Science.gov

Sample records for all-normal dispersion photonic

  1. Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources

    PubMed Central

    Tu, Haohua; Liu, Yuan; Lægsgaard, Jesper; Sharma, Utkarsh; Siegel, Martin; Kopf, Daniel; Boppart, Stephen A.

    2010-01-01

    We quantitatively predict the observed continuum-like spectral broadening in a 90-mm weakly birefringent all-normal dispersion-flattened photonic crystal fiber pumped by 1041-nm 229-fs 76-MHz pulses from a solid-state Yb:KYW laser. The well-characterized continuum pulses span a bandwidth of up to 300 nm around the laser wavelength, allowing high spectral power density pulse shaping useful for various coherent control applications. We also identify the nonlinear polarization effect that limits the bandwidth of these continuum pulses, and therefore report the path toward a series of attractive alternative broadband coherent optical sources. PMID:21197060

  2. Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser

    PubMed Central

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin; Turchinovich, Dmitry; Lægsgaard, Jesper; Boppart, Stephen A.

    2012-01-01

    Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10−5 profoundly affects the SC generation in a DFDD-ANDi photonic crystal fiber. Conventional simulations based on the scalar generalized nonlinear Schrödinger equation (GNLSE) fail to reproduce the prominent observed features of the SC generation in a short piece (9-cm) of this fiber. However, these features can be qualitatively or semi-quantitatively understood by the coupled GNLSE that takes into account the form-birefringence. The nonlinear polarization effects induced by the birefringence significantly distort the otherwise simple spectrotemporal field of the SC pulses. We therefore propose the fabrication of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser. PMID:22274457

  3. Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires.

    PubMed

    Al-Kadry, Alaa; Li, Lizhu; El Amraoui, Mohammed; North, Thibault; Messaddeq, Younès; Rochette, Martin

    2015-10-15

    We report the first chalcogenide microwire designed with all-normal dispersion to generate supercontinuum by optical wave breaking, a low-noise nonlinear process. The chalcogenide (As2S3) microwire is coated with PMMA and tapered to a diameter of 0.58 μm to achieve the all-normal dispersion regime. The generated supercontinuum spectrum spans over an octave from 960 to >2500  nm using a microwire length of only 3 mm and a low pulse energy of 150 pJ.

  4. Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy.

    PubMed

    Diouf, Mbaye; Salem, Amine Ben; Cherif, Rim; Saghaei, Hamed; Wague, Ahmadou

    2017-01-10

    We numerically report super-flat coherent mid-infrared supercontinuum (MIR-SC) generation in a chalcogenide As38.8Se61.2 photonic crystal fiber (PCF). The dispersion and nonlinear parameters of As38.8Se61.2 chalcogenide PCFs by varying the diameter of the air holes are engineered to obtain all-normal dispersion (ANDi) with high nonlinearities. We show that launching low-energy 50 fs optical pulses with 0.88 kW peak power (corresponding to pulse energy of 0.05 nJ) at a central wavelength of 3.7 μm into a 5 cm long ANDi-PCF generates a flat-top coherent MIR-SC spanning from 2900 to 4575 nm with a high spectral flatness of 3 dB. This ultra-wide and flattened spectrum has excellent stability and coherence properties that can be used for MIR applications such as medical diagnosis of diseases, atmospheric pollution monitoring, and drug detection.

  5. Chirped pulse amplification in an all-normal-dispersion erbium-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Yiqin; Li, Lei; Zhao, Luming

    2017-03-01

    Chirped pulse amplification in an all-normal-dispersion erbium-doped fiber amplifier is presented. Wavelength dependent amplification is examined. It is found that gain dispersion limits the spectral profile of the amplified pulse. If the central wavelength of the seed pulse is far away from that of the gain profile of the amplifier, the gain profile partially shapes the spectrum of the amplified pulse while maintaining the characteristic steep spectral edge at one side. If the optical spectrum of the seed pulse is most covered by the gain profile, the characteristic steep spectral edges will be both maintained. The amplified pulse becomes deformed ultimately with increasing pump power, no matter whether the seed pulse is a transform-limited pulse or a chirped pulse.

  6. Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ben Salem, Amine; Diouf, Mbaye; Cherif, Rim; Wague, Ahmadou; Zghal, Mourad

    2016-06-01

    We report more than two octave spanning mid-IR flat-top supercontinuum (SC) generation using all normal As2S5-borosilicate hybrid photonic crystal fiber. Our design is based on a chalcogenide As2S5 photonic crystal fiber (PCF), where the first ring composed of six air holes is made by borosilicate glass. By injecting 50-fs pulses with 1.6 nJ energy at 2.5 μm in the all normal dispersion (ANDi) regime, a flat-top broadband SC extending from 1 to 5 μm with high-spectral flatness of 8 dB is obtained in only 4-mm fiber length. To the best of our knowledge, we present the broadest flat mid-IR spectrum generated in the ANDi regime of an optical fiber. The self-phase modulation and the optical wave breaking are identified as the main broadening mechanisms. The obtained broadband light source can be potentially used in the field of spectroscopy and in high-resolution optical coherent tomography owing to the high-spectral SC flatness generated by our designed fiber.

  7. Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser.

    PubMed

    Klimczak, Mariusz; Soboń, Grzegorz; Kasztelanic, Rafał; Abramski, Krzysztof M; Buczyński, Ryszard

    2016-01-13

    Coherence of supercontinuum sources is critical for applications involving characterization of ultrafast or rarely occurring phenomena. With the demonstrated spectral coverage of supercontinuum extending from near-infrared to over 10 μm in a single nonlinear fiber, there has been a clear push for the bandwidth rather than for attempting to optimize the dynamic properties of the generated spectrum. In this work we provide an experimental assessment of the shot-to-shot noise performance of supercontinuum generation in two types of soft glass photonic crystal fibers. Phase coherence and intensity fluctuations are compared for the cases of an anomalous dispersion-pumped fiber and an all-normal dispersion fiber. With the use of the dispersive Fourier transformation method, we demonstrate that a factor of 100 improvement in signal-to-noise ratio is achieved in the normal-dispersion over anomalous dispersion-pumped fiber for 390 fs long pump pulses. A double-clad design of the photonic lattice of the fiber is further postulated to enable a pump-related seeding mechanism of normal-dispersion supercontinuum broadening under sub-picosecond pumping, which is otherwise known for similar noise characteristics as modulation instability driven, soliton-based spectra.

  8. Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser

    PubMed Central

    Klimczak, Mariusz; Soboń, Grzegorz; Kasztelanic, Rafał; Abramski, Krzysztof M.; Buczyński, Ryszard

    2016-01-01

    Coherence of supercontinuum sources is critical for applications involving characterization of ultrafast or rarely occurring phenomena. With the demonstrated spectral coverage of supercontinuum extending from near-infrared to over 10 μm in a single nonlinear fiber, there has been a clear push for the bandwidth rather than for attempting to optimize the dynamic properties of the generated spectrum. In this work we provide an experimental assessment of the shot-to-shot noise performance of supercontinuum generation in two types of soft glass photonic crystal fibers. Phase coherence and intensity fluctuations are compared for the cases of an anomalous dispersion-pumped fiber and an all-normal dispersion fiber. With the use of the dispersive Fourier transformation method, we demonstrate that a factor of 100 improvement in signal-to-noise ratio is achieved in the normal-dispersion over anomalous dispersion-pumped fiber for 390 fs long pump pulses. A double-clad design of the photonic lattice of the fiber is further postulated to enable a pump-related seeding mechanism of normal-dispersion supercontinuum broadening under sub-picosecond pumping, which is otherwise known for similar noise characteristics as modulation instability driven, soliton-based spectra. PMID:26759188

  9. Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers

    NASA Astrophysics Data System (ADS)

    Li, Daojing; Shen, Deyuan; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-10-01

    We report on the observation of both stable dissipative solitons and noise-like pulses with the presence of strong Raman scattering in a relatively short all-normal-dispersion Yb-doped fiber laser. We show that Raman scattering can be filtered out by intracavity filter. Furthermore, by appropriate intracavity polarization control, the Raman effect can be utilized to generate broadband noise-like pulses (NLPs) with bandwidth up to 61.4 nm. To the best of our knowledge, this is the broadest NLP achieved in all-normal-dispersion fiber lasers

  10. Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers.

    PubMed

    Li, Daojing; Shen, Deyuan; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-10-05

    We report on the observation of both stable dissipative solitons and noise-like pulses with the presence of strong Raman scattering in a relatively short all-normal-dispersion Yb-doped fiber laser. We show that Raman scattering can be filtered out by intracavity filter. Furthermore, by appropriate intracavity polarization control, the Raman effect can be utilized to generate broadband noise-like pulses (NLPs) with bandwidth up to 61.4 nm. To the best of our knowledge, this is the broadest NLP achieved in all-normal-dispersion fiber lasers.

  11. Unidirectional dissipative soliton operation in an all-normal-dispersion Yb-doped fiber laser without an isolator.

    PubMed

    Li, Daojing; Shen, Deyuan; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-09-10

    We demonstrate self-started unidirectional dissipative soliton operation and noise-like pulse operation in an all-normal-dispersion bidirectional Yb-doped fiber laser mode-locked by nonlinear polarization rotation. The laser works unidirectionally once mode-locking is achieved due to the cavity directional nonlinearity asymmetry along with the nonlinear polarization rotation mode-locking mechanism.

  12. Efficient femtosecond pulse generation in an all-normal-dispersion Yb:fiber ring laser at 605 MHz repetition rate.

    PubMed

    Yang, Hongyu; Wang, Aimin; Zhang, Zhigang

    2012-03-01

    We report a 1030 nm-wavelength Yb:fiber laser that produces the shortest/direct output pulse duration (502 fs) among all-normal-dispersion fiber lasers at the highest repetition rate (605 MHz) among the passively fundamentally mode-locked fiber lasers. The laser also exhibits an optical efficiency of 70% at CW and 65% at mode-locking modes.

  13. Suppressing Short-term Polarization Noise and Related Spectral Decoherence in All-normal Dispersion Fiber Supercontinuum Generation

    PubMed Central

    Liu, Yuan; Zhao, Youbo; Lyngsø, Jens; You, Sixian; Wilson, William L.; Tu, Haohua; Boppart, Stephen A.

    2015-01-01

    The supercontinuum generated exclusively in the normal dispersion regime of a nonlinear fiber is widely believed to possess low optical noise and high spectral coherence. The recent development of flattened all-normal dispersion fibers has been motivated by this belief to construct a general-purpose broadband coherent optical source. Somewhat surprisingly, we identify a large short-term polarization noise in this type of supercontinuum generation that has been masked by the total-intensity measurement in the past, but can be easily detected by filtering the supercontinuum with a linear polarizer. Fortunately, this hidden intrinsic noise and the accompanied spectral decoherence can be effectively suppressed by using a polarization-maintaining all-normal dispersion fiber. A polarization-maintaining coherent supercontinuum laser is thus built with a broad bandwidth (780–1300 nm) and high spectral power (~1 mW/nm). PMID:26166939

  14. Characterization of mode-locking in an all-fiber, all normal dispersion ytterbium based fiber oscillator

    NASA Astrophysics Data System (ADS)

    Cserteg, András.; Sági, Veronika; Drozdy, András.; Varallyay, Zoltán.; Gajdátsy, Gábor

    2015-03-01

    An ytterbium based all fiber, all normal dispersion fiber oscillator with integrated SESAM can have several operation modes like mode-locked, Q-switched and noise-like. To know and to control the quality of the mode-locking is essential for the application of such laser oscillators, otherwise the whole laser setup can be damaged or the expected operation characteristics of the oscillator driven systems cannot be achieved. Usually the two-photon signal generated by the short pulses is used to indicate the mode locked operation, however such detection can be misleading in certain cases and not always able to predict the forthcoming degradation or vanishing of mode locking. The characterization method that we propose uses only the radio frequency spectrum of the oscillator output and can identify the different operation regimes of our laser setup. The optical spectra measured simultaneously with the RF signals proves the reliability of our method. With this kind of characterization stable mode locking can be initiated and maintained during the laser operation. The method combined with the ability to align the polarization states automatically in the laser cavity leads to the possibility to record a polarization map where the stability domains can be identified and classified. With such map the region where the mode locking is self starting and maintainable with minimal polarization alignment can be selected. The developed oscillator reported here with its compact setup and self alignment ability can be a reliable source with long term error free operation without the need of expensive monitoring tools.

  15. Highly coherent mid-IR supercontinuum by self-defocusing solitons in lithium niobate waveguides with all-normal dispersion.

    PubMed

    Guo, Hairun; Zhou, Binbin; Zeng, Xianglong; Bache, Morten

    2014-05-19

    We numerically investigate self-defocusing solitons in a lithium niobate (LN) waveguide designed to have a large refractive index (RI) change. The waveguide evokes strong waveguide dispersion and all-normal dispersion is found in the entire guiding band spanning the near-IR and the beginning of the mid-IR. Meanwhile, a self-defocusing nonlinearity is invoked by the cascaded (phase-mismatched) second-harmonic generation under a quasi-phase-matching pitch. Combining this with the all-normal dispersion, mid-IR solitons can form and the waveguide presents the first all-nonlinear and solitonic device where no linear dispersion (i.e. non-solitonic) regimes exist within the guiding band. Soliton compressions at 2 μm and 3 μm are investigated, with nano-joule single cycle pulse formations and highly coherent octave-spanning supercontinuum generations. With an alternative design on the waveguide dispersion, the soliton spectral tunneling effect is also investigated, with which few-cycle pico-joule pulses at 2 μm are formed by a near-IR pump.

  16. Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion.

    PubMed

    Liu, Lai; Cheng, Tonglei; Nagasaka, Kenshiro; Tong, Hoangtuan; Qin, Guanshi; Suzuki, Takenobu; Ohishi, Yasutake

    2016-01-15

    We report the coherent mid-infrared supercontinuum generation in an all-solid chalcogenide microstructured fiber with all-normal dispersion. The chalcogenide microstructured fiber is a four-hole structure with core material of AsSe2 and air holes that are replaced by As2S5 glass rods. Coherent mid-infrared supercontinuum light extended to 3.3 μm is generated in a 2 cm long chalcogenide microstructured fiber pumped by a 2.7 μm laser.

  17. All-normal dispersion supercontinuum generation in the near-infrared by Raman conversion in standard optical fiber

    NASA Astrophysics Data System (ADS)

    Louot, Christophe; Capitaine, Erwan; Shalaby, Badr M.; Krupa, Katarzyna; Tonello, Alessandro; Pagnoux, Dominique; Lefort, Claire; Leproux, Philippe; Couderc, Vincent

    2016-03-01

    We demonstrate all-normal dispersion supercontinuum generation in the 1080 nm-1600 nm range by propagating subnanosecond pulses in a high numerical aperture standard optical fiber. The extreme saturation of the Raman gain provides a flat spectrum in the considered range, making this broadband source particularly suitable for coherent Raman spectroscopy. This unusual regime of supercontinuum generation (Raman gain saturation regime) is investigated through an experimental spectrotemporal study. The possibility of operating spectrometer-free time-coded coherent Raman spectroscopy is introduced.

  18. Coherent supercontinuum generation up to 2.2 µm in an all-normal dispersion microstructured silica fiber.

    PubMed

    Tarnowski, Karol; Martynkien, Tadeusz; Mergo, Paweł; Poturaj, Krzysztof; Soboń, Grzegorz; Urbańczyk, Wacław

    2016-12-26

    For the first time to our knowledge, we demonstrate a coherent supercontinuum in silica fibers reaching 2.2 µm in a long wavelength range. The process of supercontinuum generation was studied experimentally and numerically in two microstructured fibers with a germanium doped core, having flat all-normal chromatic dispersion optimized for pumping at 1.55 µm. The fibers were pumped with two pulse lasers operating at 1.56 µm with different pulse duration times equal respectively to 23 fs and 460 fs. The experimental results are in a good agreement with the simulations conducted by solving the generalized nonlinear Schrödinger equation with the split-step Fourier method. The simulations also confirmed high coherence of the generated spectra and revealed that their long wavelength edge (2.2 µm) is related to OH contamination. Therefore, improving the fibers purity will result in further up-shift of the long wavelength spectra limit.

  19. Switchable Q-switched and modelocked operation in ytterbium doped fiber laser under all-normal-dispersion configuration

    SciTech Connect

    Mukhopadhyay, Pranb K. Gupta, Pradeep K.; Singh, Chandra Pal; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.

    2015-03-15

    We have constructed an Yb-doped fiber laser in all-normal-dispersion configuration which can be independently operated in Q-switched or modelocked configuration with the help of a simple fiber optic ring resonator (FORR). In the presence of FORR, the laser operates in Q-switched mode producing stable pulses in the range of 1 μs-200 ns with repetition rate in the range of 45 kHz-82 kHz. On the other hand, the laser can be easily switched to mode-locked operation by disjoining the FORR loop producing train of ultrashort pulses of ∼5 ps duration (compressible to ∼150 fs) at ∼38 MHz repetition rate. The transmission characteristics of FORR in combination with the nonlinear polarization rotation for passive Q-switching operation is numerically investigated and experimentally verified. The laser can serve as a versatile seed source for power amplifier which can be easily configured for application in the fields that require different pulsed fiber lasers.

  20. Switchable Q-switched and modelocked operation in ytterbium doped fiber laser under all-normal-dispersion configuration.

    PubMed

    Mukhopadhyay, Pranb K; Gupta, Pradeep K; Singh, Chandra Pal; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M

    2015-03-01

    We have constructed an Yb-doped fiber laser in all-normal-dispersion configuration which can be independently operated in Q-switched or modelocked configuration with the help of a simple fiber optic ring resonator (FORR). In the presence of FORR, the laser operates in Q-switched mode producing stable pulses in the range of 1 μs-200 ns with repetition rate in the range of 45 kHz-82 kHz. On the other hand, the laser can be easily switched to mode-locked operation by disjoining the FORR loop producing train of ultrashort pulses of ∼5 ps duration (compressible to ∼150 fs) at ∼38 MHz repetition rate. The transmission characteristics of FORR in combination with the nonlinear polarization rotation for passive Q-switching operation is numerically investigated and experimentally verified. The laser can serve as a versatile seed source for power amplifier which can be easily configured for application in the fields that require different pulsed fiber lasers.

  1. Dispersion in photonic crystals

    NASA Astrophysics Data System (ADS)

    Witzens, Jeremy

    2005-11-01

    Investigations on the dispersive properties of photonic crystals, modified scattering in ring-resonators, monolithic integration of vertical-cavity surface-emitting lasers and advanced data processing techniques for the finite-difference time-domain method are presented. Photonic crystals are periodic mesoscopic arrays of scatterers that modify the propagation properties of electromagnetic waves in a similar way as "natural" crystals modify the properties of electrons in solid-state physics. In this thesis photonic crystals are implemented as planar photonic crystals, i.e., optically thin semiconductor films with periodic arrays of holes etched into them, with a hole-to-hole spacing of the order of the wavelength of light in the dielectric media. Photonic crystals can feature forbidden frequency ranges (the band-gaps) in which light cannot propagate. Even though most work on photonic crystals has focused on these band-gaps for application such as confinement and guiding of light, this thesis focuses on the allowed frequency regions (the photonic bands) and investigates how the propagation of light is modified by the crystal lattice. In particular the guiding of light in bulk photonic crystals in the absence of lattice defects (the self-collimation effect) and the angular steering of light in photonic crystals (the superprism effect) are investigated. The latter is used to design a planar lightwave circuit for frequency domain demultiplexion. Difficulties such as efficient insertion of light into the crystal are resolved and previously predicted limitations on the resolution are circumvented. The demultiplexer is also fabricated and characterized. Monolithic integration of vertical-cavity surface-emitting lasers by means of resonantly enhanced grating couplers is investigated. The grating coupler is designed to bend light through a ninety-degree angle and is characterized with the finite-difference time-domain method. The vertical-cavity surface-emitting lasers are

  2. Improved flatness and tunable bandwidth of the supercontinuum generation in all-normal dispersion-flattened PCF using Littman-Metcalf optical bandpass filter

    NASA Astrophysics Data System (ADS)

    Jing, Qi; zhang, Xia; Ma, Huifang; Huang, Yongqing; Ren, Xiaomin

    2012-09-01

    We have proved that in an all-normal dispersion-flattened photonic crystal fiber (PCF), the four-wave mixing (FWM) process dominantly affects the flatness of the generated supercontinuum (SC). The numerical results show that pulses with steepened edges can enhance the FWM conversion efficiency during the SC's generation and the minima of the spectral oscillatory structure will be smoothed. A double-pass Littman-Metcalf optical bandpass filter is used to make the 1.60 ps hyperbolic-Secant shaped pulses obtain steepened edges. The experimental results show that the flatness of the SC generated from the 4 nm filtered pulses is improved by 0.21 dB. The SC with 10-65 nm tunable bandwidths is obtained by adjusting the filter bandwidth from 1 nm to 7 nm. Further numerical results show that the filter induced SC's flatness improvement is more effective for pulses with 2.0-4.0 ps FWHM. The improved SC can be used for applications which require stable modulation carriers and flexible bandwidth.

  3. Simple all-PM-fiber laser system seeded by an all-normal-dispersion oscillator mode-locked with a nonlinear optical loop mirror

    NASA Astrophysics Data System (ADS)

    Szczepanek, Jan; Kardaś, Tomasz; Nejbauer, Michał; Radzewicz, Czesław; Stepanenko, Yuriy

    2016-03-01

    In this paper we report an all-PM-fiber laser amplifier system seeded by an all-normal-dispersion oscillator mode-locked with a Nonlinear Optical Loop Mirror (NOLM). The presented all-normal-dispersion cavity works in a dissipative soliton regime and delivers highly-chirped, high energy pulses above 2.5 nJ with full width at half maximum below 200 fs. The ultrafast oscillator followed by the all-PM-fiber amplifying stage delivered pulses with the energy of 42.5 nJ and time duration below 190 fs. The electrical field of optical pulses from the system was reconstructed using the SPIDER technique. The influence of nonlinear processes on the pulse temporal envelope was investigated.

  4. High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity

    NASA Astrophysics Data System (ADS)

    Lin, J.-H.; Wang, D.; Lin, K.-H.

    2011-01-01

    Robust passively mode-locked pulse generation with low pulse repetition rate and giant spectrum bandwidth in an all-fiber, all-normal-dispersion ytterbium-doped fiber laser has been experimentally demonstrated using nonlinear polarization evolution technique. The highest pulse energy over 20 nJ with spectrum bandwidth over 50 nm can be experimentally obtained at 175 mW pump power. The mode-locked pulses reveal broadened 3-dB pulsewidth about several nanosecond and widened pedestal in time trace that is resulted from enormous dispersion in laser cavity and gain dynamics. At certain mode-locking state, a spectrum gap around 1056 nm are observed between the three and four energy levels of Yb-doped fiber laser. By properly rotating the polarization controller, the gap can be eliminated due to four-wave mixing to produce more flattened spectrum output.

  5. State distributions in two-dimensional parameter spaces of a nonlinear optical loop mirror-based, mode-locked, all-normal-dispersion fiber laser.

    PubMed

    Cai, Jun-Hao; Chen, He; Chen, Sheng-Ping; Hou, Jing

    2017-02-20

    We present the results of numerical simulations of dissipative soliton generation using nonlinear Schrödinger equations in an all-normal-dispersion (ANDi) mode-locked fiber laser based on a nonlinear optical loop mirror (NOLM). Firstly, systematic and computationally intensive analysis of the pulse state distributions in two-dimensional parameter spaces of an ANDi fiber laser was conducted. In addition, we determined that unstable non-vanishing regions including pulsation and noise-like pulses are directly related to the saturable absorptions of NOLMs and that two critical filter bandwidths separate those regions from stable ones. Finally, we found that the multi-pulsing power threshold can be maximized by using an optimal optical filter bandwidth.

  6. Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation

    PubMed Central

    Domingue, Scott R.; Bartels, Randy A.

    2013-01-01

    The intrinsic weak birefringence in all-normal dispersion highly nonlinear fiber, particularly ultra-high-numerical-aperture fiber, generates supercontinuum with long term polarization instabilities, even for seed pulses launched along the perceived slow axis of the fiber. Highly co/anti-correlated fluctuations in energy between regions of power spectral density mask the extent of the spectral noise in total integrated power measurements. The instability exhibits a seed pulse power threshold above which the output polarization state of the supercontinuum seeds from noise. Eliminating this instability through the utilization of nonlinear fiber with a large designed birefringence, encourages the exploration of compression schemes and seed sources. Here, we include an analysis of the difficulties for seeding supercontinuum with the highly attractive ANDi-type lasers. Lastly, we introduce an intuitive approach for understanding supercontinuum development and evolution. By modifying the traditional characteristic dispersion and nonlinear lengths to track pulse properties within the nonlinear fiber, we find simple, descriptive handles for supercontinuum evolution. PMID:23736583

  7. Experimental Investigation of Wavelength-Tunable All-Normal-Dispersion Yb-Doped Mode-Locked Fiber Lasers: Compression and Amplification

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao-Sheng; Hua, Yi

    2015-02-01

    Wavelength-tunable ultrashort pulse source with high energy is highly desired for a lot of applications. The wavelength-tunable all-normal-dispersion (ANDi) mode-locked fiber laser, which can be compressed easily and amplified by an all-fiber structure, is a promising seed of such a source with compact structures. The pulse compression and amplification at different center wavelengths (from 1026 to 1058 nm) of the tunable ANDi Ybdoped mode-locked fiber lasers that we previously proposed are experimentally investigated in this work. It is found that, for different wavelengths, the duration and chirp of the direct output pulse from the oscillator vary considerably, however, the duration of compressed pulse fluctuates less. For the amplification process, due to the unflat gain spectrum of Yb-doped fiber, the gain at a short wavelength is larger than that at a long wavelength. Consequently, the trends of spectrum distortions induced by the amplification process are different for different wavelengths. These results and analyses will be helpful for the design of a high-energy and wavelength-tunable ultrashort pulse source based on an ANDi seed.

  8. Supercontinuum generation based on all-normal-dispersion Yb-doped fiber laser mode-locked by nonlinear polarization rotation: Influence of seed's output port

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaosheng; Hua, Yi

    2016-10-01

    All-normal-dispersion (ANDi) mode-locked Yb-doped fiber laser is a promising seed source for supercontinuum (SC) generation, due to its compact structure and broadband output. The influences of output ports of the ANDi laser mode-locked by nonlinear polarization rotation (NPR), on the generated SC are investigated. Two output ports of ANDi laser are considered, one of which is the conventional nonlinear polarization rotation (NPR) port and the other is extracted from a coupler after the NPR port. It is found that, the SC originated from the coupler port is much broader than that from the NPR port, which is validated by lots of experiments with different output parameters. Furthermore, the conclusion is verified and generalized to general ANDi lasers by numerical simulations, because the output pulse from coupler port could be cleaner than that from NPR port. Besides, there are no significant differences in the phase coherence and temporal stability between the SCs generated from both ports. Hence for the SC generation based on ANDi laser, it is preferred to use the pulse of coupler port (i.e. pulse after NPR port) serving as the seed source.

  9. Dispersion compensation in slot photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Plastun, Alexander; Konyukhov, Andrey

    2015-03-01

    Dispersion tailoring using photonic crystal cladding for slot waveguide is proposed. Numerical modeling based on the Maxwell equation for Te and TM modes of the photonic crystal is performed. Slot waveguide provide high intencity at the central area. Photonic crystal cladding of the slot waveguide allow us to compensate high values of the host glass dispersion.

  10. Huge group-velocity dispersion in a photonic crystal

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhengbiao; Cai, Yanyan; Meng, Qingsheng; Lu, Yali; Sun, Yiling; Zhang, Dengguo; Ruan, Shuangchen; Li, Jingzhen

    2005-11-01

    We investigated the group-velocity dispersion of a one dimensional uniform photonic crystal by the optical transmission method. For application in optical communications, the wavelength should be near one of the two edges of a photonic bandgap. Four kinds of dispersion-compensation may be obtained with a photonic crystal. Huge negative and positive group-velocity-dispersion (GVD) about a zero-dispersion-point as large as 5.1 Tera- ps/nm/km by a photonic crystal of 100 periods can be realized. Such a value is about 50 Giga times the GVD of conventional dispersion-compensation fibers. The GVD reaches a maximum when the optical length ratio of the high refractive index material to the low refractive index material is 1.2 for given operating parameters. When we keep the optical length of each layer being constant, the GVD is found to increase rapidly with the refractive index ration of the high refractive index material to the low one and even more rapidly with the number of periods of a photonic crystal. Under quite common operating parameters, a thin piece of photonic crystal of 100 periods may play the role of an ordinary dispersion-compensation fiber with a length over 158 kilo-meters.

  11. Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths.

    PubMed

    Wang, Weibin; Yang, Hua; Tang, Pinghua; Zhao, Chujun; Gao, Jing

    2013-05-06

    Based on the generalized nonlinear Schrödinger equation, we present a numerical study of trapping of dispersive waves by solitons during supercontinuum generation in photonic crystal fibers pumped with femtosecond pulses in the anomalous dispersion region. Numerical simulation results show that the generated supercontinuum is bounded by two branches of dispersive waves, namely blue-shifted dispersive waves (B-DWs) and red-shifted dispersive waves (R-DWs). We find a novel phenomenon that not only B-DWs but also R-DWs can be trapped by solitons across the zero-dispersion wavelength when the group-velocity matching between the soliton and the dispersive wave is satisfied, which may led to the generation of new spectral components via mixing of solitons and dispersive waves. Mixing of solitons with dispersive waves has been shown to play an important role in shaping not only the edge of the supercontinuum, but also its central part around the higher zero-dispersion wavelength. Further, we show that the phenomenon of soliton trapping of dispersive waves in photonic crystal fibers with two zero-dispersion wavelengths has a very close relationship with pumping power and the interval between two zero-dispersion wavelengths. In order to clearly display the evolution of soliton trapping of dispersive waves, the spectrogram of output pulses is observed using cross-correlation frequency-resolved optical gating technique (XFROG).

  12. High-order dispersion effects in two-photon interference

    NASA Astrophysics Data System (ADS)

    Mazzotta, Zeudi; Cialdi, Simone; Cipriani, Daniele; Olivares, Stefano; Paris, Matteo G. A.

    2016-12-01

    Two-photon interference and Hong-Ou-Mandel (HOM) effect are relevant tools for quantum metrology and quantum information processing. In optical coherence tomography, the HOM effect is exploited to achieve high-resolution measurements with the width of the HOM dip being the main parameter. On the other hand, applications like dense coding require high-visibility performance. Here we address high-order dispersion effects in two-photon interference and study, theoretically and experimentally, the dependence of the visibility and the width of the HOM dip on both the pump spectrum and the downconverted photon spectrum. In particular, a spatial light modulator is exploited to experimentally introduce and manipulate a custom phase function to simulate the high-order dispersion effects. Overall, we show that it is possible to effectively introduce high-order dispersion effects on the propagation of photons and also to compensate for such effect. Our results clarify the role of the different dispersion phenomena and pave the way for optimization procedures in quantum technological applications involving PDC photons and optical fibers.

  13. Configurable Dirac-like conical dispersions in complex photonic crystals

    NASA Astrophysics Data System (ADS)

    Xu, Changqing; Lai, Yun

    2017-01-01

    We investigate Dirac-like conical dispersions in photonic crystals with complex unit cells. Comparing with photonic crystals with simple unit cells, the complex-unit-cell design can provide extra degrees of freedom to engineer the frequency of the Dirac-like point in a broad frequency regime. Interestingly, we find that many functionalities of double zero media associated with the Dirac-like point are well preserved in such complex photonic crystals, such as wave tunneling, cloaking, wave front control, etc. Different transmission behaviors, e.g., total reflection and negative refraction, can be achieved by shifting the frequency of the Dirac-like point.

  14. Reversed dispersion slope photonic bandgap fibers for broadband dispersion control in femtosecond fiber lasers.

    PubMed

    Várallyay, Z; Saitoh, K; Fekete, J; Kakihara, K; Koshiba, M; Szipocs, R

    2008-09-29

    Higher-order-mode solid and hollow core photonic bandgap fibers exhibiting reversed or zero dispersion slope over tens or hundreds of nanometer bandwidths within the bandgap are presented. This attractive feature makes them well suited for broadband dispersion control in femtosecond pulse fiber lasers, amplifiers and optical parametric oscillators. The canonical form of the dispersion profile in photonic bandgap fibers is modified by a partial reflector layer/interface placed around the core forming a 2D cylindrical Gires-Tournois type interferometer. This small perturbation in the index profile induces a frequency dependent electric field distribution of the preferred propagating higher-order-mode resulting in a zero or reversed dispersion slope.

  15. Analytical evaluation of chromatic dispersion in photonic crystal fibers.

    PubMed

    Silvestre, Enrique; Pinheiro-Ortega, Teresa; Andrés, Pedro; Miret, Juan J; Ortigosa-Blanch, Arturo

    2005-03-01

    We present a two-dimensional modal approach for the evaluation, in an analytical manner, of chromatic dispersion in any kind of optical fiber. It combines an iterative Fourier technique to compute the propagation constant at any fixed wavelength and an analytical procedure to calculate its derivatives. The proposed formulation takes into account the effective anisotropy of the interfaces and allows us to deal with microstructured fibers, in general, and specifically with realistic photonic crystal fibers (PCFs), including arbitrary spatial refractive-index distributions of dispersive and absorbing materials. This fast and accurate numerical technique is extremely useful for both analysis and design. We show some results of analysis of PCFs with high anisotropy, and we also describe PCFs with new dispersive properties.

  16. Dispersion-controlled slow light in photonic crystal waveguides.

    PubMed

    Baba, Toshihiko; Adachi, Jun; Ishikura, Norihiro; Hamachi, Yohei; Sasaki, Hirokazu; Kawasaki, Takashi; Mori, Daisuke

    2009-01-01

    Slow light with a markedly low group velocity is a promising solution for optical buffering and advanced time-domain optical signal processing. It is also anticipated to enhance linear and nonlinear effects and so miniaturize functional photonic devices because slow light compresses optical energy in space. Photonic crystal waveguide devices generate on-chip slow light at room temperature with a wide bandwidth and low dispersion suitable for short pulse transmission. This paper first explains the delay-bandwidth product, fractional delay, and tunability as crucial criteria for buffering capacity of slow light devices. Then the paper describes experimental observations of slow light pulse, exhibiting their record high values. It also demonstrates the nonlinear enhancement based on slow light pulse transmission.

  17. Cotton-yarn/TiO {2} dispersed resin photonic crystals with straight and wavy structures

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.; Kobayashi, T.; Kirihara, S.; Miyamoto, Y.; Sakoda, K.

    2004-06-01

    The feasibility of three-dimensional (3-D) photonic crystals made using textile technology was investigated. Three different textures consisting of the cotton-yarn and TiO2 dispersed resin; a crossed linear-yarn laminated fabric, a multi layered woven fabric, and a 3-D woven fabric, were fabricated. The microwave attenuation of the transmission amplitude through these photonic crystals was measured. The straight cotton-yarn as well as the wavy cotton-yarn/TiO2 dispersed resin photonic crystals exhibited band gaps in the 6 to 15 GHz range. Thus, we could fabricate successfully 3-D photonic crystals using textile technology.

  18. Dispersion Based Photonic-Crystal Structures for RF Applications

    DTIC Science & Technology

    2006-06-01

    engineered photonic crystal devices," Integrated Photonics Research and Applications and the Nanophotonics Topical Meetings (IPRA/NANO), Uncasville, CT, Apr...D. W. Prather, Integrated Photonics Research, OSA Technical Digest (Optical Society of American, Washington DC, 2003), p- 3 9 . 41 X. Yu and S. Fan

  19. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight.

    PubMed

    Finlayson, C E; Cattaneo, F; Perney, N M B; Baumberg, J J; Netti, M C; Zoorob, M E; Charlton, M D B; Parker, G J

    2006-01-01

    We report time-of-flight experiments on photonic-crystal waveguide structures using optical Kerr gating of a femtosecond white-light supercontinuum. These photonic-crystal structures, based on engineered silicon-nitride slab waveguides, possess broadband low-loss guiding properties, allowing the group velocity dispersion of optical pulses to be directly tracked as a function of wavelength. This dispersion is shown to be radically disrupted by the spectral band gaps associated with the photonic-crystal periodicity. Increased time-of-flight effects, or "slowed light," are clearly observed at the edges of band gaps in agreement with two-dimensional plane-wave theoretical models of group velocity dispersion. A universal model for slow light in such photonic crystals is proposed, which shows that slow light is controlled predominantly by the detuning from, and the size of, the photonic band gaps. Slowed light observed up to time delays of approximately 1 ps, corresponds to anomalous dispersion of approximately 3.5 ps/nm per mm of the photonic crystal structure. From the decreasing intensity of time-gated slow light as a function of time delay, we estimate the characteristic losses of modes which are guided in the spectral proximity of the photonic band gaps.

  20. High birefringence, low loss terahertz photonic crystal fibres with zero dispersion at 0.3 THz

    NASA Astrophysics Data System (ADS)

    Yin, Guo-Bing; Li, Shu-Guang; Wang, Xiao-Yan; Liu, Shuo

    2011-09-01

    A terahertz photonic crystal fibre (THz-PCF) is designed for terahertz wave propagation. The dispersion property and model birefringence are studied by employing the finite element method. The simulation result reveals the changing patten of dispersion parameter versus the geometry. The influence of the large frequency band of terahertz on birefringence is also discussed. The design of low loss, high birefringence THz-PCFs with zero dispersion frequency at 0.3 THz is presented.

  1. Single photon energy dispersive x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Higginbotham, Andrew; Patel, Shamim; Hawreliak, James A.; Ciricosta, Orlando; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H.; Suggit, Matthew J.; Tang, Henry; Wark, Justin S.

    2014-03-01

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.

  2. All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber.

    PubMed

    de Matos, C; Taylor, J; Hansen, T; Hansen, K; Broeng, J

    2003-11-03

    We show, for the first time to our knowledge, all-fiber chirped pulse amplification using an air-core photonic bandgap fiber. Pulses from a wavelength- and duration-tunable femtosecond/picosecond source at 10 GHz were dispersed in 100 m of dispersion compensating fiber before being amplified in an erbium-doped fiber amplifier and subsequently recompressed in 10 m of the anomalously dispersive photonic bandgap fiber. Pulses as short as 1.1 ps were obtained. As air-core fibers present negligible nonlinearity, the presented configuration can potentially be used to obtain ultra-high pulse peak powers. A study of the air-core fiber dispersion and dispersion slope is also presented.

  3. The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides.

    PubMed

    Engelen, R J P; Sugimoto, Y; Watanabe, Y; Korterik, J P; Ikeda, N; van Hulst, N F; Asakawa, K; Kuipers, L

    2006-02-20

    We have studied the dispersion of ultrafast pulses in a photonic crystal waveguide as a function of optical frequency, in both experiment and theory. With phase-sensitive and time-resolved near-field microscopy, the light was probed inside the waveguide in a non-invasive manner. The effect of dispersion on the shape of the pulses was determined. As the optical frequency decreased, the group velocity decreased. Simultaneously, the measured pulses were broadened during propagation, due to an increase in group velocity dispersion. On top of that, the pulses exhibited a strong asymmetric distortion as the propagation distance increased. The asymmetry increased as the group velocity decreased. The asymmetry of the pulses is caused by a strong increase of higher order dispersion. As the group velocity was reduced to 0.116(9) .c, we found group velocity dispersion of -1.1(3) .10(6) ps(2)/km and third order dispersion of up to 1.1(4) .10(5) ps(3)/km. We have modelled our interferometric measurements and included the full dispersion of the photonic crystal waveguide. Our mathematical model and the experimental findings showed a good correspondence. Our findings show that if the most commonly used slow light regime in photonic crystals is to be exploited, great care has to be taken about higher-order dispersion.

  4. Ultra-flattened negative dispersion for residual dispersion compensation using soft glass equiangular spiral photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Imran Hasan, Md.; Mahmud, R. R.; Morshed, Monir; Rabiul Hasan, Md.

    2016-09-01

    We present a numerical investigation of an equiangular spiral photonic crystal fibre (ES-PCF) in soft glass for negative flattened dispersion and ultra-high birefringence. An accurate numerical approach based on finite element method is used for the simulation of the proposed structure. It is demonstrated that it is possible to obtain average negative dispersion of -526.99 ps/nm/km over 1.05-1.70 μm wavelength range with dispersion variation of 3.7 ps/nm/km. The proposed ES-PCF also offers high birefringence of 0.0226 at the excitation wavelength of 1.55 μm. The results here show that the idea of using the proposed fibre can be potential means of effectively directing for residual dispersion compensation, fibre sensor design, long distance data transmission system and so forth.

  5. Analysis of dispersion diagram for high performance refractive index sensor based on photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Dutta, Hemant Sankar; Goyal, Amit Kumar; Pal, Suchandan

    2017-02-01

    Photonic crystal waveguide, to be used as a highly sensitive platform for refractive index based sensing applications, has been analyzed in this paper. The sensing performance is estimated by using dispersion diagram through using plane wave expansion simulations. The dispersion diagram is used to obtain transmittance and cut-off wavelengths for analyzing the sensor characteristics. It has been proposed that the photonic crystal waveguide with ring-type line defect provides a better perspective for sensing applications as compared to the conventional photonic crystal waveguide. An optimized ring-type photonic crystal waveguide structure with a defect filling factor of 50% shows a refractive index sensitivity of 450 nm/RIU having almost double the output signal strength compared to hole-type line defect waveguide with the same filling factor.

  6. Dispersion limits in the design of small-mode-area photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Zeleny, Richard; Lucki, Michal

    2014-10-01

    The generally accepted view is that photonic crystal fibers (PCFs) with a small effective mode area allow the control of chromatic dispersion in the near-infrared region. For this purpose, a silica index guiding PCF with hexagonal cladding is investigated to find its dispersion limitation. In addition, chromatic dispersion is entirely controlled by only three structural parameters; the influence of each structural parameter is examined and described in detail. Understanding the mechanism governing chromatic dispersion is necessary not only for the fiber design and dispersion tailoring, but also to predict the potential manufacturing tolerances. In spite of the fact that the fiber with specific parameters matches its relative dispersion slope to that of standard single-mode fibers over a large range of operating wavelengths, the negative dispersion parameter is not higher than those in commercially available dispersion-compensating fibers. Therefore, the fiber parameters are modified to find the balance between the operating bandwidth and the high negative dispersion parameter. The limit value for the dispersion parameter is found to be -1600 ps.nm-1.km-1 at 1550 nm, where the dispersion slope is achieved for the 120-nm wide band. We predict that the negative dispersion parameter cannot be higher in small effective mode area PCFs operating over a bandwidth larger than the one considered here. The results are calculated by the full-vectorial finite difference frequency domain method. The simulation model is verified by convergence testing.

  7. Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points

    SciTech Connect

    Stark, S. P.; Biancalana, F.; Podlipensky, A.; St. J. Russell, P.

    2011-02-15

    In this theoretical study, we show that a simple endlessly single-mode photonic crystal fiber can be designed to yield, not just two, but three zero-dispersion wavelengths. The presence of a third dispersion zero creates a rich phase-matching topology, enabling enhanced control over the spectral locations of the four-wave-mixing and resonant-radiation bands emitted by solitons and short pulses. The greatly enhanced flexibility in the positioning of these bands has applications in wavelength conversion, supercontinuum generation, and pair-photon sources for quantum optics.

  8. Direct and inverted nematic dispersions for soft matter photonics.

    PubMed

    Muševič, I; Skarabot, M; Humar, M

    2011-07-20

    General properties and recent developments in the field of nematic colloids and emulsions are discussed. The origin and nature of pair colloidal interactions in the nematic colloids are explained and an overview of the stable colloidal 2D crystalline structures and superstructures discovered so far is given. The nature and role of topological defects in the nematic colloids is discussed, with an emphasis on recently discovered entangled colloidal structures. Applications of inverted nematic emulsions and binding force mechanisms in nematic colloids for soft matter photonic devices are discussed.

  9. Energy dispersive photon counting detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.

    2013-09-01

    We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.

  10. Numerical comparison between conventional dispersion compensating fibers and photonic crystal fibers as lumped Raman amplifiers.

    PubMed

    Castellani, C E S; Cani, S P N; Segatto, M E V; Pontes, M J; Romero, M A

    2009-12-07

    In this paper we discuss the use of photonic crystal fibers (PCFs) as discrete devices for simultaneous wideband dispersion compensation and Raman amplification. The performance of the PCFs in terms of gain, ripple, optical signal-to-noise ratio (OSNR) and required fiber length for complete dispersion compensation is compared with conventional dispersion compensating fibers (DCFs). The main goal is to determine the minimum PCF loss beyond which its performance surpasses a state-of-the-art DCF and justifies practical use in telecommunication systems.

