Sample records for all-optical devices based

  1. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light.

    PubMed

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-07-14

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.

  2. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light

    PubMed Central

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-01-01

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon’s internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities. PMID:28706215

  3. Novel optoelectronic devices; Proceedings of the Meeting, The Hague, Netherlands, Mar. 31-Apr. 2, 1987

    NASA Technical Reports Server (NTRS)

    Adams, Michael J. (Editor)

    1987-01-01

    The present conference on novel optoelectronics discusses topics in the state-of-the-art in this field in the Netherlands, quantum wells, integrated optics, nonlinear optical devices and fiber-optic-based devices, ultrafast optics, and nonlinear optics and optical bistability. Attention is given to the production of fiber-optics for telecommunications by means of PCVD, lifetime broadening in quantum wells, nonlinear multiple quantum well waveguide devices, tunable single-wavelength lasers, an Si integrated waveguiding polarimeter, and an electrooptic light modulator using long-range surface plasmons. Also discussed are backward-wave couplers and reflectors, a wavelength-selective all-fiber switching matrix, the impact of ultrafast optics in high-speed electronics, the physics of low energy optical switching, and all-optical logical elements for optical processing.

  4. Optical recording materials

    NASA Astrophysics Data System (ADS)

    Savant, Gajendra D.; Jannson, Joanna L.

    1991-07-01

    The increased emphasis on speed of operation, wavelength selectivity, compactness, and ruggedization has focused a great deal of attention on the solutions offered by all-optic devices and by hybrid electro-optic systems. In fact, many photonic devices are being considered for use as partial replacements for electronic systems. Optical components, which include modulators, switches, 3-D memory storage devices, wavelength division multiplexers, holographic optical elements, and others, are examples of such devices. The success or failure of these modern optical devices depends, to a great extent, on the performance and survivability of the optical materials used. This is particularly true for volume holographic filters, organic memory media, second- and third-order nonlinear material-based processors and neural networks. Due to the critical importance of these materials and their lack of availability, Physical Optics Corporation (POC) undertook a global advanced optical materials program which has enabled it to introduce several optical devices, based on the new and improved materials which will be described in this article.

  5. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect.

    PubMed

    Qiu, Ciyuan; Yang, Yuxing; Li, Chao; Wang, Yifang; Wu, Kan; Chen, Jianping

    2017-12-06

    All-optical signal processing avoids the conversion between optical signals and electronic signals and thus has the potential to achieve a power efficient photonic system. Micro-scale all-optical devices for light manipulation are the key components in the all-optical signal processing and have been built on the semiconductor platforms (e.g., silicon and III-V semiconductors). However, the two-photon absorption (TPA) effect and the free-carrier absorption (FCA) effect in these platforms deteriorate the power handling and limit the capability to realize complex functions. Instead, silicon nitride (Si 3 N 4 ) provides a possibility to realize all-optical large-scale integrated circuits due to its insulator nature without TPA and FCA. In this work, we investigate the physical dynamics of all-optical control on a graphene-on-Si 3 N 4 chip based on thermo-optic effect. In the experimental demonstration, a switching response time constant of 253.0 ns at a switching energy of ~50 nJ is obtained with a device dimension of 60 μm × 60 μm, corresponding to a figure of merit (FOM) of 3.0 nJ mm. Detailed coupled-mode theory based analysis on the thermo-optic effect of the device has been performed.

  6. Demonstration of optically controlled data routing with the use of multiple-quantum-well bistable and electro-optical devices.

    PubMed

    Koppa, P; Chavel, P; Oudar, J L; Kuszelewicz, R; Schnell, J P; Pocholle, J P

    1997-08-10

    We present experimental results on a 1-to-64-channel free-space photonic switching demonstration system based on GaAs/GaAlAs multiple-quantum-well active device arrays. Two control schemes are demonstrated: data transparent optical self-routing usable in a packet-switching environment and direct optical control with potential signal amplification for circuit switching. The self-routing operation relies on the optical recognition of the binary destination address coded in each packet header. Address decoding is implemented with elementary optical bistable devices and modulator pixels as all-optical latches and electro-optical and gates, respectively. All 60 defect-free channels of the system could be operated one by one, but the simultaneous operation of only three channels could be achieved mainly because of the spatial nonhomogeneities of the devices. Direct-control operation is based on directly setting the bistable device reflectivity with a variable-control beam power. This working mode turned out to be much more tolerant of spatial noises: 37 channels of the system could be operated simultaneously. Further development of the system to a crossbar of N inputs and M outputs and system miniaturization are also considered.

  7. Quantum Optical Transistor and Other Devices Based on Nanostructures

    NASA Astrophysics Data System (ADS)

    Li, Jin-Jin; Zhu, Ka-Di

    Laser and strong coupling can coexist in a single quantum dot (QD) coupled to nanostructures. This provides an important clue toward the realization of quantum optical devices, such as quantum optical transistor, slow light device, fast light device, or light storage device. In contrast to conventional electronic transistor, a quantum optical transistor uses photons as signal carriers rather than electrons, which has a faster and more powerful transfer efficiency. Under the radiation of a strong pump laser, a signal laser can be amplified or attenuated via passing through a single quantum dot coupled to a photonic crystal (PC) nanocavity system. Such a switching and amplifying behavior can really implement the quantum optical transistor. By simply turning on or off the input pump laser, the amplified or attenuated signal laser can be obtained immediately. Based on this transistor, we further propose a method to measure the vacuum Rabi splitting of exciton in all-optical domain. Besides, we study the light propagation in a coupled QD and nanomechanical resonator (NR) system. We demonstrate that it is possible to achieve the slow light, fast light, and quantum memory for light on demand, which is based on the mechanically induced coherent population oscillation (MICPO) and exciton polaritons. These QD devices offer a route toward the use of all-optical technique to investigate the coupled QD systems and will make contributions to quantum internets and quantum computers.

  8. Integrated all-optical logic discriminators based on plasmonic bandgap engineering

    PubMed Central

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2013-01-01

    Optical computing uses photons as information carriers, opening up the possibility for ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic devices are indispensible core components of optical computing systems. However, up to now, little experimental progress has been made in nanoscale all-optical logic discriminators, which have the function of discriminating and encoding incident light signals according to wavelength. Here, we report a strategy to realize a nanoscale all-optical logic discriminator based on plasmonic bandgap engineering in a planar plasmonic microstructure. Light signals falling within different operating wavelength ranges are differentiated and endowed with different logic state encodings. Compared with values previously reported, the operating bandwidth is enlarged by one order of magnitude. Also the SPP light source is integrated with the logic device while retaining its ultracompact size. This opens up a way to construct on-chip all-optical information processors and artificial intelligence systems. PMID:24071647

  9. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal

    PubMed Central

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-01-01

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature ‘prototype’ PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits. PMID:27491391

  10. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-08-01

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature ‘prototype’ PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.

  11. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal.

    PubMed

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-08-05

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature 'prototype' PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.

  12. All-optical clocked delay flip-flop using a single terahertz optical asymmetric demultiplexer-based switch: a theoretical study.

    PubMed

    Chattopadhyay, Tanay

    2010-10-01

    A flip-flop (FF) is a kind of latch and the simplest form of memory device, which stores various values either temporarily or permanently. Optical FF memories form a fundamental building block for all-optical packet switches in next-generation communication networks. An all-optical clocked delay FF using a single terahertz optical asymmetric demultiplexer-based interferometric switch is proposed and described. Numerical simulation results are also reported.

  13. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    NASA Astrophysics Data System (ADS)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  14. All-optical universal logic gates on nonlinear multimode interference coupler using tunable input intensity

    NASA Astrophysics Data System (ADS)

    Tajaldini, Mehdi; Jafri, Mohd Zubir Mat

    2015-04-01

    The theory of Nonlinear Modal Propagation Analysis Method (NMPA) have shown significant features of nonlinear multimode interference (MMI) coupler with compact dimension and when launched near the threshold of nonlinearity. Moreover, NMPA have the potential to allow studying the nonlinear MMI based the modal interference to explorer the phenomenon that what happen due to the natural of multimode region. Proposal of all-optical switch based NMPA has approved its capability to achieving the all-optical gates. All-optical gates have attracted increasing attention due to their practical utility in all-optical signal processing networks and systems. Nonlinear multimode interference devices could apply as universal all-optical gates due to significant features that NMPA introduce them. In this Paper, we present a novel Ultra-compact MMI coupler based on NMPA method in low intensity compared to last reports either as a novel design method and potential application for optical NAND, NOR as universal gates on single structure for Boolean logic signal processing devices and optimize their application via studding the contrast ratio between ON and OFF as a function of output width. We have applied NMPA for several applications so that the miniaturization in low nonlinear intensities is their main purpose.

  15. All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS2) deposited tapered fiber.

    PubMed

    Wu, Kan; Guo, Chaoshi; Wang, Hao; Zhang, Xiaoyan; Wang, Jun; Chen, Jianping

    2017-07-24

    All-optical phase shifters and switches play an important role for various all-optical applications including all-optical signal processing, sensing and communication. In this paper, we demonstrate a fiber all-optical phase shifter using few-layer 2D material tungsten disulfide (WS 2 ) deposited on a tapered fiber. WS 2 absorbs injected 980 nm pump (control light) and generates heat, which changes the refractive index of both WS 2 and tapered fiber due to thermo-optic effect and achieves a maximum phase shift of 6.1π near 1550 nm. The device has a loss of 3.7 dB. By constructing a Mach-Zehnder interferometer with WS 2 based phase shifter in one arm, an all-optical switch is also obtained with an extinction ratio of 15 dB and a rise time of 7.3 ms. This all fiber low-cost and compact optical phase shifter and switch demonstrates the potential of 2D transition metal dichalcogenides for all-optical signal processing devices.

  16. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Li; Chen, Jun-Yang; Wang, Jian-Ping, E-mail: jpwang@umn.edu, E-mail: moli@umn.edu

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.

  17. Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber.

    PubMed

    Ta'eed, Vahid G; Fu, Libin; Pelusi, Mark; Rochette, Martin; Littler, Ian C; Moss, David J; Eggleton, Benjamin J

    2006-10-30

    We present the first demonstration of all optical wavelength conversion in chalcogenide glass fiber including system penalty measurements at 10 Gb/s. Our device is based on As2Se3 chalcogenide glass fiber which has the highest Kerr nonlinearity (n(2)) of any fiber to date for which either advanced all optical signal processing functions or system penalty measurements have been demonstrated. We achieve wavelength conversion via cross phase modulation over a 10 nm wavelength range near 1550 nm with 7 ps pulses at 2.1 W peak pump power in 1 meter of fiber, achieving only 1.4 dB excess system penalty. Analysis and comparison of the fundamental fiber parameters, including nonlinear coefficient, two-photon absorption coefficient and dispersion parameter with other nonlinear glasses shows that As(2)Se(3) based devices show considerable promise for radically integrated nonlinear signal processing devices.

  18. A type of all-optical logic gate based on graphene surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoting; Tian, Jinping; Yang, Rongcao

    2017-11-01

    In this paper, a novel type of all-optical logic device based on graphene surface plasmon polaritons (GSP) is proposed. By utilizing linear interference between the GSP waves propagating in the different channels, this new structure can realize six different basic logic gates including OR, XOR, NOT, AND, NOR, and NAND. The state of ;ON/OFF; of each input channel can be well controlled by tuning the optical conductivity of graphene sheets, which can be further controlled by changing the external gate voltage. This type of logic gate is compact in geometrical sizes and is a potential block in the integration of nanophotonic devices.

  19. All-optical switching of silicon disk resonator based on photothermal effect in metal-insulator-metal absorber.

    PubMed

    Shi, Yuechun; Chen, Xi; Lou, Fei; Chen, Yiting; Yan, Min; Wosinski, Lech; Qiu, Min

    2014-08-01

    Efficient narrowband light absorption by a metal-insulator-metal (MIM) structure can lead to high-speed light-to-heat conversion at a micro- or nanoscale. Such a MIM structure can serve as a heater for achieving all-optical light control based on the thermo-optical (TO) effect. Here we experimentally fabricated and characterized a novel all-optical switch based on a silicon microdisk integrated with a MIM light absorber. Direct integration of the absorber on top of the microdisk reduces the thermal capacity of the whole device, leading to high-speed TO switching of the microdisk resonance. The measurement result exhibits a rise time of 2.0 μs and a fall time of 2.6 μs with switching power as low as 0.5 mW; the product of switching power and response time is only about 1.3  mW·μs. Since no auxiliary elements are required for the heater, the switch is structurally compact, and its fabrication is rather easy. The device potentially can be deployed for new kinds of all-optical applications.

  20. All-optical switching application based on optical nonlinearity of Yb(3+) doped aluminosilicate glass fiber with a long-period fiber gratings pair.

    PubMed

    Kim, Yune; Kim, Nam; Chung, Youngjoo; Paek, Un-Chul; Han, Won-Taek

    2004-02-23

    We propose a new fiber-type all-optical switching device based on the optical nonlinearity of Yb(3+) doped fiber and a long-period fiber gratings(LPG) pair. The all-optical ON-OFF switching with the continuous wave laser signal at ~1556nm in the LPG pair including the 25.5cm long Yb(3+) doped fiber was demonstrated up to ~200Hz upon pumping with the modulated square wave pulses at 976nm, where a full optical switching with the ~18dB extinction ratio was obtained at the launched pump power of ~35mW.

  1. Spatial mode filters realized with multimode interference couplers

    NASA Astrophysics Data System (ADS)

    Leuthold, J.; Hess, R.; Eckner, J.; Besse, P. A.; Melchior, H.

    1996-06-01

    Spatial mode filters based on multimode interference couplers (MMI's) that offer the possibility of splitting off antisymmetric from symmetric modes are presented, and realizations of these filters in InGaAsP / InP are demonstrated. Measured suppression of the antisymmetric first-order modes at the output for the symmetric mode is better than 18 dB. Such MMI's are useful for monolithically integrating mode filters with all-optical devices, which are controlled through an antisymmetric first-order mode. The filtering out of optical control signals is necessary for cascading all-optical devices. Another application is the improvement of on-off ratios in optical switches.

  2. All-optical non-mechanical fiber-coupled sensor for liquid- and airborne sound detection.

    NASA Astrophysics Data System (ADS)

    Rohringer, Wolfgang; Preißer, Stefan; Fischer, Balthasar

    2017-04-01

    Most fiber-optic devices for pressure, strain or temperature measurements are based on measuring the mechanical deformation of the optical fiber by various techniques. While excellently suited for detecting strain, pressure or structure-borne sound, their sensitivity to liquid- and airborne sound is so far not comparable with conventional capacitive microphones or piezoelectric hydrophones. Here, we present an all-optical acoustic sensor which relies on the detection of pressure-induced changes of the optical refractive index inside a rigid, millimeter-sized, fiber-coupled Fabry-Pérot interferometer (FPI). No mechanically movable or deformable parts take part in the signal transduction chain. Therefore, due to the absence of mechanical resonances, this sensing principle allows for high sensitivity as well as a flat frequency response over an extraordinary measurement bandwidth. As a fiber-coupled device, it can be integrated easily into already available distributed fiber-optic networks for geophysical sensing. We present characterization measurements demonstrating the sensitivity, frequency response and directivity of the device for sound and ultrasound detection in air and water. We show that low-frequency temperature and pressure drifts can be recorded in addition to acoustic sensing. Finally, selected application tests of the laser-based hydrophone and microphone implementation are presented.

  3. Study of 3D printing method for GRIN micro-optics devices

    NASA Astrophysics Data System (ADS)

    Wang, P. J.; Yeh, J. A.; Hsu, W. Y.; Cheng, Y. C.; Lee, W.; Wu, N. H.; Wu, C. Y.

    2016-03-01

    Conventional optical elements are based on either refractive or reflective optics theory to fulfill the design specifications via optics performance data. In refractive optical lenses, the refractive index of materials and radius of curvature of element surfaces determine the optical power and wavefront aberrations so that optical performance can be further optimized iteratively. Although gradient index (GRIN) phenomenon in optical materials is well studied for more than a half century, the optics theory in lens design via GRIN materials is still yet to be comprehensively investigated before realistic GRIN lenses are manufactured. In this paper, 3D printing method for manufacture of micro-optics devices with special features has been studied based on methods reported in the literatures. Due to the additive nature of the method, GRIN lenses in micro-optics devices seem to be readily achievable if a design methodology is available. First, derivation of ray-tracing formulae is introduced for all possible structures in GRIN lenses. Optics simulation program is employed for characterization of GRIN lenses with performance data given by aberration coefficients in Zernike polynomial. Finally, a proposed structure of 3D printing machine is described with conceptual illustration.

  4. A Solution-Processed Ultrafast Optical Switch Based on a Nanostructured Epsilon-Near-Zero Medium.

    PubMed

    Guo, Qiangbing; Cui, Yudong; Yao, Yunhua; Ye, Yuting; Yang, Yue; Liu, Xueming; Zhang, Shian; Liu, Xiaofeng; Qiu, Jianrong; Hosono, Hideo

    2017-07-01

    All the optical properties of materials are derived from dielectric function. In spectral region where the dielectric permittivity approaches zero, known as epsilon-near-zero (ENZ) region, the propagating light within the material attains a very high phase velocity, and meanwhile the material exhibits strong optical nonlinearity. The interplay between the linear and nonlinear optical response in these materials thus offers unprecedented pathways for all-optical control and device design. Here the authors demonstrate ultrafast all-optical modulation based on a typical ENZ material of indium tin oxide (ITO) nanocrystals (NCs), accessed by a wet-chemistry route. In the ENZ region, the authors find that the optical response in these ITO NCs is associated with a strong nonlinear character, exhibiting sub-picosecond response time (corresponding to frequencies over 2 THz) and modulation depth up to ≈160%. This large optical nonlinearity benefits from the highly confined geometry in addition to the ENZ enhancement effect of the ITO NCs. Based on these ENZ NCs, the authors successfully demonstrate a fiber optical switch that allows switching of continuous laser wave into femtosecond laser pulses. Combined with facile processibility and tunable optical properties, these solution-processed ENZ NCs may offer a scalable and printable material solution for dynamic photonic and optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Novel optical interconnect devices and coupling methods applying self-written waveguide technology

    NASA Astrophysics Data System (ADS)

    Nakama, Kenichi; Mikami, Osamu

    2011-05-01

    For the use in cost-effective optical interconnection of opt-electronic printed wiring boards (OE-PWBs), we have developed novel optical interconnect devices and coupling methods simplifying board to board optical interconnect. All these are based on the self-written waveguide (SWW) technology by the mask-transfer method with light-curable resin. This method enables fabrication of arrayed M × N optical channels at one shot of UV light. Very precise patterns, as an example, optical rod with diameters of 50μm to 500μm, can be easily fabricated. The length of the fabricated patterns ,, typically up to about 1000μm , can be controlled by a spacer placed between the photomask and the substrate. Using these technologies, several new optical interfaces have been demonstrated. These are a chip VCSEL with an optical output rod and new coupling methods of "plug-in" alignment and "optical socket" based on SWW.

  6. Microcontroller based fibre-optic visual presentation system for multisensory neuroimaging.

    PubMed

    Kurniawan, Veldri; Klemen, Jane; Chambers, Christopher D

    2011-10-30

    Presenting visual stimuli in physical 3D space during fMRI experiments carries significant technical challenges. Certain types of multisensory visuotactile experiments and visuomotor tasks require presentation of visual stimuli in peripersonal space, which cannot be accommodated by ordinary projection screens or binocular goggles. However, light points produced by a group of LEDs can be transmitted through fibre-optic cables and positioned anywhere inside the MRI scanner. Here we describe the design and implementation of a microcontroller-based programmable digital device for controlling fibre-optically transmitted LED lights from a PC. The main feature of this device is the ability to independently control the colour, brightness, and timing of each LED. Moreover, the device was designed in a modular and extensible way, which enables easy adaptation for various experimental paradigms. The device was tested and validated in three fMRI experiments involving basic visual perception, a simple colour discrimination task, and a blocked multisensory visuo-tactile task. The results revealed significant lateralized activation in occipital cortex of all participants, a reliable response in ventral occipital areas to colour stimuli elicited by the device, and strong activations in multisensory brain regions in the multisensory task. Overall, these findings confirm the suitability of this device for presenting complex fibre-optic visual and cross-modal stimuli inside the scanner. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Multilayer Dielectric Transmissive Optical Phase Modulator

    NASA Technical Reports Server (NTRS)

    Keys, Andrew Scott; Fork, Richard Lynn

    2004-01-01

    A multilayer dielectric device has been fabricated as a prototype of a low-loss, low-distortion, transmissive optical phase modulator that would provide as much as a full cycle of phase change for all frequency components of a transmitted optical pulse over a frequency band as wide as 6.3 THz. Arrays of devices like this one could be an alternative to the arrays of mechanically actuated phase-control optics (adaptive optics) that have heretofore been used to correct for wave-front distortions in highly precise optical systems. Potential applications for these high-speed wave-front-control arrays of devices include agile beam steering, optical communications, optical metrology, optical tracking and targeting, directional optical ranging, and interferometric astronomy. The device concept is based on the same principle as that of band-pass interference filters made of multiple dielectric layers with fractional-wavelength thicknesses, except that here there is an additional focus on obtaining the desired spectral phase profile in addition to the device s spectral transmission profile. The device includes a GaAs substrate, on which there is deposited a stack of GaAs layers alternating with AlAs layers, amounting to a total of 91 layers. The design thicknesses of the layers range from 10 nm to greater than 1 micrometer. The number of layers and the thickness of each layer were chosen in a computational optimization process in which the wavelength dependences of the indices of refraction of GaAs and AlAs were taken into account as the design was iterated to maximize the transmission and minimize the group-velocity dispersion for a wavelength band wide enough to include all significant spectral components of the pulsed optical signal to be phase modulated.

  8. All-semiconductor metamaterial-based optical circuit board at the microscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Li; Huang, Lirong, E-mail: lrhuang@hust.edu.cn

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arrangingmore » anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.« less

  9. Fundamental Scaling Laws in Nanophotonics

    PubMed Central

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-01-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors. PMID:27869159

  10. Fundamental Scaling Laws in Nanophotonics.

    PubMed

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J

    2016-11-21

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of "smaller-is-better" has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  11. Fundamental Scaling Laws in Nanophotonics

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-11-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  12. Wafer-level micro-optics: trends in manufacturing, testing, packaging, and applications

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Gong, Li; Rieck, Juergen; Zheng, Alan

    2012-11-01

    Micro-optics is an indispensable key enabling technology (KET) for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the last decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks (supercomputer, ROADM), bringing high-speed internet to our homes (FTTH). Even our modern smart phones contain a variety of micro-optical elements. For example, LED flashlight shaping elements, the secondary camera, and ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by semiconductor industry. Thousands of components are fabricated in parallel on a wafer. We report on the state of the art in wafer-based manufacturing, testing, packaging and present examples and applications for micro-optical components and systems.

  13. All-optical photochromic spatial light modulators based on photoinduced electron transfer in rigid matrices

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor); Perry, Joseph W. (Inventor)

    1991-01-01

    A single material (not a multi-element structure) spatial light modulator may be written to, as well as read out from, using light. The device has tailorable rise and hold times dependent on the composition and concentration of the molecular species used as the active components. The spatial resolution of this device is limited only by light diffraction as in volume holograms. The device may function as a two-dimensional mask (transmission or reflection) or as a three-dimensional volume holographic medium. This device, based on optically-induced electron transfer, is able to perform incoherent to coherent image conversion or wavelength conversion over a wide spectral range (ultraviolet, visible, or near-infrared regions).

  14. Electrowetting Variable Optics for Visible and Infrared Applications

    NASA Astrophysics Data System (ADS)

    Watson, Alexander Maxwell

    Miniaturized variable optical devices are important for the fields of medical technology, optical communication, and consumer imaging devices. Areas ranging from endoscopy and optogenetics to atomic clocks and imaging all benefit from versatile optical systems. These applications all require precise and rapid control of imaging focal depth and lateral scanning. Electrowetting variable optics is one emergent technology that has the capability to provide focus tuning, beam steering, and even phase modulation in a small and robust package which requires no moving parts. Furthermore, electrowetting based devices there are attractive due to their transmissive nature, polarization insensitivity, low insertion loss, low electrical power requirements, and high optical quality. These features mean that electrowetting adaptive optical components are an attractive solution, compared with MEMS and liquid crystal optical components. Electrowetting is a technique that enables control of the shape of a liquid droplet with applied voltage. A conductive droplet on a dielectric surface alters its contact angle due to charges that build up between an underlying electrode and the surface of the droplet. This effect can be used to tune the curvature and tilt of liquids within cavities. The liquid boundary creates a high quality surface to use for lensing or steering applications. This thesis will focus on the development of electrowetting based lenses and prisms and applications in imaging for both visible and infrared wavelengths. Within this dissertation is the first demonstration of electrowetting lenses for phase control, as well as the investigation of non-aqueous electrowetting lens liquids for electrowetting lenses operation in the infrared. Key considerations that affect the performance and reliability are dielectric material and thickness, liquid selection and source of ionic conduction. The optical devices presented herein utilize judicious selection of dielectric material and electrowetting liquids to enable low voltage variable optics and demonstrate applications in microscopy and microendoscopy.

  15. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    NASA Astrophysics Data System (ADS)

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-08-01

    The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.

  16. Wafer-scale micro-optics fabrication

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2012-07-01

    Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.

  17. Tunable all-optical plasmonic rectifier in nanoscale metal-insulator-metal waveguides.

    PubMed

    Xu, Yi; Wang, Xiaomeng; Deng, Haidong; Guo, Kangxian

    2014-10-15

    We propose a tunable all-optical plasmonic rectifier based on the nonlinear Fano resonance in a metal-insulator-metal plasmonic waveguide and cavities coupling system. We develop a theoretical model based on the temporal coupled-mode theory to study the device physics of the nanoscale rectifier. We further demonstrate via the finite difference time domain numerical experiment that our idea can be realized in a plasmonic system with an ultracompact size of ~120×800  nm². The tunable plasmonic rectifier could facilitate the all-optical signal processing in nanoscale.

  18. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred J; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2014-05-13

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  19. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John [Champaign, IL; Nuzzo, Ralph [Champaign, IL; Meitl, Matthew [Durham, NC; Menard, Etienne [Durham, NC; Baca, Alfred J [Urbana, IL; Motala, Michael [Champaign, IL; Ahn, Jong-Hyun [Suwon, KR; Park, Sang-II [Savoy, IL; Yu,; Chang-Jae, [Urbana, IL; Ko, Heung-Cho [Gwangju, KR; Stoykovich,; Mark, [Dover, NH; Yoon, Jongseung [Urbana, IL

    2011-07-05

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  20. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong -Hyun; Park, Sang -Il; Yu, Chang -Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2015-08-25

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  1. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2017-03-21

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  2. Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices

    NASA Astrophysics Data System (ADS)

    Hutsel, Michael R.

    2011-07-01

    Optical fiber technology continues to advance rapidly as a result of the increasing demands on communication systems and the expanding use of fiber-based sensing. New optical fiber types and fiber-based communications components are required to permit higher data rates, an increased number of channels, and more flexible installation requirements. Fiber-based sensors are continually being developed for a broad range of sensing applications, including environmental, medical, structural, industrial, and military. As optical fibers and fiber-based devices continue to advance, the need to understand their fundamental physical properties increases. The residual-stress distribution (RSD) and the refractive-index distribution (RID) play fundamental roles in the operation and performance of optical fibers. Custom RIDs are used to tailor the transmission properties of fibers used for long-distance transmission and to enable fiber-based devices such as long-period fiber gratings (LPFGs). The introduction and modification of RSDs enable specialty fibers, such as polarization-maintaining fiber, and contribute to the operation of fiber-based devices. Furthermore, the RSD and the RID are inherently linked through the photoelastic effect. Therefore, both the RSD and the RID need to be characterized because these fundamental properties are coupled and affect the fabrication, operation, and performance of fibers and fiber-based devices. To characterize effectively the physical properties of optical fibers, the RSD and the RID must be measured without perturbing or destroying the optical fiber. Furthermore, the techniques used must not be limited in detecting small variations and asymmetries in all directions through the fiber. Finally, the RSD and the RID must be characterized concurrently without moving the fiber to enable the analysis of the relationship between the RSD and the RID. Although many techniques exist for characterizing the residual stress and the refractive index in optical fibers, there is no existing methodology that meets all of these requirements. Therefore, the primary objective of the research presented in this thesis was to provide a methodology that is capable of characterizing concurrently the three-dimensional RSD and RID in optical fibers and fiber-based devices. This research represents a detailed study of the requirements for characterizing optical fibers and how these requirements are met through appropriate data analysis and experimental apparatus design and implementation. To validate the developed methodology, the secondary objective of this research was to characterize both unperturbed and modified optical fibers. The RSD and the RID were measured in a standard telecommunications-grade optical fiber, Corning SMF-28. The effects of cleaving this fiber were also analyzed and the longitudinal variations that result from cleaving were explored for the first time. The fabrication of carbon-dioxide-laser-induced (CO2 -laser-induced) LPFGs was also examined. These devices provide many of the functionalities required for fiber-based communications components as well as fiber-based sensors, and they offer relaxed fabrication requirements when compared to LPFGs fabricated by other methods. The developed methodology was used to perform the first measurements of the changes that occur in the RSD and the RID during LPFG fabrication. The analysis of these measurements ties together many of the existing theories of CO2-laser-induced LPFG fabrication to present a more coherent understanding of the processes that occur. In addition, new evidence provides detailed information on the functional form of the RSD and the RID in LPFGs. This information is crucial for the modeling of LPFG behavior, for the design of LPFGs for specific applications, for the tailoring of fabrication parameters to meet design requirements, and for understanding the limitations of LPFG fabrication in commercial optical fibers. Future areas of research concerning the improvement of the developed methodology, the need to characterize other fibers and fiber-based devices, and the characterization of CO2-laser-induced LPFGs are identified and discussed.

  3. Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices.

    PubMed

    Lim, Wen Xiang; Manjappa, Manukumara; Srivastava, Yogesh Kumar; Cong, Longqing; Kumar, Abhishek; MacDonald, Kevin F; Singh, Ranjan

    2018-03-01

    Incorporating semiconductors as active media into metamaterials offers opportunities for a wide range of dynamically switchable/tunable, technologically relevant optical functionalities enabled by strong, resonant light-matter interactions within the semiconductor. Here, a germanium-thin-film-based flexible metaphotonic device for ultrafast optical switching of terahertz radiation is experimentally demonstrated. A resonant transmission modulation depth of 90% is achieved, with an ultrafast full recovery time of 17 ps. An observed sub-picosecond decay constant of 670 fs is attributed to the presence of trap-assisted recombination sites in the thermally evaporated germanium film. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Witherow, William K.; Banks, Curtis E.; Paley, Mark S.

    2007-01-01

    The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials.

  5. Temperature-Controlled Chameleonlike Cloak

    NASA Astrophysics Data System (ADS)

    Peng, Ruiguang; Xiao, Zongqi; Zhao, Qian; Zhang, Fuli; Meng, Yonggang; Li, Bo; Zhou, Ji; Fan, Yuancheng; Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas; Soukoulis, Costas M.

    2017-01-01

    Invisibility cloaking based on transformation optics has brought about unlimited space for reverie. However, the design and fabrication of transformation-optics-based cloaks still remain fairly challenging because of the complicated, even extreme, material prescriptions, including its meticulously engineered anisotropy, inhomogeneity and singularity. And almost all the state-of-the-art cloaking devices work within a narrow and invariable frequency band. Here, we propose a novel mechanism for all-dielectric temperature-controllable cloaks. A prototype device was designed and fabricated with SrTiO3 ferroelectric cuboids as building blocks, and its cloaking effects were successfully demonstrated, including its frequency-agile invisibility by varying temperature. It revealed that the predesignated cloaking device based on our proposed strategy could be directly scaled in dimensions to operate at different frequency regions, without the necessity for further efforts of redesign. Our work opens the door towards the realization of tunable cloaking devices for various practical applications and provides a simple strategy to readily extend the cloaking band from microwave to terahertz regimes without the need for reconfiguration.

  6. Acoustical holographic recording with coherent optical read-out and image processing

    NASA Astrophysics Data System (ADS)

    Liu, H. K.

    1980-10-01

    New acoustic holographic wave memory devices have been designed for real-time in-situ recording applications. The basic operating principles of these devices and experimental results through the use of some of the prototypes of the devices are presented. Recording media used in the device include thermoplastic resin, Crisco vegetable oil, and Wilson corn oil. In addition, nonlinear coherent optical image processing techniques including equidensitometry, A-D conversion, and pseudo-color, all based on the new contact screen technique, are discussed with regard to the enhancement of the normally poor-resolved acoustical holographic images.

  7. Laser tweezer actuated microphotonic array devices for high resolution imaging and analysis in chip-based biosystems

    NASA Astrophysics Data System (ADS)

    Birkbeck, Aaron L.

    A new technology is developed that functionally integrates arrays of lasers and micro-optics into microfluidic systems for the purpose of imaging, analyzing, and manipulating objects and biological cells. In general, the devices and technologies emerging from this area either lack functionality through the reliance on mechanical systems or provide a serial-based, time consuming approach. As compared to the current state of art, our all-optical design methodology has several distinguishing features, such as parallelism, high efficiency, low power, auto-alignment, and high yield fabrication methods, which all contribute to minimizing the cost of the integration process. The potential use of vertical cavity surface emitting lasers (VCSELs) for the creation of two-dimensional arrays of laser optical tweezers that perform independently controlled, parallel capture, and transport of large numbers of individual objects and biological cells is investigated. One of the primary biological applications for which VCSEL array sourced laser optical tweezers are considered is the formation of engineered tissues through the manipulation and spatial arrangement of different types of cells in a co-culture. Creating devices that combine laser optical tweezers with select micro-optical components permits optical imaging and analysis functions to take place inside the microfluidic channel. One such device is a micro-optical spatial filter whose motion and alignment is controlled using a laser optical tweezer. Unlike conventional spatial filter systems, our device utilizes a refractive optical element that is directly incorporated onto the lithographically patterned spatial filter. This allows the micro-optical spatial filter to automatically align itself in three-dimensions to the focal point of the microscope objective, where it then filters out the higher frequency additive noise components present in the laser beam. As a means of performing high resolution imaging in the microfluidic channel, we developed a novel technique that integrates the capacity of a laser tweezer to optically trap and manipulate objects in three-dimensions with the resolution-enhanced imaging capabilities of a solid immersion lens (SIL). In our design, the SIL is a free-floating device whose imaging beam, motion control and alignment is provided by a laser optical tweezer, which allows the microfluidic SIL to image in areas that are inaccessible to traditional solid immersion microscopes.

  8. Compact Si-based asymmetric MZI waveguide on SOI as a thermo-optical switch

    NASA Astrophysics Data System (ADS)

    Rizal, C. S.; Niraula, B.

    2018-03-01

    A compact low power consuming asymmetric MZI based optical modulator with fast response time has been proposed on SOI platform. The geometrical and performance characteristics were analyzed in depth and optimized using coupled mode analysis and FDTD simulation tools, respectively. It was tested with and without implementation of thermo-optic (TO) effect. The device showed good frequency modulating characteristics when tested without the implementation of the TO effect. The fabricated device showed quality factor, Q ≈ 10,000, and this value is comparable to the Q of the device simulated with 25% transmission loss, showing FSR of 0.195 nm, FWHM ≈ 0.16 nm, and ER of 13 dB. With TO effect, it showed temperature sensitivity of 0.01 nm/°C and FSR of 0.19 nm. With the heater length of 4.18 mm, the device required 0.26 mW per π shift power with a switching voltage of 0.309 V, response time of 10 μ, and figure-of-merit of 2.6 mW μs. All of these characteristics make this device highly attractive for use in integrated Si photonics network as optical switch and wavelength modulator.

  9. All optical controlled photonic integrated circuits using azo dye functionized sol-gel material

    NASA Astrophysics Data System (ADS)

    Ke, Xianjun

    The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters. The schematic configuration of proposed tunable filters consists of a single straight waveguide embedded with a sol-gel waveguide. The wavelength tuning of the tunable filters is accomplished by varying the grating period.

  10. Simulation of multicomponent light source for optical-electronic system of color analysis objects

    NASA Astrophysics Data System (ADS)

    Peretiagin, Vladimir S.; Alekhin, Artem A.; Korotaev, Valery V.

    2016-04-01

    Development of lighting technology has led to possibility of using LEDs in the specialized devices for outdoor, industrial (decorative and accent) and domestic lighting. In addition, LEDs and devices based on them are widely used for solving particular problems. For example, the LED devices are widely used for lighting of vegetables and fruit (for their sorting or growing), textile products (for the control of its quality), minerals (for their sorting), etc. Causes of active introduction LED technology in different systems, including optical-electronic devices and systems, are a large choice of emission color and LED structure, that defines the spatial, power, thermal and other parameters. Furthermore, multi-element and color devices of lighting with adjustable illumination properties can be designed and implemented by using LEDs. However, devices based on LEDs require more attention if you want to provide a certain nature of the energy or color distribution at all the work area (area of analysis or observation) or surface of the object. This paper is proposed a method of theoretical modeling of the lighting devices. The authors present the models of RGB multicomponent light source applied to optical-electronic system for the color analysis of mineral objects. The possibility of formation the uniform and homogeneous on energy and color illumination of the work area for this system is presented. Also authors showed how parameters and characteristics of optical radiation receiver (by optical-electronic system) affect on the energy, spatial, spectral and colorimetric properties of a multicomponent light source.

  11. All-optical switching based on optical fibre long period gratings modified bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Korposh, S.; James, S.; Partridge, M.; Sichka, M.; Tatam, R.

    2018-05-01

    All-optical switching using an optical fibre long-period gating (LPG) modified with bacteriorhodopsin (bR) is demonstrated. The switching process is based on the photo-induced RI change of bR, which in turn changes the phase matching conditions of the mode coupling by the LPG, leading to modulation of the propagating light. The effect was studied with an LPG immersed into a bR solution and with LPGs coated with the bR films, deposited onto the LPGs using the layer-by-layer electrostatic self-assembly (LbL) method. The dependence of the all-optical switching efficiency upon the concentration of the bR solution and on the grating period of the LPG was also studied. In addition, an in-fibre Mach-Zehnder interferometer (MZI) composed of a cascaded LPG pair separated by 30 mm and modified with bR was used to enhance the wavelength range of all-optical switching. The switching wavelength is determined by the grating period of the LPG. Switching efficiencies of 16% and 35% were observed when an LPG and an MZI were immersed into bR solutions, respectively. The switching time for devices coated with bR-films was within 1 s, 10 times faster than that observed for devices immersed into bR solution.

  12. Integrated all-optical programmable logic array based on semiconductor optical amplifiers.

    PubMed

    Dong, Wenchan; Huang, Zhuyang; Hou, Jie; Santos, Rui; Zhang, Xinliang

    2018-05-01

    The all-optical programmable logic array (PLA) is one of the most important optical complex logic devices that can implement combinational logic functions. In this Letter, we propose and experimentally demonstrate an integrated all-optical PLA at the operation speed of 40 Gb/s. The PLA mainly consists of a delay interferometer (DI) and semiconductor optical amplifiers (SOAs) of different lengths. The DI is used to pre-code the input signals and improve the reconfigurability of the scheme. The longer SOAs are nonlinear media for generating canonical logic units (CLUs) using four-wave mixing. The shorter SOAs are used to select the appropriate CLUs by changing the working states; then reconfigurable logic functions can be output directly. The results show that all the CLUs are realized successfully, and the optical signal-to-noise ratios are above 22 dB. The exclusive NOR gate and exclusive OR gate are experimentally demonstrated based on output CLUs.

  13. Organic light-emitting devices using spin-dependent processes

    DOEpatents

    Vardeny, Z. Valy; Wohlgenannt, Markus

    2010-03-23

    The maximum luminous efficiency of organic light-emitting materials is increased through spin-dependent processing. The technique is applicable to all electro-luminescent processes in which light is produced by singlet exciton decay, and all devices which use such effects, including LEDs, super-radiant devices, amplified stimulated emission devices, lasers, other optical microcavity devices, electrically pumped optical amplifiers, and phosphorescence (Ph) based light emitting devices. In preferred embodiments, the emissive material is doped with an impurity, or otherwise modified, to increase the spin-lattice relaxation rate (i.e., decrease the spin-lattice time), and hence raise the efficiency of the device. The material may be a polymer, oligomer, small molecule, single crystal, molecular crystal, or fullerene. The impurity is preferably a magnetic or paramagnetic substance. The invention is applicable to IR, UV, and other electromagnetic radiation generation and is thus not limited to the visible region of the spectrum. The methods of the invention may also be combined with other techniques used to improve device performance.

  14. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng

    Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less

  15. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

    DOE PAGES

    Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng; ...

    2017-04-17

    Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less

  16. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    PubMed Central

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-01-01

    The ability to generate efficient giga–terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics. PMID:27492493

  17. A noble refractive optical scanner with linear response

    NASA Astrophysics Data System (ADS)

    Mega, Yair J.; Lai, Zhenhua; DiMarzio, Charles A.

    2013-03-01

    Many applications in various fields of science and engineering use steered optical beam systems. Currently, many methods utilize mirrors in order to steer the beam. However, this approach is an off-axis solution, which normally increases the total size of the system as well as its error and complexity. Other methods use a "Risely Prisms" based solution, which is on-axis solution, however it poses some difficulties from an engineering standpoint, and therefore isn't widely used. We present here a novel technique for steering a beam on its optical axis with a linear deflection response. We derived the formulation for the profile required of the refractive optical component necessary for preforming the beam steering. The functionality of the device was simulated analytically using Matlab, as well as using a ray-tracing software, Zemax, and showed agreement with the analytical model. An optical element was manufactured based on the proposed design and the device was tested. The results show agreement with our hypothesis. We also present some proposed geometries of the several other devices, all based on the same concept, which can be used for higher performance applications such as two-dimensional scanner, video rate scanner etc.

  18. Photonic band gap materials: towards an all-optical transistor

    NASA Astrophysics Data System (ADS)

    Florescu, Marian

    2002-05-01

    The transmission of information as optical signals encoded on light waves traveling through optical fibers and optical networks is increasingly moving to shorter and shorter distance scales. In the near future, optical networking is poised to supersede conventional transmission over electric wires and electronic networks for computer-to-computer communications, chip-to-chip communications, and even on-chip communications. The ever-increasing demand for faster and more reliable devices to process the optical signals offers new opportunities in developing all-optical signal processing systems (systems in which one optical signal controls another, thereby adding "intelligence" to the optical networks). All-optical switches, two-state and many-state all-optical memories, all-optical limiters, all-optical discriminators and all-optical transistors are only a few of the many devices proposed during the last two decades. The "all-optical" label is commonly used to distinguish the devices that do not involve dissipative electronic transport and require essentially no electrical communication of information. The all-optical transistor action was first observed in the context of optical bistability [1] and consists in a strong differential gain regime, in which, for small variations in the input intensity, the output intensity has a very strong variation. This analog operation is for all-optical input what transistor action is for electrical inputs.

  19. Proposal of optical farming: development of several optical sensing instruments for agricultural use

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Kobayashi, K.

    2013-05-01

    We propose the use of "Optical Farming," which is the leading application of all types of optical technologies, in agriculture and agriculture-related industries. This paper focuses on the optical sensing instruments named "Agriserver," "Agrigadget" and "LIFS Monitor" developed in our laboratory. They are considered major factors in utilizing Optical Farming. Agriserver is a sensor network system that uses the Internet to collect information on agricultural products growing in fields. Agrigadget contains several optical devices, such as a smartphone-based spectroscopic device and a hand framing camera. LIFS Monitor is an advanced monitoring instrument that makes it possible to obtain physiological information of living plants. They are strongly associated with information communication technology. Their field and data usage performance in agricultural industries are reported.

  20. Central Corneal Thickness Reproducibility among Ten Different Instruments.

    PubMed

    Pierro, Luisa; Iuliano, Lorenzo; Gagliardi, Marco; Ambrosi, Alessandro; Rama, Paolo; Bandello, Francesco

    2016-11-01

    To assess agreement between one ultrasonic (US) and nine optical instruments for the measurement of central corneal thickness (CCT), and to evaluate intra- and inter-operator reproducibility. In this observational cross-sectional study, two masked operators measured CCT thickness twice in 28 healthy eyes. We used seven spectral-domain optical coherence tomography (SD-OCT) devices, one time-domain OCT, one Scheimpflug camera, and one US-based instrument. Inter- and intra-operator reproducibility was evaluated by intraclass correlation coefficient (ICC), coefficient of variation (CV), and Bland-Altman test analysis. Instrument-to-instrument reproducibility was determined by ANOVA for repeated measurements. We also tested how the devices disagreed regarding systemic bias and random error using a structural equation model. Mean CCT of all instruments ranged from 536 ± 42 μm to 577 ± 40 μm. An instrument-to-instrument correlation test showed high values among the 10 investigated devices (correlation coefficient range 0.852-0.995; p values <0.0001 in all cases). The highest correlation coefficient values were registered between 3D OCT-2000 Topcon-Spectral OCT/SLO Opko (0.995) and Cirrus HD-OCT Zeiss-RS-3000 Nidek (0.995), whereas the lowest were seen between SS-1000 CASIA and Spectral OCT/SLO Opko (0.852). ICC and CV showed excellent inter- and intra-operator reproducibility for all optic-based devices, except for the US-based device. Bland-Altman analysis demonstrated low mean biases between operators. Despite highlighting good intra- and inter-operator reproducibility, we found that a scale bias between instruments might interfere with thorough CCT monitoring. We suggest that optimal monitoring is achieved with the same operator and the same device.

  1. Space Qualification Issues in Acousto-optic and Electro-optic Devices

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Edward W.; Trivedi, Sudhir; Kutcher, Sue; Soos, Jolanta

    2007-01-01

    Satellite and space-based applications of photonic devices and systems require operational reliability in the harsh environment of space for extended periods of time. This in turn requires every component of the systems and their packaging to meet space qualifications. Acousto- and electro-optical devices form the major components of many current space based optical systems, which is the focus of this paper. The major space qualification issues are related to: mechanical stability, thermal effects and operation of the devices in the naturally occurring space radiation environment. This paper will discuss acousto- and electro-optic materials and devices with respect to their stability against mechanical vibrations, thermal cycling in operating and non-operating conditions and device responses to space ionizing and displacement radiation effects. Selection of suitable materials and packaging to meet space qualification criteria will also be discussed. Finally, a general roadmap for production and testing of acousto- and electro-optic devices will be discussed.

  2. MAFL experiment: development of photonic devices for a space-based multiaperture fiber-linked interferometer.

    PubMed

    Olivier, Serge; Delage, Laurent; Reynaud, Francois; Collomb, Virginie; Trouillon, Michel; Grelin, Jerome; Schanen, Isabelle; Minier, Vincent; Broquin, Jean-Emmanuel; Ruilier, Cyril; Leone, Bruno

    2007-02-20

    We present a three-telescope space-based interferometer prototype dedicated to high-resolution imaging. This project, named multiaperture fiber-linked interferometer (MAFL), was founded by the European Space Agency. The aim of the MAFL project is to propose, design, and implement for the first time to the best of our knowledge all the optical functions required for the global instrument on the same integrated optics (IO) component for controlling a three-arm interferometer and to obtain reliable science data. The coherent transport from telescopes to the IO component is achieved by means of highly birefringent optical fiber. The laboratory bench is presented, and the results are reported allowing us to validate the optical potentiality of the IO component in this frame. The validation measurements consist of the throughput of this optical device, the performances of metrological servoloop, and the instrumental contrasts and phase closure of the science fringes.

  3. Light Extraction From Solution-Based Processable Electrophosphorescent Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Krummacher, Benjamin C.; Mathai, Mathew; So, Franky; Choulis, Stelios; Choong, And-En, Vi

    2007-06-01

    Molecular dye dispersed solution processable blue emitting organic light-emitting devices have been fabricated and the resulting devices exhibit efficiency as high as 25 cd/A. With down-conversion phosphors, white emitting devices have been demonstrated with peak efficiency of 38 cd/A and luminous efficiency of 25 lm/W. The high efficiencies have been a product of proper tuning of carrier transport, optimization of the location of the carrier recombination zone and, hence, microcavity effect, efficient down-conversion from blue to white light, and scattering/isotropic remission due to phosphor particles. An optical model has been developed to investigate all these effects. In contrast to the common misunderstanding that light out-coupling efficiency is about 22% and independent of device architecture, our device data and optical modeling results clearly demonstrated that the light out-coupling efficiency is strongly dependent on the exact location of the recombination zone. Estimating the device internal quantum efficiencies based on external quantum efficiencies without considering the device architecture could lead to erroneous conclusions.

  4. Temperature-controlled chameleonlike cloak

    DOE PAGES

    Peng, Ruiguang; Xiao, Zongqi; Zhao, Qian; ...

    2017-03-21

    Invisibility cloaking based on transformation optics has brought about unlimited space for reverie. However, the design and fabrication of transformation-optics-based cloaks still remain fairly challenging because of the complicated, even extreme, material prescriptions, including its meticulously engineered anisotropy, inhomogeneity and singularity. And almost all the state-of-the-art cloaking devices work within a narrow and invariable frequency band. Here, we propose a novel mechanism for all-dielectric temperature-controllable cloaks. A prototype device was designed and fabricated with SrTiO 3 ferroelectric cuboids as building blocks, and its cloaking effects were successfully demonstrated, including its frequency-agile invisibility by varying temperature. It revealed that the predesignatedmore » cloaking device based on our proposed strategy could be directly scaled in dimensions to operate at different frequency regions, without the necessity for further efforts of redesign. Finally, our work opens the door towards the realization of tunable cloaking devices for various practical applications and provides a simple strategy to readily extend the cloaking band from microwave to terahertz regimes without the need for reconfiguration.« less

  5. Tunable resonator-based devices for producing variable delays and narrow spectral linewidths

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor)

    2006-01-01

    Devices with two or more coupled resonators to produce narrow spectral responses due to interference of signals that transmit through the resonators and techniques for operating such devices to achieve certain operating characteristics are described. The devices may be optical devices where optical resonators such as whispering gallery mode resonators may be used. In one implementation, at least one of the coupled optical resonators is a tunable resonator and is tuned to change its resonance frequency to tune the spectral response of the device. The described devices and techniques may be applied in optical filters, optical delays, optical waveform generators, and other applications.

  6. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range

    PubMed Central

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-01-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154

  7. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range.

    PubMed

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-04-13

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications.

  8. High-speed all-optical logic inverter based on stimulated Raman scattering in silicon nanocrystal.

    PubMed

    Sen, Mrinal; Das, Mukul K

    2015-11-01

    In this paper, we propose a new device architecture for an all-optical logic inverter (NOT gate), which is cascadable with a similar device. The inverter is based on stimulated Raman scattering in silicon nanocrystal waveguides, which are embedded in a silicon photonic crystal structure. The Raman response function of silicon nanocrystal is evaluated to explore the transfer characteristic of the inverter. A maximum product criterion for the noise margin is taken to analyze the cascadability of the inverter. The time domain response of the inverter, which explores successful inversion operation at 100 Gb/s, is analyzed. Propagation delay of the inverter is on the order of 5 ps, which is less than the delay in most of the electronic logic families as of today. Overall dimension of the device is around 755  μm ×15  μm, which ensures integration compatibility with the matured silicon industry.

  9. Magneto-optical non-reciprocal devices in silicon photonics

    PubMed Central

    Shoji, Yuya; Mizumoto, Tetsuya

    2014-01-01

    Silicon waveguide optical non-reciprocal devices based on the magneto-optical effect are reviewed. The non-reciprocal phase shift caused by the first-order magneto-optical effect is effective in realizing optical non-reciprocal devices in silicon waveguide platforms. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer enhances the magneto-optical phase shift, which reduces the device footprints. A surface activated direct bonding technique was developed to integrate a magneto-optical garnet crystal on the silicon waveguides. A silicon waveguide optical isolator based on the magneto-optical phase shift was demonstrated with an optical isolation of 30 dB and insertion loss of 13 dB at a wavelength of 1548 nm. Furthermore, a four port optical circulator was demonstrated with maximum isolations of 15.3 and 9.3 dB in cross and bar ports, respectively, at a wavelength of 1531 nm. PMID:27877640

  10. Metal-polymer nanocomposites for stretchable optics and plasmonics

    NASA Astrophysics Data System (ADS)

    Potenza, Marco A. C.; Minnai, Chloé; Milani, Paolo

    2016-12-01

    Stretchable and conformable optical devices open very exciting perspectives for the fabrication of systems incorporating diffracting and optical power in a single element and of tunable plasmonic filters and absorbers. The use of nanocomposites obtained by inserting metallic nanoparticles produced in the gas phase into polymeric matrices allows to effectively fabricate cheap and simple stretchable optical elements able to withstand thousands of deformations and stretching cycles without any degradation of their optical properties. The nanocomposite-based reflective optical devices show excellent performances and stability compared to similar devices fabricated with standard techniques. The nanocomposite-based devices can be therefore applied to arbitrary curved non-optical grade surfaces in order to achieve optical power and to minimize aberrations like astigmatism. Examples discussed here include stretchable reflecting gratings, plasmonic filters tunable by mechanical stretching and light absorbers.

  11. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio

    NASA Astrophysics Data System (ADS)

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-01

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  12. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio.

    PubMed

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-12

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  13. Design of all-optical memory cell using EIT and lasing without inversion phenomena in optical micro ring resonators

    NASA Astrophysics Data System (ADS)

    Pasyar, N.; Yadipour, R.; Baghban, H.

    2017-07-01

    The proposed design of the optical memory unit cell contains dual micro ring resonators in which the effect of lasing without inversion (LWI) in three-level nano particles doped over the optical resonators or integrators as the gain segment is used for loss compensation. Also, an on/off phase shifter based on electromagnetically induced transparency (EIT) in three-level quantum dots (QDs) has been used for data reading at requested time. Device minimizing for integrated purposes and high speed data storage are the main advantages of the optical integrator based memory.

  14. Piezoelectric Diffraction-Based Optical Switches

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan; Fuhr, Peter; Schipper, John

    2003-01-01

    Piezoelectric diffraction-based optoelectronic devices have been invented to satisfy requirements for switching signals quickly among alternative optical paths in optical communication networks. These devices are capable of operating with switching times as short as microseconds or even nanoseconds in some cases.

  15. All-optical XNOR/NOT logic gates and LATCH based on a reflective vertical cavity semiconductor saturable absorber.

    PubMed

    Pradhan, Rajib

    2014-06-10

    This work proposes a scheme of all-optical XNOR/NOT logic gates based on a reflective vertical cavity semiconductor (quantum wells, QWs) saturable absorber (VCSSA). In a semiconductor Fabry-Perot cavity operated with a low-intensity resonance wavelength, both intensity-dependent saturating phase-shift and thermal phase-shift occur, which are considered in the proposed logic operations. The VCSSA-based logics are possible using the saturable behavior of reflectivity under the typical operating conditions. The low-intensity saturable reflectivity is reported for all-optical logic operations where all possible nonlinear phase-shifts are ignored. Here, saturable absorption (SA) and the nonlinear phase-shift-based all-optical XNOR/NOT gates and one-bit memory or LATCH are proposed under new operating conditions. All operations are demonstrated for a VCSSA based on InGaAs/InP QWs. These types of SA-based logic devices can be comfortably used for a signal bit rate of about 10 GHz corresponding to the carrier recovery time of the semiconductor material.

