mode-locked fiber lasers.

    PubMed

    Kelleher, E J R; Travers, J C

    2014-03-15

    By modeling giant chirped pulse formation in ultra-long, normally dispersive, mode-locked fiber lasers, we verify convergence to a steady-state consisting of highly chirped and coherent, nanosecond-scale pulses, which is in good agreement with recent experimental results. Numerical investigation of the transient dynamics reveals the existence of dark soliton-like structures within the envelope of the initial noisy pulse structure. Quasi-stationary dark solitons can persist throughout a large part of the evolution from noise to a stable dissipative soliton solution of the mode-locked laser cavity.

  15. Efficient femtosecond mode-locked Nd,Y:SrF2 laser

    NASA Astrophysics Data System (ADS)

    Wei, Long; Han, Hainian; Tian, Wenlong; Liu, Jiaxing; Wang, Zhaohua; Zhu, Zheng; Jia, Yulei; Su, Liangbi; Xu, Jun; Wei, Zhiyi

    2014-09-01

    An efficient femtosecond mode-locked laser using Nd and Y-codoped SrF2 crystal as the gain medium is presented in this letter. A 332 fs pulse centered at 1057 nm with a repetition rate of 89.8 MHz, a spectral width of 4.3 nm, and a mode-locked output power of up to 395 mW has been obtained under 1 W pump power, corresponding to an optical-to-optical efficiency of 39.5% and a slope efficiency of 69%. To the best of our knowledge, this is the highest optical efficiency in femtosecond Nd-doped crystal lasers.

  16. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band.

    PubMed

    Noronen, Teppo; Okhotnikov, Oleg; Gumenyuk, Regina

    2016-06-27

    We demonstrate a widely tunable, mode-locked fiber laser capable of producing sub-picosecond pulses between 1705 and 1805 nm. The 100 nm tuning range is achieved by using intracavity acousto-optic tunable filter. The laser delivers highly stable pulses via self-starting hybrid mode-locking triggered by frequency-shifting and nonlinear polarization evolution. PMID:27410623

  17. Harmonically mode-locked Ti:Er:LiNbO{sub 3} waveguide laser

    SciTech Connect

    Suche, H.; Wessel, R.; Westenhoefer, S.; Sohler, W.; Bosso, S.; Carmannini, C.; Corsini, R.

    1995-03-15

    Active mode locking of an Er-diffusion-doped Ti:LiNbO{sub 3} waveguide laser by intracavity phase modulation to as high as the fourth harmonic (5.12 GHz) of the axial-mode frequency spacing is reported. The diode-pumped, pigtailed, and fully packaged laser with a monolithically integrated intracavity phase modulator has a threshold of 9 mW (incident pump power {ital E}{sub {ital p}}{vert_bar}{vert_bar}{ital c}) and emits transform-limited pulses of {ge}3.8-ps width and {le}5.6-pJ pulse energy (gain-switched mode locking) at 1602-nm wavelength ({ital E}{sub {ital s}}{vert_bar}{vert_bar}{ital c}). The relative change of the mode-locking frequency with the temperature is 3.65{times}10{sup {minus}5}/{degree}C. The mode-locking acceptance bandwidth is {plus_minus}75 kHz near the axial-mode frequency spacing at approximately five times the threshold pump power.

  18. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  19. Effect of saturated frequency chirping on mode-locked laser pulses.

    NASA Technical Reports Server (NTRS)

    Kim, D. M.; Tittel, F. K.; Rabson, T. A.

    1972-01-01

    A dye-induced nonlinear frequency chirping is analytically shown to have significant modifications on the nature of the output mode-locked lasers. It is shown that the saturated frequency sweeping is responsible for substantial pulse broadening as well as substructures.

  20. Vector solitons in harmonic mode-locked erbium-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Habruseva, Tatiana; Mkhitaryan, Mkhitar; Mou, Chengbo; Rozhin, Aleksey; Turitsyn, Sergei K.; Sergeyev, Sergey V.

    2014-05-01

    We report experimental study of vector solitons for the fundamental and harmonic mode-locked operation in erbiumdoper fiber lasers with carbon nanotubes based saturable absorbers and anomalous dispersion cavities. We measure evolution of the output pulses polarization and demonstrate vector solitons with various polarization attractors, including locked polarization, periodic polarization switching, and polarization precession.

  1. Quantum beats in forward scattering - Subnanosecond studies with a mode-locked dye laser

    NASA Astrophysics Data System (ADS)

    Harde, H.; Burggraf, H.; Mlynek, J.; Lange, W.

    1981-06-01

    Time-resolved polarization spectroscopy of transient coherent superpositions of atomic substates is extended to the picosecond time scale by using a synchronously pumped mode-locked dye laser. As a first demonstration, hyperfine beats in the sodium D1 and D2 lines were resolved. The ground-state splitting could be determined with an accuracy of better than 0.001.

  2. Quantum beats in forward scattering: subnanosecond studies with a mode-locked dye laser.

    PubMed

    Harde, H; Burggraf, H; Mlynek, J; Lange, W

    1981-06-01

    Time-resolved polarization spectroscopy of transient coherent superpositions of atomic substates is extended to the picosecond time scale by using a synchronously pumped mode-locked dye laser. As a first demonstration, hyperfine beats in the sodium D(1) and D(2), lines were resolved. The ground-state splitting could be determined with an accuracy of better than 10(-3).

  3. High peak power sub-nanosecond mode-locked pulse characteristics of Nd:GGG laser

    NASA Astrophysics Data System (ADS)

    Zhao, Jia; Zhao, Shengzhi; Li, Tao; Li, Yufei; Yang, Kejian; Li, Guiqiu; Li, Dechun; Qiao, Wenchao; Feng, Chuansheng; Wang, Yonggang

    2015-10-01

    Based on the dual-loss modulation, i.e. electro-optic (EO) modulator and GaAs saturable absorber, a sub-nanosecond mode-locked pulsed Nd:GGG laser with kHz repetition rates is presented for the first time. The repetition rate (0.5-10 kHz) of this pulsed laser is controlled by the modulation rate of EO modulator, so high stability can be obtained. The sub-nanosecond pulse width depends on the mode-locked pulse underneath the Q-switched envelope in the Q-switched mode-locked (QML) laser and high peak power can be generated. The condition on the generation of sub-nanosecond pulse and the needed threshold power for different modulation rates of EO are given. The average output power, the pulse width and the peak power versus pump power for different repetition rates are demonstrated. The shortest pulse width is 426 ps and the highest peak power reaches 239.4 kW. The experimental results show that the dual-loss modulation technology with EO and GaAs saturable absorber in QML laser is an efficient method to generate sub-nanosecond mode-locked pulsed laser with kHz repetition rates.

  4. Mode locking in a periodically forced integrate-and-fire-or-burst neuron model

    NASA Astrophysics Data System (ADS)

    Coombes, S.; Owen, M. R.; Smith, G. D.

    2001-10-01

    The minimal ``integrate-and-fire-or-burst'' (IFB) neuron model reproduces the salient features of experimentally observed thalamocortical relay neuron response properties, including the temporal tuning of both tonic spiking (i.e., conventional action potentials) and post-inhibitory rebound bursting mediated by the low-threshold Ca2+ current, IT. In previous work focusing on experimental and IFB model responses to sinusoidal current injection, large regions of stimulus parameter space were observed for which the response was entrained to periodic applied current, resulting in repetitive burst, tonic, or mixed (i.e., burst followed by tonic) responses. Here we present an exact analysis of such mode-locking in the integrate-and-fire-or-burst model under the influence of arbitrary periodic forcing that includes sinusoidally driven responses as one case. In this analysis, the instabilities of mode-locked states are identified as both smooth bifurcations of an associated firing time map and nonsmooth bifurcations of the underlying discontinuous flow. The explicit construction of borders in parameter space that define the instabilities of mode-locked zones is used to build up the Arnol'd tongue structure for the model. The zones for mode-locking are shown to be in excellent agreement with numerical simulations and are used to explore the observed stimulus dependence of burst versus tonic response of the IFB neuron model.

  5. 14-W continuous-wave mode-locked Nd:YAG laser

    SciTech Connect

    De Silvestri, S.; Laporta, P.; Magni, V.

    1986-12-01

    A new design procedure for solid-state laser resonators operating in the fundamental mode is applied to the optimization of the mode volume and stability of a cw Nd:YAG laser. The optimized laser provides the highest power in the mode-locking regime reported to date.

  6. All Fiber Technology for High-Energy Petawatt Front End Laser Systems

    SciTech Connect

    Dawson, J W; Liao, Z M; Jovanovic, I; Wattellier, B; Beach, R; Payne, S A; Barty, C P J

    2003-09-05

    We are developing an all fiber front end for the next generation high-energy petawatt (HEPW) laser at Lawrence Livermore National Laboratory (LLNL). The ultimate goal of the LLNL HEPW effort is to generate 5-kJ pulses capable of compression to 5ps at 1053nm, enabling advanced x-ray backlighters and possible demonstration of fast ignition. We discuss the front-end of the laser design from the fiber master oscillator, which generates the mode-locked 20nm bandwidth initial pulses through the 10mJ output of the large flattened mode (LFM) fiber amplifier. Development of an all fiber front end requires technological breakthroughs in the key areas of the master oscillator and fiber amplification. Chirped pulse amplification in optical fibers has been demonstrated to 1mJ. Further increase is limited by the onset of stimulated Raman scattering (SRS). We have recently demonstrated a new flattened mode fiber technology, which reduces peak power for a given energy and thus the onset of SRS. Controlled experiments with 1st generation fibers yielded 0.5mJ of energy while significantly increasing the point at which nonlinear optical effects degrade the amplified pulse. In this paper we will discuss our efforts to extend this work to greater than 20mJ using our large flattened mode fiber amplifier.

  7. Generation of soliton and bound soliton pulses in mode-locked erbium-doped fiber laser using graphene film as saturable absorber

    NASA Astrophysics Data System (ADS)

    Haris, H.; Harun, S. W.; Anyi, C. L.; Muhammad, A. R.; Ahmad, F.; Tan, S. J.; Nor, R. M.; Zulkepely, N. R.; Ali, N. M.; Arof, H.

    2016-04-01

    We report an observation of soliton and bound-state soliton in passive mode-locked fibre laser employing graphene film as a passive saturable absorber (SA). The SA was fabricated from the graphene flakes, which were obtained from electrochemical exfoliation process. The graphene flakes was mixed with polyethylene oxide solution to form a polymer composite, which was then dried at room temperature to produce a film. The film was then integrated in a laser cavity by attaching it to the end of a fibre ferrule with the aid of index matching gel. The fibre laser generated soliton pulses with a 20.7 MHz repetition rate, 0.88 ps pulse width, 0.0158 mW average output power, 0.175 pJ pulse energy and 18.72 W peak power at the wavelength of 1564 nm. A bound soliton with pulse duration of ~1.04 ps was also obtained at the pump power of 110.85 mW by carefully adjusting the polarization of the oscillating laser. The formation of bound soliton is due to the direct pulse to pulse interaction. The results show that the proposed graphene-based SA offers a simple and cost efficient approach of generating soliton and bound soliton in mode-locked EDFL set-up.

  8. All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, QingQing; Chen, Tong; Li, Mingshan; Zhang, Botao; Lu, Yongfeng; Chen, Kevin P.

    2013-07-01

    An ultrafast thulium-doped fiber laser with large net normal dispersion has been developed to produce dissipative soliton and noise-like outputs at 1.9 μm. The mode-locked operation was enabled by using single-wall carbon nanotubes as saturable absorber for all-fiber configuration. Dissipative soliton in normal dispersion produced by the fiber laser oscillator was centered at 1947 nm with 4.1-nm FWHM bandwidth and 0.45 nJ/pulse. The output dissipative soliton pulses were compressed to 2.3 ps outside the laser cavity.

  9. High average power harmonic mode-locking of a Raman fiber laser based on nonlinear polarization evolution

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhao, C. J.; Gao, Y. X.; Fan, D. Y.

    2016-03-01

    We experimentally demonstrate the operation of a stable harmonically mode-locked Raman fiber laser based on the nonlinear polarization rotation technique. A maximum average output power of up to 235 mW is achieved at the repetition rate of 466.2 MHz, corresponding to the 1665th order harmonic mode-locking. The temporal width of the mode-locked pulse train is 450 ps. The experimental results should shed some light on the design of wavelength versatile ultrashort lasers with high repetition rate and average output power.

  10. Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Lau, K. Y.; Paslaski, J.

    1991-11-01

    It is shown that although it is possible to obtain mode-locking without self-pulsation when certain criteria are satisfied, the shortest pulses are almost always generated at or close to the onset of self-pulsation. Thus, the amplitude of the optical pulse train is modulated by the (relatively) low-frequency envelop of a few gigahertz under this condition. This observation was obtained by simultaneously measuring the pulsewidth using an autocorrelator and monitoring the optical intensity using a high-speed photodiode and a microwave spectrum analyzer. It is concluded that while it is possible to generate picosecond optical pulses in ultrahigh-frequency mode-locking of quantum-well lasers, very short pulses (approaching 1 ps) are almost always accompanied by self-pulsation which is manifested as low-frequency (gigahertz) envelope modulation of the optical pulse train.

  11. Active mode-locking of mid-infrared quantum cascade lasers with short gain recovery time.

    PubMed

    Wang, Yongrui; Belyanin, Alexey

    2015-02-23

    We investigate the dynamics of actively modulated mid-infrared quantum cascade lasers (QCLs) using space- and time-domain simulations of coupled density matrix and Maxwell equations with resonant tunneling current taken into account. We show that it is possible to achieve active mode locking and stable generation of picosecond pulses in high performance QCLs with a vertical laser transition and a short gain recovery time by bias modulation of a short section of a monolithic Fabry-Perot cavity. In fact, active mode locking in QCLs with a short gain recovery time turns out to be more robust to the variation of parameters as compared to previously studied lasers with a long gain recovery time. We investigate the effects of spatial hole burning and phase locking on the laser output.