  11. Supercontinuum generated in a dispersion-flattened photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Li, Xingliang; Zhang, Shumin; Han, Mengmeng; Zhang, Huaxing; Yang, Hong; Yuan, Ting

    2014-11-01

    We have experimentally investigated supercontinuum generated by using different pulse dynamics patterns as the pump pulses. These patterns, which include conventional mode-locked single pulse, condensed phase pulses and pulsed bunches, were all directly produced from a mode-locked erbium-doped fiber laser based on a multi-layer graphene saturable absorber. The strong third-order optical nonlinearity of graphene and all fiber cavity configuration led to the multi-pulses operation states at a low pump power. A flat supercontinuum with 20-dB width of 550 nm from 1200 nm to 1750 nm have all been obtained by seeding the amplified conventional mode-locked single pulse and condensed phase pulses into a segment of photonic crystal fiber. On the other hand, experimental results also show that the pulsed bunches was not conducive to form a flat supercontinuum.

  12. Properties of group delay for photon tunneling through dispersive metamaterial barriers

    NASA Astrophysics Data System (ADS)

    Wang, Xinglin; Wang, Huisheng; Zheng, Fanong

    2017-01-01

    We make a detailed investigation on properties of the group delay for photon tunneling through dispersive metamaterial barriers by employing stationary phase method. Due to the anomalous dispersion of the different barriers, it is found that the group delay is positive for double negative metamaterial (DNM) barrier, while for single negative metamaterial (SNM) and negative-zero-positive index metamaterial (NZPIM) barriers, they can change from negative to positive with variations of both frequency and incident angle. The lateral shift for the photon tunneling has also been studied, whose sign is found not to dominate the sign of the group delay. It is further confirmed that the group delay tends to a saturation value with increasing barrier length because of Hartman effect. These results may provide some ideas for further study on the photon tunneling, suggest the analogous phenomena of valence electron in graphene, and produce some potential application in integrated optics and optical devices.

  13. Dispersion control in square lattice photonic crystal fiber using hollow ring defects.

    PubMed

    Park, Jiyoung; Lee, Sejin; Lee, Sungrae; Kim, So Eun; Oh, Kyunghwan

    2012-02-27

    We propose a new dispersion control scheme by introducing hollow ring defects having a central air hole and a GeO2-or F-doped silica ring with in a square lattice photonic crystal fiber. We confirmed the flexible dispersion controllability in the proposed structure in two aspects of dispersion managements: ultra-flattened near-zero dispersion in the 530 nm-bandwidth over all communication bands and dispersion compensation in C, L, and U band with a high compensation ratio of 0.96~1.0 in reference to the standard single mode fiber. The proposed SLPCFs were also estimated to have an inherently low splice loss due to the index contrast between the doped-ring and silica that kept a good guidance even along with collapsed air holes, which cannot be achieved in conventional PCFs.

  14. Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator.

    PubMed

    Hosseini, Amir; Xu, Xiaochuan; Subbaraman, Harish; Lin, Che-Yun; Rahimi, Somayeh; Chen, Ray T

    2012-05-21

    We present a dispersion engineered slow light silicon-based photonic crystal waveguide PIN modulator. Low-dispersion slow light transmission over 18 nm bandwidth under the silica light line with a group index of 26.5 is experimentally confirmed. We investigate the variations of the modulator figure of merit, V(π) × L, as a function of the optical carrier wavelength over the bandwidth of the fundamental photonic crystal waveguide defect mode. A large signal operation with a record low maximum V(π )× L of 0.0464 V · mm over the low-dispersion optical spectral range is demonstrated. We also report the device operation at 2 GHz.

  15. Analysis of photonic band gap in dispersive properties of tunable three-dimensional photonic crystals doped by magnetized plasma

    SciTech Connect

    Zhang HaiFeng; Liu Shaobin; Yang Huan; Kong Xiangkun

    2013-03-15

    In this paper, the magnetooptical effects in dispersive properties for two types of three-dimensional magnetized plasma photonic crystals (MPPCs) containing homogeneous dielectric and magnetized plasma with diamond lattices are theoretically investigated for electromagnetic (EM) wave based on plane wave expansion (PWE) method, as incidence EM wave vector is parallel to the external magnetic field. The equations for two types of MPPCs with diamond lattices (dielectric spheres immersed in magnetized plasma background or vice versa) are theoretically deduced. The influences of dielectric constant, plasma collision frequency, filling factor, the external magnetic field, and plasma frequency on the dispersive properties for both types of structures are studied in detail, respectively, and some corresponding physical explanations are also given. From the numerical results, it has been shown that the photonic band gaps (PBGs) for both types of MPPCs can be manipulated by plasma frequency, filling factor, the external magnetic field, and the relative dielectric constant of dielectric, respectively. Especially, the external magnetic field can enlarge the PBG for type-2 structure (plasma spheres immersed in dielectric background). However, the plasma collision frequency has no effect on the dispersive properties of two types of three-dimensional MPPCs. The locations of flatbands regions for both types of structures cannot be tuned by any parameters except for plasma frequency and the external magnetic field. The analytical results may be informative and of technical use to design the MPPCs devices.

  16. Dispersion-tolerant two-photon Michelson interferometer using telecom-band frequency-entangled photon pairs generated by spontaneous parametric downconversion

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Akio; Fukuda, Daiji; Tsuchida, Hidemi; Yamamoto, Noritsugu

    2015-05-01

    The chromatic group velocity dispersion tolerance of a fiber-optic two-photon interferometer is characterized for telecom-band photon pairs that are frequency entangled. Two indium-gallium-arsenide single-photon detectors are used to record the coincidence counts. A single-wavelength laser diode continuously pumps a periodically poled lithium niobate waveguide of 1-mm length. For near-degenerate spontaneous parametric downconversion, it generates wideband entangled collinear photon pairs. The spectral width of 115.8 nm is centered at 1550 nm. It is restricted by the performance of the single-photon detectors whose efficiency is poor beyond 1610 nm. Using a Michelson interferometer, two-photon interference signals are recorded with and without frequency entanglement. The frequency-entangled photon pairs are found to exhibit dispersion-tolerant two-photon interference, even though the two paths through the interferometer have different group velocity dispersion. The observed two-photon interference signal has a correlation time of 42.7 fs, in good agreement with calculations for a 115.8-nm spectral width. For comparison, results are also presented for photon pairs lacking frequency entanglement.

  17. Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanocavity arrays.

    PubMed

    Matsuda, Nobuyuki; Kuramochi, Eiichi; Takesue, Hiroki; Notomi, Masaya

    2014-04-15

    We investigate the dispersion and transmission properties of slow-light coupled-resonator optical waveguides that consist of more than 100 ultrahigh-Q photonic crystal cavities. We show that experimental group-delay spectra exhibited good agreement with numerically calculated dispersions obtained with the three-dimensional plane wave expansion method. Furthermore, a statistical analysis of the transmission property indicated that fabrication fluctuations in individual cavities are less relevant than in the localized regime. These behaviors are observed for a chain of up to 400 cavities in a bandwidth of 0.44 THz.

  18. Ultrafast tilting of the dispersion of a photonic crystal and adiabatic spectral compression of light pulses.

    PubMed

    Beggs, Daryl M; Krauss, Thomas F; Kuipers, L; Kampfrath, Tobias

    2012-01-20

    We demonstrate, by theory and experiment, the ultrafast tilting of the dispersion curve of a photonic-crystal waveguide following the absorption of a femtosecond pump pulse. By shaping the pump-beam cross section with a nanometric shadow mask, different waveguide eigenmodes acquire different spatial overlap with the perturbing pump, leading to a local flattening of the dispersion by up to 11%. We find that such partial mode perturbation can be used to adiabatically compress the spectrum of a light pulse traveling through the waveguide.

  19. Slow-light dispersion engineering of photonic crystal waveguides using selective microfluidic infiltration.

    PubMed

    Casas-Bedoya, A; Husko, C; Monat, C; Grillet, C; Gutman, N; Domachuk, P; Eggleton, B J

    2012-10-15

    We experimentally demonstrate dispersion engineering of slow light photonic crystal (PhC) waveguides using selective infiltration of the first two rows of air holes with high index ionic liquids. The infiltrated PhC waveguide exhibits a dispersion window of 3 nm with a nearly constant group velocity of ~c/80 that depends on the liquid physical properties. We investigate how the effective refractive index changes in time due to the dynamics of the liquids in the holes. This demonstration highlights the versatility, flexibility, and tunability offered by optofluidics in PhC circuits.

  20. Multiobjective adaptive feedback control of two-photon absorption coupled with propagation through a dispersive medium

    SciTech Connect

    Laforge, Francois O.; Roslund, Jonathan; Shir, Ofer M.; Rabitz, Herschel

    2011-07-15

    This work uses shaped femtosecond laser pulses to control the two-photon absorption (TPA) of coumarin 153 in a dispersive toluene medium. The dispersive medium reshapes the pulse along the optical path, and management of this effect is used to achieve spatial localization of TPA. Other control objectives were successfully implemented, including dual localization and high resolution local optimization of TPA. The solutions to these objectives were explored by means of evolutionary single- and multi-objective algorithms within a laboratory feedback loop.

  1. Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes.

    PubMed

    Long, Fang; Tian, Huiping; Ji, Yuefeng

    2010-09-01

    A low dispersion photonic crystal waveguide with triangular lattice elliptical airholes is proposed for compact, high-performance optical buffering applications. In the proposed structure, we obtain a negligible-dispersion bandwidth with constant group velocity ranging from c/41 to c/256, by optimizing the major and minor axes of bulk elliptical holes and adjusting the position and the hole size of the first row adjacent to the defect. In addition, the limitations of buffer performance in a dispersion engineering waveguide are well studied. The maximum buffer capacity and the maximum data rate can reach as high as 262bits and 515 Gbits/s, respectively. The corresponding delay time is about 255.4ps.

  2. Refractive index dispersion sensing using an array of photonic crystal resonant reflectors

    SciTech Connect

    Hermannsson, Pétur G.; Vannahme, Christoph; Smith, Cameron L. C.; Sørensen, Kristian T.; Kristensen, Anders

    2015-08-10

    Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown that by covering the array with a sample liquid and measuring the resonance wavelength associated with transverse electric polarized quasi guided modes as a function of period, the refractive index dispersion of the liquid can be accurately obtained using an analytical expression. This method is compact, can perform measurements at arbitrary number of wavelengths, and requires only a minute sample volume. The ability to sense a material's dispersion profile offers an added dimension of information that may be of benefit to optofluidic lab-on-a-chip applications.

  3. Three octave spanning supercontinuum by red-shifted dispersive wave in photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Sharma, Mohit; Konar, S.

    2016-03-01

    This article presents a three-layer index guided lead silicate (SF57) photonic crystal fiber which simultaneously promises to yield large effective optical nonlinear coefficient and low anomalous dispersion that makes it suitable for supercontinuum (SC) generation. At an operating wavelength 1550 nm, the typical optimized value of anomalous dispersion and effective nonlinear coefficient turns out to be ~4 ps/km/nm and ~1078 W-1km-1, respectively. Through numerical simulation, it is realized that the designed fiber promises to exhibit three octave spanning SC from 900 to 7200 nm using 50 fs 'sech' optical pulses of 5 kW peak power. Due to the cross-phase modulation and four-wave mixing processes, a long range of red-shifted dispersive wave generated, which assists to achieve such large broadening. In addition, we have investigated the compatibility of SC generation with input pulse peak power increment and briefly discussed the impact of nonlinear processes on SC generation.

  4. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry.

    PubMed

    Niwa, Kazuki; Numata, Takayuki; Hattori, Kaori; Fukuda, Daiji

    2017-04-04

    Highly sensitive spectral imaging is increasingly being demanded in bioanalysis research and industry to obtain the maximum information possible from molecules of different colors. We introduce an application of the superconducting transition-edge sensor (TES) technique to highly sensitive spectral imaging. A TES is an energy-dispersive photodetector that can distinguish the wavelength of each incident photon. Its effective spectral range is from the visible to the infrared (IR), up to 2800 nm, which is beyond the capabilities of other photodetectors. TES was employed in this study in a fiber-coupled optical scanning microscopy system, and a test sample of a three-color ink pattern was observed. A red-green-blue (RGB) image and a near-IR image were successfully obtained in the few-incident-photon regime, whereas only a black and white image could be obtained using a photomultiplier tube. Spectral data were also obtained from a selected focal area out of the entire image. The results of this study show that TES is feasible for use as an energy-dispersive photon-counting detector in spectral imaging applications.

  5. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry

    PubMed Central

    Niwa, Kazuki; Numata, Takayuki; Hattori, Kaori; Fukuda, Daiji

    2017-01-01

    Highly sensitive spectral imaging is increasingly being demanded in bioanalysis research and industry to obtain the maximum information possible from molecules of different colors. We introduce an application of the superconducting transition-edge sensor (TES) technique to highly sensitive spectral imaging. A TES is an energy-dispersive photodetector that can distinguish the wavelength of each incident photon. Its effective spectral range is from the visible to the infrared (IR), up to 2800 nm, which is beyond the capabilities of other photodetectors. TES was employed in this study in a fiber-coupled optical scanning microscopy system, and a test sample of a three-color ink pattern was observed. A red–green–blue (RGB) image and a near-IR image were successfully obtained in the few-incident-photon regime, whereas only a black and white image could be obtained using a photomultiplier tube. Spectral data were also obtained from a selected focal area out of the entire image. The results of this study show that TES is feasible for use as an energy-dispersive photon-counting detector in spectral imaging applications. PMID:28374801

  6. Design of a pentagonal photonic crystal fiber with high birefringence and large flattened negative dispersion.

    PubMed

    Li, Xuyou; Liu, Pan; Xu, Zhenlong; Zhang, Zhiyong

    2015-08-20

    Novel pentagonal photonic crystal fiber with high birefringence, large flattened negative dispersion, and high nonlinearity is proposed. The dispersion and birefringence properties of this structure are simulated and analyzed numerically based on the full vector finite element method (FEM). Numerical results indicate that the fiber obtains a large average dispersion of -611.9  ps/nm/km over 1,460-1,625 nm and -474  ps/nm/km over 1425-1675 nm wavelength bands for two kinds of optimized designs, respectively. In addition, the proposed PCF shows a high birefringence of 1.67×10-2 and 1.75×10-2 at the operating wavelength of 1550 nm. Moreover, the influence of the possible variation in the parameters during the fabrication process on the dispersion and birefringence properties is studied. The proposed PCF would have important applications in polarization maintaining transmission systems, residual dispersion compensation, supercontinuum generation, and the design of widely tunable wavelength converters based on four-wave mixing.

  7. Slow light in mass-produced, dispersion-engineered photonic crystal ring resonators.

    PubMed

    McGarvey-Lechable, Kathleen; Hamidfar, Tabassom; Patel, David; Xu, Luhua; Plant, David V; Bianucci, Pablo

    2017-02-20

    We present experimental results of photonic crystal ring resonators (PhCRRs) fabricated on the CMOS-compatible, silicon-on-insulator platform via 193-nm deep-UV lithography. Our dispersion-engineering design approach is compared to experimental results, showing very good agreement between theory and measurements. Specifically, we report a mean photonic band-edge wavelength of 1546.2 ± 5.8 nm, a 0.2% variation from our targeted band-edge wavelength of 1550 nm. Methods for the direct calculation of the experimental, discrete dispersion relation and extraction of intrinsic quality factors for a highly-dispersive resonator are discussed. A maximum intrinsic quality factor of ≈83,800 is reported, substantiating our design method and indicating that high-throughput optical lithography is a viable candidate for PhCRR fabrication. Finally, through comparison of the mean intrinsic quality and slowdown factors of the PhCRRs and standard ring resonators, we present evidence of an increase in light-matter interaction strength with simultaneous preservation of microcavity lifetimes.

  8. Numerical calculation of phase-matching properties in photonic crystal fibers with three and four zero-dispersion wavelengths.

    PubMed

    Zhao, Xingtao; Liu, Xiaoxu; Wang, Shutao; Wang, Wei; Han, Ying; Liu, Zhaolun; Li, Shuguang; Hou, Lantian

    2015-10-19

    Photonic crystal fibers with three and four zero-dispersion wavelengths are presented through special design of the structural parameters, in which the closing to zero and ultra-flattened dispersion can be obtained. The unique phase-matching properties of the fibers with three and four zero-dispersion wavelengths are analyzed. Variation of the phase-matching wavelengths with the pump wavelengths, pump powers, dispersion properties, and fiber structural parameters is analyzed. The presence of three and four zero-dispersion wavelengths can realize wavelength conversion of optical soliton between two anomalous dispersion regions, generate six phase-matching sidebands through four-wave mixing and create more new photon pairs, which can be used for the study of supercontinuum generation, optical switches and quantum optics.

  9. Slow light from sharp dispersion by exciting dark photonic angular momentum states.

    PubMed

    Guo, Qing-Hua; Kang, Ming; Li, Teng-Fei; Cui, Hai-Xu; Chen, Jing

    2013-02-01

    A photonic angular momentum state (PAMS) with a topological charge of m≠±1 is dipole forbidden at all polarizations of free-space incidence due to the existence of a unique helical phase. We show that by indirectly exciting dark PAMSs through coupling with a bright resonant element, a sharply variant transmission behavior and strong dispersion can be achieved. This behavior can subsequently be utilized in slow light. A metamaterial design, in which a group index n(g) greater than 500 can be achieved, is present.

  10. Similariton fiber laser with a hollow-core photonic bandgap fiber for dispersion control

    NASA Astrophysics Data System (ADS)

    Ruehl, A.; Prochnow, O.; Engelbrecht, M.; Wandt, D.; Kracht, D.

    2007-05-01

    We report on an ytterbium-doped similariton fiber ring laser with a hollow-core photonic bandgap fiber for intracavity dispersion control. The oscillator is hybrid mode locked with a saturable Bragg reflector and by nonlinear polarization evolution. This scheme allows for an exact adjustment of the transmission characteristic to avoid the formation of bunched noiselike pulses while the self-starting characteristic is preserved. The oscillator generates highly stretched similaritons at 1025 nm with a pulse energy above 1n J at a repetition rate of 21.9 MHz.

  11. Measurement of group-velocity dispersion of Bloch modes in photonic-crystal-fiber rocking filters.

    PubMed

    Wong, G K L; Zang, L; Kang, M S; Russell, P St J

    2010-12-01

    We use low-coherence interferometry to measure the group-velocity dispersion (GVD) of the fast and slow Bloch modes of structural rocking filters, produced by twisting a highly birefringent photonic crystal fiber to and fro while scanning a focused CO(2) laser beam along it. The GVD curves in the vicinity of the resonant wavelength differ dramatically from those of the unperturbed fiber, suggesting that rocking filters could be used in the optimization of, e.g., four-wave mixing and supercontinuum generation. Excellent agreement is obtained between theory and experiment.

  12. Wideband slow light with ultralow dispersion in a W1 photonic crystal waveguide.

    PubMed

    Liang, Jian; Ren, Li-Yong; Yun, Mao-Jin; Wang, Xing-Jun

    2011-11-01

    A dispersion tailoring scheme for obtaining slow light in a silicon-on-insulator W1-type photonic crystal waveguide, novel to our knowledge, is proposed in this paper. It is shown that, by simply shifting the first two rows of air holes adjacent to the waveguide to specific directions, slow light with large group-index, wideband, and low group-velocity dispersion can be realized. Defining a criterion of restricting the group-index variation within a ±0.8% range as a flattened region, we obtain the ultraflat slow light with bandwidths over 5.0, 4.0, 2.5, and 1.0 nm when keeping the group index at 38.0, 48.8, 65.2, and 100.4, respectively. Numerical simulations are performed utilizing the three-dimensional (3D) plane-wave expansion method and the 3D finite-difference time-domain method.

  13. Dispersion properties of transverse anisotropic liquid crystal core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Karasawa, Naoki

    2016-04-01

    The dispersion properties of liquid crystal core photonic crystal fibers for different core diameters have been calculated by a full vectorial finite difference method. In calculations, air holes are assumed to be arranged in a regular hexagonal array in fused silica and a central hole is filled with liquid crystal to create a core. In this study, three types of transverse anisotropic configurations, where liquid crystal molecules are oriented in a transverse plane, and a planar configuration, where liquid crystal molecules are oriented in a propagation direction, are considered. The large changes of the dispersion properties are found when the orientation of the liquid crystal molecules is changed from a planar configuration to a uniform configuration, where all molecules are oriented in the same direction in a transverse plane. Since the orientation of liquid crystal molecules may be controlled by applying an electric field, it could be utilized for various applications including the spectral control of supercontinuum generation.

  14. Dispersion engineering in soft glass photonic crystal fibers infiltrated with liquids

    NASA Astrophysics Data System (ADS)

    Stefaniuk, Tomasz; Le Van, Hieu; Pniewski, Jacek; Cao Long, Van; Ramaniuk, Aleksandr; Grajewski, Karol; Chu Van, Lanh; Karpierz, Mirosław; Trippenbach, Marek; Buczynski, Ryszard

    2015-12-01

    We present a numerical study of the dispersion characteristic modification in a nonlinear photonic crystal fibre (PCF) infiltrated with organic solvents. The PCF is made of PBG08 glass and was developed in the stack-and-draw process. The PBG08 glass has a high refractive index (n < 2.0), high nonlinear refractive index (n2 = 4.3×10-19 m2/W) and good rheological properties that allow for thermal processing of the glass without crystallization. In the numerical study 18 different solvents were used. The dispersion, mode area, and losses characteristics were calculated. The zero dispersion wavelength (ZDW) of the fibre can be shifted towards longer wavelengths by approx. 150 nm by using Nitrobenzene as infiltrating liquid and by a smaller value using other liquids. At the same time the mode area of the fundamental mode increases by approx. 5 to 15% depending on the wavelength considered. The confinement losses increase significantly for six analysed liquids by a few orders of magnitude up to 102 dB/m. Our approach allows to combine high nonlinearities of the soft glass with the possibility to tune zero dispersion wavelength to the desired value.

  15. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP

    PubMed Central

    Krstic, D.; Nikezic, D.

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient’s body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5. PMID:28362837

  16. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP.

    PubMed

    Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.

  17. Multiple Bragg diffraction in opal-based photonic crystals: Spectral and spatial dispersion

    NASA Astrophysics Data System (ADS)

    Shishkin, I. I.; Rybin, M. V.; Samusev, K. B.; Golubev, V. G.; Limonov, M. F.

    2014-01-01

    We present an experimental and theoretical study of multiple Bragg diffraction from synthetic opals. An original setup permits us to overcome the problem of the total internal light reflection in an opal film and to investigate the diffraction from both the (111) and (1¯11) systems of planes responsible for the effect. As a result, angle- and frequency-resolved diffraction and transmission measurements create a picture of multiple Bragg diffraction that includes general agreement between dips in the transmission spectra and diffraction peaks for each incident white light angle and a twin-peak structure at frequencies of the photonic stop band edges. Two opposite cases of the interference are discussed: an interference of two narrow Bragg bands that leads to multiple Bragg diffraction with anticrossing regime for dispersion photonic branches and an interference of a narrow Bragg band and broad disorder-induced Mie background that results in a Fano resonance. A good quantitative agreement between the experimental data and calculated photonic band structure has been obtained.

  18. Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion

    NASA Astrophysics Data System (ADS)

    Gersen, H.; van Dijk, E. M. H. P.; Korterik, J. P.; van Hulst, N. F.; Kuipers, L.

    2004-12-01

    The amplitude and phase evolution of ultrashort pulses in a bimodal waveguide structure has been studied with a time-resolved photon scanning tunneling microscope (PSTM). When waveguide modes overlap in time intriguing phase patterns are observed. Phase singularities, arising from interference between different modes, are normally expected at equidistant intervals determined by the difference in effective index for the two modes. However, in the pulsed experiments the distance between individual singularities is found to change not only within one measurement frame, but even depends strongly on the reference time. To understand this observation it is necessary to take into account that the actual pulses generating the interference signal change shape upon propagation through a dispersive medium. This implies that the spatial distribution of phase singularities contains direct information on local dispersion characteristics. At the same time also the mode profiles, wave vectors, pulse lengths, and group velocities of all excited modes in the waveguide are directly measured. The combination of these parameters with an analytical model for the time-resolved PSTM measurements shows that the unique spatial phase information indeed gives a direct measure for the group velocity dispersion of individual modes. As a result interesting and useful effects, such as pulse compression, pulse spreading, and pulse reshaping become accessible in a local measurement.

  19. Phase mapping of ultrashort pulses in bimodal photonic structures: a window on local group velocity dispersion.

    PubMed

    Gersen, H; van Dijk, E M H P; Korterik, J P; van Hulst, N F; Kuipers, L

    2004-12-01

    The amplitude and phase evolution of ultrashort pulses in a bimodal waveguide structure has been studied with a time-resolved photon scanning tunneling microscope (PSTM). When waveguide modes overlap in time intriguing phase patterns are observed. Phase singularities, arising from interference between different modes, are normally expected at equidistant intervals determined by the difference in effective index for the two modes. However, in the pulsed experiments the distance between individual singularities is found to change not only within one measurement frame, but even depends strongly on the reference time. To understand this observation it is necessary to take into account that the actual pulses generating the interference signal change shape upon propagation through a dispersive medium. This implies that the spatial distribution of phase singularities contains direct information on local dispersion characteristics. At the same time also the mode profiles, wave vectors, pulse lengths, and group velocities of all excited modes in the waveguide are directly measured. The combination of these parameters with an analytical model for the time-resolved PSTM measurements shows that the unique spatial phase information indeed gives a direct measure for the group velocity dispersion of individual modes. As a result interesting and useful effects, such as pulse compression, pulse spreading, and pulse reshaping become accessible in a local measurement.

  20. Management of residual dispersion of an optical transmission system using octagonal photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Mahmud, Russel Reza; Goffar Khan, Muhammad Abdul; Razzak, S. M. Abdur

    2016-04-01

    An octagonal photonic crystal fiber (O-PCF) for numerical structure design and analysis of some particular properties are presented in this paper. The proposed design is suitable for residual dispersion compensation (RDC) with polarization maintaining (PM) applications as it offers extremely high-negative flattened average chromatic dispersion (DT) and absolute dispersion variation (ΔD) of around -(708±10) ps nm-1 km-1 and average high birefringence (B) of the order 10-2 for the wavelength limits of 1.46 to 1.67 μm (bandwidth of 210 nm that covers S+C+L+U bands in the infrared region of the optical third window). In addition, it exhibits very low confinement loss of 10-3.5 to 10-2.5 dB/m for that bandwidth. Moreover, to evaluate the sensitivity of the fiber properties (DT and B) during fabrication, ±0.02 μm variation in the optimum parameters is also studied.

  1. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    PubMed Central

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy-dispersive

  2. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    PubMed

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  3. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    SciTech Connect

    Wahle, Markus Kitzerow, Heinz-Siegfried

    2015-11-16

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage.

  4. Analysis of band structure, transmission properties, and dispersion behavior of THz wave in one-dimensional parabolic plasma photonic crystal

    SciTech Connect

    Askari, Nasim; Eslami, Esmaeil; Mirzaie, Reza

    2015-11-15

    The photonic band gap of obliquely incident terahertz electromagnetic waves in a one-dimensional plasma photonic crystal is studied. The periodic structure consists of lossless dielectric and inhomogeneous plasma with a parabolic density profile. The dispersion relation and the THz wave transmittance are analyzed based on the electromagnetic equations and transfer matrix method. The dependence of effective plasma frequency and photonic band gap characteristics on dielectric and plasma thickness, plasma density, and incident angle are discussed in detail. A theoretical calculation for effective plasma frequency is presented and compared with numerical results. Results of these two methods are in good agreement.

  5. Effect of Group-Velocity Dispersion on Photon-Number Squeezing of Optical Pulses using Optical Fibers and Spectral Filter

    NASA Astrophysics Data System (ADS)

    Nishizawa, Norihiko; Horio, Takeo; Mori, Masakazu; Goto, Toshio; Yamane, Kazuo

    1999-04-01

    Photon-number squeezing of optical pulses using optical fibers and band-pass spectral filters is numerically analyzed. The evolution of the quantum noise in the optical pulse propagation is calculated in both the spectral and time domains. The mechanism of filtering squeezing and the role of the group-velocity dispersion are investigated.It is shown that the squeezing is realized owing to the interaction between the self-phase modulation and the group-velocity dispersion.

  6. Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal.

    PubMed

    Rawal, Swati; Sinha, Ravindra; De La Rue, Richard M

    2009-08-03

    We propose a silicon-on-insulator (SOI) photonic crystal waveguide within a hexagonal lattice of elliptical air holes for slow light propagation with group velocity in the range 0.0028c to 0.044c and ultra-flattened group velocity dispersion (GVD). The proposed structure is also investigated for its application as an optical buffer with a large value of normalized delay bandwidth product (DBP), equal to 0.778. Furthermore it is shown that the proposed structure can also be used for time or wavelength-division demultiplexing to separate two telecom wavelengths, 1.31 microm and 1.55 microm, on a useful time-scale and with minimal distortion.

  7. Wideband slow light and dispersion control in oblique lattice photonic crystal waveguides.

    PubMed

    Leng, Feng-Chun; Liang, Wen-Yao; Liu, Bin; Wang, Tong-Biao; Wang, He-Zhou

    2010-03-15

    We find that the angle between elementary lattice vectors obviously affects the bandwidth and dispersion of slow light in photonic crystal line-defect waveguides. When the fluctuation of group index is strictly limited in a +/-1% range, the oblique lattice structures with the angle between elementary lattice vectors slightly larger than 60 degrees have broader available bandwidth of flat band slow light than triangular lattice structures. For example, for the angle 66 degrees , there are increases of the available bandwidth from 20% to 68% for several different structures. For the same angle and a +/-10% variation in group velocity, when group indices are nearly constants of 30, 48.5, 80 and 130, their corresponding bandwidths of flat band reach 20 nm, 11.8 nm, 7.3 nm and 3.9 nm around 1550 nm, respectively. The increasing of bandwidth is related to the shift of the anticrossing point towards smaller wave numbers.

  8. Polarization maintaining highly nonlinear photonic crystal fiber with closely lying two zero dispersion wavelengths

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Rabiul; Anower, Md. Shamim; Hasan, Md. Imran

    2016-05-01

    A simple hexagonal photonic crystal fiber is proposed to simultaneously achieve ultrahigh birefringence, large nonlinear coefficient, and two zero dispersion wavelengths (ZDWs). The finite element method with circular perfectly matched layer boundary condition is used to simulate the designed structure. Simulation results show that it is possible to achieve two closely lying ZDWs of 1.08 and 1.29 μm for x-polarization with 0.88 and 1.20 μm for y-polarization modes, respectively. In addition, an ultrahigh birefringence of 3.15×10-2 and a high nonlinear coefficient of 58 W-1 km-1 are also obtained at the excitation wavelength of 1.55 μm. The proposed fiber can have important applications in supercontinuum generation, parametric amplification, four-wave mixing, and optical sensors design.

  9. Study of the dispersive properties of three-dimensional photonic crystals with diamond lattices containing metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Kong, Xiang-Kun

    2013-10-01

    In this paper, the dispersive properties of three-dimensional photonic crystals with diamond lattices containing isotropic dielectric and metamaterials are theoretically studied by a modified plane wave expansion method. In order to simplify the study, one only kind of the metamaterials is considered—the epsilon-negative materials. The eigenvalue equations of their structure depending on the diamond lattice realization (spheres with epsilon-negative materials inserted in the dielectric background) are deduced. A photonic band gap (PBG), a flatband region, and the first two stop band gaps (SBGs) above the flatband region in the Γ-X and Γ-L directions are found to appear. The results show that the upper edge of the flatband region cannot be tuned by any parameters except for the electronic plasma frequency. The PBG and first SBGs above the flatband region in the Γ-X and Γ-L directions for PCs can be modulated by the filling factor, relative dielectric constant and electronic plasma frequency, respectively. However, the damping factor has no effect on the locations of first PBG and the SBGs above the flatband region in the Γ-X and Γ-L directions.

  10. Wideband slow light with low dispersion in asymmetric slotted photonic crystal waveguides.

    PubMed

    Liu, Bo; Wang, Tao; Tang, Jian; Li, Xiaoming; Dong, Chuanbo; He, Yu

    2013-12-01

    A new procedure of designing slotted photonic crystal waveguides is proposed to achieve slow light with improved normalized delay-bandwidth product and low group velocity dispersion that is suitable for both the W1 defect mode and the slot mode. The lateral symmetry of the waveguide in our study is broken by shifting the air holes periodically along the slot axis. The conversion of the "flat band" from band-up slow light to band-down slow light is achieved for the W1 defect mode. The group index curves of the W1 mode change from U-like to step-like and the group indices of 47, 67 and 130 are obtained with the bandwidth over 7.2, 4.8, and 2.3 nm around 1550 nm, respectively. We also obtain the group indices of 42, 55, and 108 for the slot mode with the bandwidth over 6.2, 5.6, and 2.2 nm, respectively. Then the low dispersion slow light propagation is numerically demonstrated by the finite-difference time-domain method.

  11. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation.

    PubMed

    Kudlinski, A; George, A K; Knight, J C; Travers, J C; Rulkov, A B; Popov, S V; Taylor, J R

    2006-06-12

    We report the fabrication of photonic crystal fibers with a continuously-decreasing zero-dispersion wavelength along their length. These tapered fibers are designed to extend the generation of supercontinuum spectra from the visible into the ultraviolet. We report on their performance when pumped with both nanosecond and picosecond sources at 1.064 microm. The supercontinuum spectra have a spectral width (measured at the 10 dB points) extending from 0.372 microm to beyond 1.75 microm. In an optimal configuration a flat (3 dB) spectrum from 395 to 850 nm, with a minimum spectral power density of 2 mW/nm was achieved, with a total continuum output power of 3.5 W. We believe that the shortest wavelengths were generated by cascaded four-wave mixing: the continuous decrease of the zero dispersion wavelength along the fiber length enables the phase-matching condition to be satisfied for a wide range of wavelengths into the ultraviolet, while simultaneously increasing the nonlinear coefficient of the fiber.

  12. Dispersion engineering of slow light in hexagonal ring hole photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Wu, Min; Li, Changhong; Li, Liucun; Wang, Yumeng

    2016-10-01

    We adopt hexagonal optofluidic ring scatterers to built two-dimensional photonic crystal waveguide (PCW) with triangular lattice. By studying slow light effects of varieties of optical optofluidic rings, the thickness of optofluidic ring in X and Z direction, and the moving distance of the first row of scatterers near central waveguide, some relatively optimism results have been founded. In addition, in the process of research, we adopt PWE method to simulation calculation. When the thickness of optofluidic ring changes, the optimization results which ng equals 47.2120, bandwidth Δλ is 28.5nm and the group velocity dispersion β2 is 43.3418 ps2/mm. When the moving distance changes, the optimization results we could get that ng equals 15.6569, Δλ is 92.9nm and β2 is 7.8202 ps2/mm. This wideband and low dispersion slow light can be used for storage capacity with certain requirements of the optical buffer, optical sensors, etc.

  13. Design of a Photonic Crystal Fiber with Zero Dispersion Wavelength Near 0.65 μm

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Rakhi; Konar, S.

    The zero dispersion point of an index-guided photonic crystal fiber with triangular lattice of air holes has been shifted to 0.65 μm by varying the diameter of air hole of different rings. Using FDTD method, we have estimated group velocity dispersion, effective refractive index, the fiber parameter, and the mode field of the fundamental mode. It has been realized that the value of zero dispersion point is mainly decided by the air holes of the first ring. This fiber can be used for biomedical application, spectroscopy, and supercontinuum generation.

  14. Dispersed three-pulse infrared photon echoes of nitrous oxide in water and octanol.

    PubMed

    Shattuck, J T; Schneck, J R; Chieffo, L R; Erramilli, S; Ziegler, L D

    2013-12-12

    Dispersed IR three-pulse photon echoes due to the antisymmetric (ν3) stretch mode of N2O dissolved in H2O and 1-octanol at room temperature are reported and analyzed. The experimentally determined transition frequency-frequency correlation function (FFCF) in these two solvents is explained in terms of inertial solvent contributions, hydrogen bond network fluctuations, and, for octanol, the motions of the alkyl chains. The H2O hydrogen bond fluctuations result in 1.5 ps FFCF decay, in agreement with relaxation rates determined from photon echo based measurements of other aqueous solutions including salt solutions. In octanol, hydrogen bond fluctuations decay on a slower time scale of 3.3 ps and alkyl chain motions result in an inhomogeneous broadening contribution to the ν3 absorption spectrum that decays on a 35 ps time scale. Rotational reorientation of N2O is nearly 3 times faster in octanol as compared to water. Although the vibrational ν3 N2O absorption line shapes in water and octanol are similar, the line widths result from different coherence loss mechanisms. A hot band contribution in the N2O in octanol solution is found to have a significant effect on the echo spectrum due to its correspondingly stronger transition moment than that of the fundamental transition. The dephasing dynamics of the N2O ν3 stretch mode is of interest as a probe in ultrafast studies of complex or nanoconfined systems with both hydrophobic and hydrophilic regions such as phospholipids, nucleic acids, and proteins. These results demonstrate the value of the N2O molecule to act as a reporter of equilibrium fluctuations in such complex systems particularly due to its solubility characteristics and long vibrational lifetime.

  15. Optical monitoring of chemical processes in turbid biogenic liquid dispersions by Photon Density Wave spectroscopy.

    PubMed

    Hass, Roland; Munzke, Dorit; Ruiz, Salomé Vargas; Tippmann, Johannes; Reich, Oliver

    2015-04-01

    In turbid biogenic liquid material, like blood or milk, quantitative optical analysis is often strongly hindered by multiple light scattering resulting from cells, particles, or droplets. Here, optical attenuation is caused by losses due to absorption as well as scattering of light. Fiber-based Photon Density Wave (PDW) spectroscopy is a very promising method for the precise measurement of the optical properties of such materials. They are expressed as absorption and reduced scattering coefficients (μ a and μ s', respectively) and are linked to the chemical composition and physical properties of the sample. As a process analytical technology, PDW spectroscopy can sense chemical and/or physical processes within such turbid biogenic liquids, providing new scientific insight and process understanding. Here, for the first time, several bioprocesses are analyzed by PDW spectroscopy and the resulting optical coefficients are discussed with respect to established mechanistic models of the chosen processes. As model systems, enzymatic casein coagulation in milk, temperature-induced starch hydrolysis in beer mash, and oxy- as well as deoxygenation of human donor blood were investigated by PDW spectroscopy. The findings indicate that also for very complex biomaterials (i.e., not well-defined model materials like monodisperse polymer dispersions), obtained optical coefficients allow for the assessment of a structure/process relationship and thus for a new analytical access to biogenic liquid material. This is of special relevance as PDW spectroscopy data are obtained without any dilution or calibration, as often found in conventional spectroscopic approaches.

  16. Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths.

    PubMed

    Zhang, Hua; Yu, Song; Zhang, Jie; Gu, Wanyi

    2007-02-05

    The effect of initial frequency chirp is investigated numerically to obtain efficient supercontinuum radiation in photonic crystal fibers (PCFs) with two closely spaced zero-dispersion wavelengths. The positive chirps, instead of zero or negative chirps, are recommended because self phase modulation and four-wave mixing can be facilitated by employing positive chirps. In contrast with the complicated and irregular spectrum generated by negative-chirped pulse, the spectrums generated by positive-chirped pulses are wider and much more regular. Moreover, the saturated length of the PCF, corresponding to the maximal spectrum width, can be shortened greatly and the efficiency of frequency conversion is also improved because of initial positive chirps. Nearly all the energy between the zero-dispersion wavelengths can be transferred to the normal dispersion region from the region within the two zero-dispersion wavelengths provided that the initial positive chirp is large enough.

  17. Wideband and low-dispersion engineered slow light using liquid infiltration of a modified photonic crystal waveguide.

    PubMed

    Pourmand, Mohammad; Karimkhani, Arash; Nazari, Fakhroddin

    2016-12-10

    We present a wideband and low-dispersion slow-light photonic crystal waveguide with a large normalized delay-bandwidth product that can be exploited in many ultra-compact all-optical devices, such as modulators and switches. The proposed new approach is based on infiltrating optical fluid into the first and second rows of the shifted air holes adjacent to the line-defect waveguide in a hexagonal lattice of photonic crystal. The simulation results show that the normalized delay-bandwidth product can be enhanced to a large value of 0.469 with a wide bandwidth operation of 36.8 nm in the C-band frequency optical communication window. Furthermore, by means of two-dimensional finite-difference time-domain calculations, the low-dispersion slow-light propagation is demonstrated by simulating the temporal Gaussian pulse width broadening.

  18. Observation of parametric gain due to four-wave mixing in dispersion engineered GaInP photonic crystal waveguides.

    PubMed

    Colman, Pierre; Cestier, Isabelle; Willinger, Amnon; Combrié, Sylvain; Lehoucq, Gaëlle; Eisenstein, Gadi; De Rossi, Alfredo

    2011-07-15

    We investigate four-wave mixing (FWM) in GaInP 1.5 mm long dispersion engineered photonic crystal waveguides. We demonstrate an 11 nm FWM bandwidth in the CW mode and a conversion efficiency of -24 dB in the quasi-CW mode. For picosecond pump and probe pulses, we report a 3 dB parametric gain and nearly a -5 dB conversion efficiency at watt-level peak pump powers.

  19. Extinction ratio improvement by pump-modulated four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber.

    PubMed

    Chow, K K; Shu, C; Lin, Chinlon; Bjarklev, A

    2005-10-31

    We demonstrate extinction ratio improvement by using pump-modulated four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber. A 6-dB improvement in the extinction ratio of a degraded return-to-zero signal has been achieved. A power penalty improvement of 3 dB at 10(-9) bit-error-rate level is obtained in the 10 Gb/s bit-error-rate measurements.

  20. 40-Gbit/s Operation of Ultracompact Photodetector-Integrated Dispersion Compensator Based on One-Dimensional Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Sagawa, Misuzu; Goto, Shigeo; Hosomi, Kazuhiko; Sugawara, Toshiki; Katsuyama, Toshio; Arakawa, Yasuhiko

    2008-08-01

    Utilizing large optical group-velocity dependence on wavelength without polarization-mode dependence, we have developed an ultracompact dispersion compensator based on multiple one-dimensional coupled-defect-type photonic crystals. The photonic crystal of the compensator, designed for a 1.55-µm optical communication system, consists of a multilayer thin-film structure and defect layers. The thin-film structure is substrate-free, which enables the compensator to be small, that is, a 1.4-mm-edge cube. To obtain a large group-velocity difference, 60 substrate-free films were stacked to form the compensator. The passband of the compensator is 2 nm, and the group-delay time difference within the band is more than 100 ps. A dispersion-compensator module integrated with a photodetector was fabricated. A 40-Gbit/s non-return-to-zero optical-transmission experiment was carried out with the compensator, demonstrating dispersion-compensation operation over a 10-km standard single-mode fiber, the dispersion of which corresponds to 170 ps/nm.

  1. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser at 1060 nm

    NASA Astrophysics Data System (ADS)

    Bowen, Patrick; Singh, Harman; Runge, Antoine; Provo, Richard; Broderick, Neil G. R.

    2016-04-01

    We report an all-normal-dispersion, all-fibre, all-PM, laser operating at a central wavelength of 1060 nm. The laser is mode-locked using a nonlinear amplifying loop mirror and generates linearly polarised pulses that can be compressed to 360 fs. The laser is based on our earlier scheme operating at 1030 nm [1] and we discuss the similarities and differences between the two configurations. We also present amplification up to an output power of 1 W using a commercially built amplifier and show through numerical methods that this pulse may be recompressible to 1.65 ps.

  2. Wideband and low dispersion slow-light waveguide based on a photonic crystal with crescent-shaped air holes.

    PubMed

    Meng, Bo; Wang, Ling-ling; Huang, Wei-qing; Li, Xiao-fei; Zhai, Xiang; Zhang, Hong

    2012-08-10

    We present a procedure to generate slow light with a large group index, wideband, and low dispersion in our suggested photonic crystal waveguide. By modulation of the declinations in the first two rows of air holes, the group index, the bandwidth, and the dispersion can be tuned effectively. Utilizing the two-dimensional plane wave expansion method (PWE) and the finite-difference time-domain method (FDTD), we demonstrate slow light with the group indices of 23, 35, and 45, respectively, while restricting the group-index variation within a 10% range. We accordingly attain an available bandwidth of 40.7, 23.7, and 5.1 nm, respectively. Meanwhile, the normalized delay-bandwidth product stays around 0.45, with minimal dispersion less than 0.2 (ps2/m) for all the cases.

  3. Dispersal

    USGS Publications Warehouse

    Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  4. 0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography.