  16. All-optically tunable EIT-like dielectric metasurfaces hybridized with thin phase change material layers

    NASA Astrophysics Data System (ADS)

    Petronijevic, Emilija; Sibilia, Concita

    2017-05-01

    Electromagnetically induced transparency (EIT), a pump-induced narrow transparency window within the absorption region of a probe, had offered new perspectives in slow-light control in atomic physics. For applications in nanophotonics, the implementation on chip-scaled devices has later been obtained by mimicking this effect by metallic metamaterials. High losses in visible and near infrared range of metal-based metamaterialls have recently opened a new field of all-dielectric metamaterials; a proper configuration of high refractive index dielectric nanoresonators can mimick this effect without losses to get high Q, slow-light response. The next step would be the ability to tune their optical response, and in this work we investigate thin layers of phase change materials (PCM) for all-optical control of EIT-like all-dielectric metamaterials. PCM can be nonvolatively and reversibly switched between two stable phases that differ in optical properties by applying a visible laser pulse. The device is based on Si nanoresonators covered by a thin layer of PCM GeTe; optical and transient thermal simulations have been done to find and optimize the fabrication parameters and switching parameters such as the intensity and duration of the pulse. We have found that the EIT-like response can be switched on and off by applying the 532nm laser pulse to change the phase of the upper GeTe layer. We strongly believe that such approach could open new perspectives in all-optically controlled slow-light metamaterials.

  17. A nonlinear plasmonic waveguide based all-optical bidirectional switching

    NASA Astrophysics Data System (ADS)

    Bana, Xiaoqiang; Pang, Xingxing; Li, Xiaohui; Hu, Bin; Guo, Yixuan; Zheng, Hairong

    2018-01-01

    In this paper, an all-optical switching with a nanometer coupled ring resonator is demonstrated based on the nonlinear material. By adjusting the light intensity, we implement the resonance wavelength from 880 nm to 940 nm in the nonlinear material structure monocyclic. In the bidirectional switch structure, the center wavelength (i.e. 880 nm) is fixed. By changing the light intensity from I = 0 to I = 53 . 1 MW /cm2, the function of optical switching can be obtained. The results demonstrate that both the single-ring cavity and the T-shaped double-ring structure can realize the optical switching effect. This work takes advantage of the simple structure. The single-ring cavity plasmonic switches have many advantages, such as nanoscale size, low pumping light intensity, ultrafast response time (femtosecond level), etc. It is expected that the proposed all-optical integrated devices can be potentially applied in optical communication, signal processing, and signal sensing, etc.

  18. Novel all-optical logic gate using an add/drop filter and intensity switch.

    PubMed

    Threepak, T; Mitatha, S; Yupapin, P P

    2011-12-01

    A novel design of all-optical logic device is proposed. An all-optical logic device system composes of an optical intensity switch and add/drop filter. The intensity switch is formed to switch signal by using the relationship between refraction angle and signal intensity. In operation, two input signals are coupled into one with some coupling loss and attenuation, in which the combination of add/drop with intensity switch produces the optical logic gate. The advantage is that the proposed device can operate the high speed logic function. Moreover, it uses low power consumption. Furthermore, by using the extremely small component, this design can be put into a single chip. Finally, we have successfully produced the all-optical logic gate that can generate the accurate AND and NOT operation results.

  19. Monitoring system of hydraulic lifting device based on the fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Fajkus, Marcel; Nedoma, Jan; Novak, Martin; Martinek, Radek; Vanus, Jan; Mec, Pavel; Vasinek, Vladimir

    2017-10-01

    This article deals with the description of the monitoring system of hydraulic lifting device based on the fiber-optic sensors. For minimize the financial costs of the proposed monitoring system, the power evaluation of measured signal has been chosen. The solution is based on an evaluation of the signal obtained using the single point optic fiber sensors with overlapping reflective spectra. For encapsulation of the sensors was used polydimethylsiloxane (PDMS) polymer. To obtain a information of loading is uses the action of deformation of the lifting device on the pair single point optic fiber sensors mounted on the lifting device of the tested car. According to the proposed algorithm is determined information of pressure with an accuracy of +/- 5 %. Verification of the proposed system was realized on the various types of the tested car with different loading. The original contribution of the paper is to verify the new low-cost system for monitoring the hydraulic lifting device based on the fiber-optic sensors.

  20. Optical and electrical properties of Cu-based all oxide semi-transparent photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hong-Sik; Patel, Malkeshkumar; Yadav, Pankaj

    2016-09-05

    Zero-bias operating Cu oxide-based photodetector was achieved by using large-scale available sputtering method. Cu oxide (Cu{sub 2}O or CuO) was used as p-type transparent layer to form a heterojunction by contacting n-type ZnO layer. All metal-oxide materials were employed to realize transparent device at room temperature and showed a high transparency (>75% at 600 nm) with excellent photoresponses. The structural, morphological, optical, and electrical properties of Cu oxides of CuO and Cu{sub 2}O are evaluated in depth by UV-visible spectrometer, X-ray diffraction, scanning electron microscopy, atomic force microscopy, Kelvin probe force microscopy, and Hall measurements. We may suggest a route ofmore » high-functional Cu oxide-based photoelectric devices for the applications in flexible and transparent electronics.« less

  1. Optical correlation based pose estimation using bipolar phase grayscale amplitude spatial light modulators

    NASA Astrophysics Data System (ADS)

    Outerbridge, Gregory John, II

    Pose estimation techniques have been developed on both optical and digital correlator platforms to aid in the autonomous rendezvous and docking of spacecraft. This research has focused on the optical architecture, which utilizes high-speed bipolar-phase grayscale-amplitude spatial light modulators as the image and correlation filter devices. The optical approach has the primary advantage of optical parallel processing: an extremely fast and efficient way of performing complex correlation calculations. However, the constraints imposed on optically implementable filters makes optical correlator based posed estimation technically incompatible with the popular weighted composite filter designs successfully used on the digital platform. This research employs a much simpler "bank of filters" approach to optical pose estimation that exploits the inherent efficiency of optical correlation devices. A novel logarithmically mapped optically implementable matched filter combined with a pose search algorithm resulted in sub-degree standard deviations in angular pose estimation error. These filters were extremely simple to generate, requiring no complicated training sets and resulted in excellent performance even in the presence of significant background noise. Common edge detection and scaling of the input image was the only image pre-processing necessary for accurate pose detection at all alignment distances of interest.

  2. QUALITY ASSESSMENT OF CONFOCAL MICROSCOPY SLIDE-BASED SYSTEMS: INSTABLITY

    EPA Science Inventory

    Background: All slide-based fluorescence cytometry detections systems basically include an excitation light source, intermediate optics, and a detection device (CCD or PMT). Occasionally, this equipment becomes unstable, generating unreliable and inferior data. Methods: A num...

  3. The Physics of Ultracold Sr2 Molecules: Optical Production and Precision Measurement

    NASA Astrophysics Data System (ADS)

    Osborn, Christopher Butler

    Colloidal quantum dots have desirable optical properties which can be exploited to realize a variety of photonic devices and functionalities. However, colloidal dots have not had a pervasive utility in photonic devices because of the absence of patterning methods. The electronic chip industry is highly successful due to the well-established lithographic procedures. In this thesis we borrow ideas from the semiconductor industry to develop lithographic techniques that can be used to pattern colloidal quantum dots while ensuring that the optical properties of the quantum dots are not affected by the process. In this thesis we have developed colloidal quantum dot based waveguide structures for amplification and switching applications for all-optical signal processing. We have also developed colloidal quantum dot based light emitting diodes. We successfully introduced CdSe/ZnS quantum dots into a UV curable photo-resist, which was then patterned to realize active devices. In addition, "passive" devices (devices without quantum dots) were integrated to "active" devices via waveguide couplers. Use of photo-resist devices offers two distinct advantages. First, they have low scattering loss and secondly, they allow good fiber to waveguide coupling efficiency due to the low refractive index which allows for large waveguide cross-sections while supporting single mode operation. Practical planar photonic devices and circuits incorporating both active and passive structures can now be realized, now that we have patterning capabilities of quantum dots while maintaining the original optical attributes of the system. In addition to the photo-resist host, we also explored the incorporation of colloidal quantum dots into a dielectric silicon dioxide and silicon nitride one-dimensional microcavity structures using low temperature plasma enhanced chemical vapor deposition. This material system can be used to realize microcavity light emitting diodes that can be realized on any substrate. As a proof of concept demonstration we show a 1550 nm emitting all-dielectric vertical cavity structure embedded with PbS quantum dots. Enhancement in spontaneous emission from the dots embedded in the microcavity is also demonstrated.

  4. Intensity noise properties of a compact laser device based on a miniaturized MOPA system for spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Baumgärtner, S.; Juhl, S.; Opalevs, D.; Sahm, A.; Hofmann, J.; Leisching, P.; Paschke, K.

    2018-02-01

    We present a novel compact laser device based on a semiconductor master-oscillator power-amplifier (MOPA) emitting at 772 nm, suitable for quantum optic and spectroscopy. The optical performance of the laser device is characterized. For miniaturized lasers the thermal management is challenging, we therefore perform thermal simulations and measurements. The first demonstrator is emitting more than 3 W optical power with a linewidth below 2lMHz. Using this MOPA design also compact devices for quantum optics (e.g. rubidium atomic clock) and seed lasers for frequency conversion can be realized [1].

  5. Noninvasive monitoring of blood pressure using optical Ballistocardiography and Photoplethysmograph approaches.

    PubMed

    Chen, Zhihao; Yang, Xiufeng; Teo, Ju Teng; Ng, Soon Huat

    2013-01-01

    A new all optical method for long term and continuous blood pressure measurement and monitoring without using cuffs is proposed by using Ballistocardiography (BCG) and Photoplethysmograph (PPG). Based on BCG signal and PPG signal, a time delay between these two signals is obtained to calculate both systolic blood pressure and diastolic blood pressure via linear regression analysis. The fabricated noninvasive blood pressure monitoring device consists of a fiber sensor mat to measure BCG signal and a SpO2 sensor to measure PPG signal. A commercial digital oscillometric blood pressure meter is used to obtain reference values and for calibration. It has been found that by comparing with the reference device, our prototype has typical means and standard deviations of 9+/-5.6 mmHg for systolic blood pressure, 1.8+/-1.3 mmHg for diastolic blood pressure and 0.6+/-0.9 bpm for pulse rate, respectively. If the fiber optic SpO2 probe is used, this new all fiber cuffless noninvasive blood pressure monitoring device will truly be a MRI safe blood pressure measurement and monitoring device.

  6. Investigation of optical information for a single micro grating device combined with MATA by SMart process

    NASA Astrophysics Data System (ADS)

    Tsai, Chien-Chung; Huang, Yi-Chao; Yang, Tsa-Hsien; Chen, Jen-Chieh

    2006-01-01

    The concentric circles type and saw-tooth type of micro grating device based upon the diffraction theory are proposed in this study. The geometry dimension of micro optical device is 200 × 200 μm2, the interval of grating is 4 μm, and the depth is 0.75 μm. The Micro Array Thermal Actuator, MATA, is applied to drive the micro grating device, and the pre-elevating structure is designed to lift the micro grating device by the residual stress of polysilicon combined with metal. The micro grating device is fabricated by Surface Micromachining for applications and research technology platform, SMart, common process. The incident ray of He-Ne laser focused by a lens which focal length is 250 mm is applied to be the light source for the experiment, and then analyzes the optical information of the outgoing ray. From the experimental results, the basic optical features are examined based upon the concentric circles type and saw-tooth type of micro grating device, respectively. The outgoing ray angle of central spot is 60° in theory. The measurements are 59.475° for the concentric circles type and 59.88° for the saw-tooth type. The outgoing ray angle of the first stripe is 46.9° in theory, and 46.81° for the concentric circles type and 46.67° for the saw-tooth type are measured from the experiment. The variation of outgoing ray angle is smaller than 1% compared the measurement results with theory of diffraction on the central spot and first stripe characteristics. The work successfully demonstrates the micro grating device with highly accurate performance by the verification of optical information. All of the efforts will be contributed to Controlled Blazed Diffraction micro grating device, CBDMG, and that will be the main device of Integrate Opto-Electronics applied on display to develop in the future.

  7. Gas refractometry based on an all-fiber spatial optical filter.

    PubMed

    Silva, Susana; Coelho, L; André, R M; Frazão, O

    2012-08-15

    A spatial optical filter based on splice misalignment between optical fibers with different diameters is proposed for gas refractometry. The sensing head is formed by a 2 mm long optical fiber with 50 μm diameter that is spliced with a strong misalignment between two single-mode fibers (SMF28) and interrogated in transmission. The misalignment causes a Fabry-Perot behavior along the reduced-size fiber and depending on the lead-out SMF28 position, it is possible to obtain different spectral responses, namely, bandpass or band-rejection filters. It is shown that the spatial filter device is highly sensitive to refractive index changes on a nitrogen environment by means of the gas pressure variation. A maximum sensitivity of -1390 nm/RIU for the bandpass filter was achieved. Both devices have shown similar temperature responses with an average sensitivity of 25.7 pm/°C.

  8. CMOS-based optical energy harvesting circuit for biomedical and Internet of Things devices

    NASA Astrophysics Data System (ADS)

    Nattakarn, Wuthibenjaphonchai; Ishizu, Takaaki; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Sawan, Mohamad; Ohta, Jun

    2018-04-01

    In this work, we present a novel CMOS-based optical energy harvesting technology for implantable and Internet of Things (IoT) devices. In the proposed system, a CMOS energy-harvesting circuit accumulates a small amount of photoelectrically converted energy in an external capacitor, and intermittently supplies this power to a target device. Two optical energy-harvesting circuit types were implemented and evaluated. Furthermore, we developed a photoelectrically powered optical identification (ID) circuit that is suitable for IoT technology applications.

  9. Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control

    NASA Astrophysics Data System (ADS)

    Davis, Scott R.; Farca, George; Rommel, Scott D.; Johnson, Seth; Anderson, Michael H.

    2010-02-01

    A new electro-optic waveguide platform, which provides unprecedented voltage control over optical phase delays (> 2mm), with very low loss (< 0.5 dB/cm) and rapid response time (sub millisecond), will be presented. This technology, developed by Vescent Photonics, is based upon a unique liquid-crystal waveguide geometry, which exploits the tremendous electro-optic response of liquid crystals while circumventing their historic limitations. The waveguide geometry provides nematic relaxation speeds in the 10's of microseconds and LC scattering losses that are reduced by orders of magnitude from bulk transmissive LC optics. The exceedingly large optical phase delays accessible with this technology enable the design and construction of a new class of previously unrealizable photonic devices. Examples include: 2-D analog non-mechanical beamsteerers, chip-scale widely tunable lasers, chip-scale Fourier transform spectrometer (< 5 nm resolution demonstrated), widely tunable micro-ring resonators, tunable lenses, ultra-low power (< 5 microWatts) optical switches, true optical time delay devices for phased array antennas, and many more. All of these devices may benefit from established manufacturing technologies and ultimately may be as inexpensive as a calculator display. Furthermore, this new integrated photonic architecture has applications in a wide array of commercial and defense markets including: remote sensing, micro-LADAR, OCT, FSO, laser illumination, phased array radar, etc. Performance attributes of several example devices and application data will be presented. In particular, we will present a non-mechanical beamsteerer that steers light in both the horizontal and vertical dimensions.

  10. Micro-electro-mechanical systems (MEMS) and agile lensing-based modules for communications, sensing and signal processing

    NASA Astrophysics Data System (ADS)

    Reza, Syed Azer

    This dissertation proposes the use of the emerging Micro-Electro-Mechanical Systems (MEMS) and agile lensing optical device technologies to design novel and powerful signal conditioning and sensing modules for advanced applications in optical communications, physical parameter sensing and RF/optical signal processing. For example, these new module designs have experimentally demonstrated exceptional features such as stable loss broadband operations and high > 60 dB optical dynamic range signal filtering capabilities. The first part of the dissertation describes the design and demonstration of digital MEMS-based signal processing modules for communication systems and sensor networks using the TI DLP (Digital Light Processing) technology. Examples of such modules include optical power splitters, narrowband and broadband variable fiber optical attenuators, spectral shapers and filters. Compared to prior works, these all-digital designs have advantages of repeatability, accuracy, and reliability that are essential for advanced communications and sensor applications. The next part of the dissertation proposes, analyzes and demonstrates the use of analog opto-fluidic agile lensing technology for sensor networks and test and measurement systems. Novel optical module designs for distance sensing, liquid level sensing, three-dimensional object shape sensing and variable photonic delay lines are presented and experimentally demonstrated. Compared to prior art module designs, the proposed analog-mode modules have exceptional performances, particularly for extreme environments (e.g., caustic liquids) where the free-space agile beam-based sensor provide remote non-contact access for physical sensing operations. The dissertation also presents novel modules involving hybrid analog-digital photonic designs that make use of the different optical device technologies to deliver the best features of both analog and digital optical device operations and controls. Digital controls are achieved through the use of the digital MEMS technology and analog controls are realized by employing opto-fluidic agile lensing technology and acousto-optic technology. For example, variable fiber-optic attenuators and spectral filters are proposed using the hybrid design. Compared to prior art module designs, these hybrid designs provide a higher module dynamic range and increased resolution that are critical in various advanced system applications. In summary, the dissertation shows the added power of hybrid optical designs using both the digital and analog photonic signal processing versus just all-digital or all-analog module designs.

  11. Agreement and clinical comparison between a new swept-source optical coherence tomography-based optical biometer and an optical low-coherence reflectometry biometer

    PubMed Central

    Arriola-Villalobos, P; Almendral-Gómez, J; Garzón, N; Ruiz-Medrano, J; Fernández-Pérez, C; Martínez-de-la-Casa, J M; Díaz-Valle, D

    2017-01-01

    Purpose To compare measurements taken using a swept-source optical coherence tomography-based optical biometer (IOLmaster 700) and an optical low-coherence reflectometry biometer (Lenstar 900), and to determine the clinical impacts of differences in their measurements on intraocular lens (IOL) power predictions. Methods Eighty eyes of 80 patients scheduled to undergo cataract surgery were examined with both biometers. The measurements made using each device were axial length (AL), central corneal thickness (CCT), aqueous depth (AQD), lens thickness (LT), mean keratometry (MK), white-to-white distance (WTW), and pupil diameter (PD). Holladay 2 and SRK/T formulas were used to calculate IOL power. Differences in measurement between the two biometers were determined using the paired t-test. Agreement was assessed through intraclass correlation coefficients (ICC) and Bland–Altman plots. Results Mean patient age was 76.3±6.8 years (range 59–89). Using the Lenstar, AL and PD could not be measured in 12.5 and 5.25% of eyes, respectively, while IOLMaster 700 took all measurements in all eyes. The variables CCT, AQD, LT, and MK varied significantly between the two biometers. According to ICCs, correlation between measurements made with both devices was excellent except for WTW and PD. Using the SRK/T formula, IOL power prediction based on the data from the two devices were statistically different, but differences were not clinically significant. Conclusions No clinically relevant differences were detected between the biometers in terms of their measurements and IOL power predictions. Using the IOLMaster 700, it was easier to obtain biometric measurements in eyes with less transparent ocular media or longer AL. PMID:27834962

  12. The modeling of MMI structures for signal processing applications

    NASA Astrophysics Data System (ADS)

    Le, Thanh Trung; Cahill, Laurence W.

    2008-02-01

    Microring resonators are promising candidates for photonic signal processing applications. However, almost all resonators that have been reported so far use directional couplers or 2×2 multimode interference (MMI) couplers as the coupling element between the ring and the bus waveguides. In this paper, instead of using 2×2 couplers, novel structures for microring resonators based on 3×3 MMI couplers are proposed. The characteristics of the device are derived using the modal propagation method. The device parameters are optimized by using numerical methods. Optical switches and filters using Silicon on Insulator (SOI) then have been designed and analyzed. This device can become a new basic component for further applications in optical signal processing. The paper concludes with some further examples of photonic signal processing circuits based on MMI couplers.

  13. Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors.

    PubMed

    Aytug, Tolga; Rager, Matthew S; Higgins, Wesley; Brown, Forrest G; Veith, Gabriel M; Rouleau, Christopher M; Wang, Hui; Hood, Zachary D; Mahurin, Shannon M; Mayes, Richard T; Joshi, Pooran C; Kuruganti, Teja

    2018-04-04

    Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm -2 ) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.

  14. Deoxyribonucleic acid (DNA) cladding layers for nonlinear-optic-polymer-based electro-optic devices

    NASA Astrophysics Data System (ADS)

    Grote, James G.; Ogata, Naoya; Diggs, Darnell E.; Hopkins, Frank K.

    2003-07-01

    Nonlinear optic (NLO) polymer based electro-optic devices have been achieving world record low half wave voltages and high frequencies over the last 2-3 years. Part of the advancement is through the use of relatively more conductive polymers for the cladding layers. Based on the current materials available for these cladding materials, however, the desired optical and electromagnetic properites are being balanced for materials processability. One does not want the solvent present in one layer to dissovle the one deposited underneath, or be dissolved by the one being deposited on top. Optimized polymer cladding materials, to further enhance device performance, are continuing to be investigated. Thin films of deoxyribonucleic acid (DNA), derived from salmon sperm, show promise in providing both the desired optical and magnetic properties, as well as the desired resistance to various solvents used for NLO polymer device fabrication. Thin films of DNA were deposited on glass and silicon substrates and the film quality, optical and electromagnetic properties and resistance to various solvents were characterized.

  15. High speed all optical logic gates based on quantum dot semiconductor optical amplifiers.

    PubMed

    Ma, Shaozhen; Chen, Zhe; Sun, Hongzhi; Dutta, Niloy K

    2010-03-29

    A scheme to realize all-optical Boolean logic functions AND, XOR and NOT using semiconductor optical amplifiers with quantum-dot active layers is studied. nonlinear dynamics including carrier heating and spectral hole-burning are taken into account together with the rate equations scheme. Results show with QD excited state and wetting layer serving as dual-reservoir of carriers, as well as the ultra fast carrier relaxation of the QD device, this scheme is suitable for high speed Boolean logic operations. Logic operation can be carried out up to speed of 250 Gb/s.

  16. Fiber optic-based optical coherence tomography (OCT) for dental applications

    NASA Astrophysics Data System (ADS)

    Everett, Matthew J.; Colston, Bill W., Jr.; Da Silva, Luiz B.; Otis, Linda L.

    1998-09-01

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity. We have produced, using this scanning device, in vivo cross-sectional images of hard and soft dental tissues in human volunteers. Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento- enamel junction, were visible in all the images. The cemento- enamel junction and the alveolar bone were identified in approximately two thirds of the images. These images represent, or our knowledge, the first in vivo OCT images of human dental tissue.

  17. The role of low light intensity: A step towards understanding the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Lojpur, Vesna; Mitrić, Miodrag; Validžić, Ivana Lj

    2018-05-01

    We report here an optic/lens system that we used so far, for cooling the surface of solar cells, the reduction of light intensity and the change of light distribution that reaches the surface of the solar cell. The objective was to improve photovoltaic characteristics under very low light illumination, as well as to understand the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells. It was found that for all so far designed thin-film solar cells made and based on the synthesized Sb2S3, optics/lens system causes an increase in open circuit voltage (VOC) and short circuit current (ISC) and thus the efficiencies of made solar devices. Values of energy gaps for the thin-films made devices were in the range from 1.4 to 2 eV. Improvements of the photovoltaic response of the designed devices are found to be better at the lower light intensity (5% sun), than at higher intensities of light. For the same intensity of light used optic/lens improves the efficiency of the devices, by changing the light distribution. Other processes that are related to the optics/lens system, leading to an increase in ISC and VOC and consequently to an increase in efficiencies of the designed devices, are investigated.

  18. Multidimensional microstructured photonic device based on all-solid waveguide array fiber and magnetic fluid

    NASA Astrophysics Data System (ADS)

    Miao, Yinping; Ma, Xixi; He, Yong; Zhang, Hongmin; Yang, Xiaoping; Yao, Jianquan

    2017-01-01

    An all-solid waveguide array fiber (WAF) is one kind of special microstructured optical fiber in which the higher-index rods are periodically distributed in a low-index silica host to form the transverse two-dimensional photonic crystal. In this paper, one kind of multidimensional microstructured optical fiber photonic device is proposed by using electric arc discharge method to fabricate periodic tapers along the fiber axis. By tuning the applied magnetic field intensity, the propagation characteristics of the all-solid WAF integrated with magnetic fluid are periodically modulated in both radial and axial directions. Experimental results show that the wavelength changes little while the transmission loss increases for an applied magnetic field intensity range from 0 to 500 Oe. The magnetic field sensitivity is 0.055 dB/Oe within the linear range from 50 to 300 Oe. Meanwhile, the all-solid WAF has very similar thermal expansion coefficient for both high- and low-refractive index glasses, and thermal drifts have a little effect on the mode profile. The results show that the temperature-induced transmission loss is <0.3 dB from 26°C to 44°C. Further tuning coherent coupling of waveguides and controlling light propagation, the all-solid WAF would be found great potential applications to develop new micro-nano photonic devices for optical communications and optical sensing applications.

  19. A phaseonium magnetometer: A new optical magnetometer based on index enhanced media

    NASA Technical Reports Server (NTRS)

    Scully, Marlan O.; Fleischauer, Michael; Graf, Martin

    1993-01-01

    An optical magnetometer based on quantum coherence and interference effects in atoms is proposed. The sensitivity of this device is potentially superior to the present state-of-the-art devices. Optimum operating conditions are derived, and a comparison to standard optical pumping magnetometers is made.

  20. Optical fiber end-facet polymer suspended-mirror devices

    NASA Astrophysics Data System (ADS)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  1. New colored optical security elements using Rolic's LPP/LCP technology: devices for first- to third-level inspection

    NASA Astrophysics Data System (ADS)

    Moia, Franco

    2002-04-01

    With linear photo-polymerization (LPP) ROLIC has invented a photo-patternable technology enabling to align not only conventional liquid crystals but also liquid crystals polymers (LCP). ROLIC's optical security device technology derives from its LPP/LCP technology. LPP/LCP security devices are created by structured photo-alignment of an LPP layer through phot-masks, thus generating a high resolution, photo-patterned aligning layer which carries the aligning information of the image to be created. The subsequent LCP layer transforms the aligning information into an optical phase image with low and/or very high information content, such as invisible photographic pictures. The building block capability of the LPP/LCP technology allows the manufacturing of cholesteric and non-cholesteric LPP/LCP devices which cover 1st and/or 2nd level applications. Apart from black/white security devices colored information zones can be integrated. Moreover, we have developed an LPP/LCP security device which covers all three- 1st, 2nd and 3rd- inspection levels in one and the same authentication device: besides a color shift by tilting the device (1st level) and the detection of normally hidden information by use of a simple sheet polarizer (2nd level) the new device contains encrypted hidden information which can be visualized only by superimposing an LPP/LCP inspection tool (key) for decryption (3rd level). This optical key is also based on the LPP/LCP technology and is itself a 3rd level security device.

  2. Heterogeneous 3D optrode with variable spatial resolution for optogenetic stimulation and electrophysiological recording.

    PubMed

    Ayub, Suleman; Barz, Falk; Paul, Oliver; Ruther, Patrick

    2016-08-01

    We report on the concept, development, and geometrical, optical as well as electrical characterization of the first three-dimensional (3D) optrode. This new device allows to optically interact with neuronal cells and simultaneously record their response with a high spatial resolution. Our design is based on a single-shank optical stimulation component and a multi-shank recording probe stacked together in a delicate assembly process. The electrical connection of both components is ensured by using flexible polyimide (PI) ribbon cables. The highly accurate relative positioning and precise alignment of the optical and electrical components in 3D with an optical output power at 460 nm well above 5 mW/mm2 and an all-electrical interface makes this device a promising tool for optogenetic experiments in neuroscientific research.

  3. Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber.

    PubMed

    Chen, Xi; Shi, Yuechun; Lou, Fei; Chen, Yiting; Yan, Min; Wosinski, Lech; Qiu, Min

    2014-10-20

    An optically pumped thermo-optic (TO) silicon ring add-drop filter with fast thermal response is experimentally demonstrated. We propose that metal-insulator-metal (MIM) light absorber can be integrated into silicon TO devices, acting as a localized heat source which can be activated remotely by a pump beam. The MIM absorber design introduces less thermal capacity to the device, compared to conventional electrically-driven approaches. Experimentally, the absorber-integrated add-drop filter shows an optical response time of 13.7 μs following the 10%-90% rule (equivalent to a exponential time constant of 5 μs) and a wavelength shift over pump power of 60 pm/mW. The photothermally tunable add-drop filter may provide new perspectives for all-optical routing and switching in integrated Si photonic circuits.

  4. Glass-based integrated optical splitters: engineering oriented research

    NASA Astrophysics Data System (ADS)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  5. Measurement agreement between a new biometer based on partial coherence interferometry and a validated biometer based on optical low-coherence reflectometry.

    PubMed

    Li, Junhua; Chen, Hao; Savini, Giacomo; Lu, Weicong; Yu, Xinxin; Bao, Fangjun; Wang, Qinmei; Huang, Jinhai

    2016-01-01

    To evaluate the agreement of ocular measurements obtained with a new optical biometer (AL-Scan) and a previously validated optical biometer (Lenstar). Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. Prospective observational cross-sectional study. For a comprehensive comparison between the partial coherence interferometry (PCI) device and the optical low-coherence reflectometry (OLCR) device, the axial length (AL), central corneal thickness (CCT), anterior chamber depth (ACD), aqueous depth, mean keratometry (K), astigmatism, white-to-white (WTW), and pupil diameter were measured 3 times per device in eyes with cataract. The sequence of the device was in random order. The mean values were compared and 95% limits of agreement (LoA) were assessed. Ninety-two eyes of 92 cataract patients were included. Bland-Altman analysis showed excellent agreement between the PCI device and the OLCR device for AL, CCT, ACD and aqueous depth measurements with narrow 95% LoA (-0.05 to 0.06 mm, -13.39 to 15.61 μm, -0.11 to 0.10 mm, and -0.12 to 0.10 mm, respectively), and the P values were more than 0.05. The mean K, astigmatism, and WTW values provided by the PCI device were in good agreement with the OLCR device, although statistically significant differences were detected. A major difference was observed in the pupil diameter measurement, with a 95% LoA of -0.73 to 1.21 mm. The PCI device biometer provided ocular measurements similar to those provided by the OLCR device for most parameters, especially for AL, CCT, and ACD. The pupil diameter values obtained with the PCI device were in poor agreement with the OLCR device, and these measurements should be interpreted with necessary adjustment. None of the authors has a proprietary or financial interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  6. Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber.

    PubMed

    Fu, L; Rochette, M; Ta'eed, V; Moss, D; Eggleton, B

    2005-09-19

    We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers <10 W in a fully passive device, including only 2.8 m of chalcogenide fiber. We obtain an excellent agreement between theory and experiment and show that both the high nonlinearity of the chalcogenide glass along with its high normal dispersion near 1550 nm enables a significant device length reduction in comparison with silica-based devices, without compromise on the performance. We find that even for only a few meters of fiber, the large normal dispersion of the chalcogenide glass inhibits spectral oscillations that would appear with self-phase modulation alone. We measure the two photon absorption attenuation coefficient and find that it advantageously affects the device transfer function.

  7. Integrated optical devices based on sol – gel waveguides using the temperature dependence of the effective refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlov, S V; Trofimov, N S; Chekhlova, T K

    2014-07-31

    A possibility of designing optical waveguide devices based on sol – gel SiO{sub 2} – TiO{sub 2} films using the temperature dependence of the effective refractive index is shown. The dependences of the device characteristics on the parameters of the film and opticalsystem elements are analysed. The operation of a temperature recorder and a temperature limiter with a resolution of 0.6 K mm{sup -1} is demonstrated. The film and output-prism parameters are optimised. (fibreoptic and nonlinear-optic devices)

  8. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits

    PubMed Central

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-01

    Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits. PMID:24463956

  9. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits.

    PubMed

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-27

    Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits.

  10. High Bandwidth Optical Links for Micro-Satellite Support

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  11. Novel optical gyroscope: proof of principle demonstration and future scope

    PubMed Central

    Srivastava, Shailesh; Rao D. S., Shreesha; Nandakumar, Hari

    2016-01-01

    We report the first proof-of-principle demonstration of the resonant optical gyroscope with reflector that we have recently proposed. The device is very different from traditional optical gyroscopes since it uses the inherent coupling between the clockwise and counterclockwise propagating waves to sense the rotation. Our demonstration confirms our theoretical analysis and simulations. We also demonstrate a novel method of biasing the gyroscope using orthogonal polarization states. The simplicity of the structure and the readout method, the theoretically predicted high sensitivities (better than 0.001 deg/hr), and the possibility of further performance enhancement using a related laser based active device, all have immense potential for attracting fresh research and technological initiatives. PMID:27694987

  12. Polarization-independent fiber filter with an all-polarization-maintaining fiber loop for tunable fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Wu, Weiran; Rao, Qi; Zhou, Kejiang

    2018-05-01

    Tunable fiber lasers are a promising light source in all-optical wavelength conversion, fiber grating sensing and optical add-drop multiplexing. In order to achieve a tunable wavelength in the output, optical filters are indispensable for the construction of tunable fiber lasers. Recently, much attention has been given to developing high-performance filters. This paper proposes an environment-insensitive filter based on a Sagnac interferometer which was designed by an all-polarization-maintaining fiber with linear birefringence. According to the Sagnac interferometer, we derived the transfer function of an environment-insensitive filter. Based on this principle, it is shown that the device is able to implement a precision filtering function that can be used in a fiber laser’s optical resonant cavity. The experiment results demonstrated the effectiveness of this structure.

  13. Porous silicon based micro-opto-electro-mechanical-systems (MOEMS) components for free space optical interconnects

    NASA Astrophysics Data System (ADS)

    Song, Da

    2008-02-01

    One of the major challenges confronting the current integrated circuits (IC) industry is the metal "interconnect bottleneck". To overcome this obstacle, free space optical interconnects (FSOIs) can be used to address the demand for high speed data transmission, multi-functionality and multi-dimensional integration for the next generation IC. One of the crucial elements in FSOIs system is to develop a high performance and flexible optical network to transform the incoming optical signal into a distributed set of optical signals whose direction, alignment and power can be independently controlled. Among all the optical materials for the realization of FSOI components, porous silicon (PSi) is one of the most promising candidates because of its unique optical properties, flexible fabrication methods and integration with conventional IC material sets. PSi-based Distributed Bragg Reflector (DBR) and Fabry-Perot (F-P) structures with unique optical properties are realized by electrochemical etching of silicon. By incorporating PSi optical structures with Micro-Opto-Electro-Mechanical-Systems (MOEMS), several components required for FSOI have been developed. The first type of component is the out-of-plane freestanding optical switch. Implementing a PSi DBR structure as an optically active region, the device can realize channel selection by changing the tilting angle of the micromirror supported by the thermal bimorph actuator. All the fabricated optical switches have reached kHz working frequency and life time of millions of cycles. The second type of component is the in-plane tunable optical filter. By introducing PSi F-P structure into the in-plane PSi film, a thermally tunable optical filter with a sensitivity of 7.9nm/V has been realized for add/drop optical signal selection. Also, for the first time, a new type of PSi based reconfigurable diffractive optical element (DOE) has been developed. By using patterned photoresist as a protective mask for electrochemical etching, the freestanding PSi-based MOEMS DOE has been created as a beam splitter to redistribute the incoming optical signal with onto desired detector arrays. All the developed devices are realized in array fashion and can be addressed and controlled individually. The combination of PSi and MOEMS opens the door for a new generation of silicon compatible optical interconnects.

  14. Optical modeling based on mean free path calculations for quantum dot phosphors applied to optoelectronic devices.

    PubMed

    Shin, Min-Ho; Kim, Hyo-Jun; Kim, Young-Joo

    2017-02-20

    We proposed an optical simulation model for the quantum dot (QD) nanophosphor based on the mean free path concept to understand precisely the optical performance of optoelectronic devices. A measurement methodology was also developed to get the desired optical characteristics such as the mean free path and absorption spectra for QD nanophosphors which are to be incorporated into the simulation. The simulation results for QD-based white LED and OLED displays show good agreement with the experimental values from the fabricated devices in terms of spectral power distribution, chromaticity coordinate, CCT, and CRI. The proposed simulation model and measurement methodology can be applied easily to the design of lots of optoelectronics devices using QD nanophosphors to obtain high efficiency and the desired color characteristics.

  15. Interdisciplinary education in optics and photonics based on microcontrollers

    NASA Astrophysics Data System (ADS)

    Dreßler, Paul; Wielage, Heinz-Hermann; Haiss, Ulrich; Vauderwange, Oliver; Curticapean, Dan

    2014-07-01

    Not only is the number of new devices constantly increasing, but so is their application complexity and power. Most of their applications are in optics, photonics, acoustic and mobile devices. Working speed and functionality is achieved in most of media devices by strategic use of digital signal processors and microcontrollers of the new generation. Considering all these premises of media development dynamics, the authors present how to integrate microcontrollers and digital signal processors in the curricula of media technology lectures by using adequate content. This also includes interdisciplinary content that consists of using the acquired knowledge in media software. These entries offer a deeper understanding of photonics, acoustics and media engineering.

  16. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region

    NASA Astrophysics Data System (ADS)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.

    2011-01-01

    We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.

  17. Fiber-optic fluorescence imaging

    PubMed Central

    Flusberg, Benjamin A; Cocker, Eric D; Piyawattanametha, Wibool; Jung, Juergen C; Cheung, Eunice L M; Schnitzer, Mark J

    2010-01-01

    Optical fibers guide light between separate locations and enable new types of fluorescence imaging. Fiber-optic fluorescence imaging systems include portable handheld microscopes, flexible endoscopes well suited for imaging within hollow tissue cavities and microendoscopes that allow minimally invasive high-resolution imaging deep within tissue. A challenge in the creation of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, fiber-based fluorescence imaging was mainly limited to epifluorescence and scanning confocal modalities. Two new classes of photonic crystal fiber facilitate ultrashort pulse delivery for fiber-optic two-photon fluorescence imaging. An upcoming generation of fluorescence imaging devices will be based on microfabricated device components. PMID:16299479

  18. Guided-Wave TeO2 Acousto-Optic Devices

    DTIC Science & Technology

    1991-01-12

    In this research program, Guided-wave TeO2 Acousto - Optic Devices, the properties of surface acoustic waves on tellurium dioxide single crystal...surfaces has been studied for its potential applications as acousto - optic signal processing devices. Personal computer based numerical method has been...interaction with laser beams. Use of the acousto - optic probe, the surface acoustic wave velocity and field distribution have been obtained and compared

  19. All-optical regenerator of multi-channel signals.

    PubMed

    Li, Lu; Patki, Pallavi G; Kwon, Young B; Stelmakh, Veronika; Campbell, Brandon D; Annamalai, Muthiah; Lakoba, Taras I; Vasilyev, Michael

    2017-10-12

    One of the main reasons why nonlinear-optical signal processing (regeneration, logic, etc.) has not yet become a practical alternative to electronic processing is that the all-optical elements with nonlinear input-output relationship have remained inherently single-channel devices (just like their electronic counterparts) and, hence, cannot fully utilise the parallel processing potential of optical fibres and amplifiers. The nonlinear input-output transfer function requires strong optical nonlinearity, e.g. self-phase modulation, which, for fundamental reasons, is always accompanied by cross-phase modulation and four-wave mixing. In processing multiple wavelength-division-multiplexing channels, large cross-phase modulation and four-wave mixing crosstalks among the channels destroy signal quality. Here we describe a solution to this problem: an optical signal processor employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without such nonlinear crosstalk. We demonstrate, for the first time to our knowledge, simultaneous all-optical regeneration of up to 16 wavelength-division-multiplexing channels by one device. This multi-channel concept can be extended to other nonlinear-optical processing schemes.Nonlinear optical processing devices are not yet fully practical as they are single channel. Here the authors demonstrate all-optical regeneration of up to 16 channels by one device, employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without nonlinear inter-channel crosstalk.

  20. Printed Biopolymer-Based Electro-Optic Device Components

    DTIC Science & Technology

    2013-07-01

    devices and fabricated e-beam lithography-based master molds. Printed micro and nanostructures using a newly developed spin-on nanoprinting (SNAP...polymeric materials. Among the natural biopolymers , deoxyribonucleic acid (DNA) is an attractive material which can be used to make electronic and...photonic devices [2, 3]. If patterned on the micro and nanoscale using a soft lithography technique, high quality biodegradable optical devices can be

  1. Comparison of corneal power, astigmatism, and wavefront aberration measurements obtained by a point-source color light-emitting diode-based topographer, a Placido-disk topographer, and a combined Placido and dual Scheimpflug device.

    PubMed

    Ventura, Bruna V; Wang, Li; Ali, Shazia F; Koch, Douglas D; Weikert, Mitchell P

    2015-08-01

    To evaluate and compare the performance of a point-source color light-emitting diode (LED)-based topographer (color-LED) in measuring anterior corneal power and aberrations with that of a Placido-disk topographer and a combined Placido and dual Scheimpflug device. Cullen Eye Institute, Baylor College of Medicine, Houston, Texas USA. Retrospective observational case series. Normal eyes and post-refractive-surgery eyes were consecutively measured using color-LED, Placido, and dual-Scheimpflug devices. The main outcome measures were anterior corneal power, astigmatism, and higher-order aberrations (HOAs) (6.0 mm pupil), which were compared using the t test. There were no statistically significant differences in corneal power measurements in normal and post-refractive surgery eyes and in astigmatism magnitude in post-refractive surgery eyes between the color-LED device and Placido or dual Scheimpflug devices (all P > .05). In normal eyes, there were no statistically significant differences in 3rd-order coma and 4th-order spherical aberration between the color-LED and Placido devices and in HOA root mean square, 3rd-order coma, 3rd-order trefoil, 4th-order spherical aberration, and 4th-order secondary astigmatism between the color-LED and dual Scheimpflug devices (all P > .05). In post-refractive surgery eyes, the color-LED device agreed with the Placido and dual-Scheimpflug devices regarding 3rd-order coma and 4th-order spherical aberration (all P > .05). In normal and post-refractive surgery eyes, all 3 devices were comparable with respect to corneal power. The agreement in corneal aberrations varied. Drs. Wang, Koch, and Weikert are consultants to Ziemer Ophthalmic Systems AG. Dr. Koch is a consultant to Abbott Medical Optics, Inc., Alcon Surgical, Inc., and i-Optics Corp. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. An all-silicon passive optical diode.

    PubMed

    Fan, Li; Wang, Jian; Varghese, Leo T; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M; Qi, Minghao

    2012-01-27

    A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input. The silicon optical diode is ultracompact and is compatible with current complementary metal-oxide semiconductor processing.

  3. An omnidirectional retroreflector based on the transmutation of dielectric singularities.

    PubMed

    Ma, Yun Gui; Ong, C K; Tyc, Tomás; Leonhardt, Ulf

    2009-08-01

    Transformation optics is a concept used in some metamaterials to guide light on a predetermined path. In this approach, the materials implement coordinate transformations on electromagnetic waves to create the illusion that the waves are propagating through a virtual space. Transforming space by appropriately designed materials makes devices possible that have been deemed impossible. In particular, transformation optics has led to the demonstration of invisibility cloaking for microwaves, surface plasmons and infrared light. Here, on the basis of transformation optics, we implement a microwave device that would normally require a dielectric singularity, an infinity in the refractive index. To fabricate such a device, we transmute a dielectric singularity in virtual space into a mere topological defect in a real metamaterial. In particular, we demonstrate an omnidirectional retroreflector, a device for faithfully reflecting images and for creating high visibility from all directions. Our method is robust, potentially broadband and could also be applied to visible light using similar techniques.

  4. Design issues for semi-passive optical communication devices

    NASA Astrophysics Data System (ADS)

    Glaser, I.

    2007-09-01

    Optical smart cards are devices containing a retro-reflector, light modulator, and some computing and data storage capabilities to affect semi-passive communication. They do not produce light; instead they modulate and send back light received from a stationary unit. These devices can replace contact-based smart cards as well as RF based ones for applications ranging from identification to transmitting and validating data. Since their transmission is essentially focused on the receiving unit, they are harder to eavesdrop than RF devices, yet need no physical contact or alignment. In this paper we explore optical design issues of these devices and estimate their optical behavior. Specifically, we analyze how these compact devices can be optimized for selected application profiles. Some of the key parameters addressed are effective light efficiency (how much modulated signal can be received by the stationary unit given the amount of light it transmits), range of tilt angles (angle between device surface normal to the line connecting the optical smart card with the stationary unit) through which the device would be effective, and power requirements of the semi-passive unit. In addition, issues concerning compact packaging of this device are discussed. Finally, results of the analysis are employed to produce a comparison of achievable capabilities of these optical smart cards, as opposed to alternative devices, and discuss potential applications were they can be best utilized.

  5. Development of computer informational system of diagnostics integrated optical materials, elements, and devices

    NASA Astrophysics Data System (ADS)

    Volosovitch, Anatoly E.; Konopaltseva, Lyudmila I.

    1995-11-01

    Well-known methods of optical diagnostics, database for their storage, as well as expert system (ES) for their development are analyzed. A computer informational system is developed, which is based on a hybrid ES built on modern DBMS. As an example, the structural and constructive circuits of the hybrid integrated-optical devices based on laser diodes, diffusion waveguides, geodetic lenses, package-free linear photodiode arrays, etc. are presented. The features of methods and test results as well as the advanced directions of works related to the hybrid integrated-optical devices in the field of metrology are discussed.

  6. Graphene planar lightwave circuit sensors for chemical detection

    NASA Astrophysics Data System (ADS)

    Maliakal, Ashok; Husaini, Saima; Reith, Leslie; Bollond, Paul; Cabot, Steve; Sheehan, Paul; Hangartar, Sandra; Walton, Scott; Tamanaha, Cy

    2017-02-01

    Sensing devices based on Graphene Field Effect Transistors (G-FET) have been demonstrated by several groups to show excellent sensitivity for a variety of chemical agents. These devices are based on measuring changes in the electrical conductivity of graphene when exposed to various chemicals. However, because of its unique band structure, graphene also exhibits changes in its optical response upon chemical exposure. The conical intersection of the valence and conduction bands results in a low density of states near the Dirac point. At this point, chemical doping resulting from molecular binding to graphene can result in dramatic changes in graphene's optical absorption. Here we will discuss our recent work in developing a graphene planar lightwave circuit (PLC) sensor which exploits these optical and electronic properties of graphene to demonstrate chemical sensitivity. The devices are based on a strong evanescent coupling of graphene via electrically gated silicon nanowire waveguides. A strong response in the form of a reversible optical attenuation change of 6 dB is shown when these devices interact with toxic industrial chemicals such as iodine and ammonia. The optical transition can also be tuned to the optical c-band (1530-1565 nm) which enables these devices to operate at telecom wavelengths.

  7. The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification.

    PubMed

    Yin, Wenchang; Tao, Cheng-An; Zou, Xiaorong; Wang, Fang; Qu, Tianlian; Wang, Jianfang

    2017-08-29

    Optical properties, which determine the application of optical devices in different fields, are the most significant properties of optical thin films. In recent years, Metal-organic framework (MOF)-based optical thin films have attracted increasing attention because of their novel optical properties and important potential applications in optical and photoelectric devices, especially optical thin films with tunable optical properties. This study reports the first example of tuning the optical properties of a MOF-based optical thin film via post-modification. The MOF-based optical thin film was composed of NH₂-MIL-53(Al) nanorods (NRs) (MIL: Materials from Institute Lavoisier), and was constructed via a spin-coating method. Three aldehydes with different lengths of carbon chains were chosen to modify the MOF optical thin film to tune their optical properties. After post-modification, the structural color of the NH₂-MIL-53(Al) thin film showed an obvious change from purple to bluish violet and cyan. The reflection spectrum and the reflectivity also altered in different degrees. The effective refractive index ( n eff ) of MOFs thin film can also be tuned from 1.292 to 1.424 at a wavelength of 750 nm. The success of tuning of the optical properties of MOFs thin films through post-modification will make MOFs optical thin films meet different needs of optical properties in various optical and optoelectronic devices.

  8. The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification

    PubMed Central

    Zou, Xiaorong; Wang, Fang; Qu, Tianlian; Wang, Jianfang

    2017-01-01

    Optical properties, which determine the application of optical devices in different fields, are the most significant properties of optical thin films. In recent years, Metal-organic framework (MOF)-based optical thin films have attracted increasing attention because of their novel optical properties and important potential applications in optical and photoelectric devices, especially optical thin films with tunable optical properties. This study reports the first example of tuning the optical properties of a MOF-based optical thin film via post-modification. The MOF-based optical thin film was composed of NH2-MIL-53(Al) nanorods (NRs) (MIL: Materials from Institute Lavoisier), and was constructed via a spin-coating method. Three aldehydes with different lengths of carbon chains were chosen to modify the MOF optical thin film to tune their optical properties. After post-modification, the structural color of the NH2-MIL-53(Al) thin film showed an obvious change from purple to bluish violet and cyan. The reflection spectrum and the reflectivity also altered in different degrees. The effective refractive index (neff) of MOFs thin film can also be tuned from 1.292 to 1.424 at a wavelength of 750 nm. The success of tuning of the optical properties of MOFs thin films through post-modification will make MOFs optical thin films meet different needs of optical properties in various optical and optoelectronic devices. PMID:28850057

  9. Hierarchical structural health monitoring system combining a fiber optic spinal cord network and distributed nerve cell devices

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo

    2009-03-01

    This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.

  10. Passive Optical Locking Techniques for Diode Lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Quan

    1995-01-01

    Most current diode-based nonlinear frequency converters utilize electronic frequency locking techniques. However, this type of locking technique typically involves very complex electronics, and suffers the 'power-drop' problem. This dissertation is devoted to the development of an all-optical passive locking technique that locks the diode laser frequency to the external cavity resonance stably without using any kind of electronic servo. The amplitude noise problem associated with the strong optical locking has been studied. Single-mode operation of a passively locked single-stripe diode with an amplitude stability better than 1% has been achieved. This passive optical locking technique applies to broad-area diodes as well as single-stripe diodes, and can be easily used to generate blue light. A schematic of a milliwatt level blue laser based on the single-stripe diode locking technique has been proposed. A 120 mW 467 nm blue laser has been built using the tapered amplifier locking technique. In addition to diode-based blue lasers, this passive locking technique has applications in nonlinear frequency conversions, resonant spectroscopy, particle counter devices, telecommunications, and medical devices.

  11. FIBER AND INTEGRATED OPTICS: Matching of fiber and strip optical waveguides by graded-index optical matching components

    NASA Astrophysics Data System (ADS)

    Shmal'ko, A. V.; Gordova, M. R.; Lamekin, V. F.; Nikolaev, I. V.; Sakharov, V. V.; Smirnov, V. L.; Polyantsev, A. S.

    1990-01-01

    A method for selection and calculation of the parameters of axisymmetric and anamorphic graded-index lenses for optical matching devices is developed and tested. These devices are intended for detachable connectors joining single-mode fibers to strip optical waveguides and are characterized by a greater tolerance to a mismatch between these waveguides. An experimental study is reported of a prototype of an optical matching device based on graded-index lenses characterized by insertion losses from 1-3 dB.

  12. Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators.

    PubMed

    Fegadolli, William S; Almeida, Vilson R; Oliveira, José Edimar Barbosa

    2011-06-20

    A novel tunable and reconfigurable thermo-optical device is theoretically proposed and analyzed in this paper. The device is designed to be entirely compatible with CMOS process and to work as a thermo-optical filter or modulator. Numerical results, made by means of analytical and Finite-Difference Time-Domain (FDTD) methods, show that a compact device enables a broad bandwidth operation, of up to 830 GHz, which allows the device to work under a large temperature variation, of up to 96 K.

  13. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber

    NASA Astrophysics Data System (ADS)

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-01

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.

  14. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber.

    PubMed

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-12

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.

  15. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2010-03-15

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360 degrees microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz). The proposed device exploits the phenomenon of coherent population oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations of the suggested technique, dictated by the underlying physics, are also analyzed.

  16. All linear optical quantum memory based on quantum error correction.

    PubMed

    Gingrich, Robert M; Kok, Pieter; Lee, Hwang; Vatan, Farrokh; Dowling, Jonathan P

    2003-11-21

    When photons are sent through a fiber as part of a quantum communication protocol, the error that is most difficult to correct is photon loss. Here we propose and analyze a two-to-four qubit encoding scheme, which can recover the loss of one qubit in the transmission. This device acts as a repeater, when it is placed in series to cover a distance larger than the attenuation length of the fiber, and it acts as an optical quantum memory, when it is inserted in a fiber loop. We call this dual-purpose device a "quantum transponder."

  17. Development and Performance Analysis of a Photonics-Assisted RF Converter for 5G Applications

    NASA Astrophysics Data System (ADS)

    Borges, Ramon Maia; Muniz, André Luiz Marques; Sodré Junior, Arismar Cerqueira

    2017-03-01

    This article presents a simple, ultra-wideband and tunable radiofrequency (RF) converter for 5G cellular networks. The proposed optoelectronic device performs broadband photonics-assisted upconversion and downconversion using a single optical modulator. Experimental results demonstrate RF conversion from DC to millimeter waves, including 28 and 38 GHz that are potential frequency bands for 5G applications. Narrow linewidth and low phase noise characteristics are observed in all generated RF carriers. An experimental digital performance analysis using different modulation schemes illustrates the applicability of the proposed photonics-based device in reconfigurable optical wireless communications.

  18. Space Gator: a giant leap for fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Evenblij, R. S.; Leijtens, J. A. P.

    2017-11-01

    Fibre Optic Sensing is a rapidly growing application field for Photonics Integrated Circuits (PIC) technology. PIC technology is regarded enabling for required performances and miniaturization of next generation fibre optic sensing instrumentation. So far a number of Application Specific Photonics Integrated Circuits (ASPIC) based interrogator systems have been realized as operational system-on-chip devices. These circuits have shown that all basic building blocks are working and complete interrogator on chip solutions can be produced. Within the Saristu (FP7) project several high reliability solutions for fibre optic sensing in Aeronautics are being developed, combining the specifically required performance aspects for the different sensing applications: damage detection, impact detection, load monitoring and shape sensing (including redundancy aspects and time division features). Further developments based on devices and taking into account specific space requirements (like radiation aspects) will lead to the Space Gator, which is a radiation tolerant highly integrated Fibre Bragg Grating (FBG) interrogator on chip. Once developed and qualified the Space Gator will be a giant leap for fibre optic sensing in future space applications.

  19. Design, fabrication and analysis of integrated optical waveguide devices

    NASA Astrophysics Data System (ADS)

    Sikorski, Yuri

    Throughout the present dissertation, the main effort has been to develop the set of design rules for optical integrated circuits (OIC). At the present time, when planar optical integrated circuits seem to be the leading technology, and industry is heading towards much higher levels of integration, such design rules become necessary. It is known that analysis of light propagation in rectangular waveguides can not be carried out exactly. Various approximations become necessary, and their validity is discussed in this text. Various methods are used in the text for calculating the same problems, and results are compared. A few new concepts have been suggested to avoid approximations used elsewhere. The second part of this dissertation is directed to the development of a new technique for the fabrication of optical integrated circuits inside optical glass. This technique is based on the use of ultrafast laser pulses to alter the properties of glasses. Using this method we demonstrated the possibility of changing the refractive index of various passive and active optical glasses as well as ablating the material on the surface in a controlled fashion. A number of optical waveguide devices (e.g. waveguides, directional couplers, diffraction gratings, fiber Bragg gratings, V-grooves in dual-clad optical fibers, optical waveguide amplifiers) were fabricated and tested. Testing included measurements of loss/throughput, near-field mode profiles, efficiency and thermal stability. All of the experimental setup and test results are reported in the dissertation. We also demonstrated the possibility of using this technique to fabricate future bio-optical devices that will incorporate an OIC and a microfluidic circuit on a single substrate. Our results are expected to serve as a guide for the design and fabrication of a new generation of integrated optical and bio-optical devices.