  12. Experimental observation of excess noise in a detuned phase-modulation harmonic mode-locking laser

    SciTech Connect

    Yang Shiquan; Bao Xiaoyi

    2006-09-15

    The intracavity phase-modulated laser can work in two distinct stages: 1) phase mode-locking when the applied modulation frequency is equal to the cavity's fundamental frequency or one of its harmonics, and 2) the FM laser oscillation at a moderate detuned modulation frequency. In this paper, we experimentally studied the noise buildup process in the transition from FM laser oscillation to phase mode-locking in a phase-modulated laser. We found that the relaxation oscillation frequency varies with the modulation frequency detuning and the relaxation oscillation will occur twice in the transition region. Between these two relaxation oscillations, the supermode noise can be significantly enhanced, which is evidence of excess noise in laser systems. All of these results can be explained by the theory of Floquet modes in a phase-modulated laser cavity.

  13. Effects of bandwidth-limiting tuning elements in synchronously pumped mode-locked lasers

    SciTech Connect

    Zandi, B.; Casperson, L.W.; MacFarlane, D.L. )

    1990-03-01

    A description of bandwidth-limiting tuning filters is introduced into a semiclassical model for synchronously pumped mode-locked dye lasers. The finite phase memory of the molecular wave functions is included as are the isotropic molecular distribution and the finite vibrational relaxation times. The new set of equations has been solved numerically using the best available values for the various parameters. The results have been compared with experimental data obtained using a rhodamine 6G dye laser, which is synchronously pumped using an acousto-optically mode-locked argon laser. Tuning element effects have been studied using two- and three-plate birefringent filters and a tuning wedge, and the experimental results agree with the numerical solutions.

  14. Synchronized 4 × 12 GHz hybrid harmonically mode-locked semiconductor laser based on AWG.

    PubMed

    Liu, S; Lu, D; Zhang, R; Zhao, L; Wang, W; Broeke, R; Ji, C

    2016-05-01

    We report a monolithically integrated synchronized four wavelength channel mode-locked semiconductor laser chip based on arrayed waveguide grating and fabricated in the InP material system. Device fabrication was completed in a multiproject wafer foundry run on the Joint European Platform for Photonic Integration of Components and Circuits. The integrated photonic chip demonstrated 5th harmonic electrical hybrid mode-locking operation with four 400 GHz spacing wavelength channels and synchronized to a 12.7 GHz RF clock, for nearly transform-limited optical pulse trains from a single output waveguide. A low timing jitter of 0.349 ps, and RF frequency locking range of ~50 MHz were also achieved. PMID:27137587

  15. High power mode-locked rod-type fiber femtosecond laser with micro-joule energy

    NASA Astrophysics Data System (ADS)

    Lv, Zhiguo; Teng, Hao; Wang, Lina; Wang, Rui; Wang, Junli; Wei, Zhiyi

    2016-07-01

    We report a high power all-normal-dispersion (ANDi) mode-locked laser based on nonlinear polarization evolution (NPE) technique using rod-type fiber with polarization maintaining (PM) characteristic. With 85 μm gain core diameter, 31 W of average power at repetition rates of 57.93 MHz, which corresponds to the pulse energy of 0.53 μJ, is demonstrated under a pump power of 93 W. The pulse duration of 124 fs after compressor is obtained at the central wavelength of 1033 nm as well as the measured power jitter of 0.3% over a period of 2 h. To our knowledge, this is the first realization of the highest power of ANDi fiber laser by pure NPE mode-locking technique based on fibers with PM characteristic as gain media.

  16. Mode-locked thulium-bismuth codoped fiber laser using graphene saturable absorber in ring cavity.

    PubMed

    Zen, D I M; Saidin, N; Damanhuri, S S A; Harun, S W; Ahmad, H; Ismail, M A; Dimyati, K; Halder, A; Paul, M C; Das, S; Pal, M; Bhadra, S K

    2013-02-20

    We demonstrate mode locking of a thulium-bismuth codoped fiber laser (TBFL) operating at 1901.6 nm, using a graphene-based saturable absorber (SA). In this work, a single layer graphene is mechanically exfoliated using the scotch tape method and directly transferred onto the surface of a fiber pigtail to fabricate the SA. The obtained Raman spectrum characteristic indicates that the graphene on the core surface has a single layer. At 1552 nm pump power of 869 mW, the mode-locked TBFL self starts to generate an optical pulse train with a repetition rate of 16.7 MHz and pulse width of 0.37 ps. This is a simple, low-cost, stable, and convenient laser oscillator for applications where eye-safe and low-photon-energy light sources are required, such as sensing and biomedical diagnostics.

  17. Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers.

    PubMed

    Jung, Kwangyun; Kim, Jungwon

    2012-07-15

    We synchronize an 8.06 GHz microwave signal from a voltage-controlled oscillator with an optical pulse train from a 77.5 MHz mode-locked Er-fiber laser using a fiber-based optical-microwave phase detector. The residual phase noise between the optical pulse train and the synchronized microwave signal is -133 dBc/Hz (-154 dBc/Hz) at 1 Hz (5 kHz) offset frequency, which results in 838 as integrated rms timing jitter [1 Hz-1 MHz]. The long-term residual phase drift is 847 as (rms) measured over 2 h, which reaches 4×10(-19) fractional frequency instability at 1800 s averaging time. This method has a potential to provide both subfemtosecond-level short-term phase noise and long-term phase stability in microwave extraction from mode-locked fiber lasers.

  18. Spectral Splitting Effects and Their Influence to the Performance of Quantum Dot Mode Locked Lasers

    NASA Astrophysics Data System (ADS)

    Mesaritakis, Charis; Syvridis, Dimitris

    In this chapter the multi-wavelength emission capabilities of quantum dot (QD) lasers, due to splitting effects in the ground-state (GS), are analyzed. These emission sub-bands are not related to carrier transitions from different excitation levels like GS/excited-state (ES) emission, but are strongly depended on gain saturation effects. The existence of these sub-bands alongside their wavelength tuning capabilities, have enabled the identification of novel regimes of operation like pulse width narrowing in the presence of dual GS emission, and tunable dual state mode locking. The exploitation of these regimes can allow the deployment of QD mode locked lasers into newly emerging applications both in the telecomm and medical field.

  19. Mode-locking external-cavity laser-diode sensor for displacement measurements of technical surfaces

    NASA Astrophysics Data System (ADS)

    Czarske, Jürgen; Möbius, Jasper; Moldenhauer, Karsten

    2005-09-01

    A novel laser sensor for position measurements of technical solid-state surfaces is proposed. An external Fabry-Perot laser cavity is assembled by use of an antireflection-coated laser diode together with the technical surface. Mode locking results from pumping the laser diode synchronously to the mode spacing of the cavity. The laser cavity length, i.e., the distance to the measurement object, is determined by evaluation of the modulation transfer function of the cavity by means of a phase-locked loop. The mode-locking external-cavity laser sensor incorporates a resonance effect that results in highly resolving position and displacement measurements. More than a factor-of-10 higher resolution than with conventional nonresonant sensing principles is achieved. Results of the displacement measurements of various technical surfaces are reported. Experimental and theoretical investigations are in good agreement.

  20. Actively mode-locked fiber ring laser by intermodal acousto-optic modulation.

    PubMed

    Bello-Jiménez, M; Cuadrado-Laborde, C; Sáez-Rodríguez, D; Diez, A; Cruz, J L; Andrés, M V

    2010-11-15

    We report an actively mode-locked fiber ring laser. A simple and low-insertion-loss acousto-optic modulator driven by standing flexural waves, which couples core-to-cladding modes in a standard single-mode optical fiber, is used as an active mechanism for mode locking. Among the remarkable features of the modulator, we mention its high modulation depth (72%), broad bandwidth (187 GHz), easy tunability in the optical wavelength, and low insertion losses (0.7 dB). The narrowest optical pulses obtained were of 95 ps time width, 21 mW peak power, repetition rate of 4.758 MHz, and 110 mW of pump power.

  1. Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus

    NASA Astrophysics Data System (ADS)

    Zhao, Ruwei; Li, Jing; Zhang, Baitao; Li, Xiaowen; Su, Xiancui; Wang, Yiran; Lou, Fei; Zhang, Haikun; He, Jingliang

    2016-09-01

    A triwavelength synchronously mode-locked erbium-doped fiber laser with black phosphorus (BP) was demonstrated. The BP was proved to be not only an excellent saturable absorber (SA) but also a strong nonlinear material benefiting the stabilization of a multiwavelength fiber laser. The laser worked for a long time at three synchronous wavelengths of 1557.2, 1557.7, and 1558.2 nm. The autocorrelation trace of 9.41 ps pulses showed an interference beating of 0.06 THz, corresponding to a beating period of 16.37 ps. To the best of our knowledge, this is the first report on the usage of BP as an SA for building a multiwavelength synchronous mode-locked fiber laser.

  2. Measurement of mode-locked laser timing jitter by use of phase-encoded optical sampling.

    PubMed

    Juodawlkis, P W; Twichell, J C; Wasserman, J L; Betts, G E; Williamson, R C

    2001-03-01

    The phase-noise characteristics of a harmonically mode-locked fiber laser are investigated with a new measurement technique called phase-encoded optical sampling. A polarization-maintaining ring laser is mode locked by use of the short-pulse electrical output of a resonant-tunneling diode oscillator, enabling it to produce 30-ps pulses at a 208-MHz repetition rate. The interferometric phase-encoded sampling technique provides 60-dB suppression of amplitude-jitter noise and allows supermode phase noise to be observed and quantified. The white-noise pulse-to-pulse timing jitter and the rms supermode timing jitter of the laser are measured to be less than 50 and 70 fs, respectively. PMID:18040304

  3. Generation of dissipative solitons in an actively mode-locked ultralong fibre laser

    SciTech Connect

    Koliada, N A; Nyushkov, B N; Ivanenko, A V; Kobtsev, Sergey M; Harper, Paul; Turitsyn, Sergei K; Denisov, Vladimir I; Pivtsov, V S

    2013-02-28

    A single-pulse actively mode-locked fibre laser with a cavity length exceeding 1 km has been developed and investigated for the first time. This all-fibre erbium-doped laser has a normal intracavity dispersion and generates dissipative 8-ns solitons with a fundamental repetition rate of 163.8 kHz; the energy per pulse reaches 34 nJ. The implemented mode locking, based on the use of intracavity intensity modulator, provides self-triggering and high stability of pulsed lasing. A possibility of continuous tuning of the centre lasing wavelength in the range of 1558 - 1560 nm without any tunable spectral selective elements in the cavity is demonstrated. The tuning occurs when controlling the modulation signal frequency due to the forced change in the pulse repetition time (group delay) under the conditions of intracavity chromatic dispersion. (laser optics 2012)

  4. Experimental investigation of anti-colliding pulse mode-locked semiconductor lasers.

    PubMed

    Zhuang, Jun-Ping; Pusino, Vincenzo; Ding, Ying; Chan, Sze-Chun; Sorel, Marc

    2015-02-15

    We experimentally demonstrate anti-colliding pulse mode-locking (ACPML) in an integrated semiconductor laser. The device geometry consists of a gain section and a saturable absorber (SA) section located immediately next to one of the cavity facets. After depositing a low-reflection coating on the SA facet and a high-reflection coating on the gain section facet, the threshold is unchanged, while the modulation of the SA is increased. The data presented here confirm that the ACPML configuration improves the peak output power of the pulses, reduces the amplitude fluctuation and timing jitter, and expands the biasing parameter range over which the stable mode-locking operation occurs. PMID:25680164

  5. Synchronized 4 × 12 GHz hybrid harmonically mode-locked semiconductor laser based on AWG.

    PubMed

    Liu, S; Lu, D; Zhang, R; Zhao, L; Wang, W; Broeke, R; Ji, C

    2016-05-01

    We report a monolithically integrated synchronized four wavelength channel mode-locked semiconductor laser chip based on arrayed waveguide grating and fabricated in the InP material system. Device fabrication was completed in a multiproject wafer foundry run on the Joint European Platform for Photonic Integration of Components and Circuits. The integrated photonic chip demonstrated 5th harmonic electrical hybrid mode-locking operation with four 400 GHz spacing wavelength channels and synchronized to a 12.7 GHz RF clock, for nearly transform-limited optical pulse trains from a single output waveguide. A low timing jitter of 0.349 ps, and RF frequency locking range of ~50 MHz were also achieved.

  6. Quasiperiodicity, mode-locking, and universal scaling in Rayleigh-Benard convection

    SciTech Connect

    Ecke, R.E.

    1990-01-01

    This major review paper describes research on a model nonlinear dynamical system of small-aspect-ratio Rayleigh-Benard convection in {sup 3}He {minus} {sup 4}He mixtures. The nonlinear effects of mode locking and quasiperiodic behavior are described. Analysis techniques for characterizing the state of the dynamical system include Fourier transforms, Poincare sections, phase differences, transients, multifractal f({proportional to}) spectra and scaling function dynamics. Theoretical results such as the fractal staircase of mode-locked intervals and the Arnold tongues are reproduced in experimental data. New techniques for analyzing scaling dynamics are developed and discussed. This is a tutorial article that introduces the major important concepts in nonlinear dynamics and focuses on experimental problems and techniques. 77 refs.

  7. Bound-state fiber laser mode-locked by a graphene-nanotube saturable absorber

    NASA Astrophysics Data System (ADS)

    Yang, H. R.; Chen, G. W.; Kong, Y. C.; Li, W. L.

    2015-02-01

    We have experimentally observed the multiple bound states in a linear-cavity fiber laser mode-locked by a mixture of graphene and single-walled carbon nanotubes. The proposed laser can deliver the fundamental frequency soliton as well as the two and three bound-state solitons at suitable conditions. The numerical simulations confirm the experimental observations. Both the theoretical predictions and experimental results reveal that the spectral filtering effect plays a key role on the lasers.