    PubMed

    Okano, Masayuki; Lim, Hwan Hong; Okamoto, Ryo; Nishizawa, Norihiko; Kurimura, Sunao; Takeuchi, Shigeki

    2015-12-14

    Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical methods for information processing and communication. Recently, the application of quantum features to metrology has attracted much attention. Quantum optical coherence tomography (QOCT), which utilizes two-photon interference between entangled photon pairs, is a promising approach to overcome the problem with optical coherence tomography (OCT): As the resolution of OCT becomes higher, degradation of the resolution due to dispersion within the medium becomes more critical. Here we report on the realization of 0.54 μm resolution two-photon interference, which surpasses the current record resolution 0.75 μm of low-coherence interference for OCT. In addition, the resolution for QOCT showed almost no change against the dispersion of a 1 mm thickness of water inserted in the optical path, whereas the resolution for OCT dramatically degrades. For this experiment, a highly-efficient chirped quasi-phase-matched lithium tantalate device was developed using a novel 'nano-electrode-poling' technique. The results presented here represent a breakthrough for the realization of quantum protocols, including QOCT, quantum clock synchronization, and more. Our work will open up possibilities for medical and biological applications.

  5. 0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography

    PubMed Central

    Okano, Masayuki; Lim, Hwan Hong; Okamoto, Ryo; Nishizawa, Norihiko; Kurimura, Sunao; Takeuchi, Shigeki

    2015-01-01

    Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical methods for information processing and communication. Recently, the application of quantum features to metrology has attracted much attention. Quantum optical coherence tomography (QOCT), which utilizes two-photon interference between entangled photon pairs, is a promising approach to overcome the problem with optical coherence tomography (OCT): As the resolution of OCT becomes higher, degradation of the resolution due to dispersion within the medium becomes more critical. Here we report on the realization of 0.54 μm resolution two-photon interference, which surpasses the current record resolution 0.75 μm of low-coherence interference for OCT. In addition, the resolution for QOCT showed almost no change against the dispersion of a 1 mm thickness of water inserted in the optical path, whereas the resolution for OCT dramatically degrades. For this experiment, a highly-efficient chirped quasi-phase-matched lithium tantalate device was developed using a novel ‘nano-electrode-poling’ technique. The results presented here represent a breakthrough for the realization of quantum protocols, including QOCT, quantum clock synchronization, and more. Our work will open up possibilities for medical and biological applications PMID:26657190

  6. 0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Okano, Masayuki; Lim, Hwan Hong; Okamoto, Ryo; Nishizawa, Norihiko; Kurimura, Sunao; Takeuchi, Shigeki

    2015-12-01

    Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical methods for information processing and communication. Recently, the application of quantum features to metrology has attracted much attention. Quantum optical coherence tomography (QOCT), which utilizes two-photon interference between entangled photon pairs, is a promising approach to overcome the problem with optical coherence tomography (OCT): As the resolution of OCT becomes higher, degradation of the resolution due to dispersion within the medium becomes more critical. Here we report on the realization of 0.54 μm resolution two-photon interference, which surpasses the current record resolution 0.75 μm of low-coherence interference for OCT. In addition, the resolution for QOCT showed almost no change against the dispersion of a 1 mm thickness of water inserted in the optical path, whereas the resolution for OCT dramatically degrades. For this experiment, a highly-efficient chirped quasi-phase-matched lithium tantalate device was developed using a novel ‘nano-electrode-poling’ technique. The results presented here represent a breakthrough for the realization of quantum protocols, including QOCT, quantum clock synchronization, and more. Our work will open up possibilities for medical and biological applications

  7. Ultra-high negative dispersion compensating square lattice based single mode photonic crystal fiber with high nonlinearity

    NASA Astrophysics Data System (ADS)

    Islam, Md. Ibadul; Khatun, Maksuda; Ahmed, Kawsar

    2017-02-01

    This paper presents dispersion tailoring of photonic crystal fibers creating artificial defect along one of the regular square axes. A finite element method (FEM) has been enforced for numerical investigation of several guiding properties of the PCF covering a broad wavelength range about 1340-1640 nm over the telecommunication windows. According to simulation, the proposed PCF has obtained a strictly single-mode fiber, which has an ultra-high negative dispersion of about -584.60 to -2337.60 ps/(nm-km) and also possible to cover the highest nonlinearity order of 131.91 W-1 km-1 under the operating wavelength. Moreover, the proposed PCF structure experimentally focuses on higher nonlinear coefficient, which successfully compensates the chromatic dispersion of standard single mode in entire band of interest and greatly applicable to the optical transmission system. Additionally, the single mode behavior of S-PCF is explicated by employing V parameter. In our dispersion sensitive analysis, this fiber is significantly more robust due to successfully achieve ultra-high negative dispersion, which gains more promiscuous compared to the prior best results.

  8. Effects of polarization mode dispersion on polarization-entangled photons generated via broadband pumped spontaneous parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2016-05-01

    An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels.

  9. Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber.

    PubMed

    Yang, Taotao; Shu, Chester; Lin, Chinlon

    2005-07-11

    We have developed a depolarization technique to achieve polarization-insensitive wavelength conversion using four-wave mixing in an optical fiber. A maximum conversion efficiency of -11.79 dB was achieved over a 3 dB bandwidth of 26 nm in a 100-m-long dispersion-flattened photonic crystal fiber. The polarization-dependent conversion efficiency was less than 0.38 dB and the measured power penalty for a 10 Gbit/s NRZ signal was 1.9 dB. The relation between the conversion efficiency and the degree of polarization of the pump was also formulated.

  10. Dispersion and loss control of high birefringence photonic crystal fiber with CdSe/ZnS quantum dot film

    NASA Astrophysics Data System (ADS)

    Wang, Helin; Yang, Aijun

    2017-04-01

    High birefringence photonic crystal fibers (HB-PCFs) with different CdSe/ZnS quantum dot (QD) film thicknesses are designed, and their dispersion and loss properties are analyzed in detail. The results show that the fundamental modes along the x- and y-axis of HB-PCF with CdSe/ZnS QD films can be found. As pump wavelength increases, the birefringences of these designed QD HB-PCFs increase gradually. Their dispersions increase first and then decrease along the x- and y-axis of HB-PCFs. The losses of QD HB-PCFs are close to zero in the visible region while they increase gradually in the infrared region. By changing the thickness of CdSe/ZnS QD nanofilms in the air holes of fibers, the birefringence and dispersion of QD HB-PCFs vary obviously, and their losses can be reduced efficiently. It indicates that the dispersion and loss of HB-PCFs with QD thin films can be controlled effectively by depositing different QD film thicknesses and choosing a suitable pump wavelength in the experiment.

  11. Tunable Bragg extraction of light in photonic quasi crystals: dispersed liquid crystalline metamaterials

    NASA Astrophysics Data System (ADS)

    Rippa, Massimo; Bobeico, Eugenia; Umeton, Cesare P.; Petti, Lucia

    2015-09-01

    By exploiting Metamaterials (MTMs) and Photonic Quasi-Crystals (PQCs), it is possible to realize man-made structures characterized by a selective EM response, which can be also controlled by combining the distinctive properties of reconfigurable soft-matter. By finely controlling lattice parameters of a given photonic structure, it is possible to optimize its extraction characteristics at a precise wavelength, or minimize the extraction of undesired modes. In general, however, once a structure is realized, its extraction properties cannot be varied. To cross this problem, it is possible to combine capabilities offered by both MTMs and PQCs with the reconfigurable properties of smart materials, such as Liquid Crystals (LCs); in this way, a completely new class of "reconfigurable metamaterials" (R-MTM) can be realized. We report here on the realization and characterization of a switchable photonic device, working in the visible range, based on nanostructured photonic quasi-crystals, layered with an azodye-doped nematic LC (NLC). The experimental characterization shows that its filtering effect is remarkable with its extraction spectra which can be controlled by applying an external voltage or by means of a laser light. The vertical extraction of the light, by the coupling of the modes guided by the PQC slab to the free radiation via Bragg scattering, consists of an extremely narrow orange emission band at 621 nm with a full width at half-maximum (FWHM) of 8 nm. In our opinion, these results represent a breakthrough in the realization of innovative MTMs based active photonic devices such as tunable MTMs or reconfigurable lasers and active filters.

  12. Four-wave mixing stability in hybrid photonic crystal fibers with two zero-dispersion wavelengths.

    PubMed

    Sévigny, Benoit; Vanvincq, Olivier; Valentin, Constance; Chen, Na; Quiquempois, Yves; Bouwmans, Géraud

    2013-12-16

    The four-wave mixing process in optical fibers is generally sensitive to dispersion uniformity along the fiber length. However, some specific phase matching conditions show increased robustness to longitudinal fluctuations in fiber dimensions, which affect the dispersion, even for signal and idler wavelengths far from the pump. In this paper, we present the method by which this point is found, how the fiber design characteristics impact on the stable point and demonstrate the stability through propagation simulations using the non-linear Schrödinger equation.

  13. Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber.

    PubMed

    Zito, Gianluigi; Pissadakis, Stavros

    2013-09-01

    A polymer/liquid crystal-based fiber Bragg grating (PLC-FBG) is fabricated with visible two-beam holography by photo-induced modulation of a prepolymer/liquid crystal solution infiltrated into the hollow channels of a solid core photonic crystal fiber (PCF). The fabrication process and effects related to the photonic bandgap guidance into the infiltrated PCF, and characterization of the PLC-FBG, are discussed. Experimental data presented here demonstrate that the liquid crystal inclusions of the PLC-FBG lead to high thermal and bending sensitivities. The microscopic behavior of the polymer/liquid crystal phase separation inside the PCF capillaries is examined using scanning electron microscopy, and is discussed further.

  14. Analysis and compensation of dispersion-induced bit loss in a photonic A/D converter using time-wavelength interweaved sampling clock.

    PubMed

    Li, Ming; Wu, Guiling; Guo, Pan; Li, Xinwan; Chen, Jianping

    2009-09-28

    In this paper, the timing jitter induced by the fiber dispersion in photonic A/D converters using time-wavelength interweaved sampling clocks generated by optical time-division-multiplexing (OTDM) with fiber delay lines is analyzed and effective bit loss is calculated. A compensation method is proposed to decrease the dispersion-induced jitter. Simulations are performed and the results show the validity of the proposed compensation method. An experimental demonstration is carried out to verify the theoretical expression derived.

  15. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    PubMed

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  16. Dispersion relation for electromagnetic propagation in stochastic dielectric and magnetic helical photonic crystals

    NASA Astrophysics Data System (ADS)

    Avendaño, Carlos G.; Reyes, Arturo

    2017-03-01

    We theoretically study the dispersion relation for axially propagating electromagnetic waves throughout a one-dimensional helical structure whose pitch and dielectric and magnetic properties are spatial random functions with specific statistical characteristics. In the system of coordinates rotating with the helix, by using a matrix formalism, we write the set of differential equations that governs the expected value of the electromagnetic field amplitudes and we obtain the corresponding dispersion relation. We show that the dispersion relation depends strongly on the noise intensity introduced in the system and the autocorrelation length. When the autocorrelation length increases at fixed fluctuation and when the fluctuation augments at fixed autocorrelation length, the band gap widens and the attenuation coefficient of electromagnetic waves propagating in the random medium gets larger. By virtue of the degeneracy in the imaginary part of the eigenvalues associated with the propagating modes, the random medium acts as a filter for circularly polarized electromagnetic waves, in which only the propagating backward circularly polarized wave can propagate with no attenuation. Our results are valid for any kind of dielectric and magnetic structures which possess a helical-like symmetry such as cholesteric and chiral smectic-C liquid crystals, structurally chiral materials, and stressed cholesteric elastomers.

  17. Oxide-cladding aluminum nitride photonic crystal slab: Design and investigation of material dispersion and fabrication induced disorder

    NASA Astrophysics Data System (ADS)

    Melo, E. G.; Carvalho, D. O.; Ferlauto, A. S.; Alvarado, M. A.; Carreño, M. N. P.; Alayo, M. I.

    2016-01-01

    Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials. Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions.

  18. Oxide-cladding aluminum nitride photonic crystal slab: Design and investigation of material dispersion and fabrication induced disorder

    SciTech Connect

    Melo, E. G. Alvarado, M. A.; Carreño, M. N. P.; Alayo, M. I.; Carvalho, D. O.; Ferlauto, A. S.

    2016-01-14

    Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials. Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions.

  19. Multiple dynamic regimes in colloid-polymer dispersions: New insight using X-ray photon correlation spectroscopy

    SciTech Connect

    Srivastava, Sunita; Kishore, Suhasini; Narayanan, Suresh; Sandy, Alec R.; Bhatia, Surita R.

    2015-12-01

    We present an X-ray photon correlation spectros- copy (XPCS) study of dynamic transitions in an anisotropic colloid-polymer dispersion with multiple arrested states. The results provide insight into the mechanism for formation of repulsive glasses, attractive glasses, and networked gels of col- loids with weakly adsorbing polymer chains. In the presence of adsorbing polymer chains, we observe three distinct regimes: a state with slow dynamics consisting of finite particles and clusters, for which interparticle interactions are predominantly repulsive; a second dynamic regime occurring above the satu- ration concentration of added polymer, in which small clusters of nanoparticles form via a short-range depletion attraction; and a third regime above the overlap concentration in which dynamics of clusters are independent of polymer chain length. The observed complex dynamic state diagram is primarily gov- erned by the structural reorganization of a nanoparticle cluster and polymer chains at the nanoparticle-polymer surface and in the concentrated medium, which in turn controls the dynamics of the dispersion

  20. Experimental investigation of combined four-wave mixing and Raman effect in the normal dispersion regime of a photonic crystal fiber.

    PubMed

    Kudlinski, A; Pureur, V; Bouwmans, G; Mussot, A

    2008-11-01

    We study the effect of stimulated Raman scattering on four-wave mixing sidebands generated by pumping in the normal dispersion regime of a photonic crystal fiber. Q-switch nanosecond pulses at 1064 nm are used to generate signal and idler wavelengths by degenerate four-wave mixing. These three waves generate their own Raman Stokes orders, leading to a broadband supercontinuum.

  1. Design of an As2Se3-based photonic quasi-crystal fiber with highly nonlinear and dual zero-dispersion wavelengths

    NASA Astrophysics Data System (ADS)

    Zhao, Tongtong; Lou, Shuqin; Su, Wei; Wang, Xin

    2016-01-01

    We propose an As2Se3-based highly nonlinear photonic quasi-crystal fiber with dual zero-dispersion wavelengths (ZDWs). Using a full-vector finite element method, the proposed fiber is optimized to obtain high nonlinear coefficient, low confinement loss and two zero-dispersion points by optimizing the structure parameters. Numerical results demonstrate that the proposed photonic quasi-crystal fiber (PQF) has dual ZDWs and the nonlinear coefficient up to 2600 W-1 km-1 within the wavelength range from 2 to 5.5 μm. Due to the introduction of the large air holes in the third ring of the proposed fiber, the ability of confining the fundamental mode field can be improved effectively and thus the low confinement loss can be obtained. The proposed PQF with high nonlinearity and dual ZDWs will have a number of potential applications in four-wave mixing, super-continuum generation, and higher-order dispersion effects.

  2. An Overview of High-Resolution, Non-Dispersive, Imaging Spectrometers for High-Energy Photons

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline

    2010-01-01

    High-resolution x-ray spectroscopy has become a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites initiated a new era in x-ray astronomy. Despite their successes, there is still need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band and for extended sources. What is needed is a non-dispersive imaging spectrometer - essentially a 14-bit x-ray color camera. And a requirement for a nondispersive spectrometer designed to provide eV-scale spectral resolution is a temperature below 0.1 K. The required spectral resolution and the constraints of thermodynamics and engineering dictate the temperature regime nearly independently of the details of the sensor or the read-out technology. Low-temperature spectrometers can be divided into two classes - - equilibrium and non-equilibrium. In the equilibrium devices, or calorimeters, the energy is deposited in an isolated thermal mass and the resulting increase in temperature is measured. In the non-equilibrium devices, the absorbed energy produces quantized excitations that are counted to determine the energy. The two approaches have different strong points, and within each class a variety of optimizations have been pursued. I will present the basic fundamentals of operation and the details of the most successful device designs to date. I will also discuss how the measurement priorities (resolution, energy band, count rate) influence the optimal choice of detector technology.

  3. A photon counting and a squeezing measurement method by the exact absorption and dispersion spectrum of Λ-type Atoms.

    PubMed

    Naeimi, Ghasem; Alipour, Samira; Khademi, Siamak

    2016-01-01

    Recently, the master equations for the interaction of two-mode photons with a three-level Λ-type atom are exactly solved for the coherence terms. In this paper the exact absorption spectrum is applied for the presentation of a non-demolition photon counting method, for a few number of coupling photons, and its benefits are discussed. The exact scheme is also applied where the coupling photons are squeezed and the photon counting method is also developed for the measurement of the squeezing parameter of the coupling photons.

  4. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 2, photon noise theory

    SciTech Connect

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward; Sirk, Martin; Muirhead, Philip S.; Muterspaugh, Matthew W.; Lloyd, James P.

    2016-10-01

    High-resolution broadband spectroscopy at near-infrared (NIR) wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar, with the TEDI interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec NIR echelle spectrograph. These are the first multidelay EDI demonstrations on starlight. We demonstrated very high (10×) resolution boost and dramatic (20× or more) robustness to point spread function wavelength drifts in the native spectrograph. Data analysis, results, and instrument noise are described in a companion paper (part 1). This part 2 describes theoretical photon limited and readout noise limited behaviors, using simulated spectra and instrument model with noise added at the detector. We show that a single interferometer delay can be used to reduce the high frequency noise at the original resolution (1× boost case), and that except for delays much smaller than the native response peak half width, the fringing and nonfringing noises act uncorrelated and add in quadrature. This is due to the frequency shifting of the noise due to the heterodyning effect. We find a sum rule for the noise variance for multiple delays. The multiple delay EDI using a Gaussian distribution of exposure times has noise-to-signal ratio for photon-limited noise similar to a classical spectrograph with reduced slitwidth and reduced flux, proportional to the square root of resolution boost achieved, but without the focal spot limitation and pixel spacing Nyquist limitations. At low boost (~1×) EDI has ~1.4× smaller noise than conventional, and at >10× boost, EDI has ~1.4× larger noise than conventional. Readout noise is minimized by the use of three or four steps instead of 10 of TEDI. Net noise grows as step phases change from symmetrical arrangement with wavenumber across the band. As a result, for three (or four) steps, we calculate a multiplicative

  5. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: part 2, photon noise theory

    NASA Astrophysics Data System (ADS)

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward; Sirk, Martin; Muirhead, Philip S.; Muterspaugh, Matthew W.; Lloyd, James P.

    2016-10-01

    High-resolution broadband spectroscopy at near-infrared (NIR) wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar, with the TEDI interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec NIR echelle spectrograph. These are the first multidelay EDI demonstrations on starlight. We demonstrated very high (10×) resolution boost and dramatic (20× or more) robustness to point spread function wavelength drifts in the native spectrograph. Data analysis, results, and instrument noise are described in a companion paper (part 1). This part 2 describes theoretical photon limited and readout noise limited behaviors, using simulated spectra and instrument model with noise added at the detector. We show that a single interferometer delay can be used to reduce the high frequency noise at the original resolution (1× boost case), and that except for delays much smaller than the native response peak half width, the fringing and nonfringing noises act uncorrelated and add in quadrature. This is due to the frequency shifting of the noise due to the heterodyning effect. We find a sum rule for the noise variance for multiple delays. The multiple delay EDI using a Gaussian distribution of exposure times has noise-to-signal ratio for photon-limited noise similar to a classical spectrograph with reduced slitwidth and reduced flux, proportional to the square root of resolution boost achieved, but without the focal spot limitation and pixel spacing Nyquist limitations. At low boost (˜1×) EDI has ˜1.4× smaller noise than conventional, and at >10× boost, EDI has ˜1.4× larger noise than conventional. Readout noise is minimized by the use of three or four steps instead of 10 of TEDI. Net noise grows as step phases change from symmetrical arrangement with wavenumber across the band. For three (or four) steps, we calculate a multiplicative bandwidth

  6. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 2, photon noise theory

    DOE PAGES

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward; ...

    2016-10-01

    High-resolution broadband spectroscopy at near-infrared (NIR) wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar, with the TEDI interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec NIR echelle spectrograph. These are the first multidelay EDI demonstrations on starlight. We demonstrated very high (10×) resolution boost and dramatic (20× or more) robustness to point spread function wavelength drifts in the native spectrograph. Data analysis, results, and instrument noise are described in a companion paper (part 1). This part 2 describes theoreticalmore » photon limited and readout noise limited behaviors, using simulated spectra and instrument model with noise added at the detector. We show that a single interferometer delay can be used to reduce the high frequency noise at the original resolution (1× boost case), and that except for delays much smaller than the native response peak half width, the fringing and nonfringing noises act uncorrelated and add in quadrature. This is due to the frequency shifting of the noise due to the heterodyning effect. We find a sum rule for the noise variance for multiple delays. The multiple delay EDI using a Gaussian distribution of exposure times has noise-to-signal ratio for photon-limited noise similar to a classical spectrograph with reduced slitwidth and reduced flux, proportional to the square root of resolution boost achieved, but without the focal spot limitation and pixel spacing Nyquist limitations. At low boost (~1×) EDI has ~1.4× smaller noise than conventional, and at >10× boost, EDI has ~1.4× larger noise than conventional. Readout noise is minimized by the use of three or four steps instead of 10 of TEDI. Net noise grows as step phases change from symmetrical arrangement with wavenumber across the band. As a result, for three (or four) steps, we calculate a

  7. Peculiarities of spectral properties of a one-dimensional photonic crystal with an anisotropic defect layer of the nanocomposite with resonant dispersion

    SciTech Connect

    Vetrov, S Ya; Timofeev, I V; Pankin, P S

    2014-09-30

    We have studied the spectral properties of a one-dimensional photonic crystal with a structure defect that represents an anisotropic nanocomposite layer sandwiched between two multilayer dielectric mirrors. The nanocomposite consists of metallic nanoscale inclusions of orientationally ordered spheroidal shape, dispersed in a transparent matrix, and is characterised by an effective resonant permittivity. Each of the two orthogonal polarisations of probe radiation corresponds to a particular plasmon resonant frequency of the nanocomposite. The problem of calculating the transmittance spectrum of the waves with s- and p-polarisations for such structures is solved. Spectral manifestation of splitting of the defect mode depending on the structure parameters and volumetric fraction of the nanospheroids is studied. The essential dependence of the position of maxima of the defect modes in the bandgap of the photonic crystal and their splitting on the incidence angle, polarisation, and the ratio of lengths of the polar and equatorial semi-axes of the spheroidal nanoparticles is shown. (photonic crystals)

  8. Enhanced two-channel nonlinear imaging by a highly polarized supercontinuum light source generated from a nonlinear photonic crystal fiber with two zero-dispersion wavelengths.

    PubMed

    Tao, Wei; Bao, Hongchun; Gu, Min

    2011-05-01

    Real-time monitoring the variation of chlorophyll distributions and cellular structures in leaves during plant growth provides important information for understanding the physiological statuses of plants. Two-photon-excited autofluorescence imaging and second harmonic generation imaging of leaves can be used for monitoring the nature intrinsic fluorophores distribution and cellular structures of leaves by the use of the near-infrared region of light which has minimal light absorption by endogenous molecules and thus increases tissue penetration. However, the two-photon absorption peak of intrinsic fluorophores of a ficus benjamina leaf is 50 nm away from the second harmonic generation excitation wavelength, which cannot be effectively excited by a femtosecond laser beam with one central wavelength. This paper shows that a highly polarized supercontinuum light generated from a birefringent nonlinear photonic crystal fiber with two zero-dispersion wavelengths can effectively excite two-photon autofluorescence as well as second harmonic generation signals for simultaneously monitoring intrinsic fluorophore distributions and non-centrosymmetric structures of leaves.

  9. Peculiarities of spectral properties of a one-dimensional photonic crystal with an anisotropic defect layer of the nanocomposite with resonant dispersion

    NASA Astrophysics Data System (ADS)

    Vetrov, S. Ya; Pankin, P. S.; Timofeev, I. V.

    2014-09-01

    We have studied the spectral properties of a one-dimensional photonic crystal with a structure defect that represents an anisotropic nanocomposite layer sandwiched between two multilayer dielectric mirrors. The nanocomposite consists of metallic nanoscale inclusions of orientationally ordered spheroidal shape, dispersed in a transparent matrix, and is characterised by an effective resonant permittivity. Each of the two orthogonal polarisations of probe radiation corresponds to a particular plasmon resonant frequency of the nanocomposite. The problem of calculating the transmittance spectrum of the waves with s- and p-polarisations for such structures is solved. Spectral manifestation of splitting of the defect mode depending on the structure parameters and volumetric fraction of the nanospheroids is studied. The essential dependence of the position of maxima of the defect modes in the bandgap of the photonic crystal and their splitting on the incidence angle, polarisation, and the ratio of lengths of the polar and equatorial semi-axes of the spheroidal nanoparticles is shown.

  10. Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 µm in all-solid soft glass photonic crystal fibers.

    PubMed

    Klimczak, Mariusz; Siwicki, Bartłomiej; Zhou, Binbin; Bache, Morten; Pysz, Dariusz; Bang, Ole; Buczyński, Ryszard

    2016-12-26

    Two all-solid glass photonic crystal fibers with all-normal dispersion profiles are evaluated for coherent supercontinuum generation under pumping in the 2.0 μm range. In-house boron-silicate and commercial lead-silicate glasses were used to fabricate fibers optimized for either flat dispersion, albeit with lower nonlinearity, or with larger dispersion profile curvature but with much higher nonlinearity. Recorded spectra at the redshifted edge reached 2500-2800 nm depending on fiber type. Possible factors behind these differences are discussed with numerical simulations. The fiber enabling the broadest spectrum is suggested as an efficient first stage of an all-normal dispersion cascade for coherent supercontinuum generation exceeding 3000 nm.

  11. Design of an ultracompact low-power all-optical modulator by means of dispersion engineered slow light regime in a photonic crystal Mach-Zehnder interferometer.

    PubMed

    Bakhshi, Sara; Moravvej-Farshi, Mohammad Kazem; Ebnali-Heidari, Majid

    2012-05-10

    We present the design procedure for an ultracompact low-power all-optical modulator based on a dispersion-engineered slow-light regime in a photonic crystal Mach-Zehnder interferometer (PhC MZI), selectively infiltrated by nonlinear optical fluids. The dispersionless slow-light regime enhancing the nonlinearities enabled a 22 μm long PhC MZI to operate as a modulator with an input power as low as 3 mW/μm. Simulations reveal that the switching threshold can be controlled by varying the optofluidic infiltration.

  12. Four-wave mixing based widely tunable wavelength conversion using 1-m dispersion-shifted bismuth-oxide photonic crystal fiber.

    PubMed

    Chow, K K; Kikuchi, K; Nagashima, T; Hasegawa, T; Ohara, S; Sugimoto, N

    2007-11-12

    We demonstrate widely tunable wavelength conversion based on four-wave mixing using a dispersion-shifted bismuth-oxide photonic crystal fiber (Bi-PCF). A 1-meter-long Bi-PCF is used as the nonlinear medium for wavelength conversion of a 10 Gb/s non-return-to-zero (NRZ) signal. A 3- dB working range of the converted signal over 35 nm is obtained with around 1-dB power penalty in the bit-error-rate measurements.

  13. The right circular polarized waves in the three-dimensional anisotropic dispersive photonic crystals consisting of the magnetized plasma and uniaxial material as the Faraday effects considered

    SciTech Connect

    Zhang, Hai-Feng E-mail: lsb@nuaa.edu.cn; Liu, Shao-Bin E-mail: lsb@nuaa.edu.cn; Tang, Yi-Jun; Zhen, Jian-Ping

    2014-03-15

    In this paper, the properties of the right circular polarized (RCP) waves in the three-dimensional (3D) dispersive photonic crystals (PCs) consisting of the magnetized plasma and uniaxial material with face-centered-cubic (fcc) lattices are theoretically investigated by the plane wave expansion method, which the homogeneous anisotropic dielectric spheres (the uniaxial material) immersed in the magnetized plasma background, as the Faraday effects of magnetized plasma are considered (the incidence electromagnetic wave vector is parallel to the external magnetic field at any time). The equations for calculating the anisotropic photonic band gaps (PBGs) for the RCP waves in the first irreducible Brillouin zone are theoretically deduced. The anisotropic PBGs and a flatbands region can be obtained. The effects of the ordinary-refractive index, extraordinary-refractive index, anisotropic dielectric filling factor, plasma frequency, and plasma cyclotron frequency (the external magnetic field) on the properties of first two anisotropic PBGs for the RCP waves are investigated in detail, respectively. The numerical results show that the anisotropy can open partial band gaps in fcc lattices at U and W points, and the complete PBGs for the RCP waves can be achieved compared to the conventional 3D dispersive PCs composed of the magnetized plasma and isotropic material. It is also shown that the first two anisotropic PBGs can be tuned by those parameters as mentioned above. Those PBGs can be enlarged by introducing the uniaxial material into such 3D PCs as the Faraday effects are considered.

  14. Trimming the threshold dispersion below 10 e-rms in a large area readout IC working in a single photon counting mode

    NASA Astrophysics Data System (ADS)

    Kmon, P.; Maj, P.; Gryboś, P.; Szczygieł, R.

    2016-01-01

    We present a new method of an in-pixel threshold dispersion correction implemented in a prototype readout integrated circuit (IC) operating in a single photon counting mode. The new threshold correction method was implemented in a readout IC of area 9.6× 14.9 mm2 containing 23552 square pixels with the pitch of 75 μm designed and fabricated in CMOS 130 nm technology. Each pixel of the IC consists of a charge sensitive amplifier, a shaper, two discriminators, two 14-bit counters and a low-area trim DACs for threshold correction. The user can either control the range of the trim DAC globally for all the pixels in the integrated circuit or modify the trim DACs characteristics locally in each pixel independently. Using a simulation tool based on the Monte-Carlo methods, we estimated how much we could improve the offset trimming by increasing the number of bits in the trim DACs or implementing additional bits in a pixel to modify the characteristics of the trim DACs. The measurements of our IC prototype show that it is possible to reduce the effective threshold dispersion in large-area single-photon counting chips below 10 electrons rms.

  15. A hybrid Jacobi-Davidson method for interior cluster eigenvalues with large null-space in three dimensional lossless Drude dispersive metallic photonic crystals

    NASA Astrophysics Data System (ADS)

    Huang, Tsung-Ming; Lin, Wen-Wei; Wang, Weichung

    2016-10-01

    We study how to efficiently solve the eigenvalue problems in computing band structure of three-dimensional dispersive metallic photonic crystals with face-centered cubic lattices based on the lossless Drude model. The discretized Maxwell equations result in large-scale standard eigenvalue problems whose spectrum contains many zero and cluster eigenvalues, both prevent existed eigenvalue solver from being efficient. To tackle this computational difficulties, we propose a hybrid Jacobi-Davidson method (hHybrid) that integrates harmonic Rayleigh-Ritz extraction, a new and hybrid way to compute the correction vectors, and a FFT-based preconditioner. Intensive numerical experiments show that the hHybrid outperforms existed eigenvalue solvers in terms of timing and convergence behaviors.

  16. Investigating the dispersive properties of the three-dimensional photonic crystals with face-centered-cubic lattices containing epsilon-negative materials

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Kong, Xiang-Kun

    2013-09-01

    In this paper, dispersive properties of three-dimensional (3D) photonic crystals (PCs) with face-centered-cubic (fcc) lattices composed of the isotropic positive-index materials and epsilon-negative materials are theoretically investigated based on a modified plane wave expansion (PWE) method. The eigenvalue equations of such structure (spheres with epsilon-negative materials inserted in the dielectric background) are deduced. The band structures can be obtained by solving such nonlinear eigenvalue equations. It can be obviously seen that a photonic band gap (PBG), a flat band region, and two stop band gaps (SBGs) in the Г- X and Г- L directions appear, respectively. The results show that the upper edges of flat band region cannot be tuned by any parameters except for the electronic plasma frequency. The first PBG and the first SBGs above the flat band region in the Г- X and Г- L directions for the 3D PCs can be modulated by the filling factor, relative dielectric constant and electronic plasma frequency, respectively. However, the damping factor has no effect on the locations of the first PBG and the first SBGs above the flat band region in the Г- X and Г- L directions. These results may provide theoretical instructions to design the future optoelectronic and communication devices containing epsilon-negative materials.

  17. Cryogenic thermoelectric (QVD) detectors: Emerging technique for fast single-photon counting and non-dispersive energy characterization

    NASA Astrophysics Data System (ADS)

    Gulian, A.; Wood, K.; van Vechten, D.; Fritz, G.

    2004-09-01

    ''QVD'' detectors are based on thermoelectric heat-to-voltage (Q → V) conversion and digital (V → D) readout. We have devised and analyzed the performance of QVD detectors with several different sensor designs that enable use of high thermoelectric figure of merit samples, be they of thin film, bulk crystal, or whisker form. Our first QVD devices had the well-studied material Au-Fe as thin film sensors. More recently, we have confirmed the literature reports of substantially higher Seebeck coefficient at cryogenic temperatures in lanthanum (cerium) hexaborides. We have also investigated the kinetic properties of La(Ce)B6 crystals with different La-Ce ratios. Currently we are exploring prototype devices based on bulk single-crystalline sensors. These include a successfully tested candidate with a sharp-end hexaboride sensor and small-size bismuth absorber - a whisker prototype. In theory, QVD sensors are competitive with superconducting tunnel junction (STJ) and transition edge sensor (TES) devices in energy resolution ability. However, QVD sensors ought to be able to respond at very much faster rates than these competitors; the lanthanum-cerium hexaboride sensors are expected to reach rates of 100 MHz counting rates for UV/optical photons. In addition to traditional astrophysical applications, these detectors can be applied to the tasks of quantum computing and communication.

  18. Dramatic Raman Gain Suppression in the Vicinity of the Zero Dispersion Point in a Gas-Filled Hollow-Core Photonic Crystal Fiber

    NASA Astrophysics Data System (ADS)

    Bauerschmidt, S. T.; Novoa, D.; Russell, P. St. J.

    2015-12-01

    In 1964 Bloembergen and Shen predicted that Raman gain could be suppressed if the rates of phonon creation and annihilation (by inelastic scattering) exactly balance. This is only possible if the momentum required for each process is identical, i.e., phonon coherence waves created by pump-to-Stokes scattering are identical to those annihilated in pump-to-anti-Stokes scattering. In bulk gas cells, this can only be achieved over limited interaction lengths at an oblique angle to the pump axis. Here we report a simple system that provides dramatic Raman gain suppression over long collinear path lengths in hydrogen. It consists of a gas-filled hollow-core photonic crystal fiber whose zero dispersion point is pressure adjusted to lie close to the pump laser wavelength. At a certain precise pressure, stimulated generation of Stokes light in the fundamental mode is completely suppressed, allowing other much weaker phenomena such as spontaneous Raman scattering to be explored at high pump powers.

  19. High-energy square pulses and burst-mode pulses in an all-normal dispersion double-clad mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Qiao, Zhi; Wang, Xiaochao; Wang, Chao; Jing, Yuanyuan; Fan, Wei; Lin, Zunqi

    2016-05-01

    A double-clad Yb-doped mode-locked fiber laser that can operate in burst-mode and square-pulse states is experimentally investigated. In the burst-mode state, a burst train with 55 pulses of 500 ps duration is obtained. In the square-pulse state, which is similar to noiselike pulses, the maximum pulse energy is 820 nJ and the duration can be tuned from 15.8 to 546 ns. The square pulses have a narrow and multipeak spectrum, which is quite different from that of normal noiselike pulses. The fiber laser promises an alternative formation mechanism for burst-mode and square-pulse mode-locked fiber lasers.

  20. Two-photon spectroscopy of excitons with entangled photons.

    PubMed

    Schlawin, Frank; Mukamel, Shaul

    2013-12-28

    The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.

  1. Design and analysis of equiangular spiral photonic crystal fiber for mid-infrared supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Saini, T. S.; Baili, A.; Kumar, A.; Cherif, R.; Zghal, M.; Sinha, R. K.

    2015-11-01

    A design of equiangular spiral photonic crystal fiber (PCF) in As2Se3 chalcogenide glass is reported for mid-infrared supercontinuum generation. Supercontinuum covering the 1.2-15 μm molecular fingerprint region is achieved using only 8 mm long designed PCF pumped with 50 fs laser pulses of 500 W peak power. The structural parameters have been tailored for all-normal dispersion characteristic. Proposed structure has high nonlinearity (γ = 12474 W-1 km-1) at 3.5 μm with very low and flat dispersion -2.9 [ps/(nm × km)]. Supercontinuum with such broadening and high coherence degree is applicable for mid-infrared spectroscopy, gas sensing, early cancer diagnostics and free space communication.

  2. A monochromator for tuning the photon energy range 600 eV and 6000 eV with a single dispersing optical element (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jark, Werner H.

    2016-09-01

    Recently it was found that reflection gratings of standard quality, which can be used at lower energy soft X-rays with photon energies of the order of 300 eV, diffract also efficiently X-rays with photon energies of the order of 5 keV, when these gratings are operated at grazing angle of incidence in the extreme off-plane configuration [1]. Consequently a grating employed in the extreme off-plane configuration has the capability to provide monochromatic radiation in the photon energy range from below 1 keV to far above 2 keV, where one usually switches for the same purpose between the diffraction at surface structures and the diffraction in bulk structures. Such an operation scheme requires rather complex mechanical structures. The present study will show that the tuning of diffraction gratings in the conical diffraction configuration can cover the indicated and even more extended tuning ranges employing a rather simple mechanical structure. Infact such a grating can be mounted together with a plane mirror in a pseudo channel-cut crystal monochromator configuration, i.e. with almost parallel surfaces and with fixed gap between them. The photon energy is then tuned simply by varying the angle of grazing incidence onto the pair of optics. Like in a double crystal monochromator scheme the monochromatic beam will exit from the configuration parallel to the incident beam with in most cases negligibly varying displacement in the plane of incidence. The optical performance data will be discussed depending on the properties of some state-of-the-art synchrotron radiation sources. [1] W. Jark and D. Eichert, Opt. Express 23, 22753 (2015).

  3. Measurement of the Two-photon Absorption Coefficient of Gallium Phosphide (GaP) Using a Dispersion-minimized Sub-10 Femtosecond Z-scan Measurement System

    DTIC Science & Technology

    2012-09-01

    bandwidth of the pulse. Using the standard laboratory and analysis methods of Sheik- Bahae et al., we obtain a two-photon absorption coefficient, β, of...organic thin-film materials deposited on various substrates. 15 6. References 1. Sheik- Bahae , M.; Said, A. A.; Van Stryland, E. W. High...sensitivity, Single-beam n2 Measurements. Optics Letters 1989, 14 (17). 2. Sheik- Bahae , M.; Said, A. A.; Van Stryland, E. W.; Wei, T-H; Hagan, D. J

  4. Photon-photon collisions

    SciTech Connect

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  5. Nonlinear polarization rotation in a dispersion-flattened photonic-crystal fiber for ultrawideband (>100 nm) all-optical wavelength conversion of 10 Gbit/s nonreturn-to-zero signals.

    PubMed

    Kwok, C H; Chow, C W; Tsang, H K; Lin, Chinlon; Bjarklev, A

    2006-06-15

    We study the conversion bandwidth of the cross-polarization-modulation (XPoIM)-based wavelength conversion scheme with a dispersion-flattened highly nonlinear photonic-crystal fiber for signals with a nonreturn-to-zero (NRZ) modulation format. Both theoretical and experimental results show that the conversion bandwidth can be extended to cover a very wide band, including S-, C-, and L-bands for 10 Gbit/s NRZ signals (a total bandwidth of 120 nm is experimentally demonstrated). We also study the theoretical bandwidth limit for 40 Gbit/s NRZ signals. A significant extension of the conversion bandwidth using the XPoIM approach compared with the four-wave mixing approach previously reported is demonstrated.

  6. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  7. Spectral property of two-photon flux generated by four-photon scattering in photonic-crystal fibers

    NASA Astrophysics Data System (ADS)

    Sun, Hongbo; Liu, Xueming; Hu, Xiaohong; Li, Xiaohui

    2010-12-01

    Based on the scalar four-photon scattering process, the quantum state of a lightwave at the output of fiber is derived by solving the nonlinear Schrödinger equation with a perturbation theory. The joint spectral function of two photons is achieved from the derived quantum state. The dispersion operator involves the third-order dispersion term in the case that the pump wavelength is close to the zero dispersion wavelength. Simulation results show the first-order approximation of our joint spectral function is in excellent agreement with the complicated exact solution. By analyzing the spectral property of the two-photon flux generated by four-photon scattering in photonic-crystal fibers, it is found that the sign of dispersion has very little influence on the spectrum except the slight modulation instability in the anomalous dispersion domain.

  8. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    DTIC Science & Technology

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE, PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects...tailoring of dispersion and the photonic band gap. The band gap frequency can be matched to tailor the emission from active medium such as quantum

  9. Photonic crystal surface-emitting lasers

    SciTech Connect

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2015-06-23

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  10. All-optical NRZ-to-RZ format conversion at 10 Gbit/s with 1-to-4 wavelength multicasting exploiting cross-phase modulation & four-wave-mixing in single dispersion-flattened highly nonlinear photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Hui, Zhan-Qiang; Zhang, Bo; Zhang, Jian-Guo

    2016-04-01

    All-optical NRZ-to-RZ format conversion with a function of wavelength multicasting is proposed in this paper, which is realized by exploiting cross-phase modulation (XPM) and four-wave-mixing (FWM) in a dispersion-flattened highly nonlinear photonic crystal fiber (DF-HNL-PCF). The designed format converter is experimentally demonstrated, for which the 1-to-4 wavelength multicasting is achieved simultaneously by filtering out two FWM idler waves and both blue-chirped and red-chirped components of the broadened NRZ spectrum induced by XPM. Moreover, the wavelength tunability and dynamic characteristics of the proposed NRZ-to-RZ format converter are also exploited using the different central wavelengths of an optical clock signal and varying the input optical power at a DF-HNL-PCF in our experiment. It is shown that the designed format converter can possess a wide range of operational wavelength over 17 nm, an optimal extinction ratio of 11.6 dB, and a Q-factor of 7.1, respectively. Since the proposed scheme uses an optical fiber-based configuration and is easy for implementation, it can be very useful for future applications in advanced fiber-optic communication networks.

  11. Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths.

    PubMed

    Guo, Yuhao; Jafari, Zeinab; Agarwal, Anu M; Kimerling, Lionel C; Li, Guifang; Michel, Jurgen; Zhang, Lin

    2016-11-01

    We propose a new type of bilayer dispersion-flattened waveguides that have four zero-dispersion wavelengths. Low and flat dispersion can be achieved by using two different material combinations, with a much smaller index contrast as compared to the previously proposed slot-assisted dispersion-flattened waveguides. Without using a nano-slot, dispersion becomes less sensitive to waveguide dimensions, which is highly desirable for high-yield device fabrication. Ultra-low dispersion, high nonlinearity, and fabrication-friendly design would make it promising for practical implementation of nonlinear photonic functions. The proposed waveguide configuration deepens our understanding of the dispersion flattening principle.

  12. Optics of globular photonic crystals

    SciTech Connect

    Gorelik, V S

    2007-05-31

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter {approx}200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  13. Photon absorptiometry

    SciTech Connect

    Velchik, M.G.

    1987-01-01

    Recently, there has been a renewed interest in the detection and treatment of osteoporosis. This paper is a review of the merits and limitations of the various noninvasive modalities currently available for the measurement of bone mineral density with special emphasis placed upon the nuclear medicine techniques of single-photon and dual-photon absorptiometry. The clinicians should come away with an understanding of the relative advantages and disadvantages of photon absorptiometry and its optimal clinical application. 49 references.

  14. Photonic Hypercrystals

    NASA Astrophysics Data System (ADS)

    Narimanov, Evgenii E.

    2014-10-01

    We introduce a new "universality class" of artificial optical media—photonic hypercrystals. These hyperbolic metamaterials, with periodic spatial variation of dielectric permittivity on subwavelength scale, combine the features of optical metamaterials and photonic crystals. In particular, surface waves supported by a hypercrystal possess the properties of both the optical Tamm states in photonic crystals and surface-plasmon polaritons at the metal-dielectric interface.

  15. Tuning photonic bands in plasma metallic photonic crystals

    NASA Astrophysics Data System (ADS)

    Chaudhari, Mayank Kumar; Chaudhari, Sachin

    2016-11-01

    Introducing plasma in the background provides additional degrees of freedom for tuning dispersion curves of photonic crystals. 2D photonic crystals in triangular lattice arrangements offer more global bandgap regions and thus are of more interest for various applications. The dispersion characteristics of a two-dimensional plasma metallic photonic crystal (PMPC) in square as well as triangular lattice arrangements have been analyzed in this paper using the orthogonal finite difference time domain method. The dispersion characteristics of PMPCs for the range of r/a ratios and plasma frequencies for triangular lattice configuration have been analyzed. On introducing plasma in the background, the photonic bands of PMPC are shifted towards higher normalized frequencies. This shift is more for lower bands and increases with plasma frequency. The cut-off frequency was observed for both TE and TM polarizations in PMPC and showed strong dependence on r/a ratio as well as plasma frequency. Photonic bandgaps of PMPC may be tuned by controlling plasma parameters, giving opportunity for utilizing these PMPC structures for various applications such as fine-tuning cavities for enhanced light-matter interaction, plasmonic waveguides, and Gyrotron cavities.