  20. Photoisomerization-induced manipulation of single-electron tunneling for novel Si-based optical memory.

    PubMed

    Hayakawa, Ryoma; Higashiguchi, Kenji; Matsuda, Kenji; Chikyow, Toyohiro; Wakayama, Yutaka

    2013-11-13

    We demonstrated optical manipulation of single-electron tunneling (SET) by photoisomerization of diarylethene molecules in a metal-insulator-semiconductor (MIS) structure. Stress is placed on the fact that device operation is realized in the practical device configuration of MIS structure and that it is not achieved in structures based on nanogap electrodes and scanning probe techniques. Namely, this is a basic memory device configuration that has the potential for large-scale integration. In our device, the threshold voltage of SET was clearly modulated as a reversible change in the molecular orbital induced by photoisomerization, indicating that diarylethene molecules worked as optically controllable quantum dots. These findings will allow the integration of photonic functionality into current Si-based memory devices, which is a unique feature of organic molecules that is unobtainable with inorganic materials. Our proposed device therefore has enormous potential for providing a breakthrough in Si technology.

  1. Virtual optical interfaces for the transportation industry

    NASA Astrophysics Data System (ADS)

    Hejmadi, Vic; Kress, Bernard

    2010-04-01

    We present a novel implementation of virtual optical interfaces for the transportation industry (automotive and avionics). This new implementation includes two functionalities in a single device; projection of a virtual interface and sensing of the position of the fingers on top of the virtual interface. Both functionalities are produced by diffraction of laser light. The device we are developing include both functionalities in a compact package which has no optical elements to align since all of them are pre-aligned on a single glass wafer through optical lithography. The package contains a CMOS sensor which diffractive objective lens is optimized for the projected interface color as well as for the IR finger position sensor based on structured illumination. Two versions are proposed: a version which senses the 2d position of the hand and a version which senses the hand position in 3d.

  2. Performance improvements of symmetry-breaking reflector structures in nonimaging devices

    DOEpatents

    Winston, Roland

    2004-01-13

    A structure and method for providing a broken symmetry reflector structure for a solar concentrator device. The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quantity, referred to as the translational skew invariant, is conserved in rotationally symmetric optical systems. Performance limits for translationally symmetric nonimaging optical devices are derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. A numerically optimized non-tracking solar concentrator utilizing symmetry-breaking reflector structures can overcome the performance limits associated with translational symmetry.

  3. High-speed real-time image compression based on all-optical discrete cosine transformation

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Chen, Hongwei; Wang, Yuxi; Chen, Minghua; Yang, Sigang; Xie, Shizhong

    2017-02-01

    In this paper, we present a high-speed single-pixel imaging (SPI) system based on all-optical discrete cosine transform (DCT) and demonstrate its capability to enable noninvasive imaging of flowing cells in a microfluidic channel. Through spectral shaping based on photonic time stretch (PTS) and wavelength-to-space conversion, structured illumination patterns are generated at a rate (tens of MHz) which is three orders of magnitude higher than the switching rate of a digital micromirror device (DMD) used in a conventional single-pixel camera. Using this pattern projector, high-speed image compression based on DCT can be achieved in the optical domain. In our proposed system, a high compression ratio (approximately 10:1) and a fast image reconstruction procedure are both achieved, which implicates broad applications in industrial quality control and biomedical imaging.

  4. Optically tuned terahertz modulator based on annealed multilayer MoS2.

    PubMed

    Cao, Yapeng; Gan, Sheng; Geng, Zhaoxin; Liu, Jian; Yang, Yuping; Bao, Qiaoling; Chen, Hongda

    2016-03-08

    Controlling the propagation properties of terahertz waves is very important in terahertz technologies applied in high-speed communication. Therefore a new-type optically tuned terahertz modulator based on multilayer-MoS2 and silicon is experimentally demonstrated. The terahertz transmission could be significantly modulated by changing the power of the pumping laser. With an annealing treatment as a p-doping method, MoS2 on silicon demonstrates a triple enhancement of terahertz modulation depth compared with the bare silicon. This MoS2-based device even exhibited much higher modulation efficiency than the graphene-based device. We also analyzed the mechanism of the modulation enhancement originated from annealed MoS2, and found that it is different from that of graphene-based device. The unique optical modulating properties of the device exhibit tremendous promise for applications in terahertz switch.

  5. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence.

    PubMed

    Tahirbegi, Islam Bogachan; Ehgartner, Josef; Sulzer, Philipp; Zieger, Silvia; Kasjanow, Alice; Paradiso, Mirco; Strobl, Martin; Bouwes, Dominique; Mayr, Torsten

    2017-02-15

    The necessities of developing fast, portable, cheap and easy to handle pesticide detection platforms are getting attention of scientific and industrial communities. Although there are some approaches to develop microchip based pesticide detection platforms, there is no compact microfluidic device for the complementary, fast, cheap, reusable and reliable analysis of different pesticides. In this work, a microfluidic device is developed for in-situ analysis of pesticide concentration detected via metabolism/photosynthesis of Chlamydomonas reinhardtii algal cells (algae) in tap water. Algae are grown in glass based microfluidic chip, which contains integrated optical pH and oxygen sensors in a portable system for on-site detection. In addition, intrinsic algal fluorescence is detected to analyze the pesticide concentration in parallel to pH and oxygen sensors with integrated fluorescence detectors. The response of the algae under the effect of different concentrations of pesticides is evaluated and complementary inhibition effects depending on the pesticide concentration are demonstrated. The three different sensors allow the determination of various pesticide concentrations in the nanomolar concentration range. The miniaturized system provides the fast quantification of pesticides in less than 10min and enables the study of toxic effects of different pesticides on Chlamydomonas reinhardtii green algae. Consequently, the microfluidic device described here provides fast and complementary detection of different pesticides with algae in a novel glass based microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. High-speed low-power photonic transistor devices based on optically-controlled gain or absorption to affect optical interference.

    PubMed

    Huang, Yingyan; Ho, Seng-Tiong

    2008-10-13

    We show that a photonic transistor device can be realized via the manipulation of optical interference by optically controlled gain or absorption in novel ways, resulting in efficient transistor signal gain and switching action. Exemplary devices illustrate two complementary device types with high operating speed, microm size, microW switching power, and switching gain. They can act in tandem to provide a wide variety of operations including wavelength conversion, pulse regeneration, and logical operations. These devices could have a Transistor Figure-of-Merits >10(5) times higher than current chi((3)) approaches and are highly attractive.

  7. [A digital micromirror device-based Hadamard transform near infrared spectrometer].

    PubMed

    Liu, Jia; Chen, Fen-Fei; Liao, Cheng-Sheng; Xu, Qian; Zeng, Li-Bo; Wu, Qiong-Shui

    2011-10-01

    A Hadamard transform near infrared spectrometer based on a digital micromirror device was constructed. The optical signal was collected by optical fiber, a grating was used for light diffraction, a digital micromirror device (DMD) was applied instead of traditional mechanical Hadamard masks for optical modulation, and an InGaAs near infrared detector was used as the optic sensor. The original spectrum was recovered by fast Hadamard transform algrithms. The advantages of the spectrometer, such as high resolution, signal-noise-ratio, stability, sensitivity and response speed were proved by experiments, which indicated that it is very suitable for oil and food-safety applications.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blansett, Ethan L.; Schroeppel, Richard Crabtree; Tang, Jason D.

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in themore » photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and cascaded in an encrypting/scrambling algorithm based on a study of candidate encryption algorithms. We found that a low gate count, cascadable encryption algorithm is most feasible given device and processing constraints. The modeling and simulation of optical designs using these components is proceeding in parallel with efforts to perfect the physical devices and their interconnect. We have applied these techniques to the development of a 'toy' algorithm that may pave the way for more robust optical algorithms. These design/modeling/simulation techniques are now ready to be applied to larger optical designs in advance of our ability to implement such systems in hardware.« less

  9. Mobile device-based optical instruments for agriculture

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    2013-05-01

    Realizing that a current smart-mobile device such as a cell phone and a tablet can be considered as a pocket-size computer embedded with a built-in digital camera, this paper reviews and demonstrates on how a mobile device can be specifically functioned as a portable optical instrument for agricultural applications. The paper highlights several mobile device-based optical instruments designed for searching small pests, measuring illumination level, analyzing spectrum of light, identifying nitrogen status in the rice field, estimating chlorine in water, and determining ripeness level of the fruit. They are suitable for individual use as well as for small and medium enterprises.

  10. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer

    PubMed Central

    Sturm, C.; Tanese, D.; Nguyen, H.S.; Flayac, H.; Galopin, E.; Lemaître, A.; Sagnes, I.; Solnyshkov, D.; Amo, A.; Malpuech, G.; Bloch, J.

    2014-01-01

    Quantum fluids based on light is a highly developing research field, since they provide a nonlinear platform for developing optical functionalities and quantum simulators. An important issue in this context is the ability to coherently control the properties of the fluid. Here we propose an all-optical approach for controlling the phase of a flow of cavity-polaritons, making use of their strong interactions with localized excitons. Here we illustrate the potential of this method by implementing a compact exciton–polariton interferometer, which output intensity and polarization can be optically controlled. This interferometer is cascadable with already reported polariton devices and is promising for future polaritonic quantum optic experiments. Complex phase patterns could be also engineered using this optical method, providing a key tool to build photonic artificial gauge fields. PMID:24513781

  11. Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers.

    PubMed

    Ben Bakir, B; Descos, A; Olivier, N; Bordel, D; Grosse, P; Augendre, E; Fulbert, L; Fedeli, J M

    2011-05-23

    We report the first demonstration of an electrically driven hybrid silicon/III-V laser based on adiabatic mode transformers. The hybrid structure is formed by two vertically superimposed waveguides separated by a 100-nm-thick SiO2 layer. The top waveguide, fabricated in an InP/InGaAsP-based heterostructure, serves to provide optical gain. The bottom Si-waveguides system, which supports all optical functions, is constituted by two tapered rib-waveguides (mode transformers), two distributed Bragg reflectors (DBRs) and a surface-grating coupler. The supermodes of this hybrid structure are controlled by an appropriate design of the tapers located at the edges of the gain region. In the middle part of the device almost all the field resides in the III-V waveguide so that the optical mode experiences maximal gain, while in regions near the III-V facets, mode transformers ensure an efficient transfer of the power flow towards Si-waveguides. The investigated device operates under quasi-continuous wave regime. The room temperature threshold current is 100 mA, the side-mode suppression ratio is as high as 20 dB, and the fiber-coupled output power is ~7 mW.

  12. Method of developing all-optical trinary JK, D-type, and T-type flip-flops using semiconductor optical amplifiers.

    PubMed

    Garai, Sisir Kumar

    2012-04-10

    To meet the demand of very fast and agile optical networks, the optical processors in a network system should have a very fast execution rate, large information handling, and large information storage capacities. Multivalued logic operations and multistate optical flip-flops are the basic building blocks for such fast running optical computing and data processing systems. In the past two decades, many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitations because of the low switching response of active devices. The frequency encoding technique has been used because of its many advantages. It can preserve its identity throughout data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. The action of polarization-rotation-based very fast switching of semiconductor optical amplifiers increases processing speed. At the same time, tristate optical flip-flops increase information handling capacity.

  13. An easy packaging hybrid optical element in grating based WDM application

    NASA Astrophysics Data System (ADS)

    Lan, Hsiao-Chin; Cheng, Chao-Chia; Wang, Chih-Ming; Chang, Jenq-Yang

    2005-08-01

    We developed a new optical element which integrates an off-axis diffractive grating and an on-axis refractive lens surface in a prism. With this optical element, the alignment tolerance can be improved by manufacturing technology of the grating based WDM device and is practicable for mass production. An 100-GHz 16-channel DWDM device which includes this optical element has been designed. Ray tracing and beam propagation method (BPM) simulations showed good performance on the insertion loss of 2.91+/-0.53dB and the adjacent cross talk of 58.02dB. The tolerance discussion for this DWDM device shows that this optical element could be practically achieved by either injection molding or the hot embossing method.

  14. Fiber-optic evanescent-field sensor for attitude measurement

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Chen, Shimeng; Liu, Zigeng; Guang, Jianye; Peng, Wei

    2017-11-01

    We proposed a new approach to attitude measurement by an evanescent field-based optical fiber sensing device and demonstrated a liquid pendulum. The device consisted of three fiber-optic evanescent-filed sensors which were fabricated by tapered single mode fibers and immersed in liquid. Three fiber Bragg gratings were used to measure the changes in evanescent field. And their reflection peaks were monitored in real time as measurement signals. Because every set of reflection responses corresponded to a unique attitude, the attitude of the device could be measured by the three fiber-optic evanescent-filed sensors. After theoretical analysis, computerized simulation and experimental verification, regular responses were obtained using this device for attitude measurement. The measurement ranges of dihedral angle and direction angle were 0°-50° and 0°-360°. The device is based on cost-effective power-referenced scheme. It can be used in electromagnetic or nuclear radiation environment.

  15. Characterization of devices, circuits, and high-temperature superconductor transmission lines by electro-optic testing

    NASA Technical Reports Server (NTRS)

    Whitaker, John F.

    1991-01-01

    The development of a capability for testing transmission lines, devices, and circuits using the optically-based technique of electro-optics sampling was the goal of this project. Electro-optic network analysis of a high-speed device was demonstrated. The project involved research on all of the facets necessary in order to realize this result, including the discovery of the optimum electronic pulse source, development of an adequate test fixture, improvement of the electro-optic probe tip, and identification of a device which responded at high frequency but did not oscillate in the test fixture. In addition, during the process of investigating patterned high-critical-temperature superconductors, several non-contacting techniques for the determination of the transport properties of high T(sub c) films were developed and implemented. These are a transient, optical pump-probe, time-resolved reflectivity experiment, an impulsive-stimulated Raman scattering experiment, and a terahertz-beam coherent-spectroscopy experiment. The latter technique has enabled us to measure both the complex refractive index of an MgO substrate used for high-T(sub c) films and the complex conductivity of a YBa2Cu3O(7-x) sample. This information was acquired across an extremely wide frequency range: from the microwave to the submillimeter-wave regime. The experiments on the YBCO were conducted without patterning of, or contact to, the thin film. Thus, the need for the more difficult transmission-line experiments was eliminated. Progress in all of these areas was made and is documented in a number of papers. These papers may be found in the section listing the abstracts of the publications that were issued during the course of the research.

  16. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb.

    PubMed

    Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu

    2013-11-15

    A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

  17. All-optical reservoir computer based on saturation of absorption.

    PubMed

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-05

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  18. Field-programmable logic devices with optical input-output.

    PubMed

    Szymanski, T H; Saint-Laurent, M; Tyan, V; Au, A; Supmonchai, B

    2000-02-10

    A field-programmable logic device (FPLD) with optical I/O is described. FPLD's with optical I/O can have their functionality specified in the field by means of downloading a control-bit stream and can be used in a wide range of applications, such as optical signal processing, optical image processing, and optical interconnects. Our device implements six state-of-the-art dynamically programmable logic arrays (PLA's) on a 2 mm x 2 mm die. The devices were fabricated through the Lucent Technologies-Advanced Research Projects Agency-Consortium for Optical and Optoelectronic Technologies in Computing (Lucent/ARPA/COOP) workshop by use of 0.5-microm complementary metal-oxide semiconductor-self-electro-optic device technology and were delivered in 1998. All devices are fully functional: The electronic data paths have been verified at 200 MHz, and optical tests are pending. The device has been programmed to implement a two-stage optical switching network with six 4 x 4 crossbar switches, which can realize more than 190 x 10(6) unique programmable input-output permutations. The same device scaled to a 2 cm x 2 cm substrate could support as many as 4000 optical I/O and 1 Tbit/s of optical I/O bandwidth and offer fully programmable digital functionality with approximately 110,000 programmable logic gates. The proposed optoelectronic FPLD is also ideally suited to realizing dense, statically reconfigurable crossbar switches. We describe an attractive application area for such devices: a rearrangeable three-stage optical switch for a wide-area-network backbone, switching 1000 traffic streams at the OC-48 data rate and supporting several terabits of traffic.

  19. Deep-UV Based Acousto-Optic Tunable Filter for Spectral Sensing Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2006-01-01

    In this paper, recent progress made in the development of quartz and KDP crystal based acousto-optic tunable filters (AOTF) are presented. These AOTFs are developed for operation over deep-UV to near-UV wavelengths of 190 nm to 400 nm. Preliminary output performance measurements of quartz AOTF and design specifications of KDP AOTF are presented. At 355 nm, the quartz AOTF device offered approx.15% diffraction efficiency with a passband full-width-half-maximum (FWHM) of less than 0.0625 nm. Further characterization of quartz AOTF devices at deep-UV wavelengths is progressing. The hermetic packaging of KDP AOTF is nearing completion. The solid-state optical sources being used for excitation include nonlinear optics based high-energy tunable UV transmitters that operate around 320 nm and 308 nm wavelengths, and a tunable deep-UV laser operating over 193 nm to 210 nm. These AOTF devices have been developed as turn-key devices for primarily for space-based chemical and biological sensing applications using laser induced Fluorescence and resonance Raman techniques.

  20. Photonic Switching Devices Using Light Bullets

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    1999-01-01

    A unique ultra-fast, all-optical switching device or switch is made with readily available, relatively inexpensive, highly nonlinear optical materials. which includes highly nonlinear optical glasses, semiconductor crystals and/or multiple quantum well semiconductor materials. At the specified wavelengths. these optical materials have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counter-propagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide. and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. An advantage of the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another advantage of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in nonlinear optical materials. including highly nonlinear optical glasses and semiconductor materials such as semiconductor crystals and/or multiple quantum well semiconductor materials.

  1. Tethered capsule OCT endomicroscopy for upper gastrointestinal tract imaging by using ball lens probe (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Jing; Gora, Michalina J.; Reddy, Rohith; Trasischker, Wolfgang; Poupart, Oriane; Lu, Weina; Carruth, Robert W.; Grant, Catriona N.; Soomro, Amna R.; Tiernan, Aubrey R.; Rosenberg, Mireille; Nishioka, Norman S.; Tearney, Guillermo J.

    2016-03-01

    While endoscopy is the most commonly used modality for diagnosing upper GI tract disease, this procedure usually requires patient sedation that increases cost and mandates its operation in specialized settings. In addition, endoscopy only visualizes tissue superfically at the macroscopic scale, which is problematic for many diseases that manifest below the surface at a microscopic scale. Our lab has previously developed technology termed tethered capsule OCT endomicroscopy (TCE) to overcome these diagnostic limitations of endoscopy. The TCE device is a swallowable capsule that contains optomechanical components that circumferentially scan the OCT beam inside the body as the pill traverses the organ via peristalsis. While we have successfully imaged ~100 patients with the TCE device, the optics of our current device have many elements and are complex, comprising a glass ferrule, optical fiber, glass spacer, GRIN lens and prism. As we scale up manufacturing of this device for clinical translation, we must decrease the cost and improve the manufacturability of the capsule's optical configuration. In this abstract, we report on the design and development of simplificed TCE optics that replace the GRIN lens-based configuration with an angle-polished ball lens design. The new optics include a single mode optical fiber, a glass spacer and an angle polished ball lens, that are all fusion spliced together. The ball lens capsule has resolutions that are comparable with those of our previous GRIN lens configuration (30µm (lateral) × 7 µm (axial)). Results in human subjects show that OCT-based TCE using the ball lens not only provides rapid, high quality microstructural images of upper GI tract, but also makes it possible to implement this technology inexpensively and on a larger scale.

  2. Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range.

    PubMed

    Zhu, Yu; Hu, Xiaoyong; Fu, Yulan; Yang, Hong; Gong, Qihuang

    2013-01-01

    Actively all-optical tunable plasmon-induced transparency in metamaterials paves the way for achieving ultrahigh-speed quantum information processing chips. Unfortunately, up to now, very small experimental progress has been made for all-optical tunable plasmon-induced transparency in metamaterials in the visible and near-infrared range because of small third-order optical nonlinearity of conventional materials. The achieved operating pump intensity was as high as several GW/cm(2) order. Here, we report an ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials coated on polycrystalline indium-tin oxide layer at the optical communication range. Compared with previous reports, the threshold pump intensity is reduced by four orders of magnitude, while an ultrafast response time of picoseconds order is maintained. This work not only offers a way to constructing photonic materials with large nonlinearity and ultrafast response, but also opens up the possibility for realizing quantum solid chips and ultrafast integrated photonic devices based on metamaterials.

  3. Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range

    PubMed Central

    Zhu, Yu; Hu, Xiaoyong; Fu, Yulan; Yang, Hong; Gong, Qihuang

    2013-01-01

    Actively all-optical tunable plasmon-induced transparency in metamaterials paves the way for achieving ultrahigh-speed quantum information processing chips. Unfortunately, up to now, very small experimental progress has been made for all-optical tunable plasmon-induced transparency in metamaterials in the visible and near-infrared range because of small third-order optical nonlinearity of conventional materials. The achieved operating pump intensity was as high as several GW/cm2 order. Here, we report an ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials coated on polycrystalline indium-tin oxide layer at the optical communication range. Compared with previous reports, the threshold pump intensity is reduced by four orders of magnitude, while an ultrafast response time of picoseconds order is maintained. This work not only offers a way to constructing photonic materials with large nonlinearity and ultrafast response, but also opens up the possibility for realizing quantum solid chips and ultrafast integrated photonic devices based on metamaterials. PMID:23903825

  4. All-optical quantum fluid spin beam splitter

    NASA Astrophysics Data System (ADS)

    Askitopoulos, A.; Nalitov, A. V.; Sedov, E. S.; Pickup, L.; Cherotchenko, E. D.; Hatzopoulos, Z.; Savvidis, P. G.; Kavokin, A. V.; Lagoudakis, P. G.

    2018-06-01

    We investigate the spin behavior of the first excited state of a polariton condensate in an optical trap by means of polarization resolved spectroscopy. The interplay between the repulsive polariton interactions and the gain saturation results in a nontrivial spontaneous switching between the two quasidegenerate spatial modes of the polariton condensate. As a result, the polarization pattern of the emitted light dramatically changes. Successful harnessing of this effect can lead to a spin-demultiplexing device for polariton-based optical integrated circuits.

  5. Optical sensing system based on wireless paired emitter detector diode device and ionogels for lab-on-a-disc water quality analysis.

    PubMed

    Czugala, Monika; Gorkin, Robert; Phelan, Thomas; Gaughran, Jennifer; Curto, Vincenzo Fabio; Ducrée, Jens; Diamond, Dermot; Benito-Lopez, Fernando

    2012-12-07

    This work describes the first use of a wireless paired emitter detector diode device (PEDD) as an optical sensor for water quality monitoring in a lab-on-a-disc device. The microfluidic platform, based on an ionogel sensing area combined with a low-cost optical sensor, is applied for quantitative pH and qualitative turbidity monitoring of water samples at point-of-need. The autonomous capabilities of the PEDD system, combined with the portability and wireless communication of the full device, provide the flexibility needed for on-site water testing. Water samples from local fresh and brackish sources were successfully analysed using the device, showing very good correlation with standard bench-top systems.

  6. A 3D visualization and guidance system for handheld optical imaging devices

    NASA Astrophysics Data System (ADS)

    Azar, Fred S.; de Roquemaurel, Benoit; Cerussi, Albert; Hajjioui, Nassim; Li, Ang; Tromberg, Bruce J.; Sauer, Frank

    2007-03-01

    We have developed a novel 3D visualization and guidance system for handheld optical imaging devices. In this paper, the system is applied to measurements of breast/cancerous tissue optical properties using a handheld diffuse optical spectroscopy (DOS) instrument. The combined guidance system/DOS instrument becomes particularly useful for monitoring neoadjuvant chemotherapy in breast cancer patients and for longitudinal studies where measurement reproducibility is critical. The system uses relatively inexpensive hardware components and comprises a 6 degrees-of-freedom (DOF) magnetic tracking device including a DC field generator, three sensors, and a PCI card running on a PC workstation. A custom-built virtual environment combined with a well-defined workflow provide the means for image-guided measurements, improved longitudinal studies of breast optical properties, 3D reconstruction of optical properties within the anatomical map, and serial data registration. The DOS instrument characterizes tissue function such as water, lipid and total hemoglobin concentration. The patient lies on her back at a 45-degrees angle. Each spectral measurement requires consistent contact with the skin, and lasts about 5-10 seconds. Therefore a limited number of positions may be studied. In a reference measurement session, the physician acquires surface points on the breast. A Delaunay-based triangulation algorithm is used to build the virtual breast surface from the acquired points. 3D locations of all DOS measurements are recorded. All subsequently acquired surfaces are automatically registered to the reference surface, thus allowing measurement reproducibility through image guidance using the reference measurements.

  7. Fiber-optic beam control systems using microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    This dissertation, for the first time, proposes, studies, and experimentally demonstrated novel fiber-optic beam control systems based on the use of microelectromechanical system (MEMS) technology in which the miniaturized versions of mechanical systems can be obtained. Beam control modules include optical add/drop filters, optical switches, variable photonic delay lines (VPDLs), and variable optical attenuators (VOAs). The optical add/drop filter functions as a multiwavelength optical switch that offers the ability to drop and add a certain number of desired wavelengths at an intermediate location where access to all the propagating optical channels is not required between transmission terminals. The VOA can also be used in networks where stocking and tracking of fixed attenuators is difficult. Other specific applications of the VOA are optical gain equalization and polarization dependent loss and gain compensation required in high data-rate wavelength division multiplexed (WDM) lightwave systems. A VPDL can be used to adjust timing amongst multiwavelength optical signals in order to reduce timing jitter and burst traffic in photonic packet switching and parallel signal processing systems. In this dissertation, a small tilt micromirror device is proposed for the implementation of all fiber-optic beam control modules. In particular, the macro-pixel approach where several micromirrors are used to manipulate the desired optical beam is introduced to realize high speed and fault tolerant beam control modules. To eliminate the need of careful optical alignment, an all fiber-connectorized multiwavelength optical switch structure is presented and experimentally demonstrated by using a fiber-loop mirror concept with polarization control. In addition, liquid crystal (LC) devices are studied and are used to implement a compact retro- reflective 2 x 2 fiber-optic switch. Compared to MEMS- based mirror technology, the LC technology is more sensitive to temperature, thereby inappropriate to deploy in a harsh environment. With the benefit provided by WDM systems, wavelength sensitive fiber-optic beam controllers are proposed, offering wavelength sensitive time delay and amplitude controls that can be applied in several applications ranging from optical communications to high speed parallel signal processing. (Abstract shortened by UMI.)

  8. Bidirectional optical switch based on electrowetting

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Li, Lei; Wang, Qiong-Hua

    2013-05-01

    In this paper, we demonstrate a bidirectional optical switch based on electrowetting. Four rectangular polymethyl methacrylate substrates are stacked to form the device and three ITO electrodes are fabricated on the bottom substrate. A black liquid droplet is placed on the middle of the ITO electrode and surrounded by silicone oil. When we apply a voltage to one ITO electrode, the droplet stretches and moves in one direction and a light beam is covered by the stretched droplet, while the droplet yields a space to let the original blocked light pass through. Due to the shift of the droplet, our device functions as a bidirectional optical switch. Our experiment shows that the device can obtain a wide optical attenuation from ˜1 dB to 30 dB and the transmission loss is ˜0.67 dB. The response time of the device is ˜177 ms. The proposed optical switch has potential applications in variable optical attenuators, electronic displays, and light shutters.

  9. All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers.

    PubMed

    Wienhold, T; Kraemmer, S; Wondimu, S F; Siegle, T; Bog, U; Weinzierl, U; Schmidt, S; Becker, H; Kalt, H; Mappes, T; Koeber, S; Koos, C

    2015-09-21

    We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip. The chip is entirely made from polymers, enabling the use of the devices as low-cost disposables. The microgoblet cavities feature quality factors exceeding 10(5) and are fabricated from poly(methyl methacrylate) (PMMA) using spin-coating, mask-based optical lithography, wet chemical etching, and thermal reflow. In contrast to silica-based microtoroid resonators, this approach replaces technically demanding vacuum-based dry etching and serial laser-based reflow techniques by solution-based processing and parallel thermal reflow. This enables scaling to large-area substrates, and hence significantly reduces device costs. Moreover, the resonators can be fabricated on arbitrary substrate materials, e.g., on transparent and flexible polymer foils. Doping the microgoblets with the organic dye pyrromethene 597 transforms the passive resonators into lasers. Devices have lasing thresholds below 0.6 nJ per pulse and can be efficiently pumped via free-space optics using a compact and low-cost green laser diode. We demonstrate that arrays of microgoblet lasers can be readily integrated into a state-of-the-art microfluidic chip replicated via injection moulding. In a proof-of-principle experiment, we show the viability of the lab-on-a-chip via refractometric sensing, demonstrating a bulk refractive index sensitivity (BRIS) of 10.56 nm per refractive index unit.

  10. Design of optical seven-segment decoder using Pockel's effect inside lithium niobate-based waveguide

    NASA Astrophysics Data System (ADS)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep

    2017-01-01

    Seven-segment decoder is a device that allows placing digital information from many inputs to many outputs optically, having 11 Mach-Zehnder interferometers (MZIs) for their implementation. The layout of the circuit is implemented to fit the electrical method on an optical logic circuit based on the beam propagation method (BPM). Seven-segment decoder is proposed using electro-optic effect inside lithium niobate-based MZIs. MZI structures are able to switch an optical signal to a desired output port. It consists of a mathematical explanation about the proposed device. The BPM is also used to analyze the study.

  11. Azo biphenyl polyurethane: Preparation, characterization and application for optical waveguide switch

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Da, Zulin; Qiu, Fengxian; Yang, Dongya; Guan, Yijun; Cao, Guorong

    2018-01-01

    Azo waveguide polymers are of particular interest in the design of materials for applications in optical switch. The aim of this contribution was the synthesis and thermo-optic waveguide switch properties of azo biphenyl polyurethanes. A series of monomers and azo biphenyl polyurethanes (Azo BPU1 and Azo BPU2) were synthesized and characterized by FT-IR, UV-Vis spectroscopy and 1H NMR. The physical and mechanical properties of thin polymer films were measured. The refractive index and thermo-optic coefficient (dn/dT) of polymer films were investigated for TE (transversal electric) polarizations by ATR technique. The transmission loss of film was measured using the Charge Coupled Device digital imaging devices. The results showed the Azo BPU2 containing chiral azobenzene chromophore had higher dn/dT and lower transmission loss. Subsequently, a 1 × 2 Y-branch and 2 × 2 Mach-Zehnder optical switches based on the prepared polymers were designed and simulated. The results showed that the power consumption of all switches was less than 1.0 mW. Compared with 1 × 2 Y-branch optical switch, the 2 × 2 Mach-Zehnder optical switches based on the same polymer have the faster response time, which were about only 1.2 and 2.0 ms, respectively.

  12. Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction.

    PubMed

    Wang, Guoqing; Yan, Zhijun; Yang, Lei; Zhang, Lin; Wang, Chao

    2018-01-12

    Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space diffraction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.

  13. Caries Detection around Restorations Using ICDAS and Optical Devices.

    PubMed

    Diniz, Michele Baffi; Eckert, George Joseph; González-Cabezas, Carlos; Cordeiro, Rita de Cássia Loiola; Ferreira-Zandona, Andrea Gonçalves

    2016-01-01

    Secondary caries is the major reason for replacement of restorations in operative dentistry. New detection methods and technology have the potential to improve the accuracy for diagnosis of secondary carious lesions. This in vitro study evaluated the performance of the ICDAS (International Caries Detection and Assessment System) visual criteria and optical devices for detecting secondary caries around amalgam and composite resin restorations in permanent teeth. A total of 180 extracted teeth with Class I amalgam (N = 90) and resin composite (N = 90) restorations were selected. Two examiners analyzed the teeth twice using the visual criteria (ICDAS), laser fluorescence (LF), light-emitting diode device (MID), quantitative light-induced fluorescence system (QLF), and a prototype system based on the Fluorescence Enamel Imaging technique (Professional Caries Detection System, PCDS). The gold standard was determined by means of confocal laser scanning microscopy. High-reproducibility values were shown for all methods, except for MID in the amalgam group. For both groups the QLF and PCDS were the most sensitive methods, whereas the other methods presented better specificity (p < 0.05). All methods, except the MID device appeared to be potential methods for detecting secondary caries only around resin composite restorations, whereas around amalgam restorations all methods seemed to be questionable. Using Internal Caries Detection and Assessment System (ICDAS), an LF device, quantitative light-induced fluorescence and a novel method based on Fluorescence Enamel Imaging technique may be effective for evaluating secondary caries around composite resin restorations. © 2016 Wiley Periodicals, Inc.

  14. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry

    PubMed Central

    Kumarasinghe, Chathurangi S.; Premaratne, Malin; Gunapala, Sarath D.; Agrawal, Govind P.

    2016-01-01

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors. PMID:26887286

  15. Light-Emitting GaAs Nanowires on a Flexible Substrate.

    PubMed

    Valente, João; Godde, Tillmann; Zhang, Yunyan; Mowbray, David J; Liu, Huiyun

    2018-06-18

    Semiconductor nanowire-based devices are among the most promising structures used to meet the current challenges of electronics, optics and photonics. Due to their high surface-to-volume ratio and excellent optical and electrical properties, devices with low power, high efficiency and high density can be created. This is of major importance for environmental issues and economic impact. Semiconductor nanowires have been used to fabricate high performance devices, including detectors, solar cells and transistors. Here, we demonstrate a technique for transferring large-area nanowire arrays to flexible substrates while retaining their excellent quantum efficiency in emission. Starting with a defect-free self-catalyzed molecular beam epitaxy (MBE) sample grown on a Si substrate, GaAs core-shell nanowires are embedded in a dielectric, removed by reactive ion etching and transferred to a plastic substrate. The original structural and optical properties, including the vertical orientation, of the nanowires are retained in the final plastic substrate structure. Nanowire emission is observed for all stages of the fabrication process, with a higher emission intensity observed for the final transferred structure, consistent with a reduction in nonradiative recombination via the modification of surface states. This transfer process could form the first critical step in the development of flexible nanowire-based light-emitting devices.

  16. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry.

    PubMed

    Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P

    2016-02-18

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.

  17. Ultra-wideband WDM VCSEL arrays by lateral heterogeneous integration

    NASA Astrophysics Data System (ADS)

    Geske, Jon

    Advancements in heterogeneous integration are a driving factor in the development of evermore sophisticated and functional electronic and photonic devices. Such advancements will merge the optical and electronic capabilities of different material systems onto a common integrated device platform. This thesis presents a new lateral heterogeneous integration technology called nonplanar wafer bonding. The technique is capable of integrating multiple dissimilar semiconductor device structures on the surface of a substrate in a single wafer bond step, leaving different integrated device structures adjacent to each other on the wafer surface. Material characterization and numerical simulations confirm that the material quality is not compromised during the process. Nonplanar wafer bonding is used to fabricate ultra-wideband wavelength division multiplexed (WDM) vertical-cavity surface-emitting laser (VCSEL) arrays. The optically-pumped VCSEL arrays span 140 nm from 1470 to 1610 nm, a record wavelength span for devices operating in this wavelength range. The array uses eight wavelength channels to span the 140 nm with all channels separated by precisely 20 nm. All channels in the array operate single mode to at least 65°C with output power uniformity of +/- 1 dB. The ultra-wideband WDM VCSEL arrays are a significant first step toward the development of a single-chip source for optical networks based on coarse WDM (CWDM), a low-cost alternative to traditional dense WDM. The CWDM VCSEL arrays make use of fully-oxidized distributed Bragg reflectors (DBRs) to provide the wideband reflectivity required for optical feedback and lasing across 140 rim. In addition, a novel optically-pumped active region design is presented. It is demonstrated, with an analytical model and experimental results, that the new active-region design significantly improves the carrier uniformity in the quantum wells and results in a 50% lasing threshold reduction and a 20°C improvement in the peak operating temperature of the devices. This thesis investigates the integration and fabrication technologies required to fabricate ultra-wideband WDM VCSEL arrays. The complete device design and fabrication process is presented along with actual device results from completed CWDM VCSEL arrays. Future recommendations for improvements are presented, along with a roadmap toward a final electrically-pumped single-chip source for CWDM applications.

  18. Passive device based on plastic optical fibers to determine the indices of refraction of liquids.

    PubMed

    Zubia, J; Garitaonaindía, G; Arrúe, J

    2000-02-20

    We have designed and measured a passive device based on plastic optical fibers (POF's) that one can use to determine the indices of refraction of liquids. A complementary software has also been designed to simulate the behavior of the device. We report on the theoretical model developed for the device, its implementation in a simulation software program, and the results of the simulation. A comparison of the experimental and calculated results is also shown and discussed.

  19. All-optical lithography process for contacting nanometer precision donor devices

    NASA Astrophysics Data System (ADS)

    Ward, D. R.; Marshall, M. T.; Campbell, D. M.; Lu, T. M.; Koepke, J. C.; Scrymgeour, D. A.; Bussmann, E.; Misra, S.

    2017-11-01

    We describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  20. All-optical lithography process for contacting nanometer precision donor devices

    DOE PAGES

    Ward, Daniel Robert; Marshall, Michael Thomas; Campbell, DeAnna Marie; ...

    2017-11-06

    In this article, we describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  1. All-optical lithography process for contacting nanometer precision donor devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Daniel Robert; Marshall, Michael Thomas; Campbell, DeAnna Marie

    In this article, we describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  2. All-optical XOR logic gate using intersubband transition in III-V quantum well materials.

    PubMed

    Feng, Jijun; Akimoto, Ryoichi; Gozu, Shin-ichiro; Mozume, Teruo

    2014-06-02

    A monolithically integrated all-optical exclusive-OR (XOR) logic gate is experimentally demonstrated based on a Michelson interferometer (MI) gating device in InGaAs/AlAsSb coupled double quantum wells (CDQWs). The MI arms can convert the pump data with return-to-zero ON-OFF keying (RZ OOK) to binary phase-shift keying (BPSK) format, then two BPSK signals can interfere with each other for realizing a desired logical operation. All-optical format conversion from the RZ OOK to BPSK is based on the cross-phase modulation to the transverse electric (TE) probe wave, which is caused by the intersubband transition excited by the transverse magnetic (TM) pump light. Bit error rate measurements show that error free operation for both BPSK format conversion and XOR logical operation can be achieved.

  3. Calculation of optical parameters for covalent binary alloys used in optical memories/solar cells: a modified approach

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Promod K.; Gupta, Poonam; Singh, Laxman

    2001-06-01

    Chalcogenide based alloys find applications in a number of devices like optical memories, IR detectors, optical switches, photovoltaics, compound semiconductor heterosrtuctures etc. We have modified the Gurman's statistical thermodynamic model (STM) of binary covalent alloys. In the Gurman's model, entropy calculations are based on the number of structural units present. The need to modify this model arose due to the fact that it gives equal probability for all the tetrahedra present in the alloy. We have modified the Gurman's model by introducing the concept that the entropy is based on the bond arrangement rather than that on the structural units present. In the present work calculation based on this modification have been presented for optical properties, which find application in optical switching/memories, solar cells and other optical devices. It has been shown that the calculated optical parameters (for a typical case of GaxSe1-x) based on modified model are closer to the available experimental results. These parameters include refractive index, extinction coefficient, dielectric functions, optical band gap etc. GaxSe1-x has been found to be suitable for reversible optical memories also, where phase change (a yields c and vice versa) takes place at specified physical conditions. DTA/DSC studies also suggest the suitability of this material for optical switching/memory applications. We have also suggested possible use of GaxSe1-x (x = 0.4) in place of oxide layer in a Metal - Oxide - Semiconductor type solar cells. The new structure is Metal - Ga2Se3 - GaAs. The I-V characteristics and other parameters calculated for this structure are found to be much better than that for Si based solar cells. Maximum output power is obtained at the intermediate layer thickness approximately 40 angstroms for this typical solar cell.

  4. Recent progress in InP/polymer-based devices for telecom and data center applications

    NASA Astrophysics Data System (ADS)

    Kleinert, Moritz; Zhang, Ziyang; de Felipe, David; Zawadzki, Crispin; Maese Novo, Alejandro; Brinker, Walter; Möhrle, Martin; Keil, Norbert

    2015-02-01

    Recent progress on polymer-based photonic devices and hybrid photonic integration technology using InP-based active components is presented. High performance thermo-optic components, including compact polymer variable optical attenuators and switches are powerful tools to regulate and control the light flow in the optical backbone. Polymer arrayed waveguide gratings integrated with InP laser and detector arrays function as low-cost optical line terminals (OLTs) in the WDM-PON network. External cavity tunable lasers combined with C/L band thinfilm filter, on-chip U-groove and 45° mirrors construct a compact, bi-directional and color-less optical network unit (ONU). A tunable laser integrated with VOAs, TFEs and two 90° hybrids builds the optical front-end of a colorless, dual-polarization coherent receiver. Multicore polymer waveguides and multi-step 45°mirrors are demonstrated as bridging devices between the spatialdivision- multiplexing transmission technology using multi-core fibers and the conventional PLCbased photonic platforms, appealing to the fast development of dense 3D photonic integration.

  5. Device for the alternative option of temperature measurement

    NASA Astrophysics Data System (ADS)

    Jargus, Jan; Nedoma, Jan; Fajkus, Marcel; Novak, Martin; Cubik, Jakub; Cvejn, Daniel; Vasinek, Vladimir

    2017-10-01

    Polydimethylsiloxane (PDMS) has good optical properties, and its composition offers the possibility of use in many applications (industry, security device, medicine applications and etc.). We focused on the alternative option of temperature measurement in this article. Our approach is based on measuring changes of chromaticity correlated temperature corresponding to changes in temperature. Described device uses an optical fiber with a defined layer of PDMS and luminophore and we assume that it can find use also in the field of security. The article describes the process of making the prototype of the device and its verification based on laboratory results. The measured temperature depends mainly on the type of optical fiber and the measured temperature range is determined by the thermal resistance of used optical fiber. Using a calibration measurement can determine the value of temperature with an accuracy of +/- 2,5 %.

  6. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels.

    PubMed

    Polynkin, PaveL; Polynkin, Alexander; Peyghambarian, N; Mansuripur, Masud

    2005-06-01

    We report a simple optical sensing device capable of measuring the refractive index of liquids propagating in microfluidic channels. The sensor is based on a single-mode optical fiber that is tapered to submicrometer dimensions and immersed in a transparent curable soft polymer. A channel for liquid analyte is created in the immediate vicinity of the taper waist. Light propagating through the tapered section of the fiber extends into the channel, making the optical loss in the system sensitive to the refractive-index difference between the polymer and the liquid. The fabrication process and testing of the prototype sensing devices are described. The sensor can operate both as a highly responsive on-off device and in the continuous measurement mode, with an estimated accuracy of refractive-index measurement of approximately 5 x 10(-4).

  7. All-optical switch using optically controlled two mode interference coupler.

    PubMed

    Sahu, Partha Pratim

    2012-05-10

    In this paper, we have introduced optically controlled two-mode interference (OTMI) coupler having silicon core and GaAsInP cladding as an all-optical switch. By taking advantage of refractive index modulation by launching optical pulse into cladding region of TMI waveguide, we have shown optically controlled switching operation. We have studied optical pulse-controlled coupling characteristics of the proposed device by using a simple mathematical model on the basis of sinusoidal modes. The device length is less than that of previous work. It is also seen that the cross talk of the OTMI switch is not significantly increased with fabrication tolerances (±δw) in comparison with previous work.

  8. All-optical analog comparator.

    PubMed

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai

    2016-08-23

    An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical '1' or '0' by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function.

  9. All-optical analog comparator

    PubMed Central

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai

    2016-01-01

    An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function. PMID:27550874

  10. All-optical analog comparator

    NASA Astrophysics Data System (ADS)

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai

    2016-08-01

    An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function.

  11. Controlling lightwave in Riemann space by merging geometrical optics with transformation optics.

    PubMed

    Liu, Yichao; Sun, Fei; He, Sailing

    2018-01-11

    In geometrical optical design, we only need to choose a suitable combination of lenses, prims, and mirrors to design an optical path. It is a simple and classic method for engineers. However, people cannot design fantastical optical devices such as invisibility cloaks, optical wormholes, etc. by geometrical optics. Transformation optics has paved the way for these complicated designs. However, controlling the propagation of light by transformation optics is not a direct design process like geometrical optics. In this study, a novel mixed method for optical design is proposed which has both the simplicity of classic geometrical optics and the flexibility of transformation optics. This mixed method overcomes the limitations of classic optical design; at the same time, it gives intuitive guidance for optical design by transformation optics. Three novel optical devices with fantastic functions have been designed using this mixed method, including asymmetrical transmissions, bidirectional focusing, and bidirectional cloaking. These optical devices cannot be implemented by classic optics alone and are also too complicated to be designed by pure transformation optics. Numerical simulations based on both the ray tracing method and full-wave simulation method are carried out to verify the performance of these three optical devices.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jason D.; Schroeppel, Richard Crabtree; Robertson, Perry J.

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in themore » photonic domain to achieve the requisite encryption rates. This paper documents the innovations and advances of work first detailed in 'Photonic Encryption using All Optical Logic,' [1]. A discussion of underlying concepts can be found in SAND2003-4474. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines S-SEED devices and how discrete logic elements can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of S-SEED devices in an optical circuit was modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and cascaded in an encrypting/scrambling algorithm based on a study of candidate encryption algorithms. Demonstration circuits show how these logic elements can be used to form NAND, NOR, and XOR functions. This paper also presents functional analysis of a serial, low gate count demonstration algorithm suitable for scrambling/encryption using S-SEED devices.« less

  13. Light-emitting diodes based on colloidal silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Zhao, Shuangyi; Liu, Xiangkai; Pi, Xiaodong; Yang, Deren

    2018-06-01

    Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.

  14. Towards multimodal detection of melanoma thickness based on optical coherence tomography and optoacoustics

    NASA Astrophysics Data System (ADS)

    Rahlves, M.; Varkentin, A.; Stritzel, J.; Blumenröther, E.; Mazurenka, M.; Wollweber, M.; Roth, B.

    2016-03-01

    Melanoma skin cancer has one of the highest mortality rates of all types of cancer if not detected at an early stage. The survival rate is highly dependent on its penetration depth, which is commonly determined by histopathology. In this work, we aim at combining optical coherence tomography and optoacoustic as a non-invasive all-optical method to measure the penetration depth of melanoma. We present our recent achievements to setup a handheld multimodal device and also results from first in vivo measurements on healthy and cancerous skin tissue, which are compared to measurements obtained by ultrasound and histopathology.

  15. Recent advances in dental optics - Part I: 3D intraoral scanners for restorative dentistry

    NASA Astrophysics Data System (ADS)

    Logozzo, Silvia; Zanetti, Elisabetta M.; Franceschini, Giordano; Kilpelä, Ari; Mäkynen, Anssi

    2014-03-01

    Intra-oral scanning technology is a very fast-growing field in dentistry since it responds to the need of an accurate three-dimensional mapping of the mouth, as required in a large number of procedures such as restorative dentistry and orthodontics. Nowadays, more than 10 intra-oral scanning devices for restorative dentistry have been developed all over the world even if only some of those devices are currently available on the market. All the existing intraoral scanners try to face with problems and disadvantages of traditional impression fabrication process and are based on different non-contact optical technologies and principles. The aim of this publication is to provide an extensive review of existing intraoral scanners for restorative dentistry evaluating their working principles, features and performances.

  16. Evaluation of an optical fiber probe for in vivo measurement of the photoacoustic response of tissues

    NASA Astrophysics Data System (ADS)

    Beard, Paul C.; Mills, Timothy N.

    1995-05-01

    A miniature (1 mm diameter) all-optical photoacoustic probe for generating and detecting ultrasonic thermoelastic waves in biological media at the tip of an optical fiber has been developed. The probe provides a compact and convenient means of performing pulsed photoacoustic spectroscopy for the characterization of biological tissue. The device is based upon a transparent Fabry Perot polymer film ultrasound sensor mounted directly over the end of a multimode optical fiber. The optical fiber is used to deliver nanosecond laser pulses to the tissue producing thermoelastic waves which are then detected by the sensor. Detection sensitivities of 53 mv/MPa and a 10 kPa acoustic noise floor have been demonstrated giving excellent signal to noise ratios in a strong liquid absorber. Lower, but clearly detectable, signals in post mortem human aorta have also been observed. The performance and small physical size of the device suggest that it has the potential to perform remote in situ photoacoustic measurements in tissue.

  17. WGM-Based Photonic Local Oscillators and Modulators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Maleki, Lute; Iltchenko, Vladimir; Savchenkov, Anatoliy

    2007-01-01

    Photonic local oscillators and modulators that include whispering-gallery mode (WGM) optical resonators have been proposed as power-efficient devices for generating and detecting radiation at frequencies of the order of a terahertz. These devices are intended especially to satisfy anticipated needs for receivers capable of detecting lowpower, narrow-band terahertz signals to be used for sensing substances of interest in scientific and military applications. At present, available terahertz-signal detectors are power-inefficient and do not afford the spectral and amplitude resolution needed for detecting such signals. The proposed devices would not be designed according to the conventional approach of direct detection of terahertz radiation. Instead, terahertz radiation would first be up-converted into the optical domain, wherein signals could be processed efficiently by photonic means and detected by optical photodetectors, which are more efficient than are photodetectors used in conventional direct detection of terahertz radiation. The photonic devices used to effect the up-conversion would include a tunable optical local oscillator and a novel electro-optical modulator. A local oscillator according to the proposal would be a WGM-based modelocked laser operating at a desired pulserepetition rate of the order of a terahertz. The oscillator would include a terahertz optical filter based on a WGM microresonator, a fiber-optic delay line, an optical amplifier (which could be either a semiconductor optical amplifier or an erbium-doped optical fiberamplifier), and a WGM Ka-band modulator. The terahertz repetition rate would be obtained through harmonic mode locking: for example, by modulating the light at a frequency of 33 GHz and locking each 33d optical mode, one would create a 1.089-THz pulse train. The high resonance quality factors (Q values) of WGM optical resonators should make it possible to decrease signal-generation threshold power levels significantly below those of other optical-signal-generation devices.

  18. All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.

    PubMed

    Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing

    2016-01-15

    VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.

  19. A High-Performance Optical Memory Array Based on Inhomogeneity of Organic Semiconductors.

    PubMed

    Pei, Ke; Ren, Xiaochen; Zhou, Zhiwen; Zhang, Zhichao; Ji, Xudong; Chan, Paddy Kwok Leung

    2018-03-01

    Organic optical memory devices keep attracting intensive interests for diverse optoelectronic applications including optical sensors and memories. Here, flexible nonvolatile optical memory devices are developed based on the bis[1]benzothieno[2,3-d;2',3'-d']naphtho[2,3-b;6,7-b']dithiophene (BBTNDT) organic field-effect transistors with charge trapping centers induced by the inhomogeneity (nanosprouts) of the organic thin film. The devices exhibit average mobility as high as 7.7 cm 2 V -1 s -1 , photoresponsivity of 433 A W -1 , and long retention time for more than 6 h with a current ratio larger than 10 6 . Compared with the standard floating gate memory transistors, the BBTNDT devices can reduce the fabrication complexity, cost, and time. Based on the reasonable performance of the single device on a rigid substrate, the optical memory transistor is further scaled up to a 16 × 16 active matrix array on a flexible substrate with operating voltage less than 3 V, and it is used to map out 2D optical images. The findings reveal the potentials of utilizing [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivatives as organic semiconductors for high-performance optical memory transistors with a facile structure. A detailed study on the charge trapping mechanism in the derivatives of BTBT materials is also provided, which is closely related to the nanosprouts formed inside the organic active layer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optical Graphene Gas Sensors Based on Microfibers: A Review

    PubMed Central

    Wu, Yu; Yao, Baicheng; Yu, Caibin; Rao, Yunjiang

    2018-01-01

    Graphene has become a bridge across optoelectronics, mechanics, and bio-chemical sensing due to its unique photoelectric characteristics. Moreover, benefiting from its two-dimensional nature, this atomically thick film with full flexibility has been widely incorporated with optical waveguides such as fibers, realizing novel photonic devices including polarizers, lasers, and sensors. Among the graphene-based optical devices, sensor is one of the most important branch, especially for gas sensing, as rapid progress has been made in both sensing structures and devices in recent years. This article presents a comprehensive and systematic overview of graphene-based microfiber gas sensors regarding many aspects including sensing principles, properties, fabrication, interrogating and implementations. PMID:29565314

  1. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber

    PubMed Central

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-01

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices. PMID:25578467

  2. Embedding objects during 3D printing to add new functionalities.

    PubMed

    Yuen, Po Ki

    2016-07-01

    A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication. These 3D printed glass bottom casting molds would result in PDMS replicas with a flat smooth bottom surface for better bonding and adhesion.

  3. Intra-Chip Free-Space Optical Interconnect: System, Device, Integration and Prototyping

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Berkehan

    Currently, on-chip optical interconnect schemes already proposed utilize circuit switching using wavelength division multiplexing (WDM) or all-optical packet switching, all based on planar optical waveguides and related photonic devices such as microrings. These proposed approaches pose significant challenges in latency, energy efficiency, integration, and scalability. This thesis presents a new alternative approach by utilizing free-space optics. This 3-D integrated intra-chip free-space optical interconnect (FSOI) leverages mature photonic devices such as integrated lasers, photodiodes, microlenses and mirrors. It takes full advantages of the latest developments in 3-D integration technologies. This interconnect system provides point-to-point free-space optical links between any two communication nodes to construct an all-to-all intra-chip communication network with little or no arbitration. Therefore, it has significant networking advantages over conventional electrical and waveguide-based optical interconnects. An FSOI system is evaluated based on the real device parameters, predictive technology models and International Roadmap of Semiconductor's predictions. A single FSOI link achieves 10-Gbps data rate with 0.5-pJ/bit energy efficiency and less than 10--12 bit-error-rate (BER). A system using this individual link can provide scalability up to 36 nodes, providing 10-Tbps aggregate bandwidth. A comparison analysis performed between a WDM-based waveguide interconnect system and the proposed FSOI system shows that FSOI achieves better energy efficiency than the WDM one as the technology scales. Similarly, network simulation on a 16-core microprocessor using the proposed FSOI system instead of mesh networks has been shown to speed up the system by 12% and reduce the energy consumption by 33%. As a part of the development of a 3-D integrated FSOI system, operating at 850 nm with a 10-Gbps data rate per optical link, the photonics devices and optical components are individually designed and fabricated. The photodiodes (PDs) are designed to have large area for efficient light coupling and low capacitance to achieve large bandwidth, while achieving reasonably high responsivity. A metal-semiconductor-metal (MSM) structure is chosen over p-i-n ones to reduce parasitic capacitance per area, to allow less stringent microlens-to-PD alignment for efficient light coupling with a large bandwidth. A novel MSM germanium PD is implemented using an amorphous silicon (a-Si) layer on top of the undoped germanium substrate, serving as a barrier enhancement layer, mitigating the low Schottky barrier height for holes due to fermi level pinning and a surface passivation layer, preventing charge accumulation and image force lowering of the barrier. Therefore, the dark current is reduced and low-frequency gain is eliminated. The PDs achieve a 13-GHz bandwidth with a 0.315-A/W responsivity and a 1.7-nAmum² dark current density. The microlenses are fabricated on a fused silica substrate based on the photoresist melt-and-reflow technique, followed by dry etching into fused silica substrate. The measured focal length of a 220-mum aperture size microlens is 350-mum away from the backside of the substrate. The vertical-cavity surface-emitting lasers (VCSELs) are fabricated on a commercial molecular beam epitaxially (MBE) grown GaAs wafer. The fabricated 8-mum aperture size VCSEL can achieve 0.65-mW optical power at a 1.5-mA forward bias current with a threshold current of 0.48 mA and a 0.67-A/W slope efficiency. Three prototypes are implemented via integrating the individually fabricated components using non-conductive epoxy and wirebonding. The first prototype, built on a printed circuit board (PCB) using commercial VCSEL arrays, achieves a 5-dB transmission loss and less than -30-dB crosstalk at 1-cm distance with a small-signal bandwidth of 10 GHz, limited by the VCSEL. The second board-level prototype uses all fabricated components integrated on a PCB. The prototype achieves a 9-dB transmission loss at 3-cm distance and a 4.4-GHz bandwidth. The chip-level prototype is built on a germanium carrier with integrated MSM Ge PDs, microlenses on fused silica and VCSEL chip on GaAs substrates. The prototype achieves 4-dB transmission loss at 1 cm and 3.3-GHz bandwidth, limited by commercial VCSEL bandwidth. (Abstract shortened by UMI.)