  8. Diode-pumped Yb,Y:CaF2 laser mode-locked by monolayer graphene

    NASA Astrophysics Data System (ADS)

    Zhu, Hongtong; Liu, Jie; Jiang, Shouzhen; Xu, Shicai; Su, Liangbi; Jiang, Dapeng; Qian, Xiaobo; Xu, Jun

    2015-12-01

    The large-area and high-quality monolayer graphene saturable absorber with a sandwich structure is prepared by the chemical vapor deposition technique. Using graphene saturable absorber, the mode locking operation of a diode-pumped Yb,Y:CaF2 laser is demonstrated. Without extra negative dispersion elements, 4.8 ps pulses are yielded at 1051 nm. The pulse repetition rate is 60 MHz.

  9. Mode-locking and the transition to chaos in dissipative systems

    SciTech Connect

    Bak, P.; Bohr, T.; Jensen, M.H.

    1984-01-01

    Dissipative systems with two competing frequencies exhibit transitions to chaos. We have investigated the transition through a study of discrete maps of the circle onto itself, and by constructing and analyzing return maps of differential equations representing some physical systems. The transition is caused by interaction and overlap of mode-locked resonances and takes place at a critical line where the map losses invertibility. At this line the mode-locked intervals trace up a complete Devil's Staircase whose complementary set is a Cantor set with universal fractal dimension D approx. 0.87. Below criticality there is room for quasiperiodic orbits, whose measure is given by an exponent ..beta.. approx. 0.34 which can be related to D through a scaling relation, just as for second order phase transitions. The Lebesgue measure serves as an order parameter for the transition to chaos. The resistively shunted Josephson junction, and charge density waves (CDWs) in rf electric fields are usually described by the differential equation of the damped driven pendulum. The 2d return map for this equation collapses to ld circle map at and below the transition to chaos. The theoretical results on universal behavior, derived here and elsewhere, can thus readily be checked experimentally by studying real physical systems. Recent experiments on Josephson junctions and CDWs indicating the predicted fractal scaling of mode-locking at criticality are reviewed.

  10. Multi-gigahertz repetition rate ultrafast waveguide lasers mode-locked with graphene saturable absorbers

    NASA Astrophysics Data System (ADS)

    Obraztsov, P. A.; Okhrimchuk, A. G.; Rybin, M. G.; Obraztsova, E. D.; Garnov, S. V.

    2016-08-01

    We report the development of an approach to build compact waveguide lasers that operate in the stable fundamental mode-locking regime with multigigahertz repetition rates. The approach is based on the use of depressed cladding multi- or single-mode waveguides fabricated directly in the active laser crystal using the femtosecond laser inscription method and a graphene saturable absorber. Using this approach we achieve the stable self-starting mode-locking operation of a diode-pumped waveguide Nd:YAG laser that delivers picosecond pulses at a repetition rate of up to 11.5 GHz with an average power of 12 mW at a central wavelength of 1064 nm. The saturable absorbers are formed through the chemical vapor deposition of single-layer graphene on the output coupler mirror or directly on the end facet of the laser crystal. The stable self-starting mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with an intracavity interferometer. The method developed for the creation of compact ultrashort pulse laser generators with gigahertz repetition rates can be extended further and applied for the development of compact high-repetition rate lasers that operate at a wide range of IR wavelengths.

  11. Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi₂Se₃.

    PubMed

    Dou, Zhiyuan; Song, Yanrong; Tian, Jinrong; Liu, Jinghui; Yu, Zhenhua; Fang, Xiaohui

    2014-10-01

    We demonstrated an all-normal-dispersion Yb-doped mode-locked fiber laser based on Bi₂Se₃ topological insulator (TI). Different from previous TI-mode-locked fiber lasers in which TIs were mixed with film-forming agent, we used a special way to paste a well-proportioned pure TI on a fiber end-facet. In this way, the effect of the film-forming agent could be removed, thus the heat deposition was relieved and damage threshold could be improved. The modulation depth of the Bi₂Se₃ film was measured to be 5.2%. When we used the Bi₂Se₃ film in the Yb-doped fiber laser, the mode locked pulses with pulse energy of 0.756 nJ, pulse width of 46 ps and the repetition rate of 44.6 MHz were obtained. The maximum average output power was 33.7 mW. When the pump power exceeded 270 mW, the laser can operate in multiple pulse state that six-pulse regime can be realized. This contribution indicates that Bi₂Se₃ has an attractive optoelectronic property at 1μm waveband.

  12. Techniques for increasing output power from mode-locked semiconductor lasers

    SciTech Connect

    Mar, A.; Vawter, G.A.

    1996-02-01

    Mode-locked semiconductor lasers have drawn considerable attention as compact, reliable, and relatively inexpensive sources of short optical pulses. Advances in the design of such lasers have resulted in vast improvements in pulsewidth and noise performance, at a very wide range of repetition rates. An attractive application for these lasers would be to serve as alternatives for large benchtop laser systems such as dye lasers and solid-state lasers. However, mode-locked semiconductor lasers have not yet approached the performance of such systems in terms of output power. Different techniques for overcoming the problem of low output power from mode-locked semiconductor lasers will be discussed. Flared and arrayed lasers have been used successfully to increase the pulse saturation energy limit by increasing the gain cross section. Further improvements have been achieved by use of the MOPA configuration, which utilizes a flared semiconductor amplifier s amplify pulses to energies of 120 pJ and peak powers of nearly 30W.

  13. High-energy harmonic mode-locked 2 μm dissipative soliton fiber lasers

    NASA Astrophysics Data System (ADS)

    Yang, Nan; Tang, Yulong; Xu, Jianqiu

    2015-08-01

    High-pulse-energy harmonic mode-locking in 2 μm Tm-doped fiber lasers (TDFLs) is realized, for the first time, by using a short piece of anomalous dispersion gain fiber and the dissipative soliton mode-locking mechanism. Appropriately designing the cavity dispersion map and adjusting the cavity gain, stable harmonic mode-locking of the dissipative soliton TDFL from the 2nd to the 4th order is achieved, with the pulsing repetition rates and pulse energy being 43.4, 65.1, 86.8 MHz, and 6.27, 4.32 and 3.29 nJ, respectively. The harmonic laser pulse has a pulse width of ~30 ps and a center wavelength of ~1929 nm with a spectral bandwidth of ~3.26 nm, giving a highly chirped laser pulse. Two types of soliton molecules are also observed in this laser system.

  14. Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber.

    PubMed

    Koo, Joonhoi; Park, June; Lee, Junsu; Jhon, Young Min; Lee, Ju Han

    2016-05-16

    We experimentally demonstrate the use of a bulk-like, MoSe2-based saturable absorber (SA) as a passive harmonic mode-locker for the production of femtosecond pulses from a fiber laser at a repetition rate of 3.27 GHz. By incorporating a bulk-like, MoSe2/PVA-composite-deposited side-polished fiber as an SA within an erbium-doped-fiber-ring cavity, mode-locked pulses with a temporal width of 737 fs to 798 fs can be readily obtained at various harmonic frequencies. The fundamental resonance frequency and the maximum harmonic-resonance frequency are 15.38 MHz and 3.27 GHz (212th harmonic), respectively. The temporal and spectral characteristics of the output pulses are systematically investigated as a function of the pump power. The output pulses exhibited Gaussian-temporal shapes irrespective of the harmonic order, and even when their spectra possessed hyperbolic-secant shapes. The saturable absorption and harmonic-mode-locking performance of our prepared SA are compared with those of previously demonstrated SAs that are based on other transition metal dichalcogenides (TMDs). To the best of the authors' knowledge, the repetition rate of 3.27 GHz is the highest frequency that has ever been demonstrated regarding the production of femtosecond pulses from a fiber laser that is based on SA-induced passive harmonic mode-locking. PMID:27409880

  15. Vector similariton erbium-doped all-fiber laser generating sub-100-fs nJ pulses at 100 MHz.

    PubMed

    Olivier, Michel; Piché, Michel

    2016-02-01

    Erbium-doped mode-locked fiber lasers with repetition rates comparable to those of solid-state lasers and generating nJ pulses are required for many applications. Our goal was to design a fiber laser that would meet such requirements, that could be built at relatively low cost and that would be reliable and robust. We thus developed a high-fundamental-repetition-rate erbium-doped all-fiber laser operating in the amplifier similariton regime. Experimental characterization shows that this laser, which is mode-locked by nonlinear polarization evolution, emits 76-fs pulses with an energy of 1.17 nJ at a repetition rate of 100 MHz. Numerical simulations support the interpretation of self-similar evolution of the pulse in the gain fiber. More specifically we introduce the concept of vector similariton in fiber lasers. The coupled x- and y- polarization components of such a pulse have a pulse profile with a linear chirp and their combined power profile evolves self-similarly when the nonlinear asymptotic regime is reached in the gain fiber. PMID:26906809

  16. Vector similariton erbium-doped all-fiber laser generating sub-100-fs nJ pulses at 100 MHz.

    PubMed

    Olivier, Michel; Piché, Michel

    2016-02-01

    Erbium-doped mode-locked fiber lasers with repetition rates comparable to those of solid-state lasers and generating nJ pulses are required for many applications. Our goal was to design a fiber laser that would meet such requirements, that could be built at relatively low cost and that would be reliable and robust. We thus developed a high-fundamental-repetition-rate erbium-doped all-fiber laser operating in the amplifier similariton regime. Experimental characterization shows that this laser, which is mode-locked by nonlinear polarization evolution, emits 76-fs pulses with an energy of 1.17 nJ at a repetition rate of 100 MHz. Numerical simulations support the interpretation of self-similar evolution of the pulse in the gain fiber. More specifically we introduce the concept of vector similariton in fiber lasers. The coupled x- and y- polarization components of such a pulse have a pulse profile with a linear chirp and their combined power profile evolves self-similarly when the nonlinear asymptotic regime is reached in the gain fiber.

  17. Linewidth of the harmonics in a microwave frequency comb generated by focusing a mode-locked ultrafast laser on a tunneling junction

    SciTech Connect

    Hagmann, Mark J.; Stenger, Frank S.; Yarotski, Dmitry A.

    2013-12-14

    Previous analyses suggest that microwave frequency combs (MFCs) with harmonics having extremely narrow linewidths could be produced by photodetection with a mode-locked ultrafast laser. In the MFC generated by focusing a passively mode-locked ultrafast laser on a tunneling junction, 200 harmonics from 74.254 MHz to 14.85 GHz have reproducible measured linewidths approximating the 1 Hz resolution bandwidth (RBW) of the spectrum analyzer. However, in new measurements at a RBW of 0.1 Hz, the linewidths are distributed from 0.12 to 1.17 Hz. Measurements and analysis suggest that, because the laser is not stabilized, the stochastic drift in the pulse repetition rate is the cause for the distribution in measured linewidths. It appears that there are three cases in which the RBW is (1) greater than, (2) less than, or (3) comparable with the intrinsic linewidth. The measured spectra in the third class are stochastic and may show two or more peaks at a single harmonic.

  18. Mode-locking characteristics comparison at 1.34 μm between Nd:Gd x Y1-x VO4 series crystals

    NASA Astrophysics Data System (ADS)

    Qiao, Wenchao; Chu, Hongwei; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian; Li, Tao; Zhao, Jia; Zhang, Baitao; He, Jingliang

    2016-04-01

    Passively continuous-wave mode-locking (CWML) characteristics from a class of mixed Nd:Gd x Y1-x VO4 laser crystals at 1.34 μm have been investigated with a semiconductor saturable absorber mirror (SESAM) for the first time. In contrast to the single Nd:YVO4 and Nd:GdVO4 crystals, the mixed vanadate crystals can produce broader emission spectra, shorter pulse width, and higher peak power. Under the same conditions, the mode-locking performances from series mixed vanadate crystals as well as the emitting spectral properties were experimentally investigated. At an incident diode pump power of 7.1 W, a minimum pulse width was as short as 6.3 ps from the mixed vanadate crystal with x  =  0.63, while the highest peak power was 4.5 kW from the mixed crystal with x  =  0.83.

  19. Simultaneous generation of wavelength division multiplexing PON and RoF signals using a hybrid mode-locked laser

    NASA Astrophysics Data System (ADS)

    Aldaya, Ivan; Campuzano, Gabriel; Castañón, Gerardo

    2015-06-01

    The use of millimeter-wave (mm-wave) frequencies has been proposed to overcome the imminent saturation of the ultra high frequency band, justifying research on radio over fiber (RoF) networks as an inexpensive and green solution to distribute multi-Gbps signals. Coincidently, telecommunication operators are investing a significant effort to deploy their passive optical network (PON) infrastructure closer to the users. In this work, we present a novel cost-efficient architecture based on a hybrid mode locked laser capable to simultaneously generate up-to 5 wavelength division multiplexing PON and RoF channels, being compatible with the 50-GHz ITU frequency grid. We analyze the limits of operation of our proposed architecture considering the high modal relative intensity noise induced by mode partition noise, as well as fiber impairments, such as chromatic dispersion and nonlinearities. The feasibility of generation and transmission of 5×10-Gbps PON and 5×5-Gbps RoF using orthogonal frequency division multiplexing up to 50 km has been demonstrated through realistic numerical simulations.

  20. Passively Mode-Locked Femtosecond Laser with Disordered Crystal Nd:CGA as Gain Medium

    NASA Astrophysics Data System (ADS)

    He, Kun-Na; Liu, Jia-Xing; Tian, Wen-Long; Shen, Zhong-Wei; Xu, Xiao-Dong; Wang, Zhao-Hua; Li, De-Hua; Xu, Jun; Di, Ju-Qing; Xia, Chang-Tai; Wei, Zhi-Yi

    2016-09-01

    Not Available Supported by the National Key Basic Research Program of China under Grant No 2013CB922402, the International Joint Research Program, and the National Natural Science Foundation of China under Grant Nos 61210017 and 11434016.