  16. Topological photon

    NASA Astrophysics Data System (ADS)

    Tiwari, S. C.

    2008-03-01

    We associate intrinsic energy equal to hν /2 with the spin angular momentum of photon, and propose a topological model based on orbifold in space and tifold in time as topological obstructions. The model is substantiated using vector wavefield disclinations. The physical photon is suggested to be a particlelike topological photon and a propagating wave such that the energy hν of photon is equally divided between spin energy and translational energy, corresponding to linear momentum of hν /c. The enigma of wave-particle duality finds natural resolution, and the proposed model gives new insights into the phenomena of interference and emission of radiation.

  17. Ocular dispersion

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Noojin, Gary D.; Thomas, Robert J.; Stolarski, David J.; Rockwell, Benjamin A.; Welch, Ashley J.

    1999-06-01

    Spectrally resolved white-light interferometry (SRWLI) was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. The accuracy of the technique was assessed by measurement of fused silica and water, the refractive indices of which have been measured at several different wavelengths. The dispersion of bovine and rabbit aqueous and vitreous humor was measured from 400 to 1100 nm. Also, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humor extracted from goat and rhesus monkey eyes. For the humors, the dispersion did not deviate significantly from water. In an additional experiment, the dispersion of aqueous and vitreous humor that had aged up to a month was compared to freshly harvested material. No difference was found between the fresh and aged media. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. Future refinement may allow measurement of the dispersion of cornea and lens across the entire visible and near-infrared wavelength band. The principles of white- light interferometry including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.

  18. The photon

    NASA Astrophysics Data System (ADS)

    Collins, Russell L.

    2009-10-01

    There are no TEM waves, only photons. Lets build a photon, using a radio antenna. A short antenna (2L<< λ) simplifies the calculation, letting B fall off everywhere as 1/r^2. The Biot-Savart law finds B = (μ0/4π)(LI0/r^2)θφt. The magnetic flux thru a semi-circle of radius λ/2 is set equal to the flux quantum h/e, determining the needed source strength, LI0. From this, one can integrate the magnetic energy density over a sphere of radius λ/2 and finds it to be 1.0121 hc/λ. Pretty close. A B field collapses when the current ceases, but the photon evades this by creating a ɛ0E / t displacement current at center that fully supports the toroidal B assembly as it moves at c. This E=vxB arises because the photon moves at c. Stopped, a photon decays. At every point along the photon's path, an observer will note a transient oscillation of an E field. This sources the EM ``guiding wave'', carrying little or no energy and expanding at c. At the head of the photon, all these spherical guiding waves gather ``in-phase'' as a planar wavefront. This model speaks to all the many things we know about light. The photon is tiny, but its guiding wave is huge.

  19. Heralded single-photon source in a III-V photonic crystal.

    PubMed

    Clark, Alex S; Husko, Chad; Collins, Matthew J; Lehoucq, Gaelle; Xavier, Stéphane; De Rossi, Alfredo; Combrié, Sylvain; Xiong, Chunle; Eggleton, Benjamin J

    2013-03-01

    In this Letter we demonstrate heralded single-photon generation in a III-V semiconductor photonic crystal platform through spontaneous four-wave mixing. We achieve a high brightness of 3.4×10(7) pairs·s(-1) nm(-1) W(-1) facilitated through dispersion engineering and the suppression of two-photon absorption in the gallium indium phosphide material. Photon pairs are generated with a coincidence-to-accidental ratio over 60 and a low g(2) (0) of 0.06 proving nonclassical operation in the single photon regime.

  20. Quantum optical rotatory dispersion

    PubMed Central

    Tischler, Nora; Krenn, Mario; Fickler, Robert; Vidal, Xavier; Zeilinger, Anton; Molina-Terriza, Gabriel

    2016-01-01

    The phenomenon of molecular optical activity manifests itself as the rotation of the plane of linear polarization when light passes through chiral media. Measurements of optical activity and its wavelength dependence, that is, optical rotatory dispersion, can reveal information about intricate properties of molecules, such as the three-dimensional arrangement of atoms comprising a molecule. Given a limited probe power, quantum metrology offers the possibility of outperforming classical measurements. This has particular appeal when samples may be damaged by high power, which is a potential concern for chiroptical studies. We present the first experiment in which multiwavelength polarization-entangled photon pairs are used to measure the optical activity and optical rotatory dispersion exhibited by a solution of chiral molecules. Our work paves the way for quantum-enhanced measurements of chirality, with potential applications in chemistry, biology, materials science, and the pharmaceutical industry. The scheme that we use for probing wavelength dependence not only allows one to surpass the information extracted per photon in a classical measurement but also can be used for more general differential measurements. PMID:27713928

  1. Quantum optical rotatory dispersion.

    PubMed

    Tischler, Nora; Krenn, Mario; Fickler, Robert; Vidal, Xavier; Zeilinger, Anton; Molina-Terriza, Gabriel

    2016-10-01

    The phenomenon of molecular optical activity manifests itself as the rotation of the plane of linear polarization when light passes through chiral media. Measurements of optical activity and its wavelength dependence, that is, optical rotatory dispersion, can reveal information about intricate properties of molecules, such as the three-dimensional arrangement of atoms comprising a molecule. Given a limited probe power, quantum metrology offers the possibility of outperforming classical measurements. This has particular appeal when samples may be damaged by high power, which is a potential concern for chiroptical studies. We present the first experiment in which multiwavelength polarization-entangled photon pairs are used to measure the optical activity and optical rotatory dispersion exhibited by a solution of chiral molecules. Our work paves the way for quantum-enhanced measurements of chirality, with potential applications in chemistry, biology, materials science, and the pharmaceutical industry. The scheme that we use for probing wavelength dependence not only allows one to surpass the information extracted per photon in a classical measurement but also can be used for more general differential measurements.

  2. All-order dispersion cancellation and energy-time entangled state.

    PubMed

    Ryu, Jinsoo; Cho, Kiyoung; Oh, Cha-Hwan; Kang, Hoonsoo

    2017-01-23

    Dispersion cancellation with an energy-time entangled photon pair in Hong-Ou-Mandel (HOM) interference is one phenomenon that reveals the nonclassical nature of the entangled photon pair. This phenomenon has been observed in materials with very weak dispersions. If the higher-order dispersion coefficient is non-negligible, then the experiment must be modified to realize dispersion cancellation. All-order dispersion cancellation using balanced dispersion was suggested by Steinberg. However, the same phenomenon is expected to occur even if a photon pair is not entangled. This behaviour can be explained by path indistinguishability with identical dispersion. To achieve an all-order dispersion experiment that cannot be explained classically, we modified the experiment and performed another all-order dispersion cancellation experiment that cannot be explained by identical dispersion. This is the first demonstration of nonclassical all-order dispersion cancellation.

  3. Self-assembled tunable photonic hyper-crystals.

    PubMed

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  4. Self-assembled tunable photonic hyper-crystals

    PubMed Central

    Smolyaninova, Vera N.; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E.; Smolyaninov, Igor I.

    2014-01-01

    We demonstrate a novel artificial optical material, the “photonic hyper-crystal”, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. PMID:25027947

  5. Octave-spanning super-continuum from a silica photonic crystal fiber pumped by a 386 MHz Yb:fiber laser.

    PubMed

    Farrell, C; Serrels, K A; Lundquist, T R; Vedagarbha, P; Reid, D T

    2012-05-15

    We report octave-spanning super-continuum generation in a silica photonic crystal fiber (PCF) pumped by a compact, efficient, mode-locked all-normal dispersion Yb:fiber laser. The laser achieved 45% optical-to-optical efficiency by using an optimized resonator design, producing chirped 750 fs pulses with a repetition rate of 386 MHz and an average power of 605 mW. The chirped pulses were compressed to 110 fs with a loss of only 4% by using multiple reflections on a pair of Gires-Tournois interferometer mirrors, yielding an average power of up to 580 mW. The corresponding peak power was 13.7 kW and produced a super-continuum spectrum spanning from 696-1392 nm.

  6. Photon generator

    DOEpatents

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  7. Photonic lanterns

    NASA Astrophysics Data System (ADS)

    Leon-Saval, Sergio G.; Argyros, Alexander; Bland-Hawthorn, Joss

    2013-12-01

    Multimode optical fibers have been primarily (and almost solely) used as "light pipes" in short distance telecommunications and in remote and astronomical spectroscopy. The modal properties of the multimode waveguides are rarely exploited and mostly discussed in the context of guiding light. Until recently, most photonic applications in the applied sciences have arisen from developments in telecommunications. However, the photonic lantern is one of several devices that arose to solve problems in astrophotonics and space photonics. Interestingly, these devices are now being explored for use in telecommunications and are likely to find commercial use in the next few years, particularly in the development of compact spectrographs. Photonic lanterns allow for a low-loss transformation of a multimode waveguide into a discrete number of single-mode waveguides and vice versa, thus enabling the use of single-mode photonic technologies in multimode systems. In this review, we will discuss the theory and function of the photonic lantern, along with several different variants of the technology. We will also discuss some of its applications in more detail. Furthermore, we foreshadow future applications of this technology to the field of nanophotonics.

  8. Photon diffraction

    NASA Astrophysics Data System (ADS)

    Hodge, John

    2009-11-01

    In current light models, a particle-like model of light is inconsistent with diffraction observations. A model of light is proposed wherein photon inferences are combined with the cosmological scalar potential model (SPM). That the photon is a surface with zero surface area in the travel direction is inferred from the Michelson-Morley experiment. That the photons in slits are mathematically treated as a linear antenna array (LAA) is inferred from the comparison of the transmission grating interference pattern and the single slit diffraction pattern. That photons induce a LAA wave into the plenum is inferred from the fractal model. Similarly, the component of the photon (the hod) is treated as a single antenna radiating a potential wave into the plenum. That photons are guided by action on the surface of the hod is inferred from the SPM. The plenum potential waves are a real field (not complex) that forms valleys, consistent with the pilot waves of the Bohm interpretation of quantum mechanics. Therefore, the Afshar experiment result is explained, supports Bohm, and falsifies Copenhagen. The papers may be viewed at http://web.citcom.net/˜scjh/.

  9. Dispersion Modeling.

    ERIC Educational Resources Information Center

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  10. Massive photons and Lorentz violation

    NASA Astrophysics Data System (ADS)

    Cambiaso, Mauro; Lehnert, Ralf; Potting, Robertus

    2012-04-01

    All quadratic translation- and gauge-invariant photon operators for Lorentz breakdown are included into the Stueckelberg Lagrangian for massive photons in a generalized Rξ gauge. The corresponding dispersion relation and tree-level propagator are determined exactly, and some leading-order results are derived. The question of how to include such Lorentz-violating effects into a perturbative quantum-field expansion is addressed. Applications of these results within Lorentz-breaking quantum-field theories include the regularization of infrared divergences as well as the free propagation of massive vector bosons.

  11. Green photonics

    NASA Astrophysics Data System (ADS)

    Quan, Frederic

    2012-02-01

    Photonics, the broad merger of electronics with the optical sciences, encompasses such a wide swath of technology that its impact is almost universal in our everyday lives. This is a broad overview of some aspects of the industry and their contribution to the ‘green’ or environmental movement. The rationale for energy conservation is briefly discussed and the impact of photonics on our everyday lives and certain industries is described. Some opinions from industry are presented along with market estimates. References are provided to some of the most recent research in these areas.

  12. Vesicle Photonics

    SciTech Connect

    Vasdekis, Andreas E.; Scott, E. A.; Roke, Sylvie; Hubbell, J. A.; Psaltis, D.

    2013-04-03

    Thin membranes, under appropriate boundary conditions, can self-assemble into vesicles, nanoscale bubbles that encapsulate and hence protect or transport molecular payloads. In this paper, we review the types and applications of light fields interacting with vesicles. By encapsulating light-emitting molecules (e.g. dyes, fluorescent proteins, or quantum dots), vesicles can act as particles and imaging agents. Vesicle imaging can take place also under second harmonic generation from vesicle membrane, as well as employing mass spectrometry. Light fields can also be employed to transport vesicles using optical tweezers (photon momentum) or directly pertrurbe the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy).

  13. Longitudinal photons in a relativistic magneto-active plasma

    SciTech Connect

    Tsintsadze, N. L.; Rehman, Ayesha; Murtaza, G.; Shah, H. A.

    2007-10-15

    This paper presents some aspects of interaction of superstrong high-frequency electromagnetic waves with strongly magnetized plasmas. The case in which the photon-photon interaction dominates the photon-plasma particle interaction is considered. Strictly speaking, the photon and photon bunch interaction leads to the self-modulation of the photon gas. Assuming that the density of the plasma does not change, the dispersion relation, which includes relativistic self-modulation, is investigated. The existence of longitudinal photons in a strong magnetic field has the well-known Bogoliubov-type energy spectrum. The stability of the photon flow is investigated and an expression for Landau damping of the photons is obtained. Finally, it has been shown that the interaction of even a very strong electromagnetic radiation with a plasma does not always lead to instability, but causes only a change in plasma properties, whereby the plasma remains stable.

  14. Fog dispersion

    NASA Technical Reports Server (NTRS)

    Frost, W.; Christensen, L. S.; Collins, F. G.; Camp, D. W.

    1980-01-01

    A study of economically viable techniques for dispersing warm fog at commercial airports is presented. Five fog dispersion techniques are examined: evaporation suppression, downwash, mixing, seeding with hygroscopic material, thermal techniques, and charged particle techniques. Thermal techniques, although effective, were found to be too expensive for routine airport operations, and detrimental to the environment. Seeding or helicopter downwash are practical for small-scale or temporary fog clearing, but are probably not useful for airport operations on a routine basis. Considerable disagreement exists on the capability of charged particle techniques, which stems from the fact that different assumptions and parameter values are used in the analytical models. Recommendations resulting from the review of this technique are listed, and include: experimental measurements of the parameters in question; a study to ascertain possible safety hazards, such as increased electrical activity or fuel ignition during refueling operations which could render charged particle techniques impractical; and a study of a single charged particle generator.

  15. Photonic Bandgaps in Photonic Molecules

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This talk will focus on photonic bandgaps that arise due to nearly free photon and tight-binding effects in coupled microparticle and ring-resonator systems. The Mie formulation for homogeneous spheres is generalized to handle core/shell systems and multiple concentric layers in a manner that exploits an analogy with stratified planar systems, thereby allowing concentric multi-layered structures to be treated as photonic bandgap (PBG) materials. Representative results from a Mie code employing this analogy demonstrate that photonic bands arising from nearly free photon effects are easily observed in the backscattering, asymmetry parameter, and albedo for periodic quarter-wave concentric layers, though are not readily apparent in extinction spectra. Rather, the periodicity simply alters the scattering profile, enhancing the ratio of backscattering to forward scattering inside the bandgap, in direct analogy with planar quarter-wave multilayers. PBGs arising from tight-binding may also be observed when the layers (or rings) are designed such that the coupling between them is weak. We demonstrate that for a structure consisting of N coupled micro-resonators, the morphology dependent resonances split into N higher-Q modes, in direct analogy with other types of oscillators, and that this splitting ultimately results in PBGs which can lead to enhanced nonlinear optical effects.

  16. Fiber transport of spatially entangled photons

    NASA Astrophysics Data System (ADS)

    Löffler, W.; Eliel, E. R.; Woerdman, J. P.; Euser, T. G.; Scharrer, M.; Russell, P.

    2012-03-01

    High-dimensional entangled photons pairs are interesting for quantum information and cryptography: Compared to the well-known 2D polarization case, the stronger non-local quantum correlations could improve noise resistance or security, and the larger amount of information per photon increases the available bandwidth. One implementation is to use entanglement in the spatial degree of freedom of twin photons created by spontaneous parametric down-conversion, which is equivalent to orbital angular momentum entanglement, this has been proven to be an excellent model system. The use of optical fiber technology for distribution of such photons has only very recently been practically demonstrated and is of fundamental and applied interest. It poses a big challenge compared to the established time and frequency domain methods: For spatially entangled photons, fiber transport requires the use of multimode fibers, and mode coupling and intermodal dispersion therein must be minimized not to destroy the spatial quantum correlations. We demonstrate that these shortcomings of conventional multimode fibers can be overcome by using a hollow-core photonic crystal fiber, which follows the paradigm to mimic free-space transport as good as possible, and are able to confirm entanglement of the fiber-transported photons. Fiber transport of spatially entangled photons is largely unexplored yet, therefore we discuss the main complications, the interplay of intermodal dispersion and mode mixing, the influence of external stress and core deformations, and consider the pros and cons of various fiber types.

  17. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide.

    PubMed

    Xiong, C; Monat, Christelle; Clark, Alex S; Grillet, Christian; Marshall, Graham D; Steel, M J; Li, Juntao; O'Faolain, Liam; Krauss, Thomas F; Rarity, John G; Eggleton, Benjamin J

    2011-09-01

    We report the generation of correlated photon pairs in the telecom C-band at room temperature from a dispersion-engineered silicon photonic crystal waveguide. The spontaneous four-wave mixing process producing the photon pairs is enhanced by slow-light propagation enabling an active device length of less than 100 μm. With a coincidence to accidental ratio of 12.8 at a pair generation rate of 0.006 per pulse, this ultracompact photon pair source paves the way toward scalable quantum information processing realized on-chip.

  18. One-Dimensional Photonic Crystal Superprisms

    NASA Technical Reports Server (NTRS)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  19. Radiating dipoles in photonic crystals

    PubMed

    Busch; Vats; John; Sanders

    2000-09-01

    The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.

  20. Photon Collider Physics with Real Photon Beams

    SciTech Connect

    Gronberg, J; Asztalos, S

    2005-11-03

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  1. Microalgae photonics

    NASA Astrophysics Data System (ADS)

    Floume, Timmy; Coquil, Thomas; Sylvestre, Julien

    2011-05-01

    Due to their metabolic flexibility and fast growth rate, microscopic aquatic phototrophs like algae have a potential to become industrial photochemical converters. Algae photosynthesis could enable the large scale production of clean and renewable liquid fuels and chemicals with major environmental, economic and societal benefits. Capital and operational costs are the main issues to address through optical, process and biochemical engineering improvements. In this perspective, a variety of photonic approaches have been proposed - we introduce them here and describe their potential, limitations and compatibility with separate biotechnology and engineering progresses. We show that only sunlight-based approaches are economically realistic. One of photonics' main goals in the algae field is to dilute light to overcome photosaturation effects that impact upon cultures exposed to full sunlight. Among other approaches, we introduce a widely-compatible broadband spectral adaptation technique called AlgoSun® that uses luminescence to optimize sunlight spectrum in view of the bioconverter's requirements.

  2. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  3. Photonic homeostatics

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Li, Fan-Hui

    2010-11-01

    Photonic homeostatics is a discipline to study the establishment, maintenance, decay, upgrading and representation of function-specific homoestasis (FSH) by using photonics. FSH is a negative-feedback response of a biosystem to maintain the function-specific fluctuations inside the biosystem so that the function is perfectly performed. A stress may increase sirtuin 1 (SIRT1) activities above FSH-specific SIRT1 activity to induce a function far from its FSH. On the one hand, low level laser irradiation or monochromatic light (LLL) can not modulate a function in its FSH or a stress in its stress-specific homeostasis (StSH), but modulate a function far from its FSH or a stress far from its StSH. On the other hand, the biophotons from a biosystem with its function in its FSH should be less than the one from the biosystem with its function far from its FSH. The non-resonant interaction of low intensity laser irradiation or monochromatic light (LIL) and a kind of membrane protein can be amplified by all the membrane proteins if the function is far from its FSH. This amplification might hold for biophoton emission of the membrane protein so that the photonic spectroscopy can be used to represent the function far from its FSH, which is called photonomics.

  4. Axionic shortcuts for high energy photons

    SciTech Connect

    Nicolaidis, A.

    2010-04-01

    We study the photon axion mixing in the presence of large extra dimensions. The eigenvalues and eigenstates of the mixing matrix are analyzed and we establish the resonance condition for the total conversion of a high energy photon into a Kaluza-Klein (KK) axion state. This resonant transition, a photon transformed into a KK axion traveling freely through the bulk and converting back into a photon, may provide a plausible explanation for the transparency of the universe to energetic photons. If the brane we live in is curved, then there are shortcuts through the bulk, which the axion can take. Within our model, the photons having the appropriate resonance energy are using the axionic shortcut and arrive earlier compared to the photons which follow the geodesic on the brane. We suggest that such axionic shortcuts are at the root of the dispersion of time arrival of photons observed by the MAGIC telescope. We indicate also the cosmological significance of the existence of axionic shortcuts for the photon.

  5. Dirac directional emission in anisotropic zero refractive index photonic crystals.

    PubMed

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-08-14

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.

  6. Better photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Knight, J. C.

    2008-11-01

    The development of optical fibers with two-dimensional patterns of air holes running down their length has reinvigorated research in the field of fiber optics. It has greatly - and fundamentally - broadened the range of specialty optical fibers, by demonstrating that optical fibers can be more 'special" than previously thought. Applications of such special fibers have not been hard to find. Fibers with air cores have made it possible to deliver energetic femtosecond-scale optical pulses, transform limited, as solitons, using single-mode fiber. Other fibers with anomalous dispersion at visible wavelengths have spawned a new generation of single-mode optical supercontinuum sources, spanning visible and near-infrared wavelengths and based on compact pump sources. A third example is in the field of fiber lasers, where the use of photonic crystal fiber concepts has led to a new hybrid laser technology, in which the very high numerical aperture available using air holes have enabled fibers so short they are more naturally held straight than bent. However, commercial success demands more than just a fiber and an application. The useful properties of the fibers need to be optimized for the specific application. This tutorial will describe some of the basic physics and technology behind these photonic crystal fibers (PCF's), illustrated with some of the impressive demonstrations of the past 18 months.

  7. Photon Sieve Space Telescope

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Dearborn, M.; Hcharg, G.

    2010-09-01

    We are investigating new technologies for creating ultra-large apertures (>20m) for space-based imagery. Our approach has been to create diffractive primaries in flat membranes deployed from compact payloads. These structures are attractive in that they are much simpler to fabricate, launch and deploy compared to conventional three-dimensional optics. In this case the flat focusing element is a photon sieve which consists of a large number of holes in an otherwise opaque substrate. A photon sieve is essentially a large number of holes located according to an underlying Fresnel Zone Plate (FZP) geometry. The advantages over the FZP are that there are no support struts which lead to diffraction spikes in the far-field and non-uniform tension which can cause wrinkling of the substrate. Furthermore, with modifications in hole size and distribution we can achieve improved resolution and contrast over conventional optics. The trade-offs in using diffractive optics are the large amounts of dispersion and decreased efficiency. We present both theoretical and experimental results from small-scale prototypes. Several key solutions to issues of limited bandwidth and efficiency have been addressed. Along with these we have studied the materials aspects in order to optimize performance and achieve a scalable solution to an on-orbit demonstrator. Our current efforts are being directed towards an on-orbit 1m solar observatory demonstration deployed from a CubeSat bus.

  8. Photonic Nanojets.

    PubMed

    Heifetz, Alexander; Kong, Soon-Cheol; Sahakian, Alan V; Taflove, Allen; Backman, Vadim

    2009-09-01

    This paper reviews the substantial body of literature emerging since 2004 concerning photonic nanojets. The photonic nanojet is a narrow, high-intensity, non-evanescent light beam that can propagate over a distance longer than the wavelength λ after emerging from the shadow-side surface of an illuminated lossless dielectric microcylinder or microsphere of diameter larger than λ. The nanojet's minimum beamwidth can be smaller than the classical diffraction limit, in fact as small as ~λ/3 for microspheres. It is a nonresonant phenomenon appearing for a wide range of diameters of the microcylinder or microsphere if the refractive index contrast relative to the background is less than about 2:1. Importantly, inserting within a nanojet a nanoparticle of diameter d(ν) perturbs the far-field backscattered power of the illuminated microsphere by an amount that varies as d(ν)3 for a fixed λ. This perturbation is much slower than the d(ν)6 dependence of Rayleigh scattering for the same nanoparticle, if isolated. This leads to a situation where, for example, the measured far-field backscattered power of a 3-μm diameter microsphere could double if a 30-nm diameter nanoparticle were inserted into the nanojet emerging from the microsphere, despite the nanoparticle having only 1/10,000(th) the cross-section area of the microsphere. In effect, the nanojet serves to project the presence of the nanoparticle to the far field. These properties combine to afford potentially important applications of photonic nanojets for detecting and manipulating nanoscale objects, subdiffraction-resolution nanopatterning and nanolithography, low-loss waveguiding, and ultrahigh-density optical storage.

  9. Photonic Nanojets

    PubMed Central

    Heifetz, Alexander; Kong, Soon-Cheol; Sahakian, Alan V.; Taflove, Allen; Backman, Vadim

    2009-01-01

    This paper reviews the substantial body of literature emerging since 2004 concerning photonic nanojets. The photonic nanojet is a narrow, high-intensity, non-evanescent light beam that can propagate over a distance longer than the wavelength λ after emerging from the shadow-side surface of an illuminated lossless dielectric microcylinder or microsphere of diameter larger than λ. The nanojet’s minimum beamwidth can be smaller than the classical diffraction limit, in fact as small as ~λ/3 for microspheres. It is a nonresonant phenomenon appearing for a wide range of diameters of the microcylinder or microsphere if the refractive index contrast relative to the background is less than about 2:1. Importantly, inserting within a nanojet a nanoparticle of diameter dν perturbs the far-field backscattered power of the illuminated microsphere by an amount that varies as dν3 for a fixed λ. This perturbation is much slower than the dν6 dependence of Rayleigh scattering for the same nanoparticle, if isolated. This leads to a situation where, for example, the measured far-field backscattered power of a 3-μm diameter microsphere could double if a 30-nm diameter nanoparticle were inserted into the nanojet emerging from the microsphere, despite the nanoparticle having only 1/10,000th the cross-section area of the microsphere. In effect, the nanojet serves to project the presence of the nanoparticle to the far field. These properties combine to afford potentially important applications of photonic nanojets for detecting and manipulating nanoscale objects, subdiffraction-resolution nanopatterning and nanolithography, low-loss waveguiding, and ultrahigh-density optical storage. PMID:19946614

  10. Photon Calorimeter

    DOEpatents

    Chow, Tze-Show

    1989-01-01

    A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

  11. Photon calorimeter

    DOEpatents

    Chow, Tze-Show

    1988-04-22

    A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.

  12. Solitons and spectral broadening in long silicon-on- insulator photonic wires.

    PubMed

    Ding, W; Benton, C; Gorbach, A V; Wadsworth, W J; Knight, J C; Skryabin, D V; Gnan, M; Sorrel, M; De La Rue, R M

    2008-03-03

    We report measurements and numerical modeling of spectral broadening and soliton propagation regimes in silicon-on-insulator photonic wire waveguides of 3 to 4 dispersion lengths using 100fs pump pulses. We also present accurate measurements of the group index and dispersion of the photonic wire.

  13. Effects of dispersion on mode locking in optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Longhi, S.

    1995-08-01

    We discuss the role that group-velocity dispersion and cavity detuning play in the onset of mode locking in synchronously pumped optical parametric oscillators. Because of the phase-sensitive character of the parametric gain, it is shown for the degenerate case that dispersion effects associated with off-resonance operation can lead to subpulse structures and spectral splitting of the parametric pulses. This behavior is interpreted on the basis of a dispersion-induced interference phenomenon between the two nearly degenerate parametric photons produced by the conversion of one pump photon in the nonlinear medium.

  14. Photonic water dynamically responsive to external stimuli

    PubMed Central

    Sano, Koki; Kim, Youn Soo; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Aida, Takuzo

    2016-01-01

    Fluids that contain ordered nanostructures with periodic distances in the visible-wavelength range, anomalously exhibit structural colours that can be rapidly modulated by external stimuli. Indeed, some fish can dynamically change colour by modulating the periodic distance of crystalline guanine sheets cofacially oriented in their fluid cytoplasm. Here we report that a dilute aqueous colloidal dispersion of negatively charged titanate nanosheets exhibits structural colours. In this ‘photonic water', the nanosheets spontaneously adopt a cofacial geometry with an ultralong periodic distance of up to 675 nm due to a strong electrostatic repulsion. Consequently, the photonic water can even reflect near-infrared light up to 1,750 nm. The structural colour becomes more vivid in a magnetic flux that induces monodomain structural ordering of the colloidal dispersion. The reflective colour of the photonic water can be modulated over the entire visible region in response to appropriate physical or chemical stimuli. PMID:27572806

  15. Photonic water dynamically responsive to external stimuli

    NASA Astrophysics Data System (ADS)

    Sano, Koki; Kim, Youn Soo; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Aida, Takuzo

    2016-08-01

    Fluids that contain ordered nanostructures with periodic distances in the visible-wavelength range, anomalously exhibit structural colours that can be rapidly modulated by external stimuli. Indeed, some fish can dynamically change colour by modulating the periodic distance of crystalline guanine sheets cofacially oriented in their fluid cytoplasm. Here we report that a dilute aqueous colloidal dispersion of negatively charged titanate nanosheets exhibits structural colours. In this `photonic water', the nanosheets spontaneously adopt a cofacial geometry with an ultralong periodic distance of up to 675 nm due to a strong electrostatic repulsion. Consequently, the photonic water can even reflect near-infrared light up to 1,750 nm. The structural colour becomes more vivid in a magnetic flux that induces monodomain structural ordering of the colloidal dispersion. The reflective colour of the photonic water can be modulated over the entire visible region in response to appropriate physical or chemical stimuli.

  16. Dressed Photons Induced Resistance Oscillation and Zero Resistance in Arrayed Simple Harmonic Oscillators with No Impurity

    PubMed Central

    Chang, Chih-Chun; Chen, Guang-Yin; Lin, Lee

    2016-01-01

    We investigate a system of an array of N simple harmonic oscillators (SHO) interacting with photons through QED interaction. As the energy of photon is around the spacing between SHO energy levels, energy gaps appear in the dispersion relation of the interacted (dressed) photons. This is quite different from the dispersion relation of free photons. Due to interactions between dressed photonic field and arrayed SHO, the photoresistance of this system shows oscillations and also drops to zero as irradiated by EM field of varying frequencies. PMID:27886252

  17. Dressed Photons Induced Resistance Oscillation and Zero Resistance in Arrayed Simple Harmonic Oscillators with No Impurity

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Chun; Chen, Guang-Yin; Lin, Lee

    2016-11-01

    We investigate a system of an array of N simple harmonic oscillators (SHO) interacting with photons through QED interaction. As the energy of photon is around the spacing between SHO energy levels, energy gaps appear in the dispersion relation of the interacted (dressed) photons. This is quite different from the dispersion relation of free photons. Due to interactions between dressed photonic field and arrayed SHO, the photoresistance of this system shows oscillations and also drops to zero as irradiated by EM field of varying frequencies.

  18. Dressed Photons Induced Resistance Oscillation and Zero Resistance in Arrayed Simple Harmonic Oscillators with No Impurity.

    PubMed

    Chang, Chih-Chun; Chen, Guang-Yin; Lin, Lee

    2016-11-25

    We investigate a system of an array of N simple harmonic oscillators (SHO) interacting with photons through QED interaction. As the energy of photon is around the spacing between SHO energy levels, energy gaps appear in the dispersion relation of the interacted (dressed) photons. This is quite different from the dispersion relation of free photons. Due to interactions between dressed photonic field and arrayed SHO, the photoresistance of this system shows oscillations and also drops to zero as irradiated by EM field of varying frequencies.

  19. Linear dissipative soliton in an anomalous-dispersion fiber laser.

    PubMed

    Wang, Ruixin; Dai, Yitang; Yin, Feifei; Xu, Kun; Li, Jianqiang; Lin, Jintong

    2014-12-01

    We report on the generation of linear dissipative soliton (LDS) from an erbium-doped actively mode-locked fiber laser. We show that depending on the down-chirping effect of quadratic phase modulation, instead of the fiber nonlinear Kerr effect in an all-normal-dispersion (ANDi) cavity, stable LDS can be realized in the linear dissipative system. The DS operation of ANDi laser and LDS operation of anomalous dispersion laser are experimentally investigated and compared, and the formation mechanisms of the DS and LDS are discussed. Finally, optical frequency comb generated by the LDS laser is demonstrated.

  20. Resonance formation in photon-photon collisions

    SciTech Connect

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the ..gamma gamma..* production of spin-one resonances. 37 refs., 17 figs., 5 tabs.

  1. Physics at high energy photon photon colliders

    SciTech Connect

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  2. Photonic compressive sensing with a micro-ring-resonator-based microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Ding, Yunhong; Zhu, Zhijing; Chi, Hao; Zheng, Shilie; Zhang, Xianmin; Jin, Xiaofeng; Galili, Michael; Yu, Xianbin

    2016-08-01

    A novel approach to realize photonic compressive sensing (CS) with a multi-tap microwave photonic filter is proposed and demonstrated. The system takes both advantages of CS and photonics to capture wideband sparse signals with sub-Nyquist sampling rate. The low-pass filtering function required in the CS is realized in a photonic way by using a frequency comb and a dispersive element. The frequency comb is realized by shaping an amplified spontaneous emission (ASE) source with an on-chip micro-ring resonator, which is beneficial to the integration of photonic CS. A proof-of-concept experiment for a two-tone signal acquisition with frequencies of 350 MHz and 1.25 GHz is experimentally demonstrated with a compression factor up to 16.

  3. Silicon-based photonic crystal waveguides and couplers

    NASA Astrophysics Data System (ADS)

    Farrell, Stephen G.

    2008-10-01

    Most commercial photonics-related research and development efforts currently fall into one or both of the following technological sectors: silicon photonics and photonic integrated circuits. Silicon photonics [18] is the field concerned with assimilating photonic elements into the well-established CMOS VLSI architecture and IC manufacturing. The convergence of these technologies would be mutually advantageous: photonic devices could increase bus speeds and greatly improve chip-to-chip and board-to-board data rates, whereas photonics, as a field, would benefit from mature silicon manufacturing and economies of scale. On the other hand, those in the photonic integrated circuit sector seek to continue the miniaturization of photonic devices in an effort to obtain an appreciable share of the great windfall of profits that occur when manufacturing, packaging, and testing costs are substantially reduced by shrinking photonic elements to chip-scale dimensions. Integrated photonics companies may [12] or may not [34] incorporate silicon as the platform. In this thesis, we seek to further develop a technology that has the potential to facilitate the forging of silicon photonics and photonic integrated circuits: photonic crystals on silicon-on-insulator substrates. We will first present a brief overview of photonic crystals and their physical properties. We will then detail a finely-tuned procedure for fabricating two-dimensional photonic crystal in the silicon-on-insulator material system. We will then examine transmission properties of our fabricated devices including propagation loss, group index dispersion, and coupling efficiency of directional couplers. Finally, we will present a description of a system for adiabatically tapering optical fibers and the results of using tapered fibers for efficiently coupling light into photonic crystal devices.

  4. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  5. Quantum electrodynamics near a photonic bandgap

    NASA Astrophysics Data System (ADS)

    Liu, Yanbing; Houck, Andrew A.

    2017-01-01

    Photonic crystals are a powerful tool for the manipulation of optical dispersion and density of states, and have thus been used in applications from photon generation to quantum sensing with nitrogen vacancy centres and atoms. The unique control provided by these media makes them a beautiful, if unexplored, playground for strong-coupling quantum electrodynamics, where a single, highly nonlinear emitter hybridizes with the band structure of the crystal. Here we demonstrate that such a hybridization can create localized cavity modes that live within the photonic bandgap, whose localization and spectral properties we explore in detail. We then demonstrate that the coloured vacuum of the photonic crystal can be employed for efficient dissipative state preparation. This work opens exciting prospects for engineering long-range spin models in the circuit quantum electrodynamics architecture, as well as new opportunities for dissipative quantum state engineering.

  6. Photonic crystal surface-emitting lasers enabled by an accidental Dirac point

    SciTech Connect

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2014-12-02

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  7. Optomechanical photon shuttling between photonic cavities.

    PubMed

    Li, Huan; Li, Mo

    2014-11-01

    Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave mixing between photons and phonons, and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong non-local effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a multicavity optomechanical device in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of this 'photon see-saw', are modulated antisymmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation, which strongly modulates the inter-cavity coupling and shuttles photons to the other empty cavity during every oscillation cycle in a well-regulated fashion.

  8. Spectrally Engineering Photonic Entanglement with a Time Lens

    NASA Astrophysics Data System (ADS)

    Donohue, J. M.; Mastrovich, M.; Resch, K. J.

    2016-12-01

    A time lens, which can be used to reshape the spectral and temporal properties of light, requires the ultrafast manipulation of optical signals and presents a significant challenge for single-photon application. In this work, we construct a time lens based on dispersion and sum-frequency generation to spectrally engineer single photons from an entangled pair. The strong frequency anticorrelations between photons produced from spontaneous parametric down-conversion are converted to positive correlations after the time lens, consistent with a negative-magnification system. The temporal imaging of single photons enables new techniques for time-frequency quantum state engineering.

  9. Photon propagator for axion electrodynamics

    SciTech Connect

    Itin, Yakov

    2007-10-15

    The axion modified electrodynamics is usually used as a model for description of possible violation of Lorentz invariance in field theory. The low-energy manifestation of Lorentz violation can hopefully be observed in experiments with electromagnetic waves. It justifies the importance of studying how a small axion addition can modify the wave propagation. Although a constant axion does not contribute to the dispersion relation at all, even a slowly varying axion field destroys the light cone structure. In this paper, we study the wave propagation in the axion modified electrodynamics in the framework of the premetric approach. In addition to the modified dispersion relation, we derive the axion generalization of the photon propagator in Feynman and Landau gauge. Our consideration is free of the usual restriction to the constant gradient axion field. It is remarkable that the axion modified propagator is Hermitian. Consequently, the dissipation effects are absent even in the phenomenological model considered here.

  10. Microfabricated Optical Cavities and Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Lončar, Marko; Scherer, Axel

    Microfabricated periodic structures with a high refractive index contrast have recently become very interesting geometries for the manipulation of light. The existence of a photonic bandgap, a frequency range within which propagation of light is prevented in all directions, is very useful where spatial localization of light is required. Ideally, by constructing three-dimensional confinement geometries, light propagation can be controlled in all three dimensions. However, since the fabrication of 3D photonic crystals is difficult, a more manufacturable approach is based on the use of one- or two-dimensional geometries. Here we describe the evolution of microcavities from 1D Bragg reflectors to 2D photonic crystals. The 1D microcavity laser (VCSEL) has already found widespread commercial use in data communications, and the equivalent 2D geometry has recently attracted a lot of research attention. 2D photonic crystal lasers, fabricated within a thin dielectric membrane and perforated with a two-dimensional lattice of holes, are very appealing for dense integration of photonic devices in telecommunications and optical sensing systems. In this chapter, we describe theory and experiments of planar photonic crystals as well as their applications towards lasers and super-dispersive elements. Low-threshold 2D photonic crystal lasers were recently demonstrated both in air and in different chemical solutions and can now be used to perform spectroscopic tests on ultra-small volumes of analyte.

  11. Photonic band gaps in one-dimensional magnetized plasma photonic crystals with arbitrary magnetic declination

    SciTech Connect

    Zhang Haifeng; Liu Shaobin; Kong Xiangkun

    2012-12-15

    In this paper, the properties of photonic band gaps and dispersion relations of one-dimensional magnetized plasma photonic crystals composed of dielectric and magnetized plasma layers with arbitrary magnetic declination are theoretically investigated for TM polarized wave based on transfer matrix method. As TM wave propagates in one-dimensional magnetized plasma photonic crystals, the electromagnetic wave can be divided into two modes due to the influence of Lorentz force. The equations for effective dielectric functions of such two modes are theoretically deduced, and the transfer matrix equation and dispersion relations for TM wave are calculated. The influences of relative dielectric constant, plasma collision frequency, incidence angle, plasma filling factor, the angle between external magnetic field and +z axis, external magnetic field and plasma frequency on transmission, and dispersion relation are investigated, respectively, and some corresponding physical explanations are also given. From the numerical results, it has been shown that plasma collision frequency cannot change the locations of photonic band gaps for both modes, and also does not affect the reflection and transmission magnitudes. The characteristics of photonic band gaps for both modes can be obviously tuned by relative dielectric constant, incidence angle, plasma filling factor, the angle between external magnetic field and +z axis, external magnetic field and plasma frequency, respectively. These results would provide theoretical instructions for designing filters, microcavities, and fibers, etc.

  12. Parametric wavelength conversion in photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Yang, Sigang; Wu, Zhaohui; Yang, Yi; Chen, Minghua; Xie, Shizhong

    2016-11-01

    Nonlinear wavelength conversion provides flexible solutions for generating wideband tunable radiation in novel wavelength band. Parametric process in photonic crystal fibers (PCFs) has attracted comprehensive interests since it can act as broadband tunable light sources in non-conventional wavelength bands. The current state-of-the-art photonic crystal fibers can provide more freedom for customizing the dispersion and nonlinearity which is critical to the nonlinear process, such as four wave mixing (FWM), compared with the traditional fibers fabricated with doping techniques. Here we demonstrate broadband parametric wavelength conversion in our homemade photonic crystal fibers. The zero dispersion wavelength (ZDW) of PCFs is critical for the requirement of phase matching condition in the parametric four wave mixing process. Firstly a procedure of the theoretical design of PCF with the ZDW at 1060 nm is proposed through our homemade simulation software. A group of PCF samples with gradually variable parameters are fabricated according to the theoretical design. The broadband parametric gain around 1060 nm band is demonstrated pumped with our homemade mode locked fiber laser in the anomalous dispersion region. Also a narrow gain band with very large wavelength detune with the pump wavelength in the normal dispersion region is realized. Wavelength conversion with a span of 194 nm is realized. Furthermore a fiber optical parametric oscillator based on the fabricated PCF is built up. A wavelength tunable range as high as 340 nm is obtained. This report demonstrates a systematic procedure to realize wide band wavelength conversion based on PCFs.

  13. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    SciTech Connect

    Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu; John, Honey

    2013-05-15

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.

  14. Luminescence properties of a Fibonacci photonic quasicrystal.

    PubMed

    Passias, V; Valappil, N V; Shi, Z; Deych, L; Lisyansky, A A; Menon, V M

    2009-04-13

    An active one-dimensional Fibonacci photonic quasi-crystal is realized via spin coating. Luminescence properties of an organic dye embedded in the quasi-crystal are studied experimentally and compared to theoretical simulations. The luminescence occurs via the pseudo-bandedge mode and follows the dispersion properties of the Fibonacci crystal. Time resolved luminescence measurement of the active structure shows faster spontaneous emission rate, indicating the effect of the large photon densities available at the bandedge due to the presence of critically localized states. The experimental results are in good agreement with the theoretical calculations for steady-state luminescence spectra.

  15. Nuclear photonics

    NASA Astrophysics Data System (ADS)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  16. Nuclear photonics

    SciTech Connect

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-09

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of

  17. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  18. Widened photonic functionality of asymmetric high-index contrast/photonic crystal gratings

    NASA Astrophysics Data System (ADS)

    Nguyen, Hai Son; Dubois, Florian; Letartre, Xavier; Leclercq, Jean-Louis; Seassal, Christian; Viktorovitch, Pierre

    2016-03-01

    In this presentation we emphasize that, within the variety of parameters usable for the design of HCGs, the transverse (vertical) symmetry properties of HCGs provide a power-full joystick for the dispersion engineering of guided mode resonances. We concentrate on asymmetric HCGs designed to accommodate guided mode resonances with ultra-flat zero-curvature dispersion characteristics (or photons with ultra-heavy effective mass), as well as with Dirac cone shaped linear dispersion characteristics. Examples of the great potential of this family of asymmetric HCGs will include the development of a platform for polaritonic devices and the production of micro-lasers particularly suited for hybrid III-V / silicon heterogeneous photonic integration, along CMOS compatible technological schemes.

  19. Broadband light source based on highly nonlinear non-circular core photonic crystal fiber for medical applications

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Hossain, M. A.

    2012-11-01

    We present a highly nonlinear non-circular core photonic crystal fiber (HNL-NCPCF) with all normal group velocity dispersion (GVD) to design a supercontinuum (SC) light source for optical coherence tomography (OCT) system. Nonlinear coefficient γ is increased as large as 66 W-1 km-1 at 1.31 μm by reducing the effective mode area and core is made non-circular to increase birefringence by putting the square lattice of air-holes inside the silica host. About 85 nm 10 dB spectral bandwidths for 2.5 ps input optical pulse and 140 nm 10 dB spectral bandwidths for 1.0 ps input optical pulse have been observed using the same fiber length of 200 m and input optical power of 15 W. Coherent lengths of the generated supercontinuum light sources are found 8.91 μm for 2.5 ps input optical pulse and 5.41 μm for 1.0 ps input optical pulse. Therefore, the highest longitudinal resolution for dental OCT at 1.31 μm is found about 3.28 μm for tooth enamel.