  4. Wavefront sensing with all-digital Stokes measurements

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Milione, Giovanni; Alfano, Robert R.; Forbes, Andrew

    2014-09-01

    A long-standing question in optics has been to efficiently measure the phase (or wavefront) of an optical field. This has led to numerous publications and commercial devices such as phase shift interferometry, wavefront reconstruction via modal decomposition and Shack-Hartmann wavefront sensors. In this work we develop a new technique to extract the phase which in contrast to previously mentioned methods is based on polarization (or Stokes) measurements. We outline a simple, all-digital approach using only a spatial light modulator and a polarization grating to exploit the amplitude and phase relationship between the orthogonal states of polarization to determine the phase of an optical field. We implement this technique to reconstruct the phase of static and propagating optical vortices.

  5. Integrated optical biosensor for rapid detection of bacteria

    NASA Astrophysics Data System (ADS)

    Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András

    2016-02-01

    In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.

  6. Integrated optical biosensor for rapid detection of bacteria

    NASA Astrophysics Data System (ADS)

    Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András

    2015-12-01

    In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.

  7. Non-binary Colour Modulation for Display Device Based on Phase Change Materials.

    PubMed

    Ji, Hong-Kai; Tong, Hao; Qian, Hang; Hui, Ya-Juan; Liu, Nian; Yan, Peng; Miao, Xiang-Shui

    2016-12-19

    A reflective-type display device based on phase change materials is attractive because of its ultrafast response time and high resolution compared with a conventional display device. This paper proposes and demonstrates a unique display device in which multicolour changing can be achieved on a single device by the selective crystallization of double layer phase change materials. The optical contrast is optimized by the availability of a variety of film thicknesses of two phase change layers. The device exhibits a low sensitivity to the angle of incidence, which is important for display and colour consistency. The non-binary colour rendering on a single device is demonstrated for the first time using optical excitation. The device shows the potential for ultrafast display applications.

  8. Droplet Microfluidics for Chip-Based Diagnostics

    PubMed Central

    Kaler, Karan V. I. S.; Prakash, Ravi

    2014-01-01

    Droplet microfluidics (DMF) is a fluidic handling technology that enables precision control over dispensing and subsequent manipulation of droplets in the volume range of microliters to picoliters, on a micro-fabricated device. There are several different droplet actuation methods, all of which can generate external stimuli, to either actively or passively control the shape and positioning of fluidic droplets over patterned substrates. In this review article, we focus on the operation and utility of electro-actuation-based DMF devices, which utilize one or more micro-/nano-patterned substrates to facilitate electric field-based handling of chemical and/or biological samples. The underlying theory of DMF actuations, device fabrication methods and integration of optical and opto-electronic detectors is discussed in this review. Example applications of such electro-actuation-based DMF devices have also been included, illustrating the various actuation methods and their utility in conducting chip-based laboratory and clinical diagnostic assays. PMID:25490590

  9. Sensing systems using chip-based spectrometers

    NASA Astrophysics Data System (ADS)

    Nitkowski, Arthur; Preston, Kyle J.; Sherwood-Droz, Nicolás.; Behr, Bradford B.; Bismilla, Yusuf; Cenko, Andrew T.; DesRoches, Brandon; Meade, Jeffrey T.; Munro, Elizabeth A.; Slaa, Jared; Schmidt, Bradley S.; Hajian, Arsen R.

    2014-06-01

    Tornado Spectral Systems has developed a new chip-based spectrometer called OCTANE, the Optical Coherence Tomography Advanced Nanophotonic Engine, built using a planar lightwave circuit with integrated waveguides fabricated on a silicon wafer. While designed for spectral domain optical coherence tomography (SD-OCT) systems, the same miniaturized technology can be applied to many other spectroscopic applications. The field of integrated optics enables the design of complex optical systems which are monolithically integrated on silicon chips. The form factors of these systems can be significantly smaller, more robust and less expensive than their equivalent free-space counterparts. Fabrication techniques and material systems developed for microelectronics have previously been adapted for integrated optics in the telecom industry, where millions of chip-based components are used to power the optical backbone of the internet. We have further adapted the photonic technology platform for spectroscopy applications, allowing unheard-of economies of scale for these types of optical devices. Instead of changing lenses and aligning systems, these devices are accurately designed programmatically and are easily customized for specific applications. Spectrometers using integrated optics have large advantages in systems where size, robustness and cost matter: field-deployable devices, UAVs, UUVs, satellites, handheld scanning and more. We will discuss the performance characteristics of our chip-based spectrometers and the type of spectral sensing applications enabled by this technology.

  10. The PNC-CAT insertion device beamline at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Heald, S. M.; Stern, E. A.; Brown, F. C.; Kim, K. H.; Barg, B.; Crozier, E. D.

    1996-09-01

    The PNC-CAT is a consortium of Pacific Northwest institutions formed to instrument a sector (number 20) at the Advanced Photon Source (APS). Research is planned in a variety of areas, with an emphasis on environmentally based problems. The insertion device beamline is based on the APS undulator A and will be optimized for producing microbeams as well as for applications requiring energy scanning capabilities. This paper describes the basic layout and some special features of the beamline. Two experimental stations are planned: one general purpose and one dedicated to MBE and surface science problems. Both tapered capillaries and Kirkpatrick-Baez optics will be used for producing microbeams, and a large optical bench is planned for the main station to allow for easy accommodation of new optics developments. Design calculations and initial capillary tests indicate that flux densities exceeding 1011 photons/sec/mm2 should be achievable. All major components are under construction or in procurement, and initial testing is planned for late 1996.

  11. CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide

    PubMed Central

    Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Wu, Qiang; Sang, Xinzhu; Farrell, Gerald; Yu, Chongxiu; Li, Feng; Tam, Hwa Yaw; Wai, P. K. A.

    2014-01-01

    All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W−1/m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems. PMID:25417847

  12. CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide.

    PubMed

    Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Wu, Qiang; Sang, Xinzhu; Farrell, Gerald; Yu, Chongxiu; Li, Feng; Tam, Hwa Yaw; Wai, P K A

    2014-11-24

    All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W(-1)/m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems.

  13. Integrated electrochromic aperture diaphragm

    NASA Astrophysics Data System (ADS)

    Deutschmann, T.; Oesterschulze, E.

    2014-05-01

    In the last years, the triumphal march of handheld electronics with integrated cameras has opened amazing fields for small high performing optical systems. For this purpose miniaturized iris apertures are of practical importance because they are essential to control both the dynamic range of the imaging system and the depth of focus. Therefore, we invented a micro optical iris based on an electrochromic (EC) material. This material changes its absorption in response to an applied voltage. A coaxial arrangement of annular rings of the EC material is used to establish an iris aperture without need of any mechanical moving parts. The advantages of this device do not only arise from the space-saving design with a thickness of the device layer of 50μm. But it also benefits from low power consumption. In fact, its transmission state is stable in an open circuit, phrased memory effect. Only changes of the absorption require a voltage of up to 2 V. In contrast to mechanical iris apertures the absorption may be controlled on an analog scale offering the opportunity for apodization. These properties make our device the ideal candidate for battery powered and space-saving systems. We present optical measurements concerning control of the transmitted intensity and depth of focus, and studies dealing with switching times, light scattering, and stability. While the EC polymer used in this study still has limitations concerning color and contrast, the presented device features all functions of an iris aperture. In contrast to conventional devices it offers some special features. Owing to the variable chemistry of the EC material, its spectral response may be adjusted to certain applications like color filtering in different spectral regimes (UV, optical range, infrared). Furthermore, all segments may be switched individually to establish functions like spatial Fourier filtering or lateral tunable intensity filters.

  14. On-chip photonic microsystem for optical signal processing based on silicon and silicon nitride platforms

    NASA Astrophysics Data System (ADS)

    Li, Yu; Li, Jiachen; Yu, Hongchen; Yu, Hai; Chen, Hongwei; Yang, Sigang; Chen, Minghua

    2018-04-01

    The explosive growth of data centers, cloud computing and various smart devices is limited by the current state of microelectronics, both in terms of speed and heat generation. Benefiting from the large bandwidth, promising low power consumption and passive calculation capability, experts believe that the integrated photonics-based signal processing and transmission technologies can break the bottleneck of microelectronics technology. In recent years, integrated photonics has become increasingly reliable and access to the advanced fabrication process has been offered by various foundries. In this paper, we review our recent works on the integrated optical signal processing system. We study three different kinds of on-chip signal processors and use these devices to build microsystems for the fields of microwave photonics, optical communications and spectrum sensing. The microwave photonics front receiver was demonstrated with a signal processing range of a full-band (L-band to W-band). A fully integrated microwave photonics transceiver without the on-chip laser was realized on silicon photonics covering the signal frequency of up 10 GHz. An all-optical orthogonal frequency division multiplexing (OFDM) de-multiplier was also demonstrated and used for an OFDM communication system with the rate of 64 Gbps. Finally, we show our work on the monolithic integrated spectrometer with a high resolution of about 20 pm at the central wavelength of 1550 nm. These proposed on-chip signal processing systems potential applications in the fields of radar, 5G wireless communication, wearable devices and optical access networks.

  15. Light-Gated Memristor with Integrated Logic and Memory Functions.

    PubMed

    Tan, Hongwei; Liu, Gang; Yang, Huali; Yi, Xiaohui; Pan, Liang; Shang, Jie; Long, Shibing; Liu, Ming; Wu, Yihong; Li, Run-Wei

    2017-11-28

    Memristive devices are able to store and process information, which offers several key advantages over the transistor-based architectures. However, most of the two-terminal memristive devices have fixed functions once made and cannot be reconfigured for other situations. Here, we propose and demonstrate a memristive device "memlogic" (memory logic) as a nonvolatile switch of logic operations integrated with memory function in a single light-gated memristor. Based on nonvolatile light-modulated memristive switching behavior, a single memlogic cell is able to achieve optical and electrical mixed basic Boolean logic of reconfigurable "AND", "OR", and "NOT" operations. Furthermore, the single memlogic cell is also capable of functioning as an optical adder and digital-to-analog converter. All the memlogic outputs are memristive for in situ data storage due to the nonvolatile resistive switching and persistent photoconductivity effects. Thus, as a memdevice, the memlogic has potential for not only simplifying the programmable logic circuits but also building memristive multifunctional optoelectronics.

  16. Studies in optical parallel processing. [All optical and electro-optic approaches

    NASA Technical Reports Server (NTRS)

    Lee, S. H.

    1978-01-01

    Threshold and A/D devices for converting a gray scale image into a binary one were investigated for all-optical and opto-electronic approaches to parallel processing. Integrated optical logic circuits (IOC) and optical parallel logic devices (OPA) were studied as an approach to processing optical binary signals. In the IOC logic scheme, a single row of an optical image is coupled into the IOC substrate at a time through an array of optical fibers. Parallel processing is carried out out, on each image element of these rows, in the IOC substrate and the resulting output exits via a second array of optical fibers. The OPAL system for parallel processing which uses a Fabry-Perot interferometer for image thresholding and analog-to-digital conversion, achieves a higher degree of parallel processing than is possible with IOC.

  17. Optoelectronic properties of type I indium gallium arsenide quantum cascade lasers with applications to optical modulation

    NASA Astrophysics Data System (ADS)

    Murawski, Robert K.

    Quantum Cascade Lasers (QCL) are unique unipolar conduction band devices designed to emit in the mid infrared region (MIR). They have been employed very successfully in spectroscopy and sensing applications. Motivated by predictions of modulation bandwidths above 100 GHz, communication links based on QCLs were recently demonstrated. However, the intrinsic device circuitry of the QCL limits its bandwidth. In this thesis a new All-Optical Modulation of the QCL is presented and investigated both theoretically and experimentally. This method of modulation allows for full access to the bandwidth as well as unique optical control of the MIR laser emission. For this purpose, conduction and valence band wave functions for the complex QCL structure are presented allowing for the first time calculations of their interband energy resonances. Based on this knowledge, a novel optical modulation scheme is developed utilizing interband transition for laser modulation. Using laser rate equations, more accurate predictions for the response function can be derived. Optical modulation is shown to be superior to direct modulation. In addition to this theoretical framework, first experiments are presented on the effects of illuminating a QCL with additional lasers at or above the interband gap. The first demonstration of All-Optical Modulation was achieved using time varying near infrared illumination and the complimentary signature in the MIR QCL emission was observed. In addition to extending the knowledge base of QCL research by a first calculation of its valence band structure, this work opens new possibilities in modulation and control of the QCL's MIR emission by interband transition. Application of this technique range from fundamental physics research (e.g. electron coherence) to ultrafast communication (e.g. free-space links) and high-resolution spectroscopy.

  18. NETL Crosscutting Research Video Series – LIBSense™ Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Chet

    NETL’s LIBSense™ Sensor is a small optical sensing device that can be used to detect elements in downhole applications. Since the sensor is an all-optical device and uses no electronics, it can be deployed into extreme environments.

  19. International Conference on Integrated Optical Circuit Engineering, 1st, Cambridge, MA, October 23-25, 1984, Proceedings

    NASA Astrophysics Data System (ADS)

    Ostrowsky, D. B.; Sriram, S.

    Aspects of waveguide technology are explored, taking into account waveguide fabrication techniques in GaAs/GaAlAs, the design and fabrication of AlGaAs/GaAs phase couplers for optical integrated circuit applications, ion implanted GaAs integrated optics fabrication technology, a direct writing electron beam lithography based process for the realization of optoelectronic integrated circuits, and advances in the development of semiconductor integrated optical circuits for telecommunications. Other subjects examined are related to optical signal processing, optical switching, and questions of optical bistability and logic. Attention is given to acousto-optic techniques in integrated optics, acousto-optic Bragg diffraction in proton exchanged waveguides, optical threshold logic architectures for hybrid binary/residue processors, integrated optical modulation and switching, all-optic logic devices for waveguide optics, optoelectronic switching, high-speed photodetector switching, and a mechanical optical switch.

  20. Optical interconnection for a polymeric PLC device using simple positional alignment.

    PubMed

    Ryu, Jin Hwa; Kim, Po Jin; Cho, Cheon Soo; Lee, El-Hang; Kim, Chang-Seok; Jeong, Myung Yung

    2011-04-25

    This study proposes a simple cost-effective method of optical interconnection between a planar lightwave circuit (PLC) device chip and an optical fiber. It was conducted to minimize and overcome the coupling loss caused by lateral offset which is due to the process tolerance and the dimensional limitation existing between PLC device chips and fiber array blocks with groove structures. A PLC device chip and a fiber array block were simultaneously fabricated in a series of polymer replication processes using the original master. The dimensions (i.e., width and thickness) of the under-clad of the PLC device chip were identical to those of the fiber array block. The PLC device chip and optical fiber were aligned by simple positional control for the vertical direction of the PLC device chip under a particular condition. The insertion loss of the proposed 1 x 2 multimode optical splitter device interconnection was 4.0 dB at 850 nm and the coupling loss was below 0.1 dB compared with single-fiber based active alignment.

  1. Design of pseudorandom binary sequence generator using lithium-niobate-based Mach-Zehnder interferometers

    NASA Astrophysics Data System (ADS)

    Choudhary, Kuldeep; Kumar, Santosh

    2017-05-01

    The application of electro-optic effect in lithium-niobate-based Mach-Zehnder interferometer to design a 3-bit optical pseudorandom binary sequence (PRBS) generator has been proposed, which is characterized by its simplicity of generation and stability. The proposed device is optoelectronic in nature. The PBRS generator is immensely applicable for pattern generation, encryption, and coding applications in optical networks. The study is carried out by simulating the proposed device with beam propagation method.

  2. Integrated-optic current sensors with a multimode interference waveguide device.

    PubMed

    Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol

    2016-04-04

    Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.

  3. CATO: a CAD tool for intelligent design of optical networks and interconnects

    NASA Astrophysics Data System (ADS)

    Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse

    1997-10-01

    Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.

  4. Optical 1's and 2's complement devices using lithium-niobate-based waveguide

    NASA Astrophysics Data System (ADS)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep

    2016-12-01

    Optical 1's and 2's complement devices are proposed with the help of lithium-niobate-based Mach-Zehnder interferometers. It has a powerful capability of switching an optical signal from one port to the other port with the help of an electrical control signal. The paper includes the optical conversion scheme using sets of optical switches. 2's complement is common in computer systems and is used in binary subtraction and logical manipulation. The operation of the circuits is studied theoretically and analyzed through numerical simulations. The truth table of these complement methods is verified with the beam propagation method and MATLAB® simulation results.

  5. Liquid crystal photonic bandgap fiber components

    NASA Astrophysics Data System (ADS)

    Scolari, L.; Alkeskjold, T. T.; Noordegraaf, D.; Tartarini, G.; Bassi, P.; Bjarklev, A.

    2007-11-01

    Liquid crystal photonic bandgap fibers represent a promising platform for the design of all-in-fiber optical devices, which show a high degree of tunability and exhibit novel optical properties for the manipulation of guided light. In this review paper we present tunable fiber devices for spectral filtering, such as Gaussian filters and notch filters, and devices for polarization control and analysis, such as birefringence control devices and switchable and rotatable polarizers.

  6. High Performance Hermetic Package For LiNbO3 Electro-Optic Waveguide Devices

    NASA Astrophysics Data System (ADS)

    Preston, K. R.; Macdonald, B. M.; Harmon, R. A.; Ford, C. W.; Shaw, R. N.; Reid, I.; Davidson, J. H.; Beaumont, A. R.; Booth, R. C.

    1989-02-01

    A high performance fibre-tailed package for LiNbO3 electro-optic waveguide devices is described. The package is based around a hermetic metal submodule which contains no epoxy or other organic materials. The LiNbO3 chip is mounted using a soldering technique, and laser welding is used for fibre fixing to give stable, low loss optical coupling to single mode fibres. Optical reflections are minimised by the use of antireflective coatings on the fibre ends and waveguide facets. High speed electrical connections are made via coplanar glass-sealed leadthroughs to LiNb03 travelling wave devices, and packaged device operation to frequencies in excess of 4GHz is demonstrated.

  7. In situ calibration of a light source in a sensor device

    DOEpatents

    Okandan, Murat; Serkland, Darwin k.; Merchant, Bion J.

    2015-12-29

    A sensor device is described herein, wherein the sensor device includes an optical measurement system, such as an interferometer. The sensor device further includes a low-power light source that is configured to emit an optical signal having a constant wavelength, wherein accuracy of a measurement output by the sensor device is dependent upon the optical signal having the constant wavelength. At least a portion of the optical signal is directed to a vapor cell, the vapor cell including an atomic species that absorbs light having the constant wavelength. A photodetector captures light that exits the vapor cell, and generates an electrical signal that is indicative of intensity of the light that exits the vapor cell. A control circuit controls operation of the light source based upon the electrical signal, such that the light source emits the optical signal with the constant wavelength.

  8. Toward biomaterial-based implantable photonic devices

    NASA Astrophysics Data System (ADS)

    Humar, Matjaž; Kwok, Sheldon J. J.; Choi, Myunghwan; Yetisen, Ali K.; Cho, Sangyeon; Yun, Seok-Hyun

    2017-03-01

    Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs) and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.

  9. Fabrication of a transparent conducting electrode based on graphene/silver nanowires via layer-by-layer method for organic photovoltaic devices.

    PubMed

    Tugba Camic, B; Oytun, Faruk; Hasan Aslan, M; Jeong Shin, Hee; Choi, Hyosung; Basarir, Fevzihan

    2017-11-01

    A solution-processed transparent conducting electrode was fabricated via layer-by-layer (LBL) deposition of graphene oxide (GO) and silver nanowires (Ag NWs). First, graphite was oxidized with a modified Hummer's method to obtain negatively-charged GO sheets, and Ag NWs were functionalized with cysteamine hydrochloride to acquire positively-charged silver nanowires. Oppositely-charged GO and Ag NWs were then sequentially coated on a 3-aminopropyltriethoxysilane modified glass substrate via LBL deposition, which provided highly controllable thin films in terms of optical transmittance and sheet resistance. Next, the reduction of GO sheets was performed to improve the electrical conductivity of the multilayer films. The resulting GO/Ag NWs multilayer was characterized by a UV-Vis spectrometer, field emission scanning electron microscope (FE-SEM), optical microscope (OM) and sheet resistance using a four-point probe method. The best result was achieved with a 2-bilayer film, resulting in a sheet resistance of 6.5Ω sq -1 with an optical transmittance of 78.2% at 550nm, which values are comparable to those of commercial ITO electrodes. The device based on a 2-bilayer hybrid film exhibited the highest device efficiency of 1.30% among the devices with different number of graphene/Ag NW LBL depositions. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. NETL Crosscutting Research Video Series – LIBSense™ Sensor (Short Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    NETL’s LIBSense™ Sensor is a small optical sensing device that can be used to detect elements in downhole applications. Since the sensor is an all-optical device and uses no electronics, it can be deployed into extreme environments.

  11. Dry-Deposited Transparent Carbon Nanotube Film as Front Electrode in Colloidal Quantum Dot Solar Cells.

    PubMed

    Zhang, Xiaoliang; Aitola, Kerttu; Hägglund, Carl; Kaskela, Antti; Johansson, Malin B; Sveinbjörnsson, Kári; Kauppinen, Esko I; Johansson, Erik M J

    2017-01-20

    Single-walled carbon nanotubes (SWCNTs) show great potential as an alternative material for front electrodes in photovoltaic applications, especially for flexible devices. In this work, a press-transferred transparent SWCNT film was utilized as front electrode for colloidal quantum dot solar cells (CQDSCs). The solar cells were fabricated on both glass and flexible substrates, and maximum power conversion efficiencies of 5.5 and 5.6 %, respectively, were achieved, which corresponds to 90 and 92 % of an indium-doped tin oxide (ITO)-based device (6.1 %). The SWCNTs are therefore a very good alternative to the ITO-based electrodes especially for flexible solar cells. The optical electric field distribution and optical losses within the devices were simulated theoretically and the results agree with the experimental results. With the optical simulations that were performed it may also be possible to enhance the photovoltaic performance of SWCNT-based solar cells even further by optimizing the device configuration or by using additional optical active layers, thus reducing light reflection of the device and increasing light absorption in the quantum dot layer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Long-Term Optical Device Use by Young Adults with Low Vision

    ERIC Educational Resources Information Center

    Bachofer, Cynthia Susan

    2013-01-01

    The purpose of this study was to investigate the long-term use of optical devices by individuals who participated in a school-based comprehensive low vision program focusing on use of devices, both near and distance. Thirty-seven participants (five non-users), ages 18-28, completed phone interviews giving information on their personal…

  13. On-chip optical diode based on silicon photonic crystal heterojunctions.

    PubMed

    Wang, Chen; Zhou, Chang-Zhu; Li, Zhi-Yuan

    2011-12-19

    Optical isolation is a long pursued object with fundamental difficulty in integrated photonics. As a step towards this goal, we demonstrate the design, fabrication, and characterization of on-chip wavelength-scale optical diodes that are made from the heterojunction between two different silicon two-dimensional square-lattice photonic crystal slabs with directional bandgap mismatch and different mode transitions. The measured transmission spectra show considerable unidirectional transmission behavior, in good agreement with numerical simulations. The experimental realization of on-chip optical diodes with wavelength-scale size using all-dielectric, passive, and linear silicon photonic crystal structures may help to construct on-chip optical logical devices without nonlinearity or magnetism, and would open up a road towards photonic computers.

  14. Catheter guided by optical coherence domain reflectometry

    DOEpatents

    Everett, Matthew; Colston, Billy W.; Da Silva, Luiz B.; Matthews, Dennis

    2002-01-01

    A guidance and viewing system based on multiplexed optical coherence domain reflectometry is incorporated into a catheter, endoscope, or other medical device to measure the location, thickness, and structure of the arterial walls or other intra-cavity regions at discrete points on the medical device during minimally invasive medical procedures. The information will be used both to guide the device through the body and to evaluate the tissue through which the device is being passed. Multiple optical fibers are situated along the circumference of the device. Light from the distal end of each fiber is directed onto the interior cavity walls via small diameter optics (such as gradient index lenses and mirrored corner cubes). Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers and multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The system may also be implemented in a nonmedical inspection device.

  15. Optical bistability for optical signal processing and computing

    NASA Astrophysics Data System (ADS)

    Peyghambarian, N.; Gibbs, H. M.

    1985-02-01

    Optical bistability (OB) is a phenomenon in which a nonlinear medium responds to an optical input beam by changing its transmission abruptly from one value to another. A 'nonlinear medium' is a medium in which the index of refraction depends on the incident light intensity. A device is said to be optically bistable if two stable output states exist for the same value of the input. Optically bistable devices can perform a number of logic functions related to optical memory, optical transistor, optical discriminator, optical limiter, optical oscillator, and optical gate. They also have the potential for subpicosecond switching, greatly exceeding the capability of electronics. This potential is one of several advantages of optical data processing over electronic processing. Other advantages are greater immunity to electromagnetic interference and crosstalk, and highly parallel processing capability. The present investigation is mainly concerned with all-optical etalon devices. The considered materials, include GaAs, ZnS and ZnSe, CuCl, InSb, InAs, and CdS.

  16. Large-field-of-view wide-spectrum artificial reflecting superposition compound eyes

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Chieh

    The study of the imaging principles of natural compound eyes has become an active area of research and has fueled the advancement of modern optics with many attractive design features beyond those available with conventional technologies. Most prominent among all compound eyes is the reflecting superposition compound eyes (RSCEs) found in some decapods. They are extraordinary imaging systems with numerous optical features such as minimum chromatic aberration, wide-angle field of view (FOV), high sensitivity to light and superb acuity to motion. Inspired by their remarkable visual system, we were able to implement the unique lens-free, reflection-based imaging mechanisms into a miniaturized, large-FOV optical imaging device operating at the wide visible spectrum to minimize chromatic aberration without any additional post-image processing. First, two micro-transfer printing methods, a multiple and a shear-assisted transfer printing technique, were studied and discussed to realize life-sized artificial RSCEs. The processes exploited the differential adhesive tendencies of the microstructures formed between a donor and a transfer substrate to accomplish an efficient release and transfer process. These techniques enabled conformal wrapping of three-dimensional (3-D) microstructures, initially fabricated in two-dimensional (2-D) layouts with standard fabrication technology onto a wide range of surfaces with complex and curvilinear shapes. Final part of this dissertation was focused on implementing the key operational features of the natural RSCEs into large-FOV, wide-spectrum artificial RSCEs as an optical imaging device suitable for the wide visible spectrum. Our devices can form real, clear images based on reflection rather than refraction, hence avoiding chromatic aberration due to dispersion by the optical materials. Compared to the performance of conventional refractive lenses of comparable size, our devices demonstrated minimum chromatic aberration, exceptional FOV up to 165o without distortion, modest spherical aberrations and comparable imaging quality without any post-image processing. Together with an augmenting cruciform pattern surrounding each focused image, our devices possessed enhanced, dynamic motion-tracking capability ideal for diverse applications in military, security, search and rescue, night navigation, medical imaging and astronomy. In the future, due to its reflection-based operating principles, it can be further extended into mid- and far-infrared for more demanding applications.

  17. A quantum optical firewall based on simple quantum devices

    NASA Astrophysics Data System (ADS)

    Amellal, H.; Meslouhi, A.; Hassouni, Y.; El Baz, M.

    2015-07-01

    In order to enhance the transmission security in quantum communications via coherent states, we propose a quantum optical firewall device to protect a quantum cryptosystem against eavesdropping through optical attack strategies. Similar to the classical model of the firewall, the proposed device gives legitimate users the possibility of filtering, controlling (input/output states) and making a decision (access or deny) concerning the traveling states. To prove the security and efficiency of the suggested optical firewall, we analyze its performances against the family of intercept and resend attacks, especially against one of the most prominent attack schemes known as "Faked State Attack."

  18. Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators

    NASA Astrophysics Data System (ADS)

    Soltani, Mohammad; Zhang, Mian; Ryan, Colm; Ribeill, Guilhem J.; Wang, Cheng; Loncar, Marko

    2017-10-01

    We propose a low-noise, triply resonant, electro-optic (EO) scheme for quantum microwave-to-optical conversion based on coupled nanophotonics resonators integrated with a superconducting qubit. Our optical system features a split resonance—a doublet—with a tunable frequency splitting that matches the microwave resonance frequency of the superconducting qubit. This is in contrast to conventional approaches, where large optical resonators with free-spectral range comparable to the qubit microwave frequency are used. In our system, EO mixing between the optical pump coupled into the low-frequency doublet mode and a resonance microwave photon results in an up-converted optical photon on resonance with high-frequency doublet mode. Importantly, the down-conversion process, which is the source of noise, is suppressed in our scheme as the coupled-resonator system does not support modes at that frequency. Our device has at least an order of magnitude smaller footprint than conventional devices, resulting in large overlap between optical and microwave fields and a large photon conversion rate (g /2 π ) in the range of ˜5 -15 kHz. Owing to a large g factor and doubly resonant nature of our device, microwave-to-optical frequency conversion can be achieved with optical pump powers in the range of tens of microwatts, even with moderate values for optical Q (˜106 ) and microwave Q (˜104 ). The performance metrics of our device, with substantial improvement over the previous EO-based approaches, promise a scalable quantum microwave-to-optical conversion and networking of superconducting processors via optical fiber communication.

  19. Micromachined modulator arrays for use in free-space optical communication systems

    NASA Astrophysics Data System (ADS)

    Lewis, Keith L.; Ridley, Kevin D.; McNie, Mark E.; Smith, Gilbert W.; Scott, Andrew M.

    2004-12-01

    A summary is presented of some of the design criteria relevant to the realisation of silicon micromachined modulator arrays for use in free-space optical communication systems. Theoretical performance levels achievable are compared with values measured on experimental devices produced using a modified Multi-User MEMS Process (MUMPS). Devices capable of realising modulation rates in excess of 300 kHz are described and their optical characteristics compared with published data on devices based on multiple quantum well technology.

  20. Polarization sensitive optical low-coherence reflectometry for blood glucose monitoring in human subjects

    NASA Astrophysics Data System (ADS)

    Solanki, Jitendra; Choudhary, Om Prakash; Sen, P.; Andrews, J. T.

    2013-07-01

    A device based on polarization sensitive optical low-coherence reflectometry is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the ellipticity obtainable from the home-made phase-sensitive optical low-coherence reflectometry device. The linearity obtained between glucose concentration and ellipticity are explained with theoretical calculations using Mie theory. A comparison of results with standard clinical methods establishes the utility of the present device for non-invasive glucose monitoring.

  1. Integrated packaging of 2D MOEMS mirrors with optical position feedback

    NASA Astrophysics Data System (ADS)

    Baumgart, M.; Lenzhofer, M.; Kremer, M. P.; Tortschanoff, A.

    2015-02-01

    Many applications of MOEMS microscanners rely on accurate position feedback. For MOEMS devices which do not have intrinsic on-chip feedback, position information can be provided with optical methods, most simply by using a reflection from the backside of a MOEMS scanner. By measuring the intensity distribution of the reflected beam across a quadrant diode, one can precisely detect the mirror's deflection angles. Previously, we have presented a position sensing device, applicable to arbitrary trajectories, which is based on the measurement of the position of the reflected laser beam with a quadrant diode. In this work, we present a novel setup, which comprises the optical position feedback functionality integrated into the device package itself. The new device's System-in-Package (SiP) design is based on a flip-folded 2.5D PCB layout and fully assembled as small as 9.2×7×4 mm³ in total. The device consists of four layers, which supply the MOEMS mirror, a spacer to provide the required optical path length, the quadrant photo-diode and a laser diode to serve as the light source. In addition to describing the mechanical setup of the novel device, we will present first experimental results and optical simulation studies. Accurate position feedback is the basis for closed-loop control of the MOEMS devices, which is crucial for some applications as image projection for example. Position feedback and the possibility of closed-loop control will significantly improve the performance of these devices.

  2. Integrated optical sensors for 2D spatial chemical mapping (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Flores, Raquel; Janeiro, Ricardo; Viegas, Jaime

    2017-02-01

    Sensors based on optical waveguides for chemical sensing have attracted increasing interest over the last two decades, fueled by potential applications in commercial lab-on-a-chip devices for medical and food safety industries. Even though the early studies were oriented for single-point detection, progress in device size reduction and device yield afforded by photonics foundries have opened the opportunity for distributed dynamic chemical sensing at the microscale. This will allow researchers to follow the dynamics of chemical species in field of microbiology, and microchemistry, with a complementary method to current technologies based on microfluorescence and hyperspectral imaging. The study of the chemical dynamics at the surface of photoelectrodes in water splitting cells are a good candidate to benefit from such optochemical sensing devices that includes a photonic integrated circuit (PIC) with multiple sensors for real-time detection and spatial mapping of chemical species. In this project, we present experimental results on a prototype integrated optical system for chemical mapping based on the interaction of cascaded resonant optical devices, spatially covered with chemically sensitive polymers and plasmon-enhanced nanostructured metal/metal-oxide claddings offering chemical selectivity in a pixelated surface. In order to achieve a compact footprint, the prototype is based in a silicon photonics platform. A discussion on the relative merits of a photonic platform based on large bandgap metal oxides and nitrides which have higher chemical resistance than silicon is also presented.

  3. Optical design of MOEMS-based micro-mechatronic modules for applications in spectroscopy

    NASA Astrophysics Data System (ADS)

    Tortschanoff, A.; Kremer, M.; Sandner, T.; Kenda, A.

    2014-05-01

    One of the important challenges for widespread application of MOEMS devices is to provide a modular interface for easy handling and accurate driving of the MOEMS elements, in order to enable seamless integration in larger spectroscopic system solutions. In this contribution we present in much detail the optical design of MOEMS driver modules comprising optical position sensing together with driver electronics, which can actively control different electrostatically driven MOEMS. Furthermore we will present concepts for compact spectroscopic devices, based on different MOEMS scanner modules with lD and 2D optical elements.

  4. Application of the device based on chirping of optical impulses for management of software-defined networks in dynamic mode

    NASA Astrophysics Data System (ADS)

    Vinogradova, Irina L.; Khasansin, Vadim R.; Andrianova, Anna V.; Yantilina, Liliya Z.; Vinogradov, Sergey L.

    2016-03-01

    The analysis of the influence of the physical layer concepts in optical networks on the performance of the whole network. It is concluded that the relevance of the search for new means of transmitting information on a physical level. It is proposed to use an optical chirp overhead transmission between controllers SDN. This article is devoted to research of a creation opportunity of optical neural switchboards controlled in addition by submitted optical radiation. It is supposed, that the managing radiation changes a parameter of refraction of optical environment of the device, and with it and length of a wave of information radiation. For the control by last is used multibeam interferometer. The brief estimation of technical aspects of construction of the device is carried out. The principle of using the device to an extensive network. Simulation of network performance parameters.

  5. Pilot Project for Spaceborne Massive Optical Storage Devices

    NASA Technical Reports Server (NTRS)

    Chen, Y. J.

    1996-01-01

    A space bound storage device has many special requirements. In addition to large storage capacity, fas read/ write time, and high reliability, it also needs to have small volume, light weight, low power consumption, radiation hardening, ability to operate in extreme temperature ranges, etc. Holographic optical recording technology, which has been making major advancements in recent years, is an extremely promising candidate. The goal of this pilot project is to demonstrate a laboratory bench-top holographic optical recording storage system (HORSS) based on nonlinear polymer films 1 and/or other advanced photo-refractive materials. This system will be used as a research vehicle to study relevant optical properties of novel holographic optical materials, to explore massive optical storage technologies based on the photo-refractive effect and to evaluate the feasibility of developing a massive storage system, based on holographic optical recording technology, for a space bound experiment in the near future.

  6. Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors

    PubMed Central

    Santos, Abel; Kumeria, Tushar; Losic, Dusan

    2014-01-01

    Nanoporous anodic alumina (NAA) has become one of the most promising nanomaterials in optical biosensing as a result of its unique physical and chemical properties. Many studies have demonstrated the outstanding capabilities of NAA for developing optical biosensors in combination with different optical techniques. These results reveal that NAA is a promising alternative to other widely explored nanoporous platforms, such as porous silicon. This review is aimed at reporting on the recent advances and current stage of development of NAA-based optical biosensing devices. The different optical detection techniques, principles and concepts are described in detail along with relevant examples of optical biosensing devices using NAA sensing platforms. Furthermore, we summarise the performance of these devices and provide a future perspective on this promising research field. PMID:28788678

  7. A design multifunctional plasmonic optical device by micro ring system

    NASA Astrophysics Data System (ADS)

    Pornsuwancharoen, N.; Youplao, P.; Amiri, I. S.; Ali, J.; Yupapin, P.

    2018-03-01

    A multi-function electronic device based on the plasmonic circuit is designed and simulated by using the micro-ring system. From which a nonlinear micro-ring resonator is employed and the selected electronic devices such as rectifier, amplifier, regulator and filter are investigated. A system consists of a nonlinear micro-ring resonator, which is known as a modified add-drop filter and made of an InGaAsP/InP material. The stacked waveguide of an InGaAsP/InP - graphene -gold/silver is formed as a part of the device, the required output signals are formed by the specific control of input signals via the input and add ports. The material and device aspects are reviewed. The simulation results are obtained using the Opti-wave and MATLAB software programs, all device parameters are based on the fabrication technology capability.

  8. Lab-on-fiber electrophoretic trace mixture separating and detecting an optofluidic device based on a microstructured optical fiber.

    PubMed

    Yang, Xinghua; Guo, Xiaohui; Li, Song; Kong, Depeng; Liu, Zhihai; Yang, Jun; Yuan, Libo

    2016-04-15

    We report an in-fiber integrated electrophoretic trace mixture separating and detecting an optofluidic optical fiber sensor based on a specially designed optical fiber. In this design, rapid in situ separation and simultaneous detection of mixed analytes can be realized under electro-osmotic flow in the microstructured optical fiber. To visually display the in-fiber separating and detecting process, two common fluorescent indicators are adopted as the optofluidic analytes in the optical fiber. Results show that a trace amount of the mixture (0.15 μL) can be completely separated within 3.5 min under a high voltage of 5 kV. Simultaneously, the distributed information of the separated analytes in the optical fiber can be clearly obtained by scanning along the optical fiber using a 355 nm laser. The emission from the analytes can be efficiently coupled into the inner core and guides to the remote end of the optical fiber. In addition, the thin cladding around the inner core in the optical fiber can prevent the fluorescent cross talk between the analytes in this design. Compared to previous optical fiber optofluidic devices, this device first realizes simultaneously separating treatment and the detection of the mixed samples in an optical fiber. Significantly, such an in-fiber integrated separating and detecting optofluidic device can find wide applications in various analysis fields involves mixed samples, such as biology, chemistry, and environment.

  9. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Mcwright, G. M.

    1982-01-01

    Glass waveguides are studied because of the ease and economy of fabricating devices in glass. All calculations are based on the assumption of a glass guide and substrate, but the effects being studied will occur on other materials if the proper refractive indices are used in the calculations.

  10. Fluidic optics

    NASA Astrophysics Data System (ADS)

    Whitesides, George M.; Tang, Sindy K. Y.

    2006-09-01

    Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.

  11. Prism-type holographic optical element design and verification for the blue-light small-form-factor optical pickup head.

    PubMed

    Shih, Hsi-Fu; Chiu, Yi; Cheng, Stone; Lee, Yuan-Chin; Lu, Chun-Shin; Chen, Yung-Chih; Chiou, Jin-Chern

    2012-08-20

    This paper presents the prism-type holographic optical element (PT-HOE) design for a small-form-factor (SFF) optical pickup head (OPH). The surface of the PT-HOE was simulated by three steps of optimization and generated by binary optics. Its grating pattern was fabricated on the inclined plane of a microprism by using the standard photolithography and specific dicing procedures. The optical characteristics of the device were verified. Based on the virtual image method, the SFF-OPH with the device was assembled and realized.

  12. Passive athermalization of multimode interference devices for wavelength-locking applications.

    PubMed

    Ruiz-Perez, Victor I; May-Arrioja, Daniel A; Guzman-Sepulveda, Jose R

    2017-03-06

    In this paper we demonstrate the passive, material-based athermalization of all-fiber architectures by cascading multimode interference (MMI) devices. In-line thermal compensation is achieved by including a liquid-core multimode section of variable length that allows ensuring temperature-independent operation while preserving the inherent filter-like spectral response of the MMI devices. The design of the temperature compensation unit is straightforward and its fabrication is simple. The applicability of our approach is experimentally verified by fabricating a wavelength-locked MMI laser with sensitivity of only -0.1 pm/°C, which is at least one order of magnitude lower than that achieved with other fiber optics devices.

  13. Characterization of ultrafast devices using novel optical techniques

    NASA Astrophysics Data System (ADS)

    Ali, Md Ershad

    Optical techniques have been extensively used to examine the high frequency performance of a number of devices including High Electron Mobility Transistors (HEMTs), Heterojunction Bipolar Phototransistors (HPTs) and Low Temperature GaAs (LT-GaAs) Photoconductive Switches. To characterize devices, frequency and time domain techniques, namely optical heterodyning and electro-optic sampling, having measurement bandwidths in excess of 200 GHz, were employed. Optical mixing in three-terminal devices has been extended for the first time to submillimeter wave frequencies. Using a new generation of 50-nm gate pseudomorphic InP-based HEMTs, optically mixed signals were detected to 552 GHz with a signal-to-noise ratio of approximately 5 dB. To the best of our knowledge, this is the highest frequency optical mixing obtained in three- terminal devices to date. A novel harmonic three-wave detection scheme was used for the detection of the optically generated signals. The technique involved downconversion of the signal in the device by the second harmonic of a gate-injected millimeter wave local oscillator. Measurements were also conducted up to 212 GHz using direct optical mixing and up to 382 GHz using a fundamental three-wave detection scheme. New interesting features in the bias dependence of the optically mixed signals have been reported. An exciting novel development from this work is the successful integration of near-field optics with optical heterodyning. The technique, called near-field optical heterodyning (NFOH), allows for extremely localized injection of high-frequency stimulus to any arbitrary point of an ultrafast device or circuit. Scanning the point of injection across the sample provides details of the high frequency operation of the device with high spatial resolution. For the implementation of the technique, fiber-optic probes with 100 nm apertures were fabricated. A feedback controlled positioning system was built for accurate placement and scanning of the fiber probe with nanometric precision. The applicability of the NFOH technique was first confirmed by measurements on heterojunction phototransistors at 100 GHz. Later NFOH scans were performed at 63 GHz on two other important devices, HEMTs and LT-GaAs Photoconductive Switches. Spatially resolved response characteristics of these devices revealed interesting details of their operation.

  14. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures

    PubMed Central

    Wen, Yao; Cai, Kaiming; Cheng, Ruiqing; Yin, Lei; Zhang, Yu; Li, Jie; Wang, Zhenxing; Wang, Feng; Wang, Fengmei; Shifa, Tofik Ahmed; Jiang, Chao; Yang, Hyunsoo

    2018-01-01

    Optoelectronic devices for information storage and processing are at the heart of optical communication technology due to their significant applications in optical recording and computing. The infrared radiations of 850, 1310, and 1550 nm with low energy dissipation in optical fibers are typical optical communication wavebands. However, optoelectronic devices that could convert and store the infrared data into electrical signals, thereby enabling optical data communications, have not yet been realized. We report an infrared memory device using MoS2/PbS van der Waals heterostructures, in which the infrared pulse intrigues a persistent resistance state that hardly relaxes within our experimental time scales (more than 104 s). The device fully retrieves the memory state even after powering off for 3 hours, indicating its potential for nonvolatile storage devices. Furthermore, the device presents a reconfigurable switch of 2000 stable cycles. Supported by a theoretical model with quantitative analysis, we propose that the optical memory and the electrical erasing phenomenon, respectively, originate from the localization of infrared-induced holes in PbS and gate voltage pulse-enhanced tunneling of electrons from MoS2 to PbS. The demonstrated MoS2 heterostructure–based memory devices open up an exciting field for optoelectronic infrared memory and programmable logic devices. PMID:29770356

  15. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures.

    PubMed

    Wang, Qisheng; Wen, Yao; Cai, Kaiming; Cheng, Ruiqing; Yin, Lei; Zhang, Yu; Li, Jie; Wang, Zhenxing; Wang, Feng; Wang, Fengmei; Shifa, Tofik Ahmed; Jiang, Chao; Yang, Hyunsoo; He, Jun

    2018-04-01

    Optoelectronic devices for information storage and processing are at the heart of optical communication technology due to their significant applications in optical recording and computing. The infrared radiations of 850, 1310, and 1550 nm with low energy dissipation in optical fibers are typical optical communication wavebands. However, optoelectronic devices that could convert and store the infrared data into electrical signals, thereby enabling optical data communications, have not yet been realized. We report an infrared memory device using MoS 2 /PbS van der Waals heterostructures, in which the infrared pulse intrigues a persistent resistance state that hardly relaxes within our experimental time scales (more than 10 4 s). The device fully retrieves the memory state even after powering off for 3 hours, indicating its potential for nonvolatile storage devices. Furthermore, the device presents a reconfigurable switch of 2000 stable cycles. Supported by a theoretical model with quantitative analysis, we propose that the optical memory and the electrical erasing phenomenon, respectively, originate from the localization of infrared-induced holes in PbS and gate voltage pulse-enhanced tunneling of electrons from MoS 2 to PbS. The demonstrated MoS 2 heterostructure-based memory devices open up an exciting field for optoelectronic infrared memory and programmable logic devices.

  16. Method and device for detecting impact events on a security barrier which includes a hollow rebar allowing insertion and removal of an optical fiber

    DOEpatents

    Pies, Ross E.

    2016-03-29

    A method and device for the detection of impact events on a security barrier. A hollow rebar is farmed within a security barrier, whereby the hollow rebar is completely surrounded by the security barrier. An optical fiber passes through the interior of the hollow rebar. An optical transmitter and an optical receiver are both optically connected to the optical fiber and connected to optical electronics. The optical electronics are configured to provide notification upon the detection of an impact event at the security barrier based on the detection of disturbances within the optical fiber.

  17. High-accurate optical vector analysis based on optical single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Xue, Min; Pan, Shilong

    2016-11-01

    Most of the efforts devoted to the area of optical communications were on the improvement of the optical spectral efficiency. Varies innovative optical devices are thus developed to finely manipulate the optical spectrum. Knowing the spectral responses of these devices, including the magnitude, phase and polarization responses, is of great importance for their fabrication and application. To achieve high-resolution characterization, optical vector analyzers (OVAs) based on optical single-sideband (OSSB) modulation have been proposed and developed. Benefiting from the mature and highresolution microwave technologies, the OSSB-based OVA can potentially achieve a resolution of sub-Hz. However, the accuracy is restricted by the measurement errors induced by the unwanted first-order sideband and the high-order sidebands in the OSSB signal, since electrical-to-optical conversion and optical-to-electrical conversion are essentially required to achieve high-resolution frequency sweeping and extract the magnitude and phase information in the electrical domain. Recently, great efforts have been devoted to improve the accuracy of the OSSB-based OVA. In this paper, the influence of the unwanted-sideband induced measurement errors and techniques for implementing high-accurate OSSB-based OVAs are discussed.

  18. Si/Ge elatform for lasers, amplifiers, and nonlinear optical devices based on the Raman Effect

    NASA Astrophysics Data System (ADS)

    Claps, Ricardo; Dimitropoulos, Dimitrios; Raghunathan, Varun; Fathpour, Sasan; Jalali, Bahram; Jusserand, Bernard

    2007-02-01

    The use of a silicon-germanium platform for the development of optically active devices will be discussed in this paper, from the perspective of Raman and Brillouin scattering phenomena. Silicon-Germanium is becoming a prevalent technology for the development of high speed CMOS transistors, with advances in several key parameters as high carrier mobility, low cost, and reduced manufacturing logistics. Traditionally, Si-Ge structures have been used in the optoelectronics arena as photodetectors, due to the enhanced absorption of Ge in the telecommunications band. Recent developments in Raman-based nonlinearities for devices based on a silicon-on-insulator platform have shed light on the possibility of using these effects in Si-Ge architectures. Lasing and amplification have been demonstrated using a SiGe alloy structure, and Brillouin/Raman activity from acoustic phonon modes in SiGe superlattices has been predicted. Moreover, new Raman-active branches and inhomogeneously broadened spectra result from optical phonon modes, offering new perspectives for optical device applications. The possibilities for an electrically-pumped Raman laser will be outlined, and the potential for design and development of silicon-based, Tera-Hertz wave emitters and/or receivers.

  19. Demonstration of a plenoptic microscope based on laser optical feedback imaging.

    PubMed

    Glastre, Wilfried; Hugon, Olivier; Jacquin, Olivier; Guillet de Chatellus, Hugues; Lacot, Eric

    2013-03-25

    A new kind of plenoptic imaging system based on Laser Optical Feedback Imaging (LOFI) is presented and is compared to another previously existing device based on microlens array. Improved photometric performances, resolution and depth of field are obtained at the price of a slow point by point scanning. Main properties of plenoptic microscopes such as numerical refocusing on any curved surface or aberrations compensation are both theoretically and experimentally demonstrated with a LOFI-based device.

  20. A new fibre optic pulse oximeter probe for monitoring splanchnic organ arterial blood oxygen saturation.

    PubMed

    Hickey, M; Samuels, N; Randive, N; Langford, R; Kyriacou, P A

    2012-12-01

    A new, continuous method of monitoring splanchnic organ oxygen saturation (SpO(2)) would make the early detection of inadequate tissue oxygenation feasible, reducing the risk of hypoperfusion, severe ischaemia, and, ultimately, death. In an attempt to provide such a device, a new fibre optic based reflectance pulse oximeter probe and processing system were developed followed by an in vivo evaluation of the technology on seventeen patients undergoing elective laparotomy. Photoplethysmographic (PPG) signals of good quality and high signal-to-noise ratio were obtained from the small bowel, large bowel, liver and stomach. Simultaneous peripheral PPG signals from the finger were also obtained for comparison purposes. Analysis of the amplitudes of all acquired PPG signals indicated much larger amplitudes for those signals obtained from splanchnic organs than those obtained from the finger. Estimated SpO(2) values for splanchnic organs showed good agreement with those obtained from the finger fibre optic probe and those obtained from a commercial device. These preliminary results suggest that a miniaturized 'indwelling' fibre optic sensor may be a suitable method for pre-operative and post-operative evaluation of splanchnic organ SpO(2) and their health. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. A parity-time symmetric coherent plasmonic absorber-amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, Brian, E-mail: bbaum@stanford.edu; Dionne, Jennifer, E-mail: jdionne@stanford.edu; Alaeian, Hadiseh

    Non-Hermitian parity-time (PT)-symmetric optical potentials have led to a new class of unidirectional photonic components based on the spatially symmetric and balanced inclusion of loss and gain. While most proposed and implemented PT-symmetric optical devices have wavelength-scale dimensions, no physical constraints preclude development of subwavelength PT-symmetric components. We theoretically demonstrate a nanoscale PT-symmetric, all-optical plasmonic modulator capable of phase-controlled amplification and directional absorption. The modulator consists of two deeply subwavelength channels composed of either gain or loss dielectric material, embedded in a metallic cladding. When illuminating on-resonance by two counter-propagating plane waves, the aperture's total output can be modulated bymore » changing the phase offset between the two waves. Modulation depths are greater than 10 dB, with output power varying from less than one half of the incident power to more than six times amplification. Off-resonance, the aperture possesses strong phase-controlled directionality with the output from one side varying from perfect absorption to strong scattering and transmission. The device design provides a platform for nanoscale all-optical modulators with gain while potentially enabling coherent perfect absorption and lasing in a single, compact structure.« less

  2. Embedding objects during 3D printing to add new functionalities

    PubMed Central

    2016-01-01

    A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning® Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning® Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication. These 3D printed glass bottom casting molds would result in PDMS replicas with a flat smooth bottom surface for better bonding and adhesion. PMID:27478528

  3. Spectrally pure RF photonic source based on a resonant optical hyper-parametric oscillator

    NASA Astrophysics Data System (ADS)

    Liang, W.; Eliyahu, D.; Matsko, A. B.; Ilchenko, V. S.; Seidel, D.; Maleki, L.

    2014-03-01

    We demonstrate a free running 10 GHz microresonator-based RF photonic hyper-parametric oscillator characterized with phase noise better than -60 dBc/Hz at 10 Hz, -90 dBc/Hz at 100 Hz, and -150 dBc/Hz at 10 MHz. The device consumes less than 25 mW of optical power. A correlation between the frequency of the continuous wave laser pumping the nonlinear resonator and the generated RF frequency is confirmed. The performance of the device is compared with the performance of a standard optical fiber based coupled opto-electronic oscillator of OEwaves.

  4. Fibre optic system for biochemical and microbiological sensing

    NASA Astrophysics Data System (ADS)

    Penwill, L. A.; Slater, J. H.; Hayes, N. W.; Tremlett, C. J.

    2007-07-01

    This poster will discuss state-of-the-art fibre optic sensors based on evanescent wave technology emphasising chemophotonic sensors for biochemical reactions and microbe detection. Devices based on antibody specificity and unique DNA sequences will be described. The development of simple sensor devices with disposable single use sensor probes will be illustrated with a view to providing cost effective field based or point of care analysis of major themes such as hospital acquired infections or bioterrorism events. This presentation will discuss the nature and detection thresholds required, the optical detection techniques investigated, results of sensor trials and the potential for wider commercial application.

  5. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene.

    PubMed

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D'Orazio, Antonella; Bruno, Giovanni

    2015-11-25

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices.

  6. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene

    PubMed Central

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D’Orazio, Antonella; Bruno, Giovanni

    2015-01-01

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices. PMID:26603112

  7. Voltage-programmable liquid optical interface

    NASA Astrophysics Data System (ADS)

    Brown, C. V.; Wells, G. G.; Newton, M. I.; McHale, G.