  1. Theoretical analysis of saturable absorbtion in passively mode-locked fiber lasers.

    PubMed

    Skidin, A; Shtyrina, O V; Yarutkina, I A; Fedoruk, M P

    2016-07-25

    We propose a general analytical method for estimation of the saturable absorber output energy as a function of the input energy. The method is based on a representation of the saturable absorber output energy as a series of powers of the recovery time. We also derive a simplified expression of the saturable absorber output energy that gives a good approximation for large input energies. The analytical results are verified by the numerical simulation. The results have been applied to the particular cases of an input function that include the Gaussian input pulse and the hyperbolic secant input pulse. We show that the analytical results can improve the prediction of the output energy in the fiber lasers. PMID:27464194

  2. Actively mode-locked Tm(3+)-doped silica fiber laser with wavelength-tunable, high average output power.

    PubMed

    Kneis, Christian; Donelan, Brenda; Berrou, Antoine; Manek-Hönninger, Inka; Robin, Thierry; Cadier, Benoît; Eichhorn, Marc; Kieleck, Christelle

    2015-04-01

    A diode-pumped, actively mode-locked high-power thulium (Tm3+)-doped double-clad silica fiber laser is demonstrated, providing an average output power in mode-locked (continuous wave) operation of 53 W (72 W) with a slope efficiency of 34% (38%). Mode-locking in the 6th-harmonic order was obtained by an acousto-optic modulator driven at 66 MHz without dispersion compensation. The shortest measured output pulse width was 200 ps. Owing to a diffraction grating as cavity end mirror, the central wavelength could be tuned from 1.95 to 2.13 μm. The measured beam quality in mode-locked and continuous wave operation has been close to the diffraction limit. PMID:25831360

  3. Mode-locking optimization with a real-time feedback system in a Nd:yttrium lithium fluoride laser cavity.

    PubMed

    Marengoni, C; Canova, F; Batani, D; Benocci, R; Librizzi, M; Narayanan, V; Gomareschi, M; Lucchini, G; Kilpio, A; Shashkov, E; Stuchebrukhov, I; Vovchenko, V; Chernomyrdin, V; Krasuyk, I; Hall, T; Bittanti, S

    2007-01-01

    We present a control system, which allows an automatic optimization of the pulse train stability in a mode-locked laser cavity. In order to obtain real-time corrections, we chose a closed loop approach. The control variable is the cavity length, mechanically adjusted by gear system acting on the rear cavity mirror, and the controlled variable is the envelope modulation of the mode-locked pulse train. Such automatic control system maintains the amplitude of the mode-locking pulse train stable within a few percent rms during the working time of the laser. Full implementation of the system on an Nd:yttrium lithium fluoride actively mode-locked laser is presented.

  4. Generation of mode-locked erbium-doped fiber laser using MoSe2 as saturable absorber

    NASA Astrophysics Data System (ADS)

    Ahmad, Harith; Aidit, Siti Nabila; Hassan, Nor Ahya; Ismail, Mohd Faizal; Tiu, Zian Cheak

    2016-07-01

    Mode-locked generation of erbium-doped fiber laser (EDFL) with MoSe2 thin film as saturable absorber is practically demonstrated. Bulk MoSe2 is exfoliated into few-layer MoSe2, which is achieved based on the liquid phase exfoliation technique. The few-layer MoSe2 is mixed with polyvinyl alcohol to become a thin film. Mode-locked occurs between pump powers of 65 and 218 mW. The mode-locked is operated at fundamental frequency of 8.8 MHz, and the spectrum is centered at 1560 nm. The SNR of mode-locked EDFL is more than 50 dB. At pump power of 218 mW, 91.3 pJ of pulse energy is achieved.

  5. Generation of mode-locked erbium-doped fiber laser using MoSe2 as saturable absorber

    NASA Astrophysics Data System (ADS)

    Ahmad, Harith; Aidit, Siti Nabila; Hassan, Nor Ahya; Ismail, Mohd Faizal; Tiu, Zian Cheak

    2016-07-01

    Mode-locked generation of erbium-doped fiber laser (EDFL) with MoSe2 thin film as saturable absorber is practically demonstrated. Bulk MoSe2 is exfoliated into few-layer MoSe2, which is achieved based on the liquid phase exfoliation technique. The few-layer MoSe2 is mixed with polyvinyl alcohol to become a thin film. Mode-locked occurs between pump powers of 65 and 218 mW. The mode-locked is operated at fundamental frequency of 8.8 MHz, and the spectrum is centered at 1560 nm. The SNR of mode-locked EDFL is more than 50 dB. At pump power of 218 mW, 91.3 pJ of pulse energy is achieved.

  6. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  7. Actively mode-locked Tm(3+)-doped silica fiber laser with wavelength-tunable, high average output power.

    PubMed

    Kneis, Christian; Donelan, Brenda; Berrou, Antoine; Manek-Hönninger, Inka; Robin, Thierry; Cadier, Benoît; Eichhorn, Marc; Kieleck, Christelle

    2015-04-01

    A diode-pumped, actively mode-locked high-power thulium (Tm3+)-doped double-clad silica fiber laser is demonstrated, providing an average output power in mode-locked (continuous wave) operation of 53 W (72 W) with a slope efficiency of 34% (38%). Mode-locking in the 6th-harmonic order was obtained by an acousto-optic modulator driven at 66 MHz without dispersion compensation. The shortest measured output pulse width was 200 ps. Owing to a diffraction grating as cavity end mirror, the central wavelength could be tuned from 1.95 to 2.13 μm. The measured beam quality in mode-locked and continuous wave operation has been close to the diffraction limit.

  8. Additive mode-locked resembling pulses in a Tm-doped fiber laser with a hybrid cavity configuration.

    PubMed

    Chen, Weicheng; Lin, Wei; Qiao, Tian; Yang, Zhongmin

    2015-10-19

    We report on the generation of modulated spikes distributed across a mode-locked pulse profile, which is termed as "additive mode-locked resembling (AMLR)", in a Tm-doped fiber laser with a hybrid cavity configuration based on nonlinear polarization rotation (NPR) technique. The hybrid cavity configuration is composed of a ring cavity containing a micro Fabry-Perot (F-P) cavity. The F-P cavity is used to take the cavity-trip frequency (CTF) modulation on the mode-locked pulses for forming AMLR pulses. We observe AMLR pulses with uniform and chirped modulation depths, as well as uniform and nonuniform spike separations, respectively. Numerical simulations confirm the experimental observations and show that the filtering effect of the F-P cavity is the main mechanism for taking CTF modulation on mode-locked pulses to generate AMLR pulses. PMID:26480459

  9. Mode-Locked Spike Trains in Responses of Ventral Cochlear Nucleus Chopper and Onset Neurons to Periodic Stimuli

    PubMed Central

    Laudanski, Jonathan; Coombes, Stephen; Palmer, Alan R.

    2010-01-01

    We report evidence of mode-locking to the envelope of a periodic stimulus in chopper units of the ventral cochlear nucleus (VCN). Mode-locking is a generalized description of how responses in periodically forced nonlinear systems can be closely linked to the input envelope, while showing temporal patterns of higher order than seen during pure phase-locking. Re-analyzing a previously unpublished dataset in response to amplitude modulated tones, we find that of 55% of cells (6/11) demonstrated stochastic mode-locking in response to sinusoidally amplitude modulated (SAM) pure tones at 50% modulation depth. At 100% modulation depth SAM, most units (3/4) showed mode-locking. We use interspike interval (ISI) scattergrams to unravel the temporal structure present in chopper mode-locked responses. These responses compared well to a leaky integrate-and-fire model (LIF) model of chopper units. Thus the timing of spikes in chopper unit responses to periodic stimuli can be understood in terms of the complex dynamics of periodically forced nonlinear systems. A larger set of onset (33) and chopper units (24) of the VCN also shows mode-locked responses to steady-state vowels and cosine-phase harmonic complexes. However, while 80% of chopper responses to complex stimuli meet our criterion for the presence of mode-locking, only 40% of onset cells show similar complex-modes of spike patterns. We found a correlation between a unit's regularity and its tendency to display mode-locked spike trains as well as a correlation in the number of spikes per cycle and the presence of complex-modes of spike patterns. These spiking patterns are sensitive to the envelope as well as the fundamental frequency of complex sounds, suggesting that complex cell dynamics may play a role in encoding periodic stimuli and envelopes in the VCN. PMID:20042702

  10. A self-consistent model for a SOA-based fiber ring laser including the mode-locked pulse properties

    NASA Astrophysics Data System (ADS)

    Zarikas, Vasilios; Vlachos, Kyriakos

    2006-07-01

    In this paper, we present a self-consistent model of an optically mode-locked semiconductor fiber ring laser. The fiber laser uses a semiconductor optical amplifier (SOA) as the gain medium, while mode-locking is achieved by its gain modulation, via an external optical pulsed signal. We solved the model analytically developing a novel technique, where we have assumed double saturation of the SOA by both the mode-locked and the externally introduced pulsed signal. The study revealed the locus of the laser parameters to achieve mode-locking. In particular, it was found that SOA gain and energy of the externally introduced signal are two critical parameters that must simultaneously set properly for exact mode-locking. Another outcome of our analysis is that the study of the chirp parameter should be carried out keeping the nonlinear terms of the SOA gain. We have also investigated a slightly detuning regime of operation that revealed a fast change of the mode-locking process.

  11. 0.4 μJ, 7 kW ultrabroadband noise-like pulse direct generation from an all-fiber dumbbell-shaped laser.

    PubMed

    Chen, He; Chen, Shengping; Jiang, Zongfu; Hou, Jing

    2015-12-01

    We report the direct generation of 0.4 μJ, 7 kW ultrabroadband picosecond noise-like pulses from an Yb-doped all-fiber oscillator based on dual nonlinear optical loop mirrors (NOLMs). Under the highest pump power, the average power of the main output port reached 1.4 W, and the 3 dB spectral bandwidths reached 76 nm and 165 nm from the two output ports, respectively. The design of dual-NOLMs shows both exceptional compactness in construction and distinct flexibility on the engineering of the mode-locking behaviors. To the best of our knowledge, this is the first demonstration of a watt-level dual-NOLM-based fiber laser. Based on this laser, the pulse energy and peak power of picosecond noise-like pulse from an all-fiber oscillator have been elevated by an order of magnitude. PMID:26625033

  12. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers.

    PubMed

    Luo, Zhengqian; Wu, Duanduan; Xu, Bin; Xu, Huiying; Cai, Zhiping; Peng, Jian; Weng, Jian; Xu, Shuo; Zhu, Chunhui; Wang, Fengqiu; Sun, Zhipei; Zhang, Han

    2016-01-14

    Passive Q-switching or mode-locking by placing a saturable absorber inside the laser cavity is one of the most effective and popular techniques for pulse generation. However, most of the current saturable absorbers cannot work well in the visible spectral region, which seriously impedes the progress of passively Q-switched/mode-locked visible pulsed fibre lasers. Here, we report a kind of visible saturable absorber-two-dimensional transition-metal dichalcogenides (TMDs, e.g. WS2, MoS2, MoSe2), and successfully demonstrate compact red-light Q-switched praseodymium (Pr(3+))-doped all-fibre lasers. The passive Q-switching operation at 635 nm generates stable laser pulses with ∼200 ns pulse duration, 28.7 nJ pulse energy and repetition rate from 232 to 512 kHz. This achievement is attributed to the ultrafast saturable absorption of these layered TMDs in the visible region, as well as the compact and all-fibre laser-cavity design by coating a dielectric mirror on the fibre end facet. This work may open a new route for next-generation high-performance pulsed laser sources in the visible (even ultraviolet) range. PMID:26658877

  13. Performance of chemical vapor deposition fabricated graphene absorber mirror in Yb3+ : Sc2SiO5 mode-locked laser

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Li, Yaqi; Zhu, Hongtong; Jiang, Shouzhen; Xu, Shicai; Liu, Jie; Zheng, Lihe; Su, Liangbi; Xu, Jun

    2014-12-01

    A reflective graphene saturable absorber mirror (SAM) was successfully fabricated by chemical vapor deposition technology. A stable diode-pumped passively mode-locked Yb3+:Sc2SiO5 laser using a graphene SAM as a saturable absorber was accomplished for the first time. The measured average output power amounts to 351 mW under the absorbed pump power of 12.5 W. Without prisms compensating for dispersion, the minimum pulse duration of 7 ps with a repetition rate of 97 MHz has been obtained at the central wavelength of 1063 nm. The corresponding peak power and the maximum pulse energy were 516 W and 3.6 nJ, respectively.