  20. Crossing of manifolds leads to flat dispersion: Blazed Littrow waveguides

    SciTech Connect

    Benisty, H.; Khayam, O.; Piskunov, N.; Kashkarov, P. K.

    2011-12-15

    We display a photonic embodiment of the Demkov-Ostrovsky solution to the crossing of two manifolds made of equidistant modes thanks to broad periodic waveguides. We find clearly narrowing resonances that signal the singular, flat dispersion case that we had termed ''critical coupling.'' The reconciliation of band-edge confinement and cavity confinement, two pillars of photonics, appear from the guide length dependence of spectra. We suggest the generality of the Demkov-Ostrovsky or critical coupling flat dispersion across all kinds of waves, e.g., electronic and acoustic.

  1. Highly dispersive slot waveguides.

    PubMed

    Zhang, Lin; Yue, Yang; Xiao-Li, Yinying; Beausoleil, Raymond G; Willner, Alan E

    2009-04-27

    We propose a slot-waveguide with high dispersion, in which a slot waveguide is coupled to a strip waveguide. A negative dispersion of up to -181520 ps/nm/km is obtained due to a strong interaction of the slot and strip modes. A flat and large dispersion is achievable by cascading the dispersive slot-waveguides with varied waveguide thickness or width for dispersion compensation and signal processing applications. We show - 31300 ps/nm/km dispersion over 147-nm bandwidth with <1% variance.

  2. High energy photon-photon collisions

    SciTech Connect

    Brodsky, S.J.; Zerwas, P.M.

    1994-07-01

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

  3. Accelerator prospects for photon-photon physics

    SciTech Connect

    Hutton, A.

    1992-05-01

    This paper provides an overview of the accelerators in the world where two-photon physics could be carried out in the future. The list includes facilities where two-photon physics is already an integral part of the scientific program but also mentions some other machines where initiating new programs may be possible.

  4. Simulating single photons with realistic photon sources

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao; Zhang, Zhen; Lütkenhaus, Norbert; Ma, Xiongfeng

    2016-12-01

    Quantum information processing provides remarkable advantages over its classical counterpart. Quantum optical systems have been proved to be sufficient for realizing general quantum tasks, which, however, often rely on single-photon sources. In practice, imperfect single-photon sources, such as a weak-coherent-state source, are used instead, which will inevitably limit the power in demonstrating quantum effects. For instance, with imperfect photon sources, the key rate of the Bennett-Brassard 1984 (BB84) quantum key distribution protocol will be very low, which fortunately can be resolved by utilizing the decoy-state method. As a generalization, we investigate an efficient way to simulate single photons with imperfect ones to an arbitrary desired accuracy when the number of photonic inputs is small. Based on this simulator, we can thus replace the tasks that involve only a few single-photon inputs with the ones that make use of only imperfect photon sources. In addition, our method also provides a quantum simulator to quantum computation based on quantum optics. In the main context, we take a phase-randomized coherent state as an example for analysis. A general photon source applies similarly and may provide some further advantages for certain tasks.

  5. Photonic crystal light source

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  6. Photon structure function - theory

    SciTech Connect

    Bardeen, W.A.

    1984-12-01

    The theoretical status of the photon structure function is reviewed. Particular attention is paid to the hadronic mixing problem and the ability of perturbative QCD to make definitive predictions for the photon structure function. 11 references.

  7. Photonic Design for Photovoltaics

    SciTech Connect

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  8. Influence of dispersing additive on asphaltenes aggregation in model system

    NASA Astrophysics Data System (ADS)

    Gorshkov, A. M.; Shishmina, L. V.; Tukhvatullina, A. Z.; Ismailov, Yu R.; Ges, G. A.

    2016-09-01

    The work is devoted to investigation of the dispersing additive influence on asphaltenes aggregation in the asphaltenes-toluene-heptane model system by photon correlation spectroscopy method. The experimental relationship between the onset point of asphaltenes and their concentration in toluene has been obtained. The influence of model system composition on asphaltenes aggregation has been researched. The estimation of aggregative and sedimentation stability of asphaltenes in model system and system with addition of dispersing additive has been given.

  9. Lectures on Dispersion Theory

    DOE R&D Accomplishments Database

    Salam, A.

    1956-04-01

    Lectures with mathematical analysis are given on Dispersion Theory and Causality and Dispersion Relations for Pion-nucleon Scattering. The appendix includes the S-matrix in terms of Heisenberg Operators. (F. S.)

  10. Photon track evolution.

    PubMed

    Oliveira, A D

    2005-01-01

    Given the time scale of biological, biochemical, biophysical and physical effects in a radiation exposure of living tissue, the first physical stage can be considered to be independent of time. All the physical interactions caused by the incident photons happen at the same starting time. From this point of view it would seem that the evolution of photon tracks is not a relevant topic for analysis; however, if the photon track is considered as a sequence of several interactions, there are several steps until the total degradation of the energy of the primary photon. We can characterise the photon track structure by the probability p(E,j), that is, the probability that a photon with energy E suffers j secondary interactions. The aim of this work is to analyse the photon track structure by considering j as a step of the photon track evolution towards the total degradation of the photon energy. Low energy photons (<150 keV) are considered, with water phantoms and half-extended geometry. The photon track evolution concept is presented and compared with the energy deposition along the track and also with the spatial distribution of the several steps in the photon track.

  11. Photonic nanojet-enabled optical data storage.

    PubMed

    Kong, Soon-Cheol; Sahakian, Alan; Taflove, Allen; Backman, Vadim

    2008-09-01

    We show that our recently reported microwave photonic jet technique for detection of deeply subwavelength pits in a metal substrate can be extended to optical wavelengths for purposes of high-density data storage. Three-dimensional finite-difference time-domain computational solutions of Maxwell's equations are used to optimize the photonic nanojet and pit configuration to account for the Drude dispersion of an aluminum substrate in the spectral range near lambda= 400 nm. Our results show that nanojet-illuminated pits having lateral dimensions of only 50 nm x 80 nm yield a contrast ratio 27 dB greater than previously reported using a lens system for pits of similar area. Such pits are much smaller than BluRay features. The high detection contrast afforded by the photonic nanojet could potentially yield significant increases in data density and throughput relative to current commercial optical data-storage systems while retaining the basic geometry of the storage medium.

  12. Dispersion y dinamica poblacional

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dispersal behavior of fruit flies is appetitive. Measures of dispersion involve two different parameter: the maximum distance and the standard distance. Standard distance is a parameter that describes the probalility of dispersion and is mathematically equivalent to the standard deviation around ...

  13. Photon-pair generation in arrays of cubic nonlinear waveguides.

    PubMed

    Solntsev, Alexander S; Sukhorukov, Andrey A; Neshev, Dragomir N; Kivshar, Yuri S

    2012-11-19

    We study photon-pair generation in arrays of cubic nonlinear waveguides through spontaneous four-wave mixing. We analyze numerically the quantum statistics of photon pairs at the array output as a function of waveguide dispersion and pump beam power. We show flexible spatial quantum state control such as pump-power-controlled transition between bunching and anti-bunching correlations due to nonlinear self-focusing.

  14. Entanglement, uncertainty and dispersion: a simple experimental demonstration of non-classical correlations

    NASA Astrophysics Data System (ADS)

    Lerch, S.; Guerreiro, T.; Sanguinetti, B.; Sekatski, P.; Gisin, N.; Stefanov, A.

    2017-03-01

    We perform an experiment to verify the presence of entanglement in photon pairs. By sending down-converted light through dispersive media with opposite group velocity dispersion coefficients, we overcome the minimum broadening of temporal correlation for classical light. Entanglement is proved via an inequality derived directly from Heisenberg’s uncertainty principle. We present a criterion to select a suitable down-conversion source. Moreover, we introduce a new method to analyze the temporal correlations between the entangled photons.

  15. Negative refraction at telecommunication wavelengths through plasmon-photon hybridization.

    PubMed

    Kalusniak, Sascha; Sadofev, Sergey; Henneberger, Fritz

    2015-11-16

    We demonstrate negative refraction at telecommunication wavelengths through plasmon-photon hybridization on a simple microcavity with metallic mirrors. Instead of using conventional metals, the plasmonic excitations are provided by a heavily doped semiconductor which enables us to tune them into resonance with the infrared photon modes of the cavity. In this way, the dispersion of the resultant hybrid cavity modes can be widely adjusted. In particular, negative dispersion and negative refraction at telecommunication wavelengths on an all-ZnO monolithical cavity are demonstrated.

  16. Dispersion in the Surfzone: Tracer Dispersion Studies

    DTIC Science & Technology

    2011-09-30

    objective is to improve understanding and modeling of dispersion of tracers (pol­ lution, fecal indicator bacteria, fine sediments) within the...discussed further here. Stochastic Particle Simulation for Surfzone Dispersion Drifter-derived diffusivities are time-dependent. In an unbounded...diffusion. Here HB06 particle trajectories are stochastically simulated with the Langevin equations with a shoreline boundary to explain the observed

  17. Theory of dispersive microlenses

    NASA Technical Reports Server (NTRS)

    Herman, B.; Gal, George

    1993-01-01

    A dispersive microlens is a miniature optical element which simultaneously focuses and disperses light. Arrays of dispersive mircolenses have potential applications in multicolor focal planes. They have a 100 percent optical fill factor and can focus light down to detectors of diffraction spot size, freeing up areas on the focal plane for on-chip analog signal processing. Use of dispersive microlenses allows inband color separation within a pixel and perfect scene registration. A dual-color separation has the potential for temperature discrimination. We discuss the design of dispersive microlenses and present sample results for efficient designs.

  18. Modulation Diversity for Chromatic Dispersion Compensation in Analog Photonic Links

    DTIC Science & Technology

    2006-07-14

    nono ztnJPqtE oωβωφ cos0 ] (4) where we establish the convention that primed variables correspond to ΦM and those...Ω+′                   Ω+−Ω+     + Ω+−Ω+     −−     − = ∑ ∑ ∑ ∞ −∞= Ω+ ∞ −∞= ∞ ≠ −∞= n nono oddk

  19. Temperature sensitivity of photonic crystal fibers infiltrated with ethanol solutions

    NASA Astrophysics Data System (ADS)

    Chu Van, Lanh; Stefaniuk, Tomasz; Kasztelanic, Rafał; Cao Long, Van; Klimczak, Mariusz; Le Van, Hieu; Trippenbach, Marek; Buczyński, Ryszard

    2015-12-01

    In this paper we present a numerical study on the optimization of dispersion of a photonic crystal fiber infiltrated with water-ethanol mixtures. The advantage of such an approach stems from the fact that the dependence of the refractive index on temperature is larger in liquids than in solid materials. Here, we examine photonic crystal fibers with a regular, hexagonal lattice and with various geometrical and material parameters, such as different number of rings of holes, various lattice constants and the size of core and air-holes. Additionally, for the optimized structure with flat dispersion characteristics, we analyze the influence of temperature and concentration of the ethanol solution on the dispersion characteristic and the zero dispersion wavelength shift of the fundamental mode.

  20. Entangled photon generation using four-wave mixing in azimuthally symmetric microresonators.

    PubMed

    Camacho, Ryan M

    2012-09-24

    A novel quantum mechanical formulation of the bi-photon wavefunction and spectra resulting from four-wave mixing is developed for azimuthally symmetric systems. Numerical calculations are performed verifying the use of the angular group velocity and angular group velocity dispersion in such systems, as opposed their commonly used linear counterparts. The dispersion profile and bi-photon spectra of two illustrative examples are given, emphasizing the physical origin of the effects leading to the conditions for angular momentum and energy conservation. A scheme is proposed in which widely spaced narrowband entangled photons may be produced through a four-wave mixing process in a chip-scale ring resonator. The entangled photon pairs are found to conserve energy and momentum in the four-wave mixing interaction, even though both photon modes lie in spectral regions of steep angular group velocity dispersion.

  1. Laser trimming of graphene oxide for functional photonic applications

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaorui; Lin, Han; Yang, Tieshan; Jia, Baohua

    2017-02-01

    This article reviews the recent photonic applications on graphene oxide and reduced graphene oxide films via the direct laser printing method. Attention has been paid to the unique optical property modulations of graphene oxide films during the laser reduction process, which enable a wide range of functional photonic and optoelectronic devices. The exotic properties of graphene oxide during the laser reduction process, including the tunable dispersion relation, flexible patterning capability, surface functionalization possibility, wavefront shaping ability, and the mechanical robustness and strength, make it a promising integratable platform for the next-generation ultrathin, light-weight and flexible photonic and optoelectronic applications.

  2. 2D photonic crystal and its angular reflective azimuthal spectrum

    NASA Astrophysics Data System (ADS)

    Senderakova, Dagmar; Drzik, Milan; Tomekova, Juliana

    2016-12-01

    Contemporary, attention is paid to photonic crystals, which can strongly modify light propagation through them and enable a controllable light manipulation. The contribution is focused on a sub-wavelength 2D structure formed by Al2O3 layer on silicon substrate, patterned with periodic hexagonal lattice of deep air holes. Using various laser sources of light at single wavelength, azimuthal angle dependence of the mirror-like reflected light intensity was recorded photo-electrically. The results obtained can be used to sample the band-structure of leaky modes of the photonic crystal more reliably and help us to map the photonic dispersion diagram.

  3. Constraining photon mass by energy-dependent gravitational light bending

    NASA Astrophysics Data System (ADS)

    Qian, Lei

    2012-03-01

    In the standard model of particle physics, photons are massless particles with a particular dispersion relation. Tests of this claim at different scales are both interesting and important. Experiments in territory labs and several exterritorial tests have put some upper limits on photon mass, e.g., torsion balance experiment in the lab shows that photon mass should be smaller than 1.2 × 10-51g. In this work, this claim is tested at a cosmological scale by looking at strong gravitational lensing data available and an upper limit of 8.71 × 10-39g on photon mass is given. Observations of energy-dependent gravitational lensing with not yet available higher accuracy astrometry instruments may constrain photon mass better.

  4. Polarization modulation instability in photonic crystal fibers.

    PubMed

    Kruhlak, R J; Wong, G K; Chen, J S; Murdoch, S G; Leonhardt, R; Harvey, J D; Joly, N Y; Knight, J C

    2006-05-15

    Polarization modulation instability (PMI) in birefringent photonic crystal fibers has been observed in the normal dispersion regime with a frequency shift of 64 THz between the generated frequencies and the pump frequency. The generated sidebands are orthogonally polarized to the pump. From the observed PMI frequency shift and the measured dispersion, we determined the phase birefringence to be 5.3 x 10(-5) at a pump wavelength of 647.1 nm. This birefringence was used to estimate the PMI gain as a function of pump wavelength. Four-wave mixing experiments in both the normal and the anomalous dispersion regimes generated PMI frequency shifts that show good agreement with the predicted values over a 70 THz range. These results could lead to amplifiers and oscillators based on PMI.

  5. Single-photon sources

    NASA Astrophysics Data System (ADS)

    Lounis, Brahim; Orrit, Michel

    2005-05-01

    The concept of the photon, central to Einstein's explanation of the photoelectric effect, is exactly 100 years old. Yet, while photons have been detected individually for more than 50 years, devices producing individual photons on demand have only appeared in the last few years. New concepts for single-photon sources, or 'photon guns', have originated from recent progress in the optical detection, characterization and manipulation of single quantum objects. Single emitters usually deliver photons one at a time. This so-called antibunching of emitted photons can arise from various mechanisms, but ensures that the probability of obtaining two or more photons at the same time remains negligible. We briefly recall basic concepts in quantum optics and discuss potential applications of single-photon states to optical processing of quantum information: cryptography, computing and communication. A photon gun's properties are significantly improved by coupling it to a resonant cavity mode, either in the Purcell or strong-coupling regimes. We briefly recall early production of single photons with atomic beams, and the operation principles of macroscopic parametric sources, which are used in an overwhelming majority of quantum-optical experiments. We then review the photophysical and spectroscopic properties and compare the advantages and weaknesses of various single nanometre-scale objects used as single-photon sources: atoms or ions in the gas phase and, in condensed matter, organic molecules, defect centres, semiconductor nanocrystals and heterostructures. As new generations of sources are developed, coupling to cavities and nano-fabrication techniques lead to improved characteristics, delivery rates and spectral ranges. Judging from the brisk pace of recent progress, we expect single photons to soon proceed from demonstrations to applications and to bring with them the first practical uses of quantum information.

  6. EDITORIAL: Photonic materials on demand Photonic materials on demand

    NASA Astrophysics Data System (ADS)

    Zheludev, Nikolay; Padilla, Willie J.; Brener, Igal

    2012-11-01

    As David Payne famously said, 'we never have a photonic material that we want...'. This has changed with the proliferation of nanotechnology. Metamaterials—artificial media structured on a sub-wavelength scale—offer a radical paradigm for the engineering of optical properties. Some remarkable advances have been possible with metamaterials. These include, for instance, negative-index media that refract light in the opposite direction from that of conventional materials, chiral materials that rotate the polarization state of light hundreds of thousands of times more strongly than natural optical crystals, and structured thin films with remarkably strong dispersion that can slow light in much the same way as resonant atomic systems with electromagnetically induced transparency. The research agenda is now shifting towards achieving tunable and switchable functionalities with metamaterials [1] where the goal is, paraphrasing Dave Payne, 'to have on demand the photonic material that we want'. The papers in this Journal of Optics special issue explore and review the different approaches to both switching and tuning of metamaterial properties through exploiting effects such as phase conjugation, intense photo-excitation and photoconductivity, the use of electro-optical effects in conductive oxides, the exploitation global quantum coherency and resonantly coupled classical resonator and quantum structures, hybridization with gain media and the manipulation with shapes and constitution of the complex metamolecules and metamaterial reliefs by design, or using MEMS actuation. References [1] Zheludev N I and Kivshar Y 2012 From metamaterials to metadevices Nature Mater.11 917

  7. Phase-space views into dye-microcavity thermalized and condensed photons

    NASA Astrophysics Data System (ADS)

    Marelic, Jakov; Walker, Benjamin T.; Nyman, Robert A.

    2016-12-01

    We have observed momentum- and position-resolved spectra and images of the photoluminescence from thermalized and condensed dye-microcavity photons. The spectra yield the dispersion relation and the potential energy landscape for the photons. From this dispersion relation, below condensation threshold, we find that the effective mass is that of a bare cavity photon, not a polariton. Above threshold, we place an upper bound on the dimensionless two-dimensional interaction strength of g ˜≲10-3 , which is compatible with existing estimates. Both photon-photon and photon-molecule interactions are weak. The temperature is found to be independent of momentum, but dependent on pump spot size, indicating that the system is ergodic but not perfectly at thermal equilibrium. Condensation always happens first in the mode with lowest potential and lowest kinetic energy, although at very high pump powers multimode condensation occurs into other modes.

  8. Photonic quantum well composed of photonic crystal and quasicrystal

    NASA Astrophysics Data System (ADS)

    Xu, Shaohui; Zhu, Yiping; Wang, Lianwei; Yang, Pingxiong; Chu, Paul K.

    2014-02-01

    A photonic quantum well structure composed of photonic crystal and Fibonacci quasicrystal is investigated by analyzing the transmission spectra and electric field distributions. The defect band in the photonic well can form confined quantized photonic states that can change in the band-gap of the photonic barriers by varying the thickness ratio of the two stacking layers. The number of confined states can be tuned by adjusting the period of the photonic well. The photons traverse the photonic quantum well by resonance tunneling and the coupling effect leads to the high transmission intensity of the confined photonic states.

  9. Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media.

    PubMed

    Tho, Ingunn; Liepold, Bernd; Rosenberg, Joerg; Maegerlein, Markus; Brandl, Martin; Fricker, Gert

    2010-04-16

    The objective of the study was to characterise the aqueous dispersions of ritonavir melt extrudates. More specifically to look into the particular system formed when melt extrudate of a poorly soluble drug dissolved in a hydrophilic polymer matrix containing a surfactant is dispersed in an aqueous medium. Melt extrudates with and without ritonavir were studied. The drug containing extrudate was confirmed to be molecular dispersions of drug in a polymer/surfactant matrix. Particulate dispersions were formed in water from both drug and placebo extrudates. The dispersions were investigated with respect to mean particle size and particle size distribution (photon correlation spectroscopy and optical particle counting), surface charge (zeta potential), particle composition (ultracentrifugation), tendency to form aggregates and precipitate (turbidity), in vitro dissolution rate and drug release. It was concluded that dispersion of melt extrudates in aqueous medium give rise to nano/micro-dispersions. The stability of the nano/micro-dispersion is sensitive to anions and may be subjected to association/aggregation/flocculation as time proceeds after preparation of dispersion. Melt extrudate showed improved dissolution rate and drug release properties compared to crystalline raw material. From studies of single components and physical mixtures of the formulation composition it can be concluded that the drug delivery system itself, namely solid dispersion prepared by melt extrusion technology, plays a key role for the formation of the observed particles.

  10. Dispersion management with metamaterials

    DOEpatents

    Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M.

    2017-03-07

    An apparatus, system, and method to counteract group velocity dispersion in fibers, or any other propagation of electromagnetic signals at any wavelength (microwave, terahertz, optical, etc.) in any other medium. A dispersion compensation step or device based on dispersion-engineered metamaterials is included and avoids the need of a long section of specialty fiber or the need for Bragg gratings (which have insertion loss).

  11. Time-domain Fresnel-to-Fraunhofer diffraction with photon echoes.

    PubMed

    Ménager, L; Lorgeré, I; Gouët, J L; Mohan, R K; Kröll, S

    1999-07-15

    A photon echo experiment in Tm(3+):YAG is reported that shows, for the first time to the authors' knowledge, the time-domain equivalent of the transition from near- to far-field diffraction, including Talbot self-imaging effects. The experiment demonstrates the huge dispersion capability of photon echoes and opens the way to further exploration of space-time duality.

  12. Evolution of velocity dispersion along cold collisionless flows

    SciTech Connect

    Banik, Nilanjan; Sikivie, Pierre

    2016-05-01

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results are used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components.

  13. Evolution of velocity dispersion along cold collisionless flows

    DOE PAGES

    Banik, Nilanjan; Sikivie, Pierre

    2016-05-01

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results aremore » used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components.« less

  14. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  15. Photonically engineered incandescent emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  16. Photonic Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Merritt, Scott; Krainak, Michael

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  17. Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color

    NASA Astrophysics Data System (ADS)

    Dellinger, Jean; Van Do, K.; Le Roux, Xavier; de Fornel, Frédérique; Cassan, Eric; Cluzel, Benoît

    2012-10-01

    Using a scanning near-field optical microscope operating with a hyperspectral detection scheme, we report the direct observation of the mirage effect within an on-chip integrated artificial material made of a two dimensional graded photonic crystal. The light rainbow due to the material dispersion is quantified experimentally and quantitatively compared to three dimensional plane wave assisted Hamiltonian optics predictions of light propagation.

  18. Quantum frequency translation of single-photon states in a photonic crystal fiber.

    PubMed

    McGuinness, H J; Raymer, M G; McKinstrie, C J; Radic, S

    2010-08-27

    We experimentally demonstrate frequency translation of a nonclassical optical field via four-wave mixing (Bragg-scattering process) in a photonic crystal fiber (PCF). The high nonlinearity and the ability to control dispersion in PCF enable efficient translation between nearby photon channels within the visible to-near-infrared spectral range, useful in quantum networks. Heralded single photons at 683 nm were translated to 659 nm with an efficiency of 28.6±2.2 percent. Second-order correlation measurements on the 683- and 659-nm fields yielded g(683)(2) (0)=0.21±0.02 and g(659)(2) (0)=0.19±0.05, respectively, showing the nonclassical nature of both fields.

  19. Resonances in photon-photon scattering

    SciTech Connect

    Chanowitz, M.S.

    1984-11-01

    A quantity called stickiness is introduced which should be largest for J not equal to 0 glueballs and can be measured in two photon scattering and radiative J/psi decay. An argument is reviewed suggesting that light J = 0 glueballs may have large couplings to two photons. The analysis of radiative decays of eta and eta' is reviewed and a plea made to desist from false claims that they are related to GAMMA(..pi../sup 0/ ..-->.. ..gamma gamma..) by SU(3) symmetry. It is shown that two photon studies can refute the difficult-to-refute hypothesis that xi(2220) or zeta(8320) are Higgs bosons. A gallery of rogue resonances and resonance candidates is presented which would usefully be studied in ..gamma gamma.. scattering, including especially the low mass dipion. 34 references.

  20. Formation of collimated beams behind the woodpile photonic crystal

    SciTech Connect

    Trull, J.; Maigyte, L.; Cojocaru, C.; Mizeikis, V.; Malinauskas, M.; Rutkauskas, M.; Peckus, M.; Sirutkaitis, V.; Juodkazis, S.; Staliunas, K.

    2011-09-15

    We experimentally observe formation of narrow laser beams behind the woodpile photonic crystal, when the beam remains well collimated in free propagation behind the crystal. We show that the collimation depends on the input laser beam's focusing conditions, and we interpret theoretically the observed effect by calculating the spatial dispersion of propagation eigenmodes and by numerical simulation of paraxial propagation model.

  1. Three-photon interactions and spin exchange in a quantum nonlinear medium

    NASA Astrophysics Data System (ADS)

    Cantu, Sergio; Liang, Qi-Yu; Thompson, Jeff; Nicholson, Travis; Venkatramani, Aditya; Gullans, Michael; Gorshkov, Alexey; Choi, Soonwon; Lukin, Mikhail; Vuletic, Vladan

    2016-05-01

    Robust quantum gates for photonic qubits are a longstanding goal of quantum information science. One promising approach to achieve this goal requires strong nonlinear interactions between single photons, which is impossible with conventional optical media. We realize these interactions with electromagnetically induced transparency (EIT), and strongly interacting Rydberg states to mediate strong interactions between photons. Operating in the dispersive regime of EIT, we have recently shown that two photons propagating in our system can bind into a photonic molecule. Extending these two-photon experiments to many-body physics would lead to exotic phenomena like photon crystallization. To that end, we have scaled up our two-photon measurements to three-photon experiments. We are now able to discern signatures of three-photon molecules from a variety of two- and three-photon interactions. Three-photon bound states manifest as an increase in photon bunching in g (3) correlation measurements. We also present a recent observation of coherent spin exchange interactions in Rydberg EIT.

  2. Photonic Quantum Metrologies Using Photons: Phase Super-sensitivity and Entanglement-Enhanced Imaging

    NASA Astrophysics Data System (ADS)

    Takeuchi, Shigeki

    Quantum information science has been attracting significant attention recently. It harnesses the intrinsic nature of quantum mechanics such as quantum superposition, the uncertainty principle, and quantum entanglement to realize novel functions. Recently, quantum metrology has been emerging as an application of quantum information science. Among the many physical quanta, photons are an indispensable tool for metrology, as light-based measurements are applicable to fields ranging from astronomy to life science. In quantum metrology, quantum entanglement between photons is the phenomenon utilized.In this chapter, we will try to give a brief overview of this emerging field mainly focusing on two topics: Optical phase measurements beyond the standard quantum limit (SQL) and quantum optical coherence tomography (QOCT). The sensitivity of an optical phase measurement for a given photon number N is usually limited by N sqrt{N} , which is called the SQL or shot noise limit. However, the SQL can be overcome when non-classical light is used. We explain the basic concepts and the recent experimental results that exceed the SQL, and an application of this technology for microscopy. QOCT harnesses the quantum entanglement of photons in frequency to cancel out the dispersion effect, which degrades the resolution of conventional OCT. The mechanism of the dispersion cancellation and the latest experimental results will be given.

  3. Dispersal of forest insects

    NASA Technical Reports Server (NTRS)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  4. Visualizing Dispersion Interactions

    ERIC Educational Resources Information Center

    Gottschalk, Elinor; Venkataraman, Bhawani

    2014-01-01

    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…

  5. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  6. Seed dispersal in fens

    USGS Publications Warehouse

    Middleton, B.; Van Diggelen, R.; Jensen, K.

    2006-01-01

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. ?? IAVS; Opulus Press.

  7. Spores Disperse, Too!

    ERIC Educational Resources Information Center

    Schumann, Donna N.

    1981-01-01

    Suggests the use of spores and spore-producing structures to show adaptations facilitating spore dispersal and dispersal to favorable environments. Describes several activities using horsetails, ferns, and mosses. Lists five safety factors related to use of mold spores in the classroom. (DS)

  8. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser

    SciTech Connect

    Zhang, Z.; Popa, D. Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C.; Ilday, F. Ö.

    2015-12-14

    We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.

  9. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Popa, D.; Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C.; Ilday, F. Ö.

    2015-12-01

    We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.

  10. Photon mass limits from fast radio bursts

    NASA Astrophysics Data System (ADS)

    Bonetti, Luca; Ellis, John; Mavromatos, Nikolaos E.; Sakharov, Alexander S.; Sarkisyan-Grinbaum, Edward K.; Spallicci, Alessandro D. A. M.

    2016-06-01

    The frequency-dependent time delays in fast radio bursts (FRBs) can be used to constrain the photon mass, if the FRB redshifts are known, but the similarity between the frequency dependences of dispersion due to plasma effects and a photon mass complicates the derivation of a limit on mγ. The dispersion measure (DM) of FRB 150418 is known to ∼ 0.1%, and there is a claim to have measured its redshift with an accuracy of ∼ 2%, but the strength of the constraint on mγ is limited by uncertainties in the modelling of the host galaxy and the Milky Way, as well as possible inhomogeneities in the intergalactic medium (IGM). Allowing for these uncertainties, the recent data on FRB 150418 indicate that mγ ≲ 1.8 ×10-14 eVc-2 (3.2 ×10-50 kg), if FRB 150418 indeed has a redshift z = 0.492 as initially reported. In the future, the different redshift dependences of the plasma and photon mass contributions to DM can be used to improve the sensitivity to mγ if more FRB redshifts are measured. For a fixed fractional uncertainty in the extra-galactic contribution to the DM of an FRB, one with a lower redshift would provide greater sensitivity to mγ.

  11. Photonic band gap enhancement in frequency-dependent dielectrics.

    PubMed

    Toader, Ovidiu; John, Sajeev

    2004-10-01

    We illustrate a general technique for evaluating photonic band structures in periodic d -dimensional microstructures in which the dielectric constant epsilon (omega) exhibits rapid variations with frequency omega . This technique involves the evaluation of generalized electromagnetic dispersion surfaces omega ( k--> ,epsilon) in a (d+1) -dimensional space consisting of the physical d -dimensional space of wave vectors k--> and an additional dimension defined by the continuous, independent, variable epsilon . The physical band structure for the photonic crystal is obtained by evaluating the intersection of the generalized dispersion surfaces with the "cutting surface" defined by the function epsilon (omega) . We apply this method to evaluate the band structure of both two- and three-dimensional (3D) periodic microstructures. We consider metallic photonic crystals with free carriers described by a simple Drude conductivity and verify the occurrence of electromagnetic pass bands below the plasma frequency of the bulk metal. We also evaluate the shift of the photonic band structure caused by free carrier injection into semiconductor-based photonic crystals. We apply our method to two models in which epsilon (omega) describes a resonant radiation-matter interaction. In the first model, we consider the addition of independent, resonant oscillators to a photonic crystal with an otherwise frequency-independent dielectric constant. We demonstrate that for an inhomogeneously broadened distribution of resonators impregnated within an inverse opal structure, the full 3D photonic band gap (PBG) can be considerably enhanced. In the second model, we consider a coupled resonant oscillator mode in a photonic crystal. When this mode is an optical phonon, there can be a synergetic interplay between the polaritonic resonance and the geometrical scattering resonances of the structured dielectric, leading to PBG enhancement. A similar effect may arise when resonant atoms that are

  12. Photonic compressive sensing for analog-to-information conversion with a delay-line based microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Zhu, Zhijing; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin

    2016-07-01

    Compressive sensing (CS) in the photonic domain is highly promising for analog-to-information conversion of sparse signals due to its potential capability of high input bandwidth and digitization with sub-Nyquist sampling. In this paper, we suggest that the concept of delay-line based microwave photonic filter be used in photonic CS to realize the low-pass filtering (LPF) function which is required in CS. A microwave photonic filter (MPF) with a dispersive element and fiber delay lines is applied in photonic CS to achieve better performance and flexibility. In the approach, the input radio-frequency signal and the pseudorandom bit sequence (PRBS) are modulated on a multi-wavelength optical carrier and propagate through a dispersive element. The modulated optical signal is split into multiple channels with tunable delay lines. The multiple wavelengths, dispersive element and multiple channels constitute a reconfigurable low-pass microwave filter. Experiment and simulations are presented to demonstrate the feasibility and potentials of this approach.

  13. Photonic layered media

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  14. Exponential Localization of Photons

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo

    1998-06-01

    It is shown that photons can be localized in space with an exponential falloff of the energy density and photodetection rates. The limits of localization are determined by the fundamental Paley-Wiener theorem. A direct mathematical connection between the spatial localization of photons and the decay in time of quantum mechanical systems is established.

  15. Photon beam position monitor

    DOEpatents

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  16. Photon beam position monitor

    DOEpatents

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  17. Three-dimensional periodic dielectric structures having photonic Dirac points

    SciTech Connect

    Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin

    2015-06-02

    The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.

  18. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  19. Nonlinear Photonics 2014: introduction.

    PubMed

    Akhmediev, N; Kartashov, Yaroslav

    2015-01-12

    International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.

  20. A novel photonic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1995-01-01

    We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.

  1. Effective photons in weakly absorptive dielectric media and the Beer-Lambert-Bouguer law

    NASA Astrophysics Data System (ADS)

    Judge, A. C.; Brownless, J. S.; Bhat, N. A. R.; Sipe, J. E.; Steel, M. J.; de Sterke, C. Martijn

    2014-04-01

    We derive effective photon modes that facilitate an intuitive and convenient picture of photon dynamics in a structured Kramers-Kronig dielectric in the limit of weak absorption. Each mode is associated with a mode field distribution that includes the effects of both material and structural dispersion, and an effective line-width that determines the temporal decay rate of the photon. These results are then applied to obtain an expression for the Beer-Lambert-Bouguer law absorption coefficient for unidirectional propagation in structured media consisting of dispersive, weakly absorptive dielectric materials.

  2. Roadmap on silicon photonics

    NASA Astrophysics Data System (ADS)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  3. Silicon Photonic Devices and Their Applications

    NASA Astrophysics Data System (ADS)

    Li, Ying

    Silicon photonics is the study and application of photonic systems, which use silicon as an optical medium. Data is transferred in the systems by optical rays. This technology is seen as the substitutions of electric computer chips in the future and the means to keep tack on the Moore's law. Cavity optomechanics is a rising field of silicon photonics. It focuses on the interaction between light and mechanical objects. Although it is currently at its early stage of growth, this field has attracted rising attention. Here, we present highly sensitive optical detection of acceleration using an optomechanical accelerometer. The core part of this accelerometer is a slot-type photonic crystal cavity with strong optomechanical interactions. We first discuss theoretically the optomechanical coupling in the air-slot mode-gap photonic crystal cavity. The dispersive coupling gom is numerically calculated. Dynamical parametric oscillations for both cooling and amplification, in the resolved and unresolved sideband limit, are examined numerically, along with the displacement spectral density and cooling rates for the various operating parameters. Experimental results also demonstrated that the cavity has a large optomechanical coupling rate. The optically induced spring effect, damping and amplification of the mechanical modes are observed with measurements both in air and in vacuum. Then, we propose and demonstrate our optomechanical accelerometer. It can operate with a resolution of 730 ng/Hz1/2 (or equivalently 40.1 aN/Hz1/2) and with a transduction bandwidth of ≈ 85 kHz. We also demonstrate an integrated photonics device, an on-chip spectroscopy, in the last part of this thesis. This new type of on-chip microspectrometer is based on the Vernier effect of two cascaded micro-ring cavities. It can measure optical spectrum with a bandwidth of 74nm and a resolution of 0.22 nm in a small footprint of 1.5 mm2.

  4. Photonic Crystal Fiber Based Entangled Photon Sources

    DTIC Science & Technology

    2014-03-01

    at 77K. The HNLF in plastic buffer coating is cooled to 77K by immersing it into a liquid nitrogen filled Dewar. Advancement of photons arrival...collected by using fiber-to-free space coupler (NA=0.25), which is placed closely right after the PBS. The multiple scattering random media is

  5. Band gap characterization and slow light effects in periodic and quasiperiodic one dimensional photonic crystal

    NASA Astrophysics Data System (ADS)

    Zaghdoudi, J.; Kuszelewicz, R.; Kanzari, M.; Rezig, B.

    2008-04-01

    Slow light offers many opportunities for photonic devices by increasing the effective interaction length of imposed refractive index changes. The slow wave effect in photonic crystals is based on their unique dispersive properties and thus entirely dielectric in nature. In this work we demonstrate an interesting opportunity to decrease drastically the group velocity of light in one-dimensional photonic crystals constructed form materials with large dielectric constant without dispersion). We use numerical analysis to study the photonic properties of periodic (Bragg mirror) and quasiperiodic one dimensional photonic crystals realized to engineer slow light effects. Various geometries of the photonic pattern have been characterized and their photonic band-gap structure analyzed. Indeed, one dimensional quasi periodic photonic multilayer structure based on Fibonacci, Thue-Morse, and Cantor sequences were studied. Quasiperiodic structures have a rich and highly fragmented reflectivity spectrum with many sharp resonant peaks that could be exploited in a microcavity system. A comparison of group velocity through periodic and quasiperiodic photonic crystals was discussed in the context of slow light propagation. The velocity control of pulses in materials is one of the promising applications of photonic crystals. The material systems used for the numerical analysis are TiO II/SiO II and Te/SiO II which have a refractive index contrast of approximately 1.59 and 3.17 respectively. The proposed structures were modelled using the Transfer Matrix Method.

  6. Rates of Gravel Dispersion

    NASA Astrophysics Data System (ADS)

    Haschenburger, J. K.

    2010-12-01

    Sediment transfers in gravel-bed rivers involve the three-dimensional dispersion of mixed size sediment. From a kinematics standpoint, few studies are available to inform on the streamwise and vertical rates of sediment dispersion in natural channels. This research uses a gravel tracing program to quantify dispersion rates over 19 flood seasons. Empirical observations come from Carnation Creek, a small gravel-bed river with large woody debris located on the west coast of Vancouver Island, Canada. Frequent floods and the relatively limited armor layer facilitate streambed activity and relatively high bedload transport rates, typically under partial sediment transport conditions. Over 2500 magnetically tagged stones, ranging in size from 16 to 180 mm, were deployed on the bed surface between 1989 and 1992 in four generations. To quantify gravel dispersion over distances up to 2.6 km, observations are taken from 11 recoveries. Over 280 floods capable of moving bedload occurred during this period, with five exceeding the estimated bankfull discharge. Streamwise dispersion is quantified by virtual velocity, while dispersion into the streambed is quantified by a vertical burial rate. The temporal trend in streamwise dispersion rates is described by a power function. Initial virtual velocities decline rapidly from around 1.4 m/hr to approach an asymptote value of about 0.2 m/hr. The rapid change corresponds to a significant increase in the proportion of buried tracers due to vertical mixing. Initial burial rates reflect the magnitude of the first flood after tracer deployment and range from 0.07 to 0.46 cm/hr depending on tracer generation. Burial rates converge to about 0.06 cm/hr after the fourth flood season and then gradually decline to about 0.01 cm/hr. Thus, the rate of streamwise dispersion exceeds that of vertical dispersion by three orders of magnitude when the movement of sediment routinely activated by floods is considered.

  7. Soliton rains in a normal dispersion fiber laser with dual-filter.

    PubMed

    Bao, Chengying; Xiao, Xiaosheng; Yang, Changxi

    2013-06-01

    We demonstrate an experimental observation of soliton rains in an all normal dispersion Yb-fiber laser. The cavity consists of a narrow bandwidth filter and a birefringent plate (BP) filter. Soliton rain is obtained in the weak mode-locking regime, while multisolitons behaving as soliton bunches and harmonic mode-locking under strong mode-locking are also observed. Distinctive multisoliton interactions are observed via changing the pump power and adjustment of the waveplates as well as the BP. To the best of our knowledge, this is the first demonstration of soliton rains in normal dispersion fiber lasers.

  8. Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers.

    PubMed

    Liu, Xueming

    2009-06-08

    Dissipative soliton (DS) evolution in passively mode-locked fiber lasers with ultra-large net-normal-dispersion (as large as 1 ps(2)) is investigated. The proposed DS laser operates on three statuses with respect to the pump power. The DS laser works on a status that is similar to an all-normal-dispersion laser when the pump power is low, whereas it creates a new type of pulses exhibited as the trapezoid-spectrum profile when the pump power is large. The laser cavity emits the unstable pulses between the above two statuses. The cubic-quintic Ginzburg-Landau equation can serve to qualitatively explain our experimental observations.

  9. Effective medium theory of photonic crystals

    NASA Astrophysics Data System (ADS)

    Lu, W. T.; Zhang, S.; Huang, Y. J.; Sridhar, S.

    2008-03-01

    We develop an effective medium theory for photonic crystals including negative index metamaterials. This theory is based on field summation within the unit cell. The unit cell is determined by the surface termination. The orientation of the surface breaks the field summation symmetry. This theory is self-consistent. The effective permittivity and permeability tensors will give the exact dispersion relation obtained from the band structure calculation. For waves incident into multilayered structures, our theory gives exact transmittance and reflectance for any wavelengths. For interface with periodic surface structures, our theory gives very accurate results for wavelength down to being comparable with the lattice spacing. By properly taking into account the multiple Bloch modes inside the photonic crystal, our theory can be made to give exact Bragg coefficients.

  10. Direct Photons at RHIC

    SciTech Connect

    Gabor,D.

    2008-07-29

    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum (p{sub T}) range. The p+p measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high p{sub T} direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring 'almost real' virtual photons which appear as low invariant mass e{sup +}e{sup -} pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data.

  11. Density of photonic states in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Dolganov, P. V.

    2015-04-01

    Density of photonic states ρ (ω ) , group vg, and phase vph velocity of light, and the dispersion relation between wave vector k , and frequency ω (k ) were determined in a cholesteric photonic crystal. A highly sensitive method (measurement of rotation of the plane of polarization of light) was used to determine ρ (ω ) in samples of different quality. In high-quality samples a drastic increase in ρ (ω ) near the boundaries of the stop band and oscillations related to Pendellösung beatings are observed. In low-quality samples photonic properties are strongly modified. The maximal value of ρ (ω ) is substantially smaller, and density of photonic states increases near the selective reflection band without oscillations in ρ (ω ) . Peculiarities of ρ (ω ) , vg, and ω (k ) are discussed. Comparison of the experimental results with theory was performed.

  12. Generation of correlated photons in nanoscale silicon waveguides

    NASA Astrophysics Data System (ADS)

    Sharping, Jay E.; Lee, Kim F.; Foster, Mark A.; Turner, Amy C.; Schmidt, Bradley S.; Lipson, Michal; Gaeta, Alexander L.; Kumar, Prem

    2006-12-01

    .We experimentally study the generation of correlated pairs of photons through four-wave mixing (FWM) in embedded silicon waveguides. The waveguides, which are designed to exhibit anomalous group-velocity dispersion at wavelengths near 1555 nm, allow phase matched FWM and thus efficient pair-wise generation of non-degenerate signal and idler photons. Photon counting measurements yield a coincidence-to-accidental ratio (CAR) of around 25 for a signal (idler) photon production rate of about 0.05 per pulse. We characterize the variation in CAR as a function of pump power and pump-to-sideband wavelength detuning. These measurements represent a first step towards the development of tools for quantum information processing which are based on CMOS-compatible, silicon-on-insulator technology.

  13. Quantum-electrodynamical parametric instability in the incoherent photon gas.

    PubMed

    Wang, Yunliang; Shukla, P K; Eliasson, B

    2013-02-01

    We present a theory for the quantum-electrodynamical (QED) parametric scattering instability of an intense photon pulse in an incoherent radiation background. The pump electromagnetic (EM) wave can decay into a scattered daughter EM wave and an acousticlike wave due to the QED vacuum polarization nonlinearity. By a linear instability analysis we obtain a nonlinear dispersion relation for the growth rate of the scattering instability. The nonlinear QED scattering instability can give rise to the exchange of orbital angular momentum between intense Laguerre-Gaussian mode photon pulses and the two daughter waves, which may be a useful method to detect the highly energetic photon gases existing in the vicinity of rotating dense bodies in the Universe, such as pulsars and magnetars. The observation of the scattered waves may reveal information about the twisted acoustic waves in the incoherent photon gas.