    2009-07-01

    Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices.

  8. A double-taper optical fiber-based radiation wave other than evanescent wave in all-fiber immunofluorescence biosensor for quantitative detection of Escherichia coli O157:H7.

    PubMed

    Zhang, Zhonghuan; Hua, Fei; Liu, Ting; Zhao, Yong; Li, Jun; Yang, Ruifu; Yang, Changxi; Zhou, Lei

    2014-01-01

    Cylindrical or taper-and-cylinder combination optical fiber probe based on evanescent wave has been widely used for immunofluorescence biosensor to detect various analytes. In this study, in contrast to the contradiction between penetration depth and analyte diameter of optical fiber probe-based evanescent wave, we demonstrate that double-taper optical fiber used in a radiation wave-based all-fiber immunofluorescence biosensor (RWAIB) can detect micron-scale analytes using Escherichia coli O157:H7 as representative target. Finite-difference time-domain method was used to compare the properties of evanescent wave and radiation wave (RW). Ray-tracing model was formulated to optimize the taper geometry of the probe. Based on a commercial multi-mode fiber, a double-taper probe was fabricated and connected with biosensor through a "ferrule connector" optical fiber connector. The RWAIB configuration was accomplished using commercial multi-mode fibers and fiber-based devices according to the "all-fiber" method. The standard sample tests revealed that the sensitivity of the proposed technique for E. coli O157:H7 detection was 10(3) cfu · mL(-1). Quantitation could be achieved within the concentration range of 10(3) cfu · mL(-1) to 107 cfu · mL(-1). No non-specific recognition to ten kinds of food-borne pathogens was observed. The results demonstrated that based on the double-taper optical fiber RWAIB can be used for the quantitative detection of micron-scale targets, and RW sensing is an alternative for traditional evanescent wave sensing during the fabrication of fiber-optic biosensors.

  9. Optomechanical Design and Characterization of a Printed-Circuit-Board-Based Free-Space Optical Interconnect Package

    NASA Astrophysics Data System (ADS)

    Zheng, Xuezhe; Marchand, Philippe J.; Huang, Dawei; Kibar, Osman; Ozkan, Nur S. E.; Esener, Sadik C.

    1999-09-01

    We present a proof of concept and a feasibility demonstration of a practical packaging approach in which free-space optical interconnects (FSOI s) can be integrated simply on electronic multichip modules (MCM s) for intra-MCM board interconnects. Our system-level packaging architecture is based on a modified folded 4 f imaging system that has been implemented with only off-the-shelf optics, conventional electronic packaging, and passive-assembly techniques to yield a potentially low-cost and manufacturable packaging solution. The prototypical system as built supports 48 independent FSOI channels with 8 separate laser and detector chips, for which each chip consists of a one-dimensional array of 12 devices. All the chips are assembled on a single substrate that consists of a printed circuit board or a ceramic MCM. Optical link channel efficiencies of greater than 90% and interchannel cross talk of less than 20 dB at low frequency have been measured. The system is compact at only 10 in. 3 (25.4 cm 3 ) and is scalable, as it can easily accommodate additional chips as well as two-dimensional optoelectronic device arrays for increased interconnection density.

  10. Integrated optical signal processing with magnetostatic waves

    NASA Technical Reports Server (NTRS)

    Fisher, A. D.; Lee, J. N.

    1984-01-01

    Magneto-optical devices based on Bragg diffraction of light by magnetostatic waves (MSW's) offer the potential of large time-bandwidth optical signal processing at microwave frequencies of 1 to 20 GHz and higher. A thin-film integrated-optical configuration, with the interacting MSW and guided-optical wave both propagating in a common ferrite layer, is necessary to avoid shape-factor demagnetization effects. The underlying theory of the MSW-optical interaction is outlined, including the development of expressions for optical diffraction efficiency as a function of MSW power and other relevant parameters. Bradd diffraction of guided-optical waves by transversely-propagating magnetostatic waves and collinear TE/TM mode conversion included by MSW's have been demonstrated in yttrium iron garnet (YIG) thin films. Diffraction levels as large as 4% (7 mm interaction length) and a modulation dynamic range of approx 30 dB have been observed. Advantages of these MSW-based devices over the analogous acousto-optical devices include: much greater operating frequencies, tunability of the MSW dispersion relation by varying either the RF frequency or the applied bias magnetic field, simple broad-band MSW transducer structures (e.g., a single stripline), and the potential for very high diffraction efficiencies.

  11. Multifunctional Polymer Nanofibers: UV Emission, Optical Gain, Anisotropic Wetting, and High Hydrophobicity for Next Flexible Excitation Sources

    PubMed Central

    2015-01-01

    The use of UV light sources is highly relevant in many fields of science, being directly related to all those detection and diagnosis procedures that are based on fluorescence spectroscopy. Depending on the specific application, UV light-emitting materials are desired to feature a number of opto-mechanical properties, including brightness, optical gain for being used in laser devices, flexibility to conform with different lab-on-chip architectures, and tailorable wettability to control and minimize their interaction with ambient humidity and fluids. In this work, we introduce multifunctional, UV-emitting electrospun fibers with both optical gain and greatly enhanced anisotropic hydrophobicity compared to films. Fibers are described by the onset of a composite wetting state, and their arrangement in uniaxial arrays further favors liquid directional control. The low gain threshold, optical losses, plastic nature, flexibility, and stability of these UV-emitting fibers make them interesting for building light-emitting devices and microlasers. Furthermore, the anisotropic hydrophobicity found is strongly synergic with optical properties, reducing interfacial interactions with liquids and enabling smart functional surfaces for droplet microfluidic and wearable applications. PMID:26401889

  12. Design issues for directional coupler- and MMI-based optical microring resonator filters on InP

    NASA Astrophysics Data System (ADS)

    Themistos, Christos; Kalli, Kyriacos; Komodromos, Michalis; Rajarajan, Muttukrishnan; Rahman, B. M. A.; Grattan, Kenneth T. V.

    2004-08-01

    The characterization and optimization of optical microring resonator-based optical filters on deeply etched GaInAsP-Inp waveguides, using the finite element-based beam propagation approach is presented here. Design issues for directional coupler- and multimode interference coupler-based devices, such as field evolution, optical power, phase, fabrication tolerance and wavelength dependence have been investigated.

  13. Integral image rendering procedure for aberration correction and size measurement.

    PubMed

    Sommer, Holger; Ihrig, Andreas; Ebenau, Melanie; Flühs, Dirk; Spaan, Bernhard; Eichmann, Marion

    2014-05-20

    The challenge in rendering integral images is to use as much information preserved by the light field as possible to reconstruct a captured scene in a three-dimensional way. We propose a rendering algorithm based on the projection of rays through a detailed simulation of the optical path, considering all the physical properties and locations of the optical elements. The rendered images contain information about the correct size of imaged objects without the need to calibrate the imaging device. Additionally, aberrations of the optical system may be corrected, depending on the setup of the integral imaging device. We show simulation data that illustrates the aberration correction ability and experimental data from our plenoptic camera, which illustrates the capability of our proposed algorithm to measure size and distance. We believe this rendering procedure will be useful in the future for three-dimensional ophthalmic imaging of the human retina.

  14. Photonic variable delay devices based on optical birefringence

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2005-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  15. A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Wang, Hongtao; Qi, Ying; Mountziaris, T. J.; Salthouse, Christopher D.

    2014-05-01

    Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve the peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.

  16. Monolayer optical memory cells based on artificial trap-mediated charge storage and release

    NASA Astrophysics Data System (ADS)

    Lee, Juwon; Pak, Sangyeon; Lee, Young-Woo; Cho, Yuljae; Hong, John; Giraud, Paul; Shin, Hyeon Suk; Morris, Stephen M.; Sohn, Jung Inn; Cha, Seungnam; Kim, Jong Min

    2017-03-01

    Monolayer transition metal dichalcogenides are considered to be promising candidates for flexible and transparent optoelectronics applications due to their direct bandgap and strong light-matter interactions. Although several monolayer-based photodetectors have been demonstrated, single-layered optical memory devices suitable for high-quality image sensing have received little attention. Here we report a concept for monolayer MoS2 optoelectronic memory devices using artificially-structured charge trap layers through the functionalization of the monolayer/dielectric interfaces, leading to localized electronic states that serve as a basis for electrically-induced charge trapping and optically-mediated charge release. Our devices exhibit excellent photo-responsive memory characteristics with a large linear dynamic range of ~4,700 (73.4 dB) coupled with a low OFF-state current (<4 pA), and a long storage lifetime of over 104 s. In addition, the multi-level detection of up to 8 optical states is successfully demonstrated. These results represent a significant step toward the development of future monolayer optoelectronic memory devices.

  17. MEMS-based tunable gratings and their applications

    NASA Astrophysics Data System (ADS)

    Yu, Yiting; Yuan, Weizheng; Qiao, Dayong

    2015-03-01

    The marriage of optics and MEMS has resulted in a new category of optical devices and systems that have unprecedented advantages compared with their traditional counterparts. As an important spatial light modulating technology, diffractive optical MEMS obtains a wide variety of successful commercial applications, e.g. projection displays, optical communication and spectral analysis, due to its features of highly compact, low-cost, IC-compatible, excellent performance, and providing possibilities for developing totally new, yet smart devices and systems. Three most successful MEMS diffraction gratings (GLVs, Polychromator and DMDs) are briefly introduced and their potential applications are analyzed. Then, three different MEMS tunable gratings developed by our group, named as micro programmable blazed gratings (μPBGs) and micro pitch-tunable gratings (μPTGs) working in either digital or analog mode, are demonstrated. The strategies to largely enhance the maximum blazed angle and grating period are described. Some preliminary application explorations based on the developed grating devices are also shown. For our ongoing research focus, we will further improve the device performance to meet the engineering application requirements.

  18. Tunable all-optical photonic crystal channel drop filter for DWDM systems

    NASA Astrophysics Data System (ADS)

    Habibiyan, H.; Ghafoori-Fard, H.; Rostami, A.

    2009-06-01

    In this paper we propose a tunable channel drop filter in a two-dimensional photonic crystal, based on coupled-cavity waveguides with alternating small and large defects and an electromagnetically induced transparency phenomenon. By utilizing this phenomenon a narrower linewidth is obtained and also the frequency of the dropped signal becomes tunable. Simulation results show that the proposed filter is suitable for dense wavelength-division multiplexing (DWDM) systems with 0.8 nm channel spacing. Using this novel component, two ultrasmall eight-channel double-sided and single-sided demultiplexers are introduced. The properties of these devices are investigated using the finite-difference time-domain method. For the single-sided device, transmission loss is 1.5 ± 0.5 dB, the cross-talk level between adjacent channels is better than -18 dB and the average 3 dB optical passband is 0.36 nm. Using planar silicon-on-insulator technology, the physical area for the single-sided component is 700 µm2 and for the double-sided component is 575 µm2. To the best of our knowledge, these are the smallest all-optical demultiplexers with this spectral resolution reported to date. Malfunction of the proposed device due to fabrication errors is modeled and its tunable characteristic is demonstrated.

  19. Creating an optical spectroscopy system for use in a primary care clinical setting (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Eshein, Adam; Nguyen, The-Quyen; Radosevich, Andrew J.; Gould, Bradley; Wu, Wenli; Konda, Vani; Yang, Leslie W.; Koons, Ann; Feder, Seth; Valuckaite, Vesta; Roy, Hemant K.; Backman, Vadim

    2016-03-01

    While there are a plethora of in-vivo spectroscopic techniques that have demonstrated the ability to detect a number of diseases in research trials, very few techniques have successfully become a fully realized clinical technology. This is primarily due to the stringent demands on a clinical device for widespread implementation. Some of these demands include: simple operation requiring minimal or no training, safe for in-vivo patient use, no disruption to normal clinic workflow, tracking of system performance, warning for measurement abnormality, and meeting all FDA guidelines for medical use. Previously, our group developed a fiber optic probe-based optical sensing technique known as low-coherence enhanced backscattering spectroscopy (LEBS) to quantify tissue ultrastructure in-vivo. Now we have developed this technique for the application of prescreening patients for colonoscopy in a primary care (PC) clinical setting. To meet the stringent requirements for a viable medical device used in a PC clinical setting, we developed several novel components including an automated calibration tool, optical contact sensor for signal acquisition, and a contamination sensor to identify measurements which have been affected by debris. The end result is a state-of-the-art medical device that can be realistically used by a PC physician to assess a person's risk for harboring colorectal precancerous lesions. The pilot study of this system shows great promise with excellent stability and accuracy in identifying high-risk patients. While this system has been designed and optimized for our specific application, the system and design concepts are universal to most in-vivo fiber optic based spectroscopic techniques.

  20. Physician attitudes toward dissemination of optical spectroscopy devices for cervical cancer control: an industrial-academic collaborative study.

    PubMed

    Shinn, Eileen; Qazi, Usman; Gera, Shalini; Brodovsky, Joan; Simpson, Jessica; Follen, Michele; Basen-Engquist, Karen; Macaulay, Calum

    2012-02-01

    Optical spectroscopy has been studied for biologic plausibility, technical efficacy, clinical effectiveness, patient satisfaction, and cost-effectiveness. We sought to identify health care provider attitudes or practices that might act as barriers or to the dissemination of this new technology. Through an academic-industrial partnership, we conducted a series of focus groups to examine physician barriers to optical diagnosis. The study was conducted in 2 stages. First, a pilot group of 10 physicians (8 obstetrician gynecologists and 2 family practitioners) was randomly selected from 8 regions of the United States and each physician was interviewed individually. Physicians were presented with the results of a large trial (N = 980) testing the accuracy of a spectroscopy-based device in the detection of cervical neoplasia. They were also shown a prototype of the device and were given a period of time to ask questions and receive answers regarding the device. They were also asked to provide feedback on a questionnaire that was then revised and presented to 3 larger focus groups (n = 13, 15, and 17 for a total N = 45). The larger focus groups were conducted during national scientific meetings with 20 obstetrician gynecologists and 25 primary care physicians (family practitioners and internists). When asked about the dissemination potential of the new cervical screening technology, all study groups tended to rely on established clinical guidelines from their respective professional societies with regard to the screening and diagnosis of cervical cancer. In addition, study participants consistently agreed that real-time spectroscopy would be viewed positively by their patients. Participants were positive about the new technology's potential as an adjunct to colposcopy and agreed that the improved accuracy would result in reduced health care costs (due to decreased biopsies and decreased visits). Although all participants saw the potential of real-time diagnosis, there were many perceived barriers. These barriers included changes in scheduling and work-flow, liability, documentation, ease of use, length of training, device cost, and reimbursement by third-party payers. Barriers exist to the dissemination of optical technologies into physician practice. These will need to be addressed before cervical screening and diagnosis programs can take advantage of spectroscopy-based instruments for cancer control. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.

  1. Synthesis of nanocomposites based on carbon nanotube/smart copolymer with nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Sousani, Abbas; Motiei, Hamideh; Najafimoghadam, Peyman; Hasanzade, Reza

    2017-05-01

    In this study new nanocompoites based on polyglycidylmethacrylate grafted 4-[(4-methoxyphenyl) diazenyl] phenol (Azo-PGMA) and Carboxylicacid functionalized multi-walled carbon nanotubes (MWCNT-COOH) were prepared. The nanocomposites structure was characterized by FT-IR, TGA and SEM. The Z-scan technique was applied for measuring the nonlinear parameters of nanocomposites. The samples after solving in AWM solution (equal ratio of acetone, deionized water and methanol) were investigated by using closed aperture Z-scan technique and a diode-pumped laser at the line 532 nm. All the nonlinear refractive index of the samples at three concentrations of carbon nanotubes in three different intensities of the laser beam were investigated and the nonlinear optical response of them are compared under the same condition. Because of high order of nonlinear refractive coefficient and good nonlinearity, these compounds are suitable candidate for optical switching, optical limiting and electro-optical devices.

  2. Thickness dependent charge transfer states and dark carriers density in vacuum deposited small molecule organic photocell

    NASA Astrophysics Data System (ADS)

    Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir

    2016-10-01

    We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.

  3. Polymer electro-optic waveguide devices: Low-loss etchless fabrication techniques and passive-to-active integration

    NASA Astrophysics Data System (ADS)

    Geary, Kevin

    The development of high-frequency polymer electro-optic modulators has seen steady and significant progress in recent years, yet applications of these promising materials to more complicated integrated optic structures and arrays of devices have been limited primarily due to high optical waveguide loss characteristics. This is unfortunate since a major advantage of polymers as photonic materials is their compatibility with photolithographic processing of large components. In this Dissertation, etchless waveguide writing techniques are presented in order to improve the overall optical insertion loss of electro-optic polymer waveguide devices. These techniques include poling-induced writing, stress-induced waveguide writing, and photobleaching. Using these waveguide writing mechanisms, we have demonstrated straight waveguides, phase modulators, Mach-Zehnder intensity modulators, variable optical attenuators, and multimode interference (MMI) power splitters, all with improved loss characteristics over their etched rib waveguide counterparts. Ultimately, the insertion loss of an integrated optic device is limited by the actual material loss of the core waveguide material. In this Dissertation, passive-to-active polymer waveguide transitions are proposed to circumvent this problem. These transitions are compact, in-plane, self-aligned, and require no tapering of any physical dimensions of the waveguides. By utilizing both the time-dependent and intensity-dependent photobleaching characteristics of electro-optic polymer materials, adiabatic refractive index tapers can be seamlessly coupled to in-plane butt couple transitions, resulting in losses as low as 0.1 dB per interface. By integrating passive polymer planar lightwave circuits with the high-speed phase shifting capability of electro-optic polymers, active wideband photonic devices of increased size and complexity can be realized. Optical fiber-to-device coupling can also result in significant contributions to the overall insertion loss of an integrated electro-optic polymer device. In this Dissertation, we leverage the photobleached refractive index taper component of our proposed passive-to-active polymer waveguide transitions in order to realize a two-dimensional optical mode transformer for improved overall fiber-to-device coupling of electro-optic polymer waveguide devices.

  4. Enhancement of Performance and Mechanism Studies of All-Solution Processed Small-Molecule based Solar Cells with an Inverted Structure.

    PubMed

    Long, Guankui; Wu, Bo; Yang, Xuan; Kan, Bin; Zhou, Ye-Cheng; Chen, Li-Chuan; Wan, Xiangjian; Zhang, Hao-Li; Sum, Tze Chien; Chen, Yongsheng

    2015-09-30

    Both solution-processed polymers and small molecule based solar cells have achieved PCEs over 9% with the conventional device structure. However, for the practical applications of photovoltaic technology, further enhancement of both device performance and stability are urgently required, particularly for the inverted structure devices, since this architecture will probably be most promising for the possible coming commercialization. In this work, we have fabricated both conventional and inverted structure devices using the same small molecular donor/acceptor materials and compared the performance of both device structures, and found that the inverted structure based device gave significantly improved performance, the highest PCE so far for inverted structure based device using small molecules as the donor. Furthermore, the inverted device shows a remarkable stability with almost no obvious degradation after three months. Systematic device physics and charge generation dynamics studies, including optical simulation, light-intensity-dependent current-voltage experiments, photocurrent density-effective voltage analyses, transient absorption measurements, and electrical simulations, indicate that the significantly enhanced performance using inverted device is ascribed to the increasing of Jsc compared to the conventional device, which in turn is mainly attributed to the increased absorption of photons in the active layers, rather than the reduced nongeminate recombination.

  5. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths.

    PubMed

    Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H

    2015-08-28

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. An optical microsystem based on vertical silicon-air Bragg mirror for liquid substances monitoring

    NASA Astrophysics Data System (ADS)

    De Stefano, Luca; Rendina, Ivo; Rea, Ilaria; Rotiroti, Lucia; De Tommasi, Edoardo; Barillaro, Giuseppe

    2007-05-01

    In this work, an integrated optical microsystems for the continuous detection of flammable liquids has been fabricated and characterized. The proposed system is composed of a the transducer element, which is a vertical silicon/air Bragg mirror fabricated by silicon electrochemical micromachining, sealed with a cover glass anodically bonded on its top. The device has been optically characterized in presence of liquid substances of environmental interest, such as ethanol and isopropanol. The preliminary experimental results are in good agreement with the theoretical calculations and show the possibility to use the device as an optical sensor based on the change of its reflectivity spectrum.

  7. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  8. Fourier analysis: from cloaking to imaging

    NASA Astrophysics Data System (ADS)

    Wu, Kedi; Cheng, Qiluan; Wang, Guo Ping

    2016-04-01

    Regarding invisibility cloaks as an optical imaging system, we present a Fourier approach to analytically unify both Pendry cloaks and complementary media-based invisibility cloaks into one kind of cloak. By synthesizing different transfer functions, we can construct different devices to realize a series of interesting functions such as hiding objects (events), creating illusions, and performing perfect imaging. In this article, we give a brief review on recent works of applying Fourier approach to analysis invisibility cloaks and optical imaging through scattering layers. We show that, to construct devices to conceal an object, no constructive materials with extreme properties are required, making most, if not all, of the above functions realizable by using naturally occurring materials. As instances, we experimentally verify a method of directionally hiding distant objects and create illusions by using all-dielectric materials, and further demonstrate a non-invasive method of imaging objects completely hidden by scattering layers.

  9. The theoretical study of passive and active optical devices via planewave based transfer (scattering) matrix method and other approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuo, Ye

    2011-01-01

    In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is briefly described with a short review of photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM, the numerical method itself is investigated in details and developed inmore » advance to deal with more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to study curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are introduced to locally represent electromagnetic field in photonic crystals as alternative to planewave basis. The second part of the thesis focuses on the design of optical devices. First, two examples of TMM applications are given. The first example is the design of metal grating structures as replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second one is the design of the same structure as above to enhance the light extraction of OLEDs (chapter 7). Next, two design examples by ray tracing method are given, including applying a microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle wide-wavelength design of solar concentrator (chapter 8). In summary, this dissertation has extended TMM which makes it capable of treating complex optical systems. Several optical designs by TMM and ray tracing method are also given as a full complement of this work.« less

  10. Silicon-Based Quantum MOS Technology Development

    DTIC Science & Technology

    2000-03-07

    resonant interband tunnel diodes were demonstrated with peak current density greater than 104 A/cm2; peak-to-valley current ratio exceeding 2 was...photon emission reduce the peak-to-valley current ratio and device performance. Therefore, interband tunnel devices should be more resilient to...Comparison of bipolar interband tunnel and optical devices: (a) Esaki diode biased into the valley current region and (b) optical light emitter. The Esaki

  11. Laser Beam Steering/shaping for Free Space Optical Communication

    NASA Technical Reports Server (NTRS)

    Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.

    2004-01-01

    The 2-D Optical Phased Array (OPA) antenna based on a Liquid Crystal On Silicon (LCoS) device can be considered for use in free space optical communication as an active beam controlling device. Several examples of the functionality of the device include: beam steering in the horizontal and elevation direction; high resolution wavefront compensation in a large telescope; and beam shaping with the computer generated kinoform. Various issues related to the diffraction efficiency, steering range, steering accuracy as well as the magnitude of wavefront compensation are discussed.

  12. Optical bistability and multistability via double dark resonance in graphene nanostructure

    NASA Astrophysics Data System (ADS)

    Seyyed, Hossein Asadpour; G, Solookinejad; M, Panahi; E Ahmadi, Sangachin

    2016-06-01

    Electrons in graphene nanoribbons can lead to exceptionally strong optical responses in the infrared and terahertz regions owing to their unusual dispersion relation. Therefore, on the basis of quantum optics and solid-material scientific principles, we show that optical bistability and multistability can be generated in graphene nanostructure under strong magnetic field. We also show that by adjusting the intensity and detuning of infrared laser field, the threshold intensity and hysteresis loop can be manipulated efficiently. The effects of the electronic cooperation parameter which are directly proportional to the electronic number density and the length of the graphene sample are discussed. Our proposed model may be useful for the nextgeneration all-optical systems and information processing based on nano scale devices.

  13. EDITORIAL: Special section: Selected papers from OMS'05, the 1st Topical Meeting of the European Optical Society on Optical Microsystems (OMS)

    NASA Astrophysics Data System (ADS)

    Rendina, Ivo; Fazio, Eugenio; Ferraro, Pietro

    2006-07-01

    OMS'05 is the first international conference wholly dedicated to optical microsystems. It was organized by the European Optical Society (EOS) in the frame of its international topical meeting activity and was held in Italy, September 2005, amidst the wonderful scenery of the Island of Capri. A possible definition of an optical microsystem is a complex system, able to perform one or more sensing and actuation functions, where optical devices are integrated in a smart way with electronic, mechanical and sensing components by taking advantage of the progress in micro- and nano-technologies. The increasing interest in this field arises from the expected applications that would significantly improve the quality of life. The list of possibilities offered by the optical microsystem enabling technologies is very long and seems to increase day by day. We are not only thinking about the next generation of optical telecommunication networks and computers, but also about low-cost, compact microsystems for environmental monitoring, in order to improve safety in the avionic and automotive fields, medical diagnostics and proteomic/genomic studies, or just finding general applications in several industrial fields. The goal of the conference was to involve scientists and young researchers from the main public and private laboratories, giving them the opportunity to present new scientific results and compare their know-how in the exciting and emerging field of optical microsystems. We believe that we succeeded in this. More than 200 scientists from all over the world attended the conference. We had more than 100 oral presentations and approximately 20 from the keynote lectures and invited speeches. It was an opportunity to define the most recent progress carried out in the field and to outline the possible road-map leading to the expected results in the industrial and social fields. We strongly believe that research and technology are closely interconnected at present and cannot move forward separately. Thus, we wanted the meeting to encourage the cross-fertilization of ideas of all the people involved and active in the areas of optics, photonics, microelectronics and materials, by gathering together theoreticians, experimentalists and those interested in industrial applications. For these reasons the conference programme focused on fundamental as well as more applied topics. Photonic crystals, non-linear and quantum optics in micro-devices, nanophotonic-based devices, silicon-based optoelectronics and MOEMS, microsensors, biochips and the new characterization methods for materials and devices were among the hot topics of the conference. Special emphasis was also given to industrial applications and to technologies enabling the production of microsytems and their sub-components. In this special section of Journal of Optics A: Pure and Applied Optics, a series of interesting papers has been collected, reporting progress in the different aspects of microsystems design, production, characterization and testing. The papers embrace most of the various topics that were debated during the conference. We hope that these papers will not only report the most up-to-date research progress made in this field, but will also involve and stimulate everyone working in these areas to continue in the effort of developing more and better optical microsystems in the future. We would like to thank all the members of the Scientific and Industrial Committees for the high scientific content of the meeting and the European Optical Society for its support of the conference organization.

  14. Metalenses based on the non-parallel double-slit arrays

    NASA Astrophysics Data System (ADS)

    Shao, Hongyan; Chen, Chen; Wang, Jicheng; Pan, Liang; Sang, Tian

    2017-09-01

    Metalenses based on surface plasmon polaritons have played an indispensable role in ultra-thin devices designing. The amplitude, phase and polarization of electromagnetic waves all can be controlled easily by modifying the metasurface structures. Here we propose and investigate a new type of structure with Babinet-inverted nano-antennas which can provide a series of unit-cells with phase-shifts covering 2π and ensure almost same transmittance simultaneously. As a result, the wavefront can be manipulated by arraying the units in course. Metalenses with the linear asymmetrical double slit unit-cell arrays are designed and the simulative results exhibit their perfect focusing characteristics, including single-focus lenses and multi-focus lenses. The small focus size and high numerical aperture make them stand out from the traditional counterparts in application of precision sensing devices. We expect our designs will provide new insights in the practical applications for metasurfaces in data storages, optical information processing and optical holography.

  15. Novel wearable-type biometric devices based on skin tissue optics with multispectral LED-photodiode matrix

    NASA Astrophysics Data System (ADS)

    Jo, Young Chang; Kim, Hae Na; Kang, Jae Hwan; Hong, Hyuck Ki; Choi, Yeon Shik; Jung, Suk Won; Kim, Sung Phil

    2017-04-01

    In this study, we examined the possibility of using a multispectral skin photomatrix (MSP) module as a novel biometric device. The MSP device measures optical patterns of the wrist skin tissue. Optical patterns consist of 2 × 8 photocurrent intensities of photodiode arrays, which are generated by optical transmission and diffuse reflection of photons from LED light sources with variable wavelengths into the wrist skin tissue. Optical patterns detected by the MSP device provide information on both the surface and subsurface characteristics of the human skin tissue. We found that in the 21 subjects we studied, they showed their unique characteristics, as determined using several wavelengths of light. The experimental results show that the best personal identification accuracy can be acquired using a combination of infrared light and yellow light. This novel biometric device, the MSP module, exhibited an excellent false acceptance rate (FAR) of 0.3% and a false rejection rate (FRR) of 0.0%, which are better than those of commercialized biometric devices such as a fingerprint biometric system. From these experimental results, we found that people exhibit unique optical patterns of their inner-wrist skin tissue and this uniqueness could be used for developing novel high-accuracy personal identification devices.

  16. Micro-optical system based 3D imaging for full HD depth image capturing

    NASA Astrophysics Data System (ADS)

    Park, Yong-Hwa; Cho, Yong-Chul; You, Jang-Woo; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Kwon, Jong-Oh; Lee, Seung-Wan

    2012-03-01

    20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical shutter'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation. The optical shutter device is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image. Suggested novel optical shutter device enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously. The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical shutter design, fabrication, characterization, 3D camera system prototype and image test results.

  17. Defect evolution during catastrophic optical damage in 450-nm emitting InGaN/GaN diode lasers

    NASA Astrophysics Data System (ADS)

    Tomm, Jens W.; Kernke, Robert; Löffler, Andreas; Stojetz, Bernhard; Lell, Alfred; König, Harald

    2018-02-01

    The catastrophic optical damage (COD) of 450-nm emitting InGaN/GaN diode lasers is investigated with special attention to the kinetics of the process. For this purpose, the COD is triggered artificially by applying individual current pulses. This makes it possible to achieve a sub-µs time resolution for processes monitored by cameras. COD appears as a "hot" process that involves decomposition of quantum well and waveguide materials. We observe the ejection of hot material from the front facets of the laser. This can be seen in two different wavelength ranges, visible/near infrared and mid infrared. The main contributions identified are both thermal radiation and 450-nm laser light scattered by the emitted material. Defect growth during COD is energized by the optical mode. Therefore, the defect pattern resembles its shape. Ultimately, the loss of material leads to the formation of an empty channel along the laser axis. COD in GaAs and GaN-based devices follows similar general scenarios. After ignition of the process, the defect propagation during the process is fed by laser energy. We observe defect propagation velocities of up to 30 m/s for GaAs-based devices and 110 m/s for GaN-based devices. The damage patterns of GaN and GaAs-based devices are completely different. For GaN-based devices, the front facets show holes. Behind them in the interior, we find an empty channel at the position of the optical mode surrounded by intact material. In contrast, earlier studies on GaAs-based devices that were degraded under almost identical conditions resulted in molten, phase separated and both recrystallized and amorphous materials with well-defined melting fronts.

  18. High dynamic range electric field sensor for electromagnetic pulse detection.

    PubMed

    Lin, Che-Yun; Wang, Alan X; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T

    2011-08-29

    We design a high dynamic range electric field sensor based on domain inverted electro-optic (E-O) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices. Experimental results demonstrate effective detection of electric field from 16.7V/m to 750KV/m at a frequency of 1GHz, and spurious free measurement range of 70dB.

  19. Design technique for all-dielectric non-polarizing beam splitter plate

    NASA Astrophysics Data System (ADS)

    Rizea, A.

    2012-03-01

    There are many situations when, for the proper working, an opto-electronic device requiring optical components does not change the polarization state of light after a reflection, splitting or filtering. In this paper, a design for a non-polarizing beam splitter plate is proposed. Based on certain optical properties of homogeneous dielectric materials we will establish a reliable thin film package formula, excellent for the start of optimization to obtain a 20-nm bandwidth non-polarizing beam splitter.

  20. Optical application of electrowetting

    NASA Astrophysics Data System (ADS)

    He, Mei; Peng, Runling; Chen, Jiabi

    2017-02-01

    Since electrowetting has been proposed, researchers began to apply eletrowetting into different fields, such as lab-on-chip systems, display technologies, printings and optics etc. This paper mainly introduced structure, theory and application of optical devices based on electrowetting. The optical devices include liquid optical prism, liquid optical lens and display. The paper introduced their principle, specific application and many advantages in optical applications. When they are applied to optical system, production and experiment, they can reduce mechanical moving parts, simplify the structure, operate easily, decrease manufacturing cost and energy consumption, improve working efficiency, and so on. We learn and research them in detail that will contribute to research and develop optical eletrowetting in the future.

  1. High-speed optical feeder-link system using adaptive optics

    NASA Astrophysics Data System (ADS)

    Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner

    1997-05-01

    We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.

  2. Reduced Symmetry and Analogy to Chirality in Periodic Dielectric Media

    NASA Astrophysics Data System (ADS)

    Giden, I. H.; Turduev, M.; Kurt, H.

    2014-10-01

    Much attention has been paid to photonic applications based on periodic media. Meanwhile, quasi-periodic and disordered media have extended the research domain and provided additional novelties for manipulating and controlling light propagation. This review article attempts to highlight the benefits of symmetry reduction in highly symmetric periodic photonic media, and applies the concept of chirality to all-dielectric materials arranged in special orders. Two-dimensional periodic structures known as photonic crystals (PCs) are highly symmetric in terms of structural patterns, due to the lattice types and shape of the elements occupying the PC unit-cell. We propose the idea of intentionally introducing reduced-symmetry, to search for anomalous optical characteristics so that these types of PCs can be used in the design of novel optical devices. Breaking either translational or rotational symmetries of PCs provides enhanced and additional optical characteristics such as creation of a complete photonic bandgap, wavelength demultiplexing, super-collimation, tilted self-collimation, and beam deflecting/routing properties. Utilizing these characteristics allows the design of several types of photonic devices such as polarization-independent waveguides, wavelength demultiplexers, beam deflectors, and routers. Moreover, reducing the symmetry in the PC unit-cell scale produces a novel feature in all-dielectric PCs that is known as chirality. On the basis of above considerations, it is expected that low-symmetric PCs can be considered as a potential structure in photonic device applications, due to the rich inherent optical properties, providing broadband operation, and being free of absorption losses.

  3. High Efficiency Coupling of Optical Fibres with SU8 Micro-droplet Using Laser Welding Process

    NASA Astrophysics Data System (ADS)

    Yardi, Seema; Gupta, Ankur; Sundriyal, Poonam; Bhatt, Geeta; Kant, Rishi; Boolchandani, D.; Bhattacharya, Shantanu

    2016-09-01

    Apart from micro- structure fabrication, ablation, lithography etc., lasers find a lot of utility in various areas like precision joining, device fabrication, local heat delivery for surface texturing and local change of microstructure fabrication of standalone optical micro-devices (like microspheres, micro-prisms, micro-scale ring resonators, optical switches etc). There is a wide utility of such systems in chemical/ biochemical diagnostics and also communications where the standalone optical devices exist at a commercial scale but chip based devices with printed optics are necessary due to coupling issues between printed structures and external optics. This paper demonstrates a novel fabrication strategy used to join standalone optical fibres to microchip based printed optics using a simple SU8 drop. The fabrication process is deployed for fiber to fiber optical coupling and coupling between fiber and printed SU-8 waveguides. A CO2 laser is used to locally heat the coupling made up of SU8 material. Optimization of various dimensional parameters using design of experiments (DOE) on the bonded assembly has been performed as a function of laser power, speed, cycle control, spot size so on so forth. Exclusive optical [RF] modelling has been performed to estimate the transmissibility of the optical fibers bonded to each other on a surface with SU8. Our studies indicate the formation of a Whispering gallery mode (WGM) across the micro-droplet leading to high transmissibility of the signal. Through this work we have thus been able to develop a method of fabrication for optical coupling of standalone fibers or coupling of on-chip optics with off-chip illumination/detection.

  4. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    PubMed

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  5. The optical frequency comb fibre spectrometer

    PubMed Central

    Coluccelli, Nicola; Cassinerio, Marco; Redding, Brandon; Cao, Hui; Laporta, Paolo; Galzerano, Gianluca

    2016-01-01

    Optical frequency comb sources provide thousands of precise and accurate optical lines in a single device enabling the broadband and high-speed detection required in many applications. A main challenge is to parallelize the detection over the widest possible band while bringing the resolution to the single comb-line level. Here we propose a solution based on the combination of a frequency comb source and a fibre spectrometer, exploiting all-fibre technology. Our system allows for simultaneous measurement of 500 isolated comb lines over a span of 0.12 THz in a single acquisition; arbitrarily larger span are demonstrated (3,500 comb lines over 0.85 THz) by doing sequential acquisitions. The potential for precision measurements is proved by spectroscopy of acetylene at 1.53 μm. Being based on all-fibre technology, our system is inherently low-cost, lightweight and may lead to the development of a new class of broadband high-resolution spectrometers. PMID:27694981

  6. Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps.

    PubMed

    Abdelrahman, Ahmed; Mukai, Tetsuya; Häffner, Hartmut; Byrnes, Tim

    2014-02-10

    We propose a hybrid architecture for quantum information processing based on magnetically trapped ultracold atoms coupled via optical fields. The ultracold atoms, which can be either Bose-Einstein condensates or ensembles, are trapped in permanent magnetic traps and are placed in microcavities, connected by silica based waveguides on an atom chip structure. At each trapping center, the ultracold atoms form spin coherent states, serving as a quantum memory. An all-optical scheme is used to initialize, measure and perform a universal set of quantum gates on the single and two spin-coherent states where entanglement can be generated addressably between spatially separated trapped ultracold atoms. This allows for universal quantum operations on the spin coherent state quantum memories. We give detailed derivations of the composite cavity system mediated by a silica waveguide as well as the control scheme. Estimates for the necessary experimental conditions for a working hybrid device are given.

  7. High-Q Microsphere Cavity for Laser Stabilization and Optoelectronic Microwave Oscillator

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir S.; Yao, X. Steve; Maleki, Lute

    2000-01-01

    With submillimeter size and optical Q up to approximately 10 (exp 10), microspheres with whispering-gallery (WG) modes are attractive new component for fiber-optics/photonics applications and a potential core in ultra-compact high-spectral-purity optical and microwave oscillators. In addition to earlier demonstrated optical locking of diode laser to WG mode in a microsphere, we report on microsphere application in the microwave optoelectronic oscillator, OEO. In OEO, a steady-state microwave modulation of optical carrier is obtained in a closed loop including electro-optical modulator, fiber-optic delay, detector and microwave amplifier. OEO demonstrates exceptionally low phase noise (-140 dBc/Hz at l0kHz from approximately 10GHz carrier) with a fiber length approximately 2km. Current technology allows to put all parts of the OEO, except the fiber, on the same chip. Microspheres, with their demonstrated Q equivalent to a kilometer fiber storage, can replace fiber delays in a truly integrated device. We have obtained microwave oscillation in microsphere-based OEO at 5 to 18 GHz, with 1310nm and 1550nm optical carrier, in two configurations: 1) with external DFB pump laser, and 2) with a ring laser including microsphere and a fiber optic amplifier. Also reported is a simple and efficient fiber coupler for microspheres facilitating their integration with existing fiber optics devices.

  8. Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices

    PubMed Central

    Agrawal, Anant; Baxi, Jigesh; Calhoun, William; Chen, Chieh-Li; Ishikawa, Hiroshi; Schuman, Joel S.; Wollstein, Gadi; Hammer, Daniel X.

    2016-01-01

    Purpose Optical coherence tomography (OCT) can monitor for glaucoma by measuring dimensions of the optic nerve head (ONH) cup and disc. Multiple clinical studies have shown that different OCT devices yield different estimates of retinal dimensions. We developed phantoms mimicking ONH morphology as a new way to compare ONH measurements from different clinical OCT devices. Methods Three phantoms were fabricated to model the ONH: One normal and two with glaucomatous anatomies. Phantoms were scanned with Stratus, RTVue, and Cirrus clinical devices, and with a laboratory OCT system as a reference. We analyzed device-reported ONH measurements of cup-to-disc ratio (CDR) and cup volume and compared them with offline measurements done manually and with a custom software algorithm, respectively. Results The mean absolute difference between clinical devices with device-reported measurements versus offline measurements was 0.082 vs. 0.013 for CDR and 0.044 mm3 vs. 0.019 mm3 for cup volume. Statistically significant differences between devices were present for 16 of 18 comparisons of device-reported measurements from the phantoms. Offline Cirrus measurements tended to be significantly different from those from Stratus and RTVue. Conclusions The interdevice differences in CDR and cup volume are primarily caused by the devices' proprietary ONH analysis algorithms. The three devices yield more similar ONH measurements when a consistent offline analysis technique is applied. Scan pattern on the ONH also may be a factor in the measurement differences. This phantom-based study has provided unique insights into characteristics of OCT measurements of the ONH. PMID:27409500

  9. Fiber optic, Fabry-Perot high temperature sensor

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  10. Ultrafast, superhigh gain visible-blind UV detector and optical logic gates based on nonpolar a-axial GaN nanowire

    NASA Astrophysics Data System (ADS)

    Wang, Xingfu; Zhang, Yong; Chen, Xinman; He, Miao; Liu, Chao; Yin, Yian; Zou, Xianshao; Li, Shuti

    2014-09-01

    Nonpolar a-axial GaN nanowire (NW) was first used to construct the MSM (metal-semiconductor-metal) symmetrical Schottky contact device for application as visible-blind ultraviolet (UV) detector. Without any surface or composition modifications, the fabricated device demonstrated a superior performance through a combination of its high sensitivity (up to 104 A W-1) and EQE value (up to 105), as well as ultrafast (<26 ms) response speed, which indicates that a balance between the photocurrent gain and the response speed has been achieved. Based on its excellent photoresponse performance, an optical logic AND gate and OR gate have been demonstrated for performing photo-electronic coupled logic devices by further integrating the fabricated GaN NW detectors, which logically convert optical signals to electrical signals in real time. These results indicate the possibility of using a nonpolar a-axial GaN NW not only as a high performance UV detector, but also as a stable optical logic device, both in light-wave communications and for future memory storage.Nonpolar a-axial GaN nanowire (NW) was first used to construct the MSM (metal-semiconductor-metal) symmetrical Schottky contact device for application as visible-blind ultraviolet (UV) detector. Without any surface or composition modifications, the fabricated device demonstrated a superior performance through a combination of its high sensitivity (up to 104 A W-1) and EQE value (up to 105), as well as ultrafast (<26 ms) response speed, which indicates that a balance between the photocurrent gain and the response speed has been achieved. Based on its excellent photoresponse performance, an optical logic AND gate and OR gate have been demonstrated for performing photo-electronic coupled logic devices by further integrating the fabricated GaN NW detectors, which logically convert optical signals to electrical signals in real time. These results indicate the possibility of using a nonpolar a-axial GaN NW not only as a high performance UV detector, but also as a stable optical logic device, both in light-wave communications and for future memory storage. Electronic supplementary information (ESI) available: Details of the EDS and SAED data, supplementary results of the UV detector, and the discussion of the transport properties of the MSM Schottky contact devices. See DOI: 10.1039/c4nr03581j

  11. All-fiber Devices Based on Photonic Crystal Fibers with Integrated Electrodes

    NASA Astrophysics Data System (ADS)

    Chesini, Giancarlo; Cordeiro, Cristiano M. B.; de Matos, Christiano J. S.; Fokine, Michael; Carvalho, Isabel C. S.; Knighf, Jonathan C.

    2008-10-01

    A special kind of microstructured optical fiber was proposed and manufactured where, as well as the holey region (solid core and silica-air cladding), the fiber has also two large holes for electrode insertion. Bi-Sn and Au-Sn alloys were selectively inserted in those holes forming two parallel, continuous and homogeneous internal electrodes. We demonstrated the production of a monolithic device and its use to externally control some of the guidance properties (e.g. polarization) of the fiber.

  12. Defense Small Business Innovation Research (SBIR) Program. Program Solicitation 90.1. FY-1990

    DTIC Science & Technology

    1989-10-01

    Electronics Assemble and Test A90-125 Guided-Wave TeO2 Optical Devices A90-126 Acceleration Sensing Module for Munition Safety Systems A90-127 Electromagnetic...package containing all drawings and process information, complete operating manuals. A90-125 Guided-Wave TeO2 Optical Devices OBJECTIVE: This exploratory...bandwidth and efficiency of these devices. PHASE I: Phase one would consist of the design of several breadboard TeO2 AO devices each having TBWP of

  13. Spiking Excitable Semiconductor Laser as Optical Neurons: Dynamics, Clustering and Global Emerging Behaviors

    DTIC Science & Technology

    2014-06-28

    constructed from inexpensive semiconductor lasers could lead to the development of novel neuro-inspired optical computing devices (threshold detectors ...optical computing devices (threshold detectors , logic gates, signal recognition, etc.). Other topics of research included the analysis of extreme events in...Extreme events is nowadays a highly active field of research. Rogue waves, earthquakes of high magnitude and financial crises are all rare and

  14. Polymer thermal optical switch for a flexible photonic circuit.

    PubMed

    Sun, Yue; Cao, Yue; Wang, Qi; Yi, Yunji; Sun, Xiaoqiang; Wu, Yuanda; Wang, Fei; Zhang, Daming

    2018-01-01

    Flexible and wearable optoelectronic devices are the new trend for an active lifestyle. These devices are polymer-based for flexibility. We demonstrated flexible polymer waveguide optical switches for a flexible photonic integrated circuit. The optical switches are composed of a single-mode inverted waveguide with dimensions of 5 μm waveguide width, 3 μm ridge height, and 3 μm slab height. A Mach-Zehnder structure was used in the device, with the Y-branch horizontal length of 0.1 cm, the distance between two heating branches of 30 μm, and the heating branch length of 1 cm. The optical field of the device was simulated by beam propagation to optimize the electrode position. The switching properties of the flexible optical switch with different working conditions, such as contact to the polymer, silicon, and skin, were simulated. The device was prepared based on the photo curved polymer and lithography method. The end faces of the flexible film device were processed using an excimer laser with optimized parameters of 28  mJ/cm 2 and 15 Hz. The response rise time and fall time on the PMMA substrate were measured as 1.98 ms and 2.71 ms, respectively. The power consumption was 16 mW and the extinction ratio was 11 dB. The response rise and fall times on the Si substrate were measured as 1.08 ms and 1.62 ms, respectively. The power consumption was 17 mW and the extinction ratio was 11 dB. The demonstrated properties indicate that this flexible optical waveguide structure can be used in the light control area of a wearable device.

  15. Adaptive IR Sensing Based on Advanced Nanostructures with Tunable Kinetics

    DTIC Science & Technology

    2015-11-05

    Polaritons in Optically Pumped Graphene”, ISGD: 4th International Symposium on Graphene Devices, A4.05, Seattle, USA, 25 Sept. 2014. (invited) 42. A...Terahertz Gain by Excitation of Surface Plasmon Polaritons in Optically Pumped Graphene”, ISGD: 4th International Symposium on Graphene Devices, A4.05

  16. Alq3 nanorods: promising building blocks for optical devices.

    PubMed

    Chen, Wei; Peng, Qing; Li, Yadong

    2008-07-17

    Monodisperse Alq3 nanorods with hexagonal-prism-like morphology are produced via a facile, emulsion based synthesis route. The photoluminescence of individual nanorods differs from the bulk material. These nanorods are promising building blocks for novel optical devices. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chun, Young Tea; Chu, Daping, E-mail: dpc31@cam.ac.uk; Neeves, Matthew

    2014-11-10

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO{sub x} thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm{sup 2}, exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.

  18. Micro-optical elements produced using an photo-embossing technique in photopolymers

    NASA Astrophysics Data System (ADS)

    O'Neill, Feidhlim T.; Rowsome, Ita C.; Carr, Alun J.; Daniels, Stephen M.; Gleeson, Michael R.; Kelly, John V.; Close, Ciara; Lawrence, Justin R.; Sheridan, John T.

    2005-09-01

    Micro-optical devices are very important in current high-tech consumer items. The development of future products depends on both the evolution of fabrication techniques and on the development of new low cost mass production methods. Polymers offer ease of fabrication and low cost and are therefore excellent materials for the development of micro-optical devices. Polymer optical devices include passive optical elements, such as microlens arrays and waveguides, as well as active devices such as polymer based lasers. One of the most important areas of micro-optics is that of microlens design, manufacture and testing. The wide diversity of fabrication methods used for the production of these elements indicates their importance. One of these fabrication techniques is photo-embossing. The use of the photo-embossing technique and a photopolymer holographic recording material will be examined in this paper. A discussion of current attempts to model the fabrication process and a review of the experimental method will be given.

  19. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film-forming material in a working device is a complex, multifaceted endeavor. It requires close attention to maintaining the optical properties of the electro-optic active portion of the polymer while manipulating the polymer structure to obtain the desired secondary polymer properties.

  20. Recent advances in aptasensors based on graphene and graphene-like nanomaterials.

    PubMed

    Ping, Jianfeng; Zhou, Yubin; Wu, Yuanyuan; Papper, Vladislav; Boujday, Souhir; Marks, Robert S; Steele, Terry W J

    2015-02-15

    Graphene and graphene-like two-dimensional nanomaterials have aroused tremendous research interest in recent years due to their unique electronic, optical, and mechanical properties associated with their planar structure. Aptamers have exhibited many advantages as molecular recognition elements for sensing devices compared to traditional antibodies. The marriage of two-dimensional nanomaterials and aptamers has emerged many ingenious aptasensing strategies for applications in the fields of clinical diagnosis and food safety. This review highlights current advances in the development and application of two-dimensional nanomaterials-based aptasensors with the focus on two main signal-transducing mechanisms, i.e. electrochemical and optical. A special attention is paid to graphene, a one-atom thick layer of graphite with exceptional properties, representing a fastgrowing field of research. In view of the unique properties of two-dimensional nanostructures and their inherent advantages of synthetic aptamers, we expect that high-performance two-dimensional nanomaterials-based aptasensing devices will find extensive applications in environmental monitoring, biomedical diagnostics, and food safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Optical Sensing Device Containing Fiber Bragg Gratings

    DTIC Science & Technology

    2000-08-01

    Fabry - Perot (SFP) filter-based interrogation (Kersey et al. Opt. Lett.. 18, 1370-2. 1993), tunable acousto-optic filter inteiTOgation (Geiger et al...a tunable Fabry - Perot filter, and a tunable acousto-optical filter. Alternatively, scanning filter 28 can be omitted in device 10 of the present...invention when broadband light source 20 is a tunable broadband light source. More preferably, scanning filter 28 is a tunable Fabry - Perot filter

  2. Ultrashort soliton switching based on coherent energy hiding.

    PubMed

    Romagnoli, M; Wabnitz, S; Zoccolotti, L

    1991-08-15

    Coherent coupling between light and atoms may be exploited for conceiving a novel class of all-optical signalprocessing devices without a direct counterpart in the continuous-wave regime. We show that the self-switching of ultrashort soliton pulses on resonance with a transition of doping centers in a slab waveguide directional coupler is based on nonlinear group-velocity (instead of the usual phase-velocity) changes.

  3. Gallium nitride-based micro-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Stonas, Andreas Robert

    Gallium Nitride and its associated alloys InGaN and AlGaN have many material properties that are highly desirable for micro-electro-mechanical systems (MEMS), and more specifically micro-opto-electro-mechanical systems (MOEMS). The group III-nitrides are tough, stiff, optically transparent, direct bandgap, chemically inert, highly piezoelectric, and capable of functioning at high temperatures. There is currently no other semiconductor system that possesses all of these properties. Taken together, these attributes make the nitrides prime candidates not only for creating new versions of existing device structures, but also for creating entirely unique devices which combine these properties in novel ways. Unfortunately, their chemical resiliency also makes the group III-nitrides extraordinarily difficult to shape into devices. In particular, until this research, no undercut etch technology existed that could controllably separate a selected part of a MEMS device from its sapphire or silicon carbide substrate. This has effectively prevented GaN-based MEMS from being developed. This dissertation describes how this fabrication obstacle was overcome by a novel etching geometry (bandgap-selective backside-illuminated photoelectochemical (BS-BIPEC) etching) and its resulting morphologies. Several gallium-nitride based MEMS devices were created, actuated, and modelled, including cantilevers and membranes. We describe in particular our pursuit of one of the many novel device elements that is possible only in this material system: a transducer that uses an externally applied strain to dynamically change the optical transition energy of a quantum well. While the device objective of a dynamically tunable quantum well was not achieved, we have demonstrated sufficient progress to believe that such a device will be possible soon. We have observed a shift (5.5meV) of quantum well transition energies in released structures, and we have created structures that can apply large biaxial stresses, which are required to produce significantly larger tuning (up to several hundred meV) in quantum well-based devices.

  4. Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability

    NASA Astrophysics Data System (ADS)

    Song, Yufeng; Liang, Zhiming; Jiang, Xiantao; Chen, Yunxiang; Li, Zhongjun; Lu, Lu; Ge, Yanqi; Wang, Ke; Zheng, Jilin; Lu, Shunbin; Ji, Jianhua; Zhang, Han

    2017-12-01

    Antimonene, a new type of mono/few-layer two-dimensional (2D) mono-elemental material purely consisting of antimony similar as graphene and phosphorene, has been theoretically predicted with excellent optical response and enhanced stability. Herein, we experimentally investigated the broadband nonlinear optical response of highly stable few-layer antimonene (FLA) by performing an open-aperture Z-scan laser measurement. Thanks to the direct bandgap and resonant absorption at the telecommunication band, we demonstrated the feasibility of FLA-decorated microfiber not only as an optical saturable absorber for ultrafast photonics operation, but also as a stable all-optical pulse thresholder that can effectively suppress the transmission noise, boost the signal-to-noise ratio (SNR), and reshape the deteriorated input signal. Our findings, as the first prototypic device of absorption of antimonene, might facilitate the development of antimonene-based optical communication technologies towards high stability and practical applications in the future.

  5. Electrowetting-actuated optical switch based on total internal reflection.

    PubMed

    Liu, Chao; Wang, Di; Yao, Li-Xiao; Li, Lei; Wang, Qiong-Hua

    2015-04-01

    In this paper we demonstrate a liquid optical switch based on total internal reflection. Two indium tin oxide electrodes are fabricated on the bottom substrate. A conductive liquid (Liquid 1) is placed on one side of the chamber and surrounded by a density-matched silicone oil (Liquid 2). In initial state, when the light beam illuminates the interface of the two liquids, it just meets the conditions of total internal reflection. The light is totally reflected by Liquid 2, and the device shows light-off state. When we apply a voltage to the other side of the indium tin oxide electrode, Liquid 1 stretched towards this side of the substrate and the curvature of the liquid-liquid interface changes. The light beam is refracted by Liquid 1 and the device shows light-on state. So the device can achieve the functions of an optical switch. Because the light beam can be totally reflected by the liquid, the device can attain 100% light intensity attenuation. Our experiments show that the response time from light-on (off) to light-off (on) are 130 and 132 ms, respectively. The proposed optical switch has potential applications in variable optical attenuators, information displays, and light shutters.

  6. Membrane adaptive optics

    NASA Astrophysics Data System (ADS)

    Marker, Dan K.; Wilkes, James M.; Ruggiero, Eric J.; Inman, Daniel J.