  14. Heterodyne Doppler velocity measurement of moving targets by mode-locked pulse laser.

    PubMed

    Bai, Yan; Ren, Deming; Zhao, Weijiang; Qu, Yanchen; Qian, Liming; Chen, Zhenlei

    2012-01-16

    In this study, heterodyne detection is adopted to measure the velocity of a target simulated by a rapidly rotating plate by using a mode-locked pulse laser as the resource. The coherent beat frequency of the signal light reflected by target and local oscillation light occurred on the surface of the detector. Then the waveform of beat frequency was processed by filtering to obtain the Doppler frequency shift of the signal light induced by target. With this frequency shift, the velocity of target could be obtained by calculation. Results indicate that the measurement has a high precision. The error on average is within 0.4 m/s. PMID:22274421

  15. Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser

    PubMed Central

    Durfee, Charles G.; Storz, Tristan; Garlick, Jonathan; Hill, Steven; Squier, Jeff A.; Kirchner, Matthew; Taft, Greg; Shea, Kevin; Kapteyn, Henry; Murnane, Margaret; Backus, Sterling

    2012-01-01

    We describe a Ti:sapphire laser pumped directly with a pair of 1.2W 445nm laser diodes. With over 30mW average power at 800 nm and a measured pulsewidth of 15fs, Kerr-lens-modelocked pulses are available with dramatically decreased pump cost. We propose a simple model to explain the observed highly stable Kerr-lens modelocking in spite of the fact that both the mode-locked and continuous-wave modes are smaller than the pump mode in the crystal. PMID:22714433

  16. Silicon-Based Optical Waveguide Modulators and Mode-Locked TITANIUM:SAPPHIRE Laser Dynamics.

    NASA Astrophysics Data System (ADS)

    Liu, Yanming

    Single-mode deeply-etched silicon-germanium/silicon (SiGe/Si) rib waveguides have been fabricated and characterized with low propagation losses and strong guiding. Such a waveguide structure is suitable for bent waveguide devices and provides efficient field overlapping, which is needed for devices requiring strong nonlinear coupling. Using the deeply-etched waveguide technique, we have fabricated Si/SiGe/Si Mach-Zehnder modulators, which show strong single-mode waveguiding but only small electro -optic modulation has been observed so far. Another Si modulator is a Fabry-Perot interferometer. We have demonstrated all-optical modulation at 1.3 μm and 1.5 μm in the reflection mode of the asymmetric Si Fabry-Perot interferometer by a control light beam at 0.85 mum. Both switching -on and switching-off operations are demonstrated by transversely moving the etalon. In addition, we have analyzed that silicon carbide (SiC) waveguides exhibit low loss for fundamental modes and high loss for higher-order modes at wavelengths from 0.6 to 1.6 mum. Electro-optic modulation is analyzed with a SiC-on-SiO_2 waveguide structure. Such modulators are potential candidates for high-speed electro-optic modulation for silicon-based optoelectronic devices. Furthermore, we studied the dynamics of a Kerr -lens self-mode-locked Ti:sapphire laser, generating 40 -fs pulses and tunable from 750 nm to 920 nm. A moving mirror was first proposed as a starting mechanism for self -mode locking and the starting dynamics is studied in detail. In addition, periodic pulse-train amplitude modulations have been observed and studied. The observation of the amplitude modulation further confirms the dynamic Kerr-lens self -focusing model of self-mode locking in Ti:sapphire lasers and helps us better understand the laser performance. Furthermore, dual-wavelength mode locking is observed over a broad tuning range, which would be very useful for two-wavelength subpicosecond optical sampling, such as pump

  17. Ultrafast thulium-doped fiber laser mode locked with black phosphorus.

    PubMed

    Sotor, Jaroslaw; Sobon, Grzegorz; Kowalczyk, Maciej; Macherzynski, Wojciech; Paletko, Piotr; Abramski, Krzysztof M

    2015-08-15

    We report, for the first time to our knowledge, the usage of black phosphorus (BP) as a saturable absorber for the mode locking of a thulium-doped fiber laser. We have experimentally shown that BP exhibits saturable absorption in the 2 μm wavelength range and supports ultrashort pulse generation. The saturable absorber was based on mechanically exfoliated BP deposited on a fiber connector tip. The laser was capable of generating 739 fs pulses centered at 1910 nm. Our results show that BP might be considered as a universal broadband saturable absorber that could successfully compete with graphene or other low-dimension nanomaterials. PMID:26274685

  18. Heterodyne Doppler velocity measurement of moving targets by mode-locked pulse laser.

    PubMed

    Bai, Yan; Ren, Deming; Zhao, Weijiang; Qu, Yanchen; Qian, Liming; Chen, Zhenlei

    2012-01-16

    In this study, heterodyne detection is adopted to measure the velocity of a target simulated by a rapidly rotating plate by using a mode-locked pulse laser as the resource. The coherent beat frequency of the signal light reflected by target and local oscillation light occurred on the surface of the detector. Then the waveform of beat frequency was processed by filtering to obtain the Doppler frequency shift of the signal light induced by target. With this frequency shift, the velocity of target could be obtained by calculation. Results indicate that the measurement has a high precision. The error on average is within 0.4 m/s.

  19. All quantum dot mode-locked semiconductor disk laser emitting at 655 nm

    SciTech Connect

    Bek, R. Kersteen, G.; Kahle, H.; Schwarzbäck, T.; Jetter, M.; Michler, P.

    2014-08-25

    We present a semiconductor disk laser mode-locked by a semiconductor saturable absorber mirror (SESAM) with emission in the red spectral range. Both the gain and the absorber structure are fabricated by metal-organic vapor-phase epitaxy in an anti-resonant design using quantum dots as active material. A v-shaped cavity is used to tightly focus onto the SESAM, producing pulses with a duration of about 1 ps at a repetition rate of 852 MHz.

  20. Hand-manageable graphene sticker for ultrafast mode-locked fiber lasers.

    PubMed

    Park, Jaehyun; Park, Kichul; Spoor, Daniel; Hall, Benjamin; Song, Yong-Won

    2015-03-23

    We have developed a graphene sticker prepared by simply detaching graphene directly grown on a self-catalytic γ-Al₂O₃ substrate with a spin-coated polymer film. Our scheme is highlighted by the metal-free and bare-hand manageable process. The sticker is attached onto the flat surface of a D-shaped fiber to demonstrate an efficient fiber mode-locked laser. The 1-ps output pluses have the center wavelength, spectral width, and repetition rate of 1558.2 nm, 5.42 nm, and 4.77 MHz, respectively.

  1. Pulse dynamics in a mode-locked fiber laser and its quantum limited comb frequency uncertainty.

    PubMed

    Bao, Chengying; Funk, Andrew C; Yang, Changxi; Cundiff, Steven T

    2014-06-01

    We present an experimental study of pulse dynamics in a mode-locked Er:fiber laser. By injecting a continuous wave laser with sinusoidal intensity modulation into the fiber laser, we are able to modulate the gain. Measuring the response of the pulse energy, central frequency, central pulse time, and phase to the gain modulation allows determination of the parameters that describe their coupling. Based on the experimentally derived parameters, we evaluate the free running comb linewidth and frequency uncertainty with feedback included, assuming quantum noise is the limiting factor. Optimization of fiber lasers is also discussed.

  2. Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser.

    PubMed

    Durfee, Charles G; Storz, Tristan; Garlick, Jonathan; Hill, Steven; Squier, Jeff A; Kirchner, Matthew; Taft, Greg; Shea, Kevin; Kapteyn, Henry; Murnane, Margaret; Backus, Sterling

    2012-06-18

    We describe a Ti:sapphire laser pumped directly with a pair of 1.2 W 445 nm laser diodes. With over 30 mW average power at 800 nm and a measured pulsewidth of 15 fs, Kerr-lens-modelocked pulses are available with dramatically decreased pump cost. We propose a simple model to explain the observed highly stable Kerr-lens modelocking in spite of the fact that both the mode-locked and continuous-wave modes are smaller than the pump mode in the crystal. PMID:22714433

  3. Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking

    SciTech Connect

    Mary, R.; Thomson, R. R.; Kar, A. K.; Brown, G.; Popa, D.; Sun, Z.; Torrisi, F.; Hasan, T.; Milana, S.; Bonaccorso, F.; Ferrari, A. C.

    2013-11-25

    We present an evanescent-field device based on a right-angled waveguide. This consists of orthogonal waveguides, with their points of intersection lying along an angled facet of the chip. Light guided along one waveguide is incident at the angled dielectric-air facet at an angle exceeding the critical angle, so that the totally internally reflected light is coupled into the second waveguide. By depositing a nanotube film on the angled surface, the chip is then used to mode-lock an Erbium doped fiber ring laser with a repetition rate of 26 MHz, and pulse duration of 800 fs.

  4. High-power, efficient, semiconductor saturable absorber mode-locked Yb:KGW bulk laser.

    PubMed

    Kisel, V E; Rudenkov, A S; Pavlyuk, A A; Kovalyov, A A; Preobrazhenskii, V V; Putyato, M A; Rubtsova, N N; Semyagin, B R; Kuleshov, N V

    2015-06-15

    A high-power, diode-pumped, semiconductor saturable absorber mode-locked Yb(5%):KGW bulk laser was demonstrated with high optical-to-optical efficiency. Average output power as high as 8.8 W with optical-to-optical efficiency of 37.5% was obtained for Nm-polarized laser output with 162 fs pulse duration and 142 nJ pulse energy at a pulse repetition frequency of 62 MHz. For Np polarization, 143 fs pulses with pulse energy of 139 nJ and average output power of up to 8.6 W with optical-to-optical efficiency of 31% were generated. PMID:26076242

  5. Device for simultaneous multiple-line mode locking of an argon-ion laser

    SciTech Connect

    Kitahara, T.

    1987-11-01

    An acousto-optic device that can simultaneously mode lock multiple lines of a laser source has been designed and demonstrated. The device is an intracavity acousto-optic modulator with an end mirror. Multiple argon-ion laser lines at 476.5, 488.0, 496.5, and 514.5 nm were simultaneously modulated by using this device. Pulse trains with pulses having a width of approximately 100 psec FWHM at a repetition of 130 MHz were obtained for each line.

  6. Polarisation effects in twin-core fibre: Application for mode locking in a fibre laser

    SciTech Connect

    Lobach, I A; Kablukov, S I; Podivilov, Evgenii V; Babin, Sergei A; Apolonski, A A

    2012-09-30

    We report the first measurements of the longitudinal power distribution in a twin-core optical fibre at different input light polarisations. Experimental evidence is presented that, because of the difference in birefringence between the cores, the power in them depends on which core the beam is launched into. Experimental data are interpreted in terms of a modified polarisation model for mode coupling in twin-core fibres which takes into account the birefringence of the cores. In addition, we demonstrate for the first time the use of the polarisation properties of a twincore fibre for mode locking in a fibre laser. (optical fibres, lasers and amplifiers. properties and applications)

  7. Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator.

    PubMed

    Zhou, Xiangyu; Yoshitomi, Dai; Kobayashi, Yohei; Torizuka, Kenji

    2008-05-12

    An ultrashort-pulse, mode-locked ytterbium-doped fiber laser has been developed. The group-delay dispersion was compensated with a grating pair inside the cavity. A broad spectrum from 1000-nm to 1120-nm was obtained without intracavity compensation of third-order dispersion. A 0.7-nJ pulse as short as 28.3 fs was obtained with a repetition rate of 80 MHz. To our knowledge, this is the shortest pulse reported from an Yb fiber laser oscillator.

  8. Trade-off between linewidth and slip rate in a mode-locked laser model.

    PubMed

    Moore, Richard O

    2014-05-15

    We demonstrate a trade-off between linewidth and loss-of-lock rate in a mode-locked laser employing active feedback to control the carrier-envelope offset phase difference. In frequency metrology applications, the linewidth translates directly to uncertainty in the measured frequency, whereas the impact of lock loss and recovery on the measured frequency is less well understood. We reduce the dynamics to stochastic differential equations, specifically diffusion processes, and compare the linearized linewidth to the rate of lock loss determined by the mean time to exit, as calculated from large deviation theory.

  9. Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging

    PubMed Central

    Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert

    2016-01-01

    A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples. PMID:27699118

  10. Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging

    PubMed Central

    Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert

    2016-01-01

    A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples.

  11. Nonlinear study of mode locking in a quasi-optical gyrotron

    NASA Astrophysics Data System (ADS)

    Wu, Hao; McCurdy, Alan H.

    1996-10-01

    Nonlinear, time-dependent multimode calculations have been carried out to study mode locking in quasi-optical gyrotron oscillators. The calculations are based on the rate equation model of modal growth and saturation. The slow-time formalism is used for particle motion and both the time varying electric and magnetic fields are included. It is found that radiation pulses of width 400 ps can be generated in nonlinear regime. The gyrotron features an open resonator of length 100 cm formed by a pair of spherical mirrors and a single pencil electron beam guided by external magnetic field in transverse direction to the axis of symmetry of the cavity. The strong current modulation is provided at frequency of 300 MHz, the nominal model spacing between two odd modes in such a cavity. Eight odd modes are found to be locked to generate extremely short radiation pulses. Application for short pulse radiation in millimeter and submillimeter wavelength range include radar, plasma diagnosis, time domain metrology and communication systems. Parametric dependencies investigated include static magnetic field, beam current and beam voltage, as well as the drive signal amplitudes and frequencies. The work is geared towards support of a proof of principle experiment to generate high power radiation pulses of short duration via synchronous mode locking.

  12. An ultrafast optics undergraduate advanced laboratory with a mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Schaffer, Andrew; Fredrick, Connor; Hoyt, Chad; Jones, Jason

    2015-05-01

    We describe an ultrafast optics undergraduate advanced laboratory comprising a mode-locked erbium fiber laser, auto-correlation measurements, and an external, free-space parallel grating dispersion compensation apparatus. The simple design of the stretched pulse laser uses nonlinear polarization rotation mode-locking to produce pulses at a repetition rate of 55 MHz and average power of 5.5 mW. Interferometric and intensity auto-correlation measurements are made using a Michelson interferometer that takes advantage of the two-photon nonlinear response of a common silicon photodiode for the second order correlation between 1550 nm laser pulses. After a pre-amplifier and compression, pulse widths as narrow as 108 fs are measured at 17 mW average power. A detailed parts list includes previously owned and common components used by the telecommunications industry, which may decrease the cost of the lab to within reach of many undergraduate and graduate departments. We also describe progress toward a relatively low-cost optical frequency comb advanced laboratory. NSF EIR #1208930.

  13. Self-starting ultrafast fiber lasers mode-locked with alcohol.

    PubMed

    Wang, Zhiqiang; Zhan, Li; Wu, Jian; Zou, Zhixin; Zhang, Liang; Qian, Kai; He, Le; Fang, Xiao

    2015-08-15

    We report a novel saturable absorber (SA) based on anhydrous alcohol for mode-locked fiber lasers (MLFLs). The SA is an optical ferrule with one alcoholic end-facet sealed by a polyethylene (PE) film. Its modulation depth is measured to be 5.9%. Also, a self-starting MLFL using such an alcohol-SA has been demonstrated to generate 972-fs pulses at 1594.6 nm. The single pulse energy is up to 1.8 nJ with the repetition rate of 20.97 MHz, and the signal-to-noise ratio (SNR) is higher than 50 dB. The MLFL exhibits the performance of self-starting, good stability, and high pulse energy. Such a cost-effective and easily-prepared SA with high damage threshold may find wide applications for ultrafast lasers. Besides, it may arouse wide considerations of the mode-locking function of organic liquids for ultrafast lasers.