  14. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  15. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  16. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  17. Photonics: Technology project summary

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  18. Integrated photonics research, 1993

    NASA Astrophysics Data System (ADS)

    Silberberg, Yaron

    1994-06-01

    Summaries of papers from the Integrated Photonics Research Topical Meeting, March 22-24, 1993, in Palm Springs, California are presented. Sessions include Novel Material and Devices, Time Domain Methods, Photonic Circuits and Lightwave Reception, III-V Semiconductor Switches and Modulators, Wavelength Selective Components, Optical Waveguide Simulators, Optical Switching, Silica on Silicon, Nonlinear Wave Propagation, Semiconductor Lasers, LiNbO3 and LiTaO3 Devices, Beam Propagation Methods, Photonic Integrated Circuits and Applications, Semiconductor Device Modeling, Waveguide Frequency Conversion, and Spatial and Temporal Solitons.

  19. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  20. Ultratransparent Media and Transformation Optics with Shifted Spatial Dispersions

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Yang, Yuting; Yao, Zhongqi; Lu, Weixin; Hou, Bo; Hang, Zhi Hong; Chan, C. T.; Lai, Yun

    2016-11-01

    By using pure dielectric photonic crystals, we demonstrate the realization of ultratransparent media, which allow near 100% transmission of light for all incident angles and create aberration-free virtual images. The ultratransparency effect is well explained by spatially dispersive effective medium theory for photonic crystals, and verified by both simulations and proof-of-principle microwave experiments. Designed with shifted elliptical equal frequency contours, such ultratransparent media not only provide a low-loss and feasible platform for transformation optics devices at optical frequencies, but also enable new freedom for phase manipulation beyond the local medium framework.

  1. Ultratransparent Media and Transformation Optics with Shifted Spatial Dispersions.

    PubMed

    Luo, Jie; Yang, Yuting; Yao, Zhongqi; Lu, Weixin; Hou, Bo; Hang, Zhi Hong; Chan, C T; Lai, Yun

    2016-11-25

    By using pure dielectric photonic crystals, we demonstrate the realization of ultratransparent media, which allow near 100% transmission of light for all incident angles and create aberration-free virtual images. The ultratransparency effect is well explained by spatially dispersive effective medium theory for photonic crystals, and verified by both simulations and proof-of-principle microwave experiments. Designed with shifted elliptical equal frequency contours, such ultratransparent media not only provide a low-loss and feasible platform for transformation optics devices at optical frequencies, but also enable new freedom for phase manipulation beyond the local medium framework.

  2. Effect of polarization entanglement in photon-photon scattering

    NASA Astrophysics Data System (ADS)

    Rätzel, Dennis; Wilkens, Martin; Menzel, Ralf

    2017-01-01

    It is found that the differential cross section of photon-photon scattering is a function of the degree of polarization entanglement of the two-photon state. A reduced general expression for the differential cross section of photon-photon scattering is derived by applying simple symmetry arguments. An explicit expression is obtained for the example of photon-photon scattering due to virtual electron-positron pairs in quantum electrodynamics. It is shown how the effect in this explicit example can be explained as an effect of quantum interference and that it fits with the idea of distance-dependent forces.

  3. Fickian dispersion is anomalous

    DOE PAGES

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less

  4. Fickian dispersion is anomalous

    SciTech Connect

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  5. Fickian dispersion is anomalous

    NASA Astrophysics Data System (ADS)

    Cushman, John H.; O'Malley, Dan

    2015-12-01

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  6. Microwave background constraints on mixing of photons with hidden photons

    SciTech Connect

    Mirizzi, Alessandro; Redondo, Javier; Sigl, Guenter E-mail: javier.redondo@desy.de

    2009-03-15

    Various extensions of the Standard Model predict the existence of hidden photons kinetically mixing with the ordinary photon. This mixing leads to oscillations between photons and hidden photons, analogous to the observed oscillations between different neutrino flavors. In this context, we derive new bounds on the photon-hidden photon mixing parameters using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of the Cosmic Background Explorer. Requiring the distortions of the CMB induced by the photon-hidden photon mixing to be smaller than experimental upper limits, this leads to a bound on the mixing angle {chi}{sub 0} {approx}< 10{sup -7}-10{sup -5} for hidden photon masses between 10{sup -14} eV and 10{sup -7} eV. This low-mass and low-mixing region of the hidden photon parameter space was previously unconstrained.

  7. Optical dispersion of composite particles consisting of millicharged constituents

    NASA Astrophysics Data System (ADS)

    Kvam, Audrey K.; Latimer, David C.

    2016-08-01

    Composite dark matter (DM) comprised of electrically charged constituents can interact with the electromagnetic field via the particle's dipole moment. This interaction results in a dispersive optical index of refraction for the DM medium. We compute this refractive index for atomic DM and more strongly bound systems, modeled via a harmonic oscillator potential. The dispersive nature of the index will result in a time lag between high and low energy photons simultaneously emitted from a distant astrophysical observable. This time lag, due to matter dispersion, could confound potential claims of Lorentz invariance violation (LIV) which can also result in such time lags. We compare the relative size of the two effects and determine that the dispersion due to DM is dwarfed by potential LIV effects for energies below the Planck scale.

  8. Parametric down-conversion with optimized spectral properties in nonlinear photonic crystals

    SciTech Connect

    Corona, Maria; U'Ren, Alfred B.

    2007-10-15

    We study the joint spectral properties of photon pairs generated by spontaneous parametric down-conversion in a one-dimensional nonlinear photonic crystal in a collinear, degenerate, type-II geometry. We show that the photonic crystal properties may be exploited to compensate for material dispersion and obtain photon pairs that are nearly factorable, in principle, for arbitrary materials and spectral regions, limited by the ability to fabricate the nonlinear crystal with the required periodic variation in the refractive indices for the ordinary and extraordinary waves.

  9. Exotic radiation from a photonic crystal excited by an ultrarelativistic electron beam.

    PubMed

    Horiuchi, N; Ochiai, T; Inoue, J; Segawa, Y; Shibata, Y; Ishi, K; Kondo, Y; Kanbe, M; Miyazaki, H; Hinode, F; Yamaguti, S; Ohtaka, K

    2006-11-01

    We report the observation of an exotic radiation (unconventional Smith-Purcell radiation) from a one-dimensional photonic crystal. The physical origin of the exotic radiation is direct excitation of the photonic bands by an ultrarelativistic electron beam. The spectrum of the exotic radiation follows photonic bands of a certain parity, in striking contrast to the conventional Smith-Purcell radiation, which shows solely a linear dispersion. Key ingredients for the observation are the facts that the electron beam is in an ultrarelativistic region and that the photonic crystal is finite. The origin of the radiation was identified by comparison of experimental and theoretical results.

  10. Analysis of plasma-magnetic photonic crystal with a tunable band gap

    SciTech Connect

    Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A.

    2013-04-15

    In this paper, electromagnetic wave propagation through the one-dimensional plasma-magnetic photonic crystal in the presence of external magnetic field has been analyzed. The dispersion relation, transmission and reflection coefficients have been obtained by using the transfer matrix method. It is investigated how photonic band gap of photonic crystals will be tuned when both dielectric function {epsilon} and magnetic permeability {mu} of the constitutive materials, depend on applied magnetic field. This is shown by one dimensional photonic crystals consisting of plasma and ferrite material layers stacked alternately.

  11. Simultaneous multi-frequency topological edge modes between one-dimensional photonic crystals.

    PubMed

    Choi, Ka Hei; Ling, C W; Lee, K F; Tsang, Y H; Fung, Kin Hung

    2016-04-01

    We show theoretically that, in the limit of weak dispersion, one-dimensional binary centrosymmetric photonic crystals can support topological edge modes in all photonic bandgaps. By analyzing their bulk band topology, these "harmonic" topological edge modes can be designed in a way that they exist at all photonic bandgaps opened at the center of the Brillouin zone, at all gaps opened at the zone boundaries, or both. The results may suggest a new approach to achieve robust multi-frequency coupled modes for applications in nonlinear photonics, such as frequency upconversion.

  12. New results for a photon-photon collider

    SciTech Connect

    David Asner et al.

    2002-09-26

    We present new results from studies in progress on physics at a two-photon collider. We report on the sensitivity to top squark parameters of MSSM Higgs boson production in two-photon collisions; Higgs boson decay to two photons; radion production in models of warped extra dimensions; chargino pair production; sensitivity to the trilinear Higgs boson coupling; charged Higgs boson pair production; and we discuss the backgrounds produced by resolved photon-photon interactions.

  13. Smart packaging for photonics

    SciTech Connect

    Smith, J.H.; Carson, R.F.; Sullivan, C.T.; McClellan, G.; Palmer, D.W.

    1997-09-01

    Unlike silicon microelectronics, photonics packaging has proven to be low yield and expensive. One approach to make photonics packaging practical for low cost applications is the use of {open_quotes}smart{close_quotes} packages. {open_quotes}Smart{close_quotes} in this context means the ability of the package to actuate a mechanical change based on either a measurement taken by the package itself or by an input signal based on an external measurement. One avenue of smart photonics packaging, the use of polysilicon micromechanical devices integrated with photonic waveguides, was investigated in this research (LDRD 3505.340). The integration of optical components with polysilicon surface micromechanical actuation mechanisms shows significant promise for signal switching, fiber alignment, and optical sensing applications. The optical and stress properties of the oxides and nitrides considered for optical waveguides and how they are integrated with micromechanical devices were investigated.

  14. Highly Effective Light Beam Diffraction on Holographic PDLC Photonic Structure, Controllable by the Spatially Inhomogeneous Electric Field

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    In this work the highly effiective light beam diffraction on holographic photonic structure formed in polymer-dispersed liquid crystal (PDLCs) is theoretically described. The ability to manage its diffraction characteristics by the spatially inhomogeneous electric field is also shown.

  15. Photonics Explorer: revolutionizing photonics in the classroom

    NASA Astrophysics Data System (ADS)

    Prasad, Amrita; Debaes, Nathalie; Cords, Nina; Fischer, Robert; Vlekken, Johan; Euler, Manfred; Thienpont, Hugo

    2012-10-01

    The `Photonics Explorer' is a unique intra-curricular optics kit designed to engage, excite and educate secondary school students about the fascination of working with light - hands-on, in their own classrooms. Developed with a pan European collaboration of experts, the kit equips teachers with class sets of experimental material provided within a supporting didactic framework, distributed in conjunction with teacher training courses. The material has been specifically designed to integrate into European science curricula. Each kit contains robust and versatile components sufficient for a class of 25-30 students to work in groups of 2-3. The didactic content is based on guided inquiry-based learning (IBL) techniques with a strong emphasis on hands-on experiments, team work and relating abstract concepts to real world applications. The content has been developed in conjunction with over 30 teachers and experts in pedagogy to ensure high quality and ease of integration. It is currently available in 7 European languages. The Photonics Explorer allows students not only to hone their essential scientific skills but also to really work as scientists and engineers in the classroom. Thus, it aims to encourage more young people to pursue scientific careers and avert the imminent lack of scientific workforce in Europe. 50 Photonics Explorer kits have been successfully tested in 7 European countries with over 1500 secondary school students. The positive impact of the kit in the classroom has been qualitatively and quantitatively evaluated. A non-profit organisation, EYESTvzw [Excite Youth for Engineering Science and Technology], is responsible for the large scale distribution of the Photonics Explorer.

  16. Photonic Crystal Fibers

    DTIC Science & Technology

    2005-12-01

    passive and active versions of each fiber designed under this task. Crystal Fibre shall provide characteristics of the fiber fabricated to include core...passive version of multicore fiber iteration 2. 15. SUBJECT TERMS EOARD, Laser physics, Fibre Lasers, Photonic Crystal, Multicore, Fiber Laser 16...9 00* 0 " CRYSTAL FIBRE INT ODUCTION This report describes the photonic crystal fibers developed under agreement No FA8655-o5-a- 3046. All

  17. Happy centenary, photon

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton; Weihs, Gregor; Jennewein, Thomas; Aspelmeyer, Markus

    2005-01-01

    One hundred years ago Albert Einstein introduced the concept of the photon. Although in the early years after 1905 the evidence for the quantum nature of light was not compelling, modern experiments - especially those using photon pairs - have beautifully confirmed its corpuscular character. Research on the quantum properties of light (quantum optics) triggered the evolution of the whole field of quantum information processing, which now promises new technology, such as quantum cryptography and even quantum computers.

  18. Ultrastable Multigigahertz Photonic Oscillator

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T., Jr.

    1996-01-01

    Novel photonic oscillator developed to serve as ultrastable source of microwave and millimeter-wave signals. In system, oscillations generated photonically, then converted to electronic form. Includes self-mode-locked semiconductor laser producing stream of pulses, detected and fed back to laser as input. System also includes fiber-optic-delay-line discriminator, which detects fluctuations of self-mode-locking frequency and generates error signal used in negative-feedback loop to stabilize pulse-repetition frequency.

  19. Photonic quantum technologies

    NASA Astrophysics Data System (ADS)

    O'Brien, Jeremy

    2013-03-01

    Of the approaches to quantum computing, photons are appealing for their low-noise properties and ease of manipulation, and relevance to other quantum technologies, including communication, metrology and measurement. We report an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability [6-10]. We address the challenges of scaling up quantum circuits using new insights into how controlled operations can be efficiently realised, demonstrating Shor's algorithm with consecutive CNOT gates and the iterative phase estimation algorithm. We have shown how quantum circuits can be reconfigured, using thermo-optic phase shifters to realise a highly reconfigurable quantum circuit, and electro-optic phase shifters in lithium niobate to rapidly manipulate the path and polarisation of telecomm wavelength single photons. We have addressed miniaturisation using multimode interference architectures to directly implement NxN Hadamard operations, and by using high refractive index contrast materials such as SiOxNy, in which we have implemented quantum walks of correlated photons, and Si, in which we have demonstrated generation of orbital angular momentum states of light. We have incorporated microfluidic channels for the delivery of samples to measure the concentration of a blood protein with entangled states of light. We have begun to address the integration of superconducting single photon detectors and diamond and non-linear single photon sources. Finally, we give an overview of recent work on fundamental aspects of quantum measurement, including a quantum version of Wheeler's delayed choice experiment.

  20. Virtual and real photons

    NASA Astrophysics Data System (ADS)

    Meulenberg, Andrew, Jr.

    2011-09-01

    Maxwell did not believe in photons. However, his equations lead to electro-magnetic field structures that are considered to be photonic by Quantum ElectroDynamics (QED). They are complete, relativistically correct, and unchallenged after nearly 150 years. However, even though his far-field solution has been considered as the basis for photons, as they stand and are interpreted, they are better fitted to the concept of virtual rather than to real photons. Comparison between staticcharge fields, near-field coupling, and photonic radiation will be made and the distinctions identified. The question of similarities in, and differences between, the two will be addressed. Implied assumptions in Feynman's "Lectures" could lead one to believe that he had provided a general classical electrodynamics proof that an orbital electron must radiate. While his derivation is correct, two of the conditions defined do not always apply in this case. As a result, the potential for misinterpretation of his proof (as he himself did earlier) for this particular case has some interesting implications. He did not make the distinction between radiation from a bound electron driven by an external alternating field and one falling in a nuclear potential. Similar failures lead to misinterpreting the differences between virtual and real photons.

  1. Photonic band structure

    SciTech Connect

    Yablonovitch, E.

    1993-05-01

    We learned how to create 3-dimensionally periodic dielectric structures which are to photon waves, as semiconductor crystals are to electron waves. That is, these photonic crystals have a photonic bandgap, a band of frequencies in which electromagnetic waves are forbidden, irrespective of propagation direction in space. Photonic bandgaps provide for spontaneous emission inhibition and allow for a new class of electromagnetic micro-cavities. If the perfect 3-dimensional periodicity is broken by a local defect, then local electromagnetic modes can occur within the forbidden bandgap. The addition of extra dielectric material locally, inside the photonic crystal, produces {open_quotes}donor{close_quotes} modes. Conversely, the local removal of dielectric material from the photonic crystal produces {open_quotes}acceptor{close_quotes} modes. Therefore, it will now be possible to make high-Q electromagnetic cavities of volume {approx_lt}1 cubic wavelength, for short wavelengths at which metallic cavities are useless. These new dielectric micro-resonators can cover the range all the way from millimeter waves, down to ultraviolet wavelengths.

  2. Temporal dispersion induced commercial laser in speckle free intense imaging

    NASA Astrophysics Data System (ADS)

    Kalyan Manna, Suman; Nguyen, Giang-Nam; Le Gall, Stephen

    2016-01-01

    Coherent imaging suffers from speckle, which is basically some uncorrelated intensity distribution and bears no obvious relationship to the macroscopic properties of the object illuminated. Reducing the spatial coherence of the illuminating beam, usually improves the quality of imaging by paying the penalty for reducing intensity, and directionality as well. Here, we demonstrate an alternative way of resolving the speckle issue by inducing temporal dispersion onto the commercial He-Ne laser beam, devising with a dispersive slope available near to the edge of the 1-D organic photonic band gap Cholesteric Liquid Crystal (CLC).

  3. Virtual photon exchange, intermolecular interactions and optical response functions

    NASA Astrophysics Data System (ADS)

    Salam, A.

    2015-11-01

    According to molecular quantum electrodynamics, coupling between material particles occurs due to an exchange of one or more virtual photons. In this work, the relationship between polarisability and hyperpolarisability tensors of atoms and molecules that feature in linear and nonlinear optical processes, and their analytically continued form in the complex frequency domain that appear in formulae describing fundamental inter-particle interactions, is studied. Examples involving a single virtual photon exchange, which are linearly proportional to electric dipole moments at each centre, include the electrostatic energy and the resonant transfer of excitation energy. The Casimir-Polder dispersion potential, and its discriminatory counterpart applicable to coupled chiral molecules, are used to illustrate response properties depending on the exchange of two virtual photons. Meanwhile, the energy shift between two hyperpolarisable species, a higher order discriminatory contribution to the dispersion potential, is employed to represent forces arising from the three virtual photon exchange. It is shown that for energy shifts that are quadratic or bilinear or cubic in the transition dipole moment, it is necessary to account for all two- and three-photon optical processes, such as absorption, emission and linear and nonlinear scattering of light in order to arrive at the correct form of the molecular response tensor.

  4. Experimental GVD engineering in slow light slot photonic crystal waveguides

    PubMed Central

    Serna, Samuel; Colman, Pierre; Zhang, Weiwei; Le Roux, Xavier; Caer, Charles; Vivien, Laurent; Cassan, Eric

    2016-01-01

    The use in silicon photonics of the new optical materials developed in soft matter science (e.g. polymers, liquids) is delicate because their low refractive index weakens the confinement of light and prevents an efficient control of the dispersion properties through the geometry. We experimentally demonstrate that such materials can be incorporated in 700 μm long slot photonic crystal waveguides, and hence can benefit from both slow-light field enhancement effect and slot-induced ultra-small effective areas. Additionally, we show that their dispersion can be engineered from anomalous to normal regions, along with the presence of multiple zero group velocity dispersion (ZGVD) points exhibiting Normalized Delay Bandwidth Product as high as 0.156. The reported results provide experimental evidence for an accurate control of the dispersion properties of fillable periodical slotted structures in silicon photonics, which is of direct interest for on-chip all-optical data treatment using nonlinear optical effects in hybrid-on-silicon technologies. PMID:27243377

  5. Experimental GVD engineering in slow light slot photonic crystal waveguides.

    PubMed

    Serna, Samuel; Colman, Pierre; Zhang, Weiwei; Le Roux, Xavier; Caer, Charles; Vivien, Laurent; Cassan, Eric

    2016-05-31

    The use in silicon photonics of the new optical materials developed in soft matter science (e.g. polymers, liquids) is delicate because their low refractive index weakens the confinement of light and prevents an efficient control of the dispersion properties through the geometry. We experimentally demonstrate that such materials can be incorporated in 700 μm long slot photonic crystal waveguides, and hence can benefit from both slow-light field enhancement effect and slot-induced ultra-small effective areas. Additionally, we show that their dispersion can be engineered from anomalous to normal regions, along with the presence of multiple zero group velocity dispersion (ZGVD) points exhibiting Normalized Delay Bandwidth Product as high as 0.156. The reported results provide experimental evidence for an accurate control of the dispersion properties of fillable periodical slotted structures in silicon photonics, which is of direct interest for on-chip all-optical data treatment using nonlinear optical effects in hybrid-on-silicon technologies.

  6. Multi-photon absorption limits to heralded single photon sources

    NASA Astrophysics Data System (ADS)

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; de Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-11-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources.

  7. Multi-photon absorption limits to heralded single photon sources

    PubMed Central

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  8. Photonic Aharonov-Bohm effect in photon-phonon interactions.

    PubMed

    Li, Enbang; Eggleton, Benjamin J; Fang, Kejie; Fan, Shanhui

    2014-01-01

    The Aharonov-Bohm effect is one of the most intriguing phenomena in both classical and quantum physics, and associates with a number of important and fundamental issues in quantum mechanics. The Aharonov-Bohm effects of charged particles have been experimentally demonstrated and found applications in various fields. Recently, attention has also focused on the Aharonov-Bohm effect for neutral particles, such as photons. Here we propose to utilize the photon-phonon interactions to demonstrate that photonic Aharonov-Bohm effects do exist for photons. By introducing nonreciprocal phases for photons, we observe experimentally a gauge potential for photons in the visible range based on the photon-phonon interactions in acousto-optic crystals, and demonstrate the photonic Aharonov-Bohm effect. The results presented here point to new possibilities to control and manipulate photons by designing an effective gauge potential.

  9. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  10. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  11. KISMET tungsten dispersal experiment

    SciTech Connect

    Wohletz, K.; Kunkle, T.; Hawkins, W.

    1996-12-01

    Results of the KISMET tungsten dispersal experiment indicate a relatively small degree of wall-rock contamination caused by this underground explosive experiment. Designed as an add-on to the KISMET test, which was performed in the U-1a.02 drift of the LYNER facility at Nevada Test Site on 1 March 1995, this experiment involved recovery and analysis of wall-rock samples affected by the high- explosive test. The chemical, high-explosive blast drove tungsten powder, placed around the test package as a plutonium analog, into the surrounding wall- rock alluvium. Sample analyses by an analytical digital electron microscope (ADEM) show tungsten dispersed in the rock as tiny (<10 {mu}m) particles, agglomerates, and coatings on alluvial clasts. Tungsten concentrations, measured by energy dispersive spectral analysis on the ADEM, indicate penetration depths less than 0.1 m and maximum concentrations of 1.5 wt % in the alluvium.

  12. Improving femtosecond laser pulse delivery through a hollow core photonic crystal fiber for temporally focused two-photon endomicroscopy

    PubMed Central

    Choi, Heejin; So, Peter T. C.

    2014-01-01

    In this paper, we present a strategy to improve delivery of femtosecond laser pulses from a regenerative amplifier through a hollow core photonic crystal fiber for temporally focused wide-field two-photon endomicroscopy. For endomicroscope application, wide-field two-photon excitation has the advantage of requiring no scanning in the distal end. However, wide-field two-photon excitation requires peak power that is 104–105 times higher than the point scanning approach corresponding to femtosecond pulses with energy on the order of 1–10 μJ at the specimen plane. The transmission of these high energy pulses through a single mode fiber into the microendoscope is a significant challenge. Two approaches were pursued to partially overcome this limitation. First, a single high energy pulse is split into a train of pulses with energy below the fiber damage threshold better utilizing the available laser energy. Second, stretching the pulse width in time by introducing negative dispersion was shown to have the dual benefit of reducing fiber damage probability and compensating for the positive group velocity dispersion induced by the fiber. With these strategy applied, 11 fold increase in the two photon excitation signal has been demonstrated. PMID:25316120

  13. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  14. CMOS-compatible photonic devices for single-photon generation

    NASA Astrophysics Data System (ADS)

    Xiong, Chunle; Bell, Bryn; Eggleton, Benjamin J.

    2016-09-01

    Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal-oxide-semiconductor (CMOS)-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon) and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  15. Two-photon interference with non-identical photons

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Zhou, Yu; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo

    2015-11-01

    Two-photon interference with non-identical photons is studied based on the superposition principle in Feynman's path integral theory. The second-order temporal interference pattern is observed by superposing laser and pseudothermal light beams with different spectra. The reason why there is two-photon interference for photons of different spectra is that non-identical photons can be indistinguishable for the detection system when Heisenberg's uncertainty principle is taken into account. These studies are helpful to understand the second-order interference of light in the language of photons.

  16. Observing Photons in Space

    NASA Astrophysics Data System (ADS)

    Huber, Martin C. E.; Pauluhn, Anuschka; Timothy, J. Gethyn

    This first chapter of the book "Observing Photons in Space" serves to illustrate the rewards of observing photons in space, to state our aims, and to introduce the structure and the conventions used. The title of the book reflects the history of space astronomy: it started at the high-energy end of the electromagnetic spectrum, where the photon aspect of the radiation dominates. Nevertheless, both the wave and the photon aspects of this radiation will be considered extensively. In this first chapter we describe the arduous efforts that were needed before observations from pointed, stable platforms, lifted by rocket above the Earth"s atmosphere, became the matter of course they seem to be today. This exemplifies the direct link between technical effort -- including proper design, construction, testing and calibration -- and some of the early fundamental insights gained from space observations. We further report in some detail the pioneering work of the early space astronomers, who started with the study of γ- and X-rays as well as ultraviolet photons. We also show how efforts to observe from space platforms in the visible, infrared, sub-millimetre and microwave domains developed and led to today"s emphasis on observations at long wavelengths.

  17. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  18. Photonics for life.

    PubMed

    Cubeddu, Rinaldo; Bassi, Andrea; Comelli, Daniela; Cova, Sergio; Farina, Andrea; Ghioni, Massimo; Rech, Ivan; Pifferi, Antonio; Spinelli, Lorenzo; Taroni, Paola; Torricelli, Alessandro; Tosi, Alberto; Valentini, Gianluca; Zappa, Franco

    2011-01-01

    Light is strictly connected with life, and its presence is fundamental for any living environment. Thus, many biological mechanisms are related to light interaction or can be evaluated through processes involving energy exchange with photons. Optics has always been a precious tool to evaluate molecular and cellular mechanisms, but the discovery of lasers opened new pathways of interactions of light with biological matter, pushing an impressive development for both therapeutic and diagnostic applications in biomedicine. The use of light in different fields has become so widespread that the word photonics has been utilized to identify all the applications related to processes where the light is involved. The photonics area covers a wide range of wavelengths spanning from soft X-rays to mid-infrared and includes all devices related to photons as light sources, optical fibers and light guides, detectors, and all the related electronic equipment. The recent use of photons in the field of telecommunications has pushed the technology toward low-cost, compact, and efficient devices, making them available for many other applications, including those related to biology and medicine where these requirements are of particular relevance. Moreover, basic sciences such as physics, chemistry, mathematics, and electronics have recognized the interdisciplinary need of biomedical science and are translating the most advanced researches into these fields. The Politecnico school has pioneered many of them,and this article reviews the state of the art of biomedical research at the Politecnico in the field internationally known as biophotonics.

  19. Gravitation, photons, clocks.

    NASA Astrophysics Data System (ADS)

    Okun, L. B.; Selivanov, K. G.; Telegdi, V.

    1999-10-01

    This paper is concerned with the classical phenomenon of gravitational red shift, the decrease in the measured frequency of a photon moving away from a gravitating body (e.g., the Earth) of the two current interpretations, one is that at higher altitudes the frequency-measuring clocks (atoms or atomic nuclei) run faster, i.e., their characteristic frequencies are higher, while the photon frequency in a static gravitational field is independent of the altitude and so the photon only reddens relative to the clocks. The other approach is that the photon reddens because it loses the energy when overcoming the attraction of the gravitational field. This view, which is especially widespread in popular science literature, ascribes such notions as a "gravitational mass" and "potential energy" to the photon. Unfortunately, also scientific papers and serious books on the general theory of relativity often employ the second interpretation as a "graphic" illustration of mathematically immaculate results. The authors show that this approach is misleading and only serves to create confusion in a simple subject.

  20. Antigravity Acts on Photons

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2002-04-01

    Einstein's general theory of relativity assumes that photons don't change frequency as they move from Sun to Earth. This assumption is correct in classical physics. All experiments proving the general relativity are in the domain of classical physics. This include the tests by Pound et al. of the gravitational redshift of 14.4 keV photons; the rocket experiments by Vessot et al.; the Galileo solar redshift experiments by Krisher et al.; the gravitational deflection of light experiments by Riveros and Vucetich; and delay of echoes of radar signals passing close to Sun as observed by Shapiro et al. Bohr's correspondence principle assures that quantum mechanical theory of general relativity agrees with Einstein's classical theory when frequency and gravitational field gradient approach zero, or when photons cannot interact with the gravitational field. When we treat photons as quantum mechanical particles; we find that gravitational force on photons is reversed (antigravity). This modified theory contradicts the equivalence principle, but is consistent with all experiments. Solar lines and distant stars are redshifted in accordance with author's plasma redshift theory. These changes result in a beautiful consistent cosmology.

  1. Photonic Switching Devices Using Light Bullets

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    1997-01-01

    The present invention is directed toward a unique ultra-fast, all-optical switching device or switch made with readily available, relatively inexpensive, highly nonlinear photonic glasses. These photonic glasses have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counterpropagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide, and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. One advantage presented by the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another feature of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in highly nonlinear glasses.

  2. Photonics crystal fiber Raman sensors

    NASA Astrophysics Data System (ADS)

    Yang, Xuan; Bond, Tiziana C.; Zhang, Jin Z.; Li, Yat; Gu, Claire

    2012-11-01

    Hollow core photonic crystal fiber (HCPCF) employs a guiding mechanism fundamentally different from that in conventional index guiding fibers. In an HCPCF, periodic air channels in a glass matrix act as reflectors to confine light in an empty core. As a result, the interaction between light and glass can be very small. Therefore, HCPCF has been used in applications that require extremely low non-linearity, high breakdown threshold, and zero dispersion. However, their applications in optical sensing, especially in chemical and biological sensing, have only been extensively explored recently. Besides their well-recognized optical properties the hollow cores of the fibers can be easily filled with liquid or gas, providing an ideal sampling mechanism in sensors. Recently, we have demonstrated that by filling up a HCPCF with gas or liquid samples, it is possible to significantly increase the sensitivity of the sensors in either regular Raman or surface enhanced Raman scattering (SERS) applications. This is because the confinement of both light and sample inside the hollow core enables direct interaction between the propagating wave and the analyte. In this paper, we report our recent work on using HCPCF as a platform for Raman or SERS in the detection of low concentration greenhouse gas (ambient CO2), biomedically significant molecules (e.g., glucose), and bacteria. We have demonstrated that by filling up a HCPCF with gas or liquid samples, it is possible to significantly increase the sensitivity of the sensors in either regular Raman or SERS applications.

  3. Warm fog dispersal

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1983-01-01

    The charged particle generator was further tested after some design modification. The generator performance was measured with additional instrumentation and found to confirm previous measurements. Plans for a field testing were than developed. The overall status of the program and the field test plans were presented to a group of atmospheric scientists and electrostatic experts at the NASA/MSFC sponsored USRA Workshop on Electrostatic Fog Dispersal at NCAR, Boulder, Colorado discussed in previous sections. The recommendations from this workshop are being evaluated as to whether NASA should proceed with the field test or whether further theoretical research on the phenomenon of electrostatic fog dispersal and additional development of the charged particle generator should be carried out. Information obtained from the USRA Workshop clearly identified three physical mechanisms that could possibly influence the fog dispersal process, which heretofore have not been considered, and which may provide additional insight to the direction of further fog dispersal work. These mechanisms are: the effect of corona discharge on the electric field strength at the surface, the influx of fog into the cleared volume by turbulent diffusion, and the increase in supersaturation as liquid water is removed, activating haze particles, and thus generating more fog. Plans are being formulated to investigate these mechanisms.

  4. Acoustic dispersive prism

    NASA Astrophysics Data System (ADS)

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  5. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-07

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  6. Dispersions in semiclassical dynamics

    NASA Astrophysics Data System (ADS)

    Zielinska-Pfabé, M.; Grégoire, C.

    1988-06-01

    Dispersions around mean values of one-body observables are obtained by restoring classical many-body correlations in Vlasov and Landau-Vlasov dynamics. This method is applied to the calculation of fluctuations in mass, charge, and linear momentum in heavy-ion collisions. Results are compared with those obtained by the Balian-Veneroni variational principle in semiclassical approximation.

  7. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  8. Oxide dispersion strengthened superalloy

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.; Kim, Y. G.; Curwick, L. R.; Merrick, H. F.

    1981-01-01

    MA6000E alloy is strengthened at high temperatures by dispersion of yttrium oxide. Strength properties are about twice those of conventional nickel base alloys. Good thermal fatigue, intermediate temperature strength, and good oxidation resistance give alloy unique combination of benefits. Application in aircraft gas turbine is improved.

  9. Photonic Crystal Microchip Laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  10. Photonic Crystal Microchip Laser.

    PubMed

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-29

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M(2) reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial quality high brightness radiation.

  11. Compact photonic spin filters

    NASA Astrophysics Data System (ADS)

    Ke, Yougang; Liu, Zhenxing; Liu, Yachao; Zhou, Junxiao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun

    2016-10-01

    In this letter, we propose and experimentally demonstrate a compact photonic spin filter formed by integrating a Pancharatnam-Berry phase lens (focal length of ±f ) into a conventional plano-concave lens (focal length of -f). By choosing the input port of the filter, photons with a desired spin state, such as the right-handed component or the left-handed one, propagate alone its original propagation direction, while the unwanted spin component is quickly diverged after passing through the filter. One application of the filter, sorting the spin-dependent components of vector vortex beams on higher-order Poincaré sphere, is also demonstrated. Our scheme provides a simple method to manipulate light, and thereby enables potential applications for photonic devices.

  12. Photon physics with PHENIX

    SciTech Connect

    White, S.

    1995-07-15

    In this Paper the author discusses briefly the physics motivation for extending measurements of particle production with high granularity and particle id capabilities to neutrals in PHENIX. The author then discusses the technique of direct photon measurement in the presence of copious background photons from {pi}{sup o} decays. The experiment will measure relatively low p{sub t} photons near y=0 in the lab frame. This new experimental environment of high multiplicity and low {gamma} momenta will affect both the techniques used and the type of analysis which can be performed. The Phenix Electromagnetic calorimeter is described and its capabilities illustrated with results from simulation and beam tests of the first production array.

  13. Photonic Crystal Microchip Laser

    PubMed Central

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-01-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation. PMID:27683066

  14. Polymer photonic crystal fibre for sensor applications

    NASA Astrophysics Data System (ADS)

    Webb, David J.

    2010-04-01

    Polymer photonic crystal fibres combine two relatively recent developments in fibre technology. On the one hand, polymer optical fibre has very different physical and chemical properties to silica. In particular, polymer fibre has a much smaller Young's modulus than silica, can survive higher strains, is amenable to organic chemical processing and, depending on the constituent polymer, may absorb water. All of these features can be utilised to extend the range of applications of optical fibre sensors. On the other hand, the photonic crystal - or microstructured - geometry also offers advantages: flexibility in the fibre design including control of the dispersion properties of core and cladding modes, the possibility of introducing minute quantities of analyte directly into the electric field of the guided light and enhanced pressure sensitivity. When brought together these two technologies provide interesting possibilities for fibre sensors, particularly when combined with fibre Bragg or long period gratings. This paper discusses the features of polymer photonic crystal fibre relevant to sensing and provides examples of the applications demonstrated to date.

  15. [Study on phase-matching of four-wave mixing spectrum in photonic crystal fiber].

    PubMed

    Liu, Xiao-xu; Wang, Shu-tao; Zhao, Xing-tao; Chen, Shuang; Zhou, Gui-yao; Wu, Xi-jun; Li, Shu-guang; Hou, Lan-Tian

    2014-06-01

    In the present paper, the four-wave mixing principle of fiber was analyzed, and the high-gain phase-matching conditions were shown. The nonlinear coefficient and dispersion characteristics of photonic crystal fibers were calculated by multipole method. The phase mismatch characteristics of fibers with multiple zero-dispersion wavelengths were analyzed for the first time. The changing rules of phase matching wavelength with the pump wavelength and the pump power were obtained, and the phase matching curves were shown. The characteristics of phase matching wavelengths for different dispersion curves were analyzed. There are four new excitation wavelengths of four-wave mixing spectrum in two zero-dispersion wavelength photonic crystal fiers. Four-wave mixing spectroscopy of photonic crystal fibers with two zero-dispersion wavelengths was obtained in the experi-ent, which is consistent with the theoretical analysis, and verified the reliability of the phase matching theory. The fiber with multiple zero-dispersion wavelengths can create a ricbhphase-matching topology, excite more four-wave mixing wavelengths, ena-ling enhanced control over the spectral locations of the four-wave mixing and resonant-radiation bands emitted by solitons and short pulses. These provide theoretical guidance for photonic crystal fiber wavelength conversion and supercontinoum generation based on four-wave mixing.

  16. Octave spanning wedge dispersive mirrors with low dispersion oscillations.

    PubMed

    Habel, Florian; Shirvanyan, Vage; Trubetskov, Michael; Burger, Christian; Sommer, Annkatrin; Kling, Matthias F; Schultze, Martin; Pervak, Vladimir

    2016-05-02

    A novel concept for octave spanning dispersive mirrors with low spectral dispersion oscillations is presented. The key element of the so-called wedge dispersive mirror is a slightly wedged layer which is coated on a specially optimized dispersive multilayer stack by a common sputter coating process. The group delay dispersion (GDD) of a pulse reflected on a wedge dispersive mirror is nearly free of oscillations. Fabricated mirrors with negative GDD demonstrate the compression of a pulse down to 3.8 fs as good as double angled mirrors optimized for the same bandwidth.

  17. Etched distributed Bragg reflectors as three-dimensional photonic crystals: photonic bands and density of states.

    PubMed

    Pavarini, E; Andreani, L C

    2002-09-01

    The photonic band dispersion and density of states (DOS) are calculated for the three-dimensional (3D) hexagonal structure corresponding to a distributed Bragg reflector patterned with a 2D triangular lattice of circular holes. Results for the Si/SiO(2) and GaAs/Al(x)Ga(1-x)As systems determine the optimal parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of the multilayer. The DOS is considerably reduced in correspondence with the overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS weighted with the squared electric field at a given point) has strong variations depending on the position. Both results imply substantial changes of spontaneous emission rates and patterns for a local emitter embedded in the structure and make this system attractive for the fabrication of a 3D photonic crystal with controlled radiative properties.

  18. Coded output photonic A/D converter based on photonic crystal slow-light structures.

    PubMed

    Yu, Sunkyu; Koo, Sukmo; Park, Namkyoo

    2008-09-01

    A photonic analog-to-digital converter (PADC) utilizing a slow-light photonic crystal Mach-Zehnder interferometer (MZI) is proposed, to enable the optically coded output of a PADC with reduced device size and power consumption. Assuming an index modulation for the MZI on the Taylor's PADC structure, limiting factors in device size, speed, and effective number of bits are derived considering the signal transition time of the light and the slow light dispersion effects. Details of the device design and results of a time domain assessment of the device performance is described with discussions on the feasibility of sub-mm size, 20GS/s operation of the device having the ENOB (effective number of bits) > 5.

  19. Coherent terahertz photonics.

    PubMed

    Seeds, Alwyn J; Fice, Martyn J; Balakier, Katarzyna; Natrella, Michele; Mitrofanov, Oleg; Lamponi, Marco; Chtioui, Mourad; van Dijk, Frederic; Pepper, Michael; Aeppli, Gabriel; Davies, A Giles; Dean, Paul; Linfield, Edmund; Renaud, Cyril C

    2013-09-23

    We present a review of recent developments in THz coherent systems based on photonic local oscillators. We show that such techniques can enable the creation of highly coherent, thus highly sensitive, systems for frequencies ranging from 100 GHz to 5 THz, within an energy efficient integrated platform. We suggest that such systems could enable the THz spectrum to realize its full applications potential. To demonstrate how photonics-enabled THz systems can be realized, we review the performance of key components, show recent demonstrations of integrated platforms, and give examples of applications.

  20. What is the Brillouin zone of an anisotropic photonic crystal?

    NASA Astrophysics Data System (ADS)

    Sivarajah, P.; Maznev, A. A.; Ofori-Okai, B. K.; Nelson, K. A.

    2016-02-01

    The concept of the Brillouin zone (BZ) in relation to a photonic crystal fabricated in an optically anisotropic material is explored both experimentally and theoretically. In experiment we used femtosecond laser pulses to excite THz polaritons and image their propagation in lithium niobate and lithium tantalate photonic crystal (PhC) slabs. We directly measured the dispersion relation inside PhCs and observed that the lowest band gap expected to form at the BZ boundary forms inside the BZ in the anisotropic lithium niobate PhC. Our analysis shows that in an anisotropic material the BZ—defined as the Wigner-Seitz cell in the reciprocal lattice—is no longer bounded by Bragg planes and thus does not conform to the original definition of the BZ by Brillouin. We construct an alternative Brillouin zone defined by Bragg planes and show its utility in identifying features of the dispersion bands. We show that for an anisotropic two-dimensional PhC without dispersion, the Bragg plane BZ can be constructed by applying the Wigner-Seitz method to a stretched or compressed reciprocal lattice. We also show that in the presence of the dispersion in the underlying material or in a slab waveguide, the Bragg planes are generally represented by curved surfaces rather than planes. The concept of constructing a BZ with Bragg planes should prove useful in understanding the formation of dispersion bands in anisotropic PhCs and in selectively tailoring their optical properties.

  1. Liquid-filled simplified hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Gao, Wei; Li, Hongwei; Dong, Yongkang; Zhang, Hongying

    2014-12-01

    We report on a novel type of liquid-filled simplified hollow-core photonic crystal fibers (HC-PCFs), and investigate their transmission properties with various filling liquids, including water, ethanol and FC-40. The loss and dispersion characterizations are calculated for different fiber parameters including strut thickness and core diameter. The results show that there are still low-loss windows existing for liquid-filled simplified HC-PCFs, and the low-loss windows and dispersions can be easily tailored by filling different liquids. Such liquid-filled simplified HC-PCFs open up many possibilities for nonlinear fiber optics, optical, biochemical and medical sensing.

  2. Two-photon interference of temporally separated photons.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-06

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  3. Two-photon interference of temporally separated photons

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-01-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms. PMID:27708380

  4. Two-photon interference of temporally separated photons

    NASA Astrophysics Data System (ADS)

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  5. Anderson localization and Brewster anomalies in photonic disordered quasiperiodic lattices

    SciTech Connect

    Reyes-Gomez, E.; Bruno-Alfonso, A.; Cavalcanti, S. B.; Oliveira, L. E.

    2011-09-15

    A comprehensive study of the properties of light propagation through one-dimensional photonic disordered quasiperiodic superlattices, composed of alternating layers with random thicknesses of air and a dispersive metamaterial, is theoretically performed. The superlattices consist of the successive stacking of N quasiperiodic Fibonacci or Thue-Morse heterostructures. The width of the slabs in the photonic superlattice may randomly fluctuate around its mean value, which introduces a structural disorder into the system. It is assumed that the left-handed layers have a Drude-type dispersive response for both the dielectric permittivity and magnetic permeability, and Maxwell's equations are solved for oblique incidence by using the transfer-matrix formalism. The influence of both quasiperiodicity and structural disorder on the localization length and Brewster anomalies are thoroughly discussed.

  6. Why photonic systems for space?

    NASA Astrophysics Data System (ADS)

    Bernstein, Norman P.; Brost, George A.; Hayduk, Michael J.; Hunter, James R.; Nichter, James E.; Payson, Paul M.; Repak, Paul L.

    2000-09-01

    Future space-based platforms can and will benefit from the implementation of photonics in both analog and digital subsystems. This paper will discuss potential applications and advantages to the platforms through the use of photonics.

  7. Quantum optics: Arithmetic with photons

    NASA Astrophysics Data System (ADS)

    Bajcsy, Michal; Majumdar, Arka

    2016-01-01

    Extracting a single photon from a light pulse is deceptively complicated to accomplish. Now, a deterministic experimental implementation of photon subtraction could bring a host of opportunities in quantum information technology.

  8. Bridging Between Photonic Scales

    DTIC Science & Technology

    2005-10-29

    Science Foundation’s CAREER Grant Lett. 29, 1626 (2004). No. 0446571. The authors would also like to thank [15] C. Pollock and M. Lipson, Integrated ... Photonics (Kluwer Gernot Pomrenke from the Air Force Office of Scientific Academic, Dordrecht, 2003). Research for supporting the work under Grants [16

  9. Photonic curvilinear data processing

    NASA Astrophysics Data System (ADS)

    Browning, Clyde; Quaglio, Thomas; Figueiro, Thiago; Pauliac, Sébastien; Belledent, Jérôme; Fay, Aurélien; Bustos, Jessy; Marusic, Jean-Christophe; Schiavone, Patrick

    2014-10-01

    With more and more photonic data presence in e-beam lithography, the need for efficient and accurate data fracturing is required to meet acceptable manufacturing cycle time. Large photonic based layouts now create high shot count patterns for VSB based tools. Multiple angles, sweeping curves, and non-orthogonal data create a challenge for today's e-beam tools that are more efficient on Manhattan style data. This paper describes techniques developed and used for creating fractured data for VSB based pattern generators. Proximity Effect Correction is also applied during the fracture process, taking into account variable shot sizes to apply for accuracy and design style. Choosing different fracture routines for pattern data on-the-fly allows for fast and efficient processing. Data interpretation is essential for processing curvilinear data as to its size, angle, and complexity. Fracturing complex angled data into "efficient" shot counts is no longer practical as shot creation now requires knowledge of the actual data content as seen in photonic based pattern data. Simulation and physical printing results prove the implementations for accuracy and write times compared to traditional VSB writing strategies on photonic data. Geometry tolerance is used as part of the fracturing algorithm for controlling edge placement accuracy and tuning to different e-beam processing parameters.