    2005-08-01

    An innovative adaptive optic is discussed that provides a range of capabilities unavailable with either existing, or newly reported, research devices. It is believed that this device will be inexpensive and uncomplicated to construct and operate, with a large correction range that should dramatically relax the static and dynamic structural tolerances of a telescope. As the areal density of a telescope primary is reduced, the optimal optical figure and the structural stiffness are inherently compromised and this phenomenon will require a responsive, range-enhanced wavefront corrector. In addition to correcting for the aberrations in such innovative primary mirrors, sufficient throw remains to provide non-mechanical steering to dramatically improve the Field of regard. Time dependent changes such as thermal disturbances can also be accommodated. The proposed adaptive optic will overcome some of the issues facing conventional deformable mirrors, as well as current and proposed MEMS-based deformable mirrors and liquid crystal based adaptive optics. Such a device is scalable to meter diameter apertures, eliminates high actuation voltages with minimal power consumption, provides long throw optical path correction, provides polychromatic dispersion free operation, dramatically reduces the effects of adjacent actuator influence, and provides a nearly 100% useful aperture. This article will reveal top-level details of the proposed construction and include portions of a static, dynamic, and residual aberration analysis. This device will enable certain designs previously conceived by visionaries in the optical community.

  7. All optical reconfiguration of optomechanical filters.

    PubMed

    Deotare, Parag B; Bulu, Irfan; Frank, Ian W; Quan, Qimin; Zhang, Yinan; Ilic, Rob; Loncar, Marko

    2012-05-22

    Reconfigurable optical filters are of great importance for applications in optical communication and information processing. Of particular interest are tuning techniques that take advantage of mechanical deformation of the devices, as they offer wider tuning range. Here we demonstrate reconfiguration of coupled photonic crystal nanobeam cavities by using optical gradient force induced mechanical actuation. Propagating waveguide modes that exist over a wide wavelength range are used to actuate the structures and control the resonance of localized cavity modes. Using this all-optical approach, more than 18 linewidths of tuning range is demonstrated. Using an on-chip temperature self-referencing method, we determine that 20% of the total tuning was due to optomechanical reconfiguration and the rest due to thermo-optic effects. By operating the device at frequencies higher than the thermal cutoff, we show high-speed operation dominated by just optomechanical effects. Independent control of mechanical and optical resonances of our structures is also demonstrated.

  8. Nonlinear Optical Acrylic Polymers and Use Thereof in Optical and Electro-Optic Devices

    DTIC Science & Technology

    1992-01-07

    COVERED 4. TITLE AND SUBTITLE Nonlinear Optical Acrylic Polymers and Use Thereof in Optical and Electro - Optic Devices 5a. CONTRACT NUMBER 5b. GRANT...generators, computational devices and the like. 15. SUBJECT TERMS optical devices, electro - optical devices, optical signal processing...THEREOF IN OPTICAL AND ELECTRO - OPTIC DEVICES [75] Inventors: Le*lie H. Sperling, Bethlehem; Clarence J. Murphy, Stroudsburg; Warren A. Rosen

  9. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction

    PubMed Central

    Du, Juan; Wang, Qingkai; Jiang, Guobao; Xu, Changwen; Zhao, Chujun; Xiang, Yuanjiang; Chen, Yu; Wen, Shuangchun; Zhang, Han

    2014-01-01

    By coupling few-layer Molybdenum Disulfide (MoS2) with fiber-taper evanescent light field, a new type of MoS2 based nonlinear optical modulating element had been successfully fabricated as a two-dimensional layered saturable absorber with strong light-matter interaction. This MoS2-taper-fiber device is not only capable of passively mode-locking an all-normal-dispersion ytterbium-doped fiber laser and enduring high power laser excitation (up to 1 W), but also functions as a polarization sensitive optical modulating component (that is, different polarized light can induce different nonlinear optical response). Thanks to the combined advantages from the strong nonlinear optical response in MoS2 together with the sufficiently-long-range interaction between light and MoS2, this device allows for the generation of high power stable dissipative solitons at 1042.6 nm with pulse duration of 656 ps and a repetition rate of 6.74 MHz at a pump power of 210 mW. Our work may also constitute the first example of MoS2-enabled wave-guiding photonic device, and potentially give some new insights into two-dimensional layered materials related photonics. PMID:25213108

  10. Bright color optical switching device by polymer network liquid crystal with a specular reflector.

    PubMed

    Lee, Gae Hwang; Hwang, Kyu Young; Jang, Jae Eun; Jin, Yong Wan; Lee, Sang Yoon; Jung, Jae Eun

    2011-07-04

    The color optical switching device by polymer network liquid crystal (PNLC) with color filter on a specular reflector shows excellent performance; white reflectance of 22%, color gamut of 32%, and contrast ratio up to 50:1 in reflective mode measurement. The view-angle dependence of the reflectance can be adjusted by changing the PNLC thickness. The color chromaticity shown by the device is close to the limit value of color filters, and its value nearly remains with respect to the operating voltage. These optical properties of the device can be explained from the prediction based on multiple interactions between the light and the droplets of liquid crystal. The high reflectance, vivid color image, and moderate responds time allow the PNLC device to drive good color moving image. It can widely extend the applications of the reflective device.

  11. All-dielectric perforated metamaterials with toroidal dipolar response (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stenishchev, Ivan; Basharin, Alexey A.

    2017-05-01

    We present metamaterials based on dielectric slab with perforated identical cylindrical clusters with perforated holes, which allow to support the toroidal dipolar response due to Mie-resonances in each hole. Note that proposed metamaterial is technologically simple for fabrication in optical frequency range. Metamaterial can be fabricated by several methods. For instance, we may apply the molecular beam epitaxy method for deposition of Si or GaAs layers, which have permittivity close to 16. Next step, nanometer/micrometer holes are perforated by focused ion beam method or laser cutting method. Fundamental difference of proposed metamaterial is technological fabrication process. Classically all- dielectric optical metamaterials consist of nano-spheres or nano-discs, which are complicated for fabrication, while our idea and suggested metamaterials are promising prototype of various optical/THz all-dielectic devices as sensor, nano-antennas elements for nanophotonics.

  12. Graphene-Boron Nitride Heterostructure Based Optoelectronic Devices for On-Chip Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Gao, Yuanda

    Graphene has emerged as an appealing material for a variety of optoelectronic applications due to its unique electrical and optical characteristics. In this thesis, I will present recent advances in integrating graphene and graphene-boron nitride (BN) heterostructures with confined optical architectures, e.g. planar photonic crystal (PPC) nanocavities and silicon channel waveguides, to make this otherwise weakly absorbing material optically opaque. Based on these integrations, I will further demonstrate the resulting chip-integrated optoelectronic devices for optical interconnects. After transferring a layer of graphene onto PPC nanocavities, spectral selectivity at the resonance frequency and orders-of-magnitude enhancement of optical coupling with graphene have been observed in infrared spectrum. By applying electrostatic potential to graphene, electro-optic modulation of the cavity reflection is possible with contrast in excess of 10 dB. And furthermore, a novel and complex modulator device structure based on the cavity-coupled and BN-encapsulated dual-layer graphene capacitor is demonstrated to operate at a speed of 1.2 GHz. On the other hand, an enhanced broad-spectrum light-graphene interaction coupled with silicon channel waveguides is also demonstrated with ?0.1 dB/?m transmission attenuation due to graphene absorption. A waveguide-integrated graphene photodetector is fabricated and shown 0.1 A/W photoresponsivity and 20 GHz operation speed. An improved version of a similar photodetector using graphene-BN heterostructure exhibits 0.36 A/W photoresponsivity and 42 GHz response speed. The integration of graphene and graphene-BN heterostructures with nanophotonic architectures promises a new generation of compact, energy-efficient, high-speed optoelectronic device concepts for on-chip optical communications that are not yet feasible or very difficult to realize using traditional bulk semiconductors.

  13. Multichannel optical sensing device

    DOEpatents

    Selkowitz, S.E.

    1985-08-16

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  14. Multichannel optical sensing device

    DOEpatents

    Selkowitz, Stephen E.

    1990-01-01

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  15. Design of tunable thermo-optic C-band filter based on coated silicon slab

    NASA Astrophysics Data System (ADS)

    Pinhas, Hadar; Malka, Dror; Danan, Yossef; Sinvani, Moshe; Zalevsky, Zeev

    2018-03-01

    Optical filters are required to have narrow band-pass filtering in the spectral C-band for applications such as signal tracking, sub-band filtering or noise suppression. These requirements lead to a variety of filters such as Mach-Zehnder interferometer inter-leaver in silica, which offer thermo-optic effect for optical switching, however, without proper thermal and optical efficiency. In this paper we propose tunable thermo-optic filtering device based on coated silicon slab resonator with increased Q-factor for the C-band optical switching. The device can be designed either for long range wavelength tuning of for short range with increased wavelength resolution. Theoretical examination of the thermal parameters affecting the filtering process is shown together with experimental results. Proper channel isolation with an extinction ratio of 20dBs is achieved with spectral bandpass width of 0.07nm.

  16. Design of a digital, ultra-broadband electro-optic switch for reconfigurable optical networks-on-chip.

    PubMed

    Van Campenhout, Joris; Green, William M J; Vlasov, Yurii A

    2009-12-21

    We present a novel design for a noise-tolerant, ultra-broadband electro-optic switch, based on a Mach-Zehnder lattice (MZL) interferometer. We analyze the switch performance through rigorous optical simulations, for devices implemented in silicon-on-insulator with carrier-injection-based phase shifters. We show that such a MZL switch can be designed to have a step-like switching response, resulting in improved tolerance to drive-voltage noise and temperature variations as compared to a single-stage Mach-Zehnder switch. Furthermore, we show that degradation in switching crosstalk and insertion loss due to free-carrier absorption can be largely overcome by a MZL switch design. Finally, MZL switches can be designed for having an ultra-wide, temperature-insensitive optical bandwidth of more than 250 nm. The proposed device shows good potential as a broadband optical switch in reconfigurable optical networks-on-chip.

  17. Thermo-optically tunable thin film devices

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.

    2003-10-01

    We report advances in tunable thin film technology and demonstration of multi-cavity tunable filters. Thin film interference coatings are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable components based on the properties of semiconductor thin films with large thermo-optic coefficients. The technology is based on amorphous silicon deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable thin films can be constructed in sophisticated multi-cavity, multi-layer optical designs.

  18. Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices.

    PubMed

    Bachim, Brent L; Gaylord, Thomas K

    2005-01-20

    A new technique, microinterferometric optical phase tomography, is introduced for use in measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices. The method combines microscopy-based fringe-field interferometry with parallel projection-based computed tomography to characterize fiber index profiles. The theory relating interference measurements to the projection set required for tomographic reconstruction is given, and discrete numerical simulations are presented for three test index profiles that establish the technique's ability to characterize fiber with small, asymmetric index differences. An experimental measurement configuration and specific interferometry and tomography practices employed in the technique are discussed.

  19. Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators

    NASA Astrophysics Data System (ADS)

    Asgari, Somayyeh; Ghattan Kashani, Zahra; Granpayeh, Nosrat

    2018-04-01

    The performances of three optical devices including a refractive index sensor, a power splitter, and a 4-channel multi/demultiplexer based on graphene cylindrical resonators are proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. The proposed sensor operates on the principle of the shift in resonance wavelength with a change in the refractive index of dielectric materials. The sensor sensitivity has been numerically derived. In addition, the performances of the power splitter and the multi/demultiplexer based on the variation of the resonance wavelengths of cylindrical resonator have been thoroughly investigated. The simulation results are in good agreement with the theoretical ones. Our studies demonstrate that the graphene based ultra-compact, nano-scale devices can be improved to be used as photonic integrated devices, optical switching, and logic gates.

  20. Solar Pumped Laser

    DTIC Science & Technology

    1976-09-01

    1 dB into 50 ohm load, output VSWR less than 1.5. Phase variation relative to the optical pulse train less than +A.5 Rod Temperature...design of the PSQM laser. All phases of design, mechanical, electronic and optical , borrowed heavily from the EFM lamp pumped laser...opnical power input change for the germanium device is twice that for the silicon device, its random phase noise for a typical in- put of 1 mW optical

  1. All-optical polarization control and noise cleaning based on a nonlinear lossless polarizer

    NASA Astrophysics Data System (ADS)

    Barozzi, Matteo; Vannucci, Armando; Picchi, Giorgio

    2015-01-01

    We propose an all-optical fiber-based device able to accomplish both polarization control and OSNR enhancement of an amplitude modulated optical signal, affected by unpolarized additive white Gaussian noise, at the same time. The proposed noise cleaning device is made of a nonlinear lossless polarizer (NLP), that performs polarization control, followed by an ideal polarizing filter that removes the orthogonally polarized half of additive noise. The NLP transforms every input signal polarization into a unique, well defined output polarization (without any loss of signal energy) and its task is to impose a signal polarization aligned with the transparent eigenstate of the polarizing filter. In order to effectively control the polarization of the modulated signal, we show that two different NLP configurations (with counter- or co-propagating pump laser) are needed, as a function of the signal polarization coherence time. The NLP is designed so that polarization attraction is effective only on the "noiseless" (i.e., information-bearing) component of the signal and not on noise, that remains unpolarized at the NLP output. Hence, the proposed device is able to discriminate signal power (that is preserved) from in-band noise power (that is partly suppressed). Since signal repolarization is detrimental if applied to polarization-multiplexed formats, the noise cleaner application is limited here to "legacy" links, with 10 Gb/s OOK modulation, still representing the most common format in deployed networks. By employing the appropriate NLP configurations, we obtain an OSNR gain close to 3dB. Furthermore, we show how the achievable OSNR gain can be estimated theoretically.

  2. Optical printed circuit board (O-PCB) and VLSI photonic integrated circuits: visions, challenges, and progresses

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Noh, H. S.; Kim, K. H.; Song, S. H.

    2006-09-01

    A collective overview and review is presented on the original work conducted on the theory, design, fabrication, and in-tegration of micro/nano-scale optical wires and photonic devices for applications in a newly-conceived photonic systems called "optical printed circuit board" (O-PCBs) and "VLSI photonic integrated circuits" (VLSI-PIC). These are aimed for compact, high-speed, multi-functional, intelligent, light-weight, low-energy and environmentally friendly, low-cost, and high-volume applications to complement or surpass the capabilities of electrical PCBs (E-PCBs) and/or VLSI electronic integrated circuit (VLSI-IC) systems. These consist of 2-dimensional or 3-dimensional planar arrays of micro/nano-optical wires and circuits to perform the functions of all-optical sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards or substrates. The integrated optical devices include micro/nano-scale waveguides, lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices, made of polymer, silicon and other semiconductor materials. For VLSI photonic integration, photonic crystals and plasmonic structures have been used. Scientific and technological issues concerning the processes of miniaturization, interconnection and integration of these systems as applicable to board-to-board, chip-to-chip, and intra-chip integration, are discussed along with applications for future computers, telecommunications, and sensor-systems. Visions and challenges toward these goals are also discussed.

  3. An integrated optics microfluidic device for detecting single DNA molecules.

    PubMed

    Krogmeier, Jeffrey R; Schaefer, Ian; Seward, George; Yantz, Gregory R; Larson, Jonathan W

    2007-12-01

    A fluorescence-based integrated optics microfluidic device is presented, capable of detecting single DNA molecules in a high throughput and reproducible manner. The device integrates microfluidics for DNA stretching with two optical elements for single molecule detection (SMD): a plano-aspheric refractive lens for fluorescence excitation (illuminator) and a solid parabolic reflective mirror for fluorescence collection (collector). Although miniaturized in size, both optical components were produced and assembled onto the microfluidic device by readily manufacturable fabrication techniques. The optical resolution of the device is determined by the small and relatively low numerical aperture (NA) illuminator lens (0.10 effective NA, 4.0 mm diameter) that delivers excitation light to a diffraction limited 2.0 microm diameter spot at full width half maximum within the microfluidic channel. The collector (0.82 annular NA, 15 mm diameter) reflects the fluorescence over a large collection angle, representing 71% of a hemisphere, toward a single photon counting module in an infinity-corrected scheme. As a proof-of-principle experiment for this simple integrated device, individual intercalated lambda-phage DNA molecules (48.5 kb) were stretched in a mixed elongational-shear microflow, detected, and sized with a fluorescence signal to noise ratio of 9.9 +/-1.0. We have demonstrated that SMD does not require traditional high numerical aperture objective lenses and sub-micron positioning systems conventionally used in many applications. Rather, standard manufacturing processes can be combined in a novel way that promises greater accessibility and affordability for microfluidic-based single molecule applications.

  4. Nonlinear graphene plasmonics

    PubMed Central

    2017-01-01

    The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications. PMID:29118665

  5. Resonant tunneling diode oscillators for optical communications

    NASA Astrophysics Data System (ADS)

    Watson, Scott; Zhang, Weikang; Wang, Jue; Al-Khalidi, Abdullah; Cantu, Horacio; Figueiredo, Jose; Wasige, Edward; Kelly, Anthony E.

    2017-08-01

    The ability to use resonant tunneling diodes (RTDs) as both transmitters and receivers is an emerging topic, especially with regards to wireless communications. Successful data transmission has been achieved using electronic RTDs with carrier frequencies exceeding 0.3 THz. Specific optical-based RTDs, which act as photodetectors, have been developed by adjusting the device structure to include a light absorption layer and small optical windows on top of the device to allow direct optical access. This also allows the optical signal to directly modulate the RTD oscillation. Both types of RTD oscillators will allow for seamless integration of high frequency radio and optical fiber networks.

  6. Nonlinear graphene plasmonics

    NASA Astrophysics Data System (ADS)

    Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2017-10-01

    The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.

  7. Inkjet Printing of Functional Materials for Optical and Photonic Applications

    PubMed Central

    Alamán, Jorge; Alicante, Raquel; Peña, Jose Ignacio; Sánchez-Somolinos, Carlos

    2016-01-01

    Inkjet printing, traditionally used in graphics, has been widely investigated as a valuable tool in the preparation of functional surfaces and devices. This review focuses on the use of inkjet printing technology for the manufacturing of different optical elements and photonic devices. The presented overview mainly surveys work done in the fabrication of micro-optical components such as microlenses, waveguides and integrated lasers; the manufacturing of large area light emitting diodes displays, liquid crystal displays and solar cells; as well as the preparation of liquid crystal and colloidal crystal based photonic devices working as lasers or optical sensors. Special emphasis is placed on reviewing the materials employed as well as in the relevance of inkjet in the manufacturing of the different devices showing in each of the revised technologies, main achievements, applications and challenges. PMID:28774032

  8. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching.

    PubMed

    Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan

    2016-01-21

    We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.

  9. 2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration

    NASA Astrophysics Data System (ADS)

    Ma, Zhizhen; Hemnani, Rohit; Bartels, Ludwig; Agarwal, Ritesh; Sorger, Volker J.

    2018-02-01

    Here we discuss the physics of electro-optic modulators deploying 2D materials. We include a scaling laws analysis and show how energy-efficiency and speed change for three underlying cavity systems as a function of critical device length scaling. A key result is that the energy-per-bit of the modulator is proportional to the volume of the device, thus making the case for submicron-scale modulators possible deploying a plasmonic optical mode. We then show how Graphene's Pauli-blocking modulation mechanism is sensitive to the device operation temperature, whereby a reduction of the temperature enables a 10× reduction in modulator energy efficiency. Furthermore, we show how the high-index tunability of graphene is able to compensate for the small optical overlap factor of 2D-based material modulators, which is unlike classical silicon-based dispersion devices. Lastly, we demonstrate a novel method towards a 2D material printer suitable for cross-contamination free and on-demand printing. The latter paves the way to integrate 2D materials seamlessly into taped-out photonic chips.

  10. Multiband Photonic Phased-Array Antenna

    NASA Technical Reports Server (NTRS)

    Tang, Suning

    2015-01-01

    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.

  11. Saying goodbye to optical storage technology.

    PubMed

    McLendon, Kelly; Babbitt, Cliff

    2002-08-01

    The days of using optical disk based mass storage devices for high volume applications like health care document imaging are coming to an end. The price/performance curve for redundant magnetic disks, known as RAID, is now more positive than for optical disks. All types of application systems, across many sectors of the marketplace are using these newer magnetic technologies, including insurance, banking, aerospace, as well as health care. The main components of these new storage technologies are RAID and SAN. SAN refers to storage area network, which is a complex mechanism of switches and connections that allow multiple systems to store huge amounts of data securely and safely.

  12. Optical NOR logic gate design on square lattice photonic crystal platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’souza, Nirmala Maria, E-mail: nirmala@cukerala.ac.in; Mathew, Vincent, E-mail: vincent@cukerala.ac.in

    We numerically demonstrate a new configuration of all-optical NOR logic gate with square lattice photonic crystal (PhC) waveguide using finite difference time domain (FDTD) method. The logic operations are based on interference effect of optical waves. We have determined the operating frequency range by calculating the band structure for a perfectly periodic PhC using plane wave expansion (PWE) method. Response time of this logic gate is 1.98 ps and it can be operated with speed about 513 GB/s. The proposed device consists of four linear waveguides and a square ring resonator waveguides on PhC platform.

  13. A strong electro-optically active lead-free ferroelectric integrated on silicon

    NASA Astrophysics Data System (ADS)

    Abel, Stefan; Stöferle, Thilo; Marchiori, Chiara; Rossel, Christophe; Rossell, Marta D.; Erni, Rolf; Caimi, Daniele; Sousa, Marilyne; Chelnokov, Alexei; Offrein, Bert J.; Fompeyrine, Jean

    2013-04-01

    The development of silicon photonics could greatly benefit from the linear electro-optical properties, absent in bulk silicon, of ferroelectric oxides, as a novel way to seamlessly connect the electrical and optical domain. Of all oxides, barium titanate exhibits one of the largest linear electro-optical coefficients, which has however not yet been explored for thin films on silicon. Here we report on the electro-optical properties of thin barium titanate films epitaxially grown on silicon substrates. We extract a large effective Pockels coefficient of reff=148 pm V-1, which is five times larger than in the current standard material for electro-optical devices, lithium niobate. We also reveal the tensor nature of the electro-optical properties, as necessary for properly designing future devices, and furthermore unambiguously demonstrate the presence of ferroelectricity. The integration of electro-optical active films on silicon could pave the way towards power-efficient, ultra-compact integrated devices, such as modulators, tuning elements and bistable switches.

  14. Trinary flip-flops using Savart plate and spatial light modulator for optical computation in multivalued logic

    NASA Astrophysics Data System (ADS)

    Ghosh, Amal K.; Basuray, Amitabha

    2008-11-01

    The memory devices in multi-valued logic are of most significance in modern research. This paper deals with the implementation of basic memory devices in multi-valued logic using Savart plate and spatial light modulator (SLM) based optoelectronic circuits. Photons are used here as the carrier to speed up the operations. Optical tree architecture (OTA) has been also utilized in the optical interconnection network. We have exploited the advantages of Savart plates, SLMs and OTA and proposed the SLM based high speed JK, D-type and T-type flip-flops in a trinary system.

  15. Optical coherence tomography for glaucoma diagnosis: An evidence based meta-analysis.

    PubMed

    Kansal, Vinay; Armstrong, James J; Pintwala, Robert; Hutnik, Cindy

    2018-01-01

    Early detection, monitoring and understanding of changes in the retina are central to the diagnosis of glaucomatous optic neuropathy, and vital to reduce visual loss from this progressive condition. The main objective of this investigation was to compare glaucoma diagnostic accuracy of commercially available optical coherence tomography (OCT) devices (Zeiss Stratus, Zeiss Cirrus, Heidelberg Spectralis and Optovue RTVue, and Topcon 3D-OCT). 16,104 glaucomatous and 11,543 normal eyes reported in 150 studies. Between Jan. 2017 and Feb 2017, MEDLINE®, EMBASE®, CINAHL®, Cochrane Library®, Web of Science®, and BIOSIS® were searched for studies assessing glaucoma diagnostic accuracy of the aforementioned OCT devices. Meta-analysis was performed pooling area under the receiver operating characteristic curve (AUROC) estimates for all devices, stratified by OCT type (RNFL, macula), and area imaged. 150 studies with 16,104 glaucomatous and 11,543 normal control eyes were included. Key findings: AUROC of glaucoma diagnosis for RNFL average for all glaucoma patients was 0.897 (0.887-0.906, n = 16,782 patient eyes), for macula ganglion cell complex (GCC) was 0.885 (0.869-0.901, n = 4841 eyes), for macula ganglion cell inner plexiform layer (GCIPL) was 0.858 (0.835-0.880, n = 4211 eyes), and for total macular thickness was 0.795 (0.754-0.834, n = 1063 eyes). The classification capability was similar across all 5 OCT devices. More diagnostically favorable AUROCs were demonstrated in patients with increased glaucoma severity. Diagnostic accuracy of RNFL and segmented macular regions (GCIPL, GCC) scans were similar and higher than total macular thickness. This study provides a synthesis of contemporary evidence with features of robust inclusion criteria and large sample size. These findings may provide guidance to clinicians when navigating this rapidly evolving diagnostic area characterized by numerous options.

  16. Optical sensor array platform based on polymer electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  17. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.

    PubMed

    Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho

    2016-10-27

    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures.

  18. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures

    PubMed Central

    Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho

    2016-01-01

    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures. PMID:28335321

  19. Optically resilient 3D micro-optics on the tips of optical fibers

    NASA Astrophysics Data System (ADS)

    Jonušauskas, Linas

    2017-05-01

    In this paper we present a study aimed at investigating an optical resiliency of polymers that could be applied in 3D femtosecond laser lithography. These include popular in lithography SU8 and OrmoClear as well as hybrid organic-inorganic zirconium containing SZ2080. We show that latter material in its pure (non-photosensitized) form has the best optical resiliency out of all tested materials. Furthermore, its 3D structurability is investigated. Despite threshold-like quality degradation outside fabrication window, we show that this material is suitable for creating complex 3D structures on the tips of optical fibers. Overall it is demonstrated, that unique capability of 3DLL to structure pure materials can lead to very compact functional fiber-based devices that could withstand high (GW/cm2) light intensities.

  20. Optical multidimensional multiple access(O-MDMA): a new concept for free-space laser communication based on photonic mixer devices

    NASA Astrophysics Data System (ADS)

    Hess, Holger; Albrecht, Martin; Grothof, Markus; Hussmann, Stephan; Schwarte, Rudolf

    2004-01-01

    Working on optical distance measurement a new optical correlator was developed at the Institute for Data Processing of the University of Siegen in the last years. The so called Photonic Mixer Device (PMD), to be meant originally for laser ranging systems, offers a lot of advantages for wireless optical data communication like high speed spatial light demodulation up to the GHz range and inherent backlight suppression. This contribution describes the application of such PMDs in a free space interconnect based on the principle of Multi Dimensional Multiple Access (MDMA) and the advantages of this new approach, starting from the MDMA principle and followed by the fundamental functionality of PMDs. After that an Optical MDMA (O-MDMA) demonstrator and first measurement results will be presented.

  1. A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongtao; Salthouse, Christopher D., E-mail: salthouse@ecs.umass.edu; Center for Personalized Health Monitoring, University of Massachusetts, Amherst, Massachusetts 01003

    2014-05-15

    Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve themore » peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.« less

  2. Mobile glasses-free 3D using compact waveguide hologram

    NASA Astrophysics Data System (ADS)

    Pyun, K.; Choi, C.; Morozov, A.; Putilin, A.; Bovsunovskiy, I.; Kim, S.; Ahn, J.; Lee, H.-S.; Lee, S.

    2013-02-01

    The exploding mobile communication devices make 3D data available anywhere anytime. However, to record and reconstruct 3D, the huge number of optical components is often required, which makes overall device size bulky and image quality degraded due to the error-prone tuning. In addition, if additional glass is required, then user experience of 3D is exhausting and unpleasant. Holography is the ultimate 3D that users experience natural 3D in every direction. For mobile glasses-free 3D experience, it is critical to make holography device that can be as compact and integrated as possible. For reliable and economical mass production, integrated optics is needed as integrated circuits in semiconductor industry. Thus, we propose mobile glasses-free 3D using compact waveguide hologram in terms of overall device sizes, quantity of elements and combined functionality of each element. The main advantages of proposed solution are as follows: First, this solution utilizes various integral optical elements, where each of them is a united not adjustable optical element, replacing separate and adjustable optical elements with various forms and configurations. Second, geometrical form of integral elements provides small sizes of whole device. Third, geometrical form of integral elements allows creating flat device. And finally, absence of adjustable elements provide rigidly of whole device. The usage of integrated optical means based on waveguide holographic elements allows creating a new type of compact and high functional devices for mobile glasses-free 3D applications such as mobile medical 3D data visualization.

  3. All-optical control of group velocity dispersion in tellurite photonic crystal fibers.

    PubMed

    Liu, Lai; Tian, Qijun; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2012-12-15

    We demonstrate all-optical control of group velocity dispersion (GVD) via optical Kerr effect in highly nonlinear tellurite photonic crystal fibers. The redshift of the zero-dispersion wavelength is over 307 nm, measured by soliton self-frequency shift cancellation, when the pump peak power of a 1.56 μm femtosecond fiber laser is increased to 11.6 kW. The all-optical control of GVD not only offers a new platform for constructing all-optical-control photonic devices but also promises a new class of experiments in nonlinear fiber optics and light-matter interactions.

  4. Time-domain diffuse optics: towards next generation devices

    NASA Astrophysics Data System (ADS)

    Contini, Davide; Dalla Mora, Alberto; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-07-01

    Diffuse optics is a powerful tool for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. We show that ideally time-domain diffuse optics can give higher contrast and a higher penetration depth with respect to standard technology. In order to completely exploit the advantages of a time-domain system a distribution of sources and detectors with fast gating capabilities covering all the sample surface is needed. Here, we present the building block to build up such system. This basic component is made of a miniaturised source-detector pair embedded into the probe based on pulsed Vertical-Cavity Surface-Emitting Lasers (VCSEL) as sources and Single-Photon Avalanche Diodes (SPAD) or Silicon Photomultipliers (SiPM) as detectors. The possibility to miniaturized and dramatically increase the number of source detectors pairs open the way to an advancement of diffuse optics in terms of improvement of performances and exploration of new applications. Furthermore, availability of compact devices with reduction in size and cost can boost the application of this technique.

  5. Low-cost fused taper polymer optical fiber (LFT-POF) splitters for environmental and home-networking solution

    NASA Astrophysics Data System (ADS)

    Supian, L. S.; Ab-Rahman, Mohammad Syuhaimi; Harun, Mohd Hazwan; Gunab, Hadi; Sulaiman, Malik; Naim, Nani Fadzlina

    2017-08-01

    In visible optical communication over the multimode PMMA fibers, the overall cost of optical network can be reduced by deploying economical splitters for distributing the optical data signals from a point to multipoint in transmission network. The low-cost splitters shall have two main characteristics; good uniformity and high power efficiency. The most cost-effective and environmental friendly optical splitter having those characteristics have been developed. The device material is 100% purely based on the multimode step-index PMMA Polymer Optical Fiber (POF). The region which all fibers merged as single fiber is called as fused-taper POF. This ensures that all fibers are melted and fused properly. The results for uniformity and power efficiency of all splitters have been revealed by injecting red LED transmitter with 650 nm wavelength into input port while each end of output fibers measured by optical power meter. Final analysis shows our fused-taper splitter has low excess loss 0.53 dB and each of the output port has low insertion loss, which the average value is below 7 dB. In addition, the splitter has good uniformity that is 32:37:31% in which it is suitably used for demultiplexer fabrication.

  6. Characterizing the Utility and Limitations of Repurposing an Open-Field Optical Imaging Device for Fluorescence-Guided Surgery in Head and Neck Cancer Patients.

    PubMed

    Moore, Lindsay S; Rosenthal, Eben L; Chung, Thomas K; de Boer, Esther; Patel, Neel; Prince, Andrew C; Korb, Melissa L; Walsh, Erika M; Young, E Scott; Stevens, Todd M; Withrow, Kirk P; Morlandt, Anthony B; Richman, Joshua S; Carroll, William R; Zinn, Kurt R; Warram, Jason M

    2017-02-01

    The purpose of this study was to assess the potential of U.S. Food and Drug Administration-cleared devices designed for indocyanine green-based perfusion imaging to identify cancer-specific bioconjugates with overlapping excitation and emission wavelengths. Recent clinical trials have demonstrated potential for fluorescence-guided surgery, but the time and cost of the approval process may impede clinical translation. To expedite this translation, we explored the feasibility of repurposing existing optical imaging devices for fluorescence-guided surgery. Consenting patients (n = 15) scheduled for curative resection were enrolled in a clinical trial evaluating the safety and specificity of cetuximab-IRDye800 (NCT01987375). Open-field fluorescence imaging was performed preoperatively and during the surgical resection. Fluorescence intensity was quantified using integrated instrument software, and the tumor-to-background ratio characterized fluorescence contrast. In the preoperative clinic, the open-field device demonstrated potential to guide preoperative mapping of tumor borders, optimize the day of surgery, and identify occult lesions. Intraoperatively, the device demonstrated robust potential to guide surgical resections, as all peak tumor-to-background ratios were greater than 2 (range, 2.2-14.1). Postresection wound bed fluorescence was significantly less than preresection tumor fluorescence (P < 0.001). The repurposed device also successfully identified positive margins. The open-field imaging device was successfully repurposed to distinguish cancer from normal tissue in the preoperative clinic and throughout surgical resection. This study illuminated the potential for existing open-field optical imaging devices with overlapping excitation and emission spectra to be used for fluorescence-guided surgery. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  7. Quantum electromechanics on silicon nitride nanomembranes

    PubMed Central

    Fink, J. M.; Kalaee, M.; Pitanti, A.; Norte, R.; Heinzle, L.; Davanço, M.; Srinivasan, K.; Painter, O.

    2016-01-01

    Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom—mechanical, optical and microwave—would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments. PMID:27484751

  8. Quantum electromechanics on silicon nitride nanomembranes.

    PubMed

    Fink, J M; Kalaee, M; Pitanti, A; Norte, R; Heinzle, L; Davanço, M; Srinivasan, K; Painter, O

    2016-08-03

    Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom-mechanical, optical and microwave-would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments.

  9. Polarization splitter and polarization rotator designs based on transformation optics.

    PubMed

    Kwon, Do-Hoon; Werner, Douglas H

    2008-11-10

    The transformation optics technique is employed in this paper to design two optical devices - a two-dimensional polarization splitter and a three-dimensional polarization rotator for propagating beams. The polarization splitter translates the TM- and the TE-polarized components of an incident beam in opposite directions (i.e., shifted up or shifted down). The polarization rotator rotates the polarization state of an incoming beam by an arbitrary angle. Both optical devices are reflectionless at the entry and exit interfaces. Design details and full-wave simulation results are provided.

  10. Towards non-contact photo-acoustic endoscopy using speckle pattern analysis

    NASA Astrophysics Data System (ADS)

    Lengenfelder, Benjamin; Mehari, Fanuel; Tang, Yuqi; Klämpfl, Florian; Zalevsky, Zeev; Schmidt, Michael

    2017-03-01

    Photoacoustic Tomography combines the advantages of optical and acoustic imaging as it makes use of the high optical contrast of tissue and the high resolution of ultrasound. Furthermore, high penetration depths in tissue in the order of several centimeters can be achieved by the combination of these modalities. Extensive research is being done in the field of miniaturization of photoacoustic devices, as photoacoustic imaging could be of significant benefits for the physician during endoscopic interventions. All the existing miniature systems are based on contact transducers for signal detection that are placed at the distal end of an endoscopic device. This makes the manufacturing process difficult and impedance matching to the inspected surface a requirement. The requirement for contact limits the view of the physician during the intervention. Consequently, a fiber based non-contact optical sensing technique would be highly beneficial for the development of miniaturized photoacoustic endoscopic devices. This work demonstrates the feasibility of surface displacement detection using remote speckle-sensing using a high speed camera and an imaging fiber bundle that is used in commercially available video endoscopes. The feasibility of displacement sensing is demonstrated by analysis of phantom vibrations which are induced by loudspeaker membrane oscillations. Since the usability of the remote speckle-sensing for photo-acoustic signal detection was already demonstrated, the fiber bundle approach demonstrates the potential for non-contact photoacoustic detections during endoscopy.

  11. All-dielectric resonant cavity-enabled metals with broadband optical transparency

    NASA Astrophysics Data System (ADS)

    Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang

    2017-06-01

    Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.

  12. Manufacture of micro fluidic devices by laser welding using thermal transfer printing techniques

    NASA Astrophysics Data System (ADS)

    Klein, R.; Klein, K. F.; Tobisch, T.; Thoelken, D.; Belz, M.

    2016-03-01

    Micro-fluidic devices are widely used today in the areas of medical diagnostics and drug research, as well as for applications within the process, electronics and chemical industry. Microliters of fluids or single cell to cell interactions can be conveniently analyzed with such devices using fluorescence imaging, phase contrast microscopy or spectroscopic techniques. Typical micro-fluidic devices consist of a thermoplastic base component with chambers and channels covered by a hermetic fluid and gas tight sealed lid component. Both components are usually from the same or similar thermoplastic material. Different mechanical, adhesive or thermal joining processes can be used to assemble base component and lid. Today, laser beam welding shows the potential to become a novel manufacturing opportunity for midsize and large scale production of micro-fluidic devices resulting in excellent processing quality by localized heat input and low thermal stress to the device during processing. For laser welding, optical absorption of the resin and laser wavelength has to be matched for proper joining. This paper will focus on a new approach to prepare micro-fluidic channels in such devices using a thermal transfer printing process, where an optical absorbing layer absorbs the laser energy. Advantages of this process will be discussed in combination with laser welding of optical transparent micro-fluidic devices.

  13. Motion-gated acquisition for in vivo optical imaging

    PubMed Central

    Gioux, Sylvain; Ashitate, Yoshitomo; Hutteman, Merlijn; Frangioni, John V.

    2009-01-01

    Wide-field continuous wave fluorescence imaging, fluorescence lifetime imaging, frequency domain photon migration, and spatially modulated imaging have the potential to provide quantitative measurements in vivo. However, most of these techniques have not yet been successfully translated to the clinic due to challenging environmental constraints. In many circumstances, cardiac and respiratory motion greatly impair image quality and∕or quantitative processing. To address this fundamental problem, we have developed a low-cost, field-programmable gate array–based, hardware-only gating device that delivers a phase-locked acquisition window of arbitrary delay and width that is derived from an unlimited number of pseudo-periodic and nonperiodic input signals. All device features can be controlled manually or via USB serial commands. The working range of the device spans the extremes of mouse electrocardiogram (1000 beats per minute) to human respiration (4 breaths per minute), with timing resolution ⩽0.06%, and jitter ⩽0.008%, of the input signal period. We demonstrate the performance of the gating device, including dramatic improvements in quantitative measurements, in vitro using a motion simulator and in vivo using near-infrared fluorescence angiography of beating pig heart. This gating device should help to enable the clinical translation of promising new optical imaging technologies. PMID:20059276

  14. Distributed Two-Dimensional Fourier Transforms on DSPs with an Application for Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey Scott

    2006-01-01

    Many applications of two-dimensional Fourier Transforms require fixed timing as defined by system specifications. One example is image-based wavefront sensing. The image-based approach has many benefits, yet it is a computational intensive solution for adaptive optic correction, where optical adjustments are made in real-time to correct for external (atmospheric turbulence) and internal (stability) aberrations, which cause image degradation. For phase retrieval, a type of image-based wavefront sensing, numerous two-dimensional Fast Fourier Transforms (FFTs) are used. To meet the required real-time specifications, a distributed system is needed, and thus, the 2-D FFT necessitates an all-to-all communication among the computational nodes. The 1-D floating point FFT is very efficient on a digital signal processor (DSP). For this study, several architectures and analysis of such are presented which address the all-to-all communication with DSPs. Emphasis of this research is on a 64-node cluster of Analog Devices TigerSharc TS-101 DSPs.

  15. Effect of sputtering power on crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO transparent conducting thin films for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Hu, Yu Min; Li, Jung Yu; Chen, Nai Yun; Chen, Chih Yu; Han, Tai Chun; Yu, Chin Chung

    2017-02-01

    The crystallinity and intrinsic defects of transparent conducting oxide (TCO) films have a high impact on their optical and electrical properties and therefore on the performance of devices incorporating such films, including flat panel displays, electro-optical devices, and solar cells. The optical and electrical properties of TCO films can be modified by tailoring their deposition parameters, which makes proper understanding of these parameters crucial. Magnetron sputtering is the most adaptable method for preparing TCO films used in industrial applications. In this study, we investigate the direct and inter-property correlation effects of sputtering power (PW) on the crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO (AZO) TCO films. All of the films were preferentially c-axis-oriented with a wurtzite structure and had an average transmittance of over 80% in the visible wavelength region. Scanning electron microscopy images revealed significantly increased AZO film grain sizes for PW ≥ 150 W, which may lead to increased conductivity, carrier concentration, and optical band gaps but decreased carrier mobility and in-plane compressive stress in AZO films. Photoluminescence results showed that, with increasing PW, the near band edge emission gradually dominates the defect-related emissions in which zinc interstitial (Zni), oxygen vacancy (VO), and oxygen interstitial (Oi) are possibly responsible for emissions at 3.08, 2.8, and 2.0 eV, respectively. The presence of Zni- and Oi-related emissions at PW ≥ 150 W indicates a slight increase in the presence of Al atoms substituted at Zn sites (AlZn). The presence of Oi at PW ≥ 150 W was also confirmed by X-ray photoelectron spectroscopy results. These results clearly show that the crystallinity and intrinsic-defect type of AZO films, which dominate their optical and electrical properties, may be controlled by PW. This understanding may facilitate the development of TCO-based optoelectronic devices for industrial production.

  16. Thermo-optic devices on polymer platform

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyang; Keil, Norbert

    2016-03-01

    Optical polymers possess in general relatively high thermo-optic coefficients and at the same time low thermal conductivity, both of which make them attractive material candidates for realizing highly efficient thermally tunable devices. Over the years, various thermo-optic components have been demonstrated on polymer platform, covering (1) tunable reflectors and filters as part of a laser cavity, (2) variable optical attenuators (VOAs) as light amplitude regulators in e.g. a coherent receiver, and (3) thermo-optic switches (TOSs) allowing multi-flow control in the photonic integrated circuits (PICs). This work attempts to review the recent progress on the above mentioned three component branches, including linearly and differentially tunable filters, VOAs based on 1×1 multimode interference structure (MMI) and Mach-Zehnder interferometer (MZI), and 1×2 TOS based on waveguide Y-branch, driven by a pair of sidelong placed heater electrodes. These thermo-optic components can well be integrated into larger PICs: the dual-polarization switchable tunable laser and the colorless optical 90° hybrid are presented in the end as examples.

  17. Double-Sided Electrochromic Device Based on Metal-Organic Frameworks.

    PubMed

    Mjejri, Issam; Doherty, Cara M; Rubio-Martinez, Marta; Drisko, Glenna L; Rougier, Aline

    2017-11-22

    Devices displaying controllably tunable optical properties through an applied voltage are attractive for smart glass, mirrors, and displays. Electrochromic material development aims to decrease power consumption while increasing the variety of attainable colors, their brilliance, and their longevity. We report the first electrochromic device constructed from metal organic frameworks (MOFs). Two MOF films, HKUST-1 and ZnMOF-74, are assembled so that the oxidation of one corresponds to the reduction of the other, allowing the two sides of the device to simultaneously change color. These MOF films exhibit cycling stability unrivaled by other MOFs and a significant optical contrast in a lithium-based electrolyte. HKUST-1 reversibly changed from bright blue to light blue and ZnMOF-74 from yellow to brown. The electrochromic device associates the two MOF films via a PMMA-lithium based electrolyte membrane. The color-switching of these MOFs does not arise from an organic-linker redox reaction, signaling unexplored possibilities for electrochromic MOF-based materials.

  18. Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices.

    PubMed

    Zohrabi, Mo; Cormack, Robert H; Mccullough, Connor; Supekar, Omkar D; Gibson, Emily A; Bright, Victor M; Gopinath, Juliet T

    2017-12-11

    We present numerical simulations of multielectrode electrowetting devices used in a novel optical design to correct wavefront aberration. Our optical system consists of two multielectrode devices, preceded by a single fixed lens. The multielectrode elements function as adaptive optical devices that can be used to correct aberrations inherent in many imaging setups, biological samples, and the atmosphere. We are able to accurately simulate the liquid-liquid interface shape using computational fluid dynamics. Ray tracing analysis of these surfaces shows clear evidence of aberration correction. To demonstrate the strength of our design, we studied three different input aberrations mixtures that include astigmatism, coma, trefoil, and additional higher order aberration terms, with amplitudes as large as one wave at 633 nm.

  19. Accuracy and eligibility of CBCT to digitize dental plaster casts.

    PubMed

    Becker, Kathrin; Schmücker, Ulf; Schwarz, Frank; Drescher, Dieter

    2018-05-01

    Software-based dental planning requires digital casts and oftentimes cone-beam computed tomography (CBCT) radiography. However, buying a dedicated model digitizing device can be expensive and might not be required. The present study aimed to assess whether digital models derived from CBCT and models digitized using a dedicated optical device are of comparable accuracy. A total of 20 plaster casts were digitized with eight CBCT and five optical model digitizers. Corresponding models were superimposed using six control points and subsequent iterative closest point matching. Median distances were calculated among all registered models. Data were pooled per scanner and model. Boxplots were generated, and the paired t test, a Friedman test, and a post-hoc Nemenyi test were employed for statistical comparison. Results were found significant at p < 0.05. All CBCT devices allowed the digitization of plaster casts, but failed to reach the accuracy of the dedicated model digitizers (p < 0.001). Median distances between CBCT and optically digitized casts were 0.064 + - 0.005 mm. Qualitative differences among the CBCT systems were detected (χ 2  = 78.07, p < 0.001), and one CBCT providing a special plaster cast digitization mode was found superior to the competitors (p < 0.05). CBCT systems failed to reach the accuracy from optical digitizers, but within the limits of the study, accuracy appeared to be sufficient for digital planning and forensic purposes. Most CBCT systems enabled digitization of plaster casts, and accuracy was found sufficient for digital planning and storage purposes.

  20. A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates.

    PubMed

    Dreismann, Alexander; Ohadi, Hamid; Del Valle-Inclan Redondo, Yago; Balili, Ryan; Rubo, Yuri G; Tsintzos, Simeon I; Deligeorgis, George; Hatzopoulos, Zacharias; Savvidis, Pavlos G; Baumberg, Jeremy J

    2016-10-01

    Practical challenges to extrapolating Moore's law favour alternatives to electrons as information carriers. Two promising candidates are spin-based and all-optical architectures, the former offering lower energy consumption, the latter superior signal transfer down to the level of chip-interconnects. Polaritons-spinor quasi-particles composed of semiconductor excitons and microcavity photons-directly couple exciton spins and photon polarizations, combining the advantages of both approaches. However, their implementation for spintronics has been hindered because polariton spins can be manipulated only optically or by strong magnetic fields. Here we use an external electric field to directly control the spin of a polariton condensate, bias-tuning the emission polarization. The nonlinear spin dynamics offers an alternative route to switching, allowing us to realize an electrical spin-switch exhibiting ultralow switching energies below 0.5 fJ. Our results lay the foundation for development of devices based on the electro-optical control of coherent spin ensembles on a chip.

  1. Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings.

    PubMed

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-03-11

    Active ultrasonic testing is widely used for medical diagnosis, material characterization and structural health monitoring. Ultrasonic transducer is a key component in active ultrasonic testing. Due to their many advantages such as small size, light weight, and immunity to electromagnetic interference, fiber-optic ultrasonic transducers are particularly attractive for permanent, embedded applications in active ultrasonic testing for structural health monitoring. However, current fiber-optic transducers only allow effective ultrasound generation at a single location of the fiber end. Here we demonstrate a fiber-optic device that can effectively generate ultrasound at multiple, selected locations along a fiber in a controllable manner based on a smart light tapping scheme that only taps out the light of a particular wavelength for laser-ultrasound generation and allow light of longer wavelengths pass by without loss. Such a scheme may also find applications in remote fiber-optic device tuning and quasi-distributed biochemical fiber-optic sensing.

  2. Broadly tunable thin-film intereference coatings: active thin films for telecom applications

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.; Ma, Eugene Y.; Lourie, Mark T.; Sharfin, Wayne F.; Wagner, Matthias

    2003-06-01

    Thin film interference coatings (TFIC) are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable TFIC components based on the thermo-optic properties of semiconductor thin films with large thermo-optic coefficients 3.6X10[-4]/K. The technology is based on amorphous silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable TFIC can be designed as sophisticated multi-cavity, multi-layer optical designs. Applications include flat-top passband filters for add-drop multiplexing, tunable dispersion compensators, tunable gain equalizers and variable optical attenuators. Extremely compact tunable devices may be integrated into modules such as optical channel monitors, tunable lasers, gain-equalized amplifiers, and tunable detectors.

  3. Multi-party Measurement-Device-Independent Quantum Key Distribution Based on Cluster States

    NASA Astrophysics Data System (ADS)

    Liu, Chuanqi; Zhu, Changhua; Ma, Shuquan; Pei, Changxing

    2018-03-01

    We propose a novel multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on cluster states. A four-photon analyzer which can distinguish all the 16 cluster states serves as the measurement device for four-party MDI-QKD. Any two out of four participants can build secure keys after the analyzers obtains successful outputs and the two participants perform post-processing. We derive a security analysis for the protocol, and analyze the key rates under different values of polarization misalignment. The results show that four-party MDI-QKD is feasible over 280 km in the optical fiber channel when the key rate is about 10- 6 with the polarization misalignment parameter 0.015. Moreover, our work takes an important step toward a quantum communication network.

  4. Integration of Multiple Components in Polystyrene-based Microfluidic Devices Part 1: Fabrication and Characterization

    PubMed Central

    Johnson, Alicia S.; Anderson, Kari B.; Halpin, Stephen T.; Kirkpatrick, Douglas C.; Spence, Dana M.; Martin, R. Scott

    2012-01-01

    In Part I of a two-part series, we describe a simple, and inexpensive approach to fabricate polystyrene devices that is based upon melting polystyrene (from either a Petri dish or powder form) against PDMS molds or around electrode materials. The ability to incorporate microchannels in polystyrene and integrate the resulting device with standard laboratory equipment such as an optical plate reader for analyte readout and micropipettors for fluid propulsion is first described. A simple approach for sample and reagent delivery to the device channels using a standard, multi-channel micropipette and a PDMS-based injection block is detailed. Integration of the microfluidic device with these off-chip functions (sample delivery and readout) enables high throughput screens and analyses. An approach to fabricate polystyrene-based devices with embedded electrodes is also demonstrated, thereby enabling the integration of microchip electrophoresis with electrochemical detection through the use of a palladium electrode (for a decoupler) and carbon-fiber bundle (for detection). The device was sealed against a PDMS-based microchannel and used for the electrophoretic separation and amperometric detection of dopamine, epinephrine, catechol, and 3,4-dihydroxyphenylacetic acid. Finally, these devices were compared against PDMS-based microchips in terms of their optical transparency and absorption of an anti-platelet drug, clopidogrel. Part I of this series lays the foundation for Part II, where these devices were utilized for various on-chip cellular analysis. PMID:23120747

  5. Diffractive optical variable image devices generated by maskless interferometric lithography for optical security

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre; Rebordão, José M.

    2011-05-01

    In optical security (protection against forgery and counterfeit of products and documents) the problem is not exact reproduction but the production of something sufficiently similar to the original. Currently, Diffractive Optically Variable Image Devices (DOVID), that create dynamic chromatic effects which may be easily recognized but are difficult to reproduce, are often used to protect important products and documents. Well known examples of DOVID for security are 3D or 2D/3D holograms in identity documents and credit cards. Others are composed of shapes with different types of microstructures yielding by diffraction to chromatic dynamic effects. A maskless interferometric lithography technique to generate DOVIDs for optical security is presented and compared to traditional techniques. The approach can be considered as a self-masking focused holography on planes tilted with respect to the reference optical axes of the system, and is based on the Scheimpflug and Hinge rules. No physical masks are needed to ensure optimum exposure of the photosensitive film. The system built to demonstrate the technique relies on the digital mirrors device MOEMS technology from Texas Instruments' Digital Light Processing. The technique is linear on the number of specified colors and does not depend either on the area of the device or the number of pixels, factors that drive the complexity of dot-matrix based systems. The results confirmed the technique innovation and capabilities in the creation of diffractive optical elements for security against counterfeiting and forgery.

  6. Scalable electro-photonic integration concept based on polymer waveguides

    NASA Astrophysics Data System (ADS)

    Bosman, E.; Van Steenberge, G.; Boersma, A.; Wiegersma, S.; Harmsma, P.; Karppinen, M.; Korhonen, T.; Offrein, B. J.; Dangel, R.; Daly, A.; Ortsiefer, M.; Justice, J.; Corbett, B.; Dorrestein, S.; Duis, J.

    2016-03-01

    A novel method for fabricating a single mode optical interconnection platform is presented. The method comprises the miniaturized assembly of optoelectronic single dies, the scalable fabrication of polymer single mode waveguides and the coupling to glass fiber arrays providing the I/O's. The low cost approach for the polymer waveguide fabrication is based on the nano-imprinting of a spin-coated waveguide core layer. The assembly of VCSELs and photodiodes is performed before waveguide layers are applied. By embedding these components in deep reactive ion etched pockets in the silicon substrate, the planarity of the substrate for subsequent layer processing is guaranteed and the thermal path of chip-to-substrate is minimized. Optical coupling of the embedded devices to the nano-imprinted waveguides is performed by laser ablating 45 degree trenches which act as optical mirror for 90 degree deviation of the light from VCSEL to waveguide. Laser ablation is also implemented for removing parts of the polymer stack in order to mount a custom fabricated connector containing glass fiber arrays. A demonstration device was built to show the proof of principle of the novel fabrication, packaging and optical coupling principles as described above, combined with a set of sub-demonstrators showing the functionality of the different techniques separately. The paper represents a significant part of the electro-photonic integration accomplishments in the European 7th Framework project "Firefly" and not only discusses the development of the different assembly processes described above, but the efforts on the complete integration of all process approaches into the single device demonstrator.

  7. Measurement-device-independent quantum key distribution.

    PubMed

    Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing

    2012-03-30

    How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors.

  8. Nanometric holograms based on a topological insulator material.

    PubMed

    Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min

    2017-05-18

    Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security.

  9. Ferroic Crystals for Electro-Optic and Acousto-Optic Applications.

    DTIC Science & Technology

    properties for potential application in acousto - optic devices; and, (2) A systematic examination of the role of domain structures in modifying the...macroscopic properties of all types of ferroic crystals and the manner in which these property modifications could be exploited in acousto - optic , electro

  10. Signal Normalization Reduces Image Appearance Disparity Among Multiple Optical Coherence Tomography Devices.

    PubMed

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A; Kagemann, Larry; Schuman, Joel S

    2017-02-01

    To assess the effect of the previously reported optical coherence tomography (OCT) signal normalization method on reducing the discrepancies in image appearance among spectral-domain OCT (SD-OCT) devices. Healthy eyes and eyes with various retinal pathologies were scanned at the macular region using similar volumetric scan patterns with at least two out of three SD-OCT devices at the same visit (Cirrus HD-OCT, Zeiss, Dublin, CA; RTVue, Optovue, Fremont, CA; and Spectralis, Heidelberg Engineering, Heidelberg, Germany). All the images were processed with the signal normalization. A set of images formed a questionnaire with 24 pairs of cross-sectional images from each eye with any combination of the three SD-OCT devices either both pre- or postsignal normalization. Observers were asked to evaluate the similarity of the two displayed images based on the image appearance. The effects on reducing the differences in image appearance before and after processing were analyzed. Twenty-nine researchers familiar with OCT images participated in the survey. Image similarity was significantly improved after signal normalization for all three combinations ( P ≤ 0.009) as Cirrus and RTVue combination became the most similar pair, followed by Cirrus and Spectralis, and RTVue and Spectralis. The signal normalization successfully minimized the disparities in the image appearance among multiple SD-OCT devices, allowing clinical interpretation and comparison of OCT images regardless of the device differences. The signal normalization would enable direct OCT images comparisons without concerning about device differences and broaden OCT usage by enabling long-term follow-ups and data sharing.