  14. Tunable multiwavelength mode-locked fiber laser using intra-cavity polarization and wavelength dependent loss

    NASA Astrophysics Data System (ADS)

    Jain, Ankita; Chandra, Nishanth; Anchal, Abhishek; Kumar K, Pradeep

    2016-09-01

    We report a tunable multiwavelength mode-locked fiber ring laser in C-band. Multiwavelength characteristic and tuning of laser wavelengths is achieved by inducing polarization and wavelength dependent loss in the cavity by using a combination of two polarization controllers (PCs) and an intensity modulator, inserted between the two PCs. With this technique we obtained pulses of 14 ps (FWHM) at a repetition rate of 10 GHz by actively mode-locking the laser. We obtained simultaneous lasing of 5 wavelengths with 3-dB spectral width of 0.2 nm for each lasing wavelength. We measured short-term stability of the pulses and corresponding spectra by continuously collecting time and spectral domain data for 600 s, sampled at an interval of 20 s. The pulsewidth was measured to be stable to within ±732 fs and peak power fluctuations were within ±0.16 mW. For simultaneous lasing of two wavelengths, the linewidth was found to be stable within ±0.07 nm with a peak power fluctuation of ±1 dB.

  15. Resonantly pumped actively mode-locked Ho:YAG ceramic laser at 2122.1  nm.

    PubMed

    Duan, Xiaoming; Yuan, Jinhe; Cui, Zheng; Yao, Baoquan; Dai, Tongyu; Li, Jiang; Pan, Yubai

    2016-03-10

    We discuss what we believe is the first continuous-wave mode-locked Ho:YAG ceramic laser. We produced a mode-locked pulse using an acousto-optic modulator. We used a 1.91 μm Tm-fiber laser as the pump source. At the incident pump power of 11.4 W, we achieved the maximum output power of 1.84 W at 2122.1 nm in a continuous-wave mode-locked regime. We obtained a short-duration pulse of 241.5 ps at a repetition frequency of 82.15 MHz and achieved the beam quality factor M² of 1.2. In addition, the maximum single pulse energy was 22.4 nJ. PMID:26974788

  16. Diode-pumped Kerr-lens mode-locked Yb:CaGdAlO4 laser with tunable wavelength

    NASA Astrophysics Data System (ADS)

    Gao, Ziye; Zhu, Jiangfeng; Wang, Junli; Wang, Zhaohua; Wei, Zhiyi; Xu, Xiaodong; Zheng, Lihe; Su, Liangbi; Xu, Jun

    2016-01-01

    We experimentally demonstrated a wavelength tunable Kerr-lens mode-locked femtosecond laser based on an Yb:CaGdAlO4 (Yb:CGA) crystal. The Kerr-lens mode-locked wavelength tuning range was from 1043.5 to 1076 nm, as broad as 32.5 nm, by slightly tilting the end mirror. Pulses as short as 60 fs were generated at the central wavelength of 1043.8 nm with an average output power of 66 mW. By using an output coupler with 1.5% transmittance, the Kerr-lens mode-locked average output power reached 127 mW with a pulse duration of 81 fs at a central wavelength of 1049.5 nm.

  17. Generation of sub-100 fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM

    NASA Astrophysics Data System (ADS)

    Zhu, Jiangfeng; Wei, Long; Tian, Wenlong; Liu, Jiaxing; Wang, Zhaohua; Su, Liangbi; Xu, Jun; Wei, Zhiyi

    2016-05-01

    A mode-locked laser using Nd,Y:SrF2 crystal as the gain medium is presented in this letter. By special design of the cavity for enhancing the self-phase modulation effect, femtosecond mode-locking with 97 fs pulse duration and 13.2 nm spectral width centered at 1061 nm is obtained at a repetition rate of 96 MHz. The average output power is 102 mW under 925 mW pump power, corresponding to the optical-to-optical efficiency of 11%. To the best of our knowledge, these are the first sub-100 fs pulses generated from a mode-locked Nd doped crystal laser.

  18. High energy mode locked fiber oscillators for high contrast, high energy petawatt laser seed sources

    SciTech Connect

    Dawson, J W; Messerly, M J; An, J; Kim, D; Barty, C J

    2006-06-15

    In a high-energy petawatt laser beam line the ASE pulse contrast is directly related to the total laser gain. Thus a more energetic input pulse will result in increased pulse contrast at the target. We have developed a mode-locked fiber laser with high quality pulses and energies exceeding 25nJ. We believe this 25nJ result is scalable to higher energies. This oscillator has no intra-cavity dispersion compensation, which yields an extremely simple, and elegant laser configuration. We will discuss the design of this laser, our most recent results and characterization of all the key parameters relevant to it use as a seed laser. Our oscillator is a ring cavity mode-locked fiber laser [1]. These lasers operate in a self-similar pulse propagation regime characterized by a spectrum that is almost square. This mode was found theoretically [2] to occur only in the positive dispersion regime. Further increasing positive dispersion should lead to increasing pulse energy [2]. We established that the positive dispersion required for high-energy operation was approximately that of 2m of fiber. To this end, we constructed a laser cavity similar to [1], but with no gratings and only 2m of fiber, which we cladding pumped in order to ensure sufficient pump power was available to achieve mode-locked operation. A schematic of the laser is shown in figure 1 below. This laser produced low noise 25nJ pulses with a broad self similar spectrum (figure 2) and pulses that could be de-chirped to <100fs (figure 3). Pulse contrast is important in peta-watt laser systems. A major contributor to pulse contrast is amplified spontaneous emission (ASE), which is proportional to the gain in the laser chain. As the oscillator strength is increased, the required gain to reach 1PW pulses is decreased, reducing ASE and improving pulse contrast. We believe these lasers can be scaled in a stable fashion to pulse energies as high as 100nJ and have in fact seen 60nJ briefly in our lab, which is work still

  19. Effects of intermodal dispersion and fiber length on the mode-locking of a dual-core fiber laser

    NASA Astrophysics Data System (ADS)

    Fang, Xiaohui; Song, Yanrong

    2016-06-01

    We investigate theoretically how the intermodal dispersion and the fiber length influence the formation of ultrashort pulses in a dual-core fiber laser. Our simulation using the Ginzburg-Landau equation found that stable self-starting of mode-locking can be achieved with a fiber length deviating from integer multiples of the linear coupling length. Furthermore, the intermodal dispersion will not lead to pulse splitting, in contrast, it will induce asymmetry in the pulse shape and increase the modulation instability. Consequently, a filter is found necessary to stabilize the mode-locking operation when the fiber length is longer than the linear coupling length.

  20. Generation of sub-100-fs pulses from a CW mode-locked chromium-doped forsterite laser

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1992-01-01

    Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite laser is reported. The forsterite laser was actively mode locked by using an acoustooptic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intracavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses measured had a 60-fs pulse width.

  1. Large anomalous-dispersion mode-locked fiber laser based on a chirped fiber Bragg grating pair

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Yan, Yaxi; Hu, Chengzhi; Wu, Bo; Shen, Yonghang

    2016-10-01

    A carbon-nanotube mode-locked erbium fiber laser with large net anomalous dispersion is presented. A chirped fiber Bragg grating (CFBG) pair is incorporated to increase the net-cavity anomalous dispersion and soliton splitting threshold. Self-started mode-locked laser produces stable pulses with repetition rate of 9.26 MHz. Laser spectrum is centered at ~1560 nm with 3 dB bandwidth of 0.43 nm. The typical output pulse energy and duration is 0.21 nJ and 8.05 ps, respectively.

  2. Coexistence of conventional solitons and stretched pulses in a fiber laser mode-locked by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, W. L.; Kong, Y. C.; Chen, G. W.; Yang, H. R.

    2015-04-01

    We have proposed a nanotube-mode-locking fiber laser that can generate conventional solitons and stretched pulses in the same cavity. The net cavity dispersion of laser is slightly negative. The central wavelength and bandwidth of the conventional solitons are 1584.7 and 9.2 nm, respectively. The stretched pulse locates at 1572 nm with a bandwidth of 18.8 nm. The switchable mode-locking operation is mainly attributable to the bandwidth-dependent stretching factor that is tunable due to the spectral filtering effect induced by nonlinear polarization rotation.

  3. Dual-band wavelength tunable nonlinear polarization rotation mode-locked Erbium-doped fiber lasers induced by birefringence variation and gain curvature alteration.

    PubMed

    Lin, Sheng-Fong; Lin, Gong-Ru

    2014-09-01

    With the combining effects of the fiber birefringence induced round-trip phase variation and the gain profile reshaping induced spectral filtering in the Erbium-doped fiber laser (EDFL) cavity, the mechanism corresponding to the central wavelength tunability of the EDFL passively mode-locked by nonlinear polarization rotation is explored. Bending the intracavity fiber induces the refractive index difference between orthogonal axes, which enables the dual-band central wavelength shift of 2.9 nm at 1570 nm region and up to 10.2 nm at 1600 nm region. The difference between the wavelength shifts at two bands is attributed to the gain dispersion decided by the gain spectral curvature of the EDFA, and the spacing between two switchable bands is provided by the birefringence induced variation on phase delay which causes transmittance variation. In addition, the central wavelength shift can also be controlled by varying the pumping geometry. At 1570 nm regime, an offset of up to 5.9 nm between the central wavelengths obtained under solely forward or backward pumping condition is observed, whereas the bidirectional pumping scheme effectively compensates the gain spectral reshaping effects to minimize the central wavelength shift. In contrast, the wavelength offset shrinks to only 1.1 nm when mode-locking at 1600 nm under single-sided pumping, as the gain profile strongly depends on the spatial distribution of the excited erbium ions under different pumping schemes. Except the birefringence variation and the gain spectral filtering phenomena, the gain-saturation mechanism induced refractive index change and its influence to the dual-band central wavelength tunability are also observed and analyzed.

  4. Microwave emission by nonlinear crystals irradiated with a high-intensity, mode-locked laser

    NASA Astrophysics Data System (ADS)

    Borghesani, A. F.; Braggio, C.; Guarise, M.

    2016-06-01

    We report on the experimental investigation of the efficiency of some nonlinear crystals to generate microwave (RF) radiation as a result of optical rectification (OR) when irradiated with intense pulse trains delivered by a mode-locked laser at 1064 nm. We have investigated lithium triborate (LBO), lithium niobate (LiNbO3), zinc selenide (ZnSe), and also potassium titanyl orthophosphate (KTP) for comparison with previous measurements. The results are in good agreement with the theoretical predictions based on the form of the second-order nonlinear susceptibility tensor. For some crystals we investigated also the second harmonic generation (SHG) to cross check the theoretical model. We confirm the theoretical prediction that OR leads to the production of higher order RF harmonics that are overtones of the laser repetition rate.

  5. Dynamical Analysis of Externally Induced Mode Locking via Variable Frequency Complex Demodulation

    NASA Astrophysics Data System (ADS)

    Craven, W. A.; Wootton, A. J.

    1996-11-01

    Mirnov oscillations detected by magnetic probes in discharges mode locked by a resonant external magnetic perturbation are analyzed dynamically. We use variable frequency complex demodulation [Gasquet and Wootton, RSI, to be published] for this analysis. This technique allows for the time-resolved determination of the harmonic content of the non-stationary Mirnov signal. This harmonic content is compared to theoretical predictions of the interaction of tearing modes with a resonant external perturbation, described by the pendulum equation. In the case of interest, the analytic prediction for the harmonic content agrees with the observed data from TEXT-U. The technique also allows for analysis of the magnitude of error fields resonant at the rational surface giving rise to the Mirnov signals, and we give an estimate of the m=2, n=1 error field on TEXT-U.

  6. Report on first masing and single mode locking in a prebunched beam FEM oscillator

    SciTech Connect

    Cohen, M.; Eichenbaum, A.; Kleinman, H.

    1995-12-31

    Radiation characteristics of a table-top free electron maser (FEM) are described in this paper. The FEM employs a prebunched electron beam and is operated as an oscillator in the low-gain collective (Raman) regime. Using electron beam prebunching single mode locking at any one of the possible oscillation modes was obtained. The electron beam is prebunched by a microwave tube section before it is injected into the wiggler. By tuning the electron beam bunching frequency, the FEM oscillation frequency can be locked to any eigen frequency of the resonant waveguide cavity which is within the frequency band of net gain of the FEM. The oscillation build up process is sped up, when the FEM operates with a prebunched electron beam, and the build-up time of radiation is shortened significantly. First measurements of masing with and without prebunching and characterization of the emitted radiation are reported.

  7. Comparison of different Kerr-lens mode locking laser design techniques

    NASA Astrophysics Data System (ADS)

    Moreno-Larios, José Agustín.; Rosete-Aguilar, Martha; Garduño-Mejía, Jesús

    2016-04-01

    Three numerical methods for the design of Kerr Lens Mode-Locking (KLML) ultrashort pulse cavities that use a solid state Brewster-cut nonlinear gain medium are compared. The nonlinear medium is modeled first deploying a matrix approximation that considers non-coupled (tangential analysis is independent of sagittal analysis) Kerr and thermal self-focusing; and second with a differential equation that relates the real and imaginary parts of the inverse of the complex Gaussian beam parameter. The third comparison is against a matrix analysis method that considers the coupling between the sagittal and tangential modes inside the nonlinear medium in order to determine the impact of this effect. The three methods search the self-consistency condition for the complex beam parameter and the results are compared.