  10. Two-photon cryomicroscope

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Köhler, C.; König, K.

    2012-03-01

    We report on a new two-photon cryomicroscope which consist of a compact laser-scanning microscope combined with a motorized heating and freezing stage. Samples can be cooled down to -196 °C (77 K) and heated up to 600 °C (873 K) with adjustable heating/freezing rates between 0.01 K / min and 150 K / min. Two-photon imaging is realized by near infrared femtosecond-laser pulse excitation. The abilities of the two-photon cryomicroscope are illustrated in several measurements: imaging of fluorescent microspheres inside a piece of ice illustrates the feasibility of deep-microscopic imaging inside frozen sample. The temperature-dependent structural integrity of collagen is monitored by detection of second harmonic generation signals from porcine cornea. The measurements reveal also the dependence of the collagendenaturation temperature on hydration state of the cornea collagen. Furthermore, the potential of the two-photon cryomicroscope for optimization of freezing and thawing procedures as well as to evaluate the viability of frozen cells and tissue is discussed.

  11. Photonics in cardiovascular medicine

    NASA Astrophysics Data System (ADS)

    van Soest, Gijs; Regar, Evelyn; van der Steen, Antonius F. W.

    2015-10-01

    The use of photonics technology is bringing new capabilities and insights to cardiovascular medicine. Intracoronary imaging and sensing, laser ablation and optical pacing are just some of the functions being explored to help diagnose and treat conditions of the heart and arteries.

  12. Photon collider at TESLA

    NASA Astrophysics Data System (ADS)

    Telnov, Valery

    2001-10-01

    High energy photon colliders ( γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e +e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3) Le +e -. Typical cross-sections of interesting processes in γγ collisions are higher than those in e +e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e +e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is "an optical storage ring (optical trap)" with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems.

  13. Photonics and Optoelectronics

    DTIC Science & Technology

    2013-03-07

    Distribution Outline/Agenda • Nanophotonics: plasmonics, nanostructures, metasurfaces etc • Integrated Nanophotonics & Silicon Photonics...Highlights Nanophotonics Nanophotonics: metasurfaces , nanostructures, plasmonics etc • Shalaev – Broadband Light Bending with Plasmonic...solitons, slot waveguide, “ Metasurface ” collimator etc " World Changing Ideas 2012” Electronic Tattoos, sciencemag , J. Rogers UICU P

  14. Membrane photon sieve telescopes.

    PubMed

    Andersen, Geoff

    2010-11-20

    We present results of research into the design and construction of membrane photon sieves as primaries for next-generation lightweight space telescopes. We have created prototypes in electroformed nickel as well as diazo and CP-1 polymer films. In two such cases, diffraction-limited imaging performance was demonstrated over a narrow bandwidth.

  15. Photonics in India

    NASA Astrophysics Data System (ADS)

    Pal, Bishnu

    2011-08-01

    India has long been active in the field of photonics, dating back to famous scientists such as Raman and Bose. Today, India is home to numerous research groups and telecommunications companies that own a sizeable amount of the fibre-optic links installed around the globe.

  16. Cladding doped defect-core large mode area W-type photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Boruah, Jiten; Kalra, Yogita; Sinha, Ravindra K.

    2016-09-01

    Propagation characteristics of a cladding doped defect-core large mode area W-type photonic crystal fiber have been investigated by using finite element method. In the proposed structure the central air hole has been removed to form the defect core and the second layer of cladding rings around the central core have been selectively doped with different concentration of fluorine to tune the refractive index of the doped silica rods. The bend loss, dispersion, effect of bending on dispersion, and nonlinear coefficient of the proposed photonic crystal fiber design has been numerically investigated. The proposed W-type photonic crystal fiber has low bend loss, low dispersion, large-mode-area with low value of nonlinear coefficient at wavelength of 1.55μm. The structure can be utilized for telecommunication applications, for applications in high power fiber lasers, amplifiers and sensors.

  17. Photons, photon jets, and dark photons at 750 GeV and beyond.

    PubMed

    Dasgupta, Basudeb; Kopp, Joachim; Schwaller, Pedro

    2016-01-01

    In new physics searches involving photons at the LHC, one challenge is to distinguish scenarios with isolated photons from models leading to "photon jets". For instance, in the context of the 750 GeV diphoton excess, it was pointed out that a true diphoton resonance [Formula: see text] can be mimicked by a process of the form [Formula: see text], where S is a new scalar with a mass of 750 GeV and a is a light pseudoscalar decaying to two collinear photons. Photon jets can be distinguished from isolated photons by exploiting the fact that a large fraction of photons convert to an [Formula: see text] pair inside the inner detector. In this note, we quantify this discrimination power, and we study how the sensitivity of future searches differs for photon jets compared to isolated photons. We also investigate how our results depend on the lifetime of the particle(s) decaying to the photon jet. Finally, we discuss the extension to [Formula: see text], where there are no photons at all but the dark photon [Formula: see text] decays to [Formula: see text] pairs. Our results will be useful in future studies of the putative 750 GeV signal, but also more generally in any new physics search involving hard photons.

  18. Photons, photon jets, and dark photons at 750 GeV and beyond

    NASA Astrophysics Data System (ADS)

    Dasgupta, Basudeb; Kopp, Joachim; Schwaller, Pedro

    2016-05-01

    In new physics searches involving photons at the LHC, one challenge is to distinguish scenarios with isolated photons from models leading to "photon jets". For instance, in the context of the 750 GeV diphoton excess, it was pointed out that a true diphoton resonance S → γ γ can be mimicked by a process of the form p p → S → a a → 4γ , where S is a new scalar with a mass of 750 GeV and a is a light pseudoscalar decaying to two collinear photons. Photon jets can be distinguished from isolated photons by exploiting the fact that a large fraction of photons convert to an e^+e^- pair inside the inner detector. In this note, we quantify this discrimination power, and we study how the sensitivity of future searches differs for photon jets compared to isolated photons. We also investigate how our results depend on the lifetime of the particle(s) decaying to the photon jet. Finally, we discuss the extension to S→ A^' A^' → e^+e^-e^+e^-, where there are no photons at all but the dark photon A^' decays to e^+e^- pairs. Our results will be useful in future studies of the putative 750 GeV signal, but also more generally in any new physics search involving hard photons.

  19. Dispersion suppressors with bending

    SciTech Connect

    Garren, A.

    1985-10-01

    Dispersion suppressors of two main types are usually used. In one the cell quadrupole focussing structure is the same as in normal cells but some of the dipoles are replaced by drifts. In the other, the quadrupole strengths and/or spacings are different from those of the normal cells, but the bending is about the same as it is in the cells. In SSC designs to date, dispersion suppressors of the former type have been used, consisting of two cells with bending equivalent to one. In this note a suppressor design with normal bending and altered focussing is presented. The advantage of this scheme is that circumference is reduced. The disadvantages are that additional special quadrupoles must be provided (however, they need not be adjustable), and the maximum beta values within them are about 30% higher than the cell maxima.

  20. Stabilized dispersive focal plane systems for space

    NASA Astrophysics Data System (ADS)

    Roming, Peter W. A.; Bayless, Amanda J.; Beebe, Chip R.; Brooks, Mark J.; Davis, Michael W.; Klar, Robert A.; Roberts, John M.; Rose, Randall J.; Winters, Gregory S.

    2012-09-01

    As the costs of space missions continue to rise, the demand for compact, low mass, low-cost technologies that maintain high reliability and facilitate high performance is increasing. One such technology is the stabilized dispersive focal plane system (SDFPS). This technology provides image stabilization while simultaneously delivering spectroscopic or direct imaging functionality using only a single optical path and detector. Typical systems require multiple expensive optical trains and/or detectors, sometimes at the expense of photon throughput. The SDFPS is ideal for performing wide-field low-resolution space-based spectroscopic and direct-imaging surveys. In preparation for a suborbital flight, we have built and ground tested a prototype SDFPS that will concurrently eliminate unwanted image blurring due to the lack of adequate platform stability, while producing images in both spectroscopic and direct-imaging modes. We present the overall design, testing results, and potential scientific applications.

  1. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Kanth Kumar, V. V. Ravi; George, A. K.; Reeves, W. H.; Knight, J. C.; Russell, P. St. J.; Omenetto, F. G.; Taylor, A. J.

    2002-12-01

    We report the fabrication and properties of soft glass photonic crystal fibers (PCF’s) for supercontinuum generation. The fibers have zero or anomalous group velocity dispersion at wavelengths around 1550 nm, and approximately an order of magnitude higher nonlinearity than attainable in comparable silica fibers. We demonstrate the generation of an ultrabroad supercontinuum spanning at least 350 nm to 2200 nm using a 1550 nm ultrafast pump source.

  2. GaInP on oxide nonlinear photonic crystal technology.

    PubMed

    Martin, Aude; Sanchez, Dorian; Combrié, Sylvain; de Rossi, Alfredo; Raineri, Fabrice

    2017-02-01

    Heat dissipation is improved in nonlinear III-V photonic crystal waveguides owing to the hybrid III-V/Silicon integration platform, allowing efficient four-wave mixing in the continuous-wave regime. A conversion efficiency of -17.6  dB is demonstrated with a pump power level below 100 mW in a dispersion-engineered waveguide with a flat group index of 28 over a 10 nm bandwidth.

  3. Manipulation of spatiotemporal photon distribution via chromatic aberration.

    PubMed

    Li, Yuelin; Chemerisov, Sergey

    2008-09-01

    We demonstrate a spatiotemporal laser-pulse-shaping scheme that exploits the chromatic aberration in a dispersive lens. This normally harmful effect transforms the phase modulation into a beam-size modulation at the focal plane. In combination with the intricate diffraction effect via beam apodization, this method provides a spatiotemporal control of photon distribution with an accuracy of diffraction limit on a time scale of femtoseconds.

  4. Disabling Radiological Dispersal Terror

    SciTech Connect

    Hart, M

    2002-11-08

    Terror resulting from the use of a radiological dispersal device (RDD) relies upon an individual's lack of knowledge and understanding regarding its significance. Disabling this terror will depend upon realistic reviews of the current conservative radiation protection regulatory standards. It will also depend upon individuals being able to make their own informed decisions merging perceived risks with reality. Preparation in these areas will reduce the effectiveness of the RDD and may even reduce the possibility of its use.

  5. Ascent trajectory dispersion analysis

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of a Space Transportation System ascent trajectory dispersion analysis are documented. Critical trajectory parameter values useful for the definition of lightweight external tank insulation requirements are provided. This analysis was conducted using two of the critical missions specified for the Space Transportation System: a 28.5 deg inclination trajectory launched from the Eastern Test Range (ETR) and a Western Test Range (WTR) trajectory launched into a 104 deg orbital inclination.

  6. Photonics in Processing (BRIEFING CHARTS)

    DTIC Science & Technology

    2007-03-06

    nm ena ble s PIGGYBANK ON CMOS INFRASTRUCTURE AND PROGRESS Seamless Photonics-Electronics Interface Slide 5 Signal Processing with Integrated ... Photonics “Application Specific Electronic-Photonic Integrated Circuit” (AS-EPIC) demonstration vehicle: Broadband RF Receiver (HF to Ku) using optical

  7. Hydrogenated amorphous silicon photonics

    NASA Astrophysics Data System (ADS)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  8. Logically combined photonic crystal - A Fabry Perot optical cavity

    NASA Astrophysics Data System (ADS)

    Alagappan, G.; Png, C. E.

    2016-11-01

    We address the logical combination, as opposed to the linear superposition, of two one - dimensional photonic crystals of slightly different periodicities. The original short range translational symmetry is destroyed in these quasi - periodic system. This induces a strong coupling between Bloch modes of different translational wavevectors, and results in a large number of slow modes in such logically combined photonic crystal. In this article, we show by exploiting the beating feature characteristics of the topology of our system, that these slow modes can be effectively described as modes of a Fabry Perot optical cavity made of a homogenous metamaterial with a dispersive refractive index. The homogenized refractive index of the equivalent metamaterial can be obtained from the band structure calculations, using an extended zone scheme. The density of the slow modes in the logically combined photonic crystal is inversely proportional to the group index of the equivalent metamaterial.

  9. Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides.

    PubMed

    Suzuki, Keijiro; Baba, Toshihiko

    2010-12-06

    Optical nonlinearity can be enhanced by the combination of highly nonlinear chalcogenide glass and photonic crystal waveguides (PCWs) providing strong optical confinement and slow-light effects. In a Ag-As(2)Se(3) chalcogenide PCW, the effective nonlinear parameter γeff reaches 6.3 × 10(4) W(-1)m(-1), which is 200 times larger than that in Si photonic wire waveguides. In this paper, we report the detailed design, fabrication process, and the linear and nonlinear characteristics of this waveguide at silica fiber communication wavelengths. We show that the waveguide exhibits negligible two-photon absorption, and also high-efficiency self-phase modulation and four-wave mixing, which are assisted by low-dispersion slow light.

  10. Photoluminescence analysis of self induced planer alignment in azo dye dispersed nematic liquid crystal complex

    SciTech Connect

    Kumar, Rishi Sood, Srishti Raina, K. K.

    2014-04-24

    We have developed azo dye doped nematic liquid crystal complex for advanced photonic liquid crystal display technology aspects. Disperse orange azo dye self introduced planer alignment in the nematic liquid crystal without any surface anchoring treatment. Planer alignment was characterized by optical polarizing microscopy. The electro-optical switching response of dye disperse planer aligned nematic cell was investigated as a function of applied voltage with the help of photoluminescence spectrophotometer for the tuning of photoluminescence contrast.

  11. Improved photon counting efficiency calibration using superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Xu, Nan; Li, Jianwei; Sun, Ruoduan; Feng, Guojin; Wang, Yanfei; Ma, Chong; Lin, Yandong; Zhang, Labao; Kang, Lin; Chen, Jian; Wu, Peiheng

    2015-10-01

    The quantum efficiency of photon counters can be measured with standard uncertainty below 1% level using correlated photon pairs generated through spontaneous parametric down-conversion process. Normally a laser in UV, blue or green wavelength range with sufficient photon energy is applied to produce energy and momentum conserved photon pairs in two channels with desired wavelengths for calibration. One channel is used as the heralding trigger, and the other is used for the calibration of the detector under test. A superconducting nanowire single photon detector with advantages such as high photon counting speed (<20 MHz), low dark count rate (<50 counts per second), and wideband responsivity (UV to near infrared) is used as the trigger detector, enabling correlated photons calibration capabilities into shortwave visible range. For a 355nm single longitudinal mode pump laser, when a superconducting nanowire single photon detector is used as the trigger detector at 1064nm and 1560nm in the near infrared range, the photon counting efficiency calibration capabilities can be realized at 532nm and 460nm. The quantum efficiency measurement on photon counters such as photomultiplier tubes and avalanche photodiodes can be then further extended in a wide wavelength range (e.g. 400-1000nm) using a flat spectral photon flux source to meet the calibration demands in cutting edge low light applications such as time resolved fluorescence and nonlinear optical spectroscopy, super resolution microscopy, deep space observation, and so on.

  12. Faking ordinary photons by displaced dark photon decays

    NASA Astrophysics Data System (ADS)

    Tsai, Yuhsin; Wang, Lian-Tao; Zhao, Yue

    2017-01-01

    A light metastable dark photon decaying into a collimated electron/positron pair can fake a photon, either converted or unconverted, at the LHC. The detailed object identification relies on the specifics of the detector and strategies for the reconstruction. We study the fake rate based on the ATLAS (CMS) detector geometry and show that it can be O(1) with a generic choice of parameters. Especially, the probability of being registered as a photon is angular dependent. Such detector effects can induce bias to measurements on certain properties of new physics. In this paper, we consider the scenario where dark photons in final states are from a heavy resonance decay. Consequently, the detector effects can dramatically affect the results when determining the spin of a resonance. Further, if the decay products from the heavy resonance are one photon and one dark photon, which has a large probability to fake a diphoton event, the resonance is allowed to be a vector. Because of the difference in detectors, the cross sections measured in ATLAS and CMS do not necessarily match. Furthermore, if the diphoton signal is given by the dark photons, the standard model Z γ and Z Z final states do not necessarily come with the γ γ channel, which is a unique signature in our scenario. The issue studied here is relevant also for any future new physics searches with photon(s) in the final state. We discuss possible ways of distinguishing dark photon decay and a real photon in the future.

  13. Impedance matching in photonic crystal microcavities for second-harmonic generation.

    PubMed

    Di Falco, Andrea; Conti, Claudio; Assanto, Gaetano

    2006-01-15

    By numerically integrating the three-dimensional Maxwell equations in the time domain with reference to a dispersive quadratically nonlinear material, we study second-harmonic generation in planar photonic crystal microresonators. The proposed scheme allows efficient coupling of the pump radiation to the defect resonant mode. The outcoupled generated second harmonic is maximized by impedance matching the photonic crystal cavity to the output waveguide.

  14. Soft glass photonic crystal fibres and their applications

    NASA Astrophysics Data System (ADS)

    Buczyński, Ryszard; Klimczak, Mariusz; Pysz, Dariusz; Stepniewski, Grzegorz; Siwicki, Bartłomiej; Cimek, Jarosław; Kujawa, Ireneusz; Piechal, Bernard; Stepień, Ryszard

    2015-05-01

    Most of the research work related to photonic crystal fibres has to date been focused on silica based fibres. Only in the recent years has there been a fraction of research devoted to fibres based on soft glasses, since some of them offer interesting properties as significantly higher nonlinearity than silica glass and wide transparency in the infrared range. On the other hand, attenuation in those glasses is usually one or more orders of magnitude higher that in silica glass, which limits their application area due to limited length of the fibres, which can be practically used. We report on the development of single-mode photonic crystal fibres made of highly nonlinear lead-bismuth-gallate glass with a zero dispersion wavelength at 1460 nm and flat anomalous dispersion. A two-octave spanning supercontinuum in the range 700-3000 nm was generated in 2 cm of the fibre. In contrast to the silica glass, various oxide based soft glasses with large refractive index difference can jointly undergo multiple thermal processing steps without degradation. The use of two soft glasses gives additional degrees of freedom in the design of photonic crystal fibres. As a result, highly nonlinear fibres with unique dispersion characteristics can be obtained. Soft glass allow also development of fibres with complex subwavelength refractive index distribution inside core of the fibre. A highly birefringent fibre with anisotropic core composed of subwavelength glass layers ordered in a rectangular structure was developed and is demonstrated

  15. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

    1998-06-02

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

  16. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, Warren G.; Basaran, Osman A.; Harris, Michael T.

    1995-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  17. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1998-04-14

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  18. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, Warren G.; Basaran, Osman A.; Harris, Michael T.

    1998-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  19. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, Warren G.; Harris, Michael T.; Scott, Timothy C.; Basaran, Osman A.

    1996-01-01

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  20. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1995-11-07

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  1. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, Warren G.; Harris, Michael T.; Scott, Timothy C.; Basaran, Osman A.

    1998-01-01

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  2. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

    1996-04-02

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

  3. Two-Photon Absorption and Two-Photon Four-Wave Mixing for the Terbium Ion in Insulators.

    NASA Astrophysics Data System (ADS)

    Huang, Jin

    Resonant enhancement of over two orders of magnitude of direct two-photon absorption from the ground state ^7F_6 to the excited state ^5G_6 of the 4f^8 configuration of Tb^{3+} at 40,200 cm ^{-1} has been observed in time resolved experiments with two separate lasers. The results provide clear evidence for resonant enhancement of two-photon absorption in rare earth compounds and imply the same for Raman scattering. Two separate transition mechanisms have been observed. When a single laser frequency was used, the intermediate states making the largest contribution were from excited configurations of opposite parity which were far from resonance. Detailed two-frequency experiments showed, however, that near the single photon resonance, there was a much stronger contribution from the 4f ^8 configuration ^5D _4 intermediate state. The phase-matching-induced frequency selectivity in the single-photon-resonant four-wave mixing has been observed in further rare earth compounds. These observations provide additional evidence that the phase matching effects, resulting from anomalous dispersion associated with the single-photon resonance, play a major role in determining both the intensity and the line narrowing of the mixing signal, and that similar effects will be observable in any rare earth compound. An effect of two-photon-resonant four-wave mixing has been observed for a transition to the 4f^8 configuration ^5K _8 state of the Tb^{3+ } ion in LiYF_4. The strength of the resonance is comparable to that of single -photon resonances. This technique holds promise as a new spectroscopic tool, especially for studies of two-photon transitions in non-fluorescent materials.

  4. Two-photon exchange correction to 2 S -2 P splitting in muonic 3He ions

    NASA Astrophysics Data System (ADS)

    Carlson, Carl E.; Gorchtein, Mikhail; Vanderhaeghen, Marc

    2017-01-01

    We calculate the two-photon exchange correction to the Lamb shift in muonic 3He ions within the dispersion relations framework. Part of the effort entailed making analytic fits to the electron-3He quasielastic scattering data set, for purposes of doing the dispersion integrals. Our result is that the energy of the 2 S state is shifted downwards by two-photon exchange effects by 15.14(49) meV, in good accord with the result obtained from a potential model and effective field theory calculation.

  5. Photonic-powered cable assembly

    DOEpatents

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  6. Photonic-powered cable assembly

    DOEpatents

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  7. Highly integrated photonic modules

    NASA Astrophysics Data System (ADS)

    Shmulovich, J.; Frolov, S.; Paunescu, A.; Lee, D. C.; DeHazan, Y.; Hanjani, A.; Bruce, A.

    2006-02-01

    From its foundation Inplane Photonics focused on developing integrated solutions based on Planar Lightwave Circuit(PLC) technology. It is universally agreed that the path to lower cost-per-function in Photonics, as in Electronics, leads to integration. The timing of introduction of a new technological solution and the rate at which it will penetrate the market very much depends on the interplay between the size of the market, advantages the new technology offers, and the investment needed to achieve the level of performance that is envisioned. In telecom applications, where the main drivers for technology selection are cost and performance, such large-scale investment did not materialized yet for the PLC technology mostly due to a limited market size.

  8. Natural photonic crystals

    NASA Astrophysics Data System (ADS)

    Vigneron, Jean Pol; Simonis, Priscilla

    2012-10-01

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  9. Photonics meet digital art

    NASA Astrophysics Data System (ADS)

    Curticapean, Dan; Israel, Kai

    2014-09-01

    The paper focuses on the work of an interdisciplinary project between photonics and digital art. The result is a poster collection dedicated to the International Year of Light 2015. In addition, an internet platform was created that presents the project. It can be accessed at http://www.magic-of-light.org/iyl2015/index.htm. From the idea to the final realization, milestones with tasks and steps will be presented in the paper. As an interdisciplinary project, students from technological degree programs were involved as well as art program students. The 2015 Anniversaries: Alhazen (1015), De Caus (1615), Fresnel (1815), Maxwell (1865), Einstein (1905), Penzias Wilson, Kao (1965) and their milestone contributions in optics and photonics will be highlighted.

  10. A photon thermal diode.

    PubMed

    Chen, Zhen; Wong, Carlaton; Lubner, Sean; Yee, Shannon; Miller, John; Jang, Wanyoung; Hardin, Corey; Fong, Anthony; Garay, Javier E; Dames, Chris

    2014-11-17

    A thermal diode is a two-terminal nonlinear device that rectifies energy carriers (for example, photons, phonons and electrons) in the thermal domain, the heat transfer analogue to the familiar electrical diode. Effective thermal rectifiers could have an impact on diverse applications ranging from heat engines to refrigeration, thermal regulation of buildings and thermal logic. However, experimental demonstrations have lagged far behind theoretical proposals. Here we present the first experimental results for a photon thermal diode. The device is based on asymmetric scattering of ballistic energy carriers by pyramidal reflectors. Recent theoretical work has predicted that this ballistic mechanism also requires a nonlinearity in order to yield asymmetric thermal transport, a requirement of all thermal diodes arising from the second Law of Thermodynamics, and realized here using an 'inelastic thermal collimator' element. Experiments confirm both effects: with pyramids and collimator the thermal rectification is 10.9 ± 0.8%, while without the collimator no rectification is detectable (<0.3%).

  11. Photon Sieve Space Telescope

    DTIC Science & Technology

    2010-09-01

    create in zero-g. An alternative is to use a flat diffractive element, which removes the need for out of plane deformation. In this case, the primary...is a photon sieve – a diffractive element consisting of millions of holes arranged in circular rings A Fresnel Zone Plate (FZP) is a diffractive ...they rely on higher order diffraction , and reduce the intensity of the final focal spot. For example, it is possible to create an antihole sieve by

  12. Nanowire Photonic Systems

    DTIC Science & Technology

    2009-12-22

    synthesis of silicon and gallium-indium nitride alloy nanowire heterostructures to provide building blocks for photonic devices that can span the...the Si-nanowire etching profile follows the order in which dopants were introduced during synthesis : First boron for p-type, no dopant for i-type... synthesis of nanoscale building blocks, (ii) characterization of fundamental physical properties of the building blocks, and (iii) assembly of

  13. Integrated photonic quantum walks

    NASA Astrophysics Data System (ADS)

    Gräfe, Markus; Heilmann, René; Lebugle, Maxime; Guzman-Silva, Diego; Perez-Leija, Armando; Szameit, Alexander

    2016-10-01

    Over the last 20 years quantum walks (QWs) have gained increasing interest in the field of quantum information science and processing. In contrast to classical walkers, quantum objects exhibit intrinsic properties like non-locality and non-classical many-particle correlations, which renders QWs a versatile tool for quantum simulation and computation as well as for a deeper understanding of genuine quantum mechanics. Since they are highly controllable and hardly interact with their environment, photons seem to be ideally suited quantum walkers. In order to study and exploit photonic QWs, lattice structures that allow low loss coherent evolution of quantum states are demanded. Such requirements are perfectly met by integrated optical waveguide devices that additionally allow a substantial miniaturization of experimental settings. Moreover, by utilizing the femtosecond direct laser writing technique three-dimensional waveguide structures are capable of analyzing QWs also on higher dimensional geometries. In this context, advances and findings of photonic QWs are discussed in this review. Various concepts and experimental results are presented covering, such as different quantum transport regimes, the Boson sampling problem, and the discrete fractional quantum Fourier transform.

  14. Slotted Photonic Crystal Sensors

    PubMed Central

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  15. Nonlocal Structures: Bilocal Photon

    NASA Astrophysics Data System (ADS)

    Clapp, Roger E.

    1980-01-01

    As a starting point, it is postulated that all particles and fields are built from a single primitive field, which must then be a massless fermion with a σ spin of one-half. Two helicities are embodied in a τ spin of one-half. The vacuum is an open Fermi sea whose height is a wave number κ. Elementary particles are structures having the form of standing-wave systems floating on the vacuum sea, with the height κ providing both the scale of inner structural size and the mass unit for the elementary particle mass spectrum. A bilocal photon starts with a function describing two primitive quanta with parallel σ spin and opposite τ spin. A centroid-time wave equation then couples-in an infinite set of orthogonal functions. The introduction of an operator Q λ permits the reduction of the infinite secular determinant to a finite six-by-six determinant. Solutions (for the infinite expansion) are obtained describing photons with right-handed and left-handed polarizations. Superpositions of these give linearly polarized photons. Electric and magnetic field vectors, satisfying the vacuum Maxwell equations, are obtained from a bilocal Hertz vector given by п= (2/κ3 c)(∂/∂ t r)∇rΨ(1,2), where Ψ(1,2) is the bilocal wave function, and tr and r are the relative time and relative position variables.

  16. Photonic Molecule Lasers Revisited

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  17. Photon strength functions from photon scattering

    NASA Astrophysics Data System (ADS)

    Schwengner, Ronald

    2015-10-01

    We present photon-scattering experiments using bremsstrahlung at the γELBE facility of Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and using quasi-monoenergetic, polarized γ rays at the HI γS facility of the Triangle Universities Nuclear Laboratory (TUNL) in Durham. In the analysis of the spectra measured by using bremsstrahlung at γELBE, we include intensity in the quasi-continuum and perform simulations of statistical γ-ray cascades using the code γDEX to estimate intensities of inelastic transitions to low-lying excited states. Simulated average branching ratios are compared with model-independent branching ratios obtained from spectra measured by using monoenergetic γ beams at HI γS. Photoabsorption cross sections deduced in this way are presented for selected nuclides. Strength in the energy region of the so-called pygmy dipole resonance (PDR) is considered in nuclei around mass 80 and in xenon isotopes. In collaboration with Ralph Massarczyk, Los Alamos National Laboratory.

  18. Reflectance spectra of metal-dielectric photonic crystals from gold nanoshells

    NASA Astrophysics Data System (ADS)

    Romanov, S. G.; Sotomayor Torres, C. M.; Susha, A.; Liang, Z.; Caruso, F.

    2005-06-01

    The light reflectance in 3-dimensional metal-dielectric photonic crystals, assembled from polyelectrolyte-coated latex spheres and infiltrated after opal crystallisation with gold nanoparticles, has been studied. Development of the surface plasmon resonance bands of Au nanoshells along the increase of the Au nanoparticle concentration has also been observed, along with deviation of the diffraction resonance dispersion and formation of the specific excitation, which combines photonic crystal optical mode with surface plasmon resonance. For heavy nanoparticle loadings, the reentrant dielectric type behaviour of the metal-dielectric photonic crystal has been seen.

  19. Photon wave function formalism for analysis of Mach–Zehnder interferometer and sum-frequency generation

    SciTech Connect

    Ritboon, Atirach; Daengngam, Chalongrat; Pengpan, Teparksorn

    2016-08-15

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  20. Intermodal four-wave mixing from femtosecond pulse-pumped photonic crystal fiber.

    PubMed

    Tu, H; Jiang, Z; Marks, D L; Boppart, S A

    2009-03-09

    Large Stokes-shift ( approximately 4700 cm(-1)) four-wave mixing is generated in a deeply normal dispersion regime from a 20 cm commercial large-mode-area photonic crystal fiber pumped by amplified approximately 800 nm femtosecond pulses. The phase-matching condition is realized through an intermodal scheme involving two pump photons in the fundamental fiber mode and a pair of Stokesanti-Stokes photons in a higher-order fiber mode. Over 7% conversion efficiency from the pump input to 586 nm anti-Stokes signal has been attained.

  1. QT dispersion and P wave dispersion in patients with fibromyalgia

    PubMed Central

    Yolbaş, Servet; Yıldırım, Ahmet; Düzenci, Deccane; Karakaya, Bülent; Dağlı, Mustafa Necati; Koca, Süleyman Serdar

    2016-01-01

    Objective Fibromyalgia (FM) is a chronic disease characterized by widespread pain. Somatic complaints associated with the cardiovascular system, such as chest pain and palpitations, are frequently seen in FM patients. P and QT dispersions are simple and inexpensive measurements reflecting the regional heterogeneity of atrial and ventricular repolarization, respectively. QT dispersion can cause serious ventricular arrhythmias. The aim of the present study was to evaluate QT dispersion and P wave dispersion in patients with FM. Material and Methods The study involved 48 FM patients who fulfilled the established criteria and 32 healthy controls (HC). A standard 12-lead electrocardiogram was performed on all participants. QT dispersion was defined as the difference between the longest and the shortest QT intervals. Similarly, the differences between the shortest and longest P waves were defined as P wave dispersion. Results The QT dispersion and corrected QT dispersion were shorter in the FM group compared with the HC group (p<0.001 for both). In terms of the P wave dispersion value, there was no significant difference between the FM and HC groups (p=0.088). Conclusion Longer QT and P wave dispersions are not problems in patients with FM. Therefore, it may be concluded that fibromyalgia does not include an increased risk of atrial and/or ventricular arrhythmias. PMID:28149660

  2. Constraining the mass of the photon with gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Chai, Ya-Ting; Zou, Yuan-Chuan; Wu, Xue-Feng

    2016-09-01

    One of the cornerstones of modern physics is Einstein's special relativity, with its constant speed of light and zero photon mass assumptions. Constraint on the rest mass mγ of photons is a fundamental way to test Einstein's theory, as well as other essential electromagnetic and particle theories. Since non-zero photon mass can give rise to frequency- (or energy-) dependent dispersions, measuring the time delay of photons with different frequencies emitted from explosive astrophysical events is an important and model-independent method to put such a constraint. The cosmological gamma-ray bursts (GRBs), with short time scales, high redshifts as well as broadband prompt and afterglow emissions, provide an ideal testbed for mγ constraints. In this paper we calculate the upper limits of the photon mass with GRB early time radio afterglow observations as well as multi-band radio peaks, thus improve the results of Schaefer (1999) by nearly half an order of magnitude.

  3. Liquid-induced colour change in a beetle: the concept of a photonic cell.

    PubMed

    Mouchet, Sébastien R; Van Hooijdonk, Eloise; Welch, Victoria L; Louette, Pierre; Colomer, Jean-François; Su, Bao-Lian; Deparis, Olivier

    2016-01-13

    The structural colour of male Hoplia coerulea beetles is notable for changing from blue to green upon contact with water. In fact, reversible changes in both colour and fluorescence are induced in this beetle by various liquids, although the mechanism has never been fully explained. Changes enacted by water are much faster than those by ethanol, in spite of ethanol's more rapid spread across the elytral surface. Moreover, the beetle's photonic structure is enclosed by a thin scale envelope preventing direct contact with the liquid. Here, we note the presence of sodium, potassium and calcium salts in the scale material that mediate the penetration of liquid through putative micropores. The result leads to the novel concept of a "photonic cell": namely, a biocompatible photonic structure that is encased by a permeable envelope which mediates liquid-induced colour changes in that photonic structure. Engineered photonic cells dispersed in culture media could revolutionize the monitoring of cell-metabolism.

  4. Magneto-tunable one-dimensional graphene-based photonic crystal

    SciTech Connect

    Jahani, D. Soltani-Vala, A. Barvestani, J.; Hajian, H.

    2014-04-21

    We investigate the effect of a perpendicular static magnetic field on the optical bandgap of a one-dimensional (1D) graphene-dielectric photonic crystal in order to examine the possibility of reaching a rich tunable photonic bandgap. The solution of the wave equation in the presence of the anisotropic Hall situation suggests two decoupled circularly polarized wave each exhibiting different degrees of bandgap tunability. It is also numerically demonstrated that applying different values of field intensity lead to perceptible changes in photonic bandgap of such a structure. Finally, the effect of opening a finite electronic gap in the spectrum of graphene on the optical dispersion solution of such a 1D photonic crystal is reported. It is shown that increasing the value of the electronic gap results in the shrinkage of the associated photonic bandgaps.

  5. Observation of four-wave mixing in slow-light silicon photonic crystal waveguides.

    PubMed

    McMillan, James F; Yu, Mingbin; Kwong, Dim-Lee; Wong, Chee Wei

    2010-07-19

    Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conversion efficiency is observed. Concurrently, a decrease in the conversion bandwidth is observed due to the increase in group velocity dispersion in the slow-light regime. The experimentally observed conversion efficiencies agree with the numerically modeled results.

  6. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs.

    PubMed

    Williamson, Ian A D; Mousavi, S Hossein; Wang, Zheng

    2016-05-04

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene's large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude.

  7. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    PubMed Central

    Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng

    2016-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314

  8. Topological Photonic States

    NASA Astrophysics Data System (ADS)

    He, Cheng; Lin, Liang; Sun, Xiao-Chen; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    As exotic phenomena in optics, topological states in photonic crystals have drawn much attention due to their fundamental significance and great potential applications. Because of the broken time-reversal symmetry under the influence of an external magnetic field, the photonic crystals composed of magneto-optical materials will lead to the degeneracy lifting and show particular topological characters of energy bands. The upper and lower bulk bands have nonzero integer topological numbers. The gapless edge states can be realized to connect two bulk states. This topological photonic states originated from the topological property can be analogous to the integer quantum Hall effect in an electronic system. The gapless edge state only possesses a single sign of gradient in the whole Brillouin zone, and thus the group velocity is only in one direction leading to the one-way energy flow, which is robust to disorder and impurity due to the nontrivial topological nature of the corresponding electromagnetic states. Furthermore, this one-way edge state would cross the Brillouin center with nonzero group velocity, where the negative-zero-positive phase velocity can be used to realize some interesting phenomena such as tunneling and backward phase propagation. On the other hand, under the protection of time-reversal symmetry, a pair of gapless edge states can also be constructed by using magnetic-electric coupling meta-materials, exhibiting Fermion-like spin helix topological edge states, which can be regarded as an optical counterpart of topological insulator originating from the spin-orbit coupling. The aim of this article is to have a comprehensive review of recent research literatures published in this emerging field of photonic topological phenomena. Photonic topological states and their related phenomena are presented and analyzed, including the chiral edge states, polarization dependent transportation, unidirectional waveguide and nonreciprocal optical transmission, all

  9. Vernier-like super resolution with guided correlated photon pairs.

    PubMed

    Nespoli, Matteo; Goan, Hsi-Sheng; Shih, Min-Hsiung

    2016-01-11

    We describe a dispersion-enabled, ultra-low power realization of super-resolution in an integrated Mach-Zehnder interferometer. Our scheme is based on a Vernier-like effect in the coincident detection of frequency correlated, non-degenerate photon pairs at the sensor output in the presence of group index dispersion. We design and simulate a realistic integrated refractive index sensor in a silicon nitride on silica platform and characterize its performance in the proposed scheme. We present numerical results showing a sensitivity improvement upward of 40 times over a traditional sensing scheme. The device we design is well within the reach of modern semiconductor fabrication technology. We believe this is the first metrology scheme that uses waveguide group index dispersion as a resource to attain super-resolution.

  10. Photonics21 and the perspectives from the European photonics industry

    NASA Astrophysics Data System (ADS)

    Mertin, Michael

    2014-03-01

    Photonics provide indispensable technology buildings bricks that enable a wide range of products as well as driving the development of entirely new industries. The European Commission recognized the potential of photonics to strengthen Europe's industrial and innovation capacity and consequently declared photonics as a Key Enabling Technology. Photonics21 as partner of the European Commission developed a Multiannual Strategic Roadmap which aims at boosting European photonics along the whole innovation chain with special focus on the gap between generating knowledge and products. The roadmap will be realized in a Public Private Partnership between the European photonics industry and the European Commission until 2020. In this PPP it is intended that the industry commits to leverage the public funds by the factor of 4.

  11. OPC for curved designs in application to photonics on silicon

    NASA Astrophysics Data System (ADS)

    Orlando, Bastien; Farys, Vincent; Schneider, Loïc.; Cremer, Sébastien; Postnikov, Sergei V.; Millequant, Matthieu; Dirrenberger, Mathieu; Tiphine, Charles; Bayle, Sébastian; Tranquillin, Céline; Schiavone, Patrick

    2016-03-01

    Today's design for photonics devices on silicon relies on non-Manhattan features such as curves and a wide variety of angles with minimum feature size below 100nm. Industrial manufacturing of such devices requires optimized process window with 193nm lithography. Therefore, Resolution Enhancement Techniques (RET) that are commonly used for CMOS manufacturing are required. However, most RET algorithms are based on Manhattan fragmentation (0°, 45° and 90°) which can generate large CD dispersion on masks for photonic designs. Industrial implementation of RET solutions to photonic designs is challenging as most currently available OPC tools are CMOS-oriented. Discrepancy from design to final results induced by RET techniques can lead to lower photonic device performance. We propose a novel sizing algorithm allowing adjustment of design edge fragments while preserving the topology of the original structures. The results of the algorithm implementation in the rule based sizing, SRAF placement and model based correction will be discussed in this paper. Corrections based on this novel algorithm were applied and characterized on real photonics devices. The obtained results demonstrate the validity of the proposed correction method integrated in Inscale software of Aselta Nanographics.

  12. Twin photon pairs in a high-Q silicon microresonator

    SciTech Connect

    Rogers, Steven; Lu, Xiyuan; Jiang, Wei C.; Lin, Qiang

    2015-07-27

    We report the generation of high-purity twin photon pairs through cavity-enhanced non-degenerate four-wave mixing (FWM) in a high-Q silicon microdisk resonator. Twin photon pairs are created within the same cavity mode and are consequently expected to be identical in all degrees of freedom. The device is able to produce twin photons at telecommunication wavelengths with a pair generation rate as large as (3.96 ± 0.03) × 10{sup 5} pairs/s, within a narrow bandwidth of 0.72 GHz. A coincidence-to-accidental ratio of 660 ± 62 was measured, the highest value reported to date for twin photon pairs, at a pair generation rate of (2.47 ± 0.04) × 10{sup 4} pairs/s. Through careful engineering of the dispersion matching window, we have reduced the ratio of photons resulting from degenerate FWM to non-degenerate FWM to less than 0.15.

  13. Synthetic Landau levels for photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-01

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock-Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen-Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.

  14. Circuit electromechanics with single photon strong coupling

    SciTech Connect

    Xue, Zheng-Yuan Yang, Li-Na; Zhou, Jian

    2015-07-13

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.

  15. Programmable atom-photon quantum interface

    NASA Astrophysics Data System (ADS)

    Kurz, Christoph; Eich, Pascal; Schug, Michael; Müller, Philipp; Eschner, Jürgen

    2016-06-01

    We present the implementation of a programmable atom-photon quantum interface, employing a single trapped +40Ca ion and single photons. Depending on its mode of operation, the interface serves as a bidirectional atom-photon quantum-state converter, as a source of entangled atom-photon states, or as a quantum frequency converter of single photons. The interface lends itself particularly to interfacing ions with spontaneous parametric down-conversion-based single-photon or entangled-photon-pair sources.

  16. Dispersion Engineering of High-Q Silicon Microresonators via Thermal Oxidation - Postprint

    DTIC Science & Technology

    2014-03-12

    interest in recent years30–37. However, its high refractive index , although supporting tight mode confinement, leads to a strong waveguide- dispersion...Wang, L. Chen, L. T. Varghese, and A. M. Weiner , Nature Photon. 5, 770 (2011). 16T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555

  17. Charmonium production in photon-photon collisions

    SciTech Connect

    Aihara, H.; Alston-Garnjost, M.; Avery, R.E.; Barbaro-Galtieri, A.; Barker, A.R.; Barnett, B.A.; Bauer, D.A.; Bengtsson, H.U.; Bobbink, G.J.; Bolognese, T.S.; Bross, A.D.; Buchanan, C.D.; Buijs, A.; Caldwell, D.O.; Chao, H.Y.; Chun, S.B.; Clark, A.R.; Cowan, G.D.; Crane, D.A.; Dahl, O.I.; Daoudi, M.; Derby, K.A.; Eastman, J.J.; Eberhard, P.H.; Edberg, T.K.; Eisner, A.M.; Enomoto, R.; Erne, F.C.; Fujii, T.; Gary, J.W.; Gorn, W.; Hauptman, J.M.; Hofmann, W.; Hylen, J.; Kamae, T.; Kaye, H.S.; Kees, K.H.; Kenney, R.W.; Winston, K.; Kofler, R.R.; Lander, R.L.; Langeveld, W.G.J.; Layter, J.G.; Lin, W.T.; Linde, F.L.; Loken, S.C.; Lu, A.; Lu, X.Q.; Lynch, G.R.; Madaras, R.J.; Maeshima, K.; Magnuson, B.D.; Masek, G.E.; Mathis, L.G.; Matthews, J.A.J.; Maxfield, S.J.; Miller, E.S.; Moses, W.; McNeil, R.R.; Nygren, D.R.; Oddone, P.R.; Paar, H.P.; Park, S.K.; Pellett, D.E.; Pripstein, M.; Ronan, M.T.; Ross, R.R.; Rouse, F.R.; Schwitkis, K.A.; Sens, J.C.; Shapiro, G.; Shen, B.C.; Slater, W.E.; Smit

    1987-01-01

    We have searched for the two-photon production of the /eta//sub c/, /chi//sub 0/ and /chi//sub 2/ charmonium states at the e/sup +/e/sup -/ collider PEP in the channels /gamma//gamma/ /yields/ K/sup +-/K/sub S//sup 0//pi//sup -+/, /gamma//gamma/ /yields/ K/sup +/K/sup -//pi//sup +//pi//sup -/, /gamma//gamma/ /yields/ /pi//sup +//pi//sup -//pi//sup +//pi//sup -/ and /gamma//gamma/ /yields/ K/sup +/K/sup -/K/sup +/K/sup -/. We identify four /eta//sub c/ candidates in the K/sup +/K/sup -/K/sup +/K/sup -/ channel, on a negligible background; this leads to a preliminary 95% C.L. lower limit for /Gamma//sub /gamma//gamma//(/eta//sup c/) of 1.6 keV. In the other channels we find no evidence for any of the three states and establish preliminary 95% C.L. upper limits /Gamma//sub /gamma//gamma//(/eta//sub c/) < 15 keV, /Gamma//sub /gamma//gamma//(/chi//sub 0/)< 14 keV and /Gamma//sub /gamma//gamma//(/chi//sub 2/) < 4.0 keV. Combining the results on the /eta//sub c/ from all channels we obtain the value /Gamma//sub /gamma//gamma//(/eta//sub c/) = 4.5/sub -3.6///sup -5.5 keV. 18 refs., 3 figs., 1 tab.