  11. Investigations of Baikal Lake water absorption with ASP-15 device: measurement method and experimental data

    NASA Astrophysics Data System (ADS)

    Kokhanenko, Grigorii P.; Tarashchansky, Boris A.; Budnev, Nikolai M.; Mirgazov, Rashid R.

    2006-02-01

    Operation of the device ASP-15 is analyzed in the paper. The device is arranged in the south part of Lake Baikal, and it is capable of all-the-year-round measurements of hydro-optical characteristics at the depths down to 1300 m. The method for determining the absorption coefficient is based on measurement of the rate of decrease of the irradiance from an isotropic source with the distance between the source and the receiver. Possible reasons of appearance of anomalous dependences of the irradiance with the distance are revealed on the basis of numerical simulation, and the errors of the applied method are estimated. The experimental data obtained by means of the device ASP-15 last years are presented.

  12. Analysis and application of intelligence network based on FTTH

    NASA Astrophysics Data System (ADS)

    Feng, Xiancheng; Yun, Xiang

    2008-12-01

    With the continued rapid growth of Internet, new network service emerges in endless stream, especially the increase of network game, meeting TV, video on demand, etc. The bandwidth requirement increase continuously. Network technique, optical device technical development is swift and violent. FTTH supports all present and future service with enormous bandwidth, including traditional telecommunication service, traditional data service and traditional TV service, and the future digital TV and VOD. With huge bandwidth of FTTH, it wins the final solution of broadband network, becomes the final goal of development of optical access network. Firstly, it introduces the main service which FTTH supports, main analysis key technology such as FTTH system composition way, topological structure, multiplexing, optical cable and device. It focus two kinds of realization methods - PON, P2P technology. Then it proposed that the solution of FTTH can support comprehensive access (service such as broadband data, voice, video and narrowband private line). Finally, it shows the engineering application for FTTH in the district and building. It brings enormous economic benefits and social benefit.

  13. Flexible biodegradable citrate-based polymeric step-index optical fiber.

    PubMed

    Shan, Dingying; Zhang, Chenji; Kalaba, Surge; Mehta, Nikhil; Kim, Gloria B; Liu, Zhiwen; Yang, Jian

    2017-10-01

    Implanting fiber optical waveguides into tissue or organs for light delivery and collection is among the most effective ways to overcome the issue of tissue turbidity, a long-standing obstacle for biomedical optical technologies. Here, we report a citrate-based material platform with engineerable opto-mechano-biological properties and demonstrate a new type of biodegradable, biocompatible, and low-loss step-index optical fiber for organ-scale light delivery and collection. By leveraging the rich designability and processibility of citrate-based biodegradable polymers, two exemplary biodegradable elastomers with a fine refractive index difference and yet matched mechanical properties and biodegradation profiles were developed. Furthermore, we developed a two-step fabrication method to fabricate flexible and low-loss (0.4 db/cm) optical fibers, and performed systematic characterizations to study optical, spectroscopic, mechanical, and biodegradable properties. In addition, we demonstrated the proof of concept of image transmission through the citrate-based polymeric optical fibers and conducted in vivo deep tissue light delivery and fluorescence sensing in a Sprague-Dawley (SD) rat, laying the groundwork for realizing future implantable devices for long-term implantation where deep-tissue light delivery, sensing and imaging are desired, such as cell, tissue, and scaffold imaging in regenerative medicine and in vivo optogenetic stimulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Adaptive restoration of a partially coherent blurred image using an all-optical feedback interferometer with a liquid-crystal device.

    PubMed

    Shirai, Tomohiro; Barnes, Thomas H

    2002-02-01

    A liquid-crystal adaptive optics system using all-optical feedback interferometry is applied to partially coherent imaging through a phase disturbance. A theoretical analysis based on the propagation of the cross-spectral density shows that the blurred image due to the phase disturbance can be restored, in principle, irrespective of the state of coherence of the light illuminating the object. Experimental verification of the theory has been performed for two cases when the object to be imaged is illuminated by spatially coherent light originating from a He-Ne laser and by spatially incoherent white light from a halogen lamp. We observed in both cases that images blurred by the phase disturbance were successfully restored, in agreement with the theory, immediately after the adaptive optics system was activated. The origin of the deviation of the experimental results from the theory, together with the effect of the feedback misalignment inherent in our optical arrangement, is also discussed.

  15. Surface segregation effects of erbium in GaAs growth and their implications for optical devices containing ErAs nanostructures

    NASA Astrophysics Data System (ADS)

    Crook, Adam M.; Nair, Hari P.; Bank, Seth R.

    2011-03-01

    We report on the integration of semimetallic ErAs nanoparticles with high optical quality GaAs-based semiconductors, grown by molecular beam epitaxy. Secondary ion mass spectrometry and photoluminescence measurements provide evidence of surface segregation and incorporation of erbium into layers grown with the erbium cell hot, despite the closed erbium source shutter. We establish the existence of a critical areal density of the surface erbium layer, below which the formation of ErAs precipitates is suppressed. Based upon these findings, we demonstrate a method for overgrowing ErAs nanoparticles with III-V layers of high optical quality, using subsurface ErAs nanoparticles as a sink to deplete the surface erbium concentration. This approach provides a path toward realizing optical devices based on plasmonic effects in an epitaxially-compatible semimetal/semiconductor system.

  16. Optoelectronic Devices and Materials

    NASA Astrophysics Data System (ADS)

    Sweeney, Stephen; Adams, Alfred

    Unlike the majority of electronic devices, which are silicon based, optoelectronic devices are predominantly made using III-V semiconductor compounds such as GaAs, InP, GaN and GaSb and their alloys due to their direct band gap. Understanding the properties of these materials has been of vital importance in the development of optoelectronic devices. Since the first demonstration of a semiconductor laser in the early 1960s, optoelectronic devices have been produced in their millions, pervading our everyday lives in communications, computing, entertainment, lighting and medicine. It is perhaps their use in optical-fibre communications that has had the greatest impact on humankind, enabling high-quality and inexpensive voice and data transmission across the globe. Optical communications spawned a number of developments in optoelectronics, leading to devices such as vertical-cavity surface-emitting lasers, semiconductor optical amplifiers, optical modulators and avalanche photodiodes. In this chapter we discuss the underlying theory of operation of the most important optoelectronic devices. The influence of carrier-photon interactions is discussed in the context of producing efficient emitters and detectors. Finally we discuss how the semiconductor band structure can be manipulated to enhance device properties using quantum confinement and strain effects, and how the addition of dilute amounts of elements such as nitrogen is having a profound effect on the next generation of optoelectronic devices.

  17. Active control of electromagnetic radiation through an enhanced thermo-optic effect

    PubMed Central

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A.

    2015-01-01

    The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved. PMID:25746689

  18. Evaluation of polymer based third order nonlinear integrated optics devices

    NASA Astrophysics Data System (ADS)

    Driessen, A.; Hoekstra, H. J. W. M.; Blom, F. C.; Horst, F.; Krijnen, G. J. M.; van Schoot, J. B. P.; Lambeck, P. V.; Popma, Th. J. A.; Diemeer, M. B.

    1998-01-01

    Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS side-chain polymer that exhibits large second and third order coefficients. This material has been characterized by third harmonic generation, z-scan and pump-probe measurements. In addition, various waveguiding structures have been used to measure the nonlinear absorption (two photon absorption) on a ps time-scale. Finally an integrated optics Mach Zehnder interferometer has been realized and evaluated. It is shown that the DANS side-chain polymer has many of the desired properties: the material is easily processable in high-quality optical waveguiding structures, has low linear absorption and its nonlinearity has a pure electronic origin. More materials research has to be done to arrive at materials with higher nonlinear coefficients to allow switching at moderate light intensity ( < 1 W peak power) and also with lower nonlinear absorption coefficients.

  19. Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon

    2018-02-01

    Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.

  20. Review of the Usefulness of Various Rotational Seismometers with Laboratory Results of Fibre-Optic Ones Tested for Engineering Applications

    PubMed Central

    Jaroszewicz, Leszek R.; Kurzych, Anna; Krajewski, Zbigniew; Marć, Paweł; Kowalski, Jerzy K.; Bobra, Piotr; Zembaty, Zbigniew; Sakowicz, Bartosz; Jankowski, Robert

    2016-01-01

    Starting with descriptions of rotational seismology, areas of interest and historical field measurements, the fundamental requirements for rotational seismometers for seismological and engineering application are formulated. On the above basis, a review of all existing rotational seismometers is presented with a description of the principles of their operation as well as possibilities to fulfill formulated requirements. This review includes mechanical, acoustical, electrochemical and optical devices and shows that the last of these types are the most promising. It is shown that optical rotational seismometer based on the ring-laser gyroscope concept is the best for seismological applications, whereas systems based on fiber-optic gyroscopes demonstrate parameters which are also required for engineering applications. Laboratory results of the Fibre-Optic System for Rotational Events & Phenomena Monitoring using a small 1-D shaking table modified to generate rotational excitations are presented. The harmonic and time-history tests demonstrate its usefulness for recording rotational motions with rates up to 0.25 rad/s. PMID:27999299

  1. Application of the strongly coupled-mode theory to integrated optical devices

    NASA Technical Reports Server (NTRS)

    Chuang, Shun-Lien

    1987-01-01

    A theory for strongly coupled waveguides is discussed and applied to two- and three-waveguide couplers and optical wavelength filters. This theory makes use of an exact analytical relation governing the coupling coefficients and the overlap integrals. It removes almost all of the constraints imposed by a simpler and approximate coupled-mode theory by Marcatili (1986). It also satisfies the energy conservation and the reciprocity theorem self-consistently. Very good numerical results with the overlap integral as large as 49 percent are shown. The applications to electrooptical modulators, power dividers, power transfer devices, and optical filters are all presented with numerical results.

  2. Tunable Optical True-Time Delay Devices Would Exploit EIT

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; DiDomenico, Leo; Lee, Hwang

    2004-01-01

    Tunable optical true-time delay devices that would exploit electromagnetically induced transparency (EIT) have been proposed. Relative to prior true-time delay devices (for example, devices based on ferroelectric and ferromagnetic materials) and electronically controlled phase shifters, the proposed devices would offer much greater bandwidths. In a typical envisioned application, an optical pulse would be modulated with an ultra-wideband radio-frequency (RF) signal that would convey the information that one seeks to communicate, and it would be required to couple differently delayed replicas of the RF signal to the radiating elements of a phased-array antenna. One or more of the proposed devices would be used to impose the delays and/or generate the delayed replicas of the RF-modulated optical pulse. The beam radiated or received by the antenna would be steered by use of a microprocessor-based control system that would adjust operational parameters of the devices to tune the delays to the required values. EIT is a nonlinear quantum optical interference effect that enables the propagation of light through an initially opaque medium. A suitable medium must have, among other properties, three quantum states (see Figure 1): an excited state (state 3), an upper ground state (state 2), and a lower ground state (state 1). These three states must form a closed system that exhibits no decays to other states in the presence of either or both of two laser beams: (1) a probe beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 1; and (2) a coupling beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 2. The probe beam is the one that is pulsed and modulated with an RF signal.

  3. Spectroscopic optimization of all-solid-state electrochromic devices using PANI

    NASA Astrophysics Data System (ADS)

    Hugot-Le Goff, Anne; Bernard, Marie-Claude; Bich, Vu T.; Binh, Nguyen T.; Zeng, Wen

    1997-12-01

    The interesting optical properties of polyaniline (PANI) allowed its utilization in all solid-state electrochromic devices. Using a sulfonic acid polymer as solid electrolyte gave to PANI an unusual optical behavior leading to electrochromic properties very superior to the properties that it has in any liquid inorganic electrolyte. The improved conductivity of PANI doped with AMP-sulfonate is displayed by the presence of a free-carriers tail even at pH as high as 4.5. The free-carriers tail is studied using UV/vis/near IR spectroscopy, and the kinetics of coloration/bleaching are studied using Optical Multichannel Analysis in the 1.5 - 3 eV range. The modifications of the PANI optical features by solid-state doping are examined. The possibility to still improve the performances of these devices--in particular their rate of color change--by using `secondarily doped' PANI is investigated, which requires a preliminary spectrochemical analysis of PANI films doped with camphorsulfonic acid and treated in m-cresol during their electrochemical polarization.

  4. An in-fiber integrated optofluidic device based on an optical fiber with an inner core.

    PubMed

    Yang, Xinghua; Yuan, Tingting; Teng, Pingping; Kong, Depeng; Liu, Chunlan; Li, Entao; Zhao, Enming; Tong, Chengguo; Yuan, Libo

    2014-06-21

    A new kind of optofluidic in-fiber integrated device based on a specially designed hollow optical fiber with an inner core is designed. The inlets and outlets are built by etching the surface of the optical fiber without damaging the inner core. A reaction region between the end of the fiber and a solid point obtained after melting is constructed. By injecting samples into the fiber, the liquids can form steady microflows and react in the region. Simultaneously, the emission from the chemiluminescence reaction can be detected from the remote end of the optical fiber through evanescent field coupling. The concentration of ascorbic acid (AA or vitamin C, Vc) is determined by the emission intensity of the reaction of Vc, H2O2, luminol, and K3Fe(CN)6 in the optical fiber. A linear sensing range of 0.1-3.0 mmol L(-1) for Vc is obtained. The emission intensity can be determined within 2 s at a total flow rate of 150 μL min(-1). Significantly, this work presents information for the in-fiber integrated optofluidic devices without spatial optical coupling.

  5. Testing methodologies and systems for semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Wieckowski, Michael

    Semiconductor optical amplifiers (SOA's) are gaining increased prominence in both optical communication systems and high-speed optical processing systems, due primarily to their unique nonlinear characteristics. This in turn, has raised questions regarding their lifetime performance reliability and has generated a demand for effective testing techniques. This is especially critical for industries utilizing SOA's as components for system-in-package products. It is important to note that very little research to date has been conducted in this area, even though production volume and market demand has continued to increase. In this thesis, the reliability of dilute-mode InP semiconductor optical amplifiers is studied experimentally and theoretically. The aging characteristics of the production level devices are demonstrated and the necessary techniques to accurately characterize them are presented. In addition, this work proposes a new methodology for characterizing the optical performance of these devices using measurements in the electrical domain. It is shown that optical performance degradation, specifically with respect to gain, can be directly qualified through measurements of electrical subthreshold differential resistance. This metric exhibits a linear proportionality to the defect concentration in the active region, and as such, can be used for prescreening devices before employing traditional optical testing methods. A complete theoretical analysis is developed in this work to explain this relationship based upon the device's current-voltage curve and its associated leakage and recombination currents. These results are then extended to realize new techniques for testing semiconductor optical amplifiers and other similarly structured devices. These techniques can be employed after fabrication and during packaged operation through the use of a proposed stand-alone testing system, or using a proposed integrated CMOS self-testing circuit. Both methods are capable of ascertaining SOA performance based solely on the subthreshold differential resistance signature, and are a first step toward the inevitable integration of self-testing circuits into complex optoelectronic systems.

  6. Optical memory system technology. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Zollars, G. F.

    1980-01-01

    Approximately 213 citations from the international literature which concern the development of the optical data storage system technology are presented. Topics covered include holographic computer storage devices, crystal, magneto, and electro-optics, imaging techniques, in addition to optical data processing and storage.

  7. Geometrical effect characterization of femtosecond-laser manufactured glass microfluidic chips based on optical manipulation of submicroparticles

    NASA Astrophysics Data System (ADS)

    Kotsifaki, Domna G.; Mackenzie, Mark D.; Polydefki, Georgia; Kar, Ajoy K.; Makropoulou, Mersini; Serafetinides, Alexandros A.

    2017-12-01

    Microfluidic devices provide a platform with wide ranging applications from environmental monitoring to disease diagnosis. They offer substantive advantages but are often not optimized or designed to be used by nonexpert researchers. Microchannels of a microanalysis platform and their geometrical characterization are of eminent importance when designing such devices. We present a method that is used to optimize each microchannel within a device using high-throughput particle manipulation. For this purpose, glass-based microfluidic devices, with three-dimensional channel networks of several geometrical sizes, were fabricated by employing laser fabrication techniques. The effect of channel geometry was investigated by employing an optical tweezer. The optical trapping force depends on the flow velocity that is associated with the dimensions of the microchannel. We observe a linear dependence of the trapping efficiency and of the fluid flow velocity, with the channel dimensions. We determined that the highest trapping efficiency was achieved for microchannels with aspect ratio equal to one. Numerical simulation validated the impact of the device design dimensions on the trapping efficiency. This investigation indicates that the geometrical characteristics, the flow velocity, and trapping efficiency are crucial and should be considered when fabricating microfluidic devices for cell studies.

  8. Device applications and structural and optical properties of Indigo - A biodegradable, low-cost organic semiconductor

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Pisane, Kelly L.; Sierros, Konstantinos; Seehra, Mohindar S.; Korakakis, Dimitris

    2015-03-01

    Currently, memory devices based on organic materials are attracting great attention due to their simplicity in device structure, mechanical flexibility, potential for scalability, low-cost potential, low-power operation, and large capacity for data storage. In a recent paper from our group, Indigo-based nonvolatile organic write-once-read-many-times (WORM) memory device, consisting of a 100nm layer of indigo sandwiched between an indium tin oxide (ITO) cathode and an Al anode, has been reported. This device is found to be at its low resistance state (ON state) and can be switched to high resistance state (OFF state) by applying a positive bias with ON/OFF current ratio of the device being up to 1.02 × e6. A summary of these results along with the structural and optical properties of indigo powder will be reported. Analysis of x-ray diffraction shows a monoclinic structure with lattice parameters a(b)[c] = 0.924(0.577)[0.1222]nm and β =117° . Optical absorption shows a band edge at 1.70 eV with peak of absorption occurring at 1.90 eV. These results will be interpreted in terms of the HOMO-LUMO bands of Indigo.

  9. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications

    PubMed Central

    Park, Dong-Wook; Schendel, Amelia A.; Mikael, Solomon; Brodnick, Sarah K.; Richner, Thomas J.; Ness, Jared P.; Hayat, Mohammed R.; Atry, Farid; Frye, Seth T.; Pashaie, Ramin; Thongpang, Sanitta; Ma, Zhenqiang; Williams, Justin C.

    2014-01-01

    Neural micro-electrode arrays that are transparent over a broad wavelength spectrum from ultraviolet to infrared could allow for simultaneous electrophysiology and optical imaging, as well as optogenetic modulation of the underlying brain tissue. The long-term biocompatibility and reliability of neural micro-electrodes also require their mechanical flexibility and compliance with soft tissues. Here we present a graphene-based, carbon-layered electrode array (CLEAR) device, which can be implanted on the brain surface in rodents for high-resolution neurophysiological recording. We characterize optical transparency of the device at >90% transmission over the ultraviolet to infrared spectrum and demonstrate its utility through optical interface experiments that use this broad spectrum transparency. These include optogenetic activation of focal cortical areas directly beneath electrodes, in vivo imaging of the cortical vasculature via fluorescence microscopy and 3D optical coherence tomography. This study demonstrates an array of interfacing abilities of the CLEAR device and its utility for neural applications. PMID:25327513

  10. Overview of detector technologies for EO/IR sensing applications

    NASA Astrophysics Data System (ADS)

    Sood, Ashok K.; Zeller, John W.; Welser, Roger E.; Puri, Yash R.; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal

    2016-05-01

    Optical sensing technology is critical for optical communication, defense and security applications. Advances in optoelectronics materials in the UV, Visible and Infrared, using nanostructures, and use of novel materials such as CNT and Graphene have opened doors for new approaches to apply device design methodology that are expected to offer enhanced performance and low cost optical sensors in a wide range of applications. This paper is intended to review recent advancements and present different device architectures and analysis. The chapter will briefly introduce the basics of UV and Infrared detection physics and various wave bands of interest and their characteristics [1, 2] We will cover the UV band (200-400 nm) and address some of the recent advances in nanostructures growth and characterization using ZnO/MgZnO based technologies and their applications. Recent advancements in design and development of CNT and Graphene based detection technologies have shown promise for optical sensor applications. We will present theoretical and experimental results on these device and their potential applications in various bands of interest.

  11. Holography and optical information processing; Proceedings of the Soviet-Chinese Joint Seminar, Bishkek, Kyrgyzstan, Sept. 21-26, 1991

    NASA Astrophysics Data System (ADS)

    Mikaelian, Andrei L.

    Attention is given to data storage, devices, architectures, and implementations of optical memory and neural networks; holographic optical elements and computer-generated holograms; holographic display and materials; systems, pattern recognition, interferometry, and applications in optical information processing; and special measurements and devices. Topics discussed include optical immersion as a new way to increase information recording density, systems for data reading from optical disks on the basis of diffractive lenses, a new real-time optical associative memory system, an optical pattern recognition system based on a WTA model of neural networks, phase diffraction grating for the integral transforms of coherent light fields, holographic recording with operated sensitivity and stability in chalcogenide glass layers, a compact optical logic processor, a hybrid optical system for computing invariant moments of images, optical fiber holographic inteferometry, and image transmission through random media in single pass via optical phase conjugation.

  12. Nonlinear model analysis of all-optical flip-flop and inverter operations of microring laser

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naoki; Kawamura, Yusaku; Aoki, Ryosuke; Kokubun, Yasuo

    2018-03-01

    We explore a theoretical model of bistability at two adjacent lasing wavelengths from an InGaAs/InGaAsP multiple quantum well (MQW) microring laser. We show that nonlinear effects on the phase and amplitude play significant roles in the lasing operations of the microring laser. Numerical simulations indicate that all-optical flip-flop operations and inverter operations can be observed within the same device by controlling the injection current. The validity of our analysis is confirmed by a comparison of the results for numerical simulations with experimental results of the lasing spectrum. We believe that the analysis presented in this paper will be useful for the future design of all-optical signal processing devices.

  13. On-chip passive three-port circuit of all-optical ordered-route transmission.

    PubMed

    Liu, Li; Dong, Jianji; Gao, Dingshan; Zheng, Aoling; Zhang, Xinliang

    2015-05-13

    On-chip photonic circuits of different specific functions are highly desirable and becoming significant demands in all-optical communication network. Especially, the function to control the transmission directions of the optical signals in integrated circuits is a fundamental research. Previous schemes, such as on-chip optical circulators, are mostly realized by Faraday effect which suffers from material incompatibilities between semiconductors and magneto-optical materials. Achieving highly functional circuits in which light circulates in a particular direction with satisfied performances are still difficult in pure silicon photonics platform. Here, we propose and experimentally demonstrate a three-port passive device supporting optical ordered-route transmission based on silicon thermo-optic effect for the first time. By injecting strong power from only one port, the light could transmit through the three ports in a strict order (1→2, 2→3, 3→1) while be blocked in the opposite order (1→3, 3→2, 2→1). The blocking extinction ratios and operation bandwidths have been investigated in this paper. Moreover, with compact size, economic fabrication process and great extensibility, this proposed photonic integrated circuit is competitive to be applied in on-chip all-optical information processing systems, such as path priority selector.

  14. On-chip passive three-port circuit of all-optical ordered-route transmission

    PubMed Central

    Liu, Li; Dong, Jianji; Gao, Dingshan; Zheng, Aoling; Zhang, Xinliang

    2015-01-01

    On-chip photonic circuits of different specific functions are highly desirable and becoming significant demands in all-optical communication network. Especially, the function to control the transmission directions of the optical signals in integrated circuits is a fundamental research. Previous schemes, such as on-chip optical circulators, are mostly realized by Faraday effect which suffers from material incompatibilities between semiconductors and magneto-optical materials. Achieving highly functional circuits in which light circulates in a particular direction with satisfied performances are still difficult in pure silicon photonics platform. Here, we propose and experimentally demonstrate a three-port passive device supporting optical ordered-route transmission based on silicon thermo-optic effect for the first time. By injecting strong power from only one port, the light could transmit through the three ports in a strict order (1→2, 2→3, 3→1) while be blocked in the opposite order (1→3, 3→2, 2→1). The blocking extinction ratios and operation bandwidths have been investigated in this paper. Moreover, with compact size, economic fabrication process and great extensibility, this proposed photonic integrated circuit is competitive to be applied in on-chip all-optical information processing systems, such as path priority selector. PMID:25970855

  15. Adjustable Focus Optical Correction Lens (AFOCL)

    NASA Technical Reports Server (NTRS)

    Peters, Bruce R.

    2001-01-01

    This report describes the activities and accomplishments along with the status of the characterization of a PLZT-based Adjustable Focus Optical Correction Lens (AFOCL) test device. The activities described in this report were undertaken by members of the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) under NASA Contract NAS8-00188. The effort was led by Dr. Bruce Peters as the Principal Investigator and supported by Dr. Patrick Reardon, Ms. Deborah Bailey, and graduate student Mr. Jeremy Wong. The activities outlined for the first year of the contract were to identify vendors and procure a test device along with performing the initial optical characterization of the test device. This activity has been successfully executed and test results are available and preliminary information was published at the SPIE Photonics West Conference in San Jose, January 2001. The paper, "Preliminary investigation of an active PLZT lens," was well received and generated response with several questions from the audience. A PLZT test device has been commercially procured from an outside vendor: The University of California in San Diego (UCSD) in partnership with New Interconnect Packaging Technologies (NIPT) Inc. The device has been subjected to several tests to characterize the optical performance of the device at wavelengths of interest. The goal was to evaluate the AFOCL similar to a conventional lens and measure any optical aberrations present due to the PLZT material as a deviation in the size of the diffraction limited spot (blur), the presence of diffracted energy into higher orders surrounding the focused spot (a variation in Strehl), and/or a variation or spread in the location of the focused energy away from the optical axis (a bias towards optical wedge, spherical, comma, or other higher order aberrations). While data has been collected indicative of the imaging quality of the AFOCL test device, it was not possible to fully characterize the optical performance of the AFOCL alone because there were significant optical distortions due to fabrication related issues.

  16. VCSELs for exascale computing, computer farms, and green photonics

    NASA Astrophysics Data System (ADS)

    Hofmann, Werner; Moser, Philip; Wolf, Philip; Larisch, Gunter; Li, Hui; Li, Wei; Lott, James; Bimberg, Dieter

    2012-11-01

    The bandwidth-induced communication bottleneck due to the intrinsic limitations of metal interconnects is inhibiting the performance and environmental friendliness of todaýs supercomputers, data centers, and in fact all other modern electrically interconnected and interoperable networks such as data farms and "cloud" fabrics. The same is true for systems of optical interconnects (OIs), where even when the metal interconnects are replaced with OIs the systems remain limited by bandwidth, physical size, and most critically the power consumption and lifecycle operating costs. Vertical-cavity surface-emitting lasers (VCSELs) are ideally suited to solve this dilemma. Global communication providers like Google Inc., Intel Inc., HP Inc., and IBM Inc. are now producing optical interconnects based on VCSELs. The optimal bandwidth per link may be analyzed by by using Amdahĺs Law and depends on the architecture of the data center and the performance of the servers within the data center. According to Google Inc., a bandwidth of 40 Gb/s has to be accommodated in the future. IBM Inc. demands 80 Tbps interconnects between solitary server chips in 2020. We recently realized ultrahigh bit rate VCSELs up to 49 Gb/s suited for such optical interconnects emitting at 980 nm. These devices show error-free transmission at temperatures up to 155°C and operate beyond 200°C. Single channel data-rates of 40 Gb/s were achieved up to 75°C. Record high energy efficiencies close to 50 fJ/bit were demonstrated for VCSELs emitting at 850 nm. Our devices are fabricated using a full three-inch wafer process, and the apertures were formed by in-situ controlled selective wet oxidation using stainless steel-based vacuum equipment of our own design. assembly, and operation. All device data are measured, recorded, and evaluated by our proprietary fully automated wafer mapping probe station. The bandwidth density of our present devices is expected to be scalable from about 100 Gbps/mm² to a physical limit of roughly 15 Tbps/mm² based on the current 12.5 Gb/s VCSEL technology. Still more energy-efficient and smaller volume laser diode devices dissipating less heat are mandatory for further up scaling of the bandwidth. Novel metal-clad VCSELs enable a reduction of the device's footprint for potentially ultrashort range interconnects by 1 to 2 orders of magnitude compared to conventional VCSELs thus enabling a similar increase of device density and bandwidth.

  17. Stand-alone scattering optical device using holographic photopolymer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Jongchan; Lee, KyeoReh; Park, YongKeun

    2016-03-01

    When a light propagates through highly disordered medium, its optical parameters such as amplitude, phase and polarization states are completely scrambled because of multiple scattering events. Since the multiple scattering is a fundamental optical process that contains extremely high degrees of freedom, optical information of a transmitted light is totally mingled. Until recently, the presence of multiple scattering in an inhomogeneous medium is considered as a major obstacle when manipulating a light transmitting through the medium. However, a recent development of wavefront shaping techniques enable us to control the propagation of light through turbid media; a light transmitting through a turbid medium can be effectively controlled by modulating the spatial profile of the incident light using spatial light modulator. In this work, stand-alone scattering optical device is proposed; a holographic photopolymer film, which is much economic compared to the other digital spatial light modulators, is used to record and reconstruct permanent wavefront to generate optical field behind a scattering medium. By employing our method, arbitrary optical field can be generated since the scattering medium completely mixes all the optical parameters which allow us to access all the optical information only by modulating spatial phase profile of the impinging wavefront. The method is experimentally demonstrated in both the far-field and near-field regime where it shows promising fidelity and stability. The proposed stand-alone scattering optical device will opens up new avenues for exploiting the randomness inherent in disordered medium.

  18. A macrochip interconnection network enabled by silicon nanophotonic devices.

    PubMed

    Zheng, Xuezhe; Cunningham, John E; Koka, Pranay; Schwetman, Herb; Lexau, Jon; Ho, Ron; Shubin, Ivan; Krishnamoorthy, Ashok V; Yao, Jin; Mekis, Attila; Pinguet, Thierry

    2010-03-01

    We present an advanced wavelength-division multiplexing point-to-point network enabled by silicon nanophotonic devices. This network offers strictly non-blocking all-to-all connectivity while maximizing bisection bandwidth, making it ideal for multi-core and multi-processor interconnections. We introduce one of the key components, the nanophotonic grating coupler, and discuss, for the first time, how this device can be useful for practical implementations of the wavelength-division multiplexing network using optical proximity communications. Finite difference time-domain simulation of the nanophotonic grating coupler device indicates that it can be made compact (20 microm x 50 microm), low loss (3.8 dB), and broadband (100 nm). These couplers require subwavelength material modulation at the nanoscale to achieve the desired functionality. We show that optical proximity communication provides unmatched optical I/O bandwidth density to electrical chips, which enables the application of wavelength-division multiplexing point-to-point network in macrochip with unprecedented bandwidth-density. The envisioned physical implementation is discussed. The benefits of such an interconnect network include a 5-6x improvement in latency when compared to a purely electronic implementation. Performance analysis shows that the wavelength-division multiplexing point-to-point network offers better overall performance over other optical network architectures.

  19. Radiation effects in materials for optical interferometric devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koumvakalis, N.; Jani, M.G.; Halliburton, L.E.

    The effects of ionizing radiation have been investigated in a series of materials commonly used in optical interferometric devices. Included in the study were three glass-ceramics (Zerodur, Cer-Vit 101, and Cer-Vit 142) and one Faraday-rotator glass (SF-57). Each glass-ceramic was irradiated at room temperature with 1.5-MeV electrons from a Van De Graaff accelerator. Similar irradiations were done on the Faraday-rotator glass at room temperature and 77 K. Optical absorption and electron spin resonance measurements provided a monitor of the radiation-induced point defects in all cases. The spectral characteristics and the production and thermal annealing behavior of these defects are described,more » and their possible effect on the performance of optical devices which incorporate these materials is considered.« less

  20. Fiber Optic Temperature Sensor Based on Multimode Interference Effects

    NASA Astrophysics Data System (ADS)

    Aguilar-Soto, J. G.; Antonio-Lopez, J. E.; Sanchez-Mondragon, J. J.; May-Arrioja, D. A.

    2011-01-01

    A novel fiber optic temperature sensor based on multimode interference was designed, fabricated and tested. The sensor is very simple and inexpensive since we only need to splice a section of multimode fiber between two single mode fibers. Using this device a sensing range of 25°C to 375°C is demonstrated. We should also highlight that due to the pass-band filter response of MMI devices, multiplexing is rather simple by just changing the length of the multimode section.

  1. Optical testing of aspheres based on photochromic computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Pariani, Giorgio; Bianco, Andrea; Bertarelli, Chiara; Spanó, Paolo; Molinari, Emilio

    2010-07-01

    Aspherical optics are widely used in modern optical telescopes and instrumentation because of their ability to reduce aberrations with a simple optical system. Testing their optical quality through null interferometry is not trivial as reference optics are not available. Computer-Generated Holograms (CGHs) are efficient devices that allow to generate a well-defined optical wavefront. We developed rewritable Computer Generated Holograms for the interferometric test of aspheres based on photochromic layers. These photochromic holograms are cost-effective and the method of production does not need any post exposure process.

  2. Performance limitations of translationally symmetric nonimaging devices

    NASA Astrophysics Data System (ADS)

    Bortz, John C.; Shatz, Narkis E.; Winston, Roland

    2001-11-01

    The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.

  3. Deoxyribonucleic acid (DNA)-based optical materials

    NASA Astrophysics Data System (ADS)

    Grote, James G.; Heckman, Emily M.; Hagen, Joshua A.; Yaney, Perry P.; Subramanyam, Guru; Clarson, Stephen J.; Diggs, Darnell E.; Nelson, Robert L.; Zetts, John S.; Hopkins, F. Kenneth; Ogata, Naoya

    2004-12-01

    Optical materials for waveguiding applications must possess the desired optical and electromagnetic properties for optimal device performance. Purified deoxyribonucleic acid (DNA), derived from salmon sperm, has been investigated for use as an optical waveguide material. In this paper we present the materials processing and optical and electromagnetic characterization of this purified DNA to render a high quality, low loss optical waveguide material.

  4. Photonic Switching Devices Using Light Bullets

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    1997-01-01

    The present invention is directed toward a unique ultra-fast, all-optical switching device or switch made with readily available, relatively inexpensive, highly nonlinear photonic glasses. These photonic glasses have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counterpropagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide, and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. One advantage presented by the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another feature of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in highly nonlinear glasses.

  5. Optical, electrical, and magnetic field studies of organic materials for light emitting diodes and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Basel, Tek Prasad

    We studied optical, electrical, and magnetic field responses of films and devices based on organic semiconductors that are used for organic light emitting diodes (OLEDs) and photovoltaic (OPV) solar cell applications. Our studies show that the hyperfine interaction (HFI)-mediated spin mixing is the key process underlying various magnetic field effects (MFE) and spin transport in aluminum tris(8-hydroxyquinoline)[Alq3]-based OLEDs and organic spin-valve (OSV). Conductivity-detected magnetic resonance in OLEDs and magneto-resistance (MR) in OSVs show substantial isotope dependence. In contrast, isotope-insensitive behavior in the magneto-conductance (MC) of same devices is explained by the collision of spin ½ carriers with triplet polaron pairs. We used steady state optical spectroscopy for studying the energy transfer dynamics in films and OLEDs based on host-guest blends of the fluorescent polymer and phosphorescent molecule. We have also studied the magnetic-field controlled color manipulation in these devices, which provide a strong proof for the `polaron-pair' mechanism underlying the MFE in organic devices. The critical issue that hampers organic spintronics device applications is significant magneto-electroluminescence (MEL) at room temperature (RT). Whereas inorganic spin valves (ISVs) show RT magneto-resistance, MR>80%, however, the devices do not exhibit electroluminescence (EL). In contrast, OLEDs show substantive EL emission, and are particularly attractive because of their flexibility, low cost, and potential for multicolor display. We report a conceptual novel hybrid organic/inorganic spintronics device (h-OLED), where we employ both ISV with large MR at RT, and OLED that has efficient EL emission. We investigated the charge transfer process in an OPV solar cell through optical, electrical, and magnetic field measurements of thin films and devices based on a low bandgap polymer, PTB7 (fluorinated poly-thienothiophene-benzodithiophene). We found that one of the major losses that limit the power conversion efficiency of OPV devices is the formation of triplet excitons in the polymer through recombination of charge-transfer (CT) excitons at the interface, and presented a method to suppress the dissociation of CT states by incorporating the spin ½ additive, galvinoxyl in the bulk heterojunction architecture of the active organic blend layer.

  6. A SnS2-based photomemristor driven by sun

    NASA Astrophysics Data System (ADS)

    Dragoman, Mircea; Batiri, Mihail; Dinescu, Adrian; Ciobanu, Vladimir; Rusu, Emil; Dragoman, Daniela; Tiginyanu, Ion

    2018-01-01

    We demonstrate experimentally that a sample of a SnS2 layered semiconductor compound with the area of 1 cm2 and the thickness of 100 μm, contacted laterally by silver electrodes with the area of 1 mm2, acts naturally as a memristor device when illuminated by a sun simulator. Although the conductance of the device changes with the number of pulses or voltages sweeps, the current-voltage dependence is almost linear, showing only a very narrow but clearly pinched hysteresis, which is the main imprint of a memristor. This SnS2-based solid-state miniaturized photomemristor could be used for the implementation of all-optical neuromorphic circuits based on artificial neurons and synapses, oriented to learning algorithms of living organisms.

  7. Extreme triple asymmetric (ETAS) epitaxial designs for increased efficiency at high powers in 9xx-nm diode lasers

    NASA Astrophysics Data System (ADS)

    Kaul, T.; Erbert, G.; Maaßdorf, A.; Martin, D.; Crump, P.

    2018-02-01

    Broad area lasers that are tailored to be most efficient at the highest achievable optical output power are sought by industry to decrease operation costs and improve system performance. Devices using Extreme-Double-ASymmetric (EDAS) epitaxial designs are promising candidates for improved efficiency at high optical output powers due to low series resistance, low optical loss and low carrier leakage. However, EDAS designs leverage ultra-thin p-side waveguides, meaning that the optical mode is shifted into the n-side waveguide, resulting in a low optical confinement in the active region, low gain and hence high threshold current, limiting peak performance. We introduce here explicit design considerations that enable EDAS-based devices to be developed with increased optical confinement in the active layer without changing the p-side layer thicknesses. Specifically, this is realized by introducing a third asymmetric component in the vicinity of the quantum well. We call this approach Extreme-Triple-ASymmetric (ETAS) design. A series of ETAS-based vertical designs were fabricated into broad area lasers that deliver up to 63% power conversion efficiency at 14 W CW optical output power from a 100 μm stripe laser, which corresponds to the operation point of a kW optical output power in a laser bar. The design process, the impact of structural changes on power saturation mechanisms and finally devices with improved performance will be presented.

  8. Developing improved silica materials and devices for integrated optics applications

    NASA Astrophysics Data System (ADS)

    Maker, Ashley Julia

    Due to their favorable optical and material properties, silica-based materials and devices have found many important applications throughout science and engineering, especially in sensing, communications, lasers, and integrated optics. Often, silica's properties ultimately limit the performance of these applications. To address this limitation, this thesis investigates the development of improved silica materials and optical devices, including silica films, coatings, waveguides, resonators, lasers, and sensors. Using sol-gel chemistry and microfabrication procedures, custom silica materials and devices are developed to benefit many applications. In this thesis, it is first demonstrated how the low optical loss of silica enables fabrication of low loss integrated waveguides and toroidal resonators with ultra-high quality factors. Then, by adding various rare earth and metal dopants to sol-gel silica, hybrid silica materials and devices are made with custom properties such as high refractive index and lasing capabilities. Finally, several applications are demonstrated, including the use of high refractive index coatings to control the behavior of light, development of Raman and ultra-low threshold rare earth microlasers, and a heterodyned microlaser sensor with significantly improved sensing performance. Future applications and directions of this research are also discussed.

  9. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.

    PubMed

    Provenzano, Clementina; Pagliusi, Pasquale; Cipparrone, Gabriella; Royes, Jorge; Piñol, Milagros; Oriol, Luis

    2014-10-09

    Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated.

  10. Nanometric holograms based on a topological insulator material

    PubMed Central

    Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min

    2017-01-01

    Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security. PMID:28516906

  11. Electrode with transparent series resistance for uniform switching of optical modulation devices

    DOEpatents

    Tench, D Morgan [Camarillo, CA; Cunningham, Michael A [Thousand Oaks, CA; Kobrin, Paul H [Newbury Park, CA

    2008-01-08

    Switching uniformity of an optical modulation device for controlling the propagation of electromagnetic radiation is improved by use of an electrode comprising an electrically resistive layer that is transparent to the radiation. The resistive layer is preferably an innerlayer of a wide-bandgap oxide sandwiched between layers of indium tin oxide or another transparent conductor, and may be of uniform thickness, or may be graded so as to provide further improvement in the switching uniformity. The electrode may be used with electrochromic and reversible electrochemical mirror (REM) smart window devices, as well as display devices based on various technologies.

  12. 1550 nm superluminescent diode and anti-Stokes effect CCD camera based optical coherence tomography for full-field optical metrology

    NASA Astrophysics Data System (ADS)

    Kredzinski, Lukasz; Connelly, Michael J.

    2011-06-01

    Optical Coherence Tomography (OCT) is a promising non-invasive imaging technology capable of carrying out 3D high-resolution cross-sectional images of the internal microstructure of examined material. However, almost all of these systems are expensive, requiring the use of complex optical setups, expensive light sources and complicated scanning of the sample under test. In addition most of these systems have not taken advantage of the competitively priced optical components available at wavelength within the main optical communications band located in the 1550 nm region. A comparatively simple and inexpensive full-field OCT system (FF-OCT), based on a superluminescent diode (SLD) light source and anti-stokes imaging device was constructed, to perform 3D cross-sectional imaging. This kind of inexpensive setup with moderate resolution could be easily applicable in low-level biomedical and industrial diagnostics. This paper involves calibration of the system and determines its suitability for imaging structures of biological tissues such as teeth, which has low absorption at 1550 nm.

  13. Broadband thermal optical limiter for the protection of eyes and sensors

    NASA Astrophysics Data System (ADS)

    Justus, Brian L.; Huston, Alan L.; Campillo, Anthony J.

    1994-05-01

    A broadband thermal optical limiter for protecting a light sensitive object from intense laser beams at all near ultraviolet, visible and near infrared wavelengths is disclosed. The broadband thermal optical limiter comprises: a sample cell containing a solution of broadband absorber material dissolved in a thermal solvent; and a first optical device for converging an incident laser beam into the sample cell. The sample cell is responsive to a converged incident laser beam below a predetermined intensity level for passing therethrough the converged incident laser beam below the predetermined intensity level. The sample cell is also responsive to a converged incident laser beam at or above a predetermined intensity level for thermally defocusing substantially all of the converged incident laser beam in different directions and passing therethrough only a remaining small portion of the converged incident laser beam at or above the predetermined intensity level. The broadband thermal optical limiter further includes a second optical device for focusing substantially all of the laser beam passing through the sample cell into the light sensitive object to be protected.

  14. Application and System Design of Elastomer Based Optofluidic Lenses

    NASA Astrophysics Data System (ADS)

    Savidis, Nickolaos

    Adaptive optic technology has revolutionized real time correction of wavefront aberrations. Optofluidic based applied optic devices have offered an opportunity to produce flexible refractive lenses in the correction of wavefronts. Fluidic lenses have superiority relative to their solid lens counterparts in their capabilities of producing tunable optical systems, that when synchronized, can produce real time variable systems with no moving parts. We have developed optofluidic fluidic lenses for applications of applied optical devices, as well as ophthalmic optic devices. The first half of this dissertation discusses the production of fluidic lenses as optical devices. In addition, the design and testing of various fluidic systems made with these components are evaluated. We begin with the creation of spherical or defocus singlet fluidic lenses. We then produced zoom optical systems with no moving parts by synchronizing combinations of these fluidic spherical lenses. The variable power zoom system incorporates two singlet fluidic lenses that are synchronized. The coupled device has no moving parts and has produced a magnification range of 0.1 x to 10 x or a 20 x magnification range. The chapter after fluidic zoom technology focuses on producing achromatic lens designs. We offer an analysis of a hybrid diffractive and refractive achromat that offers discrete achromatized variable focal lengths. In addition, we offer a design of a fully optofluidic based achromatic lens. By synchronizing the two membrane surfaces of the fluidic achromat we develop a design for a fluidic achromatic lens. The second half of this dissertation discusses the production of optofluidic technology in ophthalmic applications. We begin with an introduction to an optofluidic phoropter system. A fluidic phoropter is designed through the combination of a defocus lens with two cylindrical fluidic lenses that are orientated 45° relative to each other. Here we discuss the designs of the fluidic cylindrical lens coupled with a previously discussed defocus singlet lens. We then couple this optofluidic phoropter with relay optics and Shack-Hartmann wavefront sensing technology to produce an auto-phoropter device. The auto-phoropter system combines a refractometer designed Shack-Hartmann wavefront sensor with the compact refractive fluidic lens phoropter. This combination allows for the identification and control of ophthalmic cylinder, cylinder axis, as well as refractive error. The closed loop system of the fluidic phoropter with refractometer enables for the creation of our see-through auto-phoropter system. The design and testing of several generations of transmissive see-through auto-phoropter devices are presented in this section.

  15. A plastic total internal reflection-based photoluminescence device for enzymatic biosensors

    NASA Astrophysics Data System (ADS)

    Thakkar, Ishan G.

    Growing concerns for quality of water, food and beverages in developing and developed countries drive sizeable markets for mass-producible, low cost devices that can measure the concentration of contaminant chemicals in water, food, and beverages rapidly and accurately. Several fiber-optic enzymatic biosensors have been reported for these applications, but they exhibit very strong presence of scattered excitation light in the signal for sensing, requiring expensive thin-film filters, and their non-planar structure makes them challenging to mass-produce. Several other planar optical waveguide-based biosensors prove to be relatively costly and more fragile due to constituent materials and the techniques involved in their fabrication. So, a plastic total internal reflection (TIR)-based low cost, low scatter, field-portable device for enzymatic biosensors is fabricated and demonstrated. The design concept of the TIR-based photoluminescent enzymatic biosensor device is explained. An analysis of economical materials with appropriate optical and chemical properties is presented. PMMA and PDMS are found to be appropriate due to their high chemical resistance, low cost, high optical transmittance and low auto-fluorescence. The techniques and procedures used for device fabrication are discussed. The device incorporated a PMMA-based optical waveguide core and PDMS-based fluid cell with simple multi-mode fiber-optics using cost-effective fabrication techniques like molding and surface modification. Several techniques of robustly depositing photoluminescent dyes on PMMA core surface are discussed. A pH-sensitive fluorescent dye, fluoresceinamine, and an O2-sensitive phosphorescent dye, Ru(dpp) both are successfully deposited using Si-adhesive gel-based as well as HydroThane-based deposition methods. Two different types of pH-sensors using two different techniques of depositing fluoresceinamine are demonstrated. Also, the effect of concentration of fluoresceinamine-dye molecules on fluorescence intensity and scattered excitation light intensity is investigated. The fluorescence intensity to the scattered excitation light intensity ratio for dye deposition is found to increase with increase in concentration. However, both the absolute fluorescence intensity and absolute scatter intensity are found to decrease in different amounts with an increase in concentration. An enzymatic hydrogen peroxide (H2O2) sensor is made and demonstrated by depositing Ruthenium-based phosphorescent dye (Ru(dpp) 3) and catalase-enzyme on the surface of the waveguide core. The O 2-sensitive phosphorescence of Ru(dpp)3 is used as a transduction signal and the catalase-enzyme is used as a bio-component for sensing. The H2O2 sensor exhibits a phosphorescence signal to scattered excitation light ratio of 100+/-18 without filtering. The unfiltered device demonstrates a detection limit of (2.20+/-0.6) microM with the linear range from 200microM to 20mM. An enzymatic lactose sensor is designed and characterized using Si-adhesive gel based Ru(dpp)3 deposition and oxidase enzyme. The lactose sensor exhibits the linear range of up to 0.8mM, which is too small for its application in industrial process control. So, a flow cell-based sensor device with a fluid reservoir is proposed and fabricated to increase the linear range of the sensor. Also, a multi-channel pH-sensor device with four channels is designed and fabricated for simultaneous sensing of multiple analytes.

  16. A 2-dimensional optical architecture for solving Hamiltonian path problem based on micro ring resonators

    NASA Astrophysics Data System (ADS)

    Shakeri, Nadim; Jalili, Saeed; Ahmadi, Vahid; Rasoulzadeh Zali, Aref; Goliaei, Sama

    2015-01-01

    The problem of finding the Hamiltonian path in a graph, or deciding whether a graph has a Hamiltonian path or not, is an NP-complete problem. No exact solution has been found yet, to solve this problem using polynomial amount of time and space. In this paper, we propose a two dimensional (2-D) optical architecture based on optical electronic devices such as micro ring resonators, optical circulators and MEMS based mirror (MEMS-M) to solve the Hamiltonian Path Problem, for undirected graphs in linear time. It uses a heuristic algorithm and employs n+1 different wavelengths of a light ray, to check whether a Hamiltonian path exists or not on a graph with n vertices. Then if a Hamiltonian path exists, it reports the path. The device complexity of the proposed architecture is O(n2).

  17. Exploring Novel Crystals and Designs for Acousto-Optic Devices

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Jonathan B.

    Acousto-optic devices are a versatile technology that are driven electronically to precisely and rapidly control the intensity, frequency, and propagation direction of a laser beam. Applications include acousto-optic scanners, filters, mode lockers, and modulators. Despite the popularity of acousto-optic devices, there currently is no UV transparent device that can satisfy the requirements of the atomic clock and quantum computing communities. In this thesis, I describe my experimental efforts for discovering a new UV transparent, acousto-optic crystal that can meet the experimental requirements. I also present my graphical representations for locating practical and efficient acousto-optic designs in a given medium. The first part of this thesis describes how to measure the elastic-stiffness and photoelastic coefficients of a given crystal. The elastic-stiffness coefficients are essential for designing acousto-optic devices because they determine the velocity, diffraction, and polarization of acoustic waves in a given medium. I used both resonant ultrasound spectroscopy and a modified version of Schaefer-Bergman diffraction to measure elastic coefficients. I discuss in detail the strengths, differences, and similarities of the two experiments. The photoelastic coefficients are necessary for determining the diffraction efficiency of a given acousto-optic geometry. Similar to the elastic coefficients, I employ a modified version of the Schaefer-Bergmann experiment to measure the photoelastic coefficients. I corroborate the measured results with the well established Dixon experiment. The second part of this thesis describes four different graphical representations that help locate practical and efficient acousto-optic designs. I describe in detail each algorithm and how to interpret the calculated results. Several examples are provided for commonly used acosuto-optic materials. The thesis concludes by describing the design and performance of an acousto-optic frequency shifter that was designed based on the culmination my research effort.

  18. A compact thermo-optical multimode-interference silicon-based 1 × 4 nano-photonic switch.

    PubMed

    Zhou, Haifeng; Song, Junfeng; Chee, Edward K S; Li, Chao; Zhang, Huijuan; Lo, Guoqiang

    2013-09-09

    An ultra-compact multimode-interference (MMI)-based 1 × 4 nano-photonic switch is demonstrated by employing silicon thermo-optical effect on SOI platform. The device performance is systematically characterized by comprehensively investigating the constituent building blocks, including 1 × 4 power splitter, 4 × 4 MMI coupler and groove-isolated thermo-optical heaters. An instructive model is established to statistically estimate the required power consumption and investigate the influence of the power imbalance of the 4 × 4 MMI coupler on the switching performance. At the designed wavelength of 1550 nm, the average insertion loss of different switching states is 1.7 dB, and the transmission imbalance is 1.05 dB. The worst extinction ratio and crosstalk of all the output ports reach 11.48 dB and -11.38 dB, respectively.

  19. Demonstration of nanoimprinted hyperlens array for high-throughput sub-diffraction imaging

    NASA Astrophysics Data System (ADS)

    Byun, Minsueop; Lee, Dasol; Kim, Minkyung; Kim, Yangdoo; Kim, Kwan; Ok, Jong G.; Rho, Junsuk; Lee, Heon

    2017-04-01

    Overcoming the resolution limit of conventional optics is regarded as the most important issue in optical imaging science and technology. Although hyperlenses, super-resolution imaging devices based on highly anisotropic dispersion relations that allow the access of high-wavevector components, have recently achieved far-field sub-diffraction imaging in real-time, the previously demonstrated devices have suffered from the extreme difficulties of both the fabrication process and the non-artificial objects placement. This results in restrictions on the practical applications of the hyperlens devices. While implementing large-scale hyperlens arrays in conventional microscopy is desirable to solve such issues, it has not been feasible to fabricate such large-scale hyperlens array with the previously used nanofabrication methods. Here, we suggest a scalable and reliable fabrication process of a large-scale hyperlens device based on direct pattern transfer techniques. We fabricate a 5 cm × 5 cm size hyperlenses array and experimentally demonstrate that it can resolve sub-diffraction features down to 160 nm under 410 nm wavelength visible light. The array-based hyperlens device will provide a simple solution for much more practical far-field and real-time super-resolution imaging which can be widely used in optics, biology, medical science, nanotechnology and other closely related interdisciplinary fields.

  20. Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms

    NASA Astrophysics Data System (ADS)

    Sayrin, Clément; Junge, Christian; Mitsch, Rudolf; Albrecht, Bernhard; O'Shea, Danny; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno

    2015-10-01

    The realization of nanophotonic optical isolators with high optical isolation even at ultralow light levels and low optical losses is an open problem. Here, we employ the link between the local polarization of strongly confined light and its direction of propagation to realize low-loss nonreciprocal transmission through a silica nanofiber at the single-photon level. The direction of the resulting optical isolator is controlled by the spin state of cold atoms. We perform our experiment in two qualitatively different regimes, i.e., with an ensemble of cold atoms where each atom is weakly coupled to the waveguide and with a single atom strongly coupled to the waveguide mode. In both cases, we observe simultaneously high isolation and high forward transmission. The isolator concept constitutes a nanoscale quantum optical analog of microwave ferrite resonance isolators, can be implemented with all kinds of optical waveguides and emitters, and might enable novel integrated optical devices for fiber-based classical and quantum networks.

  1. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.

    PubMed

    Lambrecht, Joris M; Kirsch, Robert F

    2014-11-01

    Inertial and magnetic sensors are valuable for untethered, self-contained human movement analysis. Very recently, complete integration of inertial sensors, magnetic sensors, and processing into single packages, has resulted in miniature, low power devices that could feasibly be employed in an implantable motion capture system. We developed a wearable sensor system based on a commercially available system-in-package inertial and magnetic sensor. We characterized the accuracy of the system in measuring 3-D orientation-with and without magnetometer-based heading compensation-relative to a research grade optical motion capture system. The root mean square error was less than 4° in dynamic and static conditions about all axes. Using four sensors, recording from seven degrees-of-freedom of the upper limb (shoulder, elbow, wrist) was demonstrated in one subject during reaching motions. Very high correlation and low error was found across all joints relative to the optical motion capture system. Findings were similar to previous publications using inertial sensors, but at a fraction of the power consumption and size of the sensors. Such ultra-small, low power sensors provide exciting new avenues for movement monitoring for various movement disorders, movement-based command interfaces for assistive devices, and implementation of kinematic feedback systems for assistive interventions like functional electrical stimulation.