  8. Discrete family of dissipative soliton pairs in mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Zavyalov, Aleksandr; Iliew, Rumen; Egorov, Oleg; Lederer, Falk

    2009-05-01

    We numerically investigate the formation of soliton pairs (bound states) in mode-locked fiber ring lasers. In the distributed model (complex cubic-quintic Ginzburg-Landau equation) we observe a discrete family of soliton pairs with equidistantly increasing peak separation. This family was identified by two alternative numerical schemes and the bound state instability was disclosed by a linear stability analysis. Moreover, similar families of unstable bound state solutions have been found in a more realistic lumped laser model with an idealized saturable absorber (instantaneous response). We show that a stabilization of these bound states can be achieved when the finite relaxation time of the saturable absorber is taken into account. The domain of stability can be controlled by varying this relaxation time.

  9. Time-encoded Raman scattering (TICO-Raman) with Fourier domain mode locked (FDML) lasers

    NASA Astrophysics Data System (ADS)

    Karpf, Sebastian; Eibl, Matthias; Wieser, Wolfgang; Klein, Thomas; Huber, Robert

    2015-07-01

    We present a new concept for performing stimulated Raman spectroscopy and microscopy by employing rapidly wavelength swept Fourier Domain Mode locked (FDML) lasers [1]. FDML lasers are known for fastest imaging in swept-source optical coherence tomography [2, 3]. We employ this continuous and repetitive wavelength sweep to generate broadband, high resolution stimulated Raman spectra with a new, time-encoded (TICO) concept [4]. This allows for encoding and detecting the stimulated Raman gain on the FDML laser intensity directly in time. Therefore we use actively modulated pump lasers, which are electronically synchronized to the FDML laser, in combination with a fast analog-to-digital converter (ADC) at 1.8 GSamples/s. We present hyperspectral Raman images with color-coded, molecular contrast.

  10. Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods

    NASA Astrophysics Data System (ADS)

    Wang, Xude; Luo, Zhichao; Liu, Meng; Tang, Rui; Luo, Aiping; Xu, Wencheng

    2016-04-01

    A wavelength-switchable femtosecond pulse fiber laser is demonstrated by using a saturable absorber (SA) of silica-encased gold nanorods (GNRs@SiO2). The GNRs@SiO2 SA presents a modulation depth of 4.5% and nonsaturable loss of 32.1%. By properly adjusting the cavity parameters, femtosecond mode-locked pulses centered at 1535.6 nm and 1560.5 nm could be achieved alternately. The durations of pulses at the two wavelengths are measured to be ~403 fs and ~426 fs, respectively. The achieved results indicated that the GNRs@SiO2 could indeed be a promising nonlinear material with excellent photothermal stability and saturable absorption, which could satisfy the requirements for different photonic devices and applications.

  11. Discrete family of dissipative soliton pairs in mode-locked fiber lasers

    SciTech Connect

    Zavyalov, Aleksandr; Iliew, Rumen; Egorov, Oleg; Lederer, Falk

    2009-05-15

    We numerically investigate the formation of soliton pairs (bound states) in mode-locked fiber ring lasers. In the distributed model (complex cubic-quintic Ginzburg-Landau equation) we observe a discrete family of soliton pairs with equidistantly increasing peak separation. This family was identified by two alternative numerical schemes and the bound state instability was disclosed by a linear stability analysis. Moreover, similar families of unstable bound state solutions have been found in a more realistic lumped laser model with an idealized saturable absorber (instantaneous response). We show that a stabilization of these bound states can be achieved when the finite relaxation time of the saturable absorber is taken into account. The domain of stability can be controlled by varying this relaxation time.

  12. Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion.

    PubMed

    Zhang, Lei; El-Damak, A R; Feng, Yan; Gu, Xijia

    2013-05-20

    An ytterbium-doped mode-locked fiber laser was demonstrated with a chirped fiber Bragg grating for dispersion management. The cavity net dispersion could be changed from large normal dispersion (2.4 ps(2)) to large anomalous dispersion (-2.0 ps(2)), depending on the direction of the chirped Bragg grating in laser cavity. The proposed fiber lasers with large normal dispersion generated stable pulses with a pulse width of <1.1 ns and a pulse energy of 1.5 nJ. The laser with large anomalous dispersion generated wavelength-tunable soliton with a pulse width of 2.7 ps and pulse energy of 0.13 nJ. A theoretical model was established and used to verify the experimental observations.

  13. Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion.

    PubMed

    Zhang, Lei; El-Damak, A R; Feng, Yan; Gu, Xijia

    2013-05-20

    An ytterbium-doped mode-locked fiber laser was demonstrated with a chirped fiber Bragg grating for dispersion management. The cavity net dispersion could be changed from large normal dispersion (2.4 ps(2)) to large anomalous dispersion (-2.0 ps(2)), depending on the direction of the chirped Bragg grating in laser cavity. The proposed fiber lasers with large normal dispersion generated stable pulses with a pulse width of <1.1 ns and a pulse energy of 1.5 nJ. The laser with large anomalous dispersion generated wavelength-tunable soliton with a pulse width of 2.7 ps and pulse energy of 0.13 nJ. A theoretical model was established and used to verify the experimental observations. PMID:23736423

  14. Modeling and analysis of polarization effects in Fourier domain mode-locked lasers.

    PubMed

    Jirauschek, Christian; Huber, Robert

    2015-05-15

    We develop a theoretical model for Fourier domain mode-locked (FDML) lasers in a non-polarization-maintaining configuration, which is the most widely used type of FDML source. This theoretical approach is applied to analyze a widely wavelength-swept FDML setup, as used for picosecond pulse generation by temporal compression of the sweeps. We demonstrate that good agreement between simulation and experiment can only be obtained by including polarization effects due to fiber bending birefringence, polarization mode dispersion, and cross-phase modulation into the theoretical model. Notably, the polarization dynamics are shown to have a beneficial effect on the instantaneous linewidth, resulting in improved coherence and thus compressibility of the wavelength-swept FDML output.

  15. Dissipative soliton molecules with independently evolving or flipping phases in mode-locked fiber lasers

    SciTech Connect

    Zavyalov, Aleksandr; Egorov, Oleg; Lederer, Falk; Iliew, Rumen

    2009-10-15

    We numerically demonstrate the existence of a discrete family of robust dissipative soliton bound state solutions (soliton molecules) in a mode-locked fiber laser with an instantaneous saturable absorber in the normal dispersion domain. For a certain domain of the small-signal gain, we obtain a robust first-level bound state with almost constant separation where the phase of the two pulses evolves independently. Moreover, their phase difference can evolve either periodically or chaotically depending on the small-signal gain. Interestingly, higher level bound states exhibit a fundamentally different dynamics. They represent oscillating solutions with a phase difference alternating between zero and {pi}. We identify the crucial role of the linear gain saturation for the existence of these robust molecules independently of their level.

  16. Wavelength-Versatile Graphene-Gold Film Saturable Absorber Mirror for Ultra-Broadband Mode-Locking of Bulk Lasers

    PubMed Central

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-01-01

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage. PMID:24853072

  17. Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers.

    PubMed

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-05-23

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage.

  18. Wavelength-Versatile Graphene-Gold Film Saturable Absorber Mirror for Ultra-Broadband Mode-Locking of Bulk Lasers

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-05-01

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage.

  19. Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser.

    PubMed

    Piracha, Mohammad U; Nguyen, Dat; Ozdur, Ibrahim; Delfyett, Peter J

    2011-06-01

    A lidar system based on the coherent detection of oppositely chirped pulses generated using a 20 MHz mode locked laser and chirped fiber Bragg gratings is presented. Sub millimeter resolution ranging is performed with > 25 dB signal to noise ratio. Simultaneous, range and Doppler velocity measurements are experimentally demonstrated using a target moving at > 330 km/h inside the laboratory.

  20. Mode-locked ytterbium fiber lasers using a large modulation depth carbon nanotube saturable absorber without an additional spectral filter

    NASA Astrophysics Data System (ADS)

    Pan, Y. Z.; Miao, J. G.; Liu, W. J.; Huang, X. J.; Wang, Y. B.

    2014-09-01

    We demonstrate an all-normal-dispersion ytterbium (Yb)-doped fiber laser mode-locked by a higher modulation depth carbon nanotube saturable absorber (CNT-SA) based on an evanescent field interaction scheme. The laser cavity consists of pure normal dispersion fibers without dispersion compensation and an additional spectral filter. It is exhibited that the higher modulation depth CNT-SA could contribute to stabilize the mode-locking operation within a limited range of pump power and generate the highly chirped pulses with a high-energy level in the cavity with large normal dispersion and strong nonlinearity. Stable mode-locked pulses with a maximal energy of 29 nJ with a 5.59 MHz repetition rate at the operating wavelength around 1085 nm have been obtained. The maximal time-bandwidth product is 262.4. The temporal and spectral characteristics of pulses versus pump power are demonstrated. The experimental results suggest that the CNT-SA provides a sufficient nonlinear loss to compensate high nonlinearity and catch up the gain at a different pump power and thus leads to the stable mode locking.

  1. All optical millimeter-wave electrical signal generation using an integrated mode-locked semiconductor ring laser and photodiode

    SciTech Connect

    Vawter, G.A.; Mar, A.; Hietala, V.; Zolper, J.; Hohimer, J.

    1997-12-01

    The first monolithic photonic integrated circuit for all-optical generation of millimeter (mm)-wave electrical signals is reported. The design integrates a mode-locked semiconductor ring diode laser, an optical amplifier, and a high-speed photodetector into a single optical integrated circuit. Signal generation is demonstrated at frequencies of 30, 60, and 90 GHz.

  2. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate.

    PubMed

    Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang

    2016-06-15

    We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range.

  3. Two-frequency mode-locked lasing in a monoblock diode-pumped Nd{sup 3+}:GGG laser

    SciTech Connect

    Baburin, N V; Galagan, B I; Danileiko, Yu K; Chikov, V A; Il'ichev, Nikolai N; Masalov, Anatolii V; Molchanov, V Ya

    2001-04-30

    The locking of two mutually orthogonal polarisation modes of a diode-pumped cw Nd{sup 3+}:GGG laser is experimentally demonstrated. The mode locking is accomplished with a radio signal at the intermode beat frequency. (control of laser radiation parameters)

  4. Suppression of continuous lasing in a carbon nanotube polyimide film mode-locked erbium-doped fiber laser.

    PubMed

    Gui, Lili; Yang, Xin; Zhao, Guangzhen; Yang, Xu; Xiao, Xiaosheng; Zhu, Jinsong; Yang, Changxi

    2011-01-01

    We demonstrated an erbium-doped mode-locked fiber laser using a single-walled carbon nanotube-dispersed polyimide (SWNT-PI) film. Different mode-locking operations were compared and analyzed utilizing SWNT-PI films with different concentrations (2, 1, and 0.25 wt.%, respectively). It was found that the continuous single-pulse mode-locking operation was often accompanied by a continuous wave oscillation part for the 1 and 0.25 wt.% SWNT-PI films, whereas the 2 wt.% SWNT-PI film presented the most excellent mode-locking performance, thanks to sufficient modulation depth. Using the 2 wt.% SWNT-PI film, a stable pulse train with a pulse width of 840 fs and a repetition rate of 15.3 MHz was achieved. The average output power was 0.33 mW at the pump power of 155 mW under an output coupling ratio of 10%. Operational performance of the laser cavity when employing the 2 wt.% SWNT-PI film was also demonstrated.

  5. Competitive effects in a YAG:Nd/sup 3 +/ ring laser with acousto-optic mode locking

    SciTech Connect

    Goncharova, I.F.; Kornienko, L.S.; Kravtsov, N.V.; Nanii, O.E.; Shelaev, A.N.

    1981-06-01

    An experimental study was made of the competitive interactions of opposite light waves in a YAG:Nd/sup 3 +/ ring laser with acousto-optic mode locking. These effects were investigated with the laser at rest and rotating. A study was made of the dependence of suppression of one of the opposite waves on the detuning of the modulation frequency from the intermode value, on the difference between the resonator frequencies due to rotation, and on the position and orientation of the acousto-optic modulator. It was found that the competition between the opposite waves in the case of forced mode locking could be weaker or stronger than in the case of free oscillations. Moreover, in the case of a solid-state ring laser with a homogeneously broadened luminescence line of the active substance one could realize bidirectional or unidirectional mode locking. Different forms of modulation of the intensities of the opposite waves were possible under forced mode-locking conditions when the ultrasonic frequency was scanned.

  6. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate.

    PubMed

    Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang

    2016-06-15

    We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range. PMID:27304265

  7. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks.

    PubMed

    Xiao, Y; Brunet, F; Kanskar, M; Faucher, M; Wetter, A; Holehouse, N

    2012-01-30

    We have demonstrated a monolithic cladding-pumped ytterbium-doped single all-fiber laser oscillator generating 1 kW of CW signal power at 1080 nm with 71% slope efficiency and near diffraction-limited beam quality. Fiber components were highly integrated on "spliceless" passive fibers to promote laser efficiency and alleviate non-linear effects. The laser was pumped through a 7:1 pump combiner with seven 200-W 91x nm fiber-pigtailed wavelength-beam-combined diode-stack modules. The signal power of such a single all-fiber laser oscillator showed no evidence of roll-over, and the highest output was limited only by available pump power.

  8. Silicon photonics WDM interconnects based on resonant ring modulators and semiconductor mode locked laser

    NASA Astrophysics Data System (ADS)

    Müller, J.; Hauck, J.; Shen, B.; Romero-García, S.; Islamova, E.; Sharif Azadeh, S.; Joshi, S.; Chimot, N.; Moscoso-Mártir, A.; Merget, F.; Lelarge, F.; Witzens, J.

    2015-03-01

    We demonstrate wavelength domain multiplexed (WDM) data transmission with a data rate of 14 Gbps based on optical carrier generation with a single-section semiconductor mode-locked laser (SS-MLL) and modulation with a Silicon Photonics (SiP) resonant ring modulator (RRM). 18 channels are sequentially measured, whereas the best recorded eye diagrams feature signal quality factors (Q-factors) above 7. While optical re-amplification was necessary to maintain the link budgets and therefore system measurements were performed with an erbium doped fiber amplifier (EDFA), preliminary characterization done with a semiconductor optical amplifier (SOA) indicates compatibility with the latter pending the integration of an additional optical filter to select a subset of carriers and prevent SOA saturation. A systematic analysis of the relative intensity noise (RIN) of isolated comb lines and of signal Q-factors indicates that the link is primarily limited by amplified spontaneous emission (ASE) from the EDFA rather than laser RIN. Measured RIN for single comb components is below -120 dBc/Hz in the range from 7 MHz to 4 GHz and drops to the shot noise level at higher frequencies.

  9. Fast and slowly evolving vector solitons in mode-locked fibre lasers.

    PubMed

    Sergeyev, Sergey V

    2014-10-28

    We report on a new vector model of an erbium-doped fibre laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau equations. Unlike the previous models, it accounts for the vector nature of the interaction between an optical field and an erbium-doped active medium, slow relaxation dynamics of erbium ions, linear birefringence in a fibre, linear and circular birefringence of a laser cavity caused by in-cavity polarization controller and light-induced anisotropy caused by elliptically polarized pump field. Interplay of aforementioned factors changes coherent coupling of two polarization modes at a long time scale and so results in a new family of vector solitons (VSs) with fast and slowly evolving states of polarization. The observed VSs can be of interest in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetization in data storage devices and many other areas. PMID:25246680

  10. CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Hu, Zhiping; Li, Yue; Xu, Jianqiu; Tang, Xiaosheng; Tang, Yulong

    2016-06-01

    Cesium lead halide perovskite nanocrystals (CsPbX3, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr3 nanocrystal films and characterize their physical properties. Broadband linear absorption from ˜0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr3 saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr3 liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm2, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ˜216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ˜1076 nm. This work shows that CsPbBr3 films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  11. Ultrafast pulse amplification in mode-locked vertical external-cavity surface-emitting lasers

    SciTech Connect

    Böttge, C. N. Hader, J.; Kilen, I.; Moloney, J. V.; Koch, S. W.

    2014-12-29

    A fully microscopic many-body Maxwell–semiconductor Bloch model is used to investigate the influence of the non-equilibrium carrier dynamics on the short-pulse amplification in mode-locked semiconductor microlaser systems. The numerical solution of the coupled equations allows for a self-consistent investigation of the light–matter coupling dynamics, the carrier kinetics in the saturable absorber and the multiple-quantum-well gain medium, as well as the modification of the light field through the pulse-induced optical polarization. The influence of the pulse-induced non-equilibrium modifications of the carrier distributions in the gain medium and the saturable absorber on the single-pulse amplification in the laser cavity is identified. It is shown that for the same structure, quantum wells, and gain bandwidth the non-equilibrium carrier dynamics lead to two preferred operation regimes: one with pulses in the (sub-)100 fs-regime and one with multi-picosecond pulses. The recovery time of the saturable absorber determines in which regime the device operates.

  12. Isolator-free switchable uni- and bidirectional hybrid mode-locked erbium-doped fiber laser.

    PubMed

    Chernysheva, Maria; Araimi, Mohammed Al; Kbashi, Hani; Arif, Raz; Sergeyev, Sergey V; Rozhin, Aleksey

    2016-07-11

    An Erbium-doped fibre ring laser hybrid mode-locked with single-wall carbon nanotubes (SWNT) and nonlinear polarisation evolution (NPE) without an optical isolator has been investigated for various cavity conditions. Precise control of the state of polarisation (SOP) in the cavity ensures different losses for counter-propagating optical fields. As the result, the laser operates in quasi-unidirectional regime in both clockwise (CW) and counter-clockwise (CCW) directions with the emission strengths difference of the directions of 22 dB. Furthermore, by adjusting the net birefringence in the cavity, the laser can operate in a bidirectional generation. In this case, a laser pumped with 75 mW power at 980 nm generates almost identical 790 and 570 fs soliton pulses with an average power of 1.17 and 1.11 mW. The operation stability and pulse quality of the soliton pulses in both unidirectional regimes are highly competitive with those generated in conventional ring fibre lasers with isolator in the cavity. Demonstrated bidirectional laser operation can find vital applications in gyroscopes or precision rotation sensing technologies. PMID:27410844

  13. In vivo endomicroscopy using three-dimensional optical coherence tomography and Fourier domain mode locked lasers

    NASA Astrophysics Data System (ADS)

    Adler, Desmond C.; Chen, Yu; Huber, Robert; Schmitt, Joseph; Connolly, James; Fujimoto, James G.

    2008-02-01

    We report an endoscopic optical coherence tomography (OCT) system based on a Fourier Domain Mode Locked (FDML) laser, a novel data acquisition (DAQ) system with optical frequency clocking, and a high-speed spiralscanning fiber probe. The system is capable of acquiring three-dimensional (3D) in vivo datasets at 100,000 axial lines/s and 50 frames/s, enabled by the high sweep rates of the FDML laser and the efficient data processing of the DAQ system. This high imaging rate allows densely-sampled 3D datasets to be acquired, giving a resolvable feature size of 9 μm x 20 μm x 7 μm (transverse x longitudinal x axial, XYZ). In vivo 3D endomicroscopy is demonstrated in the rabbit colon, where individual colonic crypts are clearly visualized and measured. With further improvements in DAQ technology, the imaging speed will be scalable to the hundreds of thousands of axial lines/s supported by FDML lasers.

  14. Optical coherence tomography for imaging of subpleural alveolar structure using a Fourier domain mode locked laser

    NASA Astrophysics Data System (ADS)

    Kirsten, Lars; Walther, Julia; Cimalla, Peter; Gaertner, Maria; Meissner, Sven; Koch, Edmund

    2011-06-01

    Optical coherence tomography (OCT) is a noninvasive imaging modality generating cross sectional and volumetric images of translucent samples. In Fourier domain OCT (FD OCT), the depth profile is calculated by a fast Fourier transformation of the interference spectrum, providing speed and SNR advantage and thus making FD OCT well suitable in biomedical applications. The interference spectrum can be acquired spectrally resolved in spectral domain OCT or time-resolved in optical frequency domain imaging (OFDI). Since OCT images still suffer from motion artifacts, especially under in vivo conditions, increased depth scan rates are required. Therefor, the principle of Fourier domain mode locking has been presented by R. Huber et al. circumventing the speed limitations of conventional FD OCT systems. In FDML lasers, a long single mode fiber is inserted in the ring resonator of the laser resulting in an optical round trip time of a few microseconds. Sweeping the wavelength synchronously by a tunable Fabry-Perot filter can provide wavelength sweeps with repetition rates up to a few MHz used for OFDI. Imaging of subpleural lung tissue for investigation of lung dynamics and its elastic properties is a further biomedical application demanding high-speed OCT imaging techniques. For the first time, the visualization of subpleural alveolar structures of a rabbit lung is presented by the use of an FDML-based OCT system enabling repetition rates of 49.5 kHz and 122.6 kHz, respectively.

  15. Influence of kinetic hole filling on the stability of mode-locked semiconductor disk lasers

    NASA Astrophysics Data System (ADS)

    Moloney, Jerome V.; Kilen, Isak; Hader, Jorg; Koch, Stephan W.

    2016-03-01

    Microscopic many-body theory is employed to analyze the mode-locking dynamics of a vertical external-cavity surface-emitting laser with a saturable absorber mirror. The quantum-wells are treated microscopically through the semiconductor Bloch equations and the light field using Maxwell's equations. Higher order correlation effects such as polarization dephasing and carrier relaxation at the second Born level are included and also approximated using effective rates fitted to second-Born-Markov evaluations. The theory is evaluated numerically for vertical external cavity surface emitting lasers with resonant periodic gain media. For given gain, the influence of the loss conditions on the very-short pulse generation in the range above 100 fs is analyzed. Optimized operational parameters are identified. Additionally, the fully microscopic theory at the second Born level is used to carrier out a pump-probe study of the carrier recovery in individual critical components of the VECSEL cavity such as the VECSEL chip itself and semiconductor or graphene saturable absorber mirrors.

  16. Polarization-maintaining buffered Fourier domain mode-locked swept source for optical coherence tomography.

    PubMed

    Zhang, Jun; Jing, Joe; Wang, Pinghe; Chen, Zhongping

    2011-12-15

    A polarization-maintaining buffered Fourier domain mode-locked (FDML) swept source with a center wavelength of 1300 nm is demonstrated. The scanning rate of the buffered FDML swept source is doubled without sacrificing the output power of the swept source by combining two orthogonally polarized outputs with a polarization beam combiner. The stability of the swept source is improved because the polarization state of the laser beam inside the laser cavity is maintained without the use of any polarization controllers. The swept source is capable of an edge-to-edge tuning range of more than 150 nm and a FWHM range of 95 nm at a 102 kHz sweeping rate and with an average power of 12 mW. A swept source optical coherence tomography (SSOCT) system is developed utilizing this buffered FDML swept source. The axial resolution of the SSOCT system is measured to be 9.4 µm in air. The sensitivity of the SSOCT system is 107.5 dB at a depth of 0.25 mm with a 6 dB roll-off at a depth of 2.25 mm.

  17. Colliding pulse mode-locked lasers as light sources for single-shot holography

    NASA Astrophysics Data System (ADS)

    Grosse, Doris; Koukourakis, Nektarios; Gerhardt, Nils C.; Schlauch, Tobias; Balzer, Jan C.; Klehr, Andreas; Erbert, Götz; Tränkle, Günther; Hofmann, Martin R.

    2011-05-01

    So far, concepts for three dimensional biomedical imaging rely on scanning in at least one dimension. Single-shot holography1, in contrast, stores three-dimensional information encoded in an electro-magnetic wave scattered back from a sample in one single hologram. Single-shot holography operates with simultaneous recordings of holograms at different wavelengths. While the lateral sample information is stored in the interference patterns of individual holograms, the depth information is obtained from the spectral distribution at each lateral image point, similar to Fourier-domain optical coherence tomography2. Consequently, the depth resolution of the reconstructed image is determined by the bandwidth of the light source, so that a broadband light source is needed to obtain high depth resolution. Additionally, the holographic material, in which the holograms are stored, restricts the useable bandwidth. A thick photorefractive crystal can store several holograms of different wavelengths at once. As the crystal works best when using a source with a discrete spectrum, a light source is needed that has a spectrum with well distinguishable laser lines. In a proof-of-principle experiment, we use colliding pulse mode-locked (CPM)3 laser diodes as light sources with a comb-like spectrum to demonstrate the concept of single-shot holography by storing multiple holograms at the same time in a photorefractive Rh:BaTiO3 crystal.

  18. Isolator-free switchable uni- and bidirectional hybrid mode-locked erbium-doped fiber laser.

    PubMed

    Chernysheva, Maria; Araimi, Mohammed Al; Kbashi, Hani; Arif, Raz; Sergeyev, Sergey V; Rozhin, Aleksey

    2016-07-11

    An Erbium-doped fibre ring laser hybrid mode-locked with single-wall carbon nanotubes (SWNT) and nonlinear polarisation evolution (NPE) without an optical isolator has been investigated for various cavity conditions. Precise control of the state of polarisation (SOP) in the cavity ensures different losses for counter-propagating optical fields. As the result, the laser operates in quasi-unidirectional regime in both clockwise (CW) and counter-clockwise (CCW) directions with the emission strengths difference of the directions of 22 dB. Furthermore, by adjusting the net birefringence in the cavity, the laser can operate in a bidirectional generation. In this case, a laser pumped with 75 mW power at 980 nm generates almost identical 790 and 570 fs soliton pulses with an average power of 1.17 and 1.11 mW. The operation stability and pulse quality of the soliton pulses in both unidirectional regimes are highly competitive with those generated in conventional ring fibre lasers with isolator in the cavity. Demonstrated bidirectional laser operation can find vital applications in gyroscopes or precision rotation sensing technologies.

  19. Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber.

    PubMed

    Huang, Pi Ling; Lin, Shau-Ching; Yeh, Chao-Yung; Kuo, Hsin-Hui; Huang, Shr-Hau; Lin, Gong-Ru; Li, Lain-Jong; Su, Ching-Yuan; Cheng, Wood-Hi

    2012-01-30

    A stable mode-locked fiber laser (MLFL) employing multi-layer graphene as saturable absorber (SA) is presented. The multi-layer graphene were grown by chemical vapor deposition (CVD) on Ni close to A-A stacking. Linear absorbance spectrum of multi-layer graphene was observed without absorption peak from 400 to 2000 nm. Optical nonlinearities of different atomic-layers (7-, 11-, 14-, and 21- layers) graphene based SA are investigated and compared. The results found that the thicker 21-layer graphene based SA exhibited a smaller modulation depth (MD) value of 2.93% due to more available density of states in the band structure of multi-layer graphene and favored SA nonlinearity. A stable MLFL of 21-layer graphene based SA showed a pulsewidth of 432.47 fs, a bandwidth of 6.16 nm, and a time-bandwidth product (TBP) of 0.323 at fundamental soliton-like operation. This study demonstrates that the atomic-layer structure of graphene from CVD process may provide a reliable graphene based SA for stable soliton-like pulse formation of the MLFL.

  20. Fast and slowly evolving vector solitons in mode-locked fibre lasers.

    PubMed

    Sergeyev, Sergey V

    2014-10-28

    We report on a new vector model of an erbium-doped fibre laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau equations. Unlike the previous models, it accounts for the vector nature of the interaction between an optical field and an erbium-doped active medium, slow relaxation dynamics of erbium ions, linear birefringence in a fibre, linear and circular birefringence of a laser cavity caused by in-cavity polarization controller and light-induced anisotropy caused by elliptically polarized pump field. Interplay of aforementioned factors changes coherent coupling of two polarization modes at a long time scale and so results in a new family of vector solitons (VSs) with fast and slowly evolving states of polarization. The observed VSs can be of interest in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetization in data storage devices and many other areas.