  18. The DHG sum rule measured with medium energy photons

    SciTech Connect

    Hicks, K.; Ardashev, K.; Babusci, D.

    1997-12-31

    The structure of the nucleon has many important features that are yet to be uncovered. Of current interest is the nucleon spin-structure which can be measured by doing double-polarization experiments with photon beams of medium energies (0.1 to 2 GeV). One such experiment uses dispersion relations, applied to the Compton scattering amplitude, to relate measurement of the total reaction cross section integrated over the incident photon energy to the nucleon anomalous magnetic moment. At present, no single facility spans the entire range of photon energies necessary to test this sum rule. The Laser-Electron Gamma Source (LEGS) facility will measure the double-polarization observables at photon energies between 0.15--0.47 MeV. Either the SPring8 facility, the GRAAL facility (France), or Jefferson Laboratory could make similar measurements at higher photon energies. A high-precision measurement of the spin-polarizability and the Drell-Hearn-Gerasimov sum rule is now possible with the advent of high-polarization solid HD targets at medium energy polarized photon facilities such as LEGS, GRAAL and SPring8. Other facilities with lower polarization in either the photon beam or target (or both) are also pursuing these measurements because of the high priority associated with this physics. The Spin-asymmetry (SASY) detector that will be used at LEGS has been briefly outlined in this paper. The detector efficiencies have been explored with simulations studies using the GEANT software, with the result that both charged and uncharged pions can be detected with a reasonable efficiency (> 30%) over a large solid angle. Tracking with a TPC, which will be built at LEGS over the next few years, will improve the capabilities of these measurements.

  19. Photon-photon collisions at the next linear collider: Theory

    SciTech Connect

    Brodsky, S.J.

    1993-08-01

    The collisions of photons at a high energy electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions, and extensions of the standard model. It is expected that by using back-scattered laser beams that the effective luminosity and energy of photon-photon collisions will be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this talk, I will focus on tests of electroweak theory in photon-photon annihilation such as {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs boson, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup {minus}} pair, high energy photon-photon collisions can also provide a remarkable background-free laboratory for studying WW collisions and annihilation. I also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

  20. Resonant photonic States in coupled heterostructure photonic crystal waveguides.

    PubMed

    Cox, Jd; Sabarinathan, J; Singh, Mr

    2010-02-09

    In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  1. Photon correlation in single-photon frequency upconversion.

    PubMed

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  2. Topological photonics: an observation of Landau levels for optical photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Sommer, Ariel; Simon, Jonathan

    Creating photonic materials with nontrivial topological characteristics has seen burgeoning interest in recent years; however, a major route to topology, a magnetic field for continuum photons, has remained elusive. We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We will discuss the conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids. This work was supported by DOE, DARPA, and AFOSR.

  3. SMED - Sulphur MEditerranean Dispersion

    NASA Astrophysics Data System (ADS)

    Salerno, Giuseppe G.; Sellitto, Pasquale; Corradini, Stefano; Di Sarra, Alcide Giorgio; Merucci, Luca; Caltabiano, Tommaso; La Spina, Alessandro

    2016-04-01

    Emissions of volcanic gases and particles can have profound impacts on terrestrial environment, atmospheric composition, climate forcing, and then on human health at various temporal and spatial scales. Volcanic emissions have been identified as one of the largest sources of uncertainty in our understanding of recent climate change trends. In particular, a primary role is acted by sulphur dioxide emission due to its conversion to volcanic sulphate aerosol via atmospheric oxidation. Aerosols may play a key role in the radiative budget and then in photochemistry and tropospheric composition. Mt. Etna is one of the most prodigious and persistent emitters of gasses and particles on Earth, accounting for about 10% of global average volcanic emission of CO2 and SO2. Its sulphur emissions stand for 0.7 × 106 t S/yr9 and then about 10 times bigger than anthropogenic sulphur emissions in the Mediterranean area. Centrepiece of the SMED project is to advance the understanding of volcanogenic sulphur dioxide and sulphate aerosol particles dispersion and radiative impact on the downwind Mediterranean region by an integrated approach between ground- and space-based observations and modelling. Research is addressed by exploring the potential relationship between proximal SO2 flux and aerosol measured remotely in the volcanic plume of Mt. Etna between 2000 and 2014 and distal aerosol ground-based measurements in Lampedusa, Greece, and Malta from AERONET network. Ground data are combined with satellite multispectral polar and geostationary imagers able to detect and retrieve volcanic ash and SO2. The high repetition time of SEVIRI (15 minutes) will ensure the potential opportunity to follow the entire evolution of the volcanic cloud, while, the higher spatial resolution of MODIS (1x1 km2), are exploited for investigating the probability to retrieve volcanic SO2 abundances from passive degassing. Ground and space observations are complemented with atmospheric Lagrangian model

  4. Quantum simulation with interacting photons

    NASA Astrophysics Data System (ADS)

    Hartmann, Michael J.

    2016-10-01

    Enhancing optical nonlinearities so that they become appreciable on the single photon level and lead to nonclassical light fields has been a central objective in quantum optics for many years. After this has been achieved in individual micro-cavities representing an effectively zero-dimensional volume, this line of research has shifted its focus towards engineering devices where such strong optical nonlinearities simultaneously occur in extended volumes of multiple nodes of a network. Recent technological progress in several experimental platforms now opens the possibility to employ the systems of strongly interacting photons, these give rise to as quantum simulators. Here we review the recent development and current status of this research direction for theory and experiment. Addressing both, optical photons interacting with atoms and microwave photons in networks of superconducting circuits, we focus on analogue quantum simulations in scenarios where effective photon-photon interactions exceed dissipative processes in the considered platforms.

  5. Single-photon quadratic optomechanics

    PubMed Central

    Liao, Jie-Qiao; Nori, Franco

    2014-01-01

    We present exact analytical solutions to study the coherent interaction between a single photon and the mechanical motion of a membrane in quadratic optomechanics. We consider single-photon emission and scattering when the photon is initially inside the cavity and in the fields outside the cavity, respectively. Using our solutions, we calculate the single-photon emission and scattering spectra, and find relations between the spectral features and the system's inherent parameters, such as: the optomechanical coupling strength, the mechanical frequency, and the cavity-field decay rate. In particular, we clarify the conditions for the phonon sidebands to be visible. We also study the photon-phonon entanglement for the long-time emission and scattering states. The linear entropy is employed to characterize this entanglement by treating it as a bipartite one between a single mode of phonons and a single photon. PMID:25200128

  6. All-photonic quantum repeaters

    NASA Astrophysics Data System (ADS)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-04-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories.

  7. Natural dispersion revisited.

    PubMed

    Johansen, Øistein; Reed, Mark; Bodsberg, Nils Rune

    2015-04-15

    This paper presents a new semi-empirical model for oil droplet size distributions generated by single breaking wave events. Empirical data was obtained from laboratory experiments with different crude oils at different stages of weathering. The paper starts with a review of the most commonly used model for natural dispersion, which is followed by a presentation of the laboratory study on oil droplet size distributions formed by breaking waves conducted by SINTEF on behalf of the NOAA/UNH Coastal Response Research Center. The next section presents the theoretical and empirical foundation for the new model. The model is based on dimensional analysis and contains two non-dimensional groups; the Weber and Reynolds number. The model was validated with data from a full scale experimental oil spill conducted in the Haltenbanken area offshore Norway in July 1982, as described in the last section of the paper.

  8. Experimental interference of independent photons.

    PubMed

    Kaltenbaek, Rainer; Blauensteiner, Bibiane; Zukowski, Marek; Aspelmeyer, Markus; Zeilinger, Anton

    2006-06-23

    Interference of photons emerging from independent sources is essential for modern quantum-information processing schemes, above all quantum repeaters and linear-optics quantum computers. We report an observation of nonclassical interference of two single photons originating from two independent, separated sources, which were actively synchronized with a rms timing jitter of 260 fs. The resulting (two-photon) interference visibility was (83+/-4)%.

  9. 'Photonic jets' from dielectric microaxicons

    SciTech Connect

    Geints, Yu E; Zemlyanov, A A; Panina, E K

    2015-08-31

    We consider a specific spatially localised light structure, namely, a 'photonic jet' formed in the near field upon scattering of an optical wave in a dielectric micron particle. Dimensional parameters and intensity of a photonic jet from microaxicons of different spatial orientation are studied theoretically. It is found for the first time that an axicon-generated photonic jet has in this case a substantially larger length compared with the case of a jet formed on a spherical particle. (scattering of light)

  10. Physics at a photon collider

    SciTech Connect

    Stefan Soldner-Rembold

    2002-09-30

    A Photon Collider will provide unique opportunities to study the SM Higgs boson and to determine its properties. MSSM Higgs bosons can be discovered at the Photon Collider for scenarios where they might escape detection at the LHC. As an example for the many other physics topics which can be studied at a Photon Collider, recent results on Non-Commutative Field Theories are also discussed.

  11. Photonic technologies for a pupil remapping interferometer

    NASA Astrophysics Data System (ADS)

    Tuthill, Peter; Jovanovic, Nemanja; Lacour, Sylvestre; Lehmann, Andrew; Ams, Martin; Marshall, Graham; Lawrence, Jon; Withford, Michael; Robertson, Gordon; Ireland, Michael; Pope, Benjamin; Stewart, Paul

    2010-07-01

    Interest in pupil-remapping interferometry, in which a single telescope pupil is fragmented and recombined using fiber optic technologies, has been growing among a number of groups. As a logical extrapolation from several highly successful aperture masking programs underway worldwide, pupil remapping offers the advantage of spatial filtering (with single-mode fibers) and in principle can avoid the penalty of low throughput inherent to an aperture mask. However in practice, pupil remapping presents a number of difficult technological challenges including injection into the fibers, pathlength matching of the device, and stability and reproducibility of the results. Here we present new approaches based on recently-available photonic technologies in which coherent threedimensional waveguide structures can be sculpted into bulk substrate. These advances allow us to miniaturize the photonic processing into a single, robust, thermally stable element; ideal for demanding observatory or spacecraft environments. Ultimately, a wide range of optical functionality could be routinely fabricated into such structures, including beam combiners and dispersive or wavelength selective elements, bringing us closer to the vision of an interferometer on a chip.

  12. Photonic crystal microspheres

    NASA Astrophysics Data System (ADS)

    Zhokhov, A. A.; Masalov, V. M.; Sukhinina, N. S.; Matveev, D. V.; Dolganov, P. V.; Dolganov, V. K.; Emelchenko, G. A.

    2015-11-01

    Spherical samples of photonic crystals formed by colloidal SiO2 nanoparticles were synthesized. Synthesis of microspheres from 160 nm, 200 nm and 430 nm diameter colloidal nanoparticles was performed over a wide size range, from 5 μm to 50 μm. The mechanism of formation of void microparticles exceeding 50 μm is discussed. The spectral measurements verified the association of the spectra with the peaks of selective reflection from the cubic lattice planes. The microparticle morphology is characterized by scanning electron microscopy (SEM).

  13. Robust Photon Locking

    SciTech Connect

    Bayer, T.; Wollenhaupt, M.; Sarpe-Tudoran, C.; Baumert, T.

    2009-01-16

    We experimentally demonstrate a strong-field coherent control mechanism that combines the advantages of photon locking (PL) and rapid adiabatic passage (RAP). Unlike earlier implementations of PL and RAP by pulse sequences or chirped pulses, we use shaped pulses generated by phase modulation of the spectrum of a femtosecond laser pulse with a generalized phase discontinuity. The novel control scenario is characterized by a high degree of robustness achieved via adiabatic preparation of a state of maximum coherence. Subsequent phase control allows for efficient switching among different target states. We investigate both properties by photoelectron spectroscopy on potassium atoms interacting with the intense shaped light field.

  14. Silicon active photonic devices

    NASA Astrophysics Data System (ADS)

    Dimitropoulos, Dimitrios

    Active photonic devices utilizing the optical nonlinearities of silicon have emerged in the last 5 years and the effort for commercial photonic devices in the material that has been the workhorse of electronics has been building up since. This dissertation presents the theory for some of these devices. We are concerned herein with CW lasers, amplifiers and wavelength converters that are based on the Raman effect. There have already been cursory experimental demonstrations of these devices and some of their limitations are already apparent. Most of the limitations observed are because of the appearance of effects that are competing with stimulated Raman scattering. Under the high optical powers that are necessary for the Raman effect (tens to hundrends of mW's) the process of optical two-photon (TPA) absorption occurs. The absorption of optical power that it causes itself is weak but in the process electrons and holes are generated which can further absorb light through the free-carrier absorption effect (FCA). The effective "lifetime" that these carriers have determines the magnitude of the FCA loss. We present a model for the carrier lifetime in Silicon-On-Insulator (SOI) waveguides and numerical simulations to understand how this critical parameter varies and how it can be controlled. A p-i-n junction built along SOI waveguides can help achieve lifetime of the order of 20--100 ps but the price one has to pay is on-chip electrical power consumption on the order of 100's of mWs. We model CW Raman lasers and we find that the carrier lifetime reduces the output power. If the carrier lifetime exceeds a certain "critical" value optical losses become overwhelming and lasing is impossible. As we show, in amplifiers, the nonlinear loss does not only result in diminished gain, but also in a higher noise figure. Finally the effect of Coherent anti-Stokes Raman scattering (CARS) is examined. The effect is important because with a pump frequency at 1434nm coherent power

  15. Spaceborne Photonics Institute

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Farrukh, U. O.; Han, K. S.; Hwang, I. H.; Jalufka, N. W.; Lowe, C. W.; Tabibi, B. M.; Lee, C. J.; Lyons, D.; Maclin, A.

    1994-01-01

    This report describes in chronological detail the development of the Spaceborne Photonics Institute as a sustained research effort at Hampton University in the area of optical physics. This provided the research expertise to initiate a PhD program in Physics. Research was carried out in the areas of: (1) modelling of spaceborne solid state laser systems; (2) amplified spontaneous emission in solar pumped iodine lasers; (3) closely simulated AM0 CW solar pumped iodine laser and repeatedly short pulsed iodine laser oscillator; (4) a materials spectroscopy and growth program; and (5) laser induced fluorescence and atomic and molecular spectroscopy.

  16. Determinations of Photon Spectra

    DTIC Science & Technology

    1989-01-01

    COVERED O14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT THESIS/ftFROW*W FROM TO 1989 1 54 16. SUPPLEMENTARY NOTATION A ?RQVk;U kOR 3UB LIC RELEASE...IAW AFR 190- 1 ERNEST A. HAYGOOD, 1st Lt, USAF Executive Officer, Civilian Institution ProQrams 17. COSATI CODES 18. SUBJECT TERMS (Continue on...spectra from measurements obtained with a sodium iodide counting system. A response matrix is computed by combining photon cross sections with

  17. Visualizing electrons and photons

    NASA Astrophysics Data System (ADS)

    Haque, Azizul; Haque, Adam

    2015-09-01

    Our investigation shows that the wave properties associated with fermions implies their finite size. However, existing quantum theories are based on the point particle concept, and fail to maintain relativistic invariance for finite sized charged particles. Notably, the quantum uncertainty principle introduces finite size in all elementary particles. Recently, we have developed a theory for understanding the quantum properties of finite sized fermions and bosons that incorporates both special relativity and quantum uncertainty. Using this theory, we are able to demonstrate theoretically the physical appearance of bosons and fermions. Understanding of the physical structure of electrons and photons will definitely help us advance our technology.

  18. Photon Induced Electron Attachment.

    DTIC Science & Technology

    1984-12-01

    initial measure- ments was that high switch currents and long pulse durations appear to lead to substantially enhanced attachment rates in C3F8 ...similar conditions, but with 1.9 x 1015 C3F8 molecules/cm 3 added to the switch gas mixture. The initial current rise is comparable in both plots, but the...enhanced attachment during the switch opening time period. B. C0O Laser Excitation The photon enhanced attachment of the three gases NF3, C3F8 I and

  19. Generalized Fibonacci photon sieves.

    PubMed

    Ke, Jie; Zhang, Junyong

    2015-08-20

    We successfully extend the standard Fibonacci zone plates with two on-axis foci to the generalized Fibonacci photon sieves (GFiPS) with multiple on-axis foci. We also propose the direct and inverse design methods based on the characteristic roots of the recursion relation of the generalized Fibonacci sequences. By switching the transparent and opaque zones, according to the generalized Fibonacci sequences, we not only realize adjustable multifocal distances but also fulfill the adjustable compression ratio of focal spots in different directions.

  20. Nanoimprinted photonic devices

    NASA Astrophysics Data System (ADS)

    Thomas, Jayan; Gangopadhyay, Palash; Munoz, Ramon; Peyghambarian, N.

    2010-08-01

    We introduce a simple yet efficient approach for nanoimprinting sub-50 nm dimensions starting from a low molecular weight plasticized polymer melt. This technique enabled us to successfully imprint versatile large area nanopatterns with high degrees of fidelity and rational control over the residual layers. The key advantage is its reliability in printing versatile nanostructures and nanophotonic devices doped with organic dyes owing to its low processing temperature. Since nanopatterns can be fabricated easily at low costs, this approach offers an easy pathway for achieving excellent nanoimprinted structures for a variety of photonic, electronic and biological research and applications.

  1. Dirac tensor with heavy photon

    SciTech Connect

    Bytev, V. V.; Kuraev, E. A.; Scherbakova, E. S.

    2013-03-15

    For the large-angle hard-photon emission by initial leptons in the process of high-energy annihilation of e{sup +}e{sup -} to hadrons, the Dirac tensor is obtained by taking the lowest-order radiative corrections into account. The case of large-angle emission of two hard photons by initial leptons is considered. In the final result, the kinematic case of collinear emission of hard photons and soft virtual and real photons is included; it can be used for the construction of Monte-Carlo generators.

  2. Photonic Landau levels on cones

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-05-01

    Creating photonic materials with nontrivial topological characteristics has seen burgeoning interest in recent years; however, a major route to topology, a magnetic field for continuum photons, has remained elusive. We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We will discuss the conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids.

  3. Fiber-mesh photonic molecule

    NASA Astrophysics Data System (ADS)

    Mishra, Subodha; Satpathy, Sashi

    2008-03-01

    Analogous to the photonic crystal, we introduce the concept of a fiber-mesh photonic molecule made up of optical fibers and study its transmission characteristics. We consider a specific example of a photonic molecule, inspired by the well-known C60 molecule, with the arms of the molecule formed out of single-moded optical fibers. The transmittance consists of sharp peaks determined by the pole structure of the scattering matrix in the complex energy plane. A molecule can be designed to control the positions and the widths of the transmission peaks, opening up the possibility of building new photonic devices such as high quality band-pass filters.

  4. ACOUSTIC RECTIFICATION IN DISPERSIVE MEDIA

    SciTech Connect

    Cantrell, John H.

    2009-03-03

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  5. Compensation of temporal and spatial dispersion for multiphoton acousto-optic laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Iyer, Vijay; Saggau, Peter

    2003-10-01

    In laser-scanning microscopy, acousto-optic (AO) deflection provides a means to quickly position a laser beam to random locations throughout the field-of-view. Compared to conventional laser-scanning using galvanometer-driven mirrors, this approach increases the frame rate and signal-to-noise ratio, and reduces time spent illuminating sites of no interest. However, random-access AO scanning has not yet been combined with multi-photon microscopy, primarily because the femtosecond laser pulses employed are subject to significant amounts of both spatial and temporal dispersion upon propagation through common AO materials. Left uncompensated, spatial dispersion reduces the microscope"s spatial resolution while temporal dispersion reduces the multi-photon excitation efficacy. In previous work, we have demonstrated, 1) the efficacy of a single diffraction grating scheme which reduces the spatial dispersion at least 3-fold throughout the field-of-view, and 2) the use of a novel stacked-prism pre-chirper for compensating the temporal dispersion of a pair of AODs using a shorter mechanical path length (2-4X) than standard prism-pair arrangements. In this work, we demonstrate for the first time the use of these compensation approaches with a custom-made large-area slow-shear TeO2 AOD specifically suited for the development of a high-resolution 2-D random-access AO scanning multi-photon laser-scanning microscope (AO-MPLSM).

  6. Lower bound for the spatial extent of localized modes in photonic-crystal waveguides with small random imperfections

    NASA Astrophysics Data System (ADS)

    Faggiani, Rémi; Baron, Alexandre; Zang, Xiaorun; Lalouat, Loïc; Schulz, Sebastian A.; O’Regan, Bryan; Vynck, Kevin; Cluzel, Benoît; de Fornel, Frédérique; Krauss, Thomas F.; Lalanne, Philippe

    2016-06-01

    Light localization due to random imperfections in periodic media is paramount in photonics research. The group index is known to be a key parameter for localization near photonic band edges, since small group velocities reinforce light interaction with imperfections. Here, we show that the size of the smallest localized mode that is formed at the band edge of a one-dimensional periodic medium is driven instead by the effective photon mass, i.e. the flatness of the dispersion curve. Our theoretical prediction is supported by numerical simulations, which reveal that photonic-crystal waveguides can exhibit surprisingly small localized modes, much smaller than those observed in Bragg stacks thanks to their larger effective photon mass. This possibility is demonstrated experimentally with a photonic-crystal waveguide fabricated without any intentional disorder, for which near-field measurements allow us to distinctly observe a wavelength-scale localized mode despite the smallness (~1/1000 of a wavelength) of the fabrication imperfections.

  7. Random lasing from cholesteric liquid crystal microspheres dispersed in glycerol.

    PubMed

    Li, Yong; Luo, Dan; Chen, Rui

    2016-11-01

    We demonstrate random lasing from a scattering system formed by a cholesteric liquid crystal dispersed in glycerol. Strong scattering of light is produced from the interference between the cholesteric liquid crystal microsphere and glycerol and leads to random lasing. The optical properties of random lasing, such as intensity, threshold, and the temperature effect on lasing emission are demonstrated. The random laser is distinguished from the band-edge laser generated within the cholesteric liquid crystal microspheres by analyzing the positions of the photonic band-edge of the cholesteric liquid crystal and the photoluminescence of the doped laser dye. The random laser from cholesteric liquid crystal microspheres in glycerol possesses a simple fabrication process, small volume, and low threshold, which enable it to be used in speckle-free imaging, target identification, biomedicine, document coding, and other photonic devices.

  8. The ubiquitous photonic wheel

    NASA Astrophysics Data System (ADS)

    Aiello, Andrea; Banzer, Peter

    2016-08-01

    A circularly polarized electromagnetic plane wave carries an electric field that rotates clockwise or counterclockwise around the propagation direction of the wave. According to the handedness of this rotation, its longitudinal spin angular momentum (AM) density is either parallel or antiparallel to the propagation of light. However, there are also light waves that are not simply plane and carry an electric field that rotates around an axis perpendicular to the propagation direction, thus yielding transverse spin AM density. Electric field configurations of this kind have been suggestively dubbed ‘photonic wheels’. It has been recently shown that photonic wheels are commonplace in optics as they occur in electromagnetic fields confined by waveguides, in strongly focused beams, in plasmonic and evanescent waves. In this work we establish a general theory of electromagnetic waves propagating along a well defined direction, and carrying transverse spin AM density. We show that depending on the shape of these waves, the spin density may be either perpendicular to the mean linear momentum (globally transverse spin) or to the linear momentum density (locally transverse spin). We find that the latter case generically occurs only for non-diffracting beams, such as the Bessel beams. Moreover, we introduce the concept of meridional Stokes parameters to operationally quantify the transverse spin density. To illustrate our theory, we apply it to the exemplary cases of Bessel beams and evanescent waves. These results open a new and accessible route to the understanding, generation and manipulation of optical beams with transverse spin AM density.

  9. Silicon photonics manufacturing.

    PubMed

    Zortman, William A; Trotter, Douglas C; Watts, Michael R

    2010-11-08

    Most demonstrations in silicon photonics are done with single devices that are targeted for use in future systems. One of the costs of operating multiple devices concurrently on a chip in a system application is the power needed to properly space resonant device frequencies on a system's frequency grid. We asses this power requirement by quantifying the source and impact of process induced resonant frequency variation for microdisk resonators across individual die, entire wafers and wafer lots for separate process runs. Additionally we introduce a new technique, utilizing the Transverse Electric (TE) and Transverse Magnetic (TM) modes in microdisks, to extract thickness and width variations across wafers and dice. Through our analysis we find that a standard six inch Silicon on Insulator (SOI) 0.35 μm process controls microdisk resonant frequencies for the TE fundamental resonances to within 1 THz across a wafer and 105 GHz within a single die. Based on demonstrated thermal tuner technology, a stable manufacturing process exhibiting this level of variation can limit the resonance trimming power per resonant device to 231 μW. Taken in conjunction with the power to compensate for thermal environmental variations, the expected power requirement to compensate for fabrication-induced non-uniformities is 17% of that total. This leads to the prediction that thermal tuning efficiency is likely to have the most dominant impact on the overall power budget of silicon photonics resonator technology.

  10. Smart photonic carbon brush

    NASA Astrophysics Data System (ADS)

    Morozov, Oleg G.; Kuznetsov, Artem A.; Morozov, Gennady A.; Nureev, Ilnur I.; Sakhabutdinov, Airat Z.; Faskhutdinov, Lenar M.; Artemev, Vadim I.

    2016-03-01

    Aspects of the paper relate to a wear monitoring system for smart photonic carbon brush. There are many applications in which regular inspection is not feasible because of a number of factors including, for example, time, labor, cost and disruptions due to down time. Thus, there is a need for a system that can monitor the wear of a component while the component is in operation or without having to remove the component from its operational position. We propose a new smart photonic method for characterization of carbon brush wear. It is based on the usage of advantages of the multiplicative response of FBG and LPFG sensors and its double-frequency probing. Additional measuring parameters are the wear rate, the brush temperature, the engine rotation speed, the hangs control, and rotor speed. Sensor is embedded in brush. Firstly the change of sensor length is used to measure wear value and its central wavelength shift for temperature ones. The results of modeling and experiments are presented.

  11. Gravitational Repulsion of Photons

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2012-03-01

    Plasma redshift explains the cosmological redshift, the redshift of stars and galaxies, the cosmic microwave background, the cosmic X-ray background, the observed redshift relation for magnitude and surface-brightness for supernovae, the solar redshift, the transition zone for the solar corona, the high temperatures of the solar corona. Plasma redshift makes it clear that the optical solar lines are not gravitationally redshifted when observed on Earth. Instead their gravitational redshifts in the Sun are reversed, as the photons travel from the Sun to the Earth. This means that the photons are repelled and not attracted by the gravitational field. There is, therefore, no need for Einstein's Lambda for explaining the static Universe. When the matter concentrates and falls towards the center of galaxies, it becomes so hot that it disintegrates matter to reform primordial like matter. In this way the universe can renew itself forever. This is all based on conventional physics, using only more accurate physics and calculations than those usually used. There is no need for Dark Energy, Dark Matter, Accelerated Expansion, nor Black Holes for explaining the everlasting Universe.

  12. Microfluidic photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Cho, Sung Hwan; Godin, Jessica; Chen, Chun Hao; Tsai, Frank S.; Lo, Yu-Hwa

    2008-11-01

    We report on the development of an inexpensive, portable lab-on-a-chip flow cytometer system in which microfluidics, photonics, and acoustics are integrated together to work synergistically. The system relies on fluid-filled twodimensional on-chip photonic components such as lenses, apertures, and slab waveguides to allow for illumination laser beam shaping, light scattering and fluorescence signal detection. Both scattered and fluorescent lights are detected by photodetectors after being collected and guided by the on-chip optics components (e.g. lenses and waveguides). The detected light signal is imported and amplified in real time and triggers the piezoelectric actuator so that the targeted samples are directed into desired reservoir for subsequent advanced analysis. The real-time, closed-loop control system is developed with field-programmable-gate-array (FPGA) implementation. The system enables high-throughput (1- 10kHz operation), high reliability and low-powered (<1mW) fluorescence activated cell sorting (FACS) on a chip. The microfabricated flow cytometer can potentially be used as a portable, inexpensive point-of-care device in resource poor environments.

  13. Ion photon emission microscopy

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Doyle, B. L.; Banks, J. C.; Battistella, A.; Gennaro, G.; McDaniel, F. D.; Mellon, M.; Vittone, E.; Vizkelethy, G.; Wing, N. D.

    2003-09-01

    A new ion-induced emission microscopy has been invented and demonstrated, which is called ion photon emission microscopy (IPEM). It employs a low current, broad ion beam impinging on a sample, previously coated or simply covered with a few microns of a fast, highly efficient phosphor layer. The light produced at the single ion impact point is collected with an optical microscope and projected at high magnification onto a single photon position sensitive detector (PSD). This allows maps of the ion strike effects to be produced, effectively removing the need for a microbeam. Irradiation in air and even the use of alpha particle sources with no accelerator are possible. Potential applications include ion beam induced charge collection studies of semiconducting and insulating materials, single event upset studies on microchips and even biological cells in radiobiological effectiveness experiments. We describe the IPEM setup, including a 60× OM-40 microscope with a 1.5 mm hole for the beam transmission and a Quantar PSD with 60 μm pixel. Bicron plastic scintillator blades of 10 μm were chosen as a phosphor for their nanosecond time resolution, homogeneity, utility and commercial availability. The results given in this paper are for a prototype IPEM system. They indicate a resolution of ˜12 μm, the presence of a spatial halo and a He-ion efficiency of ˜20%. This marks the first time that nuclear microscopy has been performed with a radioactive source.

  14. Octonacci photonic quasicrystals

    NASA Astrophysics Data System (ADS)

    Brandão, E. R.; Costa, C. H.; Vasconcelos, M. S.; Anselmo, D. H. A. L.; Mello, V. D.

    2015-08-01

    We study theoretically the transmission spectra in one-dimensional photonic quasicrystals, made up of SiO2(A) and TiO2(B) materials, organized following the Octonacci sequence, where the nth-stage of the multilayer Sn is given by the rule Sn =Sn-1Sn-2Sn-1 , for n ⩾ 3 and with S1 = A and S2 = B . The expression for transmittance was obtained by employing a theoretical calculation based on the transfer-matrix method. For normally incident waves, we observe that, for a same generation, the transmission spectra for transverse electric (TE) and transverse magnetic (TM) waves are equal, at least qualitatively, and they present a scaling property where a self-similar behavior is obtained, as an evidence that these spectra are fractals. The spectra show regions where the omnidirectional band gaps emerges for specific generations of Octonacci photonic structure, except to TM waves. For TE waves, we note that all of them have almost the same width, for different generations. We also report the localization of modes as a consequence of the quasiperiodicity of the heterostructure.

  15. Study on photonic angular momentum states in coaxial magneto-optical waveguides

    SciTech Connect

    Yang, Mu; Wu, Li-Ting; Guo, Tian-Jing; Guo, Rui-Peng; Cui, Hai-Xu; Cao, Xue-Wei; Chen, Jing

    2014-10-21

    By rigorously solving Maxwell's equations, we develop a full-wave electromagnetic theory for the study of photonic angular momentum states (PAMSs) in coaxial magneto-optical (MO) waveguides. Paying attention to a metal-MO-metal coaxial configuration, we show that the dispersion curves of the originally degenerated PAMSs experience a splitting, which are determined by the off-diagonal permittivity tensor element of the MO medium. We emphasize that this broken degeneracy in dispersion relation is accompanied by modified distributions of field component and transverse energy flux. A qualitative analysis about the connection between the split dispersion behavior and the field distribution is provided. Potential applications are discussed.

  16. Photonic module: An on-demand resource for photonic entanglement

    SciTech Connect

    Devitt, Simon J.; Greentree, Andrew D.; Hollenberg, Lloyd C. L.; Ionicioiu, Radu; O'Brien, Jeremy L.; Munro, William J.

    2007-11-15

    Photonic entanglement has a wide range of applications in quantum computation and communication. Here we introduce a device: the photonic module, which allows for the rapid, deterministic preparation of a large class of entangled photon states. The module is an application independent, ''plug and play'' device, with sufficient flexibility to prepare entanglement for all major quantum computation and communication applications in a completely deterministic fashion without number-discriminated photon detection. We present two alternative constructions for the module, one using free-space components and one in a photonic band-gap structure. The natural operation of the module is to generate states within the stabilizer formalism and we present an analysis on the cavity requirements to experimentally realize this device.

  17. Origin of strong photon antibunching in weakly nonlinear photonic molecules

    SciTech Connect

    Bamba, Motoaki; Ciuti, Cristiano; Imamoglu, Atac; Carusotto, Iacopo

    2011-02-15

    In a recent work [Liew and Savona, Phys. Rev. Lett. 104, 183601 (2010)] it was numerically shown that a resonantly driven photonic ''molecule'' consisting of two coupled cavities can exhibit strong photon antibunching with a surprisingly weak Kerr nonlinearity. Here, we analytically identify the subtle quantum interference effect that is responsible for the predicted efficient photon blockade effect. We then extend the theory to the experimentally relevant Jaynes-Cummings system consisting of a single quantum emitter in a coupled-cavity structure and predict the strong antibunching even for single-atom cooperativity on the order of or smaller than unity. The potential of this quantum interference effect in the realization of strongly correlated photonic systems with only weak material nonlinearities is assessed by comparing on-site and inter-site correlations in a ring of three coupled photonic molecules.

  18. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber.

    PubMed

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-05-12

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons.

  19. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-05-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons.

  20. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    PubMed Central

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-01-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160

  1. Photonic band structure of dielectric membranes periodically textured in two dimensions

    NASA Astrophysics Data System (ADS)

    Pacradouni, V.; Mandeville, W. J.; Cowan, A. R.; Paddon, P.; Young, Jeff F.; Johnson, S. R.

    2000-08-01

    The real and imaginary photonic band structure of modes attached to two-dimensionally textured semiconductor membranes is determined experimentally and theoretically. These porous waveguides exhibit large (1000 cm-1 at 9500 cm-1) second-order optical gaps, highly dispersive lifetimes, and bands with well-defined polarization along directions of high symmetry.

  2. Quantum Control of a Spin Qubit Coupled to a Photonic Crystal Cavity

    DTIC Science & Technology

    2013-01-01

    photonic crystal structures. IEEE J. Quant. Electron. 47, 1371–1374 (2011). 21. Alen , B., Bickel, F., Karrai, K., Warburton, R. & Petroff, P. Stark-shift...modulation absorption spectroscopy of single quantum dots. Appl. Phys. Lett. 83, 2235–2237 (2003). 22. Alen , B. et al. Absorptive and dispersive

  3. Covariant quantization of C P T -violating photons

    NASA Astrophysics Data System (ADS)

    Colladay, D.; McDonald, P.; Noordmans, J. P.; Potting, R.

    2017-01-01

    We perform the covariant canonical quantization of the C P T - and Lorentz-symmetry-violating photon sector of the minimal Standard-Model Extension, which contains a general (timelike, lightlike, or spacelike) fixed background tensor kAF μ. Well-known stability issues, arising from complex-valued energy states, are solved by introducing a small photon mass, orders of magnitude below current experimental bounds. We explicitly construct a covariant basis of polarization vectors, in which the photon field can be expanded. We proceed to derive the Feynman propagator and show that the theory is microcausal. Despite the occurrence of negative energies and vacuum-Cherenkov radiation, we do not find any runaway stability issues, because the energy remains bounded from below. An important observation is that the ordering of the roots of the dispersion relations is the same in any observer frame, which allows for a frame-independent condition that selects the correct branch of the dispersion relation. This turns out to be critical for the consistency of the quantization. To our knowledge, this is the first system for which quantization has consistently been performed, in spite of the fact that the theory contains negative energies in some observer frames.

  4. Fabrication of flexible photonic crystal using alumina ball inserted Teflon tube

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshimi; Hotta, Takehiro; Sato, Hisashi

    2010-09-01

    In our previous paper, it was found that cotton yarn/TiO2-dispersed resin photonic crystals were fabricated successfully by applying textile technology. However, it is difficult to apply for practical use because these photonic crystals cannot change their shape flexibly. In this study, we fabricate the flexible photonic crystals using high-dielectric constant fibers. The high-dielectric constant fibers were made by inserting alumina balls into Teflon tubes. The crossed linear-fiber laminated fabric and multilayered woven fabric with an fcc lattice structure were structured by aligning high-dielectric constant fibers periodically. These photonic crystals consist of air and high-dielectric constant fibers. The attenuation of transmission amplitude through the photonic crystals was measured. The photonic crystal of crossed linear-fiber laminated fabric exhibits a forbidden gap in the range from 16 to 18 GHz range. On the other hand, the photonic crystal of multilayered woven fabric, which was fabricated by the same parameter with crossed linear-fiber laminated fabric, also exhibits a forbidden gap in the range from 13 to 16 GHz range. Thus, we can successfully fabricate flexible photonic crystals of woven fabric using high-dielectric constant fibers.

  5. Compact Photon Source Conceptual Design

    SciTech Connect

    Degtyarenko, Pavel V.; Wojtsekhowski, Bogdan B.

    2016-04-01

    We describe options for the production of an intense photon beam at the CEBAF Hall D Tagger facility, needed for creating a high-quality secondary K 0 L delivered to the Hall D detector. The conceptual design for the Compact Photon Source apparatus is presented.

  6. The Impact of Silicon Photonics

    DTIC Science & Technology

    2007-08-29

    integrated photonics 16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF ABSTRACT 18.NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Richard Soref...The impact of present and potential applications is discussed. key words: silicon, optoelectronics, integrated photonics 1. Introduction Silicon

  7. XCOM: Photon Cross Sections Database

    National Institute of Standards and Technology Data Gateway

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  8. Modeling volcanic ash dispersal

    SciTech Connect

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  9. Hybrid Dispersion Laser Scanner

    PubMed Central

    Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627

  10. Disperser seal and method

    SciTech Connect

    Johnston, R. T.

    1981-06-02

    A seal is described for a shaft of a disperser crusher, that pulverizes hot coal particles, maintains a higher than atmospheric pressure within a casing for the crusher, and is able to withstand elevated temperatures that are produced within the casing. The pressure and temperature result from hot gases that convey coal particles to the crusher. The seal includes self lubricating graphite packings that are urged in abutting relation with a smooth, ceramic sleeve on the shaft and are able to withstand the temperature on the shaft surface. A first, interior packing is on the inside of a wall of the casing while a second, exterior packing is outside of the wall. Superheated steam, a gas inert with the coal particles, is supplied to the interior packing with sufficient pressure to substantially prevent the migration of coal particles through the interior packing. The tendency of the coal particles to migrate from the container through the interior packing is further inhibited by providing a tortuous path from the casing to the interior packing.

  11. Hybrid dispersion laser scanner.

    PubMed

    Goda, K; Mahjoubfar, A; Wang, C; Fard, A; Adam, J; Gossett, D R; Ayazi, A; Sollier, E; Malik, O; Chen, E; Liu, Y; Brown, R; Sarkhosh, N; Di Carlo, D; Jalali, B

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points.

  12. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2016-07-12

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  13. Auroral electron time dispersion

    SciTech Connect

    Kletzing, C.A.

    1989-01-01

    A sounding rocket flight was launched from Greenland in 1985 to study high latitude, early morning auroral physics. The payload was instrumented with electron and ion detectors, AC and DC electric field experiments, a plasma density experiment, and a magnetometer to measure the ambient field. The rocket was launched during disturbed conditions, when the polar cap was in a contracted state with visible aurora overhead. The electron data contained numerous signatures indicative of time-of-flight energy dispersion characterized by a coherent structure in which lower energy electrons arrived at the rocket after higher energy electrons. A model was constructed to explain this phenomena by the sudden application of a region of parallel electric field along a length of magnetic field line above the rocket. The model incorporates detector response and uses an altitudinal density profile based on auroral zone measurements. Three types of potential structures were tried: linear, quadratic and cubic. Of the three it was found that the cubic (electric field growing in a quadratic manner moving up the field line) produced the best fit to the data. The potential region was found to be approximately 1-2 R{sub e} in extent with the lower edge 3000-4000 km away from the rocket. The background electron temperature in the model which produced the best fit to the data was of the order of 15 eV.

  14. Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals.

    PubMed

    Galfsky, Tal; Sun, Zheng; Considine, Christopher R; Chou, Cheng-Tse; Ko, Wei-Chun; Lee, Yi-Hsien; Narimanov, Evgenii E; Menon, Vinod M

    2016-08-10

    The low quantum yield observed in two-dimensional semiconductors of transition metal dichalcogenides (TMDs) has motivated the quest for approaches that can enhance the light emission from these systems. Here, we demonstrate broadband enhancement of spontaneous emission and increase in Raman signature from archetype two-dimensional semiconductors: molybdenum disulfide (MoS2) and tungsten disulfide (WS2) by placing the monolayers in the near field of a photonic hypercrystal having hyperbolic dispersion. Hypercrystals are characterized by a large broadband photonic density of states due to hyperbolic dispersion while having enhanced light in/out coupling by a subwavelength photonic crystal lattice. This dual advantage is exploited here to enhance the light emission from the 2D TMDs and can be utilized for developing light emitters and solar cells using two-dimensional semiconductors.

  15. Laser control of the optical properties of a doped photonic crystal

    NASA Astrophysics Data System (ADS)

    Gelman, A.; Radeonychev, Y. V.

    2010-08-01

    A method of dynamic control of absorption and dispersion of a two-level quantum system (atoms, ions or quantum dots) doping a photonic band gap (PBG) material via variation of the intensity and frequency of an external laser field is proposed. The frequency of an optical transition should be inside a PBG and located near or at a photonic band edge. In this case the laser field 'dresses' the quantum system (Mollow splitting) while the decay rates of the dressed states become very different due to a photonic band edge and depend on the form of spectral density of electromagnetic modes as well as intensity and frequency of the laser field. This enables us to control absorption and dispersion of a signal laser field, which is near resonant to the quantum transition of a dopant.

  16. Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides.

    PubMed

    Chen, Tao; Sun, Junqiang; Li, Linsen

    2012-08-27

    In this paper, we derive the couple-mode equations for third-order nonlinear effects in photonic crystal waveguides by employing the modal theory. These nonlinear interactions include self-phase modulation, cross-phase modulation and degenerate four-wave mixing. The equations similar to that in nonlinear fiber optics could be expanded and applied for third-order nonlinear processes in other periodic waveguides. Based on the equations, we systematically analyze the group-velocity dispersion, optical propagation loss, effective interaction area, slow light enhanced factor and phase mismatch for a slow light engineered silicon photonic crystal waveguide. Considering the two-photon and free-carrier absorptions, the wavelength conversion efficiencies in two low-dispersion regions are numerically simulated by utilizing finite difference method. Finally, we investigate the influence of slow light enhanced multiple four-wave-mixing process on the conversion efficiency.

  17. Theory of microwave single-photon detection using an impedance-matched Λ system

    NASA Astrophysics Data System (ADS)

    Koshino, Kazuki; Inomata, Kunihiro; Lin, Zhirong; Nakamura, Yasunobu; Yamamoto, Tsuyoshi

    2015-04-01

    By properly driving a qubit-resonator system in the strong dispersive regime, we implement an "impedance-matched" Λ system in the dressed states, where a resonant single photon deterministically induces a Raman transition and excites the qubit. Combining this effect and a fast dispersive readout of the qubit, we realize a detector of itinerant microwave photons. We theoretically analyze the single-photon response of the Λ system and evaluate its performance as a detector. We achieve a high detection efficiency without relying on precise temporal control of the input pulse shape and under a conservative estimate of the system parameters. The detector can also be reset quickly by applying microwave pulses, which allows a short dead time and a high repetition rate.

  18. Photonics: Maintaining Competitiveness in the Information Era

    DTIC Science & Technology

    1988-01-01

    Photonics Maintaining Competitiveness in the Information Era \\ATIONAL RESEIARCII COUVIIII, -mail Photonics: Maintaining Competitiveness in the... Information Era Panel on Photonics Science and Tcchnology Assessment Solid State Sciences Committee Board on Physics and Astronomy Commission on Physical

  19. Preparation of alkali metal dispersions

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Landel, R. F. (Inventor)

    1968-01-01

    A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.

  20. Large deviations in Taylor dispersion

    NASA Astrophysics Data System (ADS)

    Kahlen, Marcel; Engel, Andreas; Van den Broeck, Christian

    2017-01-01

    We establish a link between the phenomenon of Taylor dispersion and the theory of empirical distributions. Using this connection, we derive, upon applying the theory of large deviations, an alternative and much more precise description of the long-time regime for Taylor dispersion.