  2. Plasmon-enhanced versatile optical nonlinearities in a Au-Ag-Au multi-segmental hybrid structure.

    PubMed

    Yao, Lin-Hua; Zhang, Jun-Pei; Dai, Hong-Wei; Wang, Ming-Shan; Zhang, Lu-Man; Wang, Xia; Han, Jun-Bo

    2018-06-27

    A Au-Ag-Au multi-segmental hybrid structure has been synthesized by using an electrodeposition method based on an anodic aluminum oxide (AAO) membrane. The third-order optical nonlinearities, second harmonic generation (SHG) and photoluminescence (PL) properties containing ultrafast supercontinuum generation and plasmon mediated thermal emission have been investigated. Significant optical enhancements have been obtained near surface plasmon resonance wavelength in all the abovementioned nonlinear processes. Comparative studies between the Au-Ag-Au multi-segmental hybrid structure and the corresponding single-component Au and Ag hybrid structures demonstrate that the Au-Ag-Au multi-segmental hybrid structure has much larger optical nonlinearities than its counterparts. These results demonstrate that the Au-Ag-Au hybrid structure is a promising candidate for applications in plasmonic devices and enhancement substrates.

  3. Optimization of coupled device based on optical fiber with crystalline and integrated resonators

    NASA Astrophysics Data System (ADS)

    Bassir, David; Salzenstein, Patrice; Zhang, Mingjun

    2017-05-01

    Because of the advantages in terms of reproducibility for optical resonators on chip which are designed of various topologies and integration with optical devices. To increase the Q-factor from the lower rang [104 - 106 ] to higher one [108 -1010] [1-4] one use crystalline resonators. It is much complicated to couple an optical signal from a tapered fiber to crystalline resonator than from a defined ridge to a resonator designed on a chip. In this work, we will focus on the optimization of the crystalline resonators under straight wave guide (based on COMSOL multi-physic software) [5- 7] and subject also to technological constraints of manufacturing. The coupling problem at the Nano scale makes our optimizations problem more dynamics in term of design space.

  4. Measurement of curvature and temperature using multimode interference devices

    NASA Astrophysics Data System (ADS)

    Guzman-Sepulveda, J. R.; Aguilar-Soto, J. G.; Torres-Cisneros, M.; Ibarra-Manzano, O. G.; May-Arrioja, D. A.

    2011-09-01

    In this paper we propose the fabrication, implementation, and testing of a novel fiber optic sensor based on Multimode Interference (MMI) effects for independent measurement of curvature and temperature. The development of fiber based MMI devices is relatively new and since they exhibit a band-pass filter response they can be used in different applications. The operating mechanism of our sensor is based on the self-imaging phenomena that occur in multimode fibers (MMF), which is related to the interference of the propagating modes and their accumulated phase. We demonstrate that the peak wavelength shifts with temperature variations as a result of changes in the accumulated phase through thermo-optics effects, while the intensity of the peak wavelength is reduced as the curvature increases since we start to loss higher order modes. In this way both measurements are obtained independently with a single fiber device. Compared to other fiber-optic sensors, our sensor features an extremely simple structure and fabrication process, and hence cost effectiveness.

  5. 3D printing of tissue-simulating phantoms as a traceable standard for biomedical optical measurement

    NASA Astrophysics Data System (ADS)

    Dong, Erbao; Wang, Minjie; Shen, Shuwei; Han, Yilin; Wu, Qiang; Xu, Ronald

    2016-01-01

    Optical phantoms are commonly used to validate and calibrate biomedical optical devices in order to ensure accurate measurement of optical properties in biological tissue. However, commonly used optical phantoms are based on homogenous materials that reflect neither optical properties nor multi-layer heterogeneities of biological tissue. Using these phantoms for optical calibration may result in significant bias in biological measurement. We propose to characterize and fabricate tissue simulating phantoms that simulate not only the multi-layer heterogeneities but also optical properties of biological tissue. The tissue characterization module detects tissue structural and functional properties in vivo. The phantom printing module generates 3D tissue structures at different scales by layer-by-layer deposition of phantom materials with different optical properties. The ultimate goal is to fabricate multi-layer tissue simulating phantoms as a traceable standard for optimal calibration of biomedical optical spectral devices.

  6. Planar integrated optics, a new solution in optical instrumentation

    NASA Astrophysics Data System (ADS)

    Haguenauer, P.

    2017-11-01

    Planar integrated optics present an attractive solution for future instrumentation, both in ground and space based applications. The technologies used in the manufacturing of such components, supported by research laboratories as well as industries, are mature enough to provide complex devices.

  7. Optical-electronic device based on diffraction optical element for control of special protective tags executed from luminophor

    NASA Astrophysics Data System (ADS)

    Polyakov, M.; Odinokov, S.

    2017-05-01

    The report focuses on special printing industry, which is called secure printing, which uses printing techniques to prevent forgery or falsification of security documents. The report considered the possibility of establishing a spectral device for determining the authenticity of certain documents that are protected by machine-readable luminophor labels. The device works in two spectral ranges - visible and near infrared that allows to register Stokes and anti-Stokes spectral components of protective tags. The proposed device allows verification of the authenticity of security documents based on multiple criteria in different spectral ranges. It may be used at enterprises related to the production of security printing products, expert units of law enforcement bodies at check of authenticity of banknotes and other structures.

  8. Wavelength tunable MEMS VCSELs for OCT imaging

    NASA Astrophysics Data System (ADS)

    Sahoo, Hitesh Kumar; Ansbæk, Thor; Ottaviano, Luisa; Semenova, Elizaveta; Hansen, Ole; Yvind, Kresten

    2018-02-01

    MEMS VCSELs are one of the most promising swept source (SS) lasers for optical coherence tomography (OCT) and one of the best candidates for future integration with endoscopes, surgical probes and achieving an integrated OCT system. However, the current MEMS-based SS are processed on the III-V wafers, which are small, expensive and challenging to work with. Furthermore, the actuating part, i.e., the MEMS, is on the top of the structure which causes a strong dependence on packaging to decrease its sensitivity to the operating environment. This work addresses these design drawbacks and proposes a novel design framework. The proposed device uses a high contrast grating mirror on a Si MEMS stage as the bottom mirror, all of which is defined in an SOI wafer. The SOI wafer is then bonded to an InP III-V wafer with the desired active layers, thereby sealing the MEMS. Finally, the top mirror, a dielectric DBR (7 pairs of TiO2 - SiO2), is deposited on top. The new device is based on a silicon substrate with MEMS defined on a silicon membrane in an enclosed cavity. Thus the device is much more robust than the existing MEMS VCSELs. This design also enables either a two-way actuation on the MEMS or a smaller optical cavity (pull-away design), i.e., wider FSR (Free Spectral Range) to increase the wavelength sweep. Fabrication of the proposed device is outlined and the results of device characterization are reported.

  9. All-optical switching in silicon-on-insulator photonic wire nano-cavities.

    PubMed

    Belotti, Michele; Galli, Matteo; Gerace, Dario; Andreani, Lucio Claudio; Guizzetti, Giorgio; Md Zain, Ahmad R; Johnson, Nigel P; Sorel, Marc; De La Rue, Richard M

    2010-01-18

    We report on experimental demonstration of all-optical switching in a silicon-on-insulator photonic wire nanocavity operating at telecom wavelengths. The switching is performed with a control pulse energy as low as approximately 0.1 pJ on a cavity device that presents very high signal transmission, an ultra-high quality-factor, almost diffraction-limited modal volume and a footprint of only 5 microm(2). High-speed modulation of the cavity mode is achieved by means of optical injection of free carriers using a nanosecond pulsed laser. Experimental results are interpreted by means of finite-difference time-domain simulations. The possibility of using this device as a logic gate is also demonstrated.

  10. Mobile phone-based biosensing: An emerging "diagnostic and communication" technology.

    PubMed

    Quesada-González, Daniel; Merkoçi, Arben

    2017-06-15

    In this review we discuss recent developments on the use of mobile phones and similar devices for biosensing applications in which diagnostics and communications are coupled. Owing to the capabilities of mobile phones (their cameras, connectivity, portability, etc.) and to advances in biosensing, the coupling of these two technologies is enabling portable and user-friendly analytical devices. Any user can now perform quick, robust and easy (bio)assays anywhere and at any time. Among the most widely reported of such devices are paper-based platforms. Herein we provide an overview of a broad range of biosensing possibilities, from optical to electrochemical measurements; explore the various reported designs for adapters; and consider future opportunities for this technology in fields such as health diagnostics, safety & security, and environment monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Comparability of anterior chamber depth measurements with partial coherence interferometry and optical low-coherence reflectometry in pseudophakic eyes.

    PubMed

    Luft, Nikolaus; Hirnschall, Nino; Farrokhi, Sanaz; Findl, Oliver

    2015-08-01

    To assess whether anterior chamber depth (ACD) measurements in pseudophakic eyes obtained with partial coherence interferometry (PCI) and optical low-coherence reflectometry (OLCR) devices can be used interchangeably. Vienna Institute for Research in Ocular Surgery, A Karl Landsteiner Institute, Hanusch Hospital, Vienna, Austria. Prospective case series. The ACD measurements in 1 eye of each pseudophakic patient were performed with the PCI-based ACMaster device and the OLCR-based Lenstar LS900 device at least 1 day postoperatively. The study comprised 65 eyes of 65 patients with a mean age of 71.7 years ± 9.0 (SD) (range 39 to 91 years). In 15 eyes, no valid ACD readings could be obtained with the OLCR device. No obvious reason for these measurement failures was identified; however, tear-film alterations shortly after surgery were suspected. No significant difference in the mean ACD in the remaining 50 eyes was found between PCI measurements (5019 ± 660 μm; range 4008 to 6181 μm) and OLCR measurements (5015 ± 663 μm; range 4017 to 6163 μm) (P = .06). Three (6%) of 50 measurements were not within the 95% limits of agreement in the Bland-Altman analysis. Pseudophakic ACD measurements with the PCI and OLCR devices can be used interchangeably. The OLCR device proved to be more user-friendly and faster; however, in a substantial number of eyes, no usable values were obtainable. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Tunable bi-functional photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer.

    PubMed

    Wu, Chong-Yin; Zou, Yi-Hong; Timofeev, Ivan; Lin, Yu-Ting; Zyryanov, Victor Ya; Hsu, Jy-Shan; Lee, Wei

    2011-04-11

    We investigated the optical properties of a one-dimensional photonic crystal infiltrated with a bistable chiral tilted homeotropic nematic liquid crystal as the central defect layer. By modulating the nematic director orientation with applied voltage, the electrical tunability of the defect modes was observed in the transmission spectrum. The composite not only is a general tunable device but also involves the green concept in that it can operate in two stable states at 0 V. Under the parallel-polarizer scheme, the spectral characteristics suggest a potential application for this device as an energy-efficient multichannel optical switch. © 2011 Optical Society of America

  13. Photodetection and Photoswitch Based On Polarized Optical Response of Macroscopically Aligned Carbon Nanotubes.

    PubMed

    Zhang, Ling; Wu, Yang; Deng, Lei; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-10-12

    Light polarization is extensively applied in optical detection, industry processing and telecommunication. Although aligned carbon nanotube naturally suppresses the transmittance of light polarized parallel to its axial direction, there is little application regarding the photodetection of carbon nanotube based on this anisotropic interaction with linearly polarized light. Here, we report a photodetection device realized by aligned carbon nanotube. Because of the different absorption behavior of polarized light with respect to polarization angles, such device delivers an explicit response to specific light wavelength regardless of its intensity. Furthermore, combining both experimental and mathematical analysis, we found that the light absorption of different wavelength causes characteristic thermoelectric voltage generation, which makes aligned carbon nanotube promising in optical detection. This work can also be utilized directly in developing new types of photoswitch that features a broad spectrum application from near-ultraviolet to intermediate infrared with easy integration into practical electric devices, for instance, a "wavelength lock".

  14. Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics

    PubMed Central

    Vora, Ankit; Gwamuri, Jephias; Pala, Nezih; Kulkarni, Anand; Pearce, Joshua M.; Güney, Durdu Ö.

    2014-01-01

    Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorbance in the active semiconductors. Thus, Ohmic loss dominated metamaterial absorbers can be converted into photovoltaic near-perfect absorbers with the advantage of harvesting the full potential of light management offered by the metamaterial absorbers. Based on experimental permittivity data for indium gallium nitride, we have shown that between 75%–95% absorbance can be achieved in the semiconductor layers of the converted metamaterial absorbers. Besides other metamaterial and plasmonic devices, our results may also apply to photodectors and other metal or semiconductor based optical devices where resistive losses and power consumption are important pertaining to the device performance. PMID:24811322

  15. Graphene-assisted multiple-input high-base optical computing

    PubMed Central

    Hu, Xiao; Wang, Andong; Zeng, Mengqi; Long, Yun; Zhu, Long; Fu, Lei; Wang, Jian

    2016-01-01

    We propose graphene-assisted multiple-input high-base optical computing. We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. An approach to implementing modulo 4 operations of three-input hybrid addition and subtraction of quaternary base numbers in the optical domain using multiple non-degenerate four-wave mixing (FWM) processes in graphene coated optical fiber device and (differential) quadrature phase-shift keying ((D)QPSK) signals is presented. We demonstrate 10-Gbaud modulo 4 operations of three-input quaternary hybrid addition and subtraction (A + B − C, A + C − B, B + C − A) in the experiment. The measured optical signal-to-noise ratio (OSNR) penalties for modulo 4 operations of three-input quaternary hybrid addition and subtraction (A + B − C, A + C − B, B + C − A) are measured to be less than 7 dB at a bit-error rate (BER) of 2 × 10−3. The BER performance as a function of the relative time offset between three signals (signal offset) is also evaluated showing favorable performance. PMID:27604866

  16. Linear and passive silicon diodes, isolators, and logic gates

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yuan

    2013-12-01

    Silicon photonic integrated devices and circuits have offered a promising means to revolutionalize information processing and computing technologies. One important reason is that these devices are compatible with conventional complementary metal oxide semiconductor (CMOS) processing technology that overwhelms current microelectronics industry. Yet, the dream to build optical computers has yet to come without the breakthrough of several key elements including optical diodes, isolators, and logic gates with low power, high signal contrast, and large bandwidth. Photonic crystal has a great power to mold the flow of light in micrometer/nanometer scale and is a promising platform for optical integration. In this paper we present our recent efforts of design, fabrication, and characterization of ultracompact, linear, passive on-chip optical diodes, isolators and logic gates based on silicon two-dimensional photonic crystal slabs. Both simulation and experiment results show high performance of these novel designed devices. These linear and passive silicon devices have the unique properties of small fingerprint, low power request, large bandwidth, fast response speed, easy for fabrication, and being compatible with COMS technology. Further improving their performance would open up a road towards photonic logics and optical computing and help to construct nanophotonic on-chip processor architectures for future optical computers.

  17. How the Hilbert integral theorem inspired flow lines

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Jiang, Lun

    2017-09-01

    Nonimaging Optics has been shown to achieve the theoretical limits constrained only by thermodynamic principles. The designing principles of nonimaging optics allow a non-conventional way of thinking about and generating new optical devices. Compared to conventional imaging optics which rarely utilizes the framework of thermodynamic arguments, nonimaging optics chooses to map etendue instead of rays. This fundamental shift of design paradigm frees the optics design from ray based designs which heavily relies on error tolerance analysis. Instead, the underlying thermodynamic principles guide the nonimaging design to be naturally constructed for extended light source for illumination, non-tracking concentrators and sensors that require sharp cut-off angles. We argue in this article that such optical devices which has enabled a multitude of applications depends on probabilities, geometric flux field and radiative heat transfer while "optics" in the conventional sense recedes into the background.

  18. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  19. Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate☆

    PubMed Central

    Chauhan, Veeren M.; Hopper, Richard H.; Ali, Syed Z.; King, Emma M.; Udrea, Florin; Oxley, Chris H.; Aylott, Jonathan W.

    2014-01-01

    A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 °C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol–gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 °C to 145 °C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. PMID:25844025

  20. Implementation of light extraction improvements of GaN-based light-emitting diodes with specific textured sidewalls

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Yen; Chen, Wei-Cheng; Chang, Ching-Hong; Lee, Yu-Lin; Liu, Wen-Chau

    2018-05-01

    Textured-sidewall GaN-based light-emitting diodes (LEDs) with various sidewall angles (15-90°) and convex or concave sidewalls prepared using an inductively-coupled-plasma approach are comprehensively fabricated and studied. The device with 45° sidewalls (Device F) and that with convex sidewalls (Device B) show significant improvements in optical properties. Experiments show that, at an injection current of 350 mA, the light output power, external quantum efficiency, wall-plug efficiency, and luminous flux of Device F (Device B) are greatly improved by 18.3% (18.2%), 18.2% (18.2%), 17.3% (19.8%), and 16.6% (18.4%), respectively, compared to those of a conventional LED with flat sidewalls. In addition, negligible degradation in electrical properties is found. The enhanced optical performance is mainly attributed to increased light extraction in the horizontal direction due to a significant reduction in total internal reflection at the textured sidewalls. Therefore, the reported specific textured-sidewall structures (Devices B and F) are promising for high-power GaN-based LED applications.

  1. Analysis and design of planar waveguide elements for use in filters and sensors

    NASA Astrophysics Data System (ADS)

    Chen, Guangzhou

    In this dissertation we present both theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on supermode theory combined with the resonance method for the determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including corrections due to the fields in the corner regions of the waveguides using perturbation theory. We analyze in detail two particular devices, an optical filter/combiner and an optical sensor. An optical wavelength filter/combiner is a common element in an integrated optical circuit. A new "bend free" filter/combiner is proposed and analyzed. The new wavelength filter consists of only straight parallel channels, which considerably simplify both the analysis and fabrication of the device. We show in detail how the operation of the device depends upon each of the design parameters. The intrinsic power loss in the proposed filter/combiner is minimized. The optical sensor is another important device and the sensitivity of measurement is an important issue in its design. Two operating mechanisms used in prior optical sensors are evanescent wave sensing or surface plasmon excitation. In this dissertation, we present a sensor with a directional coupler structure in which a measurand to be detected is interfaced with one side of the cladding. The analysis shows that it is possible to make a high resolution device by adjusting the design parameters. The dimensions and materials used in an optimized design are presented.

  2. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films

    PubMed Central

    Kim, Tae Young; Badsha, Md. Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-01-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices. PMID:26965195

  3. A polymer-based Fabry-Perot filter integrated with 3-D MEMS structures

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Polymers have been considered as one of the most versatile materials in making optical devices for communication and sensor applications. They provide good optical transparency to form filters, lenses and many optical components with ease of fabrication. They are scalable and compatible in dimensions with requirements in optics and can be fabricated on inorganic substrates, such as silicon and quartz. Recent polymer synthesis also made great progresses on conductive and nonlinear polymers, opening opportunities for new applications. In this paper, we discussed hybrid-material integration of polymers on silicon-based microelectromechanical system (MEMS) devices. The motivation is to combine the advantages of demonstrated silicon-based MEMS actuators and excellent optical performance of polymers. We demonstrated the idea with a polymer-based out-of-plane Fabry-Perot filter that can be self-assembled by scratch drive actuators. We utilized a fabrication foundry service, MUMPS (Multi-User MEMS Process), to demonstrate the feasibility and flexibility of integration. The polysilicon, used as the structural material for construction of 3-D framework and actuators, has high absorption in the visible and near infrared ranges. Therefore, previous efforts using a polysilicon layer as optical interfaces suffer from high losses. We applied the organic compound materials on the silicon-based framework within the optical signal propagation path to form the optical interfaces. In this paper, we have shown low losses in the optical signal processing and feasibility of building a thin-film Fabry-Perot filter. We discussed the optical filter designs, mechanical design, actuation mechanism, fabrication issues, optical measurements, and results.

  4. Low-loss ultracompact optical power splitter using a multistep structure.

    PubMed

    Huang, Zhe; Chan, Hau Ping; Afsar Uddin, Mohammad

    2010-04-01

    We propose a low-loss ultracompact optical power splitter for broadband passive optical network applications. The design is based on a multistep structure involving a two-material (core/cladding) system. The performance of the proposed device was evaluated through the three-dimensional finite-difference beam propagation method. By using the proposed design, an excess loss of 0.4 dB was achieved at a full branching angle of 24 degrees. The wavelength-dependent loss was found to be less than 0.3 dB, and the polarization-dependent loss was less than 0.05 dB from O to L bands. The device offers the potential of being mass-produced using low-cost polymer-based embossing techniques.

  5. Silicon-nanomembrane-based photonic crystal nanostructures for chip-integrated open sensor systems

    NASA Astrophysics Data System (ADS)

    Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Lin, Cheyun; Wang, Xiaolong; Chen, Ray T.

    2011-11-01

    We experimentally demonstrate two devices on the photonic crystal platform for chip-integrated optical absorption spectroscopy and chip-integrated biomolecular microarray assays. Infrared optical absorption spectroscopy and biomolecular assays based on conjugate-specific binding principles represent two dominant sensing mechanisms for a wide spectrum of applications in environmental pollution sensing in air and water, chem-bio agents and explosives detection for national security, microbial contamination sensing in food and beverages to name a few. The easy scalability of photonic crystal devices to any wavelength ensures that the sensing principles hold across a wide electromagnetic spectrum. Silicon, the workhorse of the electronics industry, is an ideal platform for the above optical sensing applications.

  6. 1-D ELECTRO-OPTIC BEAM STEERING DEVICE

    PubMed Central

    Wang, Wei-Chih; Tsui, Chi Leung

    2011-01-01

    In this paper, we present the design and fabrication of a 1D beam steering device based on planar electro-optic thermal-plastic prisms and a collimator lens array. With the elimination of moving parts, the proposed device is able to overcome the mechanical limitations of present scanning devices, such as fatigue and low operating frequency, while maintaining a small system footprint (~0.5mm×0.5mm). From experimental data, our prototype device is able to achieve a maximum deflection angle of 5.6° for a single stage prism design and 29.2° for a cascaded three prisms stage design. The lens array shows a 4µm collimated beam diameter. PMID:22199458

  7. Optical modulation in silicon-vanadium dioxide photonic structures

    NASA Astrophysics Data System (ADS)

    Miller, Kevin J.; Hallman, Kent A.; Haglund, Richard F.; Weiss, Sharon M.

    2017-08-01

    All-optical modulators are likely to play an important role in future chip-scale information processing systems. In this work, through simulations, we investigate the potential of a recently reported vanadium dioxide (VO2) embedded silicon waveguide structure for ultrafast all-optical signal modulation. With a VO2 length of only 200 nm, finite-differencetime- domain simulations suggest broadband (200 nm) operation with a modulation greater than 12 dB and an insertion loss of less than 3 dB. Predicted performance metrics, including modulation speed, modulation depth, optical bandwidth, insertion loss, device footprint, and energy consumption of the proposed Si-VO2 all-optical modulator are benchmarked against those of current state-of-the-art all-optical modulators with in-plane optical excitation.

  8. Physical principles for scalable neural recording

    PubMed Central

    Zamft, Bradley M.; Maguire, Yael G.; Shapiro, Mikhail G.; Cybulski, Thaddeus R.; Glaser, Joshua I.; Amodei, Dario; Stranges, P. Benjamin; Kalhor, Reza; Dalrymple, David A.; Seo, Dongjin; Alon, Elad; Maharbiz, Michel M.; Carmena, Jose M.; Rabaey, Jan M.; Boyden, Edward S.; Church, George M.; Kording, Konrad P.

    2013-01-01

    Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond resolution is a challenge beyond the limits of existing techniques in neuroscience. Entirely new approaches may be required, motivating an analysis of the fundamental physical constraints on the problem. We outline the physical principles governing brain activity mapping using optical, electrical, magnetic resonance, and molecular modalities of neural recording. Focusing on the mouse brain, we analyze the scalability of each method, concentrating on the limitations imposed by spatiotemporal resolution, energy dissipation, and volume displacement. Based on this analysis, all existing approaches require orders of magnitude improvement in key parameters. Electrical recording is limited by the low multiplexing capacity of electrodes and their lack of intrinsic spatial resolution, optical methods are constrained by the scattering of visible light in brain tissue, magnetic resonance is hindered by the diffusion and relaxation timescales of water protons, and the implementation of molecular recording is complicated by the stochastic kinetics of enzymes. Understanding the physical limits of brain activity mapping may provide insight into opportunities for novel solutions. For example, unconventional methods for delivering electrodes may enable unprecedented numbers of recording sites, embedded optical devices could allow optical detectors to be placed within a few scattering lengths of the measured neurons, and new classes of molecularly engineered sensors might obviate cumbersome hardware architectures. We also study the physics of powering and communicating with microscale devices embedded in brain tissue and find that, while radio-frequency electromagnetic data transmission suffers from a severe power–bandwidth tradeoff, communication via infrared light or ultrasound may allow high data rates due to the possibility of spatial multiplexing. The use of embedded local recording and wireless data transmission would only be viable, however, given major improvements to the power efficiency of microelectronic devices. PMID:24187539

  9. Non-GPS full position and angular orientation onboard sensors for moving and stationary platforms

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake; Kwok, Philip; Pereira, Carlos M.

    2016-05-01

    Angular orientation of both mobile and stationary objects continues to be an ongoing topic of interest for guidance and control as well as for non-GPS based solutions for geolocations of assets in any environment. Currently available sensors, which include inertia devices such as accelerometers and gyros; magnetometers; surface mounted antennas; radars; GPS; and optical line of sight devices, do not provide an acceptable solution for many applications, particularly for gun-fired munitions and for all-weather and all environment scenarios. A robust onboard full angular orientation sensor solution, based on a scanning polarized reference source and a polarized geometrical cavity orientation sensor, is presented. The full position of the object, in the reference source coordinate system, is determined by combining range data obtained using established time-of-flight techniques, with the angular orientation information.

  10. Spectral properties of all-active InP-based microring resonator devices

    NASA Astrophysics Data System (ADS)

    Kapsalis, A.; Alexandropoulos, D.; Mikroulis, S.; Simos, H.; Stamataki, I.; Syvridis, D.; Hamacher, M.; Troppenz, U.; Heidrich, H.

    2006-02-01

    Microring resonators are excellent candidates for very large scale photonic integration due to their compactness, and fabrication simplicity. Moreover a wide range of all-optical signal processing functions can be realized due to the resonance effect. Possible applications include filtering, add/drop of optical beams and power switching, as well as more complex procedures including multiplexing, wavelength conversion, and logic operations. All-active ring components based in InGaAsP/InP are possible candidates for laser sources, lossless filters, wavelength converters, etc. Our work is based on measurement, characterization and proposal of possible exploitation of such devices in a variety of applications. We investigate the spectral characteristics of multi-quantum well InGaAsP(λ=1.55μm)/InP microring structures of various ring diameters and different configurations including racetracks with one or two bus waveguides and MMI couplers. The latter configuration has recently exhibited the possibility to obtain tunable active filters as well as tunable laser sources based on all-active ring-bus-coupler structures. In the case of tunable lasers single mode operation has been achieved by obtaining sufficiently high side mode suppression ratio. The tuning capability is attributed to a coupled cavities effect, resembling the case of multi-section DBR lasers. However, in contrast to the latter, the fabrication of microring resonators is considered an easier task, due to a single step growth procedure, although further investigation must be carried out in order to achieve wide range tunability. Detailed mappings of achievable wavelengths are produced for a wide range of injection current values.

  11. The use of optical fiber bundles combined with electrochemistry for chemical imaging.

    PubMed

    Szunerits, Sabine; Walt, David R

    2003-02-17

    The present Review describes the progress made in using imaging optical fiber bundles for fluorescence and electrochemical-initiated chemiluminescence imaging. A novel optoelectrochemical micro-ring array has been fabricated and demonstrated for concurrent electrochemical and optical measurements. The device comprises optical fibers coated with gold via electroless gold deposition and assembled in a random array format. The design yielded an array of approximately 200 micro-ring electrodes, where interdiffusional problems were minimized. The inner diameter of the ring electrode is fixed by the diameter of the individual optical fibers (25 microns), while the outer radius is determined by the thickness of the deposited gold. While all the fibers are optically addressable, they are not all electrochemically addressable. The resolution of this device is in the tens of micrometers range, determined by the diameter of the optical fiber (25 microns) and by the spacing between each electrically connected fiber. For the purpose of having well-behaved microelectrode characteristics, this spacing was designed to be larger than 60 microns. The array was characterized using ferrocyanide in aqueous solution as a model electroactive species to demonstrate that this microelectrode array format exhibits steady-state currents at short response times. This device has potential application to be used as an optoelectronic sensor, especially for the electrolytic generation and transmission of electrochemiluminescence, and was used to demonstrate that electrochemically generated luminescent products can be detected with the fiber assembly.

  12. Highly efficient quantum dot-based photoconductive THz materials and devices

    NASA Astrophysics Data System (ADS)

    Rafailov, E. U.; Leyman, R.; Carnegie, D.; Bazieva, N.

    2013-09-01

    We demonstrate Terahertz (THz) signal sources based on photoconductive (PC) antenna devices comprising active layers of InAs semiconductor quantum dots (QDs) on GaAs. Antenna structures comprised of multiple active layers of InAs:GaAs PC materials are optically pumped using ultrashort pulses generated by a Ti:Sapphire laser and CW dualwavelength laser diodes. We also characterised THz output signals using a two-antenna coherent detection system. We discuss preliminary performance data from such InAs:GaAs THz devices which exhibit efficient emission of both pulsed and continuous wave (CW) THz signals and significant optical-to-THz conversion at both absorption wavelength ranges, <=850 nm and <=1300 nm.

  13. Single-sided lateral-field and phototransistor-based optoelectronic tweezers

    NASA Technical Reports Server (NTRS)

    Ohta, Aaron (Inventor); Chiou, Pei-Yu (Inventor); Hsu, Hsan-Yin (Inventor); Jamshidi, Arash (Inventor); Wu, Ming-Chiang (Inventor); Neale, Steven L. (Inventor)

    2011-01-01

    Described herein are single-sided lateral-field optoelectronic tweezers (LOET) devices which use photosensitive electrode arrays to create optically-induced dielectrophoretic forces in an electric field that is parallel to the plane of the device. In addition, phototransistor-based optoelectronic tweezers (PhOET) devices are described that allow for optoelectronic tweezers (OET) operation in high-conductivity physiological buffer and cell culture media.

  14. Optical scanning tests of complex CMOS microcircuits

    NASA Technical Reports Server (NTRS)

    Levy, M. E.; Erickson, J. J.

    1977-01-01

    The new test method was based on the use of a raster-scanned optical stimulus in combination with special electrical test procedures. The raster-scanned optical stimulus was provided by an optical spot scanner, an instrument that combines a scanning optical microscope with electronic instrumentation to process and display the electric photoresponse signal induced in a device that is being tested.

  15. Inverse design of an ultra-compact broadband optical diode based on asymmetric spatial mode conversion

    PubMed Central

    Callewaert, Francois; Butun, Serkan; Li, Zhongyang; Aydin, Koray

    2016-01-01

    The objective-first inverse-design algorithm is used to design an ultra-compact optical diode. Based on silicon and air only, this optical diode relies on asymmetric spatial mode conversion between the left and right ports. The first even mode incident from the left port is transmitted to the right port after being converted into an odd mode. On the other hand, same mode incident from the right port is reflected back by the optical diode dielectric structure. The convergence and performance of the algorithm are studied, along with a transform method that converts continuous permittivity medium into a binary material design. The optimal device is studied with full-wave electromagnetic simulations to compare its behavior under right and left incidences, in 2D and 3D settings as well. A parametric study is designed to understand the impact of the design space size and initial conditions on the optimized devices performance. A broadband optical diode behavior is observed after optimization, with a large rejection ratio between the two transmission directions. This illustrates the potential of the objective-first inverse-design method to design ultra-compact broadband photonic devices. PMID:27586852

  16. Optical isolators for 2-micron fibre lasers

    NASA Astrophysics Data System (ADS)

    Stevens, Gary; Legg, Thomas H.; Shardlow, Peter

    2015-02-01

    We report on the development and testing of optical isolators for use in 2-micron fiber laser systems. A variety of potential Faraday rotator materials were characterised to identify the most suitable materials for use in the 1700-2100nm wavelength range. Isolators based on the three best performing materials were then developed and packaged as fiber-in, fiber-out and fiber-in, beam-out devices. The isolators were then tested in CW, pulsed and ultrafast laser systems. The three different designs produced different performance characteristics, but all designs demonstrated isolation >25dB and insertion losses of <1.2 dB.

  17. Study of Linearization of Optical Polymer Modulators

    DTIC Science & Technology

    2004-02-01

    To improve the Spur Free Dynamic Range of analog electro - optic modulators in the 10 GHz regime, techniques for improving the linearity of these...devices must be developed. This report discusses an investigation into electro - optic directional couplers that use variable coupling in polymer-based

  18. Electro-optic KTN Devices

    NASA Astrophysics Data System (ADS)

    Yagi, Shogo; Fujiura, Kazuo

    We have grown KTN crystals with optical quality, and developed high-speed beam deflectors and variable focal length lenses based on KTN's large electro-optic effect. Furthermore, by using the KTN beam deflectors, we have developed a swept light source for OCT operable at 200 kHz.

  19. Embedded spectroscopic fiber sensor for on-line arc-welding analysis.

    PubMed

    Mirapeix, Jesús; Cobo, Adolfo; Quintela, Antonio; López-Higuera, José-Miguel

    2007-06-01

    A new fiber sensor system designed for spectroscopic analysis and on-line quality assurance of arc-welding processes is presented here. Although several different approaches have been considered for the optical capture of plasma emission in arc-welding processes, they tend to be invasive and make use of optical devices such as collimators or photodiodes. The solution proposed here is based on the arrangement of an optical fiber, which is used at the same time as the optical capturing device and also to deliver the optical information to a spectrometer, embedded within an arc-welding torch. It will be demonstrated that, by using the shielding gas as a protection for the fiber end, the plasma light emission is efficiently collected, forming a sensor system completely transparent and noninvasive for the welding operator. The feasibility of the proposed sensor designed to be used as the input optics of a welding quality-assurance system based on plasma spectroscopy will be demonstrated by means of several welding tests.

  20. Raman-Suppressing Coupling for Optical Parametric Oscillator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico

    2007-01-01

    A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.

  1. A cylindrical optical black hole using graded index photonic crystals

    NASA Astrophysics Data System (ADS)

    Wang, Hung-Wen; Chen, Lien-Wen

    2011-05-01

    The electromagnetic wave propagation of a two-dimensional optical black hole with graded index photonic crystals for transverse magnetic modes is studied. The implementation of the proposed system is validated in the metamaterial regime. The finite element method is employed in order to confirm the optical properties of the designed device. Numerical simulations show that the light incident on the device is bent toward the central area and absorbed by the inner core. As a result, the artificial optical black hole can effectively absorb the incident waves from all directions. The structure is composed of two kinds of real isotropic materials, which eases the experimental fabrication.

  2. En Face Optical Coherence Tomography Angiography Imaging Versus Fundus Photography in the Measurement of Choroidal Nevi.

    PubMed

    Lee, Michele D; Kaidonis, Georgia; Kim, Alice Y; Shields, Ryan A; Leng, Theodore

    2017-09-01

    Choroidal nevi are common benign intraocular tumors with a small risk of malignant transformation. This retrospective study investigates the use of en face spectral-domain optical coherence tomography angiography (SD-OCTA) in determining the clinical features and measurement of choroidal nevi. Patients with choroidal nevi were imaged with both OCTA and a fundus photography device. Greatest longitudinal dimension (GLD), perpendicular dimension (PD), and the GLD/PD ratio were assessed on each device. Inter-device variation and intra- and inter-rater reliability analyses were performed. Fourteen patients with choroidal nevi were included. No significant difference between the GLD/PD ratio as measured by all three devices was found (Chi-square = 2.8, 2 df, P = .247). Intraclass correlation coefficients were greater than 0.7 for repeated measures on all devices, suggesting good repeatability and reproducibility. This study demonstrated inter-device consistency and high intra- and inter-rater reliability when measuring choroidal nevi. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:741-747.]. Copyright 2017, SLACK Incorporated.

  3. Boosting the optical performance and commutation speed of phototransistor using SiGe/Si/Ge tunneling structure

    NASA Astrophysics Data System (ADS)

    Ferhati, H.; Djeffal, F.

    2018-06-01

    In this paper, a new optically controlled tunneling field effect transistor (OC-TFET) based on SiGe/Si/Ge hetero-channel is proposed to improve optical commutation speed and reduce power consumption. An exhaustive study of the device switching behavior associated with different hetero-channel structures has been carried out using an accurate numerical simulation. Moreover, a new figure of Merit (FoM) parameter called optical swing factor that describes the phototransistor optical commutation speed is proposed. We demonstrate that the band-to-band tunneling effect can be beneficial for improving the device optical commutation speed. The impact of the Ge mole fraction of the SiGe source region on the device FoMs is investigated. It is found that the optimized design with 40% of Ge content offers the opportunity to overcome the trade-off between ultrafast and very sensitive photoreceiver performance, where it yields 48 mV/dec of optical swing factor and 155 dB of I ON /I OFF ratio. An overall performance comparison between the proposed OC-TFET device and the conventional designs is performed, where the proposed structure ensures high optical detectivity for very low optical powers (sub-1pW) as compared to that of the conventional counterparts. Therefore, the proposed OC-TFET provides the possibility for bridging the gap between improved optical commutation speed and reduced power consumption, which makes it a potential alternative for high-performance inter-chip data communication applications.

  4. Complete all-optical processing polarization-based binary logic gates and optical processors.

    PubMed

    Zaghloul, Y A; Zaghloul, A R M

    2006-10-16

    We present a complete all-optical-processing polarization-based binary-logic system, by which any logic gate or processor can be implemented. Following the new polarization-based logic presented in [Opt. Express 14, 7253 (2006)], we develop a new parallel processing technique that allows for the creation of all-optical-processing gates that produce a unique output either logic 1 or 0 only once in a truth table, and those that do not. This representation allows for the implementation of simple unforced OR, AND, XOR, XNOR, inverter, and more importantly NAND and NOR gates that can be used independently to represent any Boolean expression or function. In addition, the concept of a generalized gate is presented which opens the door for reconfigurable optical processors and programmable optical logic gates. Furthermore, the new design is completely compatible with the old one presented in [Opt. Express 14, 7253 (2006)], and with current semiconductor based devices. The gates can be cascaded, where the information is always on the laser beam. The polarization of the beam, and not its intensity, carries the information. The new methodology allows for the creation of multiple-input-multiple-output processors that implement, by itself, any Boolean function, such as specialized or non-specialized microprocessors. Three all-optical architectures are presented: orthoparallel optical logic architecture for all known and unknown binary gates, singlebranch architecture for only XOR and XNOR gates, and the railroad (RR) architecture for polarization optical processors (POP). All the control inputs are applied simultaneously leading to a single time lag which leads to a very-fast and glitch-immune POP. A simple and easy-to-follow step-by-step algorithm is provided for the POP, and design reduction methodologies are briefly discussed. The algorithm lends itself systematically to software programming and computer-assisted design. As examples, designs of all binary gates, multiple-input gates, and sequential and non-sequential Boolean expressions are presented and discussed. The operation of each design is simply understood by a bullet train traveling at the speed of light on a railroad system preconditioned by the crossover states predetermined by the control inputs. The presented designs allow for optical processing of the information eliminating the need to convert it, back and forth, to an electronic signal for processing purposes. All gates with a truth table, including for example Fredkin, Toffoli, testable reversible logic, and threshold logic gates, can be designed and implemented using the railroad architecture. That includes any future gates not known today. Those designs and the quantum gates are not discussed in this paper.

  5. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  6. Eat-by-light fiber-optic and micro-optic devices for food quality and safety assessment

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Cucci, C.; Mencaglia, A. A.; Cimato, A.; Attilio, C.; Thienpont, H.; Ottevaere, H.; Paolesse, R.; Mastroianni, M.; Monti, D.; Buonocore, G.; Del Nobile, A.; Mentana, A.; Grimaldi, M. F.; Dall'Asta, C.; Faccini, A.; Galaverna, G.; Dossena, A.

    2007-06-01

    A selection is presented of fiber-optic and micro-optic devices that have been designed and tested for guaranteeing the quality and safety of typical foods, such as extra virgin olive oil, beer, and milk. Scattered colorimetry is used to authenticate various types of extra virgin olive oil and beer, while a fiber-optic-based device for UV-VIS-NIR absorption spectroscopy is exploited in order to obtain the hyperspectral optical signature of olive oil. This is done not only for authentication purposes, but also so as to correlate the spectral data with the content of fatty acids, which are important nutritional factors. A micro-optic sensor for the detection of olive oil aroma that is capable of distinguishing different ageing levels of extra virgin olive oil is also presented. It shows effective potential for acting as a smart cap of bottled olive oil in order to achieve a non-destructive olfactory perception of oil ageing. Lastly, a compact portable fluorometer for the rapid monitoring of the carcinogenic M1 aflatoxin in milk, is experimented.

  7. Eat-by-light: fiber-optic and micro-optic devices for food safety and quality assessment

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Cucci, C.; Mencaglia, A. A.; Cimato, A.; Attilio, C.; Thienpont, H.; Ottevaere, H.; Paolesse, R.; Mastroianni, M.; Monti, D.; Buonocore, G.; Del Nobile, A.; Mentana, A.; Dall'Asta, C.; Faccini, A.; Galaverna, G.; Dossena, A.

    2007-07-01

    A selection of fiber-optic and micro-optic devices is presented designed and tested for monitoring the quality and safety of typical foods, namely the extra virgin olive oil, the beer, and the milk. Scattered colorimetry is used for the authentication of various types of extra virgin olive oil and beer, while a fiber-optic-based device for UV-VIS-NIR absorption spectroscopy is exploited in order to obtain the hyperspectral optical signature of olive oil. This is done not only for authentication purposes, but also so as to correlate the spectral data with the content of fatty acids that are important nutritional factors. A micro-optic sensor for the detection of olive oil aroma is presented. It is capable of distinguishing different ageing levels of extra virgin olive oil. It shows effective potential for acting as a smart cap of bottled olive oil in order to achieve a non-destructive olfactory perception of oil ageing. Lastly, a compact portable fluorometer is experimented for the rapid monitoring of the carcinogenic M1 aflatoxin in milk.

  8. Diffusive-light invisibility cloak for transient illumination

    NASA Astrophysics Data System (ADS)

    Orazbayev, B.; Beruete, M.; Martínez, A.; García-Meca, C.

    2016-12-01

    Invisibility in a diffusive-light-scattering medium has been recently demonstrated by employing a scattering-cancellation core-shell cloak. Unlike nondiffusive cloaks, such a device can be simultaneously macroscopic, broadband, passive, polarization independent, and omnidirectional. Unfortunately, it has been verified that this cloak, as well as more sophisticated ones based on transformation optics, fail under pulsed illumination, invalidating their use for a variety of applications. Here, we introduce a different approach based on unimodular transformations that enables the construction of unidirectional diffusive-light cloaks exhibiting a perfect invisibility effect, even under transient conditions. Moreover, we demonstrate that a polygonal cloak can extend this functionality to multiple directions with a nearly ideal behavior, while preserving all other features. We propose and numerically verify a simple cloak realization based on a layered stack of two isotropic materials. The studied devices have several applications not addressable by any of the other cloaks proposed to date, including shielding from pulse-based detection techniques, cloaking undesired scattering elements in time-of-flight imaging or high-speed communication systems for diffusive environments, and building extreme optical security features. The discussed cloaking strategy could also be applied to simplify the implementation of thermal cloaks.

  9. Neonatal phototherapy radiometers: current performance characteristics and future requirements.

    PubMed

    Clarkson, Douglas McG; Nicol, Ruth; Chapman, Phillip

    2014-04-01

    Hand held radiometers provide a convenient means of monitoring the output of neonatal phototherapy treatment devices as part of planned programs of device maintenance and output monitoring. It was considered appropriate to determine the wavelength and angular response of a selection of such meters and compare their indicated values with that derived from spectral analysis of phototherapy light sources. This was undertaken using a Bentham DMc150 double grating spectroradiometer and a series of 10nm band pass optical filters in the range 400-640 nm used in conjunction with a fiber optic light source. Specific meters investigated included a GE Biliblanket Light Meter II, a NeoBLUE radiometer and a Bio-TEK radiometer 74345 device. Comparisons were made of measurements made using the hand held meters and the Bentham DMc 150 system for a range of neonatal phototherapy treatment devices. The use of such meters is discussed in relation to applicable equipment standards and recommendations of intensive phototherapy from clinical groups such as the American Academy of Pediatrics and a specification for a spectroradiometer based measurement system is proposed. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Nonimaging compound parabolic concentrator-type reflectors with variable extreme direction.

    PubMed

    Gordon, J M; Rabl, A

    1992-12-01

    The properties of nonimaging compound parabolic concentrator (CPC)-type devices are examined in which the extreme direction is not constant but rather is a variable that can change along the reflector. One can then retain the maximal concentration or radiative efficiency of the CPC while the flux map on the absorber or target is modified, depending on whether the device is used for optical concentration or for lighting. Two general classes of reflector are derived, and all the nonimaging devices developed to date are shown to be special cases of the general solution. These two classes are the nonimaging analog of converging and diverging devices of imaging optics.

  11. Subwavelength core/shell cylindrical nanostructures for novel plasmonic and metamaterial devices

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Ho; No, You-Shin

    2017-12-01

    In this review, we introduce novel plasmonic and metamaterial devices based on one-dimensional subwavelength nanostructures with cylindrical symmetry. Individual single devices with semiconductor/metal core/shell or dielectric/metal core/multi-shell structures experience strong light-matter interaction and yield unique optical properties with a variety of functions, e.g., invisibility cloaking, super-scattering/super-absorption, enhanced luminescence and nonlinear optical activities, and deep subwavelength-scale optical waveguiding. We describe the rational design of core/shell cylindrical nanostructures and the proper choice of appropriate constituent materials, which allow the efficient manipulation of electromagnetic waves and help to overcome the limitations of conventional homogeneous nanostructures. The recent developments of bottom-up synthesis combined with the top-down fabrication technologies for the practical applications and the experimental realizations of 1D subwavelength core/shell nanostructure devices are briefly discussed.

  12. Analysis of waveguide architectures of InGaN/GaN diode lasers by nearfield optical microscopy

    NASA Astrophysics Data System (ADS)

    Friede, Sebastian; Tomm, Jens W.; Kühn, Sergei; Hoffmann, Veit; Wenzel, Hans

    2017-02-01

    Waveguide (WG) architectures of 420-nm emitting InAlGaN/GaN diode lasers are analyzed by photoluminescence (PL) and photocurrent (PC) spectroscopy using a nearfield scanning optical microscope (NSOM) for excitation and detection. The measurements with a spatial resolution of 100 nm are implemented by scanning the fiber tip along the unprepared front facets of standard devices. PL is collected by the fiber tip, whereas PCs are extracted from the contacts that are anyway present for power supply. The mechanisms of signal generation are addressed in detail. The components of the `optical active region', multiple quantum wells (MQW), WGs, and cladding layers are separately inspected. Even separate analysis of p- and n-sections of the WG become possible. Defect levels are detected in the p-part of the WG. Their presence is consistent with the doping by Mg. An increased efficiency of carrier capture into InGaN/GaN WGs compared to GaN WGs is observed. Thus, beyond the improved optical confinement, the electrical confinement is improved, as well. NSOM PL and PC at GaN based devices do not reach the clarity and spatial resolution for WG mode analysis as seen before for GaAs based devices. This is due to higher modal absorption and higher WG losses. NSOM based optical analysis turns out to be an efficient tool for analysis of single layers grown into InAlGaN/GaN diode laser structures, even if this analysis is done at a packaged ready-to-work device.

  13. All-optical SR flip-flop based on SOA-MZI switches monolithically integrated on a generic InP platform

    NASA Astrophysics Data System (ADS)

    Pitris, St.; Vagionas, Ch.; Kanellos, G. T.; Kisacik, R.; Tekin, T.; Broeke, R.; Pleros, N.

    2016-03-01

    At the dawning of the exaflop era, High Performance Computers are foreseen to exploit integrated all-optical elements, to overcome the speed limitations imposed by electronic counterparts. Drawing from the well-known Memory Wall limitation, imposing a performance gap between processor and memory speeds, research has focused on developing ultra-fast latching devices and all-optical memory elements capable of delivering buffering and switching functionalities at unprecedented bit-rates. Following the master-slave configuration of electronic Flip-Flops, coupled SOA-MZI based switches have been theoretically investigated to exceed 40 Gb/s operation, provided a short coupling waveguide. However, this flip-flop architecture has been only hybridly integrated with silica-on-silicon integration technology exhibiting a total footprint of 45x12 mm2 and intra-Flip-Flop coupling waveguide of 2.5cm, limited at 5 Gb/s operation. Monolithic integration offers the possibility to fabricate multiple active and passive photonic components on a single chip at a close proximity towards, bearing promises for fast all-optical memories. Here, we present for the first time a monolithically integrated all-optical SR Flip-Flop with coupled master-slave SOA-MZI switches. The photonic chip is integrated on a 6x2 mm2 die as a part of a multi-project wafer run using library based components of a generic InP platform, fiber-pigtailed and fully packaged on a temperature controlled ceramic submount module with electrical contacts. The intra Flip-Flop coupling waveguide is 5 mm long, reducing the total footprint by two orders of magnitude. Successful flip flop functionality is evaluated at 10 Gb/s with clear open eye diagram, achieving error free operation with a power penalty of 4dB.

  14. Explicit finite-difference simulation of optical integrated devices on massive parallel computers.

    PubMed

    Sterkenburgh, T; Michels, R M; Dress, P; Franke, H

    1997-02-20

    An explicit method for the numerical simulation of optical integrated circuits by means of the finite-difference time-domain (FDTD) method is presented. This method, based on an explicit solution of Maxwell's equations, is well established in microwave technology. Although the simulation areas are small, we verified the behavior of three interesting problems, especially nonparaxial problems, with typical aspects of integrated optical devices. Because numerical losses are within acceptable limits, we suggest the use of the FDTD method to achieve promising quantitative simulation results.

  15. 40-Gbit/s all-optical circulating shift register with an inverter.

    PubMed

    Hall, K L; Donnelly, J P; Groves, S H; Fennelly, C I; Bailey, R J; Napoleone, A

    1997-10-01

    We report what is believed to be the first demonstration of an all-optical circulating shift register using an ultrafast nonlinear interferometer with a polarization-insensitive semiconductor optical amplifier as the nonlinear switching element. The device operates at 40 Gbits/s, to our knowledge the highest speed demonstrated to date. Also, the demonstration proves the cascadability of the ultrafast nonlinear interferometric switch.

  16. Lab-on-Fiber devices as an all around platform for sensing

    NASA Astrophysics Data System (ADS)

    Ricciardi, A.; Consales, M.; Quero, G.; Crescitelli, A.; Esposito, E.; Cusano, A.

    2013-12-01

    "Lab-on-Fiber" technology is an emerging field envisioning a novel class of advanced, multifunctional photonic devices and components arising from the integration onto optical fibers of different materials at micro and nano-scale with suitable physical, chemical and biological properties. This new fascinating and intriguing research field thus proposes a new technological platform where functionalized materials, devices and components are constructed, embedded all together in a single optical fiber providing the necessary physical connections and light matter interaction, exploitable in both communication and sensing applications. This technological innovation would open the way for the creation of a novel technological world completely integrated in a single optical fiber conferring unique and unprecedented performances and functionality degree. Although, the benefits provided by such a technology can be easily understood, many research efforts are, however, required to translate the vision in a technological reality. Indeed, the main issue to address concerns the identification and definition of viable fabrication methodologies, routes and strategies enabling the integration of a large set of functional materials at sub wavelength scale onto non conventional substrates as the case of optical fibers.

  17. Exploiting Repulsive and Attractive Optical Forces in Advanced Nanophotonic Systems

    DTIC Science & Technology

    2015-10-26

    in the same device. Such all-optical interaction is achieved without involving any optoelectronic interaction or nonlinear optical effect and thus...other cavity and tilt the see-saw, causing detuning of both cavities but in opposite directions. Furthermore, the see- saw oscillation can “shuttle

  18. Phenomenal enhancement of optical nonlinearity in PTZ-I based ZnS/ZnSe nanocomposites

    NASA Astrophysics Data System (ADS)

    Divyasree, M. C.; Shiju, E.; Vijisha, M. V.; Ramesan, M. T.; Chandrasekharan, K.

    2018-05-01

    The enhanced nonlinear optical properties of phenothiazine-iodine (PTZ-I) charge transfer complex (CTC) on composite formation with ZnS/ZnSe nanostructures are reported. The interaction between the components was confirmed by the FTIR spectra. Structural and morphological changes on nanocomposite formation were analyzed by scanning electron microscopy and X-ray diffraction spectra. The absorption and emission features of both the nanocomposites and their constituent components were studied. Nonlinear optical properties of all the samples in nanosecond regime were investigated by the Z-scan technique using Nd: YAG laser with 532 nm wavelength and 7 ns pulse width. The optical nonlinearity of PTZ-I CTC was found to be improved considerably on composite formation and the new systems can be proposed as excellent candidates for photonic devices. Enhanced optical nonlinearity of the composites could be attributed to charge/energy transfer mechanism between PTZ-I CTC and the nanostructures.

  19. Photonic integrated circuits based on novel glass waveguides and devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Zhang, Deng; Pan, Weijian; Rowe, Helen; Benson, Trevor; Loni, Armando; Sewell, Phillip; Furniss, David; Seddon, Angela B.

    2006-04-01

    Novel materials, micro-, nano-scale photonic devices, and 'photonic systems on a chip' have become important focuses for global photonics research and development. This interest is driven by the rapidly growing demand for broader bandwidth in optical communication networks, and higher connection density in the interconnection area, as well as a wider range of application areas in, for example, health care, environment monitoring and security. Taken together, chalcogenide, heavy metal fluoride and fluorotellurite glasses offer transmission from ultraviolet to mid-infrared, high optical non-linearity and the ability to include active dopants, offering the potential for developing optical components with a wide range of functionality. Moreover, using single-mode large cross-section glass-based waveguides as an optical integration platform is an elegant solution for the monolithic integration of optical components, in which the glass-based structures act both as waveguides and as an optical bench for integration. We have previously developed a array of techniques for making photonic integrated circuits and devices based on novel glasses. One is fibre-on-glass (FOG), in which the fibres can be doped with different active dopants and pressed onto a glass substrate with a different composition using low-temperature thermal bonding under mechanical compression. Another is hot-embossing, in which a silicon mould is placed on top of a glass sample, and hot-embossing is carried out by applying heat and pressure. In this paper the development of a fabrication technique that combines the FOG and hot-embossing procedures to good advantage is described. Simulation and experimental results are presented.

  20. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajaldini, Mehdi; Young Researchers and Elite Club, Baft Branch, Islamic Azad University, Baft; Jafri, Mohd Zubir Mat

    2015-04-24

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used asmore » the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.« less

